Sugiyama, Azusa; Nagase, Hiroshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko; Saitoh, Akiyoshi
2014-04-01
Recently, we reported that the δ opioid receptor (DOR) agonist KNT-127 produces anxiolytic-like effects in behaving rats. Here, we report on the roles of DOR subtypes ( DOR(1) and DOR(2)) play in mediating KNT-127-induced anxiolytic-like effects. Pretreatment with the DOR(2)-selective antagonist naltriben (NTB; 0.05mg/kg, s.c.) completely abolished KNT-127 (3.0mg/kg, s.c.)-induced anxiolytic-like effects in rats performing the elevated plus-maze task. By contrast, the DOR(1)-selective antagonist 7-benzylidenenaltrexone (BNTX; 0.5mg/kg, s.c.) produced no effect at a dose that completely blocked the antinociceptive effects of KNT-127. These findings were also supported by results from a light/dark test and open-field test. We clearly demonstrated that the DOR(2)-selective antagonist, but not the DOR(1)-selective antagonist, abolishes the anxiolytic-like effects of the DOR agonist KNT-127, suggesting different roles of these DOR subtypes in anxiety. We propose that DOR(2)-selective agonists would be good candidates for future development of anxiolytic drugs. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Anxiolytic-Like Actions of Fatty Acids Identified in Human Amniotic Fluid
García-Ríos, Rosa Isela; Rodríguez-Landa, Juan Francisco; Contreras, Carlos M.
2013-01-01
Eight fatty acids (C12–C18) were previously identified in human amniotic fluid, colostrum, and milk in similar proportions but different amounts. Amniotic fluid is well known to be the natural environment for development in mammals. Interestingly, amniotic fluid and an artificial mixture of fatty acids contained in amniotic fluid produce similar anxiolytic-like actions in Wistar rats. We explored whether the lowest amount of fatty acids contained in amniotic fluid with respect to colostrum and milk produces such anxiolytic-like effects. Although a trend toward a dose-response effect was observed, only an amount of fatty acids that was similar to amniotic fluid fully mimicked the effect of diazepam (2 mg/kg, i.p.) in the defensive burying test, an action devoid of effects on locomotor activity and motor coordination. Our results confirm that the amount of fatty acids contained in amniotic fluid is sufficient to produce anxiolytic-like effects, suggesting similar actions during intrauterine development. PMID:23737729
Jastrzębska-Więsek, Magdalena; Siwek, Agata; Partyka, Anna; Kubacka, Monika; Mogilski, Szczepan; Wasik, Anna; Kołaczkowski, Marcin; Wesołowska, Anna
2014-10-01
The 5-HT6 is one of the most recent additions to the 5-HT receptor family. Its pharmacological profile and anatomical distribution is suggestive of a putative role in mood disorders. Most of preclinical evidence suggests an anxiolytic-like action of 5-HT6 receptor antagonists. Evaluation the anxiolytic-like effects of EMD 386088, a partial 5-HT6receptor agonist, and its putative mechanism of action in rats. EMD 386088, administered intraperitoneally at a dose of 2.5 mg/kg evoked specific anxiolytic-like activity in the automated version of the conflict drinking Vogel and the elevated plus-maze tests visible by increasing all parameters indicating a potential anti-anxiety effect. Its activity was blocked by the selective 5-HT6 receptor antagonist SB 271046, but not by the selective GABAA/benzodiazepine receptor antagonist flumazenil. EMD 386088 did not intensify an anxiolytic-like effect produced by diazepam in the elevated plus-maze test. These findings suggest that EMD 386088, a 5-HT6 receptor agonist, produces anxiolytic-like activity after systemic administration which may result from direct stimulation of 5-HT6 receptors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety.
Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant
2014-11-05
Anxiety disorders are widely spread psychiatric illnesses that are a cause of major concern. Despite a consistent increase in anxiolytics, the prevalence of anxiety is static; this necessitates the development of new compounds with potential activity and minimum unwanted effects. A serotonergic (5HT) system plays an important role in pathogenesis of anxiety and predominantly involves 5HT1A receptor action in mediating anxiety-like behavior; the antagonism of 5HT1A receptor has demonstrated to produce anxiolytic-like effects. Alverine citrate (AVC) is reported as a 5HT1A antagonist; however, its effects on anxiety-like behavior are not investigated. Thus, the present study, by utilizing a neurobehavioral approach, examined the anxiolytic-like effects of AVC in experimental mouse models of anxiety. Mice were acutely treated with AVC (5-20mg/kg, i.p.)/diazepam (DIA, 2mg/kg, i.p.) and subjected to four validated anxiety models viz. elevated plus-maze (EPM), light/dark (L/D), hole-board (HB) and marble burying (MB) tests. AVC (15-20mg/kg) and DIA significantly increased open arm activity in EPM, exploration in light chamber in L/D test, exploratory behavior in HB and reduced MB behavior in marble burying test. AVC (5mg/kg) had no effect on all behavioral tests, while AVC (10mg/kg) produced partial effects. It revealed anxiolytic-like effects of AVC. Furthermore, anxiolytic-like effects of AVC at higher doses (15-20mg/kg) were more pronounced than lower doses (10mg/kg) and were quite similar to the standard drug DIA. The present finding demonstrates, for the first time, the anxiolytic-like effects of AVC, which may be an alternative approach for management of anxiety-related disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Rock, Erin M; Limebeer, Cheryl L; Petrie, Gavin N; Williams, Lauren A; Mechoulam, Raphael; Parker, Linda A
2017-07-01
Cannabis is commonly used by humans to relieve stress. Here, we evaluate the potential of intraperitoneally (i.p.) administered Δ 9 -tetrahydrocannabiol (THC) and cannabidiolic acid (CBDA, the precursor of cannabidiol [CBD]) to produce dose-dependent effects on anxiety-like responding in the light-dark (LD) emergence test of anxiety-like responding in rats, when administered acutely or chronically (21 days). As well, we evaluate the potential of THC, CBDA, and CBD to reduce anxiogenic responding produced by foot shock (FS) stress 24 h prior to the LD test. In the absence of the explicit FS stressor, THC (1 and 10 mg/kg) produced anxiogenic-like responding when administered acutely or chronically, but CBDA produced neither anxiogenic- nor anxiolytic-like responding. Administration of FS stress 24 h prior to the LD test enhanced anxiogenic-like responding (reduced time spent and increased latency to enter the light compartment) in rats pretreated with either vehicle (VEH) or THC (1 mg/kg); however, administration of CBDA (0.1-100 μg/kg) or CBD (5 mg/kg) prevented the FS-induced anxiogenic-like responding (an anxiolytic-like effect). The 5-hydroxytryptamine 1A (5-HT 1A ) receptor antagonist, WAY100635, reversed CBDA's anxiolytic effect (1 μg/kg). Combining an anxiolytic dose of CBDA (1 μg/kg) or CBD (5 mg/kg) with an anxiogenic dose of THC (1 mg/kg) did not modify THC's anxiogenic effect. These results suggest the anxiolytic effects of CBDA and CBD may require the presence of a specific stressor.
Rodríguez-Landa, Juan Francisco; Vicente-Serna, Julio; Rodríguez-Blanco, Luis Alfredo; Rovirosa-Hernández, María de Jesús; García-Orduña, Francisco; Carro-Juárez, Miguel
2014-01-01
In previous studies, the anxiolytic-like effects of Montanoa tomentosa and Montanoa frutescens were reported in male rats, but the potential anxiolytic-like effects of Montanoa plants during the different phases of the ovarian cycle in rats remain to be explored. The anxiolytic-like effects of the aqueous crude extracts of M. frutescens (25 and 50 mg/kg) and M. grandiflora (25 and 50 mg/kg) in the elevated plus maze were investigated in Wistar rats during the estrous cycle and compared with 2 mg/kg diazepam as a reference anxiolytic drug. To investigate any motor effect (i.e., hyperactivity, no changes, or hypoactivity) associated with the treatments, the rats were evaluated in the open field test. The M. frutescens (25 and 50 mg/kg) and M. grandiflora (50 mg/kg) extracts exerted anxiolytic-like effects during the metestrus-diestrus phase, similar to diazepam, without disrupting spontaneous motor activity. No significant effects of the extracts were detected in either behavioral test during the proestrus-estrus phase, whereas diazepam produced motor hypoactivity in the open field test. These results indicate that the M. frutescens and M. grandiflora extracts possess anxiolytic-like effects that depend on the ovarian cycle phase, supporting the Mexican ancient medicinal use of these plants to ameliorate anxiety disorders.
Rodríguez-Landa, Juan Francisco; Vicente-Serna, Julio; Rodríguez-Blanco, Luis Alfredo; Rovirosa-Hernández, María de Jesús; García-Orduña, Francisco; Carro-Juárez, Miguel
2014-01-01
In previous studies, the anxiolytic-like effects of Montanoa tomentosa and Montanoa frutescens were reported in male rats, but the potential anxiolytic-like effects of Montanoa plants during the different phases of the ovarian cycle in rats remain to be explored. The anxiolytic-like effects of the aqueous crude extracts of M. frutescens (25 and 50 mg/kg) and M. grandiflora (25 and 50 mg/kg) in the elevated plus maze were investigated in Wistar rats during the estrous cycle and compared with 2 mg/kg diazepam as a reference anxiolytic drug. To investigate any motor effect (i.e., hyperactivity, no changes, or hypoactivity) associated with the treatments, the rats were evaluated in the open field test. The M. frutescens (25 and 50 mg/kg) and M. grandiflora (50 mg/kg) extracts exerted anxiolytic-like effects during the metestrus-diestrus phase, similar to diazepam, without disrupting spontaneous motor activity. No significant effects of the extracts were detected in either behavioral test during the proestrus-estrus phase, whereas diazepam produced motor hypoactivity in the open field test. These results indicate that the M. frutescens and M. grandiflora extracts possess anxiolytic-like effects that depend on the ovarian cycle phase, supporting the Mexican ancient medicinal use of these plants to ameliorate anxiety disorders. PMID:24800255
Antidepressant and anxiolytic-like activity of sodium selenite after acute treatment in mice.
Kędzierska, Ewa; Dudka, Jarosław; Poleszak, Ewa; Kotlińska, Jolanta H
2017-04-01
Selenium (Se) is an essential trace element for humans and animals, that is needed for a broad variety of physiological functions including thyroid hormone metabolism, protection against oxidative stress, and immunity associated functions. Human nutritional Se deficiencies are associated with neuropsychiatric diseases, like Alzheimer's disease, Parkinson's disease, obsessive - compulsive disorder, stroke, epilepsy as well as depressive behaviours. In this study we examined antidepressant- and anxiolytic-like activity of Se in the inorganic form of sodium selenite and investigated whether Se influence on the locomotor activity in mice. The antidepressant-like and anxiolytic-like activity of Se was assessed using forced swim test (FST) and elevated plus-maze test (EPM), respectively. Spontaneous locomotor activity was measured using photoresistor actimeters. Sodium selenite administered at the doses of 0.5, 1, and 2mg/kg, ip reduced immobility time in the FST exerting antidepressant-like activity. In the EPM test, sodium selenite at the same doses, produced anxiolytic-like effect; the doses active in both tests did not affect locomotor activity, indicating that these effects of Se are specific. These potential antidepressant- and anxiolytic-like effects of Se require more detailed experimental study using animal models to approach a clear conclusion regarding the potential mechanism of the observed effect. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Girish, Chandrashekaran; Raj, Vishnu; Arya, Jayasree; Balakrishnan, Sadasivam
2013-06-15
Anxiolytic-like effects of dietary flavonoids are relatively well known. Ellagic acid is a naturally occurring flavonoid compound which is abundant in many plants and fruits. The present study was designed to investigate the antianxiety-like effect of ellagic acid in mice using an elevated plus-maze test. The involvement of the GABAergic and serotonergic systems in the antianxiety-like activity of ellagic acid was also studied. Our results showed that ellagic acid treatment (25, 50 and 100 mg/kg, p.o.), produced a significant increase in the percentage of time spent and entry into the open arms, with a profile comparable to that of diazepam (1 mg/kg, p.o.). Unlike diazepam, the anxiolytic doses of ellagic acid did not prolong the duration of sodium thiopental-induced loss of righting reflex, indicating that this flavonoid is non-hypnotic. The anxiolytic effect observed with ellagic acid treatment (25 mg/kg, p.o.) was antagonized by pretreatment with picrotoxin (a non-competitive GABAA receptor antagonist, 1 mg/kg, i.p.) and flumazenil (a benzodiazepine site antagonist, 1 mg/kg, i.p.) but not with p-chlorophenylalanine (a serotonin synthesis inhibitor, 100 mg/kg, i.p.) and pindolol (a β-adrenoceptors blocker/5-HT1A/1B receptor antagonist, 10 mg/kg, i.p.). Taken together, the data demonstrated that acute and chronic administration of ellagic acid to mice has produced antianxiety-like effect when tested in the elevated plus-maze. The experiments with different receptor blockers suggest an involvement of GABAergic system in the anxiolytic action of this bioflavonoid. However, this action is not seems to be mediated through serotonergic system. Copyright © 2013 Elsevier B.V. All rights reserved.
Cárdenas, Jorge; Reyes-Pérez, Valeria; Hernández-Navarro, María Dolores; Dorantes-Barrón, Ana María; Almazán, Salvador; Estrada-Reyes, Rosa
2017-03-22
Tanacetum parthenium L. Schultz-Bip (Asteraceae) is widely used worldwide in traditional medicine for the treatment of convulsions and culture-bound syndromes such as susto (fear). The aim of this work was to evaluate the anxiolytic- and antidepressant-like effects of an aqueous extract of T. parthenium in behavioral paradigms in mice. The effects of T. parthenium were compared with those produced by anxiolytic and antidepressant drugs. We carried out the chemical characterization of the main constituents of T. parthenium. The involvement with the GABAergic and serotoninergic neurotransmitter systems were explored be means of synergic and antagonist experiments. The anxiolytic-like effect was evaluated using the Burying Behavior Test (BBT) and the Elevated Plus-Maze Test (PMT). The antidepressant-like effect was evaluated in the Forced Swimming Test (FST), and ambulatory activity was assessed in the Open Field Test (OFT). Employing the behavioral tests, synergism and antagonism experiments with Alprazolam, Muscimol, and Picrotoxin were carried out in the PMT. In a series of independent experiments, concomitant administration of T. parthenium and Alprazolam, Fluoxetine, or p-chlorophenylalanine were conducted in the FST. For chemical characterization, High-Performance Liquid Chromatography-Electro Spray Ionization-Mass Spectrometry (HPLC-ESI-MS) analysis was performed. T. parthenium exerts clear anxiolytic- and antidepressant-like effects in mice, without affecting the ambulatory activity of the experimental subjects. Anxiolytic- and antidepressant-like T. parthenium effects result, at least part from the involvement of the GABAergic system. Our results support the use of Tanacetum parthenium in traditional medicine and suggest its therapeutic potential in the comorbid anxiety and depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Kuzmin, Alexander; Madjid, Nather; Terenius, Lars; Ogren, Sven Ove; Bakalkin, Georgy
2006-09-01
Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.
Neuronal nicotinic receptor antagonist reduces anxiety-like behavior in mice.
Roni, Monzurul Amin; Rahman, Shafiqur
2011-10-31
Brain cholinergic neurotransmission has been implicated in the modulation of anxiety in humans and evidence suggests that drugs targeting neuronal nicotinic acetylcholine receptor (nAChR) could have potential for the treatment of anxiety. The objective of present study was to examine anxiolytic effects of lobeline (0.04 or 0.1 mg/kg), a nAChR antagonist, in C57BL/6J mice using elevated plus-maze (EPM) and marble-burying test. Lobeline (0.04 mg/kg) significantly increased open arm time on EPM and reduced number of marbles buried. Similarly, mecamylamine (0.3 mg/kg) produced anxiolytic effects, while peripherally acting hexamethonium (0.3 mg/kg) failed to produce any response. These results provide evidence that lobeline has anxiolytic potential and nAChR antagonists may represent a new class of anxiolytics in humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank
2013-11-01
Preliminary study in our laboratory showed that etazolate produced antidepressant- and anxiolytic-like effects in rodent models, however, the ability of etazolate to produce antidepressant- and anxiolytic-like effects and underlying mechanism(s) in chronic unpredictable mild stress (CUMS) model have not been adequately addressed. This study was aimed to investigate the beneficial effects of etazolate on CUMS-induced behavioral deficits (depression- and anxiety-like behaviors). In addition, the possible underlying mechanism(s) of etazolate in CUMS model was also investigated by measuring serum corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels. Mice were subjected to a battery of stressors for 28 days. Etazolate (0.5 and 1 mg/kg, p.o.) and fluoxetine (20mg/kg, p.o.) were administered during the last 21 days (8-28th) of the CUMS paradigm. The results showed that 4-weeks CUMS produces significant depression-like behavior in tail suspension test (TST) and partial anxiety-like behavior in elevated plus maze (EPM) and open field test (OFT). Stressed mice have also shown a significant high serum CORT and low BDNF level. Chronic treatment with etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) produced significant antidepressant-like behavior in TST (decreased duration of immobility), whereas, partial anxiolytic-like behavior in EPM (increased percentage of open arm entries) and OFT (increased % central ambulation score, total ambulation score and time spent in center zone). In addition, etazolate and fluoxetine treatment significantly (p<0.05) increased the BDNF level and inhibited the hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity, as evidenced by low serum CORT level in stressed mice. In addition, etazolate and fluoxetine also showed significant antidepressant- and anxiolytic-like effects in normal control mice. In this study no significant changes were observed in locomotor activity in actophotometer test. Moreover, we did not find any effect of etazolate and fluoxetine on CORT and BDNF levels in normal control mice. In conclusion, the results of the present study suggested compelling evidences that etazolate has more marked effect on depression-like behavior in mice, which is atleast in part may be related to their modulating effects on the HPA axis and BDNF level. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rivadeneyra-Domínguez, Eduardo; Herrera-Huerta, Emma Virginia; Santos-Torres, Andrea
2017-01-01
The phytoestrogen genistein produces anxiolytic-like effects in ovariectomized rats, which highlights its potential therapeutic effect in ameliorating anxiety in surgical menopausal women. However, no studies have directly compared the effects of identical doses of genistein and 17β-estradiol, the main estrogen used in hormone replacement therapy in menopausal women. The present study evaluated the anxiolytic-like effects of identical doses of genistein and 17β-estradiol (0.045, 0.09, and 0.18 mg/kg/7 days, s.c.) in a surgical menopause model in rats in the elevated plus maze and locomotor activity tests at 12 weeks after ovariectomy. Additionally, the participation of estrogen receptor-β in the anxiolytic-like effect of genistein and 17β-estradiol was explored by previous administration of the 5 mg/kg tamoxifen antagonist. Genistein and 17β-estradiol (0.09 and 0.18 mg/kg) similarly reduced anxiety-like behavior in the elevated plus maze and also increased the time spent grooming and rearing, without affecting crossing in locomotor activity test. These effects were blocked by tamoxifen. Present results indicate that the phytoestrogen genistein has a similar behavioral profile as 17β-estradiol in rats at 12 weeks after ovariectomy through action at the estrogen receptor-β. Thus genistein has potential for reducing anxiety-like behavior associated with low concentrations of ovarian hormones, which normally occurs during natural and surgical menopause. PMID:29226152
Reis, Angélica S; Pinz, Mikaela; Duarte, Luis Fernando B; Roehrs, Juliano A; Alves, Diego; Luchese, Cristiane; Wilhelm, Ethel A
2017-01-01
A growing body of evidence demonstrates that quinoline compounds have attracted much attention in the field of drug development. Accordingly, 4-phenylselenyl-7-chloroquinoline (4-PSQ) is a new quinoline derivative containing selenium, which showed a potential antioxidant, antinociceptive and anti-inflammatory effect. The present study was undertaken to evaluate the anxiolytic-like properties of 4-PSQ. Mice were orally pretreated with 4-PSQ (5-50 mg/kg) or vehicle, 30 min prior to the elevated plus-maze (EPM), light-dark (LDT) or open field (OFT) tests. A time-response curve was carried out by administration of 4-PSQ (50 mg/kg) at different times before the EPM test. The involvement of glutamate uptake/release and Na + , K + -ATPase activity in the anxiolytic-like effect was investigated in cerebral cortices. In addition, the effectiveness of acute treatment with 4-PSQ was evaluated in a model of kainate (KA)-induced anxiety-related behavior. Finally, acute toxicity of this compound was investigated. 4-PSQ produced an anxiolytic-like action, both in EPM and LDT. In OFT, 4-PSQ did not affect locomotor and exploratory activities. 4-PSQ anxiolytic-like effect started at 0.5 h and remained significant up to 72 h after administration. Treatment with 4-PSQ reduced [ 3 H] glutamate uptake, but the [ 3 H] glutamate release and Na + , K + -ATPase activity were not altered. KA-induced anxiety-related behavior was protected by 4-PSQ pretreatment. Additionally, 4-PSQ exposure did not alter urea levels, aspartate (AST) and alanine aminotrasferase (ALT) activities in plasma. Parameters of oxidative stress in brain and liver of mice were not modified by 4-PSQ. Taken together these data demonstrated that the anxiolytic-like effect caused by 4-PSQ seems to be mediated by involvement of the glutamatergic system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anxiolytic-like effects of noribogaine in zebrafish.
Kalueff, Allan V; Kaluyeva, Aleksandra; Maillet, Emeline L
2017-07-14
Noribogaine is the main psychoactive metabolite of the hallucinogenic drug ibogaine, and is a particularly interesting compound potentially useful to treat dependence and various psychiatric disorders. Here, we report the effects of noribogaine on anxiety and locomotion in zebrafish (Danio rerio), a new promising model organism in neurobehavioral and psychopharmacological research. Adult zebrafish were subjected to the 5min novel tank test (NTT) following an acute, 20-min drug immersion in 1, 5 and 10mg/L noribogaine. Overall, noribogaine produced robust anxiolytic-like behavior in zebrafish (increasing the time spent and transitions to the top half compartment and reducing freezing bouts) without overt effects on fish locomotion. Taken together, these results indicate that noribogaine modulates the components of the acute stress response related to emotionality and anxiety behaviors, implicating this drug as a potentially useful non-sedative anxiolytic agent. Copyright © 2017 Elsevier B.V. All rights reserved.
Ota, Ami; Yamamoto, Akane; Kimura, Saeko; Mori, Yukiha; Mizushige, Takafumi; Nagashima, Yoshiki; Sato, Masaru; Suzuki, Hideyuki; Odagiri, Saori; Yamada, Daisuke; Sekiguchi, Masayuki; Wada, Keiji; Kanamoto, Ryuhei; Ohinata, Kousaku
2017-05-01
Here we found that the chymotryptic digest of soy β-conglycinin, a major storage protein, exhibited anxiolytic-like effects in mice. We then searched for anxiolytic-like peptides in the digest. Based on a comprehensive peptide analysis of the chymotryptic digest by high performance liquid chromatograph connected to an LTQ Orbitrap mass spectrometer and the structure-activity relationship of known peptides, we explored anxiolytic-like peptides present in the digest. FLSSTEAQQSY, which corresponds to 323-333 of the β-conglycinin α subunit [βCGα(323-333)] emerged as a candidate. Oral administration of synthetic βCGα(323-333) exhibited anxiolytic-like effects in the elevated plus-maze and open-field test in male mice. Orally administered βCGα(323-333) exhibited anxiolytic-like effects in sham-operated control mice but not in vagotomized mice. In addition, oral administration of βCGα(323-333) increased the expression of c-Fos, a marker of neuronal activity, in the nucleus of the solitary tract, which receives inputs from the vagus nerve. These results suggest that the anxiolytic-like effects were mediated by the vagus nerve. The anxiolytic-like effects of βCGα(323-333) were also blocked by antagonists of the serotonin 5-HT 1A , dopamine D 1 and GABA A receptors. However βCGα(323-333) had no affinity for these receptors, suggesting it stimulates the release of endogenous neurotransmitters to activate the receptors. Taken together, a soy-derived undecapeptide, βCGα(323-333), may exhibit anxiolytic-like effects after oral administration via the vagus nerve and 5-HT 1A , D 1 and GABA A systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Picazo, O; Rosenblatt, J S; Fernández-Guasti, A
2000-10-01
Injection of the serotonergic agonist, 8-hydroxy-2-(di-n-propylamino-tetralin (8-OH-DPAT) (0.5 mg/kg ip) produced a clear anxiolytic-like effect (as measured in the burying behavior test), after parturition, which remains until day 6 of lactation. Thereafter 8-OH-DPAT completely lacked action. In order to analyze whether lactation prevented the action of 8-OH-DPAT, dams were separated from their pups for five consecutive days. The blockade of the anxiolytic effect of 8-OH-DPAT does not disappear by isolation of the mothers from their offspring or from neighboring pups. Finally, to investigate the possible role of maternal behavior in the blockade of the anxiolytic effect of 8-OH-DPAT a third experiment was made in which ovariectomized females were rendered maternal by the sensitization procedure. These females respond normally to the antianxiety actions of 8-OH-DPAT. Results suggest that a long-term clue triggered by lactation, possibly related to prolactin secretion, interferes with the anxiolytic effect of 8-OH-DPAT.
Swedberg, M D; Jacobsen, P; Honoré, T
1995-09-01
The anticonvulsant effects of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), phencyclidine (PCP) and diazepam against audiogenic seizures in DBA/2 mice and against seizures induced by methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) in NMRI mice were compared. Motor impairment was assessed in a rotarod apparatus in DBA/2 as well as NMRI mice. At 30 min after i.p. administration, NBQX was as effective as PCP and diazepam in protecting against audiogenic seizures and had a therapeutic ratio slightly higher than diazepam's and 7-fold higher than PCP's. Whereas diazepam was fully effective, NBQX and PCP were both ineffective against seizures induced by DMCM 30 min after i.p. administration. The anticonvulsant potential and motor-impairing effects of NBQX were evaluated further by the i.p. and the i.v. routes at different time points after administration. At all pretreatment intervals, NBQX protected against audiogenic seizures more potently than it produced motor impairment. NBQX administered i.p. protected against DMCM-induced seizures when given 15 min but not 5 min before testing, whereas after i.v. administration NBQX produced anticonvulsant and motor-impairing effects in the same dose range. NBQX only slightly and non-dose-dependently attenuated the discriminative effects of pentylenetetrazole in rats, showing a limited anxiolytic potential. NBQX produced no PCP-like or morphine-like discriminative effects in rats, suggesting lack of PCP or opiate-like subjective effects. These data demonstrate that NBQX has anticonvulsant effects, has limited anxiolytic effects, and does not produce subjective effects of PCP or opiate type.
López-Rubalcava, C; Piña-Medina, B; Estrada-Reyes, R; Heinze, G; Martínez-Vázquez, M
2006-01-11
A hexane extract of leaves of Annona cherimolia produced anxiolytic-like actions when administered to mice and tested in two animal models of anxiety: the mouse avoidance exploratory behavior and the burying behavior tests. In order to discard unspecific drug-actions on general activity, all treatments studied in the anxiety paradigms were also analyzed in the open field test. Results showed that A. cherimolia induced anxiolytic-like actions at the doses of 6.25, 12.5, 25.0 and 50.0 mg/kg. Picrotoxin (0.25 mg/kg), a GABA-gated chloride ion channel blocker, antagonized the anxiolytic-like actions of A. cherimolia, while a sub-effective dose of muscimol (0.5 mg/kg), a selective GABA(A) receptor agonist, facilitated the effects of a sub-optimal dose of A. cherimolia (3.12 mg/kg). Thus, the involvement of the GABA(A) receptor complex in the anxiolytic-like actions of A. cherimolia hexane extract is suggested. In addition the extract was also able to enhance the duration of sodium pentobarbital induced sleeping time. Taken together, results indicate that the hexane extract of A. cherimolia has depressant activity on the Central Nervous System and could interact with the GABA(A) receptor complex. On the other hand, the chromatographic separation of this extract led to the isolation of palmitone, and beta-sitosterol as major constituents. In addition a GC-MS study of some fractions revealed the presence of several compounds such beta-cariophyllene, beta-selinene, alpha-cubebene, and linalool that have been reported to show effects on behavior that could explain some of the extract effects.
Holzmann, Iandra; Cechinel Filho, Valdir; Mora, Ticiana C.; Cáceres, Armando; Martínez, Jose Vicente; Cruz, Sully M.; de Souza, Márcia Maria
2011-01-01
There are few studies on the pharmacological properties of Valeriana prionophylla Standl. (VP), known as “Valeriana del monte”, and used in Mesoamerican folk medicine to treat sleep disorders. This study examines the pharmacological effects of the hydroalcoholic extract of the dry rhizome using the open field, rota rod, elevated plus-maze (EPM), forced swimming (FST), strychnine- and pentobarbital-induced sleeping time, PTZ-induced seizures, and the inhibitory avoidance tests. VP did not show any protective effect against PTZ-induced convulsions. In the EPM, exhibited an anxiolytic-like effect through the effective enhancement of the entries (38.5%) and time spent (44.7%) in the open arms, when compared with control group. Time spent and the numbers of entrances into the enclosed arms were decreased, similar to those effects observed with diazepam. In the FST, acute treatment with VP, produced a dose-dependent decrease in immobility time, similarly to imipramine. VP also produced a significant dose-dependent decrease in the latency of sleeping time, while producing an increase in total duration of sleep; influenced memory consolidation of the animals only at lower doses, unlike those that produced anti-depressant and anxiolytic effects. In summary, the results suggest that VP presents several psychopharmacological activities, including anxiolytic, antidepressant, and hypno-sedative effects. PMID:21754942
Taksande, Brijesh G; Kotagale, Nandkishor R; Gawande, Dinesh Y; Bharne, Ashish P; Chopde, Chandrabhan T; Kokare, Dadasaheb M
2014-06-01
In the present study, modulation of anxiolytic action of agmatine by neuropeptide Y (NPY) in the central nucleus of amygdala (CeA) is evaluated employing Vogel's conflict test (VCT) in rats. The intra-CeA administration of agmatine (0.6 and 1.2µmol/rat), NPY (10 and 20pmol/rat) or NPY Y1/Y5 receptors agonist [Leu(31), Pro(34)]-NPY (30 and 60pmol/rat) significantly increased the number of punished drinking licks following 15min of treatment. Combination treatment of subeffective dose of NPY (5pmol/rat) or [Leu(31), Pro(34)]-NPY (15pmol/rat) and agmatine (0.3µmol/rat) produced synergistic anxiolytic-like effect. However, intra-CeA administration of selective NPY Y1 receptor antagonist, BIBP3226 (0.25 and 0.5mmol/rat) produced anxiogenic effect. In separate set of experiment, pretreatment with BIBP3226 (0.12mmol/rat) reversed the anxiolytic effect of agmatine (0.6µmol/rat). Furthermore, we evaluated the effect of intraperitoneal injection of agmatine (40mg/kg) on NPY-immunoreactivity in the nucleus accumbens shell (AcbSh), lateral part of bed nucleus of stria terminalis (BNSTl) and CeA. While agmatine treatment significantly decreased the fibers density in BNSTl, increase was noticed in AcbSh. In addition, agmatine reduced NPY-immunoreactive cells in the AcbSh and CeA. Immunohistochemical data suggest the enhanced transmission of NPY from the AcbSh and CeA. Taken together, this study suggests that agmatine produced anxiolytic effect which might be regulated via modulation of NPYergic system particularly in the CeA. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality.
Prévôt, Thomas D; Gastambide, François; Viollet, Cécile; Henkous, Nadia; Martel, Guillaume; Epelbaum, Jacques; Béracochéa, Daniel; Guillou, Jean-Louis
2017-07-01
Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst 2 or sst 4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst 2 or sst 4, but not sst 1 or sst 3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst 2 agonists selectively produced anxiolytic-like behaviors whereas both sst 2 and sst 4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst 2 KO mice and depressive-like behaviors observed in both sst 2 KO and sst 4 KO strains. Both hippocampal sst 2 and sst 4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.
A Systematic Review of the Anxiolytic-Like Effects of Essential Oils in Animal Models.
de Sousa, Damião Pergentino; de Almeida Soares Hocayen, Palloma; Andrade, Luciana Nalone; Andreatini, Roberto
2015-10-14
The clinical efficacy of standardized essential oils (such as Lavender officinalis), in treating anxiety disorders strongly suggests that these natural products are an important candidate source for new anxiolytic drugs. A systematic review of essential oils, their bioactive constituents, and anxiolytic-like activity is conducted. The essential oil with the best profile is Lavendula angustifolia, which has already been tested in controlled clinical trials with positive results. Citrus aurantium using different routes of administration also showed significant effects in several animal models, and was corroborated by different research groups. Other promising essential oils are Citrus sinensis and bergamot oil, which showed certain clinical anxiolytic actions; along with Achillea wilhemsii, Alpinia zerumbet, Citrus aurantium, and Spiranthera odoratissima, which, like Lavendula angustifolia, appear to exert anxiolytic-like effects without GABA/benzodiazepine activity, thus differing in their mechanisms of action from the benzodiazepines. The anxiolytic activity of 25 compounds commonly found in essential oils is also discussed.
Brito, Adriane F; Fajemiroye, James O; Neri, Hiasmin F S; Silva, Dayane M; Silva, Daiany P B; Sanz, Germán; Vaz, Boniek G; de Carvalho, Flávio S; Ghedini, Paulo C; Lião, Luciano M; Menegatti, Ricardo; Costa, Elson A
2017-09-01
In this study, we proposed the design, synthesis of a new compound 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol (LQFM032), and pharmacological evaluation of its anxiolytic-like effect. This new compound was subjected to pharmacological screening referred to as Irwin test, prior to sodium pentobarbital-induced sleep, open-field and wire tests. The anxiolytic-like effect of this compound was evaluated using elevated plus maze and light-dark box tests. In addition, the mnemonic activity was evaluated through step-down test. In sodium pentobarbital-induced sleep test, LQFM032 decreased latency and increased duration of sleep. In the open-field test, LQFM032 altered behavioral parameter, that suggested anxiolytic-like activity, as increased in crossings and time spent at the center of open field. In the plus maze test and light-dark box test, the LQFM032 showed anxiolytic-like activity, increased entries and time spent on open arms, and increased in number of transitions and time spent on light area, respectively. Those effects was antagonized by flumazenil but not with 1-(2-Methoxyphenyl)-4-(4-phthalimidobutyl)piperazine (NAN-190). The LQFM032 did not alter mnemonic activity. Moreover, the anxiolytic-like activity of LQFM032 was antagonized by mecamylamine. In summary, LQFM032 showed benzodiazepine and nicotinic pathways mediated anxiolytic-like activity without altering the mnemonic activity. © 2017 John Wiley & Sons A/S.
Dorsal hippocampal opioidergic system modulates anxiety-like behaviors in adult male Wistar rats.
Solati, Jalal; Zarrindast, Mohammad-Reza; Salari, Ali-Akbar
2010-12-01
In the present study, we investigated the possible influence of the opioidergic system of the dorsal hippocampus on anxiety-like behaviors. Elevated plus-maze, which is one of the methods used for testing anxiety, was used in the present study. Rats were anesthetized with ketamine and xylazine and special cannulas were inserted stereotaxically into the CA1 region of the dorsal hippocampus. After 1 week of recovery, the effects of intra-CA1 administration of morphine (0.25, 0.5, 1 and 2 µg/rat; 1 µl/rat; 0.5 µl/in each side), naloxone (2, 4, 6 and 8 µg/rat), enkephalin (1, 2, 5 and 10 µg/rat) and naltrindole (0.25, 0.5, 1 and 2 µg/rat) on percentage open arm time (%OAT) and percentage open arm entries (%OAE) were determined. Bilateral administration of morphine into CA1 decreases %OAT and %OAE, indicating an anxiogenic-like effect. Intra-CA1 injection of naloxone, an opioid receptor antagonist, increased both %OAT and %OAE, parameters of anxiolytic-like behavior. Bilateral administration of δ-opioid receptor agonist, [D-Pen(2,5) ]-enkephalin acetate hydrate into the CA1, induced an anxiolytic-like effect. Furthermore, intra-CA1 injection of δ-opioid receptor antagonist, naltrindole hydrochloride, increased anxiety-related behaviors. The results of the present study demonstrate that activation of μ-opioid receptors in this area produce an anxiogenic response while activation of δ-opioid receptors produces an anxiolytic response. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.
Anxiolytic-like effect of Shigyakusan extract with low side effects in mice.
Tanaka, Machiko; Satou, Tadaaki; Koike, Kazuo
2013-10-01
Shigyakusan is a traditional Japanese herbal (Kampo) medicine used to treat inflammatory conditions such as cholecystitis and gastritis as well as psychiatric disorders. This study examined the anxiolytic-like effect of Shigyakusan extract (SS), and evaluated the activity of the main compound. Three behavioral tests in mice were used to evaluate the activity of SS. Samples were administered orally over a 10-day period. A light and dark box (LDB) test was performed on the 8th day, while an open field (OF) test was done on the 9th day, and an elevated plus maze (EPM) test was performed on the 10th day. Diazepam (DZ), a typical anxiolytic drug, was used as the positive control. Administration of 10 mg/kg DZ resulted in a significant anxiolytic-like effect in the LDB and EPM tests, while administration of 0.3 g/kg SS resulted in a weak anxiolytic-like effect. In the OF test, while DZ caused a significant reduction of locomotor activity, SS did not cause any changes compared to the water controls. This suggests that locomotor activity may be a side effect of DZ, and thus SS, which lacks this response, may be a more useful treatment. Quantitative analysis performed to clarify the activity of the main compound also determined that SS contained 51.4 mg/g naringin, which also has been reported to have anxiolytic-like activity. Since these results suggested that this compound might be responsible for the activity of SS, we subsequently examined the oral administration of a similar dose of naringin. Although we observed a tendency for a weak anxiolytic-like effect, this effect was not greater than that seen for SS.
Zhou, Heng; Yu, Cheng-Long; Wang, Li-Ping; Yang, Yue-Xiong; Mao, Rong-Rong; Zhou, Qi-Xin; Xu, Lin
2015-08-01
The elevated plus maze (EPM) test is used to examine anxiety-like behaviors in rodents. One interesting phenomenon in the EPM test is one-trial tolerance (OTT), which refers to the reduction in the anxiolytic-like effects of benzodiazepines when rodents are re-exposed to the EPM. However, the underlying mechanism of OTT is still unclear. In this study, we reported that OTT occurred when re-exposure to the EPM (trial 2) only depended on the prior experience of the EPM (trial 1) rather than diazepam treatment. This process was memory-dependent, as it was prevented by the N-methyl-D-aspartate (NMDA) receptors antagonist MK-801 1.5h before trial 2. In addition, OTT was maintained for at least one week but was partially abolished after an interval of 28 days. Furthermore, the administration of the D1-like receptors agonist SKF38393 to the bilateral dorsal hippocampus largely prevented OTT, as demonstrated by the ability of the diazepam treatment to produce significant anxiolytic-like effects in trial 2 after a one-day interval. These findings suggest that OTT to the EPM test may occur via the activation of NMDA receptors and the inactivation of D1-like receptors in certain brain regions, including the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.
Haller, J; Barna, I; Barsvari, B; Gyimesi Pelczer, K; Yasar, S; Panlilio, L V; Goldberg, S
2009-07-01
Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic. We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies. We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study. Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.
Socala, Katarzyna; Nieoczym, Dorota; Grzywnowicz, Krzysztof; Stefaniuk, Dawid; Wlaz, Piotr
2015-01-01
Ganoderma lucidum is a well-known medicinal mushroom with a long history of use. This study was designed to assess the anticonvulsant potential of an aqueous extract from cultured G. lucidum mycelium in 3 acute seizure models: timed intravenous pentylenetetrazole infusion, maximal electroshock seizure threshold, and 6-Hz-induced psychomotor seizure tests in mice. Moreover, antidepressant-like and anxiolytic-like effects of G. lucidum were evaluated using the forced swim test and the elevated plus maze test in mice, respectively. No changes in seizure thresholds in the intravenous pentylenetetrazole and maximal electroshock seizure threshold tests after acute treatment with G. lucidum extract (200-600 mg/kg) was observed. However, the studied extract (100-400 mg/kg) significantly increased the threshold for psychomotor seizures in the 6-Hz seizure test. In the forced swim test, G. lucidum (100-400 mg/kg) significantly reduced the duration of immobility. No anxiolytic-like or sedative effects were reported in mice pretreated with the extract (400-600 mg/kg). G. lucidum extract (50-2400 mg/kg) did not produce toxic effects in the chimney test (motor coordination) or grip-strength test (neuromuscular strength). Further studies are required to explain the neuropharmacological effects of G. lucidum and to identify its active ingredients that may affect seizure threshold, mood, or anxiety.
Wesołowska, Anna; Nikiforuk, Agnieszka
2007-04-01
The effects of a selective 5-HT(6) receptor antagonist, SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide), were evaluated in behavioural tests sensitive to clinically effective anxiolytic- and antidepressant-compounds using diazepam and imipramine as reference drugs. In the Vogel conflict drinking test in rats, SB-399885 (1-3mg/kg i.p.) caused an anxiolytic-like activity comparable to that of diazepam (2.5-5mg/kg i.p.). An anxiolytic-like effect was also seen in the elevated plus-maze test in rats, where SB-399885 (0.3-3mg/kg i.p.) was slightly weaker than diazepam (2.5-5mg/kg i.p.). In the four-plate test in mice, SB-399885 (3-20mg/kg i.p.) showed an anxiolytic-like effect which was weaker than that produced by diazepam (2.5-5mg/kg i.p.). In the forced swim test in rats, SB-399885 (10mg/kg i.p.) significantly shortened the immobility time and the effect was stronger than that of imipramine (30mg/kg i.p.). In the forced swim test in mice, SB-399885 (20-30mg/kg i.p.) had an anti-immobility action, comparable to imipramine (30mg/kg i.p.) and also in the tail suspension test in mice, SB-399885 (10-30mg/kg i.p.) had an antidepressant-like effect, though was weaker than imipramine (10-20mg/kg i.p.). The tested 5-HT(6) antagonist (3-20mg/kg i.p.) shortened the walking time of rats in the open field test and, at a dose of 30mg/kg i.p. reduced the locomotor activity of mice. SB-399885 (in doses up to 30mg/kg i.p.) did not affect motor coordination in mice and rats tested in the rota-rod test. Such data indicate that the selective 5-HT(6) receptor antagonist SB-399885had specific effects, indicative of this compound's anxiolytic and antidepressant potential.
Ávila-Villarreal, Gabriela; González-Trujano, María Eva; Carballo-Villalobos, Azucena Ibeth; Aguilar-Guadarrama, Berenice; García-Jiménez, Sara; Giles-Rivas, Diana Elizabeth; Castillo-España, Patricia; Villalobos-Molina, Rafael; Estrada-Soto, Samuel
2016-11-04
Brickellia cavanillesii (Asteraceae) (Cass.) A. Gray is one of the popular plants consumed in Central America and Mexico for the treatment of several diseases such as hypertension, diabetes and anxiety, among others. To determine the anxiolytic-like effect of B. Cavanillesii and the safety of its use through toxicological studies. Anxiolytic-like effects of soluble-methanol extract of B. cavanillesii (MEBc) were evaluated in ambulatory activity (open-field test), hole-board test, cylinder of exploration, the elevated plus-maze and the potentiation of the sodium pentobarbital-induced hypnosis mice models. On the other hand, in vivo toxicological studies were conducted on acute and sub-acute mice models recommended by OECD. Active MEBc was subjected to phytochemical studies through conventional chromatographic techniques to isolate bioactive compounds. MEBc (100mg/Kg) showed significant anxiolytic-like effect on animal model used (p<0.05). The phytochemical analysis of MEBc allowed the isolation of two major compounds nicotiflorin and acacetin, among others. Both compounds were found to be partially responsible for the anxiolytic-like effects. Moreover, a median lethal dose (LD 50 ) higher than 2000mg/Kg was determined in mice and sub-acute oral administration of MEBc (100mg/Kg) did not alter body weight, clinical chemistry parameters (ALT and AST) and it did not induce any toxic nor alteration in the liver, kidney and heart functions. In current investigation, we have shown that MEBc has a wide range of pharmacology-toxicology patterns. The results support further investigation of MEBc as a potential anxiolytic phytomedicinal agent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yoshikawa, Masaaki
2015-10-01
We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Xia; Kaczanowska, Katarzyna; Finn, M G; Markou, Athina; Risbrough, Victoria B
2015-10-01
GABAB (γ-aminobutyric acid B) receptors may be a therapeutic target for anxiety disorders. Here we characterized the effects of the GABAB receptor positive allosteric modulator (PAM) BHF177 on conditioned and unconditioned physiological responses to threat in the light-enhanced startle (LES), stress-induced hyperthermia, and fear-potentiated startle (FPS) procedures in rats. The effects of BHF177 on LES were compared with those of the GABAB receptor agonists baclofen and CGP44532, and the positive control buspirone, a 5-HT1A receptor partial agonist with anxiolytic activity in humans. Baclofen (0.4, 0.9 and 1.25 mg/kg) and CGP44532 (0.065, 0.125 and 0.25 mg/kg) administration had significant sedative, but not anxiolytic, activity reflected in overall decrease in the startle response in the LES tests. BHF177 (10, 20 and 40 mg/kg) had no effect on LES, nor did it produce an overall sedative effect. Interesting, however, when rats were grouped by high and low LES responses, BHF177 had anxiolytic-like effects only on LES in high, but not low, LES responding rats. BHF177 also blocked stress-induced hyperthermia, but had no effect on conditioned fear responses in the FPS test. Buspirone (1 and 3 mg/kg) had an anxiolytic-like profile in both LES and FPS tests. These results indicate that BHF177 may specifically attenuate unconditioned anxiety in individuals that exhibit a high anxiety state, and has fewer sedative effects than direct agonists. Thus, BHF177 or other GABAB receptor PAMs may be promising compounds for alleviating increased anxiety seen in various psychiatric disorders with a superior side-effect profile compared to GABAB receptor agonists. Published by Elsevier Ltd.
Lee, Bridgin G.; Olson, Thao T.; Xie, Teresa; Xiao, Yingxian; Blendy, Julie A.; Kellar, Kenneth J.
2015-01-01
The enhancement of GABAergic and monoaminergic neurotransmission has been the mainstay of pharmacotherapy and the focus of drug-discovery for anxiety and depressive disorders for several decades. However, the significant limitations of drugs used for these disorders underscores the need for novel therapeutic targets. Neuronal nicotinic acetylcholine receptors (nAChRs) may represent one such target. For example, mecamylamine, a non-competitive antagonist of nAChRs, displays positive effects in preclinical tests for anxiolytic and antidepressant activity in rodents. In addition, nicotine elicits similar effects in rodent models, possibly by receptor desensitization. Previous studies (Xiao et al., 2001) have identified two metabolites of methadone, EMDP (2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline) and EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine), which are considered to be inactive at opiate receptors, as relatively potent noncompetitive channel blockers of rat α3β4 nAChRs. Here, we show that these compounds are likewise highly effective blockers of human α3β4 and α4β2 nAChRs. Moreover, we show that they display relatively low affinity for opiate binding sites labeled by [3H]-naloxone. We then evaluated these compounds in rats and mice in preclinical behavioral models predictive of potential anxiolytic and antidepressant efficacy. We found that EMDP, but not EDDP, displayed robust effects predictive of anxiolytic and antidepressant efficacy without significant effects on locomotor activity. Moreover, EMDP at behaviorally active doses, unlike mecamylamine, did not produce eyelid ptosis, suggesting it may produce fewer autonomic side effects than mecamylamine. Thus, the methadone metabolite EMDP may represent a novel therapeutic avenue for the treatment of some affective disorders. PMID:26365569
Anxiolytic-like effects of ursolic acid in mice.
Colla, André R S; Rosa, Julia M; Cunha, Mauricio P; Rodrigues, Ana Lúcia S
2015-07-05
Ursolic acid is a pentacyclic triterpenoid that possesses several biological and neuropharmacological effects including antidepressant-like activity. Anxiety disorders represent common and disability psychiatric conditions that are often associated with depressive symptoms. This work investigated the anxiolytic-like effects of ursolic acid administration in different behavioral paradigms that evaluate anxiety in mice: open field test, elevated plus maze test, light/dark box test and marble burying test. To this end, mice were administered with ursolic acid (0.1, 1 and 10mg/kg, p.o.) or diazepam (2mg/kg, p.o.), positive control, and submitted to the behavioral tests. The results show that ursolic acid (10mg/kg) elicited an anxiolytic-like effect observed by the increased total time in the center and decreased number of rearings responses in the open field test and an increased percentage of entries and total time spent in the open arms of elevated plus maze, similarly to diazepam. No significant effects of ursolic acid were shown in the light/dark box and marble burying test. These data indicate that ursolic acid exhibits anxiolytic-like effects in the open field and elevated plus maze test, but not in the light/dark box and marble burying test, showing the relevance of testing several behavioral paradigms in the evaluation of anxiolytic-like actions. Of note, the results extend the understanding on the effects of ursolic acid in the central nervous system and suggest that it may be a novel approach for the management of anxiety-related disorders. Copyright © 2015. Published by Elsevier B.V.
Poe, Michael M; Methuku, Kashi Reddy; Li, Guanguan; Verma, Ashwini R; Teske, Kelly A; Stafford, Douglas C; Arnold, Leggy A; Cramer, Jeffrey W; Jones, Timothy M; Cerne, Rok; Krambis, Michael J; Witkin, Jeffrey M; Jambrina, Enrique; Rehman, Sabah; Ernst, Margot; Cook, James M; Schkeryantz, Jeffrey M
2016-12-08
1,4-Benzodiazepines are used in the treatment of anxiety disorders but have limited long-term use due to adverse effects. HZ-166 (2) has been shown to have anxiolytic-like effects with reduced sedative/ataxic liabilities. A 1,3-oxazole KRM-II-81 (9) was discovered from a series of six bioisosteres with significantly improved pharmacokinetic and pharmacodynamic properties as compared to 2. Oxazole 9 was further characterized and exhibited improved anxiolytic-like effects in a mouse marble burying assay and a rat Vogel conflict test.
Yeung, Michelle; Dickson, Clayton T; Treit, Dallas
2013-04-01
Hippocampal theta rhythm has been associated with a number of behavioral processes, including learning and memory, spatial behavior, sensorimotor integration and affective responses. Suppression of hippocampal theta frequency has been shown to be a reliable neurophysiological signature of anxiolytic drug action in tests using known anxiolytic drugs (i.e., correlational evidence), but only one study to date (Yeung et al. (2012) Neuropharmacology 62:155-160) has shown that a drug with no known effect on either hippocampal theta or anxiety can in fact separately suppress hippocampal theta and anxiety in behavioral tests (i.e., prima facie evidence). Here, we attempt a further critical test of the hippocampal theta model by performing intrahippocampal administrations of the Ih blocker ZD7288, which is known to disrupt theta frequency subthreshold oscillations and resonance at the membrane level but is not known to have anxiolytic action. Intrahippocampal microinfusions of ZD7288 at high (15 µg), but not low (1 µg) doses slowed brainstem-evoked hippocampal theta responses in the urethane anesthetized rat, and more importantly, promoted anxiolytic action in freely behaving rats in the elevated plus maze. Taken together with our previous demonstration, these data provide converging, prima facie evidence of the validity of the theta suppression model. Copyright © 2012 Wiley Periodicals, Inc.
Dopaminergic system in CA1 modulates MK-801 induced anxiolytic-like responses.
Zarrindast, Mohammad Reza; Nasehi, Mohammad; Pournaghshband, Mahnaz; Yekta, Batool Ghorbani
2012-11-01
Today, there is relatively no debate on the notion that NMDA receptor antagonist agents in the hippocampus induce anxiolytic-like effects through distinct mechanisms. There is also a bulk of studies showing the involvement of the dopaminergic system in NMDA induced behaviors. Thus, on the basis of the involvement of dopaminergic system in anxiety-related behaviors, the present study aimed to investigate the involvement of the dorsal hippocampal (CA1) dopaminergic system in anxiolytic-like responses induced by MK801 (NMDA receptor antagonist) in male Wistar rats. We used the elevated plus maze to test anxiety. This apparatus has widely been employed to test parameters of anxiety-related behaviors including the open arm time percentage (%OAT), open arm entries percentage (%OAE), locomotor activity, grooming (the rat rubs its face), rearing (the rat maintains an erect posture) and defecation (the number of boli defection). The data showed that, intra-CA1 injection of MK801 (2 μg/rat) increases %OAT and %OAE but not other exploratory behaviors, indicating an anxiolytic-like effect. Moreover, sole intra-CA1 injection of SCH23390, dopamine D1 receptor antagonist, (0.25, 0.5 and 1 μg/rat) and sulpiride, dopamine D2 receptor antagonist, (0.25,0.5 and 0.75 μg/rat) did not alter anxiety-like behaviors. Co-administration of subthreshold doses of SCH23390 (0.5 μg/rat) and MK801 (0.5 g/rat), induced anxiolytic-like behaviors. Furthermore, intra-CA1 administration of different doses of sulpiride (0.12, 0.5 and 0.75 μg/rat), 5 min before the injection of an effective dose of MK801 (2 μg/rat), decreased %OAT and %OAE, however did not alter other exploratory behaviors induced by MK801. Our results suggested a modulatory effect of the CA1 dopaminergic system on the anxiolytic-like effects induced by MK801.
Refsgaard, Louise K; Pickering, Darryl S; Andreasen, Jesper T
2017-02-01
Evidence suggests that N-methyl-D-aspartate receptor (NMDAR) antagonists could be efficacious in treating depression and anxiety, but side effects constitute a challenge. This study evaluated the antidepressant-like and anxiolytic-like actions, and cognitive and motor side effects of four NMDAR antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance. The study supports that NMDARs could be a possible therapeutic target for treating depression and anxiety. However, selective antagonism of GluN2B subunit-containing NMDARs showed no effect on anxiety-like behaviours in this study.
Effects of single and combined gabapentin use in elevated plus maze and forced swimming tests.
Kilic, Fatma Sultan; Ismailoglu, Sule; Kaygisiz, Bilgin; Oner, Setenay
2014-10-01
Gabapentin, a third-generation antiepileptic drug, is a structural analogue of γ-aminobutyric acid, which is an important mediator of central nervous system. There is clinical data indicating its effectiveness in the treatment of psychiatric illnesses such as bipolar disorder and anxiety disorders. We aimed to investigate the antidepressant and anxiolytic-like effects and mechanisms of gabapentin in rats. Female Spraque-Dawley rats weighing 250±20 g were used. A total of 13 groups were formed, each containing 8 rats: gabapentin (5, 10, 20, 40 mg/kg), amitriptyline (10 mg/kg), sertraline (5 mg/kg), diazepam (5 mg/kg), ketamine (10 mg/kg), gabapentin 20 mg/kg was also combined with amitriptyline (10 mg/kg), sertraline (5 mg/kg), diazepam (5 mg/kg) and ketamine (10 mg/kg). All the drugs were used intraperitoneally as single dose. Saline was administered to the control group. Elevated plus maze and forced swimming tests were used as experimental models of anxiety and depression, respectively. It was observed that gabapentin showed an anxiolytic-like and antidepressant-like effect in all doses in rats. Its antidepressant effect was found to be the same as the antidepressant effects of amitriptyline and sertraline. There was no change in the antidepressant effect when gabapentin was combined with amitriptyline and ketamine, but there was an increase when combined with sertraline and diazepam. Gabapentin and amitriptyline showed similar anxiolytic effect, whereas ketamine and diazepam had more potent anxiolytic effect compared with them. These data suggest that gabapentin may possess antidepressant- and anxiolytic-like effects.
Naseri, Mohammad-Hasan; Hesami-Tackallou, Saeed; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza; Nasehi, Mohammad
2014-06-01
There seems to be a close relationship between hippocampal N-methyl-D-aspartic acid (NMDA) and GABAA receptors with respect to the modulation of behavior that occurs in the CA1 region of the hippocampus. This study investigated the possible involvement of the CA1 GABAA receptors in anxiolytic-like effects induced by (+)-MK-801 (a noncompetitive antagonist of the NMDA subtype of the glutamate receptor). Male Wistar rats were subjected to the elevated plus-maze apparatus and open arm time (%OAT), and open arm entries (%OAE) for anxiety-related behaviors, and closed arm entries that correspond to the locomotor activity were assessed. An intra-CA1 injection of (+)-MK-801 (2 μg/rat) and muscimol (0.5 μg/rat; a GABAA receptor agonist) increased %OAT and %OAE by themselves while not altering the closed arm entries, indicating an anxiolytic-like effect of these drugs. Injection of bicuculline (0.1, 0.25, and 0.5 μg/rat; a GABAA receptor antagonist) did not alter any of the anxiety-related parameters. An intra-CA1 injection of a subthreshold dose of muscimol (0.1 μg/rat) or bicuculline (0.5 μg/rat), 5 min before injection of subthreshold and effective doses of (+)-MK-801 (0.5, 1 and 2 μg/rat), increased and decreased the anxiolytic-like effect of (+)-MK-801, respectively. The isobologram analysis of these findings suggested a synergistic anxiety-like effect of intra-CA1 (+)-MK-801 and muscimol. In conclusion, the CA1 GABAA receptors appear to be involved in anxiolytic-like behaviors induced by (+)-MK-801.
Anxiolytic-like effects of restraint during the dark cycle in adolescent mice.
Ota, Yuki; Ago, Yukio; Tanaka, Tatsunori; Hasebe, Shigeru; Toratani, Yui; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio
2015-05-01
Stress during developmental stage may cause psychological morbidities, and then the studies on stress are important in adolescent rodents. Restraint is used as a common stressor in rodents and the effects of restraint during the light cycle have been studied, but those of restraint during the dark cycle have not. The present study examined the effects of restraint during the light and dark cycles on anxiety behaviors in adolescent mice. Restraint for 3h during either the light or dark cycle impaired memory function in the fear conditioning test, but did not affect locomotor activity. In the elevated plus-maze test, restraint during the dark cycle reduced anxiety-like behaviors in mice. Repeated exposure to a 3-h period dark cycle restraint for 2 weeks had a similar anxiolytic-like effect. In contrast, restraint for 3h during the light cycle produced anxiety behavior in adolescent, but not adult, mice. The light cycle stress increased plasma corticosterone levels, and elevated c-Fos expression in the prefrontal cortex, paraventricular hypothalamic nucleus, basolateral amygdala and dentate gyrus, and enhanced serotonin turnover in the hippocampus and striatum, while the dark cycle stress did not. There was no difference in the stress-mediated reduction in pentobarbital-induced sleeping time between dark and light cycle restraint. These findings suggest that the anxiolytic effect of dark cycle restraint is mediated by corticosterone, serotonin or γ-aminobutyric acid-independent mechanisms, although the anxiogenic effect of light cycle restraint is associated with changes in plasma corticosterone levels and serotonin turnover in specific brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Dziubina, Anna; Szmyd, Karina; Zygmunt, Małgorzata; Sapa, Jacek; Dudek, Magdalena; Filipek, Barbara; Drabczyńska, Anna; Załuski, Michał; Pytka, Karolina; Kieć-Kononowicz, Katarzyna
2016-12-01
It has recently been suggested that the adenosine A 2A receptor plays a role in several animal models of depression. Additionally, A 2A antagonists have reversed behavioral deficits and exhibited a profile similar to classical antidepressants. In the present study, imidazo- and pyrimido[2,1-f]purinedione derivatives (KD 66, KD 167, KD 206) with affinity to A 2A receptors but poor A 1 affinity were evaluated for their antidepressant- and anxiolytic-like activity. The activity of these derivatives was tested using a tail suspension and forced swim test, two widely-used behavioral paradigms for the evaluation of antidepressant-like activity. In turn, the anxiolytic activity was evaluated using the four-plate test. The results showed the antidepressant-like activity of pyrimido- and imidazopurinedione derivatives (i.e. KD 66, KD 167 and KD 206) in acute and chronic behavioral tests in mice. KD 66 revealed an anxiolytic-like effect, while KD 167 increased anxiety behaviors. KD 206 had no effect on anxiety. Furthermore, none of the tested compounds increased locomotor activity. Available data support the proposition that the examined compounds with adenosine A 2A receptor affinity may be an interesting target for the development of antidepressant and/or anxiolytic agents. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Fuchikami, Manabu; Thomas, Alexandra; Liu, Rongjian; Wohleb, Eric S; Land, Benjamin B; DiLeone, Ralph J; Aghajanian, George K; Duman, Ronald S
2015-06-30
Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine. We also found that optogenetic stimulation of the IL-PFC produced rapid and long-lasting antidepressant and anxiolytic effects and that these effects are associated with increased number and function of spine synapses of layer V pyramidal neurons. The results demonstrate that ketamine infusions or optogenetic stimulation of IL-PFC are sufficient to produce long-lasting antidepressant behavioral and synaptic responses similar to the effects of systemic ketamine administration.
Leptin/LepRb in the Ventral Tegmental Area Mediates Anxiety-Related Behaviors
Liu, Jing; Guo, Ming
2016-01-01
Background: Leptin, an adipose-derived hormone, has been implicated in emotional regulation. We have previously shown that systemic administration of leptin produces anxiolytic-like effects and deletion of the leptin receptor, LepRb, in midbrain dopamine neurons leads to an anxiogenic phenotype. This study investigated whether activation or deletion of LepRb in the ventral tegmental area of adult mice is capable of inducing anxiolytic and anxiogenic effects, respectively. Methods: Mice were cannulated in the ventral tegmental area and received bilateral intra-ventral tegmental area infusions of leptin or the JAK2/STAT3 inhibitor AG490. Anxiety-like behaviors were assessed using the elevated plus-maze, light-dark box, and novelty suppressed feeding tests. Deletion of LepRb in the ventral tegmental area was achieved by bilateral injection of AAV-Cre into the ventral tegmental area of adult Leprflox/flox mice. Anxiety-related behaviors were evaluated 3 weeks after viral injection. Results: Intra-ventral tegmental area infusions of leptin reduced anxiety-like behaviors, as indicated by increased percent open-arm time and open-arm entries in the elevated plus-maze test, increased time spent in the light side and decreased latency to enter the light side of the light-dark box, and decreased latency to feed in the novelty suppressed feeding test. Blockade of JAK2/STAT3 signaling in the ventral tegmental area by AG490 attenuated the anxiolytic effect produced by systemic administration of leptin. Leprflox/flox mice injected with AAV-Cre into the ventral tegmental area showed decreased leptin-induced STAT3 phosphorylation and enhanced anxiety-like behaviors in the elevated plus-maze test and the novelty suppressed feeding test. Conclusions: These findings suggest that leptin-LepRb signaling in the ventral tegmental area plays an important role in the regulation of anxiety-related behaviors. PMID:26438799
Brierley, Daniel I; Samuels, James; Duncan, Marnie; Whalley, Benjamin J; Williams, Claire M
2016-01-01
Anticipatory nausea (AN) is a poorly controlled side effect experienced by chemotherapy patients. Currently, pharmacotherapy is restricted to benzodiazepine anxiolytics, which have limited efficacy, have significant sedative effects and induce dependency. The non-psychoactive phytocannabinoid, cannabidiolic acid (CBDA), has shown considerable efficacy in pre-clinical AN models, however determination of its neuromotor tolerability profile is crucial to justify clinical investigation. Provisional evidence for appetite-stimulating properties also requires detailed investigation. This study aims to assess the tolerability of CBDA in locomotor activity, motor coordination and muscular strength tests, and additionally for ability to modulate feeding behaviours. Male Lister Hooded rats administered CBDA (0.05-5 mg/kg; p.o.) were assessed in habituated open field (for locomotor activity), static beam and grip strength tests. A further study investigated whether these CBDA doses modulated normal feeding behaviour. Finally, evidence of anxiolytic-like effects in the habituated open field prompted testing of 5 mg/kg CBDA for anxiolytic-like activity in unhabituated open field, light/dark box and novelty-suppressed feeding (NSF) tests. CBDA had no adverse effects upon performance in any neuromotor tolerability test, however anxiolytic-like behaviour was observed in the habituated open field. Normal feeding behaviours were unaffected by any dose. CBDA (5 mg/kg) abolished the increased feeding latency in the NSF test induced by the 5-HT1AR antagonist, WAY-100,635, indicative of anxiolytic-like effects, but had no effect on anxiety-like behaviour in the novel open field or light/dark box. CBDA is very well tolerated and devoid of the sedative side effect profile of benzodiazepines, justifying its clinical investigation as a novel AN treatment.
Chen, Chao-Jie; Zhong, Zhi-Feng; Xin, Zhi-Ming; Hong, Long-Hui; Su, Yan-Ping; Yu, Chang-Xi
2017-04-01
Koumine, an active alkaloid of neurotoxic plant Gelsemium, has been focused on its therapeutic uses, especially in central nervous system. Nevertheless, less is known about the neurological effects of koumine, which hampers its potential therapeutic exploitation. Moreover, as the anxiolytic potential of Gelsemium has raised many critical issues, its active principles on the anxiolytic and other neurological effects need to be further investigated. Here, we used functional observation battery (FOB) of mice to systematically measure the neurological effects of koumine at the effective doses, and then further confirmed its anxiolytic properties in open-field test (OFT) of mice and Vogel conflict test (VCT) of rats. Koumine exhibited anxiolytic-like activities but did not affect other autonomic, neurological and physical functions in FOB. Furthermore, koumine released anxiolytic responses and anti-punishment action in a manner similar to diazepam in OFT and VCT, respectively. The results constitutes solid set of fundamental data further demonstrating anxiolytic properties of koumine at the therapeutic doses without inducing adverse neurological effects, which supports the perspectives for the development of safe and effective koumine medicine against pathological anxiety.
de Mello Schier, Alexandre R; de Oliveira Ribeiro, Natalia P; Coutinho, Danielle S; Machado, Sergio; Arias-Carrión, Oscar; Crippa, Jose A; Zuardi, Antonio W; Nardi, Antonio E; Silva, Adriana C
2014-01-01
Anxiety and depression are pathologies that affect human beings in many aspects of life, including social life, productivity and health. Cannabidiol (CBD) is a constituent non-psychotomimetic of Cannabis sativa with great psychiatric potential, including uses as an antidepressant-like and anxiolytic-like compound. The aim of this study is to review studies of animal models using CBD as an anxiolytic-like and antidepressant-like compound. Studies involving animal models, performing a variety of experiments on the above-mentioned disorders, such as the forced swimming test (FST), elevated plus maze (EPM) and Vogel conflict test (VCT), suggest that CBD exhibited an anti-anxiety and antidepressant effects in animal models discussed. Experiments with CBD demonstrated non-activation of neuroreceptors CB1 and CB2. Most of the studies demonstrated a good interaction between CBD and the 5-HT1A neuro-receptor.
Effects of repeated asenapine in a battery of tests for anxiety-like behaviours in mice.
Ene, Hila M; Kara, Nirit Z; Barak, Noa; Reshef Ben-Mordechai, Tal; Einat, Haim
2016-04-01
A number of atypical antipsychotic drugs were demonstrated to have anxiolytic effects in patients and in animal models. These effects were mostly suggested to be the consequence of the drugs' affinity to the serotonin system and its receptors. Asenapine is a relatively new atypical antipsychotic that is prescribed for schizophrenia and for bipolar mania. Asenapine has a broad pharmacological profile with significant effects on serotonergic receptors, hence it is reasonable to expect that asenapine may have some anxiolytic effects. The present study was therefore designed to examine possible effects of asenapine on anxiety-like behaviour of mice. Male ICR mice were repeatedly treated with 0.1 or 0.3 mg/kg injections of asenapine and then tested in a battery of behavioural tests related to anxiety including the open-field test, elevated plus-maze (EPM), defensive marble burying and hyponeophagia tests. In an adjunct experiment, we tested the effects of acute diazepam in the same test battery. The results show that diazepam reduced anxiety-like behaviour in the EPM, the defensive marble burying test and the hyponeophagia test but not in the open field. Asenapine has anxiolytic-like effects in the EPM and the defensive marble burying tests but had no effects in the open-field or the hyponeophagia tests. Asenapine had no effects on locomotor activity. The results suggest that asenapine may have anxiolytic-like properties and recommends that clinical trials examining such effects should be performed.
Anxiolytic-like effects of oleamide in group-housed and socially isolated mice.
Wei, Xiu Yan; Yang, Jing Yu; Dong, Ying Xu; Wu, Chun Fu
2007-08-15
Oleamide (cis-9,10-octadecenoamide) is an endogenous sleep-inducing lipid and prototypic member of a new class of biological signaling molecules identified in recent years. In the present study, the anxiolytic-like effect of oleamide was studied in several experimental models of anxiety in group-housed and socially isolated mice. As the results show, socially isolated mice exhibited an anxiogenic-like profile in the elevated plus-maze test, the light/dark test, and the hole-board test, which could be significantly reversed by oleamide (10 or 20 mg/kg, i.p.). Moreover, oleamide significantly reduced the anxiety levels in grouped-housed mice. In the isolation-induced aggressive test, oleamide markedly reduced the attacking duration and increased the attacking latency. It is concluded that oleamide has an anxiolytic-like effect in socially isolated or group-housed mice, which suggests that fatty acid amides might be involved in the regulation of anxiety-related behavior in mice.
Sciolino, Natale R.; Dishman, Rodney K.; Holmes, Philip V.
2012-01-01
Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the β-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10 d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running. PMID:22580167
Dixon, C I; Rosahl, T W; Stephens, D N
2008-07-01
Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.
Gawali, Nitin B; Bulani, Vipin D; Gursahani, Malvika S; Deshpande, Padmini S; Kothavade, Pankaj S; Juvekar, Archana R
2017-05-15
Agmatine, a neurotransmitter/neuromodulator, has shown to exert numerous effects on the CNS. Chronic stress is a risk factor for development of depression, anxiety and deterioration of cognitive performance. Compelling evidences indicate an involvement of nitric oxide (NO) pathway in these disorders. Hence, investigation of the beneficial effects of agmatine on chronic unpredictable mild stress (CUMS)-induced depression, anxiety and cognitive performance with the involvement of nitrergic pathway was undertaken. Mice were subjected to a battery of stressors for 28days. Agmatine (20 and 40mg/kg, i.p.) alone and in combination with NO modulators like L-NAME (15mg/kg, i.p.) and l-arginine (400mg/kg i.p.) were administered daily. The results showed that 4-weeks CUMS produces significant depression and anxiety-like behaviour. Stressed mice have also shown a significant high serum corticosterone (CORT) and low BDNF level. Chronic treatment with agmatine produced significant antidepressant-like behaviour in forced swim test (FST) and sucrose preference test, whereas, anxiolytic-like behaviour in elevated plus maze (EPM) and open field test (OFT) with improved cognitive impairment in Morris water maze (MWM). Furthermore, agmatine administration reduced the levels of acetylcholinesterase and oxidative stress markers. In addition, agmatine treatment significantly increased the BDNF level and inhibited serum CORT level in stressed mice. Treatment with L-NAME (15mg/kg) potentiated the effect of agmatine whereas l-arginine abolished the anxiolytic, antidepressant and neuroprotective effects of agmatine. Agmatine showed marked effect on depression and anxiety-like behaviour in mice through nitrergic pathway, which may be related to modulation of oxidative-nitrergic stress, CORT and BDNF levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Carrier, Nicole; Saland, Samantha K.; Duclot, Florian; He, Huan; Mercer, Roger; Kabbaj, Mohamed
2015-01-01
Background While the influence of testosterone levels on vulnerability to affective disorders is not straightforward, research suggests this hormone may confer some degree of resiliency in men. We recently demonstrated a role for the dentate gyrus in mediating testosterone’s protective effects on depressive-like behavior in gonadectomized male rats. Here, testosterone may exert its effects through androgen receptor-mediated mechanisms or via local aromatization to estradiol. Methods Gonadectomized male rats were implanted with a placebo, testosterone, or estradiol pellet, and subsequent protective anxiolytic- and antidepressant-like effects of testosterone and its aromatized metabolite, estradiol, were then investigated in the open field and sucrose preference tests, respectively. Moreover, their influence on gene expression in the hippocampus was analyzed by genome-wide cDNA microarray analysis. Finally, the contribution of testosterone’s aromatization within the dentate gyrus was assessed by local infusion of the aromatase inhibitor, fadrozole, whose efficacy was confirmed by LC-MS/MS. Results Both hormones had antidepressant-like effects associated with a substantial overlap in transcriptional regulation, particularly in synaptic plasticity- and mitogen-activated protein kinase pathway-related genes. Further, chronic aromatase inhibition within the dentate gyrus blocked the protective effects of testosterone. Conclusions Both testosterone and estradiol exhibit anxiolytic- and antidepressant-like effects in gonadectomized male rats, while similarly regulating critical mediators of these behaviors, suggesting common underlying mechanisms. Accordingly, we demonstrated that testosterone’s protective effects are mediated, in part, by its aromatization in the dentate gyrus. These findings thus provide further insight into a role for estradiol in mediating the protective anxiolytic- and antidepressant-like effects of testosterone. PMID:25683735
Anxiolytic-like effect of Sonchus oleraceus L. in mice.
Cardoso Vilela, Fabiana; Soncini, Roseli; Giusti-Paiva, Alexandre
2009-07-15
Sonchus oleraceus L. has been used as a general tonic in Brazilian folk medicine. Nevertheless, available scientific information regarding this species is scarce; there are no reports related to its possible effect on the central nervous system. This study was conducted to establish the anxiolytic effect of extracts from the aerial parts of Sonchus oleraceus. This study evaluated the effect of hydroethanolic and dichloromethane extracts of Sonchus oleraceus in mice submitted to the elevated plus-maze and open-field tests. Clonazepam was used as the standard drug. In the elevated plus-maze test, the Sonchus oleraceus extracts increased the percentage of open arm entries (P<0.05) and time spent in the open-arm portions of the maze (P<0.05). The extracts induce an anti-thigmotactic effect, evidenced by increased locomotor activity into the central part of the open field set-up (P<0.05). The extracts administered at 30-300 mg/kg, p.o. had a similar anxiolytic effect to clonazepam (0.5 mg/kg, p.o.). These data indicate that Sonchus oleraceus extract exerts an anxiolytic-like effect on mice.
Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug.
Zuardi, A W; Crippa, J A S; Hallak, J E C; Moreira, F A; Guimarães, F S
2006-04-01
A high dose of delta9-tetrahydrocannabinol, the main Cannabis sativa (cannabis) component, induces anxiety and psychotic-like symptoms in healthy volunteers. These effects of delta9-tetrahydrocannabinol are significantly reduced by cannabidiol (CBD), a cannabis constituent which is devoid of the typical effects of the plant. This observation led us to suspect that CBD could have anxiolytic and/or antipsychotic actions. Studies in animal models and in healthy volunteers clearly suggest an anxiolytic-like effect of CBD. The antipsychotic-like properties of CBD have been investigated in animal models using behavioral and neurochemical techniques which suggested that CBD has a pharmacological profile similar to that of atypical antipsychotic drugs. The results of two studies on healthy volunteers using perception of binocular depth inversion and ketamine-induced psychotic symptoms supported the proposal of the antipsychotic-like properties of CBD. In addition, open case reports of schizophrenic patients treated with CBD and a preliminary report of a controlled clinical trial comparing CBD with an atypical antipsychotic drug have confirmed that this cannabinoid can be a safe and well-tolerated alternative treatment for schizophrenia. Future studies of CBD in other psychotic conditions such as bipolar disorder and comparative studies of its antipsychotic effects with those produced by clozapine in schizophrenic patients are clearly indicated.
Schulz, Daniela
2018-03-14
Similar doses of caffeine have been shown to produce either anxiolytic or anxiogenic effects in rats. The reasons for these conflicting results are not known. We hypothesized that food deprivation stress interacts with the stimulant effects of caffeine to increase anxiety-like behavior. We tested 32 female Sprague Dawley rats in a dim open field for 10 min. Half of the animals were food deprived for 24 h and injected (intraperitoneal) with caffeine (30 mg/kg; n=7) or deionized water (n=8) 20 min before the open field test. The other half was nondeprived and injected with caffeine (30 mg/kg; n=8) or deionized water (n=9). Results showed that nondeprived rats injected with caffeine moved longer distances and at a greater speed in the periphery and moved longer distances and spent more time in the center than rats treated with vehicle, indicative of motor-activating and/or anxiolytic effects of caffeine. Rats that were food deprived and injected with caffeine moved longer distances in the center and tended to spend more time there, indicative of anxiolysis. We conclude that caffeine had two effects on behavior, motor activation and a reduction of anxiety, and that food deprivation separated these effects.
Zarrindast, Mohammad Reza; Nasehi, Mohammad; Piri, Morteza; Heidari, Negar
2011-11-14
Some investigations have shown that the glutamate receptors play a critical role in cognitive processes such as learning and anxiety. The possible involvement of the cholinergic system of the dorsal hippocampus in the anxiolytic-like response induced by MK-801, NMDA receptor antagonist, was investigated in the present study. Male Wistar rats were used in the elevated plus maze apparatus to test the parameters: open arm time (%OAT), open arm entries (%OAE), close arm time (%CAT), close arm entries (%CAE) and other exploratory behaviors (locomotor activity, grooming, rearing and defecation) of anxiety-like response. The data indicated that intra-CA1 administration of MK-801 increased %OAT (2μg/rat) and %OAE (1 and 2μg/rat) while decreased %CAT and %CAE and did not alter other exploratory behaviors, indicating an anxiolytic-like effect. Moreover, intra-hippocampal injections of mecamylamine, a cholinergic receptor antagonists (2μg/rat) and scopolamine (4μg/rat), by themselves, 5min before testing, increased %OAT and %OAE but decreased %CAT and %CAE and did not alter locomotor activity and other exploratory behaviors, suggesting an anxiolytic-like effect. On the other hand, intra-CA1 co-administration of an ineffective dose of scopolamine (3μg/rat), but not mecamylamine (1μg/rat), with an ineffective dose of MK-801 (0.5μg/rat) increased %OAT and %OAE and decreased %CAT and %CAE. The data may indicate the possible involvement of the cholinergic system of the CA1 in the anxiolytic-like response induced by MK-801. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos
2016-03-01
Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.
Siemiatkowski, M; Sienkiewicz-Jarosz, H; Członkowska, A I; Bidziński, A; Płaźnik, A
2000-07-01
The effects of 5-HT(1A) receptor agonist buspirone, a nonselective (diazepam), and a selective (zolpidem) GABA(A) receptor agonist were compared in the open field test of neophobia. Unhabituated rats were pretreated with the drugs once, prior to a first exposure to the open field, and their behavior was recorded both during this test and during a second trial 24 h later. It has been hypothesized that the decrease in exploratory activity observed during the second test session may be considered an adaptive reaction to the first day aversive experience (neophobia). If so, a selective modulation of 5-HT and GABA systems activity during the test could bring about significant changes in animal behavior on the retest. Buspirone at the lowest dose of 0.3 mg/kg revealed anxiolytic-like properties on the first day, whereas the action of diazepam and zolpidem was modulated by the dose-related sedative effect. At the dose of 2.4 mg/kg buspirone elicited delayed in time anxiolytic-like action, i.e., produced the antithigmotactic effect during the retrial 24 h later. Diazepam and zolpidem failed to exhibit similar profile of action. Autoradiography of [3H]muscimol binding after pretreatment of rats with buspirone showed a significant increase in the selective radioligand binding within the frontal cortex and a similar, near-significant tendency in the dentate gyrus of the hippocampus. The behavioral data validate buspirone as important drug for the treatment of anxiety disorders, devoid of disruptive influence on motor and cognitive processes. The open field test, as modified by us, appeared sensitive in distinguishing the behavioral profiles of action of different anxiolytic compounds, including 5-HT(1A) receptor agonist. The present results support the assumption that reduced turnover of 5-HT due to stimulation of 5-HT(1A) autoreceptors, may bring about changes in GABA(A) receptor system activity, in some brain structures, leading to the anxiolytic effect.
Fedotova, Julia; Pivina, Svetlana; Sushko, Anastasia
2017-01-01
The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E2) on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days) on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX) rats and OVX rats treated with 17β-E2 (0.5 µg/rat SC, once daily, for 14 days). Anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light/dark test (LDT), and locomotor and grooming activities were tested in the open field test (OFT). Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E2 produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency. PMID:28054941
Massé, Fabienne; Hascoët, Martine; Bourin, Michel
2005-10-14
Selective serotonin reuptake inhibitors (SSRIs) and serotonin/noradrenaline reuptake inhibitors (SNRIs) has been reported to be efficient in anxiety disorders. Some animal models have demonstrated an anxiolytic-like effect following acute administration, however, it is not yet known how noradrenergic receptors are implicated in the therapeutic effects of antidepressants (ADs) in anxiety. The effects of two alpha(2)-adrenoceptor agonists (clonidine, guanabenz) on anxiolytic-like effect of two SSRIs (paroxetine and citalopram) and two SNRIs (venlafaxine and milnacipran) were evaluated in the four-plate test (FPT) in mice. Paroxetine (4 mg/kg), citalopram (8 mg/kg), venlafaxine (8 mg/kg), and milnacipran (8 mg/kg) administered intraperitoneally (i.p.) increased the number of punishments accepted by mice in the FPT. Clonidine (0.0039-0.5 mg/kg) and guanabenz (0.03-0.5mg/kg) had no effect on the number of punishments accepted by mice. Clonidine (0.03 and 0.06 mg/kg) and guanabenz (0.125 and 0.5 mg/kg) (i.p. -45 min) reversed the anti-punishment effect of paroxetine, citalopram, venlafaxine and milnacipran (i.p. -30 min). But if the antidepressants are administered 45 min before the test and alpha(2)-adrenoceptor agonists 30 min before the test, alpha(2)-adrenoceptor agonists failed to alter the anti-punishment effect of antidepressants. The results of this present study indicate that alpha(2)-adrenoceptor agonists antagonise the anxiolytic-like effect of antidepressants in mice when they are administered 15 min before the administration of antidepressant suggesting a close inter-regulation between noradrenergic and serotoninergic system in the mechanism of SSRIs and SNRIs in anxiety-like behaviour.
NMDA/glutamate mechanism of magnesium-induced anxiolytic-like behavior in mice.
Poleszak, Ewa; Wlaź, Piotr; Wróbel, Andrzej; Fidecka, Sylwia; Nowak, Gabriel
2008-01-01
The anxiolytic-like activity of magnesium in mice during the elevated plus maze (EPM) has been demonstrated previously. In the present study, we examined the involvement of NMDA/glutamate receptor ligands on the magnesium effect on the EPM. We demonstrated that low, ineffective doses of NMDA antagonists (the competitive NMDA antagonist CGP 37849, 0.3 mg/kg; an antagonist of the glycineB sites, L-701,324, 1 mg/kg; a partial agonist of the glycineB sites, D-cycloserine, 2.5 mg/kg; and the non-competitive NMDA antagonist MK-801, 0.05 mg/kg) administered together with an ineffective dose of magnesium (10 mg/kg) evoked a significant increase in the percentage of time spent in the open arm of the maze (an index of anxiety). Moreover, magnesium-induced anxiolytic-like activity (20 mg/kg) was antagonized by D-serine (100 nmol/mouse), an agonist of glycineB site of the NMDA receptor complex. The present study demonstrates the involvement of the NMDA/glutamate pathway in the magnesium anxiolytic-like activity in the EPM in mice, and that this activity particularly involves the glycineB sites.
Ishola, Ismail O; Awodele, Olufunsho; Eluogu, Chinedum O
2016-09-01
Mangifera indica (Anacardiaceae) is an important herb in the traditional African and Ayurvedic medicines. The stem barks are used in the treatment of hypertension, insomnia, tumour, depression, rheumatism and as a tonic. This study was carried out to investigate antidepressant- and anxiolytic-like effect of the hydroethanol stem bark extract of M. indica (HeMI) in mice. HeMI (12.5-100 mg/kg, p.o.) was administered 1 h before subjecting the animal to the forced swim test (FST), tail suspension test (TST) and elevated plus maze tests (EPM). HeMI (12.5-100 mg/kg, p.o.) treatment produced significant reduction in immobility time [F(6.56)=8.35, p<0.001], [F(6,56)=7.55, p<0.001] in the FST and TST, respectively. Moreover, co-administration of sub-therapeutic doses of imipramine or fluoxetine with HeMI (3.125 mg/kg) elicited significant reduction in time spent immobile in the FST. However, pretreatment of mice with parachlorophenylalanine, metergoline, yohimbine or sulpiride abolished the antidepressant-like effect elicited by HeMI. In the EPM, HeMI produced significant [F(5,42)=8.91, p<0.001] increase in open arms exploration by 75.55 % and this effect was blocked by pretreatment of mice with flumazenil or metergoline. Findings from this study showed antidepressant-like effect of M. indica through interaction with 5-HT2 receptor, α2-adrenoceptor and dopamine D2-receptors. Also, an anxiolytic-like effect through its affinity for 5-HT2 and benzodiazepine receptors. Hence, M. indica could be a potential phytotherapeutic agent in the treatment of mixed anxiety-depressive illness.
Narasingam, Megala; Vijeepallam, Kamini; Mohamed, Zahurin; Pandy, Vijayapandi
2017-12-01
This study presents anxiolytic- and antidepressant-like effects of a methanolic extract of Morinda citrifolia Linn. (noni) fruit (MMC) in well-established mouse models of anxiety and depression. The administration of MMC (1 g/kg, p.o.) and diazepam (1 mg/kg, i.p.) significantly attenuated anxiety-like behaviour in mice by increasing the percentage of time spent and number of entries in the open arms in the elevated plus maze (EPM), and significantly enhanced the exploration in the light box in the light/dark test (LDT). The pre-treatment with flumazenil (6 mg/kg, i.p.) or bicuculline (3 mg/kg, i.p.) or WAY 100635 (1 mg/kg, i.p.) antagonized the anxiolytic-like effect elicited by MMC (1 g/kg, p.o.). These results suggest the possible involvement of benzodiazepine-GABA A ergic and serotonergic mechanisms in the anxiolytic-like effect of noni fruit. Meanwhile, in the antidepressant study, the administration of MMC (0.5 and 0.75 g/kg, p.o.) and desipramine (30 mg/kg, i.p.) significantly reduced the duration of immobility in the tail suspension test (TST). Furthermore, pre-treatment of mice with 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis) for four consecutive days or a single dose of WAY 100635 (1 mg/kg, i.p., 5HT 1A receptor antagonist) or α-methyl-DL-tyrosine (AMPT; 100 mg/kg, i.p., an inhibitor of noradrenaline synthesis) significantly reversed the anti-immobility effect of MMC (0.5 g/kg, p.o.) in TST by indicating the specific involvement of the serotonergic and noradrenergic systems in the antidepressant-like effect of noni fruit. Taken together, these findings suggest that MMC has both anxiolytic- and antidepressant-like activities to be resorted as a valuable alternative therapy for comorbid anxiety and depressive conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Anxiolytic-like Effect of Testosterone in Male Rats: GABAC Receptors Are Not Involved
Roohbakhsh, Ali; Moghaddam, Akbar Hajizadeh; Delfan, Karim Mahmoodi
2011-01-01
Objective(s) The effect of testosterone on anxiety-like behaviors has been the subject of some studies. There is evidence that testosterone modulates anxiety via GABA (gama aminobutyric acid) and GABAergic system. The involvement of GABAC receptors in those effects of testosterone on anxiety-like behaviors of the rats was investigated in the present study. Materials and Methods A group of rats received subcutaneous injections of testosterone (5, 10 and 20 mg/kg). Two groups of rats received intracerebroventricular injections of either CACA (GABAC agonist, 0.125 μg/rat) or TPMPA (GABAC antagonist, 3 microg/rat) following administration of testosterone (5, 10 and 20 mg/kg). After the injections, the rats were submitted to the elevated plus-maze test of anxiety. Results The rats received testosterone alone, showed a decreased in anxiety-like behaviors (P< 0.01). Administration of either CACA or TPMPA did not modify animals’ behavior compared to the rats received testosterone alone. Conclusion The results of the present study showed that administration of testosterone induces anxiolytic-like behaviors in the rats and GABAC receptors possibly are not involved in the anxiolytic effect of testosterone. PMID:23493519
Pytka, Karolina; Partyka, Anna; Jastrzębska-Więsek, Magdalena; Siwek, Agata; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Błachuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Wesołowska, Anna
2015-01-01
The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929
Bitran, Daniel; Solano, Steven M
2005-07-01
Allopregnanolone, a neurosteroid-reduced metabolite of progesterone, is a well-documented positive modulator of the gamma-aminobutyric type A (GABA(A)) receptor. As has been reported for other positive modulators of the GABA(A) receptor, chronic exposure to neurosteroids is hypothesized to decrease GABA(A) receptor function. Drawing from the literature on chronic exposure to benzodiazepines or alcohol, putative changes in N-methyl-D-aspartate (NMDA) receptor function are also expected after chronic neurosteroid exposure. To assess the sensitivity of the GABA(A) and NMDA receptors after chronic elevation of neurosteroid produced by termination of pseudopregnancy in behavioral tests of anxiety and sensorimotor coordination. Female rats ovariectomized on day 10 of pseudopregnancy were tested in the elevated plus-maze and on the rotor rod after an acute injection of progesterone (4 mg/0.2 ml, s.c.), chlordiazepoxide (5 or 15 mg/kg, i.p.), or MK-801 (0.025, 0.05, or 0.1 mg/kg, i.p.). Pseudopregnancy termination produced an anxiogenic-like response in the plus-maze; an acute injection of progesterone restored baseline levels of behavior in this test. Pseudopregnancy termination eliminated the anxiolytic-like, sedative, and ataxic effects of chlordiazepoxide. In contrast, pseudopregnancy termination produced an increased sensitivity to the anxiolytic-like and ataxic effects of MK-801. The effects of pseudopregnancy termination on the behavioral response to positive modulators of the GABA(A) receptor are consistent with results from studies in which chronic exposure to neurosteroids decreases the response to acute neurosteroid and benzodiazepine administration. However, unlike the enhanced glutamatergic tone resulting from discontinuation of chronic benzodiazepine or alcohol exposure, the termination of pseudopregnancy apparently decreases NMDA receptor function.
Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety
Thippeswamy, B.S.; Mishra, Brijesh; Veerapur, V.P.; Gupta, Gourav
2011-01-01
Objective: The aim of the present work was to evaluate the anxiolytic effect of an ethanolic extract of Nymphaea alba Linn. in mice. Materials and Methods: The elevated plus maze test (EPMT), light and dark test (L and DT) and open field test (OFT) were used to assess the anxiolytic activity of the ethanolic extract of N. alba Linn. in mice. In addition, aggressive behavior and motor coordination was also assessed by foot shock induced aggression test (FSIAT) and rota rod test (RRT). Diazepam 1 mg/kg served as a standard anxiolytic drug, administered orally. Results: The ethanolic extract of N. alba (100 and 200 mg/kg, p.o.) significantly increased the percentage of time spent and number of entries in open arm in EPMT. In L and DT, the extract produced significant increase in time spent, number of crossing and decrease in the duration of immobility in light box. In OFT, the extract showed significant increase in number of rearings, assisted rearings and number of square crossed, all of which are demonstrations of exploratory behavior. In FSIAT, N. alba extract attenuated aggressive behavior related to anxiolytic activity, such as number of vocalization, leaps, rearing, biting/attacks and facing each other in paired mice. Furthermore, the extract produced skeletal muscle relaxant effect assessed by RRT. Conclusion: The results of the present study suggest that an ethanolic extract of N. alba may possess anxiolytic activity and provide a scientific evidence for its traditional claim. PMID:21455422
Involvement of l-arginine-nitric oxide pathway in anxiolytic-like effects of zinc chloride in rats.
Navabi, Seyedeh Parisa; Eshagh Harooni, Hooman; Moazedi, Ahmad Ali; Khajepour, Lotfolah; Fathinia, Kosar
2016-10-01
Zinc is crucial for normal development of the brain, and Zinc deficiency has been shown to associate with neurological disorders (e.g. anxiety) through interactions with several neurotransmitter systems such as nitric oxide (NO). In this regard, our study aimed to evaluate the possible involvement of l-arginine NO pathway on anxiolytic effects of zinc in adult male rats. Zinc chloride at doses of 2.5 and 10mg/kg (intraperitoneal or ip) or saline (1ml/kg, ip) were injected 30min before the anxiety test. Zinc administrated rats (10mg/kg) were pre-treated with intra-CA1 microinjection of l-arginine in sub-effective dose of 1μg/rat (dorsal hippocampus, vehicle: saline1μl/rat). In addition, zinc chloride and NG-nitro-l-arginine methyl ester (l-NAME) were intraperitoneally co-administrated in sub-effective doses of 2.5mg/kg and 80mg/kg, respectively. The percentage of open arm time (OAT%), percentage of open arm entry (OAE%), as measures of anxiety, and total number of arm entries, as measures of locomotor activity, were recorded. Treatment with zinc (10mg/kg) markedly produced an increase in OAT% and OAE% in the Elevated plus maze test (EPM). A decrease of OAT% and OAE% was shown in groups which received zinc (10mg/kg) and l-arginine (1μg/rat) concomitantly as compared to the control group. Moreover, an increase of OAE% was revealed in the group exposed to Zinc (2.5mg/kg) and l-NAME (80mg/kg) co-administration. Although, Two-way ANOVA showed no significant differences of anxiety indices in rats received drug+zinc chloride in compare to the zinc pretreated with saline group. Anxiolytic- like effect of zinc reversed by nitric oxide precursor l-arginine. Additionally, the synergistic effects of l-NAME and ZnCl 2 were shown in the EPM. Thus our findings suggest that at least in part the anxiolytic effects of zinc can be mediated through the nitric oxide system. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lisboa, Sabrina F; Resstel, Leonardo B M; Aguiar, Daniele C; Guimarães, Francisco S
2008-09-28
There are contradictory results concerning the effects of systemic injections of cannabinoid agonists in anxiety-induced behavioral changes. Direct drug administration into brain structures related to defensive responses could help to clarify the role of cannabinoids in these changes. Activation of cannabinoid CB(1) receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test. Male Wistar rats (n=5-9/group) with cannulae aimed at the dorsolateral periaqueductal gray were water deprived for 24 h and pre-exposed to the apparatus where they were allowed to drink for 3 min. After another 24 h-period of water deprivation, they received the microinjections and, 10 min later, were placed into the experimental box. In this box an electrical shock (0.5 mA, 2 s) was delivered in the spout of a drinking bottle at every twenty licks. The animals received a first microinjection of vehicle (0.2 microl) or AM251 (a cannabinoid CB(1) receptor antagonist; 100 pmol) followed, 5 min later, by a second microinjection of vehicle, anandamide (an endocannabinoid, 5 pmol), AM404 (an inhibitor of anandamide uptake, 50 pmol) or URB597 (an inhibitor of Fatty Acid Amide Hydrolase, 0.01 or 0.1 nmol). Anandamide, AM404 and URB597 (0.01 nmol) increased the total number of punished licks. These effects were prevented by AM251. The results give further support to the proposal that facilitation of CB(1) receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses.
Anxiolytic effects of the aqueous extract of Uncaria rhynchophylla.
Jung, Ji Wook; Ahn, Nam Yoon; Oh, Hye Rim; Lee, Bo Kyung; Lee, Kang Jin; Kim, Sun Yeou; Cheong, Jae Hoon; Ryu, Jong Hoon
2006-11-24
The purpose of this study was to characterize the putative anxiolytic-like effects of the aqueous extract of hooks with stem of Uncaria rhynchophylla using the elevated plus maze (EPM) and the hole-board apparatus in rats and mice. Control rats were treated with an equal volume of saline, and positive control rats with buspirone (1 mg/kg). Single or repeated treatments of the aqueous extract of Uncaria rhynchophylla (200 mg/kg/day, p.o.) for 7 days significantly increased the time-spent and entries into open arms of the EPM, and reduced the time-spent and entries into the closed arms versus saline controls (P<0.05). However, no changes in spontaneous locomotor activity or myorelaxant effects were observed versus saline controls. In the hole-board test, repeated treatment with the aqueous extract of Uncaria rhynchophylla (100 or 200 mg/kg/day, p.o.) significantly increased the number of head-dips (P<0.05). In addition, the anxiolytic-like effects of Uncaria rhynchophylla extract as assessed using the EPM test were abolished by WAY 100635 (0.3 mg/kg, i.p.), a 5-HT(1A) receptor antagonist. These results suggest that Uncaria rhynchophylla is an effective anxiolytic agent, and acts via the serotonergic nervous system.
Mendez-David, Indira; Guilloux, Jean-Philippe; Papp, Mariusz; Tritschler, Laurent; Mocaer, Elisabeth; Gardier, Alain M.; Bretin, Sylvie; David, Denis J.
2017-01-01
Glutamatergic dysfunctions are observed in the pathophysiology of depression. The glutamatergic synapse as well as the AMPA receptor’s (AMPAR) activation may represent new potential targets for therapeutic intervention in the context of major depressive disorders. S 47445 is a novel AMPARs positive allosteric modulator (AMPA-PAM) possessing procognitive, neurotrophic properties and enhancing synaptic plasticity. Here, we investigated the antidepressant/anxiolytic-like effects of S 47445 in a mouse model of anxiety/depression based on chronic corticosterone administration (CORT) and in the Chronic Mild Stress (CMS) model in rats. Four doses of S 47445 (0.3 to 10 mg/kg, oral route, 4 and 5 weeks, respectively) were assessed in both models. In mouse, behavioral effects were tested in various anxiety-and depression-related behaviors : the elevated plus maze (EPM), open field (OF), splash test (ST), forced swim test (FST), tail suspension test (TST), fur coat state and novelty suppressed feeding (NSF) as well as on hippocampal neurogenesis and dendritic arborization in comparison to chronic fluoxetine treatment (18 mg/kg, p.o.). In rats, behavioral effects of S 47445 were monitored using sucrose consumption and compared to those of imipramine or venlafaxine (10 mg/kg, i.p.) during the whole treatment period and after withdrawal of treatments. In a mouse model of genetic ablation of hippocampal neurogenesis (GFAP-Tk model), neurogenesis dependent/independent effects of chronic S 47445 treatment were tested, as well as BDNF hippocampal expression. S 47445 reversed CORT-induced depressive-like state by increasing grooming duration and reversing coat state’s deterioration. S 47445 also decreased the immobility duration in TST and FST. The highest doses (3 and 10 mg/kg) seem the most effective for antidepressant-like activity in CORT mice. Furthermore, S 47445 significantly reversed the anxiety phenotype observed in OF (at 1 mg/kg) and EPM (from 1 mg/kg). In the CMS rat model, S 47445 (from 1 mg/kg) demonstrated a rapid onset of effect on anhedonia compared to venlafaxine and imipramine. In the CORT model, S 47445 demonstrated significant neurogenic effects on proliferation, survival and maturation of hippocampal newborn neurons at doses inducing an antidepressant-like effect. It also corrected CORT-induced deficits of growth and arborization of dendrites. Finally, the antidepressant/anxiolytic-like activities of S 47445 required adult hippocampal neurogenesis in the novelty suppressed feeding test contrary to OF, EPM and ST. The observed increase in hippocampal BDNF levels could be one of the mechanisms of S 47445 responsible for the adult hippocampal neurogenesis increase. Altogether, S 47445 displays robust antidepressant-anxiolytic-like properties after chronic administration through neurogenesis dependent/independent mechanisms and neuroplastic activities. The AMPA-PAM S 47445 could have promising therapeutic potential for the treatment of major depressive disorders or generalized anxiety disorders. PMID:28769796
Tyurenkov, I N; Bagmetova, V V; Chernyshova, Yu V; Merkushenkova, O V
2014-12-01
β-Phenylglutamic acid hydrochloride (RGPU-135, neuroglutam) in doses of 13-650 mg/kg suppressed depressive behavior of animals in the Porsolt test (i.e. produced antidepressant properties), reduced anxiety in the open-field, elevated plus maze, and Vogel conflict tests (i.e. produced anxiolytic effects). RGPU-135 in doses of 26-130 mg/kg exhibited more pronounced antidepressant action and in doses of 26 and 52 mg/kg had more pronounced anxiolytic effects. RGPU-135 in doses of 13-78 mg/kg increased locomotor and exploratory activity of animals in the open-field test. Activating effects of this agent decreased with increasing the dose. RGPU-135 in the subtoxic dose (650 mg/kg) suppressed locomotor activity of animals (produced sedative effect).
Ishola, I O; Akinyede, A A; Sholarin, A M
2014-07-01
The whole plant of Momordica charantia Linn (Cucurbitaceae) is used in traditional African medicine in the management of depressive illness. Momordica charantia (MC) (50-400 mg/kg, p.o.) was administered 1 h before behavioural studies using the forced swimming test (FST) and tail suspension test (TST) to investigate antidepressant-like effect while the anxiolytic-like effect was evaluated with elevated plus maze test (EPM), hole-board test (HBT), and light-dark test (LDT). Acute treatment with MC (50-400 mg/kg) significantly increased swimming time (86.51%) and reduced the duration of immobility (52.35%) in FST and TST with peak effects observed at 200 mg/kg, respectively, in comparison to control. The pretreatment of mice with either sulpiride (dopamine D2 receptor antagonist), or metergoline (5-HT2 receptor antagonist), or cyproheptadine (5-HT2 receptor antagonist), or prazosin (α1-adrenoceptor antagonist), or yohimbine (α2-adrenoceptor antagonist), and atropine (muscarinic cholinergic receptor antagonist) 15 min before oral administration of MC (200 mg/kg) significantly blocked its anti-immobility effect. Similarly, MC (200 mg/kg) significantly reduced anxiety by increasing the open arm exploration (64.27%) in EPM, number of head-dips in HBT (34.38%), and time spent in light compartment (29.38%) in the LDT. However, pretreatment with flumazenil (GABAA receptor antagonist) 15 min before MC (200 mg/kg) significantly blocked (54.76%) its anxiolytic effect. The findings in this study showed that MC possesses antidepressant-like effect that is dependent on the serotonergic (5-HT2 receptor), noradrenergic (α1- and α2-adrenoceptors), dopaminergic (D2 receptor), and muscarinic cholinergic systems and an anxiolytic-like effect that might involve an action on benzodiazepine-type receptor. © Georg Thieme Verlag KG Stuttgart · New York.
Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim
2010-08-01
Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.
Vieira, Juliano M; Carvalho, Fabiano B; Gutierres, Jessié M; Soares, Mayara S P; Oliveira, Pathise S; Rubin, Maribel A; Morsch, Vera M; Schetinger, Maria Rosa; Spanevello, Roselia M
2017-11-01
Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na + -K + -ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain. Animals were divided into groups: control, caffeine (4 mg/kg), caffeine (8 mg/kg), HIIT, HIIT plus caffeine (4 mg/kg) and HIIT plus caffeine (8 mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na + -K + -ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain. HIIT-induced anxiolytic-like behaviour increased Na + -K + -ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na + -K + -ATPase activities.
Wang, Qian; Long, Yu; Hang, Ai; Zan, Gui-Ying; Shu, Xiao-Hong; Wang, Yu-Jun; Liu, Jing-Gen
2016-06-01
Opioid receptors are implicated in the regulation of motivation and emotion. However, animal studies show that activation of κ opioid receptor produces contrasting mood-altering effects in models of anxiety-like and depressive-like behaviors, and consequently, the role of κ receptor in mood control remains unsettled. The effect of κ/μ opioid combination in emotion regulation was unexplored. The aim of the study was to investigate the effects of (-)-3-N-ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a novel κ agonist and μ partial agonist, in regulating emotional responses. The emotional responses of ATPM-ET were detected in the elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST). Selective κ antagonist nor-binaltorphimine (nor-BNI) and μ antagonist β-funaltrexamine (β-FNA) were applied to determine the type of receptor involved. The conditioned place aversion model was used to evaluate the effects on aversive emotion. In the EPM and OFT, ATPM-ET (1 and 2 mg/kg, s.c.) significantly increased the time spent in the open arm and in the central area, respectively. In the FST and TST, ATPM-ET (0.5 and 1 mg/kg, s.c.) significantly reduced the duration of immobility. These effects were prevented by nor-BNI (10 mg/kg, i.p., -24 h), but not by β-FNA (10 and20 mg/kg, i.p., -24 h) pretreatment. At the dose of 2 mg/kg, ATPM-ET did not induce conditioned place aversion. ATPM-ET, at doses from 0.5 to 2 mg/kg, produced anxiolytic- and antidepressant-like effects without inducing aversive emotion. These effects were more closely mediated by activation of κ receptor than μ receptor.
Barkley-Levenson, Amanda M; Crabbe, John C
2015-02-01
Alcohol use disorders and anxiety disorders are highly comorbid in humans. In rodent lines selected for alcohol drinking, differences in anxiety-like behavior are also seen. The High Drinking in the Dark (HDID) lines of mice are selectively bred for drinking to intoxication during limited access to alcohol, and these mice represent a genetic model of risk for binge-like drinking. The present studies investigated whether these selected lines differ from control (HS) mice in basal anxiety behavior or in anxiolytic response to alcohol. We also assessed the genetic correlation between alcohol drinking in the dark (DID) and basal anxiety-like behavior using existing inbred strain data. Mice of both sexes and HDID replicates (HDID-1 and HDID-2) were tested on an elevated zero maze immediately following a DID test. In general, HDID mice showed more time spent in the open arms after drinking alcohol than HS mice, and open-arm time was significantly correlated with blood alcohol concentration. HDID-1 male mice also showed less anxiety-like behavior at baseline (water-drinking controls). In a separate experiment, HDID-1 and HS mice were tested for anxiolytic dose-response to acute alcohol injections. Both genotypes showed increasing time spent in the open arms with increasing alcohol doses, and HDID-1 and female mice had greater open-arm time across all doses. HDID-1 control males showed lower anxiety-like behavior than the HS control males. Inbred strain data analysis also showed no significant genetic relationship between alcohol DID and anxiety. These findings suggest that HDID selection has not produced systematic changes in anxiety-like behavior or sensitivity to alcohol-induced anxiolysis, though there is a tendency in the male mice of the first replicate toward reduced basal anxiety-like behavior. Therefore, anxiety state and sensitivity to alcohol's anxiolytic effects do not appear to contribute significantly to the high drinking behavior of the HDID mice. Copyright © 2015 Elsevier Inc. All rights reserved.
The effects of central administration of physostigmine in two models of anxiety.
Sienkiewicz-Jarosz, H; Maciejak, Piotr; Krzaścik, Paweł; Członkowska, Agnieszka I; Szyndler, Janusz; Bidziński, Andrzej; Kostowski, Wojciech; Płaźnik, Adam
2003-05-01
The effects of intracerebroventricular and intraseptal (the medial septum) administration of a prototypical acetylcholinesterase inhibitor (AChE-I), physostigmine, and a classic benzodiazepine midazolam on rat behavior in the open field test of neophobia and in the conditioned fear test (freezing reaction) were examined in rats. In the open field test of neophobia midazolam and physostigmine increased at a limited dose range, rat exploratory activity, after intracerebroventricular injection. Physostigmine produced in addition the hyperlocomotory effect. Following intraseptal injections, only physostigmine selectively prolonged the time spent by animals in the central sector of the open field. In the model of a conditioned fear, both midazolam and physostigmine inhibited rat freezing reaction to the aversively conditioned context after intracerebroventricular, but not after intraseptal, pretrial drug administration. The presented data support the notion about the selective anxiolytic-like effects of some AChE-Is. It appears, therefore, that the calming and sedative effects of AChE-Is observed in patients with Alzheimer's disease may be directly related to their anxiolytic action, independent of an improvement in cognitive functions, which in turn may decrease disorientation-induced distress and anxiety.
Kumar, Dinesh; Bhat, Zulfiqar Ali; Shah, M Y
2012-09-01
Angelica archangelica Linn. is widely used in food and liquor preparations and also in Kashmiri folk medicine to reduce anxiety. We evaluated the anxiolytic effect of successive extracts of A. archangelica linn. (SAE) on rats tested in the elevated T-maze test (an animal model of generalized anxiety) at doses that exhibit antidepressant-like activity in humans. A. archangelica (1 kg) was subjected to successive extraction in a soxhlet apparatus with solvents [petroleum ether (40-60 degrees C), chloroform, ethyl acetate, methanol and decoction with water] in order of increasing polarity (yield: 6.9%, 7.3%, 5.1%, 11.88% and 8.2% w/w, respectively). SAE were evaluated for anxiolytic effects using the elevated T-maze and forced swimming tests in rats. Oral dosing of diazepam (1 mg/kg) and extracts (50, 100 and 200 mg/kg) clearly showed an anxiolytic-like profile in the elevated T-maze test: it increased one-way escape and decreased inhibitory avoidance on the first, third and seventh day. In the forced swimming test, imipramine and SAE showed antidepressant- and anxiolytic-like effects as reflected by increased climbing time, swimming time and decreased immobility time on the first, third and seventh day. Aqueous and methanol extracts showed the most, petroleum ether (40-60 degrees C) and chloroform intermediate, and ethyl acetate the least anxiolytic activity (*P<0.05, **P<0.01, ***P< 0.001) in both models. These results suggest the anti-anxiety activity of various extracts of A. archangelica and strongly justify its use in traditional Indian medicine for the treatment of anxiety.
Kaminska, K; Rogoz, Z
2016-06-01
Several clinical reports have documented a beneficial effect of the addition of a low dose of risperidone to the ongoing treatment with antidepressants, in particular selective serotonin reuptake inhibitors (SSRI), in the treatment of drug-resistant depression and treatment-resistant anxiety disorders. In the present study, we investigated the effect of treatment with the antidepressant escitalopram (SSRI) given separately or jointly with a low dose of risperidone (an atypical antipsychotic) in the forced swim test and in the elevated plus-maze test in rats. The obtained results showed that escitalopram at doses of 2.5 or 5 mg/kg evoked antidepressant-like effect in the forced swim test. Moreover, risperidone at low doses (0.05 or 0.1 mg/kg) enhanced the antidepressant-like activity of escitalopram (1 mg/kg) in this test by increasing the swimming time and decreasing the immobility time in those animals. WAY 100635 (a serotonin 5-HT1A receptor antagonist) at a dose of 0.1 mg/kg abolished the antidepressant-like effect induced by co-administration of escitalopram and risperidone. The active behavior in that test did not reflect an increase in general activity, since the combined treatment with escitalopram and risperidone failed to enhance the exploratory activity of rats. In the following experiment, we showed that escitalopram (5 mg/kg) and mirtazapine (5 or 10 mg/kg) or risperidone (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze test, and the combined treatment with an ineffective dose of risperidone (0.05 mg/kg) enhanced the anxiolytic-like effects of escitalopram (2.5 mg/kg) or mirtazapine (1 and 2.5 mg/kg) in this test. The obtained results suggest that risperidone applied at a low dose enhances the antidepressant-like activity of escitalopram in the forced swim test, and that 5-HT1A receptors may play some role in these effects. Moreover, a low dose of risperidone may also enhance the anxiolytic-like action of the studied antidepressants.
Ponzoni, Luisa; Sala, Mariaelvina; Braida, Daniela
2016-11-01
Little is known about the pharmacological effects of amphetamine derivatives. In the present study, the effect on social preference and anxiety-like behavior of 2,5-dimetoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA), in comparison with 3,4 methylenedioxymethamphetamine (MDMA) was investigated in zebrafish, an emerging model to study emotional behavior in an inexpensive and quick manner. DOB (0.05-2mg/kg), PMA (0.0005-2mg/kg) or MDMA (0.25-20mg/kg), given i.m. to adult zebrafish, progressively increased the time spent in the proximity of nacre fish picture in a social preference test. However, high doses were ineffective. Similarly, in the novel tank diving and light-dark tests the compounds elicited a progressive anxiolytic effect in terms of time spent in the upper half of the tank and in the light compartment, respectively. All the above effects were interpolated by symmetrical parabolas. The 5-HT2A/C antagonist ritanserin (0.025-2.5mg/kg) in association with the maximal effective dose of MDMA, DOB and PMA blocked both the social and anxiolytic effect. Taken together these findings demonstrate for the first time the prosocial and anxiolytic properties of DOB and PMA and focus on the mechanisms of their action through the serotonergic-like system suggesting a potential clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
An, Yan; Chen, Chong; Inoue, Takeshi; Nakagawa, Shin; Kitaichi, Yuji; Wang, Ce; Izumi, Takeshi; Kusumi, Ichiro
2016-10-03
The functional role of serotonergic projections from the median raphe nucleus (MRN) to the dorsal hippocampus (DH) in anxiety remains understood poorly. The purpose of the present research was to examine the functional role of this pathway, using the contextual fear conditioning (CFC) model of anxiety. We show that intra-MRN microinjection of mirtazapine, a noradrenergic and specific serotonergic antidepressant, reduced freezing in CFC without affecting general motor activity dose-dependently, suggesting an anxiolytic-like effect. In addition, intra-MRN microinjection of mirtazapine dose-dependently increased extracellular concentrations of serotonin (5-HT) but not dopamine in the DH. Importantly, intra-DH pre-microinjection of WAY-100635, a 5-HT1A antagonist, significantly attenuated the effect of mirtazapine on freezing. These results, for the first time, suggest that activation of the MRN-DH 5-HT1A pathway exerts an anxiolytic-like effect in CFC. This is consistent with the literature that the hippocampus is essential for retrieval of contextual memory and that 5-HT1A receptor activation in the hippocampus primarily exerts an inhibitory effect on the neuronal activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F
2011-12-01
The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.
Yan, Ming-Zhu; Chang, Qi; Zhong, Yu; Xiao, Bing-Xin; Feng, Li; Cao, Fang-Rui; Pan, Rei-Le; Zhang, Ze-Sheng; Liao, Yong-Hong; Liu, Xin-Min
2015-10-28
Lotus leaves have been used traditionally as both food and herbal medicine in Asia. Open-field, sodium pentobarbital-induced sleeping and light/dark box tests were used to evaluate sedative-hypnotic and anxiolytic effects of the total alkaloids (TA) extracted from the herb, and the neurotransmitter levels in the brain were determined by ultrafast liquid chromatography-tandem mass spectrometry. The effects of picrotoxin, flumazenil, and bicuculline on the hypnotic activity of TA, as well as the influence of TA on Cl(-) influx in cerebellar granule cells, were also investigated. TA showed a sedative-hypnotic effect by increasing the brain level of γ-aminobutyric acid (GABA), and the hypnotic effect could be blocked by picrotoxin and bicuculline, but could not be antagonized by flumazenil. Additionally, TA could increase Cl(-) influx in cerebellar granule cells. TA at 20 mg/kg induced anxiolytic-like effects and significantly increased the concentrations of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and dopamine (DA). These data demonstrated that TA exerts sedative-hypnotic and anxiolytic effects via binding to the GABAA receptor and activating the monoaminergic system.
Mora, S; Díaz-Véliz, G; Millán, R; Lungenstrass, H; Quirós, S; Coto-Morales, T; Hellión-Ibarrola, M C
2005-10-01
Behavioral effects of a hydroalcoholic extract from leaves of Aloysia polystachya (Griseb.) Moldenke (Verbenaceae) were studied in female Sprague-Dawley rats. The extract was administered intraperitoneally and its effects on spontaneous motor activity (total motility, locomotion, rearing and grooming behavior) were monitored. Anxiolytic-like properties were studied in the elevated plus-maze (EPM) test and the possible antidepressant-like actions were evaluated in the forced swimming test (FST). The results revealed that high doses of the extract (25 and 50 mg/kg, i.p.) caused a significant decrease in total motility, locomotion, rearing and grooming behavior. All doses injected (from 1.56 to 50 mg/kg) increased the exploration of the EPM open arms in a similar way to that of diazepam (1 mg/kg, i.p.). In the FST, the extract (12.5, 25 and 50 mg/kg) was as effective as fluoxetine (10 mg/kg, i.p.) and imipramine (12.5 mg/kg, i.p.) in reducing immobility, along with a significant increase in swimming and climbing, respectively. These results suggest that some of the components of the hydroalcoholic extract of A. polystachya, such as thujone and carvone among others, may have sedative, anxiolytic and antidepressant-like properties which deserve further investigation.
Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice.
Vogt, M A; Mallien, A S; Pfeiffer, N; Inta, I; Gass, P; Inta, D
2016-03-15
Minocycline is a broad-spectrum tetracycline antibiotic with multiple actions, including anti-inflammatory and neuroprotective effects, that was proposed as novel treatment for several psychiatric disorders including schizophrenia and depression. However, there are contradictory results regarding antidepressant effects of minocycline in rodent models. Additionally, the possible anxiolytic effect of minocycline is still poorly investigated. Therefore, we aimed to clarify in the present study the influence of minocycline on behavioral correlates of mood disorders in standard tests for depression and anxiety, the Porsolt Forced Swim Test (FST), Elevated O-Maze, Dark-Light Box Test and Openfield Test in adult C57BL/6 mice. We found, unexpectedly, that mice treated with minocycline (20-40mg/kg, i.p.) did not display antidepressant- or anxiolytic-like behavioral changes in contrast to mice treated with diazepam (0.5mg/kg, anxiety tests) or imipramine (20mg/kg, depressive-like behavior). These results are relevant for future studies, considering that C57BL/6 mice, the most widely used strain in pharmacological and genetic animal models, did not react as expected to the treatment regime applied. Copyright © 2015 Elsevier B.V. All rights reserved.
Koek, Wouter; Mitchell, Nathan C; Daws, Lynette C
2018-06-01
In humans, chronic treatment with selective serotonin reuptake inhibitors (SSRIs) decreases anxiety, unlike acute treatment, which can increase anxiety. Although this biphasic pattern is observed clinically, preclinical demonstrations are rare. In an animal model of antidepressant-induced anxiolytic effects, the novelty-induced hypophagia (NIH) test, a single administration of the SSRI citalopram reportedly elicited anxiogenic-like effects, whereas three administrations over 24 h were sufficient to produce anxiolytic-like effects. Extending these findings, the present study examined the effects of acute and repeated escitalopram in a similar NIH test in a commonly used mouse strain (i.e. C57BL/6J), analyzing results with a method (i.e. survival analysis) that can model the skewed distribution of latencies to consume food and that can deal with censored data (i.e. when consumption does not occur during the test). Saline-treated mice showed robust NIH. Acute escitalopram enhanced NIH, but did so only at a dose (i.e. 32 mg/kg) that similarly enhanced hypophagia in a familiar environment. The effects of escitalopram on NIH did not significantly change after repeated (three times) administration over 24 h. Additional studies are necessary to delineate the conditions under which rapid reversal of SSRI-induced anxiety can be modeled in animals using the NIH test.
Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice.
Sena, Maria Clecia P; Nunes, Fabíola C; Salvadori, Mirian G S Stiebbe; Carvalho, Cleyton Charles D; Morais, Liana Clebia S L; Braga, Valdir A
2011-01-01
Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n = 16) had access to sugarcane spirit + distilled water, the mice in Group B (n = 15) had access to ethanol + distilled water, and the mice in Group C (control, n = 14) had access to distilled water + distilled water. The ethanol content in the beverages offered to Groups A and B was 2% for the first week, 5% for the second week and 10% for the remaining four weeks. At the end of the experimental period, the mice were evaluated using the elevated-plus maze and the hole-board test to assess their anxiety-related behaviors. We also determined the serum aspartate aminotransferase and alanine aminotransferase levels. In the elevated-plus maze, the time spent in the open arms was increased in the mice exposed to chronic ethanol (32 ± 8 vs. 7 ± 2 s, n = 9) or sugarcane spirit (36 ± 9 vs. 7 ± 2 s, n = 9) compared to the controls. In the hole-board test, the mice exposed to ethanol or sugarcane spirit displayed increases in their head-dipping frequency (16 ± 1 for the control group, 27 ± 2 for the ethanol group, and 31 ± 3 for the sugarcane-spirit group; n = 9 for each group). In addition, the mice exposed to sugarcane spirit displayed an increase in the aspartate aminotransferase / alanine aminotransferase ratio compared to the ethanol group (1.29 ± 0.17 for the control group and 2.67 ± 0.17 for the sugarcane spirit group; n = 8 for each group). The chronic consumption of sugarcane-spirit produces liver injury and anxiolytic-like effects and the possible liver injury in mice.
Zhang, Kai; Yao, Lei
2018-05-15
Essential oil from Juniperus virginiana L. (eastern red cedarwood essential oil, CWO) has been used to relax mind and enhance comfort for medical purposes. Few reports showed its effect on anxiety behaviors in animal models. The present study investigated the anxiolytic effect of CWO using two anxiety tests in mice, then determined the major active constituents, examined the change of neurotransmitters after intraperitoneal (i.p.) administration. Analysis using GC/MS revealed that the CWO contained (-)-α-cedrene (28.11%), (+)-β-cedrene (7.81%), (-)-thujopsene (17.71%) and (+)-cedrol (24.58%). CWO at 400-800mg/kg increased the percentage of open arm entries and the percentage of the time spent in open arms in the elevated plus maze (EPM), suggesting that the oil has anxiolytic effect. However, it didn't show anxiolytic effect in the light-dark box (LDB) test. Tests of the cedrene did not show anxiolytic effect in either test, but rather induced anxiety-related behaviors and inhibited the locomotor activity in EPM and LDB. Cedrol produced significant anxiolytic effect in both EPM and LDB tests at 400-1600mg/kg and 800-1600mg/kg, respectively. A more significant increase in locomotor activity was observed in cedrol at 200-1600mg/kg administration than CWO. CWO increased the 5-hydroxytryptamine (5-HT) concentration at 800mg/kg, whereas it didn't affect the dopamine (DA) concentration. Cedrol significantly reduced the DA level at 100-200mg/kg and elevated the 5-HT level at 1200-1600mg/kg. Moreover, it changed the ratio of 5-hydroxyindoleacetic acid/5-HT and 3, 4-dihydroxyphenyl acetic acid/DA at 1200-1600mg/kg. CWO and cedrol, in particular might act in an anxiolytic effect through the 5-HTnergic and DAnergic pathways. Copyright © 2018. Published by Elsevier Inc.
Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J
2014-05-01
Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking. © 2014 International Society for Neurochemistry.
Varlinskaya, Elena I; Spear, Linda P
2012-01-01
Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.
Pérez-Ortega, Gimena; Angeles-López, Guadalupe Esther; Argueta-Villamar, Arturo; González-Trujano, María Eva
2017-09-01
Morelos State is one of the regions of Mexico where several plant species are used in traditional medicine. Species from Tagetes genus (Asteraceae) are reported as useful in infusion to treat stomachache and intestinal diseases, but also as tranquilizers. In this study, medicinal uses of T. erecta including its depressant effect on the central nervous system (CNS) were explored by interviewing healers and merchants of local markets of Morelos State, and by investigation of the phytochemical and pharmacological tranquilizing properties. Specific anxiolytic and/or sedative-like responses of different doses of T. erecta (10, 30 and 100 or 300mg/kg, i.p.) were investigated using experimental models in mice such as: open-field, exploration cylinder, hole-board, and the barbituric-induced hypnosis potentiation. The possible anxiolytic mechanism of action was assessed in the presence of WAY100635 (0.32mg/kg, i.p.) and flumazenil (10mg/kg, i.p.), antagonists of 5-HT 1A and GABA/BDZs receptors, respectively. Individual flavonoids reported in this species were also evaluated in these experimental models. As a result of this study, healers and merchants from ten local regions of Morelos State recommended T. erecta flowers as an infusion or as a tincture for several culture-bound syndromes associated with CNS, among others. Anxiolytic and sedative-like activities of the T. erecta aqueous and organic polar extracts were corroborated in these models associated to a participation of rutin, kaempferol, quercetin, kaempferitrin, and β-sitosterol constituents; where 5-HT 1A , but not BDZs, receptors were involved as anxiolytic mechanism of action. These data support the anxiolytic and sedative-like properties of T. erecta in traditional medicine by involving mainly serotonergic neurotransmission because of the presence in part of flavonoids and the terpenoid β-sitosterol. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kim, Tae-Kyung; Han, Pyung-Lim
2016-08-01
Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors.
Satou, Tadaaki; Ogawa, Yuko; Koike, Kazuo
2015-08-01
We previously reported finding anxiolytic-like activity for sandalwood oil after administration in mice. In this report, we further investigated the emotional behavior associated with inhaled or intraperitoneally administered (+)-α-santalol, the main component of sandalwood oil, in addition to examining whether pharmacological or neurological transfers are responsible for this behavior. After administration of (+)-α-santalol by inhalation or intraperitoneal injection, we assessed anxiolytic-like and locomotor activities using elevated-plus maze tests. We also examined the relationship between the emotional behavior and the (+)-α-santalol brain concentration. Anxiolytic-like activity was not observed immediately after administration or after water-immersion stress for 24 h for either the (+)-α-santalol 2 μL/L air inhalation or the (+)-α-santalol 0.03 mL/kg (i.p.) administration. However, mice administered (+)-α-santalol 0.03 mL/kg intraperitoneally exhibited a significant decrease in the locomotor activity after exposure to water-immersion stress for 24 h. The brain (+)-α-santalol concentration was 2.6 µg/g tissue after (+)-α-santalol 0.03 mL/kg (i.p.) administration. The observed shift of (+)-α-santalol to the brain suggests that this component acts via pharmacological transfer and is responsible for the sedative effect but not the anxiolytic-like activity. Copyright © 2015 John Wiley & Sons, Ltd.
Gutiérrez-García, Ana G.; Vásquez-Hernández, Diana Idania
2013-01-01
Human amniotic fluid (AF) contains eight fatty acids (FATs), and both produce anxiolytic-like effects in adult rats and appetitive responses in human newborns. The medial amygdala and lateral septal nucleus function are related to social behavior, but the action of AF or its FATs in this circuit is known. We obtained 267 single-unit extracellular recordings in Wistar rats treated with vehicle (1 mL, s.c.; n = 12), human AF (1 mL, s.c.; n = 12), a FAT mixture (1 mL, s.c.; n = 13), diazepam (1 mg/kg, i.p.; n = 11), and fluoxetine (1 mg/kg, p.o.; n = 12). Compared with the vehicle group, the spontaneous septal firing rate in the AF, FAT mixture, and diazepam groups was the lowest and in the fluoxetine group the highest. Cumulative peristimulus histograms indicated that the significant change in septal firing occurred only in the AF and FAT mixture groups and exclusively in those neurons that increased their firing rate during amygdala stimulation. We conclude that human AF and its FATs produce actions comparable to anxiolytic drugs and are able to modify the responsivity of a circuit involved in social behavior, suggesting facilitation of social recognition processes by maternal-fetal fluids. PMID:23864826
An, Yan; Inoue, Takeshi; Kitaichi, Yuji; Chen, Chong; Nakagawa, Shin; Wang, Ce; Kusumi, Ichiro
2016-07-15
Although preclinical and clinical studies have established the efficacy of lithium augmentation of antidepressant drugs, the mechanism of action of lithium augmentation is not fully understood. Our previous study reported that subchronic lithium treatment enhanced the anxiolytic-like effect of systemic mirtazapine. In the present study, we examined the effect of subchronic lithium in combination with acute local intracerebral injection of mirtazapine on fear-related behaviors in a contextual fear conditioning test in rats to clarify the target brain region of lithium augmentation of mirtazapine. After conditioning by footshock, diet (food pellets) containing Li2CO3 at a concentration of 0.2% was administered for 7 days. Ten min before testing and 7 days after conditioning, mirtazapine (3μg/site) in a volume of 0.5µl was acutely injected into the median raphe nucleus (MRN), hippocampus or amygdala. The combination of subchronic lithium and acute mirtazapine microinjection into the MRN but not the hippocampus or the amygdala reduced fear expression synergistically. These results suggest that intra-MRN mirtazapine treatment with subchronic lithium exerts the anxiolytic-like effect through the facilitation of the MRN-5HT pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis
da Silveira, Cinthia Cristina Sousa de Menezes; Fernandes, Luanna Melo Pereira; Silva, Mallone Lopes; Luz, Diandra Araújo; Gomes, Antônio Rafael Quadros; Machado, Christiane Schineider; de Lira, Tatiana Onofre; Ferreira, Antonio Gilberto
2016-01-01
Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP) rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control), EEYP (1, 3, 10, and 30 mg/kg), or diazepam, fluoxetine, and caffeine (positive controls) 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product. PMID:27822336
Takahashi, Mizuho; Yamanaka, Ayako; Asanuma, Chihiro; Asano, Hiroko; Satou, Tadaaki; Koike, Kazuo
2014-07-01
Essential oil extracted from Lavandula officinalis (LvEO) has a long history of usage in anxiety alleviation with good evidence to support its use. However, findings and information regarding the exact pathway involved and mechanism of action remain inconclusive. Therefore, we aimed to (1) reveal the influence of olfactory stimulation, and (2) determine whether the serotonergic system is involved in the anxiolytic effect of LvEO when it is inhaled. To this end, we first compared the anxiety-related behaviors of normosmic and anosmic mice. LvEO inhalation caused notable elevation in anxiety-related parameters with or without olfactory perception, indicating that olfactory stimulation is not necessarily required for LvEO to be effective. Neurochemical analysis of the serotonin (5-HT) turnover rate, accompanied by EPM testing, was then performed. LvEO significantly increased the striatal and hippocampal levels of 5-HT and decreased turnover rates in accordance with the anxiolytic behavioral changes. These results, together with previous findings, support the hypothesis that serotonergic neurotransmission plays a certain role in the anxiolytic properties of LvEO.
Strychnine and taurine modulation of amygdala-associated anxiety-like behavior is 'state' dependent.
McCool, Brian A; Chappell, Ann
2007-03-12
Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were microinjected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post hoc analysis of 'open-arm' time and 'light-side' time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal's behavioral phenotype. Together, these findings are significant because they suggest that the basal 'emotional state' of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state.
Anxiolytic-like effect of Aronia melanocarpa fruit juice in rats.
Valcheva-Kuzmanova, S; Zhelyazkova-Savova, M
2009-12-01
The main biologically active constituents of Aronia melanocarpa fruit juice (AMFJ) are polyphenolics, amongst them flavonoids, mainly anthocyanins. The aim of the present study was to investigate the effects of AMFJ (5 and 10 mL/kg) on anxiety using the social interaction test, on locomotor activity in the open field test and on working memory in the object recognition test in rats. AMFJ showed an anxiolytic-like effect which was demonstrated by a dose-dependent increase in the time of active social contacts between the test partners. The effects of both AMFJ doses were comparable to the effect of diazepam (1 mg/kg). AMFJ neither changed significantly horizontal and vertical locomotor activity, nor did it adversely affect working memory. Copyright 2009 Prous Science, S.A.U. or its licensors. All rights reserved.
Dos Santos, Rafael G; Osório, Flávia L; Crippa, José Alexandre S; Hallak, Jaime E C
2016-03-01
To conduct a systematic literature review of animal and human studies reporting anxiolytic or antidepressive effects of ayahuasca or some of its isolated alkaloids (dimethyltryptamine, harmine, tetrahydroharmine, and harmaline). Papers published until 3 April 2015 were retrieved from the PubMed, LILACS and SciELO databases following a comprehensive search strategy and using a predetermined set of criteria for article selection. Five hundred and fourteen studies were identified, of which 21 met the established criteria. Studies in animals have shown anxiolytic and antidepressive effects of ayahuasca, harmine, and harmaline, and experimental studies in humans and mental health assessments of experienced ayahuasca consumers also suggest that ayahuasca is associated with reductions in anxiety and depressive symptoms. A pilot study reported rapid antidepressive effects of a single ayahuasca dose in six patients with recurrent depression. Considering the need for new drugs that produce fewer adverse effects and are more effective in reducing anxiety and depression symptomatology, the described effects of ayahuasca and its alkaloids should be further investigated.
Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice.
Wu, Shuhui; Gao, Qiang; Zhao, Pei; Gao, Yuan; Xi, Yanjie; Wang, Xiaoting; Liang, Ying; Shi, Haishui; Ma, Yuxia
2016-03-15
Increasing evidence suggests that depression is accompanied by dysregulation of neuroimmune system. Sulforaphane (SFN) is a natural compound with antioxidative, anti-inflammatory and neuroprotective activities. The present study aims to investigate the effects of SFN on depressive- and anxiety-like behaviors as well as potential neuroimmune mechanisms in mice. Repeated SFN administration (10mg/kg, i.p.) significantly decreased the immobility time in the forced swimming test (FST), tail suspension test (TST), and latency time to feeding in the novelty suppressed feeding test (NSF), and increased the time in the central zone in the open field test (OPT). Using the chronic mild stress (CMS) paradigm, we confirmed that repeated SFN (10mg/kg, i.p.) administration significantly increased sucrose preference in the sucrose preference test (SPT), and immobility time in the FST and TST of mice subjected to CMS. Also, SFN treatment significantly reversed anxiety-like behaviors (assessed by the OPT and NSF) of chronically stressed mice. Finally, ELISA analysis showed that SFN administration blocked the increase in the serum levels of corticosterone (CORT), adrenocorticotropic hormone (ACTH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in chronically stressed mice. In summary, these findings demonstrated that SFN has antidepressant- and anxiolytic-like activities in stressed mice model of depression, which likely occurs by inhibiting the hypothalamic-pituitary-adrenal (HPA) axis and inflammatory response to stress. These data support further exploration for developing SFN as a novel agent to treat depression and anxiety disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats.
Rombolà, Laura; Tridico, Laura; Scuteri, Damiana; Sakurada, Tsukasa; Sakurada, Shinobu; Mizoguchi, Hirokazu; Avato, Pinarosa; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Morrone, Luigi Antonio
2017-04-11
Preclinical studies have recently highlighted that bergamot essential oil (BEO) is endowed with remarkable neurobiolological effects. BEO can affect synaptic transmission, modulate electroencephalographic activity and it showed neuroprotective and analgesic properties. The phytocomplex, along with other essential oils, is also widely used in aromatherapy to minimize symptoms of stress-induced anxiety and mild mood disorders. However, only limited preclinical evidences are actually available. This study examined the anxiolytic/sedative-like effects of BEO using an open field task (OFT), an elevated plus-maze task (EPM), and a forced swimming task (FST) in rats. This study further compared behavioural effects of BEO to those of the benzodiazepine diazepam. Analysis of data suggests that BEO induces anxiolytic-like/relaxant effects in animal behavioural tasks not superimposable to those of the DZP. The present observations provide further insight to the pharmacological profile of BEO and support its rational use in aromatherapy.
Evaluation of the Neurobehavioral Properties of Naringin in Swiss Mice.
Ben-Azu, Benneth; Nwoke, Ekene Enekabokom; Umukoro, Solomon; Aderibigbe, Adegbuyi Oladele; Ajayi, Abayomi Mayowa; Iwalewa, Ezekiel O
2018-03-12
This study was carried out to investigate the neurobehavioral properties of naringin, a flavonoid compound formed from naringenin on behavioral models in mice. The neurobehavioral property of naringin (2.5, 5 and 10 mg/kg) administered intraperitoneally (i.p.) was assessed on novelty-induced rearing, locomotor behavior using open field test; anxiolytic effect was evaluated using hole-board, light and dark box, and elevated-plus maze paradigms. The anti-depressant-like property was also assessed using forced swim test (FST), tail suspension test (TST) and social interaction test (SIT). The cognitive enhancing effect of naringin was evaluated using Y-maze test. Intraperitoneal administration of naringin (2.5 and 5 mg/kg) demonstrated significant (p<0.05) increase in rearing behavior but not the spontaneous motor activity in comparison to control. In the anti-depressant test, naringin (2.5, 5 and 10 mg/kg, i.p.) significantly decreased the duration of immobility in the FST and TST, and increased the % social interaction preference in the SIT relative to controls, suggesting anti-depressant-like and increased social behaviors. Moreover, naringin also exhibited anxiolytic and memory enhancing properties in mice. These findings suggest that naringin possesses anti-depressant- and anxiolytic-like activities as well as memory enhancing effect in mice. © Georg Thieme Verlag KG Stuttgart · New York.
De Jesús-Burgos, María I; González-García, Stephanie; Cruz-Santa, Yanira; Pérez-Acevedo, Nivia L
2016-04-01
Women are more susceptible than men to develop anxiety disorders, however, the mechanisms involved are still unclear. In this study, we investigated the role of group I metabotropic glutamate receptors (mGluRs), a target for anxiety disorders, and whether estradiol may modulate conflict-based anxiety in female rats by using the Vogel Conflict Test (VCT). We used ovariectomized female rats with high (OVX+EB) and low (OVX) estradiol levels and intact male rats to evaluate sex differences. Infusion of (S)-3,5-Dihydroxyphenylglycine (DHPG), a group I mGluR agonist, into the basolateral amygdala, a region involved in anxiety-responses, statistically increased the number of shocks in OVX, but not OVX+EB female rats at 0.1, nor at 1.0 μM. In contrast, DHPG statistically decreased the number of shocks in male rats at 1.0 μM only. DHPG (0.1 μM) increased the number of recoveries in OVX, but not OVX+EB or male rats. Sex differences were detected for the number of shocks, recoveries and punished licks, where female rats displayed more conflict than male rats. Western blot analyses showed that protein expression of mGluR1, but not mGluR5 was higher in OVX+EB>OVX>male rats in the amygdala, whereas no significant differences were detected in the hippocampus, olfactory bulb and/or the periaqueductal gray. Therefore, DHPG produced paradoxical effects that are sex dependent; producing anxiolytic-like effects in female rats, while anxiogenic-like effects in male rats according to the VCT. These results highlight the importance of including female experimental models to underpin the neural circuitry of anxiety according to sex and for the screening of novel anxiolytic compounds. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Estrada-Reyes, Rosa; López-Rubalcava, C; Ferreyra-Cruz, Octavio Alberto; Dorantes-Barrón, Ana María; Heinze, G; Moreno Aguilar, Julia; Martínez-Vázquez, Mariano
2014-04-11
Agastache mexicana subspecies mexicana (Amm) and xolocotziana (Amx) are used in Mexican traditional medicine to relief cultural affiliation syndromes known as "susto" or "espanto", for "nervous" condition, and as a sleep aid. Despite its intensive use, neuropharmacological studies are scarce, and the chemical composition of the aqueous extracts has not been described. Aims of the study are: (1) To analyze the chemical composition of aqueous extracts from aerial parts of Amm and Amx. (2) To evaluate the anxiolytic-like, sedative, antidepressant-like effects. (3) Analyze the general toxic effects of different doses. Anxiolytic-like and sedative effects were measured in the avoidance exploratory behavior, burying behavior and the hole-board tests. The antidepressant-like actions were studied in the forced swimming and tail suspension tests. Finally, general activity and motor coordination disturbances were evaluated in the open field, inverted screen and rota-rod tests. The acute toxicity of Amm and Amx was determined by calculating their LD50 (mean lethal dose). The chemical analyses were performed employing chromatographic, photometric and HPLC-ESI-MS techniques. Low doses of Amm and Amx (0.1σ1.0mg/kg) induced anxiolytic-like actions; while higher doses (over 10mg/kg) induced sedation and reduced the locomotor activity, exerting a general inhibition in the central nervous system (CNS). Results support the use of Amm and Amx in traditional medicine as tranquilizers and sleep inducers. Additionally, this paper contributes to the knowledge of the chemical composition of the aqueous extracts of these plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bina, Payvand; Rezvanfard, Mehrnaz; Ahmadi, Shamseddin; Zarrindast, Mohammad Reza
2014-10-01
In this study, we investigated the role of N-Methyl-D-Aspartate (NMDA) receptors in the ventral hippocampus (VH) and their possible interactions with GABAA system on anxiety-like behaviors. We used an elevated-plus maze test (EPM) to assess anxiety-like behaviors and locomotor activity in male Wistar rats. The results showed that intra-VH infusions of different doses of NMDA (0.25 and 0.5 μg/rat) increased locomotor activity, and also induced anxiolytic-like behaviors, as revealed by a tendency to increase percentage of open arm time (%OAT), and a significant increase in percentage of open arm entries (%OAE). The results also showed that intra-VH infusions of muscimol (0.5 and 1 μg/rat) or bicuculline (0.5 and 1 μg/rat) did not significantly affect anxiety-like behaviors, but bicuculline at dose of 1 μg/rat increased locomotor activity. Intra-VH co-infusions of muscimol (0.5 μg/rat) along with low doses of NMDA (0.0625 and 0.125 μg/rat) showed a tendency to increase %OAT, %OAE and locomotor activity; however, no interaction was observed between the drugs. Interestingly, intra-VH co-infusions of bicuculline (0.5 μg/rat) along with effective doses of NMDA (0.25 and 0.5 μg/rat) decreased %OAT, %OAE and locomotor activity, and a significant interaction between two drugs was observed. It can be concluded that GABAergic system may mediate the anxiolytic-like effects and increase in locomotor activity induced by NMDA in the VH.
Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice
Sena, Maria Clécia P; Nunes, Fabíola C; Stiebbe Salvadori, Mirian G S; Carvalho, Cleyton Charles D; Morais, Liana Clébia S L; Braga, Valdir A
2011-01-01
OBJECTIVE: Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. METHOD: Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n = 16) had access to sugarcane spirit + distilled water, the mice in Group B (n = 15) had access to ethanol + distilled water, and the mice in Group C (control, n = 14) had access to distilled water + distilled water. The ethanol content in the beverages offered to Groups A and B was 2% for the first week, 5% for the second week and 10% for the remaining four weeks. At the end of the experimental period, the mice were evaluated using the elevated-plus maze and the hole-board test to assess their anxiety-related behaviors. We also determined the serum aspartate aminotransferase and alanine aminotransferase levels. RESULTS: In the elevated-plus maze, the time spent in the open arms was increased in the mice exposed to chronic ethanol (32 ± 8 vs. 7 ± 2 s, n = 9) or sugarcane spirit (36 ± 9 vs. 7 ± 2 s, n = 9) compared to the controls. In the hole-board test, the mice exposed to ethanol or sugarcane spirit displayed increases in their head-dipping frequency (16 ± 1 for the control group, 27 ± 2 for the ethanol group, and 31 ± 3 for the sugarcane-spirit group; n = 9 for each group). In addition, the mice exposed to sugarcane spirit displayed an increase in the aspartate aminotransferase / alanine aminotransferase ratio compared to the ethanol group (1.29 ± 0.17 for the control group and 2.67 ± 0.17 for the sugarcane spirit group; n = 8 for each group). CONCLUSION: The chronic consumption of sugarcane-spirit produces liver injury and anxiolytic-like effects and the possible liver injury in mice. PMID:21789394
Strychnine and Taurine Modulation of Amygdala-associated Anxiety-like Behavior is ‘State’ Dependent
McCool, Brian A.; Chappell, Ann
2007-01-01
Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were micro-injected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus-maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post-hoc analysis of ‘open-arm’ time and ‘light-side’ time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal’s behavioral phenotype. Together, these findings are significant because they suggest that the basal ‘emotional state’ of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state. PMID:17207866
Tran, Steven; Facciol, Amanda; Gerlai, Robert
2016-05-01
The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30 min, a 2 × 2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used. Copyright © 2016 Elsevier Inc. All rights reserved.
Gangitano, D; Salas, R; Teng, Y; Perez, E; De Biasi, M
2009-06-01
Smokers often report an anxiolytic effect of cigarettes. In addition, stress-related disorders such as anxiety, post-traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the alpha5 nicotinic acetylcholine receptor subunit in anxiety-related responses, control and alpha5 subunit null mice (alpha5(-/-)) were subjected to the open field activity (OFA), light-dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, alpha5(-/-) behaved like wild-type controls. In the EPM, female alpha5(-/-) mice displayed an anxiolytic-like phenotype, while male alpha5(-/-) mice were undistinguishable from littermate controls. We studied the hypothalamus-pituitary-adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin-releasing factor. Consistent with an anxiolytic-like phenotype, female alpha5(-/-) mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of alpha5, we treated cultured NTera 2 cells with progesterone and found that alpha5 protein levels were upregulated. In addition, brain levels of alpha5 mRNA increased upon progesterone injection into ovariectomized wild-type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic-like in wild-type mice, but no cycle-dependent fluctuations in anxiety levels were found in alpha5(-/-) females. Thus, alpha5-containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone-dependent modulation of alpha5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.
Comparison of anxiety between smokers and nonsmokers with acute myocardial infarction.
Sheahan, Sharon L; Rayens, Mary K; An, Kyungeh; Riegel, Barbara; McKinley, Sharon; Doering, Lynn; Garvin, Bonnie J; Moser, Debra K
2006-11-01
Increased anxiety correlates with increased complications after acute myocardial infarction. Anxiety levels and use of anxiolytic agents have not been compared between smokers and nonsmokers hospitalized because of acute myocardial infarction. To compare anxiety level, sociodemographic factors, and clinical variables between smokers and nonsmokers hospitalized with acute myocardial infarction and to examine predictors of use of beta-blockers and anxiolytic agents among smokers and nonsmokers. Secondary data analysis of a prospective multisite study on anxiety in 181 smokers and 351 nonsmokers with acute myocardial infarction. Anxiety was measured by using the State Trait Anxiety Inventory and the anxiety subscale of the Basic Symptom Inventory within 72 hours of admission. Smokers reported higher anxiety levels than nonsmokers reported on both anxiety scales. Female smokers reported the highest anxiety and peak pain levels of all, yet women were the least likely to receive anxiolytic agents. Smoking status was not a predictor for anxiety level when sex, peak pain, use of beta-blockers in the hospital, and age were controlled for. However, smokers were twice as likely as nonsmokers to receive an anxiolytic agent and 60% more likely to receive a beta-blocker in the emergency department, and smokers were 80% more likely than nonsmokers to receive an anxiolytic agent during hospitalization when these variables were controlled. Older female smokers are at risk for complications because they are older than their male counterparts and less likely to receive beta-blockers and antianxiety medications in the emergency department.
Costa, Celso A Rodrigues de Almeida; Kohn, Daniele Oliveira; de Lima, Valéria Martins; Gargano, André Costa; Flório, Jorge Camilo; Costa, Mirtes
2011-09-01
The essential oil (EO) from Cymbopogon citratus (DC) Stapf is reported to have a wide range of biological activities and is widely used in traditional medicine as an infusion or decoction. However, despite this widely use, there are few controlled studies confirming its biological activity in central nervous system. The anxiolytic-like activity of the EO was investigated in light/dark box (LDB) and marble-burying test (MBT) and the antidepressant activity was investigated in forced-swimming test (FST) in mice. Flumazenil, a competitive antagonist of benzodiazepine binding and the selective 5-HT(1A) receptor antagonist WAY100635 was used in experimental procedures to determine the action mechanism of EO. To exclude any false positive results in experimental procedures, mice were submitted to the rota-rod test. We also quantified some neurotransmitters at specific brain regions after EO oral acute treatment. The present work found anxiolytic-like activity of the EO at the dose of 10mg/kg in a LDB. Flumazenil, but not WAY100635, was able to reverse the effect of the EO in the LDB, indicating that the EO activity occurs via the GABA(A) receptor-benzodiazepine complex. Only at higher doses did the EO potentiate diethyl-ether-induced sleeping time in mice. In the FST and MBT, EO showed no effect. Finally, the increase in time spent in the light chamber, demonstrated by concomitant treatment with ineffective doses of diazepam (DZP) and the EO, revealed a synergistic effect of the two compounds. The lack of activity after long-term treatment in the LDB test might be related to tolerance induction, even in the DZP-treated group. Furthermore, there were no significant differences between groups after either acute or repeated treatments with the EO in the rota-rod test. Neurochemical evaluation showed no amendments in neurotransmitter levels evaluated in cortex, striatum, pons, and hypothalamus. The results corroborate the use of Cymbopogon citratus in folk medicine and suggest that the anxiolytic-like effect of its EO is mediated by the GABA(A) receptor-benzodiazepine complex. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Prototypical anxiolytics do not reduce anxiety-like behavior in the open field in C57BL/6J mice.
Thompson, Trey; Grabowski-Boase, Laura; Tarantino, Lisa M
2015-06-01
Understanding and effectively treating anxiety disorders are a challenge for both scientists and clinicians. Despite a variety of available therapies, the efficacy of current treatments is still not optimal and adverse side effects can result in non-compliance. Animal models have been useful for studying the underlying biology of anxiety and assessing the anxiolytic properties of potential therapeutics. The open field (OF) is a commonly used assay of anxiety-like behavior. The OF was developed and validated in rats and then transferred to use in the mouse with only limited validation. The present study tests the efficacy of prototypical benzodiazepine anxiolytics, chlordiazepoxide (CDP) and diazepam (DZ), for increasing center time in the OF in C57BL/6J (B6) mice. Multiple doses of CDP and DZ did not change time spent in the center of the OF. Increasing illumination in the OF did not alter these results. The non-benzodiazepine anxiolytic, buspirone (BUSP) also failed to increase center time in the OF while the anxiogenic meta-chlorophenylpiperazine (mCPP) increased center time. Additional inbred mouse strains, BALB/cJ (BALB) and DBA/2J (D2) did not show any change in center time in response to CDP. Moreover, evaluation of CDP in B6 mice in the elevated plus maze (EPM), elevated zero maze (EZM) and light dark assay (LD) did not reveal changes in anxiety-like behavior while stress-induced hyperthermia (SIH) was decreased by DZ. Pharmacokinetic (PK) studies suggest that adequate CDP is present to induce anxiolysis. We conclude that the measure of center time in the OF does not show predictive validity for anxiolysis in these inbred mouse strains. Copyright © 2015 Elsevier Inc. All rights reserved.
Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T
2013-12-01
The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zohar, Joseph; Matar, Michael A; Ifergane, Gal; Kaplan, Zeev; Cohen, Hagit
2008-09-01
The short- and long-term behavioral effects of a brief course of pregabalin, an antiepileptic structural analogue of alpha-aminobyturic acid with analgesic and anxiolytic effects, were assessed in an animal model of post-traumatic stress disorder (PTSD). Two-hundred thirty-three adult male Sprague-Dawley rats were employed. Behavioral responses to traumatic stress exposure (predator urine scent) were assessed immediately after (1 h) and 30 days after treatment with saline or pregabalin (at doses of 30, 100 and 300 mg/kg) in terms of behavior in the elevated plus maze (EPM) and the acoustic startle response (ASR) paradigms. At day 31 the freezing response to a trauma cue (clean cat litter) was assessed. The same treatment regimen initiated at day 7 was assessed at day 30 and in response to the trauma cue on day 31 in a separate experiment. In the short term, doses of 100 mg/kg and 300 mg/kg of pregabalin effectively attenuated anxiety-like behaviors. In the longer-term, pregabalin did not attenuate the onset of PTSD-like behaviors or the prevalence rates of severe cue-responses, for either the immediate or the delayed treatment regimens. Pregabalin may present an alternative compound for acute anxiolytic treatment after exposure to trauma, but has no long-term protective/preventive effects.
8-OH-DPAT suppresses vomiting in the cat elicited by motion, cisplatin or xylazine
NASA Technical Reports Server (NTRS)
Lucot, James B.; Crampton, George H.
1989-01-01
Vomiting was suppressed in cats pretreated with 8-OH-DPAT and then challenged with an emetic stimulus; motion, xylazine or cisplatin. The antiemetic effect is likely due to stimulation of postsynaptic serotonin-1A receptors. The most parsimonious explanation is that it acts at a convergent structure, presumably at or near the vomiting center. If so, 8-OH-DPAT may block emesis elicited by virtually any other stimulus. A supplementary experiment revealed that lorazepam suppressed motion sickness at a dose that produced ataxia, but did not suppress xylazine-induced emesis. These results do not support the possibility that the antiemetic effects of 8-OH-DPAT were the result of anxiolytic activity.
Almeida, Valéria; Levin, Raquel; Peres, Fernanda Fiel; Niigaki, Suzy T; Calzavara, Mariana B; Zuardi, Antônio W; Hallak, Jaime E; Crippa, José A; Abílio, Vanessa C
2013-03-05
Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs present a hyperlocomotion that is reverted by typical and atypical antipsychotics, suggesting that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia as well as the effects of potential antipsychotics drugs. At the same time, an increase in social interaction in control animals similar to that induced by benzodiazepines is used to screen potential anxiolytic drugs. The aim of this study was to investigate the effects of CBD on social interaction presented by control animals (Wistar) and SHRs. The lowest dose of CBD (1mg/kg) increased passive and total social interaction of Wistar rats. However, the hyperlocomotion and the deficit in social interaction displayed by SHRs were not altered by any dose of CBD. Our results do not support an antipsychotic property of cannabidiol on symptoms-like behaviors in SHRs but reinforce the anxiolytic profile of this compound in control rats. Copyright © 2012 Elsevier Inc. All rights reserved.
Upadhyay, Gayaprasad; Khoshla, Sarvesh; Kosuru, Ramoji; Singh, Sanjay
2016-01-01
Objective: The current study was designed to explore anxiolytic, antidepressant, and antistress actions of Cinnamomum tamala (CT) leaves (aqueous extract) in rats. Materials and Methods: Behavioral procedures of anxiety, depression, and stress were assessed in rats. CT (100, 200, and 400 mg/kg) was given once a daily for 7 days via oral route and the efficacy was matched by those elicited by lorazepam (1 mg/kg, p.o.), imipramine (10 mg/kg, p.o.), and Withania somnifera (100 mg/kg, p.o.) for anxiolytic, antidepressant, and antistress studies, respectively. Standard drugs were given 1 time, 30 min preceding the behavioral trials. Results: One-way analysis of variance followed by Newman–Keuls multiple comparison test was employed to analyze the results. P < 0.05 was considered statistically significant as compared to control. CT at 400 mg/kg produced an antianxiety effect equivalent to lorazepam, in the elevated plus maze, open field, and social interaction tests among selected doses of the CT. CT at 400 mg/kg also induced an antidepressant activity similar to imipramine, in the behavioral despair, learned helplessness test, and tail suspension among selected doses of the CT. Moreover, CT at 400 mg/kg produced a significant antistress effect comparable to W. somnifera in water immersion-restraint stress by decreasing ulcer index, adrenal gland weight, and by normalizing the plasma levels of corticosterone, glucose, cholesterol, and triglyceride levels when related to stress control. Conclusion: The study shows that among the different CT doses, CT at 400 mg/kg possesses significant anxiolytic, antidepressant, and anti-stress effects and has therapeutic beneficial for the management of psychological ailments. PMID:27721543
Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen
2015-06-01
Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.
Navarrete, Francisco; García-Gutiérrez, María S; Laborda, Jorge; Manzanares, Jorge
2017-11-01
The purpose of this study was to evaluate the role of the non-canonical DLK2 NOTCH ligand in the regulation of emotional behavior. To this aim, anxiety and depressive-like behaviors were examined in Dlk2 knock-out (Dlk2 -/- ) and its corresponding wild-type (WT) mice. Furthermore, relative gene expression analyses of corticotropin releasing hormone (Crh) in the paraventricular nucleus (PVN), glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) in the hippocampus (HIPP), and the transcription factors Hes1, Hes5 and Hey1 in the PVN, HIPP and amygdala (AMY) were carried out in Dlk2 -/- and WT mice under basal conditions and after exposure to restraint stress. The anxiolytic action of alprazolam and the relative gene expression levels of the GABA-A alpha 2 and gamma 2 receptor subunits (Gabra2 and Gabrg2) were also evaluated in the HIPP and AMY of WT and Dlk2 -/- mice. The results reveal that deletion of Dlk2 increased anxiety and depressive-like behaviors and altered the vulnerability to restraint stress on Crh gene expression in the PVN, Nr3c1 and Fkbp5 gene expression in the HIPP, and Hes1, Hes5 and Hey1 gene expression in the PVN, HIPP and AMY. Interestingly, the administration of alprazolam failed to produce an anxiolytic action in Dlk2 -/- mice. Indeed, Gabra2 and Gabrg2 gene expression levels were significantly affected under basal conditions and after stress exposure in Dlk2 -/- mice compared with WT mice. In conclusion, the results suggest that DLK2 plays an important role in the regulation of emotional behaviors and relevant targets of the stress axis, NOTCH pathway and GABAergic neurotransmission. In addition, the deletion of Dlk2 blocked the anxiolytic response to alprazolam. Future studies are needed to determine the relevance of DLK2 as a potential therapeutic target for the treatment of neuropsychiatric disorders with anxiety or depressive-like behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wegener, Gregers; Finger, Beate C; Elfving, Betina; Keller, Kirsten; Liebenberg, Nico; Fischer, Christina W; Singewald, Nicolas; Slattery, David A; Neumann, Inga D; Mathé, Aleksander A
2012-04-01
Neuropeptide S (NPS) and its receptor (NPSR) have been implicated in the mediation of anxiolytic-like behaviour in rodents. However, little knowledge is available regarding the NPS system in depression-related behaviours, and whether NPS also exerts anxiolytic effects in an animal model of psychopathology. Therefore, the aim of this work was to characterize the effects of NPS on depression- and anxiety-related parameters, using male and female rats in a well-validated animal model of depression: the Flinders Sensitive Line (FSL), their controls, the Flinders Resistant Line (FRL), and Sprague-Dawley (SD) rats. We found that FSL showed greater immobility in the forced swim test (FST) than FRL, confirming their phenotype. However, NPS did not affect depression-related behaviour in any rat line. No significant differences in baseline anxiety levels between the FSL and FRL strains were observed, but FSL and FRL rats displayed less anxiety-like behaviour compared to SD rats. NPS decreased anxiety-like behaviour on the elevated plus-maze in all strains. The expression of the NPSR in the amygdala, periventricular hypothalamic nucleus, and hippocampus was equal in all male strains, although a trend towards reduced expression within the amygdala was observed in FSL rats compared to SD rats. In conclusion, NPS had a marked anxiolytic effect in FSL, FRL and SD rats, but did not modify the depression-related behaviour in any strain, in spite of the significant differences in innate level between the strains. These findings suggest that NPS specifically modifies anxiety behaviour but cannot overcome/reverse a genetically mediated depression phenotype.
THE ROLE OF DELTA OPIOID RECEPTORS IN THE ANXIOLYTIC ACTIONS OF BENZODIAZEPINES
Primeaux, Stefany D.; Wilson, Steven P.; McDonald, Alexander J.; Mascagni, Franco; Wilson, Marlene A.
2007-01-01
The anxiolytic effects of benzodiazepines appear to involve opioid processes in the amygdala. In previous experiments, overexpression of enkephalin in the amygdala enhanced the anxiolytic actions of the benzodiazepine agonist diazepam in the elevated plus maze. The effects of systemically administered diazepam are also blocked by injections of naltrexone into the central nucleus of the amygdala. The current studies investigated the role of delta opioid receptors in the anxiety-related effects of diazepam. Three days following bilateral stereotaxic injections of viral vectors containing cDNA encoding proenkephalin or β-galactosidase (control vector), the delta opioid receptor antagonist naltrindole (10 mg/kg, s.c.) attenuated the enhanced anxiolytic effects of 1–2 mg/kg diazepam in rats overexpressing preproenkephalin in the amygdala. Despite this effect, naltrindole failed to attenuate the anxiolytic action of higher diazepam doses (3 mg/kg) in animals with normal amygdalar enkephalin expression. Similarly, the mu opioid receptor antagonist, β-funaltrexamine (20mg/kg, sc), had no effect on the anxiolytic effect of diazepam alone. These data support a role for delta opioid receptors in the opioid-enhanced anxiolytic effects of diazepam. PMID:17109943
Ohno, Rintaro; Miyagishi, Hiroko; Tsuji, Minoru; Saito, Atsumi; Miyagawa, Kazuya; Kurokawa, Kazuhiro; Takeda, Hiroshi
2018-04-24
Yokukansan is a traditional Japanese herbal medicine that has been approved in Japan as a remedy for neurosis, insomnia, and irritability in children. It has also been reported to improve behavioral and psychological symptoms in patients with various forms of dementia. To evaluate the usefulness of co-treatment with an antidepressant and an herbal medicine in the psychiatric field, the current study examined the effect of yokukansan on the anxiolytic-like effect of fluvoxamine in mice. The anxiolytic-like effect in mice was estimated by the contextual fear conditioning paradigm. Contextual fear conditioning consisted of two sessions, i.e., day 1 for the conditioning session and day 2 for the test session. The expression levels of 5-HT 1A and 5-HT 2A receptor in the mouse brain regions were quantified by western blot analysis. A single administration of fluvoxamine (5-20 mg/kg, i.p.) before the test session dose-dependently and significantly suppressed freezing behavior in mice. In the combination study, a sub-effective dose of fluvoxamine (5 mg/kg, i.p.) significantly suppressed freezing behavior in mice that had been repeatedly pretreated with yokukansan (0.3 and 1 g/kg, p.o.) once a day for 6 days after the conditioning session. Western blot analysis revealed that the expression level of 5-HT 2A receptor was specifically decreased in the prefrontal cortex of mice that had been administered yokukansan and fluvoxamine. Furthermore, microinjection of the 5-HT 2A receptor antagonist ketanserin (5 nmol/mouse) into the prefrontal cortex significantly suppressed freezing behavior. The present findings indicate that repeated treatment with yokukansan synergistically enhances the anxiolytic-like effect of fluvoxamine in the contextual fear conditioning paradigm in mice in conjunction with a decrease in 5-HT 2A receptor-mediated signaling in the prefrontal cortex. Therefore, combination therapy with fluvoxamine and yokukansan may be beneficial for the treatment of anxiety disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Bo; Jin, Xin; Kuang, Xin; Tian, Shaowen
2017-11-13
Previous studies have shown that cyclooxygenase-2, a key enzyme that converts arachidonic acid to prostaglandins, is involved in anxiety and cognitive processes, but few studies have investigated the effects of chronic administration of cyclooxygenase-2 inhibitors on anxiety, learning and memory under normal physiological conditions. The aim of the study was to investigate the effects of chronic administration of parecoxib, a cyclooxygenase-2 inhibitor, on anxiety behavior and memory performance under normal physiological conditions and to explore the possible neural mechanism underlying parecoxib-mediated effects. Adult male ICR mice were randomly divided into four groups: the control group and three parecoxib groups. Mice received normal saline or parecoxib (2.5, 5.0 or 10 mg/kg) intraperitoneal injection once a day for 21 days, respectively. Elevated plus-maze, novel object recognition and Y maze tests were conducted on day 23, 24 and 26, respectively. Four additional groups that received same drug treatment were used to measure synaptophysin protein levels by western blot and prostaglandin E2 (PGE2) levels by ELISA in the amygdala and hippocampus on day 26. Chronic parecoxib exerted an anxiolytic-like effect in the plus-maze test test, and enhanced memory performance in the novel object recognition and Y maze tests. Western blot analysis showed that chronic parecoxib down-regulated synaptophysin levels in the amygdala and up-regulated synaptophysin levels in the hippocampus. ELISA assay showed that chronic parecoxib inhibited PGE2 in the hippocampus but not amygdala. Chronic parecoxib exerts anxiolytic-like and memory enhancing effects, which might be mediated through differential modulation of synaptophysin and PGE2 in the amygdala and hippocampus.
Comparison of the Effects of Typical and Atypical Anxiolytics on Learning in Monkeys and Rats,
kg) and alprazolam (0.032-0.32 mg/kg) produced dose-dependent decreases in overall response rate in all subjects. However, with buspirone and 8-OH-DPAT...monkeys were variable across drugs and drug classes. Both 8-OH-DPAT and alprazolam produced large increases in percent errors in acquisition at doses
Mohan, L; Rao, U S C; Gopalakrishna, H N; Nair, V
2011-01-01
The present study investigates the anxiolytic activity of NR-ANX-C, a standardized polyherbal formulation containing the extracts of Withania somnifera, Ocimum sanctum, Camellia sinensis, Triphala, and Shilajit in ethanol withdrawal- (EW-) induced anxiety behavior in rats. Ethanol dependence in rats was produced by substitution of drinking water with 7.5% v/v alcohol for 10 days. Then, ethanol withdrawal was induced by replacing alcohol with drinking water, 12 hours prior to experimentation. After confirming induction of withdrawal symptoms in the alcohol deprived animals, the anxiolytic activity of the test compound in graded doses (10, 20, and 40 mg/kg) was compared to the standard drug alprazolam (0.08 mg/kg) in the elevated plus maze and bright and dark arena paradigms. In our study, single and repeated dose administration of NR-ANX-C reduced EW-induced anxiety in a dose-dependent manner. Even though the anxiolytic activity was not significant at lower doses, NR-ANX-C at the highest dose tested (40 mg/kg) produced significant anxiolytic activity that was comparable to the standard drug alprazolam. Based on our findings we believe that NR-ANX-C has the potential to be used as an alternative to benzodiazepines in the treatment of EW-induced anxiety.
Mohan, L.; Rao, U. S. C.; Gopalakrishna, H. N.; Nair, V.
2011-01-01
The present study investigates the anxiolytic activity of NR-ANX-C, a standardized polyherbal formulation containing the extracts of Withania somnifera, Ocimum sanctum, Camellia sinensis, Triphala, and Shilajit in ethanol withdrawal- (EW-) induced anxiety behavior in rats. Ethanol dependence in rats was produced by substitution of drinking water with 7.5% v/v alcohol for 10 days. Then, ethanol withdrawal was induced by replacing alcohol with drinking water, 12 hours prior to experimentation. After confirming induction of withdrawal symptoms in the alcohol deprived animals, the anxiolytic activity of the test compound in graded doses (10, 20, and 40 mg/kg) was compared to the standard drug alprazolam (0.08 mg/kg) in the elevated plus maze and bright and dark arena paradigms. In our study, single and repeated dose administration of NR-ANX-C reduced EW-induced anxiety in a dose-dependent manner. Even though the anxiolytic activity was not significant at lower doses, NR-ANX-C at the highest dose tested (40 mg/kg) produced significant anxiolytic activity that was comparable to the standard drug alprazolam. Based on our findings we believe that NR-ANX-C has the potential to be used as an alternative to benzodiazepines in the treatment of EW-induced anxiety. PMID:20953426
Heredia, Luis; Torrente, Margarita; Colomina, María T; Domingo, José L
2014-01-01
In order to assess anxiety in mammals various tests and species are currently available. These current assays measure changes in anxiety-like behaviors. The open-field and the light/dark are anxiety tests based on the spontaneous behavior of the animals, with C57BL/6J mice being a frequently used strain in behavioral studies. However, the suitability of this strain as a choice in anxiety studies has been questioned. In this study, we performed two pharmacological characterizations of this strain in both the open-field and the light/dark tests. We examined the changes in the anxiety-like behaviors of C57BL/6J mice exposed to chlordiazepoxide (CDP), an anxiolytic drug, at doses of 5 and 10 mg/kg, picrotoxine (PTX), an anxiogenic drug, at doses of 0.5 and 1 mg/kg, and methylphenidate (MPH), a psychomotor stimulant drug, at doses of 5 and 10 mg/kg, in a first experiment. In a second experiment, we tested CDP at 2.5 mg/kg, PTX at 2 mg/kg and MPH at 2.5 mg/kg. Results showed an absence of anxiolytic-like effects of CDP in open-field and light/dark tests. Light/dark test was more sensitive to the anxiogenic effects of PTX than the open-field test. Finally, a clear anxiogenic effect of MPH was observed in the two tests. Although C57BL/6J mice could not be a sensitive model to study anxiolytic effects in pharmacological or behavioral interventions, it might be a suitable model to test anxiogenic effects. Further studies are necessary to corroborate these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.
Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav
2010-04-02
Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.
Albrecht, Anne; Çalışkan, Gürsel; Oitzl, Melly S; Heinemann, Uwe; Stork, Oliver
2013-01-01
Pathological fear and anxiety can be studied, in rodents, with fear conditioning and exposure to reminder cues. These paradigms are thought to critically involve the ventral hippocampus, which also serves as key site of glucocorticoid action in the brain. Here, we demonstrate a long-lasting reduction of kainate-induced gamma oscillations in slice preparations of the ventral hippocampal area CA3, 30 days after a single fear conditioning training. Reduction of gamma power was sensitive to corticosterone application and associated with a decrease in glucocorticoid and mineralocorticoid receptor mRNA expression across strata of the ventral hippocampal CA3. A fear reactivation session 24 h after the initial conditioning normalized receptor expression levels and attenuated the corticosterone-mediated recovery of gamma oscillations. It moreover increased both baseline and stimulus-induced corticosterone plasma levels and evoked a generalization of fear memory to the background context. Reduced ventral hippocampal gamma oscillation in both fear reactivated and non-reactivated mice were associated with a decrease of anxiety-like behavior in an elevated plus maze. Taking advantage of the circadian fluctuation in corticosterone, we demonstrated the association of high endogenous basal corticosterone plasma concentrations during morning hours with reduced anxiety-like behavior in fear reactivated mice. The anxiolytic effect of the hormone was verified with local applications to the ventral hippocampus. Our data suggest that corticosterone acting on ventral hippocampal network activity has anxiolytic-like effects following fear exposure, highlighting its potential therapeutic value for anxiety disorders. PMID:22968818
Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice.
Zhang, R; Asai, M; Mahoney, C E; Joachim, M; Shen, Y; Gunner, G; Majzoub, J A
2017-05-01
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.
Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice
Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A
2016-01-01
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593
Inta, Dragos; Filipovic, Dragana; Lima-Ojeda, Juan M; Dormann, Christof; Pfeiffer, Natascha; Gasparini, Fabrizio; Gass, Peter
2012-04-01
Glutamatergic agents have been conceptualized as powerful, fast-acting alternatives to monoaminergic-based antidepressants. NMDA receptor antagonists such as ketamine or MK-801 are therapeutically effective, but their clinical use is hampered by psychotomimetic effects, accompanied by neurotoxicity in the retrosplenial and cingulate cortex. Antagonists of metabotropic mGlu5 receptors like MPEP elicit both robust antidepressant and anxiolytic effects; however, the underlying mechanisms are yet unknown. mGlu5 receptors closely interact with NMDA receptors, but whether MPEP induces neurotoxicity similar to NMDA receptor antagonists has not been elucidated. We show here using c-Fos brain mapping that MPEP administration results in a restricted activation of distinct stress-related brain areas, including the bed nucleus of stria terminalis (BNST), central nucleus of the amygdala, and paraventricular nucleus of the hypothalamus (PVNH), in a pattern similar to that induced by classical antidepressants and anxiolytics. Unlike the NMDA antagonist MK-801, MPEP does not injure the adult retrosplenial cortex, in which it fails to induce heat shock protein 70 (Hsp70). Moreover, MPEP does not elicit to the same extent as MK-801 apoptosis in cortical areas at perinatal stages, as revealed by caspase 3 expression. These data identify new cellular targets for the anxiolytic and antidepressant effect of MPEP, indicating also in addition that in contrast to MK-801, it lacks the cortical neurotoxicity associated with psychotomimetic side-effects. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nakamura, K; Kurasawa, M
2001-05-18
The anxiolytic effects of aniracetam have not been proven in animals despite its clinical usefulness for post-stroke anxiety. This study, therefore, aimed to characterize the anxiolytic effects of aniracetam in different anxiety models using mice and to examine the mode of action. In a social interaction test in which all classes (serotonergic, cholinergic and dopaminergic) of compounds were effective, aniracetam (10-100 mg/kg) increased total social interaction scores (time and frequency), and the increase in the total social interaction time mainly reflected an increase in trunk sniffing and following. The anxiolytic effects were completely blocked by haloperidol and nearly completely by mecamylamine or ketanserin, suggesting an involvement of nicotinic acetylcholine, 5-HT2A and dopamine D2 receptors in the anxiolytic mechanism. Aniracetam also showed anti-anxiety effects in two other anxiety models (elevated plus-maze and conditioned fear stress tests), whereas diazepam as a positive control was anxiolytic only in the elevated plus-maze and social interaction tests. The anxiolytic effects of aniracetam in each model were mimicked by different metabolites (i.e., p-anisic acid in the elevated plus-maze test) or specific combinations of metabolites. These results indicate that aniracetam possesses a wide range of anxiolytic properties, which may be mediated by an interaction between cholinergic, dopaminergic and serotonergic systems. Thus, our findings suggest the potential usefulness of aniracetam against various types of anxiety-related disorders and social failure/impairments.
Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Postu, Paula; Mihasan, Marius
2015-03-29
Piper nigrum L. (Piperaceae) is employed in traditional medicine of many countries as analgesic, antiinflammatory, anticonvulsant, antioxidant, antidepressant and cognitive-enhancing agent. This study was undertaken in order to evaluate the possible anxiolytic, antidepressant and antioxidant properties of the methanolic extract of Piper nigrum fruits in beta-amyloid (1-42) rat model of Alzheimer's disease. The anxiolytic- and antidepressant-like effects of the methanolic extract were studied by means of in vivo (elevated plus-maze and forced swimming tests) approaches. Also, the antioxidant activity in the amygdala was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Statistical analyses were performed using one-way analysis of variance (ANOVA). Significant differences were determined by Tukey's post hoc test. F values for which p < 0.05 were regarded as statistically significant. Pearson's correlation coefficient and regression analysis were used in order to evaluate the connection between behavioral measures, the antioxidant defence and lipid peroxidation. The beta-amyloid (1-42)-treated rats exhibited the following: decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Administration of the methanolic extract significantly exhibited anxiolytic- and antidepressant-like effects and also antioxidant potential. Taken together, our results suggest that the methanolic extract ameliorates beta-amyloid (1-42)-induced anxiety and depression by attenuation of the oxidative stress in the rat amygdala.
Antidepressant-like effects of methanol extract of Hibiscus tiliaceus flowers in mice
2012-01-01
Background Hibiscus tiliaceus L. (Malvaceae) is used in postpartum disorders. Our purpose was to examine the antidepressant, anxiolytic and sedative actions of the methanol extract of H. tiliaceus flowers using animal models. Methods Adult male Swiss albino mice were treated with saline, standard drugs or methanol extract of H. tiliaceus and then subjected to behavioral tests. The forced swimming and tail suspension tests were used as predictive animal models of antidepressant activity, where the time of immobility was considered. The animals were submitted to the elevated plus-maze and ketamine-induced sleeping time to assess anxiolytic and sedative activities, respectively. Results Methanol extract of H. tiliaceus significantly decreased the duration of immobility in both animal models of antidepressant activity, forced swimming and tail suspension tests. This extract did not potentiate the effect of ketamine-induced hypnosis, as determined by the time to onset and duration of sleeping time. Conclusion Our results indicate an antidepressant-like profile of action for the extract of Hibiscus tiliaceus without sedative side effect. PMID:22494845
Voluntary exercise increases resilience to social defeat stress in Syrian hamsters.
Kingston, Rody C; Smith, Michael; Lacey, Tiara; Edwards, Malcolm; Best, Janae N; Markham, Chris M
2018-05-01
Exposure to social stressors can cause profound changes in an individual's well-being and can be an underlying factor in the etiology of a variety of psychopathologies, such as post-traumatic stress disorder (PTSD). In Syrian hamsters, a single social defeat experience results in behavioral changes collectively known as conditioned defeat (CD), and includes an abolishment of territorial aggression and the emergence of high levels of defensive behaviors. In contrast, voluntary exercise has been shown to promote stress resilience and can also have anxiolytic-like effects. Although several studies have investigated the resilience-inducing effects of voluntary exercise after exposure to physical stressors, such as restraint and electric shock, few studies have examined whether exercise can impart resilience in response to ethologically-based stressors, such as social defeat. In Experiment 1, we tested the hypothesis that voluntary exercise can have anxiolytic-like effects in socially defeated hamsters. In the elevated plus maze, the exercise group exhibited a significant reduction in risk assessment, a commonly used index of anxiety, compared to the no-exercise group. In the open-field test, animals in the exercise group exhibited a significant reduction in locomotor behavior and rearing, also an indication of an anxiolytic-like effect of exercise. In Experiment 2, we examined whether exercise can reverse the defeat-induced potentiation of defensive behaviors using the CD model. Socially defeated hamsters in the exercise group exhibited significantly lower levels of defensive/submissive behaviors compared to the no-exercise group upon exposure to the resident aggressor. Taken together, these results are among the first to suggest that voluntary exercise may promote resilience to social defeat stress in Syrian hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.
Leptin: a potential anxiolytic by facilitation of fear extinction.
Wang, Wei; Liu, Song-Lin; Li, Kuan; Chen, Yu; Jiang, Bo; Li, Yan-Kun; Xiao, Jun-Li; Yang, Si; Chen, Tao; Chen, Jian-Guo; Li, Jia-Geng; Wang, Fang
2015-05-01
Anxiety disorders are characterized by a deficient extinction of fear memory. Evidence is growing that leptin influences numerous neuronal functions. The aims of this study were to investigate the effects and the mechanism of leptin on fear extinction. Leptin (1 mg/kg, i.p) was applied to evaluate the anxiolytic effect in rat behavioral tests. Field potentials recording were used to investigate the changes in synaptic transmission in the thalamic-lateral amygadala (LA) pathway of rat. We found that leptin produced strong anxiolytic effects under basal condition and after acute stress. Systemic administration and intra-LA infusions of leptin facilitated extinction of conditioned fear responses. The antagonist of NMDA receptor, MK-801, blocked the effect of leptin on fear extinction completely. Furthermore, these effects of leptin on fear extinction were accompanied by a reversal of conditioning-induced synaptic potentiation in the LA. Leptin facilitated NMDA receptor-mediated synaptic transmission, and reversed amygdala long-term potentiation (LTP) in a dose-dependent manner in vitro, and this LTP depotentiation effect was mediated by NMDA receptor and MAPK signaling pathway. These results identify a key role of leptin in dampening fear conditioning-induced synaptic potentiation in the LA through NMDA receptor and indicate a new strategy for treating anxiety disorders. © 2015 John Wiley & Sons Ltd.
The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action.
Chaves, Edna Maria Camelo; Honório-Júnior, Jose Eduardo Ribeiro; Sousa, Caren Nádia Soares; Monteiro, Valdécio Silveira; Nonato, Dayanne Terra Tenório; Dantas, Leonardo Pimentel; Lúcio, Ana Silvia Suassuna Carneiro; Barbosa-Filho, José Maria; Patrocínio, Manoel Cláudio Azevedo; Viana, Glauce Socorro Barros; Vasconcelos, Silvânia Maria Mendes
2018-02-01
The present work aims to investigate the anxiolytic activity of 6-styryl-2-pyrone (STY), obtained from Aniba panurensis, in behavioral tests and amino acids dosage on male Swiss mice. The animals were treated with STY (1, 10 or 20 mg), diazepam (DZP 1 or 2 mg/kg) or imipramine (IMI 30 mg/kg). Some groups were administered with flumazenil, 30 min before administration of the STYor DZP. The behavioral tests performed were open field, rota rod, elevated plus maze (EPM), hole-board (HB) and tail suspension test (TST). After behavioral tests, these animals were sacrificed and had their prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) dissected for assaying amino acids (aspartate- ASP, glutamate- GLU, glycine- GLY, taurine- TAU and Gamma-aminobutyric acid- GABA). In EPM test, STY or DZP increased the number of entries and the time of permanence in the open arms, but these effects were reverted by flumazenil. In the HB test, STY increased the number of head dips however this effect was blocked by flumazenil. The effects of the STY on amino acid concentration in PFC showed increased GLU, GABA and TAU concentrations. In hippocampus, STY increased the concentrations of all amino acids studied. In striatum, STY administration at lowest dose reduced GLU concentrations, while the highest dosage caused the opposite effect. GLI, TAU and GABA concentrations increased with STY administration at highest doses. In conclusion, this study showed that STY presents an anxiolytic-like effect in behavioral tests that probably is related to GABAergic mechanism of action.
Holubova, Kristina; Nekovarova, Tereza; Pistovcakova, Jana; Sulcova, Alexandra; Stuchlík, Ales; Vales, Karel
2014-01-01
A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive N-methyl-d-aspartic acid receptor (NMDAR) antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG) did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze, PG displayed anxiolytic-like properties. In forced swimming, PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders. -3α5β-pregnanolone glutamate (PG) is a use-dependent antagonist of NMDA receptors.-We demonstrated that PG did not induce significant hyperlocomotion.-We showed that PG displayed anxiolytic-like and antidepressant-like properties.
Falco, Adriana M; McDonald, Craig G; Smith, Robert F
2014-09-01
Adolescents have an increased vulnerability to nicotine and anxiety may play a role in the development of nicotine abuse. One possible treatment for anxiety disorders and substance abuse is the GABAB agonist, baclofen. The aim of the present study was to determine the effect of anxiety-like behavior on single-trial nicotine conditioned place preference in adolescent rats, and to assess the action of baclofen. Baclofen was shown to have effects on locomotor and anxiety-like behavior in rats divided into high-anxiety and low-anxiety groups. Baclofen decreased locomotor behavior in high-anxiety rats. Baclofen alone failed to produce differences in anxiety-like behavior, but nicotine and baclofen + nicotine administration were anxiolytic. High- and low-anxiety groups also showed differences in single-trial nicotine-induced place preference. Only high-anxiety rats formed place preference to nicotine, while rats in the low-anxiety group formed no conditioned place preference. These results suggest that among adolescents, high-anxiety individuals are more likely to show preference for nicotine than low-anxiety individuals. © 2014 Wiley Periodicals, Inc.
Fraser, C M; Cooke, M J; Fisher, A; Thompson, I D; Stone, T W
1996-11-01
The N-methyl-D-aspartate (NMDA) receptor polyamine site antagonist, ifenprodil, had no effect on spontaneous alteration or locomotor activity in the Y-maze when given alone. The NMDA receptor/ion channel blocker, dizocilpine, induced a deficit in spontaneous alteration, but when ifenprodil was co-administered with dizocilpine, it showed a strong tendency to attenuate the dizocilpine-induced deficit. In the plus-maze, ifenprodil had an anxiolytic profile which was accompanied by an increase in locomotion. Dizocilpine had an anxiolytic profile in this model and increased locomotor activity. When co-administered with dizocilpine, ifenprodil reduced both the anxiolytic and locomotor effects of dizocilpine. When co-administered with ifenprodil, cyclopentyladenosine (CPA) and 1,3-dipropyl-8-cyclopentylxanthine (CPX) reduced the anxiolytic effect of ifenprodil. CPA and CPX in combination did not reverse the anxiolytic effect of ifenpropil. It is concluded that NMDA antagonists with different sites of action can show distinct behavioural profiles, with dizocilpine but not ifenprodil inducing a deficit in working memory, while both are anxiolytic. Blockade of NMDA receptors by ifenprodil, however, can preclude any response to dizocilpine. The anxiolytic activity of ifenprodil may involve the release of purines acting at adenosine receptors.
Benneh, Charles Kwaku; Biney, Robert Peter; Mante, Priscilla Kolibea; Tandoh, Augustine; Adongo, Donatus Wewura; Woode, Eric
2017-07-31
Maerua angolensis DC (Capparaceae) has been employed in the management of several central nervous system (CNS) disorders including anxiety. This study evaluated the anxiolytic effects of the petroleum ether/ethyl acetate fraction stem bark extract and its possible mechanism(s) using zebrafish anxiety models. Adult zebrafish, tested in the novel tank and light dark tests, have shown by previous authors to be sensitive to the anxiolytic effects of known anxiolytic drugs. Adult zebrafish were treated with M. angolensis extract, fluoxetine, desipramine, and diazepam followed by testing in the novel tank and light dark tests. We further assessed the effect of the extract on anxiety after inducing an anxiogenic phenotype using the ethanol-withdrawal and chronic unpredictable stress (CUS) tests. The anxiolytic effect was further investigated after pretreatment with flumazenil, granisetron, cyproheptadine, methysergide and pizotifen. M. angolensis extract, similar to fluoxetine and desipramine, demonstrated significant anxiolytic behaviour at doses that did not reduce locomotor activity significantly. Similar anxiolytic effects were recorded in the ethanol withdrawal-induced anxiety test. Furthermore, the anxiogenic effects induced by the CUS paradigm were significantly reversed by treatment M. angolensis extract and fluoxetine. The anxiolytic effects of M. angolensis extract were however reversed after pre-treatment with flumazenil, granisetron, cyproheptadine, methysergide and pizotifen. Taken together, this suggests that the petroleum ether/ ethyl acetate fraction of M. angolensis possesses significant anxiolytic activity, which could partly be accounted for by an interaction with the serotoninergic system and the GABA A receptor. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
de Almeida, Edvaldo Rodrigues; de Oliveira Rafael, Krissia Rayane; Couto, Geraldo Bosco Lindoso; Ishigami, Ana Beatriz Matos
2009-01-01
The aim of the present study is to demonstrate the anxiolytic and anticonvulsant effects of a hydroalcoholic extract obtained from the aerial parts of Cissus sicyoides L. (CS) (Vitaceae) on male and female mice using several behavioral assays. Groups of males and females treated via intraperitoneal (IP) with doses of 300, 600, and 1000 mg/kg of the extract showed significant action in the elevated plus-maze (EPM), time spent in the open arms, and number of entries in the open arms. The board-hole test also showed a significant increase in the time spent in head-dipping and in marble-burying test of the number of marbles buried. The same treatment increased the duration of sleeping time induced by sodium pentobarbital and also showed a significant increase in protection against pentylenotetrazole-induced convulsions. These results indicate an anxiolytic and anticonvulsant-like action from C. sicyoides L. extract on mice, probably due to the action of flavonoid(s), Linalool, and α-tocopherol present in the C. sicyoides leaves. PMID:19300520
Shi, Qi-Xin; Yang, Liu-Kun; Shi, Wen-Long; Wang, Lu; Zhou, Shi-Meng; Guan, Shao-Yu; Zhao, Ming-Gao; Yang, Qi
2017-08-11
The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.
Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo
2018-05-01
Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.
Leiter, Emily; Hitchcock, Gavin; Godwin, Stuart; Johnson, Michelle; Sedgwick, William; Jones, Wendy; McCall, Suzanne; Ceremuga, Thomas E
2011-04-01
The purpose of this study was to investigate the anxiolytic effects of myristicin, a major compound found in nutmeg, and its potential interaction with the gamma-aminobutyric acid (GABA(A)) receptor in male Sprague-Dawley rats. Nutmeg has traditionally been used as a spice in food preparation and as an herbal remedy in the treatment of many medical conditions, including anxiety. Fifty-five rats were divided equally into 5 groups: control (vehicle); myristicin; midazolam (positive control); flumazenil and myristicin; and midazolam and myristicin. The behavioral component of anxiety was examined by using the elevated plus-maze (open-arm and closed-arm times) along with analysis of gross and fine motor movements. Data analysis was performed using a 2-tailed multivariate analysis of variance (MANOVA) and least significant difference post-hoc test. Our data suggest that myristicin does not decrease anxiety by modulation of the GABA(A) receptor but may promote anxiogenesis. When myristicin was combined with midazolam, an antagonist-like effect similar to the flumazenil and myristicin combination was exhibited by a decrease in anxiolysis compared with the midazolam-only group. Myristicin may antagonize the anxiolytic effects of midazolam, increase anxiety, and affect motor movements.
Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet
2018-05-29
We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.
Di Liberto, Valentina; Frinchi, Monica; Verdi, Vincenzo; Vitale, Angela; Plescia, Fulvio; Cannizzaro, Carla; Massenti, Maria F; Belluardo, Natale; Mudò, Giuseppa
2017-02-01
In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.
Kocahan, Sayad; Akillioglu, Kubra
2013-07-01
The elevated plus maze (EPM) is an animal model of anxiety used to test the effects of anxioselective drugs. The loss of the anxiolytic effect of drugs during the second exposure to the EPM is called the "one trial tolerance" (OTT) phenomenon. The present study was designed to investigate the relationship between the OTT phenomenon and N-methyl-D-aspartate (NMDA) receptor blockade in the early developmental period of rats. NMDA receptor blockade was accomplished using MK-801 treatment given between postnatal days 20-30. Beginning on postnatal day 20, the rats were subcutaneously injected with MK-801 twice a day at the nape of the neck for a period of 10 days (0.25 mg/kg). Increased open arm exploration was observed in MK-801-treated rats during trial 1 (p = 0.001) and trial 2 (p = 0.003). The rats spent less time in the closed arms as compared to the saline animals in trial 1 (p = 0.006), and this time decreased further in trial 2 (p = 0.02). The fecal boli of the MK-801 group was decreased in trial 1 as compared to the saline group (p = 0.01), but was not significantly different in trial 2 (p = 0.08). In conclusion, NMDA receptor blockade using MK-801 produced an anxiolytic-like effect in trials 1 and 2. Furthermore, OTT was not affected by NMDA receptor blockade.
Giménez-Llort, L; Ratia, M; Pérez, B; Camps, P; Muñoz-Torrero, D; Badia, A; Clos, M V
2015-06-01
The present work describes, for the first time, the in vivo effects of the multitarget compound AVCRI104P3, a new anticholinesterasic drug with potent inhibitory effects on human AChE, human BuChE and BACE-1 activities as well as on the AChE-induced and self-induced Aβ aggregation. We characterized the behavioral effects of chronic treatment with AVCRI104P3 (0.6 μmol kg(-1), i.p., 21 days) in a sample of middle aged (12-month-old) male 129/Sv×C57BL/6 mice with poor cognitive performance, as shown by the slow acquisition curves of saline-treated animals. Besides, a comparative assessment of cognitive and non-cognitive actions was done using its in vitro equipotent doses of huprine X (0.12 μmol kg(-1)), a huperzine A-tacrine hybrid. The screening assessed locomotor activity, anxiety-like behaviors, cognitive function and side effects. The results on the 'acquisition' of spatial learning and memory show that AVCRI104P3 exerted pro-cognitive effects improving both short- and long-term processes, resulting in a fast and efficient acquisition of the place task in the Morris water maze. On the other hand, a removal test and a perceptual visual learning task indicated that both AChEIs improved short-term 'memory' as compared to saline treated mice. Both drugs elicited the same response in the corner test, but only AVCRI104P3 exhibited anxiolytic-like actions in the dark/light box test. These cognitive-enhancement and anxiolytic-like effects demostrated herein using a sample of middle-aged animals and the lack of adverse effects, strongly encourage further studies on AVCRI104P3 as a promising multitarget therapeutic agent for the treatment of cholinergic dysfunction underlying natural aging and/or dementias. Copyright © 2015. Published by Elsevier B.V.
Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend
2009-01-01
Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673
Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze.
Emamghoreishi, Masoumeh; Khasaki, Mohammad; Aazam, Maryam Fath
2005-01-15
The clinical applications of benzodiazepines as anxiolytics are limited by their unwanted side effects. Therefore, the development of new pharmacological agents is well justified. Among medicinal plants, Coriandrum sativum L. has been recommended for relief of anxiety and insomnia in Iranian folk medicine. Nevertheless, no pharmacological studies have thus far evaluated its effects on central nervous system. Therefore, the aim of this study was to examine if the aqueous extract of Coriandrum sativum seed has anxiolytic effect in mice. Additionally, its effect on spontaneous activity and neuromuscular coordination were evaluated. The anxiolytic effect of aqueous extract (10, 25, 50, 100 mg/kg, i.p.) was examined in male albino mice using elevated plus-maze as an animal model of anxiety. The effects of the extract on spontaneous activity and neuromuscular coordination were assessed using Animex Activity Meter and rotarod, respectively. In the elevated plus-maze, aqueous extract at 100 mg/kg showed an anxiolytic effect by increasing the time spent on open arms and the percentage of open arm entries, compared to control group. Aqueous extract at 50, 100 and 500 mg/kg significantly reduced spontaneous activity and neuromuscular coordination, compared to control group. These results suggest that the aqueous extract of Coriandrum sativum seed has anxiolytic effect and may have potential sedative and muscle relaxant effects.
Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun
2014-10-03
Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.
Auta, James; Guidotti, Alessandro; Costa, Erminio
2000-01-01
The partial allosteric modulators (PAMs) of γ-aminobutyric acid-gated Cl− current intensities at γ-aminobutyric acid type A receptors have high affinity but low intrinsic efficacy on benzodiazepine recognition sites. Unlike the full allosteric modulators (FAM), like alprazolam, triazolam, and diazepam, PAMs are virtually devoid of unwanted side effects, including tolerance. Imidazenil (IMD) is a PAM that elicits potent anxiolytic and anticonvulsant actions in rodents and nonhuman primates and retains its anticonvulsant and anxiolytic effects, even in rodents that are tolerant to FAMs. IMD antagonizes the side effects of FAMs in rodents and nonhuman primates. Using patas monkeys and a multiple schedule with repeated acquisition and performance of chain responses, we report that IMD administration for 17 days antagonized without showing tolerance ALP-induced disruption of acquisition. PMID:10696114
Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza
2013-05-01
The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, S.W.; Krystal, J.H.; Heninger, G.R.
1989-01-01
In order to investigate possible neurobiologic mechanisms underlying carbon dioxide-induced anxiety, the effects of oral alprazolam 0.75 mg and intravenous clonidine 2 mcg/kg on CO/sub 2/-induced increases in ratings of subjective anxiety, pulse rate, and ventilation were measured in healthy human subjects. Pretreatment with alprazolam but not with clonidine significantly reduced the CO/sub 2/-induced increases in ratings of anxiety. Neither drug altered CO/sub 2/-induced increases in pulse rate or ventilatory responses. Clonidine did produce potent sedative and hypotensive effects. The behavioral data suggest that the mechanisms through which CO/sub 2/ induces anxiety-like effects involve neural systems regulated by benzodiazepine receptorsmore » and, secondly, that they appear not to require normal functioning of noradrenergic systems. Carbon dioxide may provide a useful model system for identification of new drugs with anxiolytic properties.« less
Al-Rahbi, Badriya; Zakaria, Rahimah; Othman, Zahiruddin; Hassan, Asma'; Ahmad, Asma Hayati
2014-01-01
The present study aims to evaluate the antioxidant and anxiolytic-like effect of Tualang honey in stressed ovariectomized (OVX) rats. The animals were divided into; (i) nonstressed sham-operated control rats, (ii) sham-operated control rats exposed to stress, (iii) nonstressed OVX rats, (iv) OVX rats exposed to stress, (v) OVX rats exposed to stress and treated with 17 β-oestradiol (E2) (20 μg daily, sc), and (vi) OVX rats exposed to stress and treated with Tualang honey (0.2 g/kg body weight, orally). The open field test was used to evaluate the anxiety-like behaviour and ELISA kits were used to measure oxidant/antioxidant status of the brain homogenates. The result showed that anxiety-like behavior was significantly increased in stressed OVX compared to other groups, and administering either E2 or Tualang honey significantly decreased anxiety-like behaviour in stressed OVX rats. The levels of malondialdehyde (MDA) and protein carbonyl (PCO) were significantly decreased while the levels/activities of superoxide dismutase (SOD), glutathione S-transferases (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly increased in the brain homogenates of treated stressed OVX groups compared to untreated stressed OVX. In conclusion, Tualang honey has protective effects against brain oxidative stress and may be useful alternative anxiolytic agent especially for postmenopausal women. PMID:27379299
Rudoy, C.A.; Van Bockstaele, E.J.
2007-01-01
Background Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on β-adrenergic receptor (β1 and β2) expression in the amygdala. Methods Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that β1–adrenergic receptor, but not β2–adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective β1–adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 hours following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 hours following the last betaxolol injection. Following behavioral testing, betaxolol effects on β1-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Results Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased β1-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. Conclusions The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar β1-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence. PMID:17513029
Rudoy, C A; Van Bockstaele, E J
2007-06-30
Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased beta(1)-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar beta(1)-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence.
Discriminative stimulus effects of alpidem, a new imidazopyridine anxiolytic.
Sanger, D J; Zivkovic, B
1994-01-01
Alpidem in an imidazopyridine derivative which binds selectively to the omega 1 (BZ1) receptor subtype. It is active in some, but not all, behavioural tests sensitive to benzodiazepine anxiolytics and has clinical anti-anxiety effects. However, in a previous study, it was shown that alpidem did not substitute for chlordiazepoxide in rats trained to discriminate this benzodiazepine. The present experiments were carried out to investigate the discriminative stimulus properties of alpidem in greater detail. In the first experiment rats learned to discriminate a dose of 10 mg/kg alpidem from saline. Acquisition of the discrimination was long and performance unstable. Chlordiazepoxide, clorazepate and zolpidem substituted only partially for alpidem but the effects of the training dose of alpidem were blocked by 10 mg/kg flumazenil. The second experiment established stimulus control more rapidly to a dose of 30 mg/kg alpidem. Alpidem induced dose-related stimulus control, and dose-related and complete substitution for alpidem was produced by zolpidem, abecarnil, CL 218,872, triazolam and suriclone. Partial substitution occurred with chlordiazepoxide, clorazepate and pentobarbital. In most cases, high levels of substitution were produced only by doses which greatly reduced response rates even though the training dose of alpidem produced only modest decreases in rates. Ethanol, buspirone and bretazenil produced very little substitution for alpidem and both flumazenil and bretazenil antagonised the effects of alpidem. In two further experiments alpidem was found to substitute for the stimulus produced by zolpidem (2 mg/kg) but not for that produced by ethanol (1.5 g/kg).(ABSTRACT TRUNCATED AT 250 WORDS)
Behavioural studies on BR-16A (Mentat), a herbal psychotropic formulation.
Bhattacharya, S K
1994-01-01
The anxiolytic, antidepressant and anti-aggression activities of Mentat were investigated in rats and mice, using standard behavioural paradigms. Single acute administration of Mentat, up to a dose of 200 mg/kg, ip, induced insignificant behavioural effects on the test parameters. However, when Mentat was administered subchronically for 7 days at two dose levels (50 and 100 mg/kg, intragastrically), the drug induced dose-related behavioural effects. Thus, it exhibited anxiolytic effect, as assessed by paradigms like the open-field test and elevated plus-maze tests in mice, and the social interaction test and Vogel's drink conflict test in rats. Furthermore, Mentat attenuated the increase in rat brain tribulin, a putative endocoid marker of anxiety, levels induced by pentylenetetrazole (20 mg/kg, sc), a known anxiogenic agent. Mentat attenuated footshock-induced aggressive behaviour in paired rats but failed to affect clonidine-induced automutilative behaviour. The observed aggression-attenuating effect of Mentat may be related to its anxiolytic activity. Mentat exhibited significant antidepressant effect as indicated by its ability to reduce swim stress induced immobility in Porsolt's behavioural despair test, reduction in escape failures concomitant with an increase in avoidance response in the learned helplessness test, and attenuation of muricidal behaviour, in rats. The observed behavioural effects are consonant with the reported clinical utility of Mentat as an adjuvant in the treatment of anxiety and depression.
Hopkins, Michael E.; Bucci, David J.
2010-01-01
Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4 weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2 weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms. PMID:20601027
Melo, Francisca Helvira Cavalcante; Venâncio, Edith Teles; de Sousa, Damião Pergentino; de França Fonteles, Marta Maria; de Vasconcelos, Silvânia Maria Mendes; Viana, Glauce Socorro Barros; de Sousa, Francisca Cléa Florenço
2010-08-01
Carvacrol (5-isopropyl-2-methylphenol) is a monoterpenic phenol present in the essencial oil of many plants. It is the major component of the essential oil fraction of oregano and thyme. This work presents the behavioral effects of carvacrol in animal models of elevated plus maze (EPM), open field, Rotarod and barbiturate-induced sleeping time tests in mice. Carvacrol (CVC) was administered orally, in male mice, at single doses of 12.5; 25 and 50 mg/kg while diazepam 1 or 2 mg/kg was used as standard drug and flumazenil (2.5 mg/kg) was used to elucidate the possible anxiolytic mechanism of CVC on the plus maze test. The results showed that CVC, at three doses, had no effect on the spontaneous motor activity in the Rotarod test nor in the number of squares crossed in the open-field test. However, CVC decreased the number of groomings in the open-field test. In the plus maze test, CVC, at three doses significantly increased all the observed parameters in the EPM test and flumazenil was able to reverse the effects of diazepam and CVC. Therefore, CVC did not alter the sleep latency and sleeping time in the barbiturate-induced sleeping time test. These results show that CVC presents anxiolytic effects in the plus maze test which are not influenced by the locomotor activity in the open-field test.
Smith, Sheryl S; Ruderman, Yevgeniy; Frye, Cheryl; Homanics, Gregg; Yuan, Maoli
2006-06-01
3alpha-OH-5alpha[beta]-pregnan-20-one (THP) is a positive modulator of the GABAA receptor (GABAR), which underlies its reported anxiolytic effect. However, there are conditions such as premenstrual dysphoric disorder (PMDD) where increases in THP levels can be associated with adverse mood. In order to test for conditions where THP might be anxiogenic, we developed a mouse model of THP withdrawal. Because delta-containing GABAR are highly sensitive to THP modulation, results were compared in wild-type and delta knockout mice. Finasteride, a 5alpha-reductase blocker, was administered for 3 days to female wild-type or delta knockout mice. Then, animals were tested in the elevated plus maze, following acute administration of THP, lorazepam, flumazenil, or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), and results compared to vehicle-injected controls. CA1 hippocampal GABAR alpha4 subunit levels were assessed by Western blot. After THP withdrawal, THP produced anxiogenic effects, decreasing open arm entries on the elevated plus maze, following a brief shock, in contrast to its expected anxiolytic effects. As we have shown in rats, THP withdrawal also resulted in increased expression of the alpha4 subunit in mouse CA1 hippocampus. As expected for increases in alpha4-containing GABAR, THP withdrawn mice were relatively insensitive to the benzodiazepine (BDZ) lorazepam and had atypical responses to the BDZ antagonist flumazenil when tested on the plus maze. In contrast, they showed a greater anxiolytic response to THIP, which has greater efficacy at alpha4betadelta than other GABAR. Although THP withdrawal in delta knockout mice also increased the alpha4 GABAR subunit, the anxiogenic effects of THP and the anxiolytic effects of THIP were not observed, implicating alpha4betadelta GABAR in these effects. Based on these behavioral and pharmacological findings, we suggest that THP withdrawal in the mouse may serve as a rodent model of PMDD.
D'Incau, Paola; Barbui, Corrado; Tubini, Jacopo; Conforti, Anita
2011-04-01
In Italy, as in all of Europe, women differ from men in that they are somewhat more sensitive to the depressogenic effects of stressful life events related to their social networks and emotional sphere. Women are more likely than men to have experienced poverty, gender discrimination, and physical and sexual abuse. The purpose of this study was to expand the knowledge about the occurrence of stressful life events in women exposed and not exposed to anxiolytics and antidepressants in a community pharmacy setting. Women attending 100 community pharmacies in the Italian Veneto region were surveyed by pharmacists with regard to a number of general features of their current pharmacologic treatment. Women independently completed a written self-assessment questionnaire that focused on stressful life events. Unconditional logistic regression analysis was performed to investigate the association between anxiolytics and antidepressants use and potential factors, including stressful life events. The study population comprised 11,357 women. One or more stressful life events occurred in 90% of the women treated with anxiolytics and/or antidepressants (users [n = 3848]) and in 74% of the women not treated with these drugs (nonusers [n = 7509]) (odds ratio = 3.19; 95% CI, 2.83-3.60). On average, the life events occurred during the previous 6 months and the women considered the influence of these events on their well-being to be severe. After the unconditional logistic regression analysis, the association between anxiolytics and/or antidepressants use remained positive for most of the stressful life events studied as well as for other factors: separation/divorce, living alone or with others (family or friends), unemployment, whether currently being seen by a psychologist/psychiatrist, and treatment with drugs for the alimentary tract and metabolism, cardiovascular system, or nervous system. A significant association between stressful life events and anxiolytics and/or antidepressants use was observed. Further efforts are needed to increase our knowledge of the use of anxiolytics or antidepressants in relation to the occurrence of life events. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.
THE ROLE OF AMYGDALAR MU OPIOID RECEPTORS IN ANXIETY-RELATED RESPONSES IN TWO RAT MODELS
Wilson, Marlene A.; Junor, Lorain
2009-01-01
Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze and the defensive burying test. The role of MOR in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) or β-funaltrexamine (FNA) were bilaterally infused into the CEA of rats prior to testing. The results show that microinjection of DAMGO in the CEA decreased open arm time in the plus maze, while CTAP increased open arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdala output circuits and behavioral responses during exposure to potential threats (open arms of the maze) versus discrete threats (predator odor). PMID:18216773
Gomes, Karina Santos; de Carvalho-Netto, Eduardo Ferreira; Monte, Kátia Cristina Da Silva; Acco, Bruno; Nogueira, Paulo José de Campos; Nunes-de-Souza, Ricardo Luiz
2009-03-30
The elevated T-maze (ETM) is an animal model of anxiety-like behavior that assesses two different defensive behavioral tasks in the same animal-acquisition of inhibitory avoidance and latency to escape from an open and elevated arm. In rats, cute and chronic treatments with anxiolytic-like drugs impair avoidance acquisition while only chronic administration of panicolytic-like drugs impairs open arm withdrawal. To date, only the acute effects of anxiolytic/anxiogenic or panicolytic/panicogenic drugs have been tested in the mouse ETM and the results have partially corroborated those found in the rat ETM. This study investigated the effects of acute (a single intraperitoneal injection 30 min before testing) and chronic (daily i.p. injections for 15 consecutive days) treatment with imipramine or fluoxetine, non-selective and selective serotonin reuptake inhibitors, respectively, on inhibitory avoidance and escape tasks in the mouse ETM. Neither acute nor chronic treatment with imipramine (0, 1, 5 or 10 mg/kg, i.p.) significantly changed the behavioral profile of mice in the two ETM tasks. Interestingly, while acute fluoxetine (0, 5, 10, 20 or 40 mg/kg, i.p.) facilitated inhibitory avoidance and impaired escape latency, chronic treatment (0, 5, 20 or 40 mg/kg, i.p.) with this selective serotonin reuptake inhibitor (SSRI) produced an opposite effect, i.e., it impaired inhibitory avoidance acquisition and facilitated open arm withdrawal. Importantly, acute or chronic treatment with imipramine (except at the highest dose that increased locomotion when given acutely) or fluoxetine failed to alter general locomotor activity in mice as assessed in an ETM in which all arms were enclosed by lateral walls (eETM). These results suggest that inhibitory avoidance acquisition is a useful task for the evaluation of acute and chronic effects of SSRI treatment on anxiety in mice. However, as open arm latency was actually increased and reduced by acute and chronic fluoxetine, respectively, this does not seem to be a useful measure of escape from a proximal threat in this species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witkin, J.M.; Mansbach, R.S.; Barrett, J.E.
1987-12-01
Interactions of the nonbenzodiazepine anxiolytic, buspirone, with serotonin (5-HT) were studied using behavioral and neurochemical procedures. Punished responding was studied in pigeons as this behavior is a generally acknowledged preclinical predictor of anxiolytic activity and because buspirone increases punished responding of pigeons with greater potency and efficacy than in other species. Keypeck responses were maintained under either fixed-interval or fixed-ratio schedules of food presentation; every 30th response produced a brief electric shock and suppressed responding (punishment). Buspirone (0.1-5.6 mg/kg i.m.) produced dose-related increases in punished responding which reached a maximum at 1 mg/kg. A serotonin agonist, MK-212 (0.01 mg/kg), antagonizedmore » whereas the 5-HT antagonist, cyproheptadine (0.01 mg/kg), potentiated the effects of buspirone without having behavioral effects of their own. The characteristics of (/sup 3/H)-5-HT binding in pigeon brain membranes were similar to results reported in mammalian brain. Neither buspirone, MJ-13805 (gepirone, a related analog), nor MJ-13653 (a buspirone metabolite), significantly affected (/sup 3/H)-5-HT binding and none of the compounds appreciably inhibited uptake of (/sup 3/H)-5-HT into pigeon cerebral synaptosomes. Hill coefficients significantly less than unity for all drugs except 5-HT suggested multiple serotonergic binding sites for buspirone and analogs. Buspirone and MJ-13805 (1 nM) inhibited (/sup 3/H)ketanserin binding (a measure of 5-HT2 binding sites) in pigeon cerebrum with Ki values above 10(-6) M. The number of (/sup 3/H)ketanserin binding sites was estimated to be 109 fmol/mg of protein in pigeon cerebrum compared to 400 fmol/mg of protein in rat cerebrum.« less
Acute behavioural and neurotoxic effects of MDMA plus cocaine in adolescent mice.
Daza-Losada, M; Rodríguez-Arias, M; Maldonado, C; Aguilar, M A; Guerri, C; Miñarro, J
2009-01-01
The poly-drug pattern is the most common among those observed in MDMA users, with cocaine being a frequently associated drug. This study evaluates the acute effects of MDMA (5, 10 and 20 mg/kg), alone or in combination with cocaine (25 mg/kg), on motor activity, anxiety (elevated plus maze and social interaction test), memory and brain monoamines in adolescent mice. Both drugs, administered alone or concurrently, produced hyperactivity and a decrease in social contacts. However, an anxiolytic effect, studied by means of the elevated plus maze and expressed as an increase in the time spent on the open arms, was observed only in those animals treated with cocaine and MDMA. The passive avoidance task was affected only with the highest MDMA dose (20 mg/kg). Mice treated with MDMA did not present significant changes in brain monoamines, while those receiving MDMA and cocaine showed a decrease in DA in the striatum, which was accompanied by an increase in the serotonin concentration in the striatum and cortex 30 min after acute administration. In conclusion, the combined use of MDMA and cocaine produces a predominance of serotonin over DA, which is associated with an anxiolytic profile, defensive behaviours and fewer social contacts.
Anti-anxiety drugs reduce conflict-specific "theta"--a possible human anxiety-specific biomarker.
McNaughton, Neil; Swart, Charles; Neo, Phoebe; Bates, Vanessa; Glue, Paul
2013-05-15
Syndromes of fear/anxiety are currently ill-defined, with no accepted human biomarkers for anxiety-specific processes. A unique common neural action of different classes of anxiolytic drugs may provide such a biomarker. In rodents, a reduction in low frequency (4-12 Hz; "theta") brain rhythmicity is produced by all anxiolytics (even those lacking panicolytic or antidepressant action) and not by any non-anxiolytics. This rhythmicity is a key property of the Behavioural Inhibition System (BIS) postulated to be one neural substrate of anxiety. We sought homologous anxiolytic-sensitive changes in human surface EEG rhythmicity. Thirty-four healthy volunteers in parallel groups were administered double blind single doses of triazolam 0.25mg, buspirone 10mg or placebo 1 hour prior to completing the stop-signal task. Right frontal conflict-specific EEG power (previously shown to correlate with trait anxiety and neuroticism in this task) was extracted as a contrast between trials with balanced approach-avoidance (stop-go) conflict and the average of trials with net approach and net avoidance. Compared with placebo, both triazolam and buspirone decreased right-frontal, 9-10 Hz, conflict-specific-power. Only one dose of each of only two classes of anxiolytic and no non-anxiolytics were tested, so additional tests are needed to determine generality. There is a distinct rhythmic system in humans that is sensitive to both classical/GABAergic and novel/serotonergic anxiolytics. This conflict-specific rhythmicity should provide a biomarker, with a strong pre-clinical neuropsychology, for a novel approach to classifying anxiety disorders. Copyright © 2012 Elsevier B.V. All rights reserved.
Regenass, Wilmie; Möller, Marisa; Harvey, Brian H
2018-02-01
Anxiety disorders are severely disabling, while current pharmacological treatments are complicated by delayed onset, low remission rates and side-effects. Sex is also noted to contribute towards illness severity and treatment response. Agomelatine is a melatonin (MT 1 /MT 2 ) agonist and serotonin (5-HT 2C ) antagonist purported to be anxiolytic in clinical and some pre-clinical studies. We undertook a detailed analysis of agomelatine's anxiolytic activity in a neurodevelopmental model of anxiety, the social isolation reared rat. Rats received sub-chronic treatment with vehicle or agomelatine (40 mg/kg per day intraperitoneally at 16:00 h for 16 days), with behaviour analysed in the open field test, social interaction test and elevated plus maze. The contribution of corticosterone and sex was also studied. Social isolation rearing increased locomotor activity and reduced social interaction in the social interaction test, and was anxiogenic in the elevated plus maze in males and females. Agomelatine reversed these behaviours. Male and female social isolation reared rats developed anxiety-like behaviours to a similar degree, although response to agomelatine was superior in male rats. Social isolation rearing decreased plasma corticosterone in both sexes and tended to higher levels in females, although agomelatine did not affect corticosterone in either sex. Concluding, agomelatine is anxiolytic in SIR rats, although correcting altered corticosterone could not be implicated. Sex-related differences in the response to agomelatine are evident.
Oyola, Mario G.; Portillo, Wendy; Reyna, Andrea; Foradori, Chad D.; Kudwa, Andrea; Hinds, Laura; Handa, Robert J.
2012-01-01
The dichotomous anxiogenic and anxiolytic properties of estrogens have been reported to be mediated by two distinct neural estrogen receptors (ER), ERα and ERβ, respectively. Using a combination of pharmacological and genetic approaches, we confirmed that the anxiolytic actions of estradiol are mediated by ERβ and extended and these observations to demonstrate the neuroanatomical targets involved in ERβ activation in these behavioral responses. We examined the effects of the biologically active S-enantiomer of diarylpropionitrile (S-DPN) on anxiety-related behavioral measures, the corresponding stress hormonal response to hypothalamo-pituitary-adrenal axis reactivity, and potential sites of neuronal activation in mutant female mice carrying a null mutation for ERβ gene (βERKO). S-DPN administration significantly reduced anxiety-like behaviors in the open field, light-dark exploration, and the elevated plus maze (EPM) in ovariectomized wild-type (WT) mice, but not in their βERKO littermates. Stress-induced corticosterone (CORT) and ACTH were also attenuated by S-DPN in the WT mice but not in the βERKO mice. Using c-fos induction after elevated plus maze, as a marker of stress-induced neuronal activation, we identified the anterodorsal medial amygdala and bed nucleus of the stria terminalis as the neuronal targets of S-DPN action. Both areas showed elevated c-fos mRNA expression with S-DPN treatment in the WT but not βERKO females. These studies provide compelling evidence for anxiolytic effects mediated by ERβ, and its neuroanatomical targets, that send or receive projections to/from the paraventricular nucleus, providing potential indirect mode of action for the control of hypothalamo-pituitary-adrenal axis function and behaviors. PMID:22186418
Sciolino, Natale R.; Holmes, Philip V.
2016-01-01
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise. PMID:22771334
Zhang, Limin; Wu, Aimin; Yang, Yu; Xiong, Zhaojun; Deng, Chao; Huang, Xu-Feng; Yenari, Midori A.; Yang, Yuan-Guo; Ying, Weihai; Wang, Qing
2011-01-01
Background In addition to their original applications to lowering cholesterol, statins display multiple neuroprotective effects. N-methyl-D-aspartate (NMDA) receptors interact closely with the dopaminergic system and are strongly implicated in therapeutic paradigms of Parkinson's disease (PD). This study aims to investigate how simvastatin impacts on experimental parkinsonian models via regulating NMDA receptors. Methodology/Principal Findings Regional changes in NMDA receptors in the rat brain and anxiolytic-like activity were examined after unilateral medial forebrain bundle lesion by 6-hydroxydopamine via a 3-week administration of simvastatin. NMDA receptor alterations in the post-mortem rat brain were detected by [3H]MK-801(Dizocilpine) binding autoradiography. 6-hydroxydopamine treated PC12 was applied to investigate the neuroprotection of simvastatin, the association with NMDA receptors, and the anti-inflammation. 6-hydroxydopamine induced anxiety and the downregulation of NMDA receptors in the hippocampus, CA1(Cornu Ammonis 1 Area), amygdala and caudate putamen was observed in 6-OHDA(6-hydroxydopamine) lesioned rats whereas simvastatin significantly ameliorated the anxiety-like activity and restored the expression of NMDA receptors in examined brain regions. Significant positive correlations were identified between anxiolytic-like activity and the restoration of expression of NMDA receptors in the hippocampus, amygdala and CA1 following simvastatin administration. Simvastatin exerted neuroprotection in 6-hydroxydopamine-lesioned rat brain and 6-hydroxydopamine treated PC12, partially by regulating NMDA receptors, MMP9 (matrix metalloproteinase-9), and TNF-a (tumour necrosis factor-alpha). Conclusions/Significance Our results provide strong evidence that NMDA receptor modulation after simvastatin treatment could partially explain its anxiolytic-like activity and anti-inflammatory mechanisms in experimental parkinsonian models. These findings contribute to a better understanding of the critical roles of simvastatin in treating PD via NMDA receptors. PMID:21731633
Yan, Junqiang; Xu, Yunqi; Zhu, Cansheng; Zhang, Limin; Wu, Aimin; Yang, Yu; Xiong, Zhaojun; Deng, Chao; Huang, Xu-Feng; Yenari, Midori A; Yang, Yuan-Guo; Ying, Weihai; Wang, Qing
2011-01-01
In addition to their original applications to lowering cholesterol, statins display multiple neuroprotective effects. N-methyl-D-aspartate (NMDA) receptors interact closely with the dopaminergic system and are strongly implicated in therapeutic paradigms of Parkinson's disease (PD). This study aims to investigate how simvastatin impacts on experimental parkinsonian models via regulating NMDA receptors. Regional changes in NMDA receptors in the rat brain and anxiolytic-like activity were examined after unilateral medial forebrain bundle lesion by 6-hydroxydopamine via a 3-week administration of simvastatin. NMDA receptor alterations in the post-mortem rat brain were detected by [³H]MK-801(Dizocilpine) binding autoradiography. 6-hydroxydopamine treated PC12 was applied to investigate the neuroprotection of simvastatin, the association with NMDA receptors, and the anti-inflammation. 6-hydroxydopamine induced anxiety and the downregulation of NMDA receptors in the hippocampus, CA1(Cornu Ammonis 1 Area), amygdala and caudate putamen was observed in 6-OHDA(6-hydroxydopamine) lesioned rats whereas simvastatin significantly ameliorated the anxiety-like activity and restored the expression of NMDA receptors in examined brain regions. Significant positive correlations were identified between anxiolytic-like activity and the restoration of expression of NMDA receptors in the hippocampus, amygdala and CA1 following simvastatin administration. Simvastatin exerted neuroprotection in 6-hydroxydopamine-lesioned rat brain and 6-hydroxydopamine treated PC12, partially by regulating NMDA receptors, MMP9 (matrix metalloproteinase-9), and TNF-a (tumour necrosis factor-alpha). Our results provide strong evidence that NMDA receptor modulation after simvastatin treatment could partially explain its anxiolytic-like activity and anti-inflammatory mechanisms in experimental parkinsonian models. These findings contribute to a better understanding of the critical roles of simvastatin in treating PD via NMDA receptors.
Cline, Michael; Taylor, John E; Flores, Jesus; Bracken, Samuel; McCall, Suzanne; Ceremuga, Thomas E
2008-02-01
The purpose of our study was to investigate the anxiolytic effects of linalool and its potential interaction with the GABAA receptor in Sprague-Dawley rats. Lavender has been used traditionally as an herbal remedy in the treatment of many medical conditions, including anxiety. Linalool is a major component of the essential oil of lavender. Forty-four rats were divided into 4 groups: control, linalool, midazolam (positive control), and flumazenil and linalool. The behavioral and the neurohormonal/physiological components of anxiety were evaluated. The behavioral component was examined by using the elevated plus maze (open arm time/total time) and the neurohormonal/physiological component by measuring serum catecholamine and corticosterone levels. Data analysis was performed using a 2-tailed Multivariate Analysis of Variance and Sheffe post-hoc test. Our data suggest that linalool does not produce anxiolysis by modulation of the GABAA receptor; however, linalool may modulate motor movements and locomotion.
Ohashi, Masanori; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko
2015-01-01
We previously demonstrated in mice that the activation of prelimbic medial prefrontal cortex (PL) with the sodium channel activator veratrine induces anxiety-like behaviors via NMDA receptor-mediated glutamatergic neurotransmission. Riluzole directly affects the glutamatergic system and has recently been suggested to have an anxiolytic-like effect in both experimental animals and patients with anxiety disorders. We investigated the effects of co-perfusion of riluzole on veratrine-induced anxiety-like behaviors in mice. Extracellular glutamate levels were measured in 7-week-old male C57BL6 mice by using an in vivo microdialysis-HPLC/ECD system, and behaviors were assessed simultaneously in an open field (OF) test. Basal levels of glutamate were measured by collecting samples every 10 min for 60 min. The medium containing drugs was perfused for 30 min, and the OF test was performed during the last 10 min of drug perfusion. After the drug treatments, the drug-containing medium was switched to perfusion of control medium lacking drugs, and then samples were collected for another 90 min. Riluzole co-perfusion attenuated veratrine-induced increase in extracellular glutamate levels in the PL and completely diminished veratrine-induced anxiety-like behaviors. Interestingly, riluzole perfusion alone in the PL did not affect the basal levels of glutamate and anxiety-like behaviors. Our results suggest that compounds like riluzole that inhibit glutamatergic function in the PL are possible candidates for novel anxiolytics.
Hirose, Noritaka; Saitoh, Akiyoshi; Kamei, Junzo
2016-10-01
Olfactory bulbectomized (OB) mice produce agitated anxiety-like behaviors in the hole-board test, which was expressed by an increase in head-dipping counts and a decrease in head-dipping latencies. However, the associated mechanisms remain unclear. In the present study, MK-801 (10, 100μg/kg), a selective N-methyl-d-aspartate (NMDA) receptor antagonist, significantly and dose-dependently suppressed the increased head-dipping behaviors in OB mice, without affecting sham mice. Similar results were obtained with another selective NMDA receptor antagonist D-AP5 treatment in OB mice. On the other hand, muscimol, a selective aminobutyric acid type A (GABAA) receptor agonist produced no effects on these hyperemotional behaviors in OB mice at a dose (100μg/kg) that produced anxiolytic-like effects in sham mice. Interestingly, glutamine contents and glutamine/glutamate ratios were significantly increased in the amygdala and frontal cortex of OB mice compared to sham mice. Based on these results, we concluded that the glutamatergic NMDA receptors are involved in the expression of increased head-dipping behaviors in the hole-board tests of OB mice. Accordingly, the changes in glutamatergic transmission in frontal cortex and amygdala may play important roles in the expression of these abnormal behaviors in OB mice. Copyright © 2016. Published by Elsevier B.V.
Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling.
Masood, Anbrin; Huang, Ying; Hajjhussein, Hassan; Xiao, Lan; Li, Hao; Wang, Wei; Hamza, Adel; Zhan, Chang-Guo; O'Donnell, James M
2009-11-01
Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 microM) and ND7001 (10 microM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.
Sánchez-Montoya, Eliana L; Reyes, Marco A; Pardo, Joel; Nuñez-Alarcón, Juana; Ortiz, José G; Jorge, Juan C; Bórquez, Jorge; Mocan, Andrei; Simirgiotis, Mario J
2017-01-01
Latua pubiflora (Griseb) Phil. Is a native shrub of the Solanaceae family that grows freely in southern Chile and is employed among Mapuche aboriginals to induce sedative effects and hallucinations in religious or medicine rituals since prehispanic times. In this work, the pentobarbital-induced sleeping test and the elevated plus maze test were employed to test the behavioral effects of extracts of this plant in mice. The psychopharmacological evaluation of L. pubiflora extracts in mice determined that both alkaloid-enriched as well as the non-alkaloid extracts produced an increase of sleeping time and alteration of motor activity in mice at 150 mg/Kg. The alkaloid extract exhibited anxiolytic effects in the elevated plus maze test, which was counteracted by flumazenil. In addition, the alkaloid extract from L. pubiflora decreased [ 3 H]-flunitrazepam binding on rat cortical membranes. In this study we have identified 18 tropane alkaloids (peaks 1-4, 8-13, 15-18, 21, 23, 24, and 28), 8 phenolic acids and related compounds (peaks 5-7, 14, 19, 20, 22, and 29) and 7 flavonoids (peaks 25-27 and 30-33) in extracts of L. pubiflora by UHPLC-PDA-MS which are responsible for the biological activity. This study assessed for the first time the sedative-anxiolytic effects of L. pubiflora in rats besides the high resolution metabolomics analysis including the finding of pharmacologically important tropane alkaloids and glycosylated flavonoids.
Sánchez-Montoya, Eliana L.; Reyes, Marco A.; Pardo, Joel; Nuñez-Alarcón, Juana; Ortiz, José G.; Jorge, Juan C.; Bórquez, Jorge; Mocan, Andrei; Simirgiotis, Mario J.
2017-01-01
Latua pubiflora (Griseb) Phil. Is a native shrub of the Solanaceae family that grows freely in southern Chile and is employed among Mapuche aboriginals to induce sedative effects and hallucinations in religious or medicine rituals since prehispanic times. In this work, the pentobarbital-induced sleeping test and the elevated plus maze test were employed to test the behavioral effects of extracts of this plant in mice. The psychopharmacological evaluation of L. pubiflora extracts in mice determined that both alkaloid-enriched as well as the non-alkaloid extracts produced an increase of sleeping time and alteration of motor activity in mice at 150 mg/Kg. The alkaloid extract exhibited anxiolytic effects in the elevated plus maze test, which was counteracted by flumazenil. In addition, the alkaloid extract from L. pubiflora decreased [3H]-flunitrazepam binding on rat cortical membranes. In this study we have identified 18 tropane alkaloids (peaks 1–4, 8–13, 15–18, 21, 23, 24, and 28), 8 phenolic acids and related compounds (peaks 5–7, 14, 19, 20, 22, and 29) and 7 flavonoids (peaks 25–27 and 30–33) in extracts of L. pubiflora by UHPLC-PDA-MS which are responsible for the biological activity. This study assessed for the first time the sedative-anxiolytic effects of L. pubiflora in rats besides the high resolution metabolomics analysis including the finding of pharmacologically important tropane alkaloids and glycosylated flavonoids. PMID:28798689
Activation of GPR30 attenuates chronic pain-related anxiety in ovariectomized mice.
Liu, Shui-bing; Tian, Zhen; Guo, Yan-yan; Zhang, Nan; Feng, Bin; Zhao, Ming-gao
2015-03-01
Estrogen regulates neuroendocrine and inflammatory processes that play critical roles in neuroinflammation, anxiety, and chronic pain. Patients suffering from chronic pain often complain of anxiety. However, limited information is available regarding the neural circuitry of chronic pain-related anxiety and the related function of estrogen. Hindpaw injection of complete Freund's adjuvant (CFA) and chronic constriction injury (CCI) of the sciatic nerve induced notable pain sensitization and anxiety-like behavior in ovariectomized (OVX) mice. We found that the level of G-protein-coupled receptor 30 (GPR30), a membrane estrogen receptor, was significantly increased in the basolateral amygdala (BLA) of ovariectomized (OVX) mice suffering from chronic inflammatory and neuropathic pain. Subcutaneous injection or BLA local infusion of the GPR30 agonist G1 significantly reduced anxiety-like behavior in CFA-injected and CCI-OVX mice; however, this treatment did not alter the nociceptive threshold. GPR30 knock down by shRNA in the BLA of OVX mice inhibited the anxiolytic effects of GPR30 activation. G1 administration reversed the upregulation of GluR1 subunit in AMPA and NR2A-containing NMDA receptors and the downregulation of GABAA receptors in the BLA of CFA-injected and CCI-OVX mice. Electrophysiological recording revealed that GPR30 activation could prevent imbalance between excitatory and inhibitory transmissions in the BLA synapses of CFA-injected OVX mice. In conclusion, GPR30 activation induced anxiolytic effects but did not affect the nociceptive threshold of mice under chronic pain. The anxiolytic effects of GPR30 were partially due to maintaining the balance between excitatory and inhibitory transmissions in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior.
Fu, Ailing; Li, Xiaorong; Zhao, Baoquan
2008-05-23
There are evidence suggesting that the function of adrenergic receptor is affected in the amygdala of animals with anxiety-like behavior. However, beta-adrenoceptor (beta-AR) subtypes, consisting of three subtypes, exert different effects on anxiety regulation. In order to determine the function of the beta1-AR subtype in anxiety-like behavior, we investigated the change of beta1-AR expression by immunostaining in the basolateral amygdala (BLA) of rats treated by conditional fear training. The results indicated that the level of beta1-AR was significantly increased in the BLA of fear-conditioned animals as compared that of controls. In animal behavioral tests, animals treated with selective beta1-AR antagonist metoprolol before conditional fear training exhibited a significant attenuation of anxiety-like behavior characterized by increased percentage of time spent and percentage of entries in the open arms, and increased number of head-dips in the elevated plus-maze (EPM) test compared with the animals treated with only saline. Furthermore, the rats pretreated with metoprolol in the conditional fear training significantly decreased the freezing behavior in the test compared with the controls. The results suggested that the beta1-AR played an important role in anxiety-like behavior, and inhibition of the beta1-AR in the BLA could produce anxiolytic effect.
Cerebroprotective effect of combined treatment with pyrazidol and bemitil in craniocerebral trauma.
Zarubina, I V; Kuritsyna, N A; Shabanov, P D
2004-07-01
Monotherapy of consequences of craniocerebral trauma with pyrazidol (1 mg/kg) produced an anxiolytic effect in animals highly resistant to hypoxia and activating effect on low resistant animals. Treatment with bemitil in a dose of 25 mg/kg produced a cerebroprotective effect and normalized individual behavioral characteristics, parameters of energy metabolism, and state of the antioxidant system in the brain of highly and low resistant rats. The effect of bemitil was most pronounced in highly resistant animals. During combined treatment, pyrazidol and bemitil had an additive effect in animals of both groups. They normalized behavioral reactions and prevented the development of metabolic disturbances in the brain.
Carnevali, Luca; Vacondio, Federica; Rossi, Stefano; Macchi, Emilio; Spadoni, Gilberto; Bedini, Annalida; Neumann, Inga D.; Rivara, Silvia; Mor, Marco; Sgoifo, Andrea
2015-01-01
In humans, chronic anxiety represents an independent risk factor for cardiac arrhythmias and sudden death. Here we evaluate in male Wistar rats bred for high (HAB) and low (LAB) anxiety-related behavior, as well as non-selected (NAB) animals, the relationship between trait anxiety and cardiac electrical instability and investigate whether pharmacological augmentation of endocannabinoid anandamide-mediated signaling exerts anxiolytic-like and cardioprotective effects. HAB rats displayed (i) a higher incidence of ventricular tachyarrhythmias induced by isoproterenol, and (ii) a larger spatial dispersion of ventricular refractoriness assessed by means of an epicardial mapping protocol. In HAB rats, acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), with URB694 (0.3 mg/kg), (i) decreased anxiety-like behavior in the elevated plus maze, (ii) increased anandamide levels in the heart, (iii) reduced isoproterenol-induced occurrence of ventricular tachyarrhythmias, and (iv) corrected alterations of ventricular refractoriness. The anti-arrhythmic effect of URB694 was prevented by pharmacological blockade of the cannabinoid type 1 (CB1), but not of the CB2, receptor. These findings suggest that URB694 exerts anxiolytic-like and cardioprotective effects in HAB rats, the latter via anandamide-mediated activation of CB1 receptors. Thus, pharmacological inhibition of FAAH might be a viable pharmacological strategy for the treatment of anxiety-related cardiac dysfunction. PMID:26656183
Sudakov, S K; Bogdanova, N G
2016-10-01
The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.
2012-01-01
Background Xiao-Yao-San (XYS) is a Chinese medicinal formula for treating anxiety and depression. This study aims to evaluate the use of a room-temperature super-extraction system (RTSES) to extract the major active components of XYS and enhance their psycho-pharmacological effects. Methods The neuroprotective roles of XYS/RTSES against reserpine-derived neurotoxicity were evaluated using a glial cell injury system (in vitro) and a depression-like C57BL/6 J mouse model (in vivo). The anxiolytic-behavioural effects were measured by the elevated plus-maze (EPM) test and the antidepressant effects were evaluated by the forced swimming test (FST) and tail suspension test (TST). Glucose tolerance and insulin resistance were assayed by ELISA. The expression of 5-HT1A receptors in the prefrontal cortex was examined by western blotting. Results XYS/RTSES (300 μg/mL) diminished reserpine-induced glial cell death more effectively than either XYS (300 μg/mL) or fluoxetine (30 μM) at 24 h (P = 0.0481 and P = 0.054, respectively). Oral administration of XYS/RTSES (500 mg/kg/day) for 4 consecutive weeks significantly elevated the ratios of entries (open arms/closed arms; P = 0.0177) and shuttle activity (P = 0.00149) on the EPM test, and reduced the immobility time by 90% on the TST (P = 0.00000538) and FST (P = 0.0000053839). XYS/RTSES also improved the regulation of blood glucose (P = 0.0305) and increased the insulin sensitivity (P = 0.0093). The Western blot results indicated that the activation of cerebral 5-HT1A receptors may be involved in the mechanisms of XYS/RTSES actions. Conclusion The RTSES could provide a novel method for extracting effective anxiolytic- and antidepressant-like substances. XYS/RTSES improved the regulation of blood glucose and increased the insulin sensitivity in reserpine-induced anxiety and depression. Neuroprotection of glial cells and activation of cerebral 5-HT1A receptors were also involved. PMID:23134744
Anxiolytic activity of a standardized extract of Bacopa monniera: an experimental study.
Bhattacharya, S K; Ghosal, S
1998-04-01
Bacopa monniera Wettst. (syn. Herpestis monniera L.; Hindi - Brahmi) is classified in Ayurveda, the classical Indian system of medicine, as Medhyarasayana, a group of plant derived drugs used as nervine tonics to promote mental health and improve memory and intellect. Earlier experimental and clinical studies have demonstrated the memory-promoting action of the plant extracts and that of its active saponins, bacoside A and B. The present study was designed to investigate the anxiolytic activity of a standardized extract (bacoside A content 25.5 ± 0.8%) of B. monniera (BM), since the plant is used in Ayurveda in clinical conditions resembling the modern concept of anxiety disorders. The animal models used have been extensively validated as experimental models of anxiety and included the open-field, elevated plusmaze, social interaction and novelty-suppressed feeding latency tests in rats. BM was used at doses of 5, 10 and 20 mg/kg, p.o. and the results were compared with those elicited by lorazepam, a well known benzodiazepine anxiolytic, used at a dose of 0.5 mg/kg, i.p. BM produced a dose-related anxiolytic activity, qualitatively comparable to that of lorazepam, in all the test parameters. However, statistically significant results were elicited usually by the higher two doses of BM. BM did not produce any significant motor deficit, at the doses used, as was evidenced by using the rota-rod test. The findings correlate with the clinical use of the plant in Ayurveda. The advantage of B. monniera over the widely used benzodiazepine anxiolytics lies in the fact that it promotes cognition unlike the amnesic action of the latter. Copyright © 1998 Gustav Fischer Verlag. Published by Elsevier GmbH.. All rights reserved.
Benammi, Hind; El Hiba, Omar; Romane, Abderrahmane; Gamrani, Halima
2014-06-01
Anxiety is one of the most common mental disorders sharing extreme or pathological anxiety states as the primary disturbance in mood or emotional tone, with increased fear and exaggerated acute stress responses. Medicinal plants are very variable, but some of them are used as a spice such as curcumin (Curcuma longa). Curcumin shows a wide range of pharmacological potentialities, however, little is known about its anxiolytic properties. The aim of our study was to assess the anti-anxiety potential of curcumin extract against experimental lead induced-anxiety in rats. Experiments were carried out on male Wistar rats intoxicated acutely with an intraperitoneal injection of Pb (25mg/kg B.W.) and/or concomitantly with administration of curcumin (30 mg/kg B.W.) for 3 days. Using immunohistochemistry and anxiety assessment tests (dark light box and elevated plus maze), we evaluated, respectively, the expression of serotonin (5HT) in the dorsal raphe nucleus (DRN) and the anxiety state in our animals. Our results showed, for the first time, a noticeable anxiolytic effect of curcumin against lead induced anxiety in rats and this may possibly result from modulation of central neuronal monoaminergic neurotransmission, especially serotonin, which has shown a significant reduction of the immunoreactivity within the DRN. Copyright © 2014 Elsevier GmbH. All rights reserved.
van den Burg, Erwin H; Stindl, Julia; Grund, Thomas; Neumann, Inga D; Strauss, Olaf
2015-12-01
There is growing interest in anxiolytic and pro-social effects of the neuropeptide oxytocin (OXT), but the underlying intraneuronal mechanisms are largely unknown. Here we examined OXT-mediated anxiolysis in the hypothalamic paraventricular nucleus (PVN) of rats and effects of OXT administration on signaling events in hypothalamic primary and immortalized cells. In vivo, the application of SKF96365 prevented the anxiolytic activity of OXT in the PVN, suggesting that changes in intracellular Ca(2+) mediate the acute OXT behavioral effects. In vitro, mainly in the neurons with autonomous Ca(2+) oscillations, OXT increased intracellular Ca(2+) concentration and oscillation amplitude. Pharmacological intervention revealed OXT-dependent changes in Ca(2+) signaling that required activation of transient receptor potential vanilloid type-2 channel (TRPV2), mediated by phosphoinositide 3-kinase. TRPV2 induced the activation of the anxiolytic mitogen-activated protein kinase kinase (MEK1/2). In situ, immunohistochemistry revealed co-localization of TRPV2 and OXT in the PVN. Thus, functional and pharmacological analyses identified TRPV2 as a mediator of anxiolytic effects of OXT, conveying the OXT signal to MEK1/2 via modulation of intracellular Ca(2+).
van den Burg, Erwin H; Stindl, Julia; Grund, Thomas; Neumann, Inga D; Strauss, Olaf
2015-01-01
There is growing interest in anxiolytic and pro-social effects of the neuropeptide oxytocin (OXT), but the underlying intraneuronal mechanisms are largely unknown. Here we examined OXT-mediated anxiolysis in the hypothalamic paraventricular nucleus (PVN) of rats and effects of OXT administration on signaling events in hypothalamic primary and immortalized cells. In vivo, the application of SKF96365 prevented the anxiolytic activity of OXT in the PVN, suggesting that changes in intracellular Ca2+ mediate the acute OXT behavioral effects. In vitro, mainly in the neurons with autonomous Ca2+ oscillations, OXT increased intracellular Ca2+ concentration and oscillation amplitude. Pharmacological intervention revealed OXT-dependent changes in Ca2+ signaling that required activation of transient receptor potential vanilloid type-2 channel (TRPV2), mediated by phosphoinositide 3-kinase. TRPV2 induced the activation of the anxiolytic mitogen-activated protein kinase kinase (MEK1/2). In situ, immunohistochemistry revealed co-localization of TRPV2 and OXT in the PVN. Thus, functional and pharmacological analyses identified TRPV2 as a mediator of anxiolytic effects of OXT, conveying the OXT signal to MEK1/2 via modulation of intracellular Ca2+. PMID:26013963
Shajib, Md. Shafiullah; Rashid, Ridwan B.; Ming, Long C.; Islam, Shanta; Sarker, Md. Moklesur R.; Nahar, Lutfun; Sarker, Satyajit D.; Datta, Bidyut K.; Rashid, Mohammad A.
2018-01-01
Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties. Nicotiana plumbaginifolia, an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3′,5,6,7,8-hexamethoxy-4′,5′-methylenedioxyflavone (1), 3,3′,4′,5′,5,6,7,8-octamethoxyflavone (exoticin) (2), 6,7,4′,5′-dimethylenedioxy-3,5,3′-trimethoxyflavone (3), and 3,3′,4′,5,5′,8-hexamethoxy-6,7-methylenedioxyflavone (4), isolated and identified from N. plumbaginifolia. Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds 1, 3, and 4 (12.5–25 mg/kg b.w.) exhibited dose-dependent and significant (p < 0.01) antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate)-induced pain models. The association of ATP-sensitive K+ channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound 1, 3, and 4 (12.5 mg/kg b.w.) demonstrated significant (p < 0.05) anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABAA receptor in the action of compound 3 and 4 was evident from the reversal effects of flumazenil. In addition, compounds 1 and 4 (12.5–25 mg/kg b.w) exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones (1–4) from N. Plumbaginifolia could be considered as suitable candidates for the development of analgesic and anxiolytic agents. PMID:29515437
Shajib, Md Shafiullah; Rashid, Ridwan B; Ming, Long C; Islam, Shanta; Sarker, Md Moklesur R; Nahar, Lutfun; Sarker, Satyajit D; Datta, Bidyut K; Rashid, Mohammad A
2018-01-01
Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties. Nicotiana plumbaginifolia , an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone ( 1 ), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) ( 2 ), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone ( 3 ), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone ( 4 ), isolated and identified from N. plumbaginifolia . Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds 1 , 3 , and 4 (12.5-25 mg/kg b.w.) exhibited dose-dependent and significant ( p < 0.01) antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate)-induced pain models. The association of ATP-sensitive K + channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound 1 , 3 , and 4 (12.5 mg/kg b.w.) demonstrated significant ( p < 0.05) anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABA A receptor in the action of compound 3 and 4 was evident from the reversal effects of flumazenil. In addition, compounds 1 and 4 (12.5-25 mg/kg b.w) exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones ( 1-4 ) from N. Plumbaginifolia could be considered as suitable candidates for the development of analgesic and anxiolytic agents.
Griebel, Guy; Stemmelin, Jeanne; Lopez-Grancha, Mati; Fauchey, Valérie; Slowinski, Franck; Pichat, Philippe; Dargazanli, Gihad; Abouabdellah, Ahmed; Cohen, Caroline; Bergis, Olivier E
2018-02-05
Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.
Amygdala NRG1–ErbB4 Is Critical for the Modulation of Anxiety-Like Behaviors
Bi, Lin-Lin; Sun, Xiang-Dong; Zhang, Jie; Lu, Yi-Sheng; Chen, Yi-Hua; Wang, Jue; Geng, Fei; Liu, Fang; Zhang, Meng; Liu, Ji-Hong; Li, Xiao-Wen; Mei, Lin; Gao, Tian-Ming
2015-01-01
Anxiety disorder is related to the pathophysiology of psychiatric diseases, including major depression, substance abuse, and schizophrenia. The amygdala is important for manifestation and modulation of anxiety. However, relatively little is known regarding the mechanisms that control the amygdala inhibitory activity that is involved in anxiety. We found that almost all ErbB4, which is the only autonomous receptor of neuregulin 1 (NRG1) in the basolateral amygdala (BLA), was expressed in GABAergic neurons. Endogenous NRG1–ErbB4 signaling pathway in the BLA could modulate anxiety-like behaviors and GABA release, whereas it had no effect on glutamatergic transmission. The administration of NRG1 into the BLA of high-anxiety mice alleviated their anxiety and enhanced GABAergic neurotransmission. Moreover, exogenous NRG1 also produced an anxiolytic effect in the stressed mice. Together, these observations indicated that NRG1–ErbB4 signaling is critical to maintaining GABAergic activity in the amygdala and thus to modulating anxiety-like behaviors. Because NRG1 and ErbB4 are susceptibility genes of schizophrenia, our findings might also help to explain the potential mechanism of emotional abnormality in schizophrenia. PMID:25308353
Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle.
Fox, James H; Hammack, Sayamwong E; Falls, William A
2008-08-01
Voluntary exercise has been associated with reduced anxiety across several animal models. Manipulation of central 5-HT can alter anxiety-like behaviors and administration of the 5-HT agonist metachlorophenylpiperazine (mCPP) increases anxiety in rodents and humans. To examine whether the anxiolytic effect of exercise is associated with an alteration in 5-HT systems, we examined the anxiogenic effect of mCPP in exercising and nonexercising mice. C57BL/6J mice were given 2 weeks of free access to either a functioning or nonfunctioning running wheel. Mice were then tested for acoustic startle following systemic injection of either 0, 0.1, 0.3, or 1 mg/kg of mCPP. Consistent with its anxiogenic properties, mCPP produced a dose-dependent increase in acoustic startle in nonexercising mice. However, this anxiogenic effect was blunted in exercising mice. These findings suggest that exercise may help to reduce anxiety by altering 5-HT systems, perhaps by down-regulating postsynaptic 5HT 2B/2C receptors.
Trezza, Viviana; Baarendse, Petra J.J.; Vanderschuren, Louk J.M.J.
2009-01-01
The widespread use of tobacco and alcohol among adolescents might be related to the ability of nicotine and ethanol to facilitate social interactions. To investigate the neurobehavioral mechanisms underlying the prosocial effects of nicotine and ethanol, we focused on social play behavior, the most characteristic social activity in adolescent rats. Social play behavior is rewarding, and it is modulated through opioid, cannabinoid and dopaminergic neurotransmission, which are also involved in the reinforcing properties of nicotine and ethanol. We found that nicotine and ethanol increased social play, without affecting locomotion or social exploration. Their effects depended on the level of social activity of the partner, and were comparable in familiar and unfamiliar environments. At doses that increased social play, nicotine and ethanol had no anxiolytic effects in the elevated plus-maze. By contrast, the prototypical anxiolytic drug diazepam reduced social play at doses that reduced anxiety. The effects of nicotine on social play were blocked by the opioid receptor antagonist naloxone, the CB1 cannabinoid receptor antagonist SR141716A, and the dopamine receptor antagonist alpha-flupenthixol. The effects of ethanol were blocked by SR141716A and alpha-flupenthixol, but not by naloxone. Combined administration of subeffective doses of nicotine and ethanol only modestly enhanced social play. These results show that the facilitatory effects of nicotine and ethanol on social play are behaviorally specific and mediated through neurotransmitter systems involved in positive emotions and motivation, through partially dissociable mechanisms. Furthermore, the stimulating effects of nicotine and ethanol on social play behavior are independent of their anxiolytic-like properties. PMID:19657330
Trezza, Viviana; Baarendse, Petra J J; Vanderschuren, Louk J M J
2009-11-01
The widespread use of tobacco and alcohol among adolescents might be related to the ability of nicotine and ethanol to facilitate social interactions. To investigate the neurobehavioral mechanisms underlying the prosocial effects of nicotine and ethanol, we focused on social play behavior, the most characteristic social activity in adolescent rats. Social play behavior is rewarding, and it is modulated through opioid, cannabinoid and dopaminergic neurotransmission, which are also involved in the reinforcing properties of nicotine and ethanol. We found that nicotine and ethanol increased social play, without affecting locomotion or social exploration. Their effects depended on the level of social activity of the partner, and were comparable in familiar and unfamiliar environments. At doses that increased social play, nicotine and ethanol had no anxiolytic effects in the elevated plus-maze. By contrast, the prototypical anxiolytic drug diazepam reduced social play at doses that reduced anxiety. The effects of nicotine on social play were blocked by the opioid receptor antagonist naloxone, the CB(1) cannabinoid receptor antagonist SR141716A, and the dopamine receptor antagonist alpha-flupenthixol. The effects of ethanol were blocked by SR141716A and alpha-flupenthixol, but not by naloxone. Combined administration of subeffective doses of nicotine and ethanol only modestly enhanced social play. These results show that the facilitatory effects of nicotine and ethanol on social play are behaviorally specific and mediated through neurotransmitter systems involved in positive emotions and motivation, through partially dissociable mechanisms. Furthermore, the stimulating effects of nicotine and ethanol on social play behavior are independent of their anxiolytic-like properties.
Paracetamol potentiates the antidepressant-like and anticompulsive-like effects of fluoxetine.
Manna, Shyamshree S S; Umathe, Sudhir N
2015-04-01
Recent studies suggest the possible involvement of serotonergic and endocannabinoid systems in analgesic, anxiolytic, and anticonvulsant-like actions of paracetamol. Considering the fact that these systems play intricate roles in affective disorders, we investigated the effects of paracetamol in depression-like and compulsion-like behavior. Swiss mice (20-22 g) were subjected to forced swim, tail suspension, or marble-burying tests after an injection of paracetamol either alone or in the presence of AM251 (a CB1 antagonist), fenclonine (pCPA: a 5-HT synthesis inhibitor), AM404 (anandamide uptake inhibitor) or fluoxetine. Paracetamol dose dependently (50-400 mg/kg) decreased depressive and compulsive behaviors. These effects were comparable to those of fluoxetine (5, 10, or 20 mg/kg) and AM404 (10 or 20 mg/kg). Interestingly, fenclonine pretreatment completely abolished the effects of a 50 mg/kg dose of paracetamol. However, similar effects were not observed in AM251-pretreated mice at the same dose. In contrast, AM251 completely antagonized the effects of the 400 mg/kg dose, which was otherwise partially blocked in fenclonine-treated mice. Similar sets of results were observed with fluoxetine and AM404. Thus, it appears that paracetamol-induced antidepressant-like and anticompulsive effects may, at least partially, involve both the serotonergic and the endocannabinoid system. In addition, coadministration of paracetamol and fluoxetine/AM404 at subeffective doses produced synergistic effects, indicating that subthreshold doses of fluoxetine and paracetamol may enable better management in depression and obsessive-compulsive disorder comorbid patients.
Li, Xia; Risbrough, Victoria B.; Cates-Gatto, Chelsea; Kaczanowska, Katarzyna; Finn, M. G.; Roberts, Amanda J; Markou, Athina
2013-01-01
γ-Aminobutyric acid B (GABAB) receptor activation is a potential therapeutic approach for the treatment of drug addiction, pain, anxiety, and depression. However, full agonists of this receptor induce side-effects, such as sedation, muscle relaxation, tolerance, and cognitive disruption. Positive allosteric modulators (PAMs) of the GABAB receptor may have similar therapeutic effects as agonists with superior side-effect profiles. The present study behaviorally characterized N-([1R,2R,4S]-bicyclo[2.2.1]hept-2-yl)-2-methyl-5-(4-[trifluoromethyl]phenyl)-4-pyrimidinamine (BHF177), a GABAB receptor PAM, in mouse models of anxiety-like behavior, learning and memory. In addition, the effects of BHF177 were compared with the agonist baclofen. Unlike the anxiolytic chlordiazepoxide, baclofen (0.5, 1.5, and 2.5 mg/kg, intraperitoneally) and BHF177 (10, 20, and 40 mg/kg, orally) had no effect on anxiety-like behavior in the elevated plus maze, light/dark box, or the Vogel conflict test. Baclofen increased punished drinking in the Vogel conflict test, however this effect may be attributable to analgesic actions of baclofen. At the highest dose tested (2.5 mg/kg), baclofen-treated mice exhibited sedation-like effects (i.e., reduced locomotor activity) across many of the tests, whereas BHF177-treated mice exhibited no sedation-like effects. BHF177 exhibited pro-convulsion properties only in mice, but not in rats, indicating that this effect may be species-specific. At doses that were not sedative or pro-convulsant, baclofen and BHF177 had no selective effects on fear memory retrieval in contextual and cued fear conditioning or spatial learning and memory in the Barnes maze. These data suggest that BHF177 has little sedative activity, no anxiolytic-like profile, and minimal impairment of learning and memory in mice. PMID:23376712
Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo
Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D
2016-01-01
Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans. PMID:26567514
Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo.
Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D
2016-06-01
Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans.
Li, Xiang; Li, Xu; Li, Yi-Xiang; Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng
2015-01-01
We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an "inverted V" dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.
Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng
2015-01-01
We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an “inverted V” dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure. PMID:26558894
[Neuropsychopharmacology of delta-9-tetrahydrocannabinol].
Costentin, J
2008-08-01
Today, the main route of introduction of tetrahydrocannabinol (THC), the main active substance of cannabis, into the human body is via the lungs, from smokes produced by combustion of a haschich-tobacco mixture. The use of a water pipe (nargileh-like) intensifies its fast supply to the body. THC reaches the brain easily where it stimulates CB1 receptors; their ubiquity underlies a wide variety of effects. THC disappears from extracellular spaces by dissolving in lipid rich membranes, and not by excretion from the body. This is followed by a slow release, leading to long lasting effects originating from brain areas containing a large proportion of spare receptors ("reserve receptors"). Far from mimicking the effects of endocannabinoids, THC caricatures and disturbs them. It induces both psychical and physical dependencies, but the perception of withdrawal is weak on account of its very slow elimination. THC disturbs cognition. Acutely, it develops anxiolytic- and antidepressant-like effects, which causes a lot of users to abuse THC, thus leading to a tolerance (desensitization of CB1 receptors) making anxiety and depression to reappear more intensely than originally. THC has close relationships with schizophrenia. It incites to tobacco, alcohol and heroine abuses.
Tsang, Hector W H; Ho, Timothy Y C
2010-01-01
We reviewed studies from 1999 to 2009 on anxiolytic effects of different essential oils toward rodents in anxiety-related behavioral models. Journal papers that evaluated the anxiolytic effects of essential oils for rodents were extracted from available electronic data bases. The results based on 14 studies showed that different rodent species were recruited including ICR mice and Swiss mice. Most of studies applied the Elevated Plus Maze (EPM) as the animal behavioral model. Lavender oil was the most popular within the 14 studies. Lavender and rose oils were found to be effective in some of the studies. Only one study reported the underlying neurophysiological mechanism in terms of concentrations of emotionally related neuro-transmitters such as dopamine, serotonin, and their derivatives, in various brain regions. Some essential oils are found to be effective to induce anxiolytic effect in rodents under different animal anxiety models. However, more standardized experimental procedures and outcome measures are needed in future studies. Translational research to human subjects is also recommended.
Pharmacodynamic response profiles of anxiolytic and sedative drugs.
Chen, Xia; Broeyer, Freerk; de Kam, Marieke; Baas, Joke; Cohen, Adam; van Gerven, Joop
2017-05-01
Centrally-acting acutely anxiolytic drugs, such as benzodiazepines, barbiturates and gabapentinoids, affect various central nervous system (CNS) functions, which reflects not only their anxiolytic effects but also neuropsychological side-effects. To validate the pharmacodynamic biomarkers for GABA-ergic anxiolytics, this study determined the pharmacodynamics of two anxiolytics and a nonanxiolytic control, and linked them to their anxiolytic and sedative effects, during an anxiety-challenge study day. Twenty healthy volunteers were randomized in this placebo-controlled, double-blind, four-way cross-over study with single-dose alprazolam (1 mg), diphenhydramine (50 mg), pregabalin (200 mg) or placebo. The Neurocart was used between repeated fear-potentiated startle assessments. Thus, the potential influence of anxiety on CNS pharmacodynamic markers could be examined. Compared to placebo, VAS calmness increased with alprazolam (2.0 mm) and pregabalin (2.5 mm) but not with diphenhydramine. Saccadic peak velocity (SPV) declined after alprazolam (-57 ° s -1 ) and pregabalin (-28 ° s -1 ), more than with diphenhydramine (-14 ° s -1 ); so did smooth pursuit. The average responses of SPV and smooth pursuit were significantly correlated with the drug-induced increases in VAS calmness . The SPV-relative responses of VAS alertness , body-sway and adaptive-tracking also differed among alprazolam, pregabalin and diphenhydramine. Compared with the antihistaminergic sedative diphenhydramine, alprazolam and pregabalin caused larger SPV reduction, which was correlated with simultaneous improvement of subjective calmness, during a study day in which anxiety was stimulated repeatedly. The different effect profiles of the three drugs are in line with their pharmacological distinctions. These findings corroborate the profiling of CNS effects to demonstrate pharmacological selectivity, and further support SPV as biomarker for anxiolysis involving GABA-ergic neurons. The study also supports the use of prolonged mild threat to demonstrate anxiolytic effects in healthy volunteers. © 2016 The British Pharmacological Society.
Neural and Behavioral Correlates of PTSD and Alcohol Use
2014-12-01
monoamines to the amygdala arise from monoaminergic cell body regions in the brainstem. Specifically, the dorsal raphe nucleus (dRN) provides 5- HT ... effects of 5- HT manipulations within the different amygdala subregions across several well-validated tests of anxiety-like behaviors will better...antipsychotics also have high affinity for 5- HT receptors, the contribution of DA modulation to their anxiolytic effects in humans is currently unknown
Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Palermo-Neto, J
2009-06-01
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Varlinskaya, Elena; Spear, Linda Patia
2009-01-01
Ontogenetic studies using a social interaction paradigm have shown that adolescent rats are less sensitive to anxiolytic properties of acute ethanol than their adult counterparts. It is not known, however, whether adaptations to these anxiolytic effects upon repeated experiences with ethanol would be similar in adolescents and adults. The present study investigated sensitivity to the anxiolytic effects of ethanol in adolescent and adult male and female Sprague-Dawley rats following 7 days of exposure [postnatal day (P) 27–33 for adolescents and P62–68 for adults] to 1 g/kg ethanol or saline (i.p.), as well as in animals left non-manipulated during this time. Anxiolytic effects of ethanol (0, 0.75, 1.0, 1.25, and 1.5 g/kg for adolescents and 0, 0.25, 0.5, 0.75, 1.0, and 1.25 g/kg for adults in Experiments 1 and 2, respectively) were examined 48 hours after the last exposure using a modified social interaction test under unfamiliar test circumstances. At both ages, repeated ethanol exposure resulted in the development of apparent sensitization to anxiolytic effects of ethanol indexed via enhancement of social investigation and transformation of social avoidance into social indifference or preference, as well as expression of tolerance to the socially inhibiting effects induced by higher ethanol doses. Evidence for the emergence of sensitization in adults and tolerance at both ages was seen not only following chronic ethanol, but also after chronic saline exposure, suggesting that chronic manipulation per se may be sufficient to alter the sensitivity of both adolescents and adults to socially-relevant effects of ethanol. PMID:20113878
Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi
2015-01-05
Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.
Malawska, Katarzyna; Rak, Aleksandra; Gryzło, Beata; Sałat, Kinga; Michałowska, Małgorzata; Żmudzka, Elżbieta; Lodarski, Krzysztof; Malawska, Barbara; Kulig, Katarzyna
2017-02-01
The aim of this study was to synthesize a series of new N-Mannich bases derived from 4,4-diphenylpyrrolidin-2-one having differently substituted 4-phenylpiperazines as potential anticonvulsant agents with additional (beneficial) pharmacological properties. The target compounds 8-12 were prepared in one step from the 4-substituted phenylpiperazines, paraformaldehyde, and synthesized 4,4-diphenylpyrrolodin-2-one (7) by a Mannich-type reaction. The obtained compounds were assessed and tested for their anticonvulsant activity in two screening mouse models of seizures, i.e., the maximal electroshock (MES) test and in the subcutaneous pentylenetetrazole (scPTZ) test. The effect of these compounds on animals' motor coordination was measured in the rotarod test. A selected 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) was evaluated in vivo for its anxiolytic- and antidepressant-like properties. Its impact on animals' locomotor activity was also evaluated. Compound 8 showed protection (25%) in the MES and in the scPTZ tests at the dose of 100mg/kg and was not neurotoxic. In the four-plate test, compound 8 at the dose of 30mg/kg showed a statistically significant (p<0.05) anxiolytic-like activity. In the forced swim test, it reduced the immobility time by 24.3% (significant at p<0.05), which indicates its potential antidepressant-like properties. In the locomotor activity test, compound 8 significantly reduced animals' locomotor activity by 79.9%. The results obtained make a new derivative of 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) a promising lead structure for further development. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Brüning, César Augusto; Souza, Ana Cristina Guerra; Gai, Bibiana Mozzaquatro; Zeni, Gilson; Nogueira, Cristina Wayne
2011-05-11
Serotonergic and opioid systems have been implicated in major depression and in the action mechanism of antidepressants. The organoselenium compound m-trifluoromethyl-diphenyl diselenide (m-CF(3)-PhSe)(2) shows antioxidant and anxiolytic activities and is a selective inhibitor of monoamine oxidase A activity. The present study was designed to investigate the antidepressant-like effect of (m-CF(3)-PhSe)(2) in female mice, employing the forced swimming test. The involvement of the serotonergic and opioid systems in the antidepressant-like effect of (m-CF(3)-PhSe)(2) was appraised. (m-CF(3)-PhSe)(2) at doses of 50 and 100mg/kg (p.o.) exhibited antidepressant-like action in the forced swimming test. The effect of (m-CF(3)-PhSe)(2) (50mg/kg p.o.) was prevented by pretreatment of mice with WAY100635 (0.1mg/kg, s.c. a selective 5-HT(1A) receptor antagonist), ritanserin (4 mg/kg, i.p., a non-selective 5HT(2A/2C) receptor antagonist), ondansetron (1mg/kg, i.p., a selective 5-HT(3) receptor antagonist) and naloxone (1mg/kg, i.p., a non-selective antagonist of opioid receptors). These results suggest that (m-CF(3)-PhSe)(2) produced an antidepressant-like effect in the mouse forced swimming test and this effect seems most likely to be mediated through an interaction with serotonergic and opioid systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Mol, N.; Kenemans, J. L.; Prinssen, E. P.; Niklson, I.; Xia-Chen, C.; Broeyer, F.; van Gerven, J.
2009-01-01
Background Fear-potentiated startle has been suggested as a translational model for evaluating efficacy of anxiolytic compounds in humans. Several known anxiolytic compounds have been tested as well as several putative anxiolytics. Because results of these studies have been equivocal, the aim of the present study was to examine another pharmacological permutation of the human potentiated startle model by comparing two anxiolytic agents to a non-anxiolytic sedative and placebo. Methods Twenty healthy volunteers participated in a double-blind, placebo-controlled, cross-over study with four sessions in which they received single doses of the anxiolytics alprazolam (1 mg) and pregabalin (200 mg), as well as diphenhydramine (50 mg) as a non-anxiolytic sedative control and placebo. The design included a cued shock condition that presumably evokes fear and an unpredictable shock context condition presumably evoking anxiety. Results None of the treatments reliably reduced either fear- or anxiety-potentiated startle. Alprazolam and diphenhydramine reduced overall baseline startle. Alprazolam was found to only affect contextual anxiety in a statistical significant way after two subjects who failed to show a contextual anxiety effect in the placebo condition were excluded from the analysis. Pregabalin did not significantly affect any of the physiological measures. Discussion The negative findings from this study are discussed in terms of methodological differences between designs and in variability of startle both between and within study participants. Conclusion Even though fear-potentiated startle may be used to translate preclinical evidence to human populations, methodological issues still hamper the application of this model to early screening of putative anxiolytic drugs. PMID:19415242
The smell of "anxiety": Behavioral modulation by experimental anosmia in zebrafish.
Abreu, Murilo S; Giacomini, Ana C V V; Kalueff, Allan V; Barcellos, Leonardo J G
2016-04-01
Olfaction is strongly involved in the regulation of fish behavior, including reproductive, defensive, social and migration behaviors. In fish, anosmia (the lack of olfaction) can be induced experimentally, impairing their ability to respond to various olfactory stimuli. Here, we examine the effects of experimental lidocaine-induced anosmia on anxiety-like behavior and whole-body cortisol levels in adult zebrafish (Danio rerio). We show that experimentally-induced anosmia reduces anxiolytic-like behavioral effects of fluoxetine and seems to interact with anxiogenic effect of stress also paralleling cortisol responses in zebrafish. These findings provide first experimental evidence that temporary anosmia modulates anxiety-like behaviors and physiology in adult zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of noopept and afobazole on the development of neurosis of learned helplessness in rats.
Uyanaev, A A; Fisenko, V P; Khitrov, N K
2003-08-01
We studied the effects of new psychotropic preparations noopept and afobazole on acquisition of the conditioned active avoidance response and development of neurosis of learned helplessness in rats. Noopept in doses of 0.05-0.10 mg/kg accelerated acquisition of conditioned active avoidance response and reduced the incidence of learned helplessness in rats. Afobazole in a dose of 5 mg/kg produced an opposite effect, which is probably related to high selective anxiolytic activity of this preparation.
Central nervous system activity of Illicium verum fruit extracts.
Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S
2013-11-01
To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Nootropic and anxiolytic activity of saponins of Albizzia lebbeck leaves.
Une, H D; Sarveiya, V P; Pal, S C; Kasture, V S; Kasture, S B
2001-01-01
The effect of saponin containing, n-butanolic fraction (BF), extracted from dried leaves of Albizzia lebbeck, was studied on cognitive behavior and anxiety in albino mice. The elevated plus maze was used for assessment of both nootropic and anxiolytic activity. The nootropic activity was evaluated by recording the effect of BF (0, 10, 25, and 50 mg/kg) on the transfer latency, whereas anxiolytic activity was assessed by studying its effect on the duration of occupancy in the closed arm. Results showed significant improvement in the retention ability of the normal and amnesic mice as compared to their respective controls. Animals treated with BF (25 mg/kg) spent more time in the open arm in a dose-dependent manner. The BF was without any significant effect on motor coordination. However, it significantly inhibited passivity and hypothermia induced by baclofen (10 mg/kg), a GABA(B) agonist. The data emanated in the present study suggests involvement of gamma-aminobutyric acid (GABA) in the nootropic and anxiolytic activity of saponins obtained from A. lebbeck.
Lisboa, S F; Stecchini, M F; Corrêa, F M A; Guimarães, F S; Resstel, L B M
2010-12-15
Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LDB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LDB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats.
Zabela, Volha; Sampath, Chethan; Oufir, Mouhssin; Moradi-Afrapoli, Fahimeh; Butterweck, Veronika; Hamburger, Matthias
2016-12-01
Kaempferol is a major flavonoid in the human diet and in medicinal plants. The compound exerts anxiolytic activity when administered orally in mice, while no behavioural changes were observed upon intraperitoneal administration, or upon oral administration in gut sterilized animals. 4-Hydroxyphenylacetic acid (4-HPAA), which possesses anxiolytic effects when administered intraperitoneally, is a major intestinal metabolite of kaempferol. Pharmacokinetic properties of the compounds are currently not clear. UHPLC-MS/MS methods were validated to support pharmacokinetic studies of kaempferol and 4-HPAA in rats. Non-compartmental and compartmental analyses were performed. After intravenous administration, kaempferol followed a one-compartment model, with a rapid clearance (4.40-6.44l/h/kg) and an extremely short half-life of 2.93-3.79min. After oral gavage it was not possible to obtain full plasma concentration-time profiles of kaempferol. Pharmacokinetics of 4-HPAA was characterized by a two-compartment model, consisting of a quick distribution phase (half-life 3.04-6.20min) followed by a fast elimination phase (half-life 19.3-21.1min). Plasma exposure of kaempferol is limited by poor oral bioavailability and extensive metabolism. Both compounds are rapidly eliminated, so that effective concentrations at the site of action do not appear to be reached. At present, it is not clear how the anxiolytic-like effects reported for the compounds can be explained. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Martens, Marilee A.; Seyfer, Daisha L.; Andridge, Rebecca R.; Foster, Jessica E. A.; Chowdhury, Monali; McClure, Kelsey E.; Coury, Daniel L.
2012-01-01
Williams syndrome (WS) is a neurodevelopmental genetic disorder characterized in part by anxiety and behavioral difficulties. We examine the effectiveness and adverse effects of antidepressant, anxiolytic, and antipsychotic medications in individuals with WS. A total of 513 parents/caregivers completed a survey of psychotropic medication usage…
p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.
Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot
2014-02-01
The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.
Kovács, Zsolt; D'Agostino, Dominic P; Ari, Csilla
2018-01-01
Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil) by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A 1 receptors (A 1 Rs) influence the anxiolytic effect of the exogenous ketone supplement. As A 1 Rs may mediate such an effect, in the present study we used a specific A 1 R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine) to test whether it modulates the anxiolytic effect of sub-chronically (7 days) applied KSMCT in the previously tested animal model by using elevated plus maze (EPM) test. We administered KSMCT (2.5 g/kg/day) alone by intragastric gavage and in combination with intraperitoneally (i.p.) injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg). Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day). After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB), as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A 1 R inhibition modified (decreased) the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A 1 Rs, may modulate the exogenous ketone supplement induced anxiolytic influence.
Okamura, Naoe; Reinscheid, Rainer K.; Ohgake, Shintaro; Iyo, Masaomi; Hashimoto, Kenji
2009-01-01
Neuropeptide S (NPS) and its cognate receptor were reported to mediate anxiolytic-like and arousal effects. NPS receptors are predominantly expressed in the brain, especially in limbic structures, including amygdala, olfactory nucleus, subiculum and retrosplenial cortex. In contrast, the NPS precursor is expressed in only a few brainstem nuclei where it is co-expressed with various excitatory transmitters, including glutamate. The current study investigates interactions of the NPS system with glutamatergic neurotransmission. It has been suggested that dysfunctions in glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors might be involved in the pathophysiology of schizophrenia since NMDA receptor antagonists, such as MK-801, have been shown to induce psychotic-like behavior in humans and animal models. Also, MK-801 is known to produce histological changes such as cytoplasmic vacuoles in retrosplenial cortex neurons where NPS receptors are highly expressed. In this study we show that NPS is able to alleviate neuropathological, neurochemical and behavioral changes produced by NMDA receptor antagonists. NPS treatment attenuated MK-801-induced vacuolization in the rat retrosplenial cortex in a dose dependent manner that can be blocked by an NPS receptor-selective antagonist. NPS also suppressed MK-801-induced increases of extracellular acetylcholine levels in the retrosplenial cortex. In the prepulse inhibition (PPI) assay, animals pretreated with NPS recovered significantly from MK-801-induced disruption of PPI. Our study suggests that NPS may have protective effects against the neurotoxic and behavioral changes produced by NMDA receptor antagonists and that NPS receptor agonists may elicit antipsychotic effects. PMID:19576911
The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.
Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard
2006-03-01
When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.
Correia, Diego; Ribeiro, Andrea Frozino; Brunialti Godard, Ana Lúcia; Boerngen-Lacerda, Roseli
2009-08-01
Anxiety has been proposed to play a role in the development of alcohol addiction, but the exact mechanisms by which this occurs remain unclear. The present study aimed to verify the relationship between basal anxiety levels, the anxiolytic-like effect of ethanol, and ethanol intake in mice exposed to an addiction model. In one experiment Swiss mice were characterized as high-anxiety (HA), medium-anxiety (MA), or non-anxiety (NA) in the elevated plus maze and then received saline or ethanol 2 g/kg acutely and chronically and were again exposed to the same test. NA mice decreased while MA mice maintained anxiety indices over the test days, regardless of treatment. HA ethanol-treated mice showed an anxiolytic-like effect, both acutely and chronically, while the saline-treated ones maintained their basal anxiety levels. In another experiment HA and MA mice were exposed to an addiction model based on a 3-bottle free-choice paradigm (ethanol 5% and 10%, and water) consisting of four phases: acquisition (10 weeks), withdrawal (W, 2 weeks), reexposure (2 weeks), and quinine-adulteration (2 weeks). HA and MA control mice had access only to water. Mice were characterized as addicted, heavy-drinker and light-drinker [Fachin-Scheit DJ, Ribeiro AF, Pigatto G, Goeldner FO, Boerngen-Lacerda R. Development of a mouse model of ethanol addiction: naltrexone efficacy in reducing consumption but not craving. J Neural Transm 2006;113:1305-21.]. No difference was observed between HA and MA mice in their preference for and intake of ethanol. No correlation was observed between ethanol intake, during any phase, and anxiety indices measured in the basal tests and during the W phase. The differences in anxiety indices between HA and MA groups persisted in the test performed during ethanol withdrawal, suggesting a "trait" anxiety profile. The data suggest that despite the fact that high anxiety trait levels are important for the anxiolytic-like effects of ethanol, they are not a determining factor for high ethanol intake, at least not under these experimental conditions.
The effects of probiotics on mood and emotion.
Kane, Lindsey; Kinzel, Julie
2018-05-01
Preliminary research in humans and rodents demonstrates that various probiotic formulations of Lactobacillus and Bifidobacterium have a clinical and neurochemical anxiolytic effect on the central nervous system (CNS). Further research is warranted to more extensively examine the theorized connection between the gastrointestinal tract and the CNS; however, initial evidence suggests probiotics affect various mechanisms of the gut-brain connection that modulate anxiety-like behaviors. This article describes the wider-reaching effects of probiotics, specifically related to behavior and brain function.
Pogorelov, Vladimir M; Lanthorn, Thomas H; Savelieva, Katerina V
2007-05-15
The present report describes a setup for simultaneously measuring anxiety-like behaviors and locomotor activity in mice. Animals are placed in a brightly lit, standard automated open-field (OF) in which a rectangular ceramic platform 8 cm high covers one quadrant of the floor. Mice preferred to stay under the platform, avoiding the area with bright illumination. Activities under and outside the platform were measured for 5 min. Chlordiazepoxide and buspirone dose-dependently increased time spent outside the platform (L-Time) and the light distance to total OF distance ratio (L:T-TD) in both genders without changing total OF distance. By contrast, amphetamine decreased L-Time and L:T-TD in males, thus displaying an anxiogenic effect. Imipramine was without selective effect on L-Time or L:T-TD, but decreased total OF distance at the highest dose indicative of a sedative effect. Drug effects were also evaluated in the OF without platform using conventional anxiety measures. Introduction of the platform into the OF apparatus strongly enhanced the sensitivity to anxiolytics. Comparison of strains differing in activity or anxiety levels showed that L-Time and L:T-TD can be used as measures of anxiety-like behavior independent of locomotor activity. Changes in motor activity are reflected in the total distance traveled under and outside the platform. Therefore, the platform test is fully automated, sensitive to both anxiolytic and anxiogenic effects of drugs and genetic phenotypes with little evidence of gender-specific responses, and can be easily utilized by most laboratories measuring behavior.
Hosseinzadeh, Hossein; Shahandeh, Shabnam; Shahsavand, Shabnam
2012-01-01
Background Research in the area of herbal psychopharmacology has clearly improved in recent decades. Self-administration of herbal medicines has been the most popular therapeutic alternative to standard medicine. Objectives Since the extract of Echium amoenum exhibits an anxiolytic effect, the aim of this study is to evaluate the anxiolytic and hypnotic effects in mice of the aqueous and ethanolic extracts of aerial parts of E. italicum, a member of the Boraginaceae family. Materials and Methods Mice were administered the agents intraperitoneally before the start of the experiments for evaluation of hypnotic activity (induced by sodium pentobarbital, 30 mg/kg, i.p.), anxiolytic activity (elevated plus-maze [EPM] test), locomotor activity (open field test), and motor coordination (rotarod test). Result The ethanolic and aqueous extracts of E. italicum, at doses of 1.2 and 2.1 g/kg, increased the percentage of time-spent and the percentage of arm entries in the open arms of the EPM and decreased the percentage of time-spent in the closed arms of the EPM. Moreover, both extracts decreased the pentobarbital-induced latency to sleep and significantly increased the total sleeping time induced by pentobarbital. In addition, locomotor activity was affected by aqueous extracts and ethanolic extract (at higher doses). Both extracts showed no effect in the rotarod test. Conclusions These results suggest that both ethanolic and aqueous extracts of E. italicum may have anxiolytic effects and sedative activity but no effect on muscle relaxation. PMID:24624158
Involvement of CRF but not NPY in the anxiety regulation via NMDA receptors.
Wierońska, Joanna M; Szewczyk, Bernadeta; Pałucha, Agnieszka; Brański, Piotr; Smiałowska, Maria
2003-01-01
The study attempts to evaluate whether neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) are involved in anxiogenic and anxiolytic reactions induced by NMDA receptor ligands. The animals were given MK-801 (1 mg/kg, ip), a non-competitive NMDA-receptor antagonist, which acts as anxiolytic agent, or NMDA (15 mg/kg, ip), which has an anxiogenic effect. The anxiogenic or anxiolytic actions of these compounds were evaluated in the plus-maze test. The animals, which were given MK-801, were administered BIBO 3304 (130 ng/0.5 microl/site) intraamygdalarly and the animals which were given NMDA were administered alpha-helical CRF (500 ng/0.5 microl/site). BIBO 3304 did not attenuate MK-801-induced anxiolysis and alpha-helical CRF abolished NMDA-induced anxiogenesis. Our results show that anxiogenic effect of NMDA is mediated via CRF1 receptors and anxiolytic action of MK-801 is not dependent on Y1 receptors.
León, Laura A.; Castro-Gomes, Vitor; Zárate-Guerrero, Santiago; Corredor, Karen; Mello Cruz, Antonio P.; Brandão, Marcus L.; Cardenas, Fernando P.; Landeira-Fernandez, J.
2017-01-01
The role of serotonin (5-hydroxytryptamine [5-HT]) and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]). The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM). In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL) and prelimbic (PL) cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices. Highlights -CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more “anxious” phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF) or increased (CLF) anxiety-like behavior.-PL injections either decreased (CHF) anxiety-like behavior or had no effect (CLF). PMID:28736518
Kebebew, Zerihun; Shibeshi, Workineh
2013-11-25
Carica papaya has been used in the Ethiopian traditional medicine to relieve stress and other disease conditions. The present study was undertaken to evaluate the anxiolytic and sedative effects of 80% ethanolic Carica papaya (Caricaceae) pulp extract in mice. Carica papaya pulp extract was screened for anxiolytic effect by using elevated plus maze, staircase and open field tests, and ketamine-induced sleeping time test for sedation at doses of 50, 100, 200, 400 mg/kg. Distilled water and Diazepam were employed as negative and positive control groups, respectively. Carica papaya pulp extract 100 mg/kg significantly increased the percentage of open arm time and entry, and reduced the percentage of entry and time spent in closed arm in elevated plus maze test; reduced the number of rearing in the staircase test; and increased the time spent and entries in the central squares while the total number of entries into the open field were not significantly affected, suggesting anxiolytic activity without altering locomotor and sedative effects. A synergistic reduction in the number of rearing and an inverted U-shaped dose response curves were obtained with important parameters of anxiety The results of this study established a support for the traditional usage of Carica papaya as anxiolytic medicinal plant. © 2013 Elsevier Ireland Ltd. All rights reserved.
Ross, Stephen; Bossis, Anthony; Guss, Jeffrey; Agin-Liebes, Gabrielle; Malone, Tara; Cohen, Barry; Mennenga, Sarah E; Belser, Alexander; Kalliontzi, Krystallia; Babb, James; Su, Zhe; Corby, Patricia; Schmidt, Brian L
2016-12-01
Clinically significant anxiety and depression are common in patients with cancer, and are associated with poor psychiatric and medical outcomes. Historical and recent research suggests a role for psilocybin to treat cancer-related anxiety and depression. In this double-blind, placebo-controlled, crossover trial, 29 patients with cancer-related anxiety and depression were randomly assigned and received treatment with single-dose psilocybin (0.3 mg/kg) or niacin, both in conjunction with psychotherapy. The primary outcomes were anxiety and depression assessed between groups prior to the crossover at 7 weeks. Prior to the crossover, psilocybin produced immediate, substantial, and sustained improvements in anxiety and depression and led to decreases in cancer-related demoralization and hopelessness, improved spiritual wellbeing, and increased quality of life. At the 6.5-month follow-up, psilocybin was associated with enduring anxiolytic and anti-depressant effects (approximately 60-80% of participants continued with clinically significant reductions in depression or anxiety), sustained benefits in existential distress and quality of life, as well as improved attitudes towards death. The psilocybin-induced mystical experience mediated the therapeutic effect of psilocybin on anxiety and depression. In conjunction with psychotherapy, single moderate-dose psilocybin produced rapid, robust and enduring anxiolytic and anti-depressant effects in patients with cancer-related psychological distress. ClinicalTrials.gov Identifier: NCT00957359. © The Author(s) 2016.
Ross, Stephen; Bossis, Anthony; Guss, Jeffrey; Agin-Liebes, Gabrielle; Malone, Tara; Cohen, Barry; Mennenga, Sarah E; Belser, Alexander; Kalliontzi, Krystallia; Babb, James; Su, Zhe; Corby, Patricia; Schmidt, Brian L
2016-01-01
Background: Clinically significant anxiety and depression are common in patients with cancer, and are associated with poor psychiatric and medical outcomes. Historical and recent research suggests a role for psilocybin to treat cancer-related anxiety and depression. Methods: In this double-blind, placebo-controlled, crossover trial, 29 patients with cancer-related anxiety and depression were randomly assigned and received treatment with single-dose psilocybin (0.3 mg/kg) or niacin, both in conjunction with psychotherapy. The primary outcomes were anxiety and depression assessed between groups prior to the crossover at 7 weeks. Results: Prior to the crossover, psilocybin produced immediate, substantial, and sustained improvements in anxiety and depression and led to decreases in cancer-related demoralization and hopelessness, improved spiritual wellbeing, and increased quality of life. At the 6.5-month follow-up, psilocybin was associated with enduring anxiolytic and anti-depressant effects (approximately 60–80% of participants continued with clinically significant reductions in depression or anxiety), sustained benefits in existential distress and quality of life, as well as improved attitudes towards death. The psilocybin-induced mystical experience mediated the therapeutic effect of psilocybin on anxiety and depression. Conclusions: In conjunction with psychotherapy, single moderate-dose psilocybin produced rapid, robust and enduring anxiolytic and anti-depressant effects in patients with cancer-related psychological distress. Trial Registration: ClinicalTrials.gov Identifier: NCT00957359 PMID:27909164
Valenza, Marta; Butelman, Eduardo R; Kreek, Mary Jeanne
2017-08-01
The recruitment of the stress circuitry contributes to a shift from positive to negative reinforcement mechanisms sustaining long-term cocaine addiction. The kappa opioid receptor (KOPr) signaling is upregulated by stress and chronic cocaine exposure. While KOPr agonists induce anhedonia and dysphoria, KOPr antagonists display antidepressant and anxiolytic properties. Most of the knowledge on KOPr antagonism is based on drugs with unusual pharmacokinetic and pharmacodynamic properties, complicating interpretation of results. Here we characterized in vivo behavioral and neuroendocrine effects of the novel relatively short-acting KOPr antagonist LY2444296. To date, no study has investigated whether systemic KOPr blockade reduced anxiety-like and depressive-like behaviors in animals previously exposed to chronic extended access cocaine self-administration. We tested the effect of LY2444296 in blocking KOPr-mediated aversive and neuroendocrine effects. Then, we tested acute systemic LY2444296 in reducing anxiety- and depression-like behaviors, as well as releasing the stress hormone corticosterone (CORT), observed after chronic extended access (18 h/day for 14 days) cocaine self-administration. LY2444296 blocked U69,593-induced place aversion and -reduced motor activity as well as U69,593-induced release of serum CORT, confirming its major site of action, without exerting an effect per se. Acute systemic administration of LY2444296 reduced anxiety-like and depressive-like behaviors, as well as CORT release, in rats tested after chronic extended access cocaine self-administration, but not in cocaine-naïve rats. Results suggest that acute blockade of KOPr by a relatively short-acting antagonist produces therapeutic-like effects selectively in rats with a history of chronic extended access cocaine self-administration.
Catches, Justin S; Xu, Jian; Contractor, Anis
2012-03-17
There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Catches, Justin S.; Xu, Jian; Contractor, Anis
2012-01-01
There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4−/− mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4−/− mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4−/− mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders. PMID:22203159
Possible Modulation of the Anexiogenic Effects of Vitex Agnus-castus by the Serotonergic System.
Yaghmaei, Parichehr; Oryan, Shahrbanoo; Fatehi Gharehlar, Laleh; Salari, Ali-Akbar; Solati, Jalal
2012-03-01
There is well documented evidence for the increase in widespread use of complementary and alternative medicine in the treatment of physical and psychiatric symptoms and disorders within the populations. In the present study, we investigated the influence of V itex agnus-castus (vitex) on anxiety-like behaviors of rats. Elevated plus maze which is one of the methods used for testing anxiety is used in our present study. Rats were orally administrated with vitex for two week. The anxiety test was carried out after two weeks of oral administration of vitex. For evaluating interaction of vitex and serotonergic systems, rats were anaesthetized with ketamine and special cannulas were inserted stereotaxically into the third ventricle (TV) of brain. After 1 week recovery, the effects of serotonegic agents on anxiety were studied. Oral administration of vitex (100, 200, 300 mg/kg) for two weeks induced an anxiogenic-like effect which was shown through specific decreases in the percentages of open arm time (OAT %) and open arm entries (OAE %). Intra - TV infusion of 5HT1A receptor agonist, 8-OH-DPAT (5, 10 and 25 ng/rat) increased OAT% and OAE%, indicating anxiolytic-like behavior. However, injection of 5HT1A receptor antagonist NAN190 (0.25, 0.5 and 1 µg/rat) produced anxiogenic-like behavior. The most effective dose of 8-OH-DPAT (10 ng/rat), when co-administered with vitex (100, 200, 300 mg/kg), attenuated the anxiogenic-like effects of vitex significantly. Injection of the less effective dose of NAN190 (0.5 µg/rat), in combination with vitex (100, 200, 300 mg/kg), potentiate anxiogenic effects of vitex. These results illustrate that 5HT1A receptor is involved in the anxiogenic effects of vitex.
García-Gutiérrez, María S; Manzanares, Jorge
2011-01-01
Mice overexpressing CB2r (CB2xP) were exposed to open field (OF), light-dark box (LDB) and elevated plus maze (EPM) tests. Corticotropin-releasing factor (CRF) and pro-opiomelanocortin (POMC) mRNA were measured in paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus after 30 minutes of restraint stress (RS). Anxiolytic effects of alprazolam (45 or 70 µg/kg, ip) were evaluated. GABA(A)α(2) and GABA(A)γ(2) mRNA were measured in the hippocampus (HIPP) and amygdala (AMY) of CB2xP and wild type (WT) mice. No differences were observed in the total distance travelled by CB2xP and WT mice in OF. Central and peripheral distances travelled significantly increased and decreased in CB2xP mice. Overexpression of CB2r reduced anxiety-like behaviours in LDB and EPM. In WT mice, RS increased CRF (82%) and POMC (42%) mRNA in the PVN and ARC nuclei, respectively. In CB2xP mice, RS also increased POMC (22%) mRNA in the ARC nucleus, but had no effect on CRF mRNA in the PVN nucleus. Administration of alprazolam was without effect in CB2xP mice. An increase of GABA(A)α(2) and GABA(A)γ(2) mRNA in the hippocampus and amygdala of CB2xP mice was observed. Our findings revealed that increased expression of CB2r significantly reduced anxiogenic-related behaviours, modified the response to stress and impaired the action of anxiolytic drugs.
Griebel, G; Rodgers, R J; Perrault, G; Sanger, D J
1999-05-01
Compounds varying in selectivity as 5-HT1A receptor antagonists have recently been reported to produce anxiolytic-like effects comparable to those of benzodiazepines in the mouse elevated plus-maze procedure. In view of the potential clinical significance of these findings, the present experiments compared the behavioural effects of diazepam (0.5-3.0 mg/kg) with those of several non-selective 5-HT1A receptor antagonists [NAN-190, 0.1-3.0 mg/kg, MM-77, 0.03-1.0 mg/kg, (S)-UH-301, 0.3-3.0 mg/kg and pindobind-5-HT1A, 0.03-1.0 mg/kg], and three selective 5-HT1A receptor antagonists (WAY100635, 0.01-3.0 mg/kg, p-MPPI, 0.1-3.0 mg/kg and SL88.0338, 0.3-3.0 mg/kg) in the mouse defence test battery (MDTB). In this well-validated anxiolytic screening test, Swiss mice are directly confronted with a natural threat (a rat) as well as situations associated with this threat. Primary measures taken during and after rat confrontation were flight, risk assessment (RA), defensive threat/attack and escape attempts. Diazepam significantly decreased flight reactions after the rat was introduced into the runway, reduced RA activities of mice chased by the rat, increased RA responses displayed when subjects were constrained in a straight alley and reduced defensive upright postures and biting upon forced contact. All the selective 5-HT1A receptor antagonists and NAN-190 also reduced flight, RA in the chase test, and defensive threat and attack behaviours. (S)-UH-301 and pindobind-5-HT1A reduced RA in the chase test, but only partially modified defensive threat and attack. Unlike the other drugs tested, MM-77 produced significant effects only at doses which also markedly reduced spontaneous locomotor activity, suggesting a behaviourally non-specific action. In contrast to diazepam, the 5-HT1A receptor ligands failed to affect RA in the straight alley test. Following removal of the rat from the test area, only diazepam and (S)-UH-301 reduced escape behaviour (contextual defence) at doses which did not decrease locomotion. Overall, the present findings indicate that except for one RA behaviour and escape responses, the 5-HT1A receptor ligands studied modified the same defensive behaviours as diazepam, suggesting potential therapeutic efficacy in the management of anxiety disorders. However, the magnitude of the effects of the 5-HT1A compounds on defence was generally smaller than that of the benzodiazepine. As all of the 5-HT1A compounds tested in this series share antagonistic activity in models of postsynaptic 5-HT1A receptor function, it is proposed that this action accounts for their effects on defence.
Savić, Miroslav M.; Majumder, Samarpan; Huang, Shengming; Edwankar, Rahul V.; Furtmüller, Roman; Joksimović, Srđan; Clayton, Terry; Ramerstorfer, Joachim; Milinković, Marija M.; Roth, Bryan L.; Sieghart, Werner; Cook, James M.
2010-01-01
Over the last years, genetic studies have greatly improved our knowledge on the receptor subtypes mediating various pharmacological effects of positive allosteric modulators at GABAA receptors. This stimulated the development of new benzodiazepine (BZ)-like ligands, especially those inactive/low-active at GABAA receptors containing the α1 subunit, with the aim of generating more selective drugs. Hereby, the affinity and efficacy of four recently-synthesized BZ site ligands: SH-053-2’N, SH-053-S-CH3-2’F, SH-053-R-CH3-2’F and JY-XHe-053 were assessed. They were also studied in behavioral tests of spontaneous locomotor activity, elevated plus maze, and water maze in rats, which are considered predictive of, respectively, the sedative, anxiolytic, and amnesic influence of BZs. The novel ligands had moderately low to low affinity and mild to partial agonistic efficacy at GABAA receptors containing the α1 subunit, with variable, but more pronounced efficacy at other BZ-sensitive binding sites. While presumably α1 receptor-mediated sedative effects of GABAA modulation were not fully eliminated with any of the ligands tested, only SH-053-2’N and SH-053-S-CH3-2’F, both dosed at 30 mg/kg, exerted anxiolytic effects. The lack of clear anxiolytic-like activity of JY-XHe-053, despite its efficacy at α2- and α3-GABAA receptors, may have been partly connected with its preferential affinity at α5-GABAA receptors coupled with weak agonist activity at α1-containing subtypes. The memory impairment in water-maze experiments, generally reported with BZ site agonists, was completely circumvented with all four ligands. The results suggest that a substantial amount of activity at α1 GABAA receptors is needed for effecting spatial learning and memory impairments, while much weaker activity at α1- and α5-GABAA receptors is sufficient for eliciting sedation. PMID:20074611
Evenden, John; Duncan, Bertina; Ko, Tracey
2006-02-01
Characterization of anxiolytic drugs often employs conflict paradigms in which the drug effects on punished and unpunished responding can be compared. In this study, a fixed interval schedule generating a range of baseline response rates allowed comparison of the effects of anxiolytic drugs with those of psychotomimetic drugs on equivalent and differing rates of punished and unpunished responding. The first response made by the rat after a 40-s fixed interval elapsed resulted in food pellet delivery. In punished intervals, signalled by the illumination of stimulus lamps above each lever, a 0.6-mA shock was delivered after every 20th response, resulting in a lower rate of responding than that in the unpunished intervals. Three psychotomimetic agents, D-amphetamine, MK801 and DOI were compared with the anxiolytics chlordiazepoxide, NS2710 and pregabalin. The three psychotomimetics preferentially increased rates of unpunished responding compared with those of punished responding. Chlordiazepoxide, NS2710 and, to a lesser extent, pregabalin increased rates of both unpunished and punished responding. In comparison studies, yohimbine also increased rates of both unpunished and punished responding whereas the antidepressant citalopram had no effect. In conclusion, stable baseline performance over many months allowed the direct comparison of several different drugs in the same subjects with no need to adjust shock levels or equate baseline response rates. The drugs had systematic and replicable effects in this procedure, which, in the case of amphetamine and chlordiazepoxide, were similar to those in other species, and psychotomimetic drugs could clearly be distinguished from anxiolytic drugs. The procedure, however, has limited value for characterizing novel anxiolytic agents as the examples used here increased punished and unpunished responding to the same extent, and were indistinguishable in that regard from the clinically anxiogenic agent, yohimbine.
Duarte, Filipe Silveira; Duzzioni, Marcelo; Leme, Leandro Rinaldi; Smith, Saulo de Paiva; De Lima, Thereza C M
2016-04-15
Substance P (SP) is a neuropeptide widely expressed throughout the fear-processing pathways of the brain. SP is cleaved by several proteolytic enzymes in amino (N-) and carboxy (C-) terminal sequences, which can have biological activities per se. We have previously shown that the anxiogenic-like effects elicited by SP6-11(C-terminal), a specific metabolite of SP, are mediated via NK1 and NK2 receptors. Nevertheless, there are evidences that C-terminal fragments may have a greater affinity for NK3 receptors. The aim of the present study was to further investigate the possible involvement of NK3 receptors in the anxiogenic-like effects induced by SP6-11(C-terminal). Adult male Wistar rats were intracerebroventricularly (i.c.v.) treated with SR142801 (NK3 receptors antagonist) or vehicle one minute to prior SP6-11(C-terminal) or vehicle. Other experimental groups received SP6-11(C-terminal) or vehicle i.c.v. one minute prior to senktide (NK3 receptors agonist) or vehicle. After five minutes, the animals were behaviorally evaluated in the elevated plus-maze test (EPM). SR142801 (100 pmol) or SP6-11(C-terminal) (10 pmol) reduced all the parameters of open-arms exploration and increased the number of protected stretch-attend postures in the EPM, indicating an anxiogenic-like effect. Senktide (10 pmol) promoted an opposite effect on these behavioral parameters, characterizing an anxiolytic-like profile. Pretreatment with SR142801, in an ineffective dose, potentiated the SP6-11-induced anxiety, especially in the unprotected head-dipping and protected stretch-attend postures behaviors. Moreover, the anxiolytic-like effect induced by senktide (1 pmol) was prevented by SP6-11. Our results give support to the involvement of NK3 receptors in the anxiogenic-like actions of SP6-11(C-terminal), where this metabolite seems to behave as an antagonist, in a way similar to SR142801. Copyright © 2016 Elsevier B.V. All rights reserved.
Hatano, V Y; Torricelli, A S; Giassi, A C C; Coslope, L A; Viana, M B
2012-03-01
Lippia alba (Mill.) N.E. Brown (Verbenaceae) is widely used in different regions of Central and South America as a tranquilizer. The plant's anxiolytic properties, however, merit investigation. The present study evaluated the effects of repeated daily (14 days) intraperitoneal (ip) treatment with an essential oil (EO) from a chemotype of L. alba (LA, chemotype II, 12.5 and 25 mg/kg; N = 6-8) and (R)-(-)-carvone (25 mg/kg; N = 8-12), the main constituent of this chemotype, on male Wistar rats (weighing 250 g at the beginning of the experiments) submitted to the elevated T-maze (ETM). The ETM allows the measurement of two defensive responses: inhibitory avoidance and one-way escape. In terms of psychopathology, these responses have been related to generalized anxiety and panic disorder, respectively. Treatment with the EO impaired ETM avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (P < 0.05) (avoidance 2: control = 84.6 ± 35.2; EO 12.5 mg/kg = 11.8 ± 3.8; EO 25 mg/kg = 14.6 ± 2.7; diazepam = 7 ± 2.1). (R)-(-)-carvone also significantly altered this same response (P < 0.05; avoidance 1: control = 91.9 ± 31.5; carvone = 11.6 ± 1.8; diazepam = 8.1 ± 3.3). These results were not due to motor changes since no significant effects were detected in an open field. These observations suggest that LA exerts anxiolytic-like effects on a specific subset of defensive behaviors that have been implicated in generalized anxiety disorder, and suggest that carvone is one of the constituents of LA responsible for its action as a tranquilizer.
Hatano, V.Y.; Torricelli, A.S.; Giassi, A.C.C.; Coslope, L.A.; Viana, M.B.
2012-01-01
Lippia alba (Mill.) N.E. Brown (Verbenaceae) is widely used in different regions of Central and South America as a tranquilizer. The plant's anxiolytic properties, however, merit investigation. The present study evaluated the effects of repeated daily (14 days) intraperitoneal (ip) treatment with an essential oil (EO) from a chemotype of L. alba (LA, chemotype II, 12.5 and 25 mg/kg; N = 6-8) and (R)-(-)-carvone (25 mg/kg; N = 8-12), the main constituent of this chemotype, on male Wistar rats (weighing 250 g at the beginning of the experiments) submitted to the elevated T-maze (ETM). The ETM allows the measurement of two defensive responses: inhibitory avoidance and one-way escape. In terms of psychopathology, these responses have been related to generalized anxiety and panic disorder, respectively. Treatment with the EO impaired ETM avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (P < 0.05) (avoidance 2: control = 84.6 ± 35.2; EO 12.5 mg/kg = 11.8 ± 3.8; EO 25 mg/kg = 14.6 ± 2.7; diazepam = 7 ± 2.1). (R)-(-)-carvone also significantly altered this same response (P < 0.05; avoidance 1: control = 91.9 ± 31.5; carvone = 11.6 ± 1.8; diazepam = 8.1 ± 3.3). These results were not due to motor changes since no significant effects were detected in an open field. These observations suggest that LA exerts anxiolytic-like effects on a specific subset of defensive behaviors that have been implicated in generalized anxiety disorder, and suggest that carvone is one of the constituents of LA responsible for its action as a tranquilizer. PMID:22358424
Anderson, S M; Brunzell, D H
2015-01-01
Background and Purpose Nicotine dose-dependently activates or preferentially desensitizes β2 subunit containing nicotinic ACh receptors (β2*nAChRs). Genetic and pharmacological manipulations assessed effects of stimulation versus inhibition of β2*nAChRs on nicotine-associated anxiety-like phenotype. Experimental Approach Using a range of doses of nicotine in β2*nAChR subunit null mutant mice (β2KO; backcrossed to C57BL/6J) and their wild-type (WT) littermates, administration of the selective β2*nAChR agonist, 5I-A85380, and the selective β2*nAChR antagonist dihydro-β-erythroidine (DHβE), we determined the behavioural effects of stimulation and inhibition of β2*nAChRs in the light–dark and elevated plus maze (EPM) assays. Key Results Low-dose i.p. nicotine (0.05 mg·kg−1) supported anxiolysis-like behaviour independent of genotype whereas the highest dose (0.5 mg·kg−1) promoted anxiogenic-like phenotype in WT mice, but was blunted in β2KO mice for the measure of latency. Administration of 5I-A85380 had similar dose-dependent effects in C57BL/6J WT mice; 0.001 mg·kg−1 5I-A85380 reduced anxiety on an EPM, whereas 0.032 mg·kg−1 5I-A85380 promoted anxiogenic-like behaviour in both the light–dark and EPM assays. DHβE pretreatment blocked anxiogenic-like effects of 0.5 mg·kg−1 nicotine. Similarly to DHβE, pretreatment with low-dose 0.05 mg·kg−1 nicotine did not accumulate with 0.5 mg·kg−1 nicotine, but rather blocked anxiogenic-like effects of high-dose nicotine in the light–dark and EPM assays. Conclusions and Implications These studies provide direct evidence that low-dose nicotine inhibits nAChRs and demonstrate that inhibition or stimulation of β2*nAChRs supports the corresponding anxiolytic-like or anxiogenic-like effects of nicotine. Inhibition of β2*nAChRs may relieve anxiety in smokers and non-smokers alike. PMID:25625469
Rahmati, Batool; Kiasalari, Zahra; Roghani, Mehrdad; Khalili, Mohsen; Ansari, Fariba
2017-12-01
Anxiety and depression are common in Alzheimer's disease (AD). Despite some evidence, it is difficult to confirm Lavandula officinalis Chaix ex Vill (Lamiaceae) as an anxiolytic and antidepressant drug. The effects of L. officinalis extract were studied in scopolamine-induced memory impairment, anxiety and depression-like behaviour. Male NMRI rats were divided into control, scopolamine alone-treated group received scopolamine (0.1 mg/kg) intraperitoneally (i.p.), daily and 30 min prior to performing behavioural testing on test day, for 12 continuous days and extract pretreated groups received aerial parts hydro alcoholic extract (i.p.) (100, 200 and 400 mg/kg), 30 min before each scopolamine injection. Memory impairment was assessed by Y-maze task, while, elevated plus maze and forced swimming test were used to measure anxiolytic and antidepressive-like activity. Spontaneous alternation percentage in Y maze is reduced by scopolamine (36.42 ± 2.60) (p ≤ 0.001), whereas lavender (200 and 400 mg/kg) enhanced it (83.12 ± 5.20 and 95 ± 11.08, respectively) (p ≤ 0.05). Also, lavender pretreatment in 200 and 400 mg/kg enhanced time spent on the open arms (15.4 ± 3.37 and 32.1 ± 3.46, respectively) (p ≤ 0.001). On the contrary, while immobility time was enhanced by scopolamine (296 ± 4.70), 100, 200 and 400 mg/kg lavender reduced it (193.88 ± 22.42, 73.3 ± 8.25 and 35.2 ± 4.22, respectively) in a dose-dependent manner (p ≤ 0.001). Lavender extracts improved scopolamine-induced memory impairment and also reduced anxiety and depression-like behaviour in a dose-dependent manner.
Weiser, Michael J.; Wu, T. John; Handa, Robert J.
2009-01-01
Estrogens have been shown to have positive and negative effects on anxiety and depressive-like behaviors, perhaps explained by the existence of two distinct estrogen receptor (ER) systems, ERα and ERβ. The ERβ agonist, diarylpropionitrile (DPN) has been shown to have anxiolytic properties in rats. DPN exists as a racemic mixture of two enantiomers, R-DPN and S-DPN. In this study, we compared R-DPN and S-DPN for their in vitro binding affinity, ability to activate transcription in vitro at an estrogen response element, and in vivo endocrine and behavioral responses. In vitro binding studies using recombinant rat ERβ revealed that S-DPN has a severalfold greater relative binding affinity for ERβ than does R-DPN. Furthermore, cotransfection of N-38 immortalized hypothalamic cells with an estrogen response element-luc reporter and ERβ revealed that S-DPN is a potent activator of transcription in vitro, whereas R-DPN is not. Subsequently, we examined anxiety-like behaviors using the open-field test and elevated plus maze or depressive-like behaviors, using the forced swim test. Ovariectomized young adult female Sprague Dawley rats treated with racemic DPN, S-DPN, and the ERβ agonist, WAY-200070, showed significantly decreased anxiety-like behaviors in both the open-field and elevated plus maze and significantly less depressive-like behaviors in the forced swim test compared with vehicle-, R-DPN-, or propylpyrazoletriol (ERα agonist)-treated animals. In concordance with the relative binding affinity and transcriptional potency, these results demonstrate that the S-enantiomer is the biologically active form of DPN. These studies also indicate that estrogen's positive effects on mood, including its anxiolytic and antidepressive actions, are due to its actions at ERβ. PMID:19074580
Korn, Christoph W; Vunder, Johanna; Miró, Júlia; Fuentemilla, Lluís; Hurlemann, Rene; Bach, Dominik R
2017-10-01
Rodent approach-avoidance conflict tests are common preclinical models of human anxiety disorder. Their translational validity mainly rests on the observation that anxiolytic drugs reduce rodent anxiety-like behavior. Here, we capitalized on a recently developed approach-avoidance conflict computer game to investigate the impact of benzodiazepines and of amygdala lesions on putative human anxiety-like behavior. In successive epochs of this game, participants collect monetary tokens on a spatial grid while under threat of virtual predation. In a preregistered, randomized, double-blind, placebo-controlled trial, we tested the effect of a single dose (1 mg) of lorazepam (n = 59). We then compared 2 patients with bilateral amygdala lesions due to Urbach-Wiethe syndrome with age- and gender-matched control participants (n = 17). Based on a previous report, the primary outcome measure was the effect of intra-epoch time (i.e., an adaptation to increasing potential loss) on presence in the safe quadrant of the spatial grid. We hypothesized reduced loss adaptation in this measure under lorazepam and in patients with amygdala lesions. Lorazepam and amygdala lesions reduced loss adaptation in the primary outcome measure. We found similar results in several secondary outcome measures. The relative reduction of anxiety-like behavior in patients with amygdala lesions was qualitatively and quantitatively indistinguishable from an impact of anterior hippocampus lesions found in a previous report. Our results establish the translational validity of human approach-avoidance conflict tests in terms of anxiolytic drug action. We identified the amygdala, in addition to the hippocampus, as a critical structure in human anxiety-like behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
State/Trait Anxiety and Anxiolytic Effects of Acute Physical Exercises
ERIC Educational Resources Information Center
Guszkowska, Monika
2009-01-01
Study aim: To determine anxiolytic effects of acute physical exertions in relation to the initial anxiety state and trait in women. Material and methods: A group of 163 women aged 16-56 years, attending fitness clubs in Warsaw, participated in the study. They selected a single exercise to perform--strength, aerobic or mixed, lasting 30 to over 60…
Anxiolytic effect of saponins from Panax quinquefolium in mice.
Wei, Xiu-Yan; Yang, Jing-Yu; Wang, Jin-Hui; Wu, Chun-Fu
2007-05-22
The anxiolytic effect of the saponins from Aniliaeea Panax quinquefolium L. (PQS) was studied in male mice by using a number of experimental paradigms of anxiety and compared with that of the known anxiolytic compound diazepam. Use of the elevated plus-maze test revealed that PQS (50 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) increased the percentage of time and entries spent in open arms. In the light/dark test, PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) prolonged the time spent in the light area. In the hole-board test, PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) significantly increased both head-dip counts and head-dip duration. Both PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) decreased the total fighting time in the isolation-induced aggressive test. Since PQS, in contrast to diazepam, had no effect on locomotion in these tests, its side-effect profile might be considered superior to the benzodiazepines. Thus, the present findings suggest that PQS might be a potential candidate for use as an anxiolytic drug.
Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H
2012-10-01
Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.
Kasai, Satoka; Yoshihara, Toru; Lopatina, Olga; Ishihara, Katsuhiko; Higashida, Haruhiro
2017-01-01
Parkinson’s disease (PD), a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B) inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO) mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg) dose-dependently reduced immobility time in the forced swimming test (FST) in CD157 KO mice, but not C57BL/6N wild-type (WT) mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA) D2/D3 receptor agonist) or rasagiline (another MAO-B inhibitor), and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA), mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT) content, cortical norepinephrine (NE) content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT), repeated administration of mirtazapine had anxiolytic effects, and selegiline nonsignificantly ameliorated anxiety-like behaviors in CD157 KO mice. In the social interaction and preference tests, repeated mirtazapine ameliorated the high anxiety and low sociability of CD157 KO mice, whereas selegiline did not. These results indicate that selegiline has antidepressant and mild anxiolytic effects in CD157 KO mice, and suggest that it is an effective antiparkinsonian drug for depressive and anxiety symptoms in PD patients with a CD157 single nucleotide polymorphism (SNP). PMID:28515684
Mead, Alexa; Li, Ming; Kapur, Shitij
2008-01-01
Psychotic fear and anxiety disturbances are seen at a relatively high frequency in patients with schizophrenia. Atypical antipsychotics are believed to show superior efficacy in reducing these symptoms. However, clinical and preclinical evidence regarding their anxiolytic efficacy has been mixed. In this study, we evaluated the possible anxiolytic property of two atypicals clozapine and olanzapine and compared them with typical haloperidol and chlordiazepoxide (a prototype of sedative-anxiolytic drug) in two preclinical models of fear. In Experiment 1, we used a fear-induced passive avoidance and conditioned place aversion paradigm and examined the effects of clozapine (20 mg/kg, sc), haloperidol (0.05 mg/kg, sc) and chlordiazepoxide (10 mg/kg, ip). In Experiments 2 and 3, we used a two-way active avoidance conditioning paradigm and further compared the effects of clozapine (20 mg/kg, sc), haloperidol (0.05 mg/kg, sc), chlordiazepoxide (10 mg/kg, ip) and three doses of olanzapine (0.5, 1.0, and 2.0 mg/kg, sc). Results show that clozapine and chlordiazepoxide, but not haloperidol, significantly attenuated the shock conditioning-induced place aversion, decreased the amount of defecations and the number of the 22 kHz vocalizations. Clozapine also reduced the shock conditioning-induced hyperthermia. Similar to clozapine, olanzapine also significantly decreased the amount of defecations and reduced the shock conditioning-induced hyperthermia, but it did not inhibit the 22 kHz vocalizations. This study demonstrates that clozapine and olanzapine possess an intrinsic anxiolytic property, which is not attributable to its superior anti-“psychotic” effect or its favorable effects on motor functions or learning and memory processes. These findings also suggest that the combined use of passive avoidance and active avoidance conditioning models can be useful in better differentiating typical and atypical antipsychotics as well as anxiolytics. PMID:18547622
Diemer, Julia; Domschke, Katharina; Mühlberger, Andreas; Winter, Bernward; Zavorotnyy, Maxim; Notzon, Swantje; Silling, Karen; Arolt, Volker; Zwanzger, Peter
2013-11-01
Anxiety disorders are among the most frequent psychiatric disorders. With regard to pharmacological treatment, antidepressants, the calcium modulator pregabalin and benzodiazepines are recommended according to current treatment guidelines. With regard to acute states of anxiety, so far practically only benzodiazepines provide an immediate anxiolytic effect. However, the risk of tolerance and dependency limits the use of this class of medication. Therefore, there is still a need for alternative pharmacologic strategies. Increasing evidence points towards anxiety-reducing properties of atypical antipsychotics, particularly quetiapine. Therefore, we aimed to evaluate the putative acute anxiolytic effects of this compound, choosing the induction of acute anxiety in patients with specific phobia as a model for the evaluation of ad-hoc anxiolytic properties in a proof-of-concept approach. In a randomized, double-blind, placebo-controlled study, 58 patients with arachnophobia were treated with a single dose of quetiapine XR or placebo prior to a virtual reality spider challenge procedure. Treatment effects were monitored using rating scales for acute anxiety as well as measurements of heart rate and skin conductance. Overall, quetiapine showed significant anxiolytic effects compared to placebo. However, effects were not seen on the primary outcome measure (VAS Anxiety), but were limited to somatic anxiety symptoms. Additionally, a significant reduction of skin conductance was observed. Further exploratory analyses hint towards a mediating role of the (COMT) val158met genotype on treatment response. The present results thus suggest a possible suitability of quetiapine in the acute treatment of anxiety, particularly with regard to somatic symptoms. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Dopaminergic control of anxiety in young and aged zebrafish.
Kacprzak, Victoria; Patel, Neil A; Riley, Elizabeth; Yu, Lili; Yeh, Jing-Ruey J; Zhdanova, Irina V
2017-06-01
Changes in the expression of the dopamine transporter (DAT), or the sensitivity of dopamine receptors, are associated with aging and substance abuse and may underlie some of the symptoms common to both conditions. In this study, we explored the role of the dopaminergic system in the anxiogenic effects of aging and acute cocaine exposure by comparing the behavioral phenotypes of wild type (WT) and DAT knockout zebrafish (DAT-KO) of different ages. To determine the involvement of specific dopamine receptors in anxiety states, antagonists to D1 (SCH23390) and D2/D3 (sulpiride) were employed. We established that DAT-KO results in a chronic anxiety-like state, seen as an increase in bottom-dwelling and thigmotaxis. Similar effects were produced by aging and acute cocaine administration, both leading to reduction in DAT mRNA abundance (qPCR). Inhibition of D1 activity counteracted the anxiety-like effects associated with DAT deficit, independent of its origin. Inhibition of D2/D3 receptors reduced anxiety in young DAT-KO, and enhanced the anxiogenic effects of cocaine in WT, but did not affect aged WT or DAT-KO fish. These findings provide new evidence that the dopaminergic system plays a critical role in anxiety-like states, and suggest that adult zebrafish provide a sensitive diurnal vertebrate model for elucidating the molecular mechanisms of anxiety and a platform for anxiolytic drug screens. Copyright © 2017 Elsevier Inc. All rights reserved.
Navarro, José Francisco; Maldonado, Enrique
2002-10-01
3,4-Methylenedioxymethamphetamine (MDMA) is a compound structurally similar to methamphetamine, which has become one of the most widely used illicit substances. Animal studies investigating acute effects of MDMA on anxiety are unclear since, although an anxiogenic-like action of MDMA in different animal models of anxiety has been mainly described, there is also evidence supporting an anxiolytic-like effect for this drug. An attempt was made to clarify the possible anxiogenic-like profile of MDMA (1, 8 and 15 mg/kg i.p.) by analyzing its effect on behavior of male mice in the elevated plus-maze test. Moreover, the possible development of tolerance to the effects of MDMA on anxiety after its subchronic administration for 5 consecutive days was examined. The parameters evaluated included: (1) total time in open arms, (2) total time in closed arms, (3) total time in central area, (4) number of open arm entries, (5) number of closed arm entries and (6) number of central area entries. Acute treatment with MDMA (8 mg/kg) significantly reduced the time spent in the open arms, as well as markedly increasing the number of entries in the closed arms and in the central area, as compared with the control group, suggesting that MDMA, at this dose, has an anxiogenic-like activity. Mice subchronically treated with the drug (1 and 8 mg/kg) displayed a notable reduction in the time spent in the open arms, accompanied by an increase in the time spent in the closed arms and in the central platform. These results indicate that the anxiogenic-like effect found after acute treatment is not only maintained but also more marked after subchronic treatment. In contrast, mice treated subchronically with the highest dose of MDMA (15 mg/kg) exhibited a significant increase in the time spent in the open arms as well as a marked reduction in the time spent in the closed arms, supporting an anxiolytic-like activity of the drug. A possible dual pharmacological property of MDMA on anxiety is suggested.
Ceremuga, Tomás Eduardo; Helmrick, Katie; Kufahl, Zachary; Kelley, Jesse; Keller, Brian; Philippe, Fabiola; Golder, James; Padrón, Gina
As the use of herbal medications continues to increase in America, the potential interaction between herbal and prescription medications necessitates the discovery of their mechanisms of action. The purpose of this study was to investigate the anxiolytic and antidepressant effects of curcumin, a compound from turmeric (Curcuma longa), and its effects on the benzodiazepine site of the γ-aminobutyric acid receptor A (GABAA) receptor. Utilizing a prospective, between-subjects group design, 55 male Sprague-Dawley rats were randomly assigned to 1 of the 5 intraperitoneally injected treatment groups: vehicle, curcumin, curcumin + flumazenil, midazolam, and midazolam + curcumin. Behavioral testing was performed using the elevated plus maze, open field test, and forced swim test. A 2-tailed multivariate analysis of variance and least significant difference post hoc tests were used for data analysis. In our models, curcumin did not demonstrate anxiolytic effects or changes in behavioral despair. An interaction of curcumin at the benzodiazepine site of the GABAA receptor was also not observed. Additional studies are recommended that examine the anxiolytic and antidepressant effects of curcumin through alternate dosing regimens, modulation of other subunits on the GABAA receptor, and interactions with other central nervous system neurotransmitter systems.
Burokas, Aurelijus; Arboleya, Silvia; Moloney, Rachel D; Peterson, Veronica L; Murphy, Kiera; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F
2017-10-01
The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Behavioral Studies on the Mechanism of Buspirone, an Atypical Anti-Anxiety Drug
1986-06-17
D. P., Hyslop , D. K., & Riblet, L. AA Buspirone: A model for anxioselective drug action. Neuroscie~ce 8bstracts, 1980 , ~, 791. Temple, D. L...shows few other similarites to conventional anxiolytics. While benzodiazepines (BZs) are potent anticonvulsants and sedatives (Harvey, 1980 ), buspirone...anxiolytics, and is considered an effective predictor of their effectiveness (Sepinwall & Cook, 1980 ). However, compounds that stimulate GABA receptors
Papp, Mariusz; Gruca, Piotr; Lason-Tyburkiewicz, Magdalena; Willner, Paul
2016-04-01
The treatment of depression in old age is complicated by frequent co-morbidity with cognitive impairment. Anti-dementia drugs have some efficacy to improve cognitive performance and there is an inconsistent literature regarding the effect of such drugs on depressive symptoms. Here, we have investigated whether anti-dementia drugs would have antidepressant-like and pro-cognitive effects in a well-validated animal model of depression and cognitive impairment, chronic mild stress (CMS). Rats were subjected to CMS for a total of 8 weeks. After 2 weeks, subgroups of stressed and non-stressed animals were treated daily, for 5 weeks followed by 1 week of drug withdrawal, with vehicle, imipramine (10 mg/kg), rivastigmine (2 mg/kg), donepezil (0.3 mg/kg) or memantine (5 mg/kg). Sucrose intake was tested weekly, and animals were also tested in the elevated plus maze (at week 7) and in an object recognition task (at weeks 7 and 8). CMS decreased sucrose intake, had an anxiogenic effect in the elevated plus maze, and impaired performance in the object recognition test. Imipramine, rivastigmine and donepezil normalized performance in all three tests. Memantine had anxiolytic and pro-cognitive effects, but did not reverse CMS-induced anhedonia. The fact that all three anti-dementia drugs reversed CMS-induced cognitive impairment and that cholinesterase inhibitors, but not memantine, have antidepressant-like effects in this model suggest that different mechanisms may underlie CMS-induced anhedonia and cognitive impairment. We discuss the clinical implications of these findings.
Estrogen Receptors Modulation of Anxiety-Like Behavior
Borrow, A.P.; Handa, R.J.
2018-01-01
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens’ effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic–pituitary–adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. PMID:28061972
Estrogen Receptors Modulation of Anxiety-Like Behavior.
Borrow, A P; Handa, R J
2017-01-01
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. © 2017 Elsevier Inc. All rights reserved.
van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne
2010-01-01
Rationale Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABAA and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. Objectives The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective α subunit GABAA receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. Results The 5-HT1A receptor antagonist WAY-100635 (0.1–1 mg/kg) reversed the SIH-reducing effects of the non-α-subunit selective GABAA receptor agonist diazepam (1–4 mg/kg) and the GABAA receptor α3-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential α1-subunit GABAA receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. Conclusions The present study suggests an interaction between GABAA receptor α-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABAA receptor α3-subunits. Further understanding of the interactions between the GABAA and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs. PMID:20535452
Coimbra, Norberto C; Paschoalin-Maurin, Tatiana; Bassi, Gabriel S; Kanashiro, Alexandre; Biagioni, Audrey F; Felippotti, Tatiana T; Elias-Filho, Daoud H; Mendes-Gomes, Joyce; Cysne-Coimbra, Jade P; Almada, Rafael C; Lobão-Soares, Bruno
2017-01-01
To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors' research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.
Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats.
Pedraza, Lizeth K; Sierra, Rodrigo O; Lotz, Fernanda N; Alvares, Lucas de Oliveira
2018-05-08
In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world's most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.
Witkin, J M; Smith, J L; Ping, X; Gleason, S D; Poe, M M; Li, G; Jin, X; Hobbs, J; Schkeryantz, J M; McDermott, J S; Alatorre, A I; Siemian, J N; Cramer, J W; Airey, D C; Methuku, K R; Tiruveedhula, V V N P B; Jones, T M; Crawford, J; Krambis, M J; Fisher, J L; Cook, J M; Cerne, R
2018-05-03
HZ-166 has previously been characterized as an α2,3-selective GABA A receptor modulator with anticonvulsant, anxiolytic, and anti-nociceptive properties but reduced motor effects. We discovered a series of ester bioisosteres with reduced metabolic liabilities, leading to improved efficacy as anxiolytic-like compounds in rats. In the present study, we evaluated the anticonvulsant effects KRM-II-81 across several rodent models. In some models we also evaluated key structural analogs. KRM-II-81 suppressed hyper-excitation in a network of cultured cortical neurons without affecting the basal neuronal activity. KRM-II-81 was active against electroshock-induced convulsions in mice, pentylenetetrazole (PTZ)-induced convulsions in rats, elevations in PTZ-seizure thresholds, and amygdala-kindled seizures in rats with efficacies greater than that of diazepam. KRM-II-81 was also active in the 6 Hz seizure model in mice. Structural analogs of KRM-II-81 but not the ester, HZ-166, were active in all models in which they were evaluated. We further evaluated KRM-II-81 in human cortical epileptic tissue where it was found to significantly-attenuate picrotoxin- and AP-4-induced increases in firing rate across an electrode array. These molecules generally had a wider margin of separation in potencies to produce anticonvulsant effects vs. motor impairment on an inverted screen test than did diazepam. Ester bioisosters of HZ-166 are thus presented as novel agents for the potential treatment of epilepsy acting via selective positive allosteric amplification of GABA A signaling through α2/α3-containing GABA receptors. The in vivo data from the present study can serve as a guide to dosing parameters that predict engagement of central GABA A receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fedotova, Julia; Soultanov, Vagif; Nikitina, Tamara; Roschin, Victor; Ordyan, Natalia; Hritcu, Lucian
2016-10-01
Previous studies indicated that reduced androgen levels may contribute to both physical and cognitive disorders in men, including Alzheimer's disease. New drug candidates for Alzheimer's disease in patients with androgen deficiency should ideally be able to act not only on multiple brain targets but also to correct impaired endocrine functions in hypogonadal men with Alzheimer's disease. Ropren ® is one such candidate for the treatment of Alzheimer's disease in men with an imbalance of androgens. Accordingly, the aim of the current study was to examine the effects of long-term Ropren ® administration (8.6mg/kg, orally, once daily, for 28 days) on the anxiety-like behavior and monoamines levels in the rat hippocampus using a β-amyloid (25-35) rat model of Alzheimer's disease following gonadectomy. Ropren ® was administered to the gonadectomized (GDX) rats and GDX rats treated with testosterone propionate (TP, 0.5mg/kg, subcutaneous, once daily, for 28 days). Anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light-dark test (LDT), locomotor and grooming activities were assessed in the open field test (OFT). Ropren ® alone or in combination with TP-induced anxiolytic effects as evidenced in the EPM and in the LDT and increased locomotor activity in the OFT. Additionally, it was observed that dopamine (DA) and serotonin (5-HT) levels increased while 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in the hippocampus decreased. Our results indicate that Ropren ® has a marked anxiolytic-like action due to an increase in the monoamines levels in the experimental rat model of Alzheimer's disease with altered levels of androgens. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Bashiri, Hamideh; Rezayof, Ameneh; Sahebgharani, Mousa; Tavangar, Seyed Mohammad; Zarrindast, Mohammad-Reza
2016-06-01
The present study was designed to clarify whether α2-adrenoceptors of the basolateral amygdala (BLA) are involved in nicotine-induced anxiogenic-like behaviours. Adult male Wistar rats were bilaterally cannulated in the BLA and anxiety-like behaviours were assessed in an elevated plus maze (EPM) task. Systemic intraperitoneal (i.p.) administration of nicotine (0.3, 0.5 and 0.7 mg/kg) dose-dependently decreased open arm time (%OAT) and open arm entry (%OAE), indicating the anxiogenic-like effect of nicotine. The activation of the BLA α2-adrenoceptors by the injection of α2-receptor agonist, clonidine (0.1, 0.3 and 0.5 μg/rat) into the BLA (intra-BLA) reversed nicotine-induced anxiogenic-like behaviours. It is important to note that intra-BLA injection of a higher dose of clonidine (0.5 μg/rat) by itself increased %OAT, but not %OAE which showed an anxiolytic effect of the agonist. On the other hand, intra-BLA injection of different doses of α2-adrenoceptor antagonist, yohimbine (1, 3 and 5 μg/rat) in combination with an ineffective dose of nicotine (0.3 mg/kg) decreased %OAT and %OAE, suggesting a potentiative effect of the antagonist on nicotine response. In addition, intra-BLA injection of the same doses of yohimbine did not alter %OAT and %OAE. Interestingly, intra-BLA injection of yohimbine (0.5 and 1 μg/rat) significantly reversed the inhibitory effect of clonidine on nicotine-induced anxiogenic-like behaviours. It should be considered that the drug treatments had no effect on locomotor activity in all experiments. Taken together, it can be concluded that nicotine produces anxiogenic-like behaviours which may be mediated through the BLA α2-adrenoceptor mechanism. Copyright © 2016. Published by Elsevier Ltd.
Harmane induces anxiolysis and antidepressant-like effects in rats.
Aricioglu, Feyza; Altunbas, Hale
2003-12-01
A forced swim test (FST) and an elevated plus maze (EPM) were used to determine antidepressant and anxiolytic effects of harmane in rats in comparison with a known antidepressant, imipramine (30 mg/kg i.p.). Harmane (2.5, 5.0, or 10 mg/kg, i.p.), saline, or imipramine were given 30 minutes before the tests. Administration of harmane decreased the time of immobility in the FST dose-dependently and increased the time spent in open arms in the EPM, as compared with the saline group. As an endogenous substance, harmane therefore has anti-anxiety and antidepressant effects.
Voluntary Exercise Produces Antidepressant and Anxiolytic Behavioral Effects in Mice
Duman, Catharine H.; Schlesinger, Lee; Russell, David S.; Duman, Ronald S.
2008-01-01
Reports of beneficial effects of exercise on psychological health in humans are increasingly supported by basic research studies. Exercise is hypothesized to regulate antidepressant-related mechanisms and we therefore characterized the effects of chronic exercise in mouse behavioral paradigms relevant to antidepressant actions. Mice given free access to running wheels showed antidepressant-like behavior in learned helplessness, forced-swim (FST) and tail suspension paradigms. These responses were similar to responses of antidepressant drug-treated animals. When tested under conditions where locomotor activity was not altered, exercising mice also showed reduced anxiety compared to sedentary control mice. In situ hybridization analysis showed that BDNF mRNA was increased in specific subfields of hippocampus after wheel running. We chose one paradigm, the FST, in which to investigate a functional role for brain-derived neurotrophic factor (BDNF) in the behavioral response to exercise. We tested mice heterozygous for a deletion of the BDNF gene in the FST after wheel-running. Exercising wild-type mice showed the expected antidepressant-like behavioral response in the FST but exercise was ineffective in improving FST performance in heterozygous BDNF knockout mice. A possible functional contribution of a BDNF signaling pathway to FST performance in exercising mice was investigated using the specific MEK inhibitor PD184161 to block the MAPK signaling pathway. Subchronic administration of PD184161 to exercising mice blocked the antidepressant-like behavioral response seen in vehicle-treated exercising mice in the FST. In summary, chronic wheel-running exercise in mice results in antidepressant-like behavioral changes that may involve a BDNF related mechanism similar to that hypothesized for antidepressant drug treatment. PMID:18267317
Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats.
Brolese, Giovana; Lunardi, Paula; Broetto, Núbia; Engelke, Douglas S; Lírio, Franciane; Batassini, Cristiane; Tramontina, Ana Carolina; Gonçalves, Carlos-Alberto
2014-08-01
Alcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring. Female rats were exposed to an experimental protocol throughout gestation up to weaning. After mating, the dams were divided into three groups and treated with only water (control), non-alcoholic beer (vehicle) or 10% (vv) beer solution (moderate prenatal alcohol exposure - MPAE). Adolescent male offspring were subjected to the plus-maze discriminative avoidance task to evaluate learning/memory and anxiety-like behavior. Hippocampi were dissected and slices were obtained for immunoquantification of GFAP, NeuN, S100B and the NMDA receptor. The MPAE group clearly presented anxiolytic-like behavior, even though they had learned how to avoid the aversive arm. S100B protein was increased in the cerebrospinal fluid (CSF) in the group treated with alcohol, and alterations in GFAP expression were also shown. This study indicates that moderate ethanol doses administered during pregnancy could induce anxiolytic-like effects, suggesting an increase in risk-taking behavior in adolescent male offspring. Furthermore, the data show the possibility that glial cells are involved in the altered behavior present after prenatal ethanol treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
AVP and Glu systems interact to regulate levels of anxiety in BALB/cJ mice.
An, Xiao-Lei; Tai, Fa-Dao
2014-07-01
Whilethe roles of glutamic acid (Glu), arginine vasopressin (AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid (NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor (V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist (MK-801) and the AMPA receptor or V1aR antagonist (SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1aR, resulting in the up-regulation of the NMDA receptor and V1aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1aR.
Fisette, Alexandre; Fernandes, Maria F.; Hryhorczuk, Cécile; Poitout, Vincent; Alquier, Thierry; Fulton, Stephanie
2016-01-01
Background: GPR120 (FFAR4) is a G-protein coupled receptor implicated in the development of obesity and the antiinflammatory and insulin-sensitizing effects of omega-3 (ω-3) polyunsaturated fatty acids. Increasing central ω-3 polyunsaturated fatty acid levels has been shown to have both anorectic and anxiolytic actions. Despite the strong clinical interest in GPR120, its role in the brain is largely unknown, and thus we sought to determine the impact of central GPR120 pharmacological activation on energy balance, food reward, and anxiety-like behavior. Methods: Male C57Bl/6 mice with intracerebroventricular cannulae received a single injection (0.1 or 1 µM) or continuous 2-week infusion (1 µM/d; mini-pump) of a GPR120 agonist or vehicle. Free-feeding intake, operant lever-pressing for palatable food, energy expenditure (indirect calorimetry), and body weight were measured. GPR120 mRNA expression was measured in pertinent brain areas. Anxiety-like behavior was assessed in the elevated-plus maze and open field test. Results: GPR120 agonist injections substantially reduced chow intake during 4 hours postinjection, suppressed the rewarding effects of high-fat/-sugar food, and blunted approach-avoidance behavior in the open field. Conversely, prolonged central GPR120 agonist infusions reduced anxiety-like behavior in the elevated-plus maze and open field, yet failed to affect free-feeding intake, energy expenditure, and body weight on a high-fat diet. Conclusion: Acute reductions in food intake and food reward suggest that GPR120 could mediate the effects of central ω-3 polyunsaturated fatty acids to inhibit appetite. The anxiolytic effect elicited by GPR120 agonist infusions favors the testing of compounds that can enter the brain to activate GPR120 for the mitigation of anxiety. PMID:26888796
Auta, J; Romeo, E; Kozikowski, A; Ma, D; Costa, E; Guidotti, A
1993-05-01
The 2-hexyl-indoleacetamide derivative, FGIN-1-27 [N,N-di-n-hexyl-2- (4-fluorophenyl)indole-3-acetamide], and the imidazopyridine derivative, alpidem, both bind with high affinity to glial mitochondrial diazepam binding inhibitor receptors (MDR) and increase mitochondrial steroidogenesis. Although FGIN-1-27 is selective for the MDR, alpidem also binds to the allosteric modulatory site of the gamma-aminobutyric acidA receptor where the benzodiazepines bind. FGIN-1-27 and alpidem, like the neurosteroid 3 alpha,21-dehydroxy-5 alpha-pregnane-20-one (THDOC), clonazepam and zolpidem (the direct allosteric modulators of gamma-aminobutyric acidA receptors) delay the onset of isoniazid and metrazol-induced convulsions. The anti-isoniazid convulsant action of FGIN-1-27 and alpidem, but not that of THDOC, is blocked by PK 11195. In contrast, flumazenil blocked completely the anticonvulsant action of clonazepam and zolpidem and partially blocked that of alpidem, but it did not affect the anticonvulsant action of THDOC and FGIN-1-27. Alpidem, like clonazepam, zolpidem and diazepam, but not THDOC or FGIN-1-27, delay the onset of bicuculline-induced convulsions. In two animal models of anxiety, the neophobic behavior in the elevated plus maze test and the conflict-punishment behavior in the Vogel conflict test, THDOC and FGIN-1-27 elicited anxiolytic-like effects in a manner that is flumazenil insensitive, whereas alpidem elicited a similar anxiolytic effect, but is partially blocked by flumazenil. Whereas PK 11195 blocked the effect of FGIN-1-27 and partially blocked alpidem, it did not affect THDOC in both animal models of anxiety.(ABSTRACT TRUNCATED AT 250 WORDS)
Canto-de-Souza, L; Garção, D C; Romaguera, F; Mattioli, R
2015-02-05
Several findings have pointed to the role of histaminergic neurotransmission in the modulation of anxiety-like behaviors and emotional memory. The elevated plus-maze (EPM) test has been widely used to investigate the process of anxiety and also has been used to investigate the process of learning and memory. Visual cues are relevant to the formation of spatial maps, and as the hippocampus is involved in this task, experiment 1 explored this issue. Experiment 2 investigated the effects of intraperitoneal (i.p.) injections of l-histidine (LH, a precursor of histamine) and of intra-dorsal hippocampus (intra-DH) injections of chlorpheniramine (CPA, an H1 receptor antagonist) on anxiety and emotional memory in mice re-exposed to the EPM. Mice received saline (SAL) or LH i.p. and SAL or CPA (0.016, 0.052, and 0.16 nmol/0.1 μl) intra-DH prior to Trial 1 (T1) and Trial 2 (T2). No significant changes were observed in the number of enclosed-arm entries (EAE) in T1, an EPM index of general exploratory activity. LH had an anxiolytic-like effect that was reversed by intra-DH injections of CPA. T2 versus T1 analysis revealed that only the lower dose of CPA resulted in impaired emotional memory. Combined injections of LH and CPA revealed that higher doses of CPA impair emotional memory. Taken together, these results suggest that LH and H1 receptors present in the dorsal hippocampus are involved in anxiety-related behaviors and emotional memory in mice submitted to EPM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Direct effects of diazepam on emotional processing in healthy volunteers
Murphy, S. E.; Downham, C.; Cowen, P. J.
2008-01-01
Rationale Pharmacological agents used in the treatment of anxiety have been reported to decrease threat relevant processing in patients and healthy controls, suggesting a potentially relevant mechanism of action. However, the effects of the anxiolytic diazepam have typically been examined at sedative doses, which do not allow the direct actions on emotional processing to be fully separated from global effects of the drug on cognition and alertness. Objectives The aim of this study was to investigate the effect of a lower, but still clinically effective, dose of diazepam on emotional processing in healthy volunteers. Materials and methods Twenty-four participants were randomised to receive a single dose of diazepam (5 mg) or placebo. Sixty minutes later, participants completed a battery of psychological tests, including measures of non-emotional cognitive performance (reaction time and sustained attention) and emotional processing (affective modulation of the startle reflex, attentional dot probe, facial expression recognition, and emotional memory). Mood and subjective experience were also measured. Results Diazepam significantly modulated attentional vigilance to masked emotional faces and significantly decreased overall startle reactivity. Diazepam did not significantly affect mood, alertness, response times, facial expression recognition, or sustained attention. Conclusions At non-sedating doses, diazepam produces effects on attentional vigilance and startle responsivity that are consistent with its anxiolytic action. This may be an underlying mechanism through which benzodiazepines exert their therapeutic effects in clinical anxiety. PMID:18581100
Sorra, Kumaraswamy; Chen, Chien-Shu; Chang, Chi-Fen; Pusuluri, Srinivas; Mukkanti, Khagga; Wu, Chi-Rei; Chuang, Ta-Hsien
2014-09-18
Four new pentacyclic benzodiazepine derivatives (PBDTs 13-16) were synthesized by conventional thermal heating and microwave-assisted intramolecular cyclocondensation. Their anticonvulsant, sedative and anxiolytic activities were evaluated by drug-induced convulsion models, a pentobarbital-induced hypnotic model and an elevated plus maze in mice. PBDT 13, a triazolopyrrolo[2,1-c][1,4]benzodiazepin-8-one fused with a thiadiazolone ring, exhibited the best anticonvulsant, sedative and anxiolytic effects in our tests. There was no significant difference in potency between PBDT 13 and diazepam, and we proposed that the action mechanism of PBDT 13 could be similar to that of diazepam via benzodiazepine receptors.
Kovalev, G I; Kondrakhin, E A; Salimov, R M; Neznamov, G G
2013-01-01
The influence of acute and long-term piracetam administration on the dynamics of rapid (non-specific, anxiolytic) and slow (specific, nootropic) behavioral drug effects, as well as on their interrelation with NMDA- and BDZ-receptors was studied in inbred mice strains differing in cognitive and emotional status--C57BL/6 and BALB/c. The BALB/c strain contained 17% less [3H]-flunitrazepam binding sites in frontal cortex and 22% less [3H]-MK801 binding sites in hippocampus as compared to those in C57BL/6 mice. Based on these data, BALB/c strain was used as a model of psychopathology, combining increased anxiety and cognitive deficit. Under the action of single, 7-fold, and 14-fold piracetam i.p. injections (200 mg/kg body weight, daily), a fast increase in NMDA-receptor density and slow escalation of the specific nootropic effect was observed in BALB/c mice. Non-specific anxiolytic effects in these mice increased for the first 1 - 7 days without any changes in BDZ-binding and then decreased to initial values accompanied by decrement of brain receptor concentration. Thus, in BALB/c mice, a slowly manifested specific nootropic action of piracetam develops, following an increase in NMDA receptor density, whereas the non-specific anxiolytic effect precedes the fast-paced changes in BDZ-binding site density.
Sziray, Nóra; Kuki, Zsófia; Nagy, Katalin M; Markó, Bernadett; Kompagne, Hajnalka; Lévay, György
2010-05-01
The objective of the present study is to investigate the effects of single and simultaneous lesions of the noradrenergic and serotonergic pathways (NA-X, 5-HT-X and XX, respectively) by intracerebroventricular administration of selective neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine-HCl (DSP-4) and 5,7-dihydroxytryptamine (5,7-DHT) on anxiety-like behavior in rats. To evaluate the effects of the various lesions, animals were tested in elevated plus-maze (EPM) and light-dark (LD) paradigms. In EPM, single lesions produced strong, statistically significant increase (p<0.001) of both time spent in the open arms (OT) and number of entries into the open arms (OE) compared to sham-lesioned animals. Simultaneous lesion further strengthened this anxiolytic effect causing an approximate 500% elevation of OT compared to sham-lesioned animals. In LD, 5-HT lesion caused a significant (p<0.05) increase in both light movement time and light horizontal activity parameters compared to intact, sham, and NA-lesioned groups. Neither of the lesions caused any change in the spontaneous locomotor activity of the animals up to 15min as measured in activity meter. These findings suggest that single and simultaneous lesions of 5-HT- and NA-pathways modify anxiety-related state of experimental animals to different extents and these modifications alter the behavior of animals differently in the two models used: NA-X and 5-HT-X reduce open space anxiety-like behavior and XX further strengthens this effect in the EPM, while only 5-HT-X is resulting in reduced bright-space anxiety-like behavior leaving the performance of NA-X and XX animals unchanged.
Aragão, G F; Carneiro, L M V; Junior, A P F; Vieira, L C; Bandeira, P N; Lemos, T L G; Viana, G S de B
2006-12-01
In the present study, we examined the anxiolytic and antidepressant effects of the mixture of alpha- and beta-amyrin (AMY), pentacyclic triterpenes isolated from the stem bark resin of Protium heptaphyllum. These effects of AMY were demonstrated by the open-field, elevated-plus-maze, rota rod, forced swimming, and pentobarbital-induced sleeping time tests, in mice. In the open-field test, AMY at the doses of 10, 25 and 50 mg/kg, after intraperitoneal or oral administrations, significantly decreased the number of crossings, grooming, and rearing. All these effects were reversed by the pre-treatment with flumazenil (2.5 mg/kg, i.p.), similarly to those observed with diazepam used as a positive standard. In the elevated-plus-maze test, AMY increased the time of permanence and the number of entrances in the open arms. On the contrary, the time of permanence and the number of entrances in the closed arms were decreased. All these effects were also completely reversed by flumazenil, an antagonist of benzodiazepine receptors. In the pentobarbital-induced sleeping time test, AMY at the same doses significantly increased the animals sleeping time duration. In the rota rod test, AMY did not alter motor coordination and, thus, was devoid of effects, as related to controls. Since AMY, at the doses of 10 and 25 mg/kg, showed a sedative effect in the open field test, lower doses (2.5 and 5.0 mg/kg) were used in the forced swimming test, producing a decrease in the immobility time, similarly to that of imipramine, the positive control. The effect of AMI was greater when it was administered 15 min after imipramine (10 mg/kg). However, the antidepressant AMY effects were not altered by the previous administration of paroxetine, a selective blocker of serotonin uptake. In addition, AMY effects in the forced swimming test were totally blocked by reserpine pretreatment, a drug known to induce depletion of biogenic amines. In conclusion, the present work evidenced sedative and anxiolytic effects of AMY that might involve an action on benzodiazepine-type receptors, and also an antidepressant effect where noradrenergic mechanisms will probably play a role.
Essential oil of lavender in anxiety disorders: Ready for prime time?
2017-01-01
Anxiety disorders are some of the most common psychiatric disorders, with potentially debilitating consequences on individual function. Existing pharmacotherapies for anxiety disorders are limited by delay to therapeutic effect, dependence, tolerance, withdrawal, and abuse potential. Therefore, safe and evidence-based complementary or alternative therapies may be important allies in the care of patients with anxiety disorders. Essential oils are lipophilic and concentrated botanical extracts that exhibit many properties of drugs, although they are not Food and Drug Administration approved and have limitations characteristic of herbal preparations. Lavender essential oil has an extensive anecdotal history of anxiolytic benefit that has recently been supported by clinical efficacy studies. The 2 primary terpenoid constituents of lavender essential oil, linalool and linalyl acetate, may produce an anxiolytic effect in combination via inhibition of voltage-gated calcium channels, reduction of 5HT1A receptor activity, and increased parasympathetic tone. The objectives of this article are to provide a brief overview of lavender oil in aromatherapy, explore variability in the constituents of lavender oil, summarize its pharmacology and safety profile, as well as describe its body of research that has been conducted for anxiety.
Effect of anxiolytics on cognitive flexibility in problem solving.
Silver, Jennifer A; Hughes, John D; Bornstein, Robert A; Beversdorf, David Q
2004-06-01
Our purpose is to examine the effect of different classes of anxiolytics on cognitive flexibility. Situational stressors and anxiety impede performance on "creativity" tests requiring cognitive flexibility. Noradrenergic agents have been shown to modulate cognitive flexibility as assessed by performance on anagrams. To determine whether these findings on noradrenergic modulation of cognitive flexibility are specific to the noradrenergic system or are a nonspecific anxiety effect, we compared the effects of propranolol, lorazepam, and placebo on the anagram task. Subjects attended 3 test sessions. Prior to each session, subjects were given 1 of the 3 drugs. As in previous research, the natural log of the solution latency of each test item was summed for each test session and compared across drug conditions. For subjects able to solve the anagrams, solution times after propranolol, but not lorazepam, were significantly lower than after placebo. Therefore, this suggests that the phenomenon of noradrenergic modulation of cognitive flexibility does not result from a nonspecific anxiolytic effect, but rather is specific to the noradrenergic system.
Anxiolytic effect of Kami-Shoyo-San (TJ-24) in mice: possible mediation of neurosteroid synthesis.
Mizowaki, M; Toriizuka, K; Hanawa, T
2001-09-21
We assessed the anxiolytic effect of Kami-Shoyo-San (Jia-wei-xiao-yao-san; TJ-24), one of a traditional Chinese herbal medicine used for the treatment of menopausal anxiety, by the social interaction (SI) test in male mice. Acute administration of TJ-24 (25-100 mg/kg, p.o.), as well as the gamma-amino-butyric acidA/benzodiazepine (GABA(A)/BZP) receptor agonist diazepam (1-3 mg/kg, i.p.), dose dependently increased the SI time, respectively. The GABA(A) receptor antagonist picrotoxin blocked the effects of TJ-24 and diazepam. TJ-24-induced SI behavior was significantly blocked by the GABA(A)/BZP receptor inverse agonist Ro 15-4513 and the GABA(A)/BZP receptor antagonist flumazenil. In addition, 5alpha-reductase inhibitor finasteride potently blocked the effect of TJ-24 without attenuating the basal level by itself. These findings suggest that TJ-24 shows the anxiolytic effect through the neurosteroid synthesis followed by GABA(A)/BDZ receptor stimulations.
Dietary and botanical anxiolytics
Alramadhan, Elham; Hanna, Mirna S.; Hanna, Mena S.; Goldstein, Todd A.; Avila, Samantha M.; Weeks, Benjamin S.
2012-01-01
Summary Drugs used to treat anxiety have many negative side effects including addiction, depression, suicide, seizures, sexual dysfunction, headaches and more. Anxiolytic medications do not restore normal levels of neurotransmitters but instead manipulate the brain chemistry. For example, selective serotonin reuptake inhibitors (SSRIs) prevent the reuptake of serotonin from the synapse allowing serotonin to remain in the area of activity for a longer period of time but does not correct the lack of serotonin production. Benzodiazepines, such as Valium and Xanax®, stimulate GABA receptors, thus mimicking the calming effects of GABA but again do not fix the lack of GABA production. Often, the brain becomes accustomed to these medications and they often lose their effectiveness, requiring higher doses or different drugs. In contrast to anxiolytic drugs, there are herbs and nutrients which can stimulates neurotransmitter synthesis and more naturally effect and even adjust brain chemistry in the absence of many of the side effects experienced with drugs. Therefore this paper explores several herbal and nutritional approaches to the treatment of anxiety. PMID:22460105
Santos, Raliny O; de Assunção, Gabriela L M; de Medeiros, Diogo M B; de Sousa Pinto, Icaro A; de Barros, Keizianny S; Soares, Bruno L; André, Eunice; Gavioli, Elaine C; de Paula Soares-Rachetti, Vanessa
2014-02-01
Sibutramine is a serotonin and norepinephrine reuptake inhibitor indicated for the treatment of obesity. A pre-clinical study showed that acute administration of sibutramine promoted anxiolytic- and panicolytic-like effects in male rats. However, in clinical reports, sibutramine favoured the onset of panic attacks in women. In this study, the effect of sibutramine on experimental anxiety in females and the relevance of different oestrous cycle phases for this effect were analysed. In experiment 1, both male and female rats were submitted to acute intraperitoneal injection of sibutramine or vehicle 30 min. before testing in the elevated T-maze (ETM) and in the open-field test (OF). Females in the pro-oestrus (P), oestrus (E), early dioestrus (ED) and late dioestrus (LD) phases were tested in the ETM and OF (experiment 2) or in the elevated plus-maze (EPM) 30 min. after the injection of sibutramine. Sibutramine impaired the escape response in the ETM in both males and females. This effect was observed for P, E and ED, but not for LD females. Sibutramine altered neither the inhibitory avoidance in the ETM nor the behaviour of females in the EPM. Thus, sibutramine promoted a panicolytic-like effect in female rats cycling at P, E and ED, but not in the LD phase and did not alter behaviours related to anxiety in both ETM and EPM. Considering that pre-clinical studies aiming the screening of anxiolytic drugs employ male rodents, data here obtained reinforce the importance of better understanding the effects of drugs in females. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs.
Meldrum, Brian
2002-06-01
Classical screening tests (maximal electroshock, MES, and threshold pentylenetetrazol, PTZ) employ non-epileptic rodents and identify antiepileptic drugs (AEDs) with mechanisms of action associated with significant CNS side effects. Thus MES identifies drugs acting on Na+ channels that produce cerebellar toxicity. It may be possible to produce novel AEDs more selectively targeted at voltage-sensitive (VS) ion channels. There is little specific evidence for the likely success of this strategy with subunit selective agents targeted at the different VS Na+ channels. Drugs targeted at specific VS Ca++ channels (T, N, P/Q types) may be useful in generalised seizures. There are many as yet unexplored possibilities relating to K+ channels. GABA related drugs acting on PTZ clonic seizures tend to induce sedation and muscle hypotonia. Studies in mice, particularly with knock-in mutations, but also with subunit selective agents acting via the GABA(A) benzodiazepine site, suggest that it is possible to produce agents which do or do not induce particular side effects (sedative, hypnotic, anxiolytic, muscle relaxant, amnesia, anaesthesia). Whether these findings transfer to man has yet to be established. Acquired epilepsy in rodents (e.g. kindling or spontaneous seizures following chemically- or electrically-induced status epilepticus) or acquired epilepsy in man (following prolonged febrile seizures or traumatic brain injury) is associated with multiple changes in the function and subunit composition of ion channels and receptor molecules. Optimal screening of novel AEDs, both for efficacy and side effects, requires models with receptor and ion channel changes similar to those in the target human syndrome.
Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru
2003-02-01
We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.
Robert, Gabriel; Drapier, Dominique; Bentué-Ferrer, Danièle; Renault, Alain; Reymann, Jean-Michel
2011-07-07
While antidepressants are widely prescribed to humans for the treatment of anxiety, the results achieved with animal anxiety models are conflicting. The experimental procedure and the prior test history of the animals are critical parameters that are largely susceptible to influence the results and their interpretation. We compared the effect of 5mg fluoxetine administered to six groups of rats subjected to the psychopharmacological test of the elevated plus-maze, under experimental conditions designed to demonstrate the effect of handling and one daily injection on the response to fluoxetine. The results show that for animals with the same recent experience, fluoxetine, when administered once or over a period of 15 days, induces anxiogenic-like behaviour. On the other hand, our results also show that stressful handling has an anxiolytic-like effect modulating the anxiogenic-like effect of fluoxetine, without eliminating it altogether. Copyright © 2011 Elsevier B.V. All rights reserved.
Das, Narhari; Abdur Rahman, S. M.
2016-01-01
Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435
Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.
Malik, Jai; Karan, Maninder; Vasisht, Karan
2011-12-01
Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p < 0.001). E. alsinoides extract (EAE) and C. ternatea extract (CTE) showed maximum memory-enhancing and anxiolytic activity (p < 0.001) at 200 and 100?mg/kg, respectively. Amongst the three plants, EAE and CTE showed significant (p < 0.05), while CPE did not exhibit any antidepressant activity. All the three plants showed CNS-depressant action at higher dose levels. The above results showed all the three plants possess nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.
Pham, T H; Mendez-David, I; Defaix, C; Guiard, B P; Tritschler, L; David, D J; Gardier, A M
2017-01-01
Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT] ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT] ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT] ext following intra-mPFCx ketamine bilateral injection (0.25 μg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT] ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following the blockade of glutamatergic NMDA receptors. Tight interactions between mPFCx glutamatergic and serotonergic systems may explain the differences in this activity between ketamine and fluoxetine in vivo. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016. Published by Elsevier Ltd.
Ayissi Mbomo, Rigobert; Gartside, Sasha; Ngo Bum, Elizabeth; Njikam, Njifutie; Okello, Ed; McQuade, Richard
2012-04-01
Mimosa pudica (Linn.) (M. pudica L.) is a plant used in some countries to treat anxiety and depression. In the present study we investigated the effects of an aqueous extract of M. pudica L. on mouse anxiety-like behaviour using the elevated T maze, and on regulation of dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT) neuronal activity using an in-vitro mouse brain slice preparation. Acute treatment with M. pudica L. extract had an anxiolytic effect on behaviour in the elevated T maze, specifically on inhibitory avoidance behaviour. Acute application of the extract alone had no effect on the activity of DRN 5-HT neurones. However, when co-applied with the GABA(A) receptor agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), the extract enhanced the inhibitory effect of the THIP on DRN 5-HT neurones. These observed effects of M. pudica L. on both behaviour and GABA modulation of 5-HT neuronal activity are similar to the effects of diazepam, the established anxiolytic and positive modulator of the GABA(A) receptor. This study suggests that the aqueous extract of M. pudica L. contains a positive modulator of GABA(A) receptor function and provides impetus for further investigation of the neuropharmacologically active constituents of the extract.
Cao, Guo-Ping; Gui, Dan; Fu, Lu-Di; Guo, Zhou-Ke; Fu, Wen-Jun
2016-08-01
Dan-zhi-xiao-yao-san is a Traditional Chinese Medicinal formulation widely used for the treatment of neuropsychological disorders. The present study examined the anxiolytic and neuroprotective effects of Dan-zhi-xiao-yao-san in a rat model of chronic stress. The results of an elevated plus maze test showed that Dan‑zhi‑xiao‑yao‑san significantly attenuated the levels of anxiety-induced stress as evidenced by increases in the time spent in the open arm region, as well as the percentage of entries into this area. In addition, Dan-zhi-xiao-yao-san alleviated stress‑induced neuronal death, as indicated by histological examination. Furthermore, mechanistic studies suggested that the anxiolytic and neuroprotective effects of Dan-zhi-xiao-yao-san may be mediated via attenuation of chronic stress‑induced upregulation of α‑synuclein and corticosterone, and downregulation of protein phosphatase 2A (PP2A) in the hippocampal region of the brain at the mRNA and protein level. In addition, Dan‑zhi‑xiao‑yao‑san decreased the serum levels of stress‑induced corticosterone in the model animals. In conclusion, the present study demonstrated that Dan‑zhi‑xiao‑yao‑san exerted anxiolytic and neuroprotective effects in a rat model of chronic stress via attenuation of stress‑induced upregulation of α‑synuclein and corticosterone, and downregulation of PP2A in the hippocampus.
Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan
2013-01-01
Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.
Effects of Cecropia pachystachya and Larrea divaricata aqueous extracts in mice.
Bigliani, M C; Grondona, E; Zunino, P M; Ponce, A A
2010-07-01
Our studies were performed to investigate the effects of the aqueous extracts of Cecropia pachystachya and Larrea divaricata. These plants are used in folkloric medicine in infusion and were administered orally (0.76 g/kg) to male Albino Swiss mice for 16 days, on drink intake, organ weight/body weight (OW/BW x 100) ratio, histology, broqueoalveolar fluid (BALF) and elevated plus-maze (EPM). Feeding as well as body weight were unaffected by the consumption of these extracts. There were no signs of toxicity in BALF, morbidity or mortality during the study. C. pachystachya caused an increase in relative kidney OW/BW (p
Shetkar, Pratibha; Jadhav, Ganesh Ranganath; Mittal, Priya; Surapaneni, Saikalyan; Kalra, Dheeraj; Sakri, Mohan; Basavaprabhu, A
2016-01-01
Introduction: In teeth with irreversible pulpitis, successful local anesthesia is hard to achieve irrespective of the amount of local anesthesia and technique used. Such cases can be managed by concoction of pre-medications like anxiolytics, analgesics and effective local anesthesia. This double-blind, placebo-controlled study was planned to evaluate the effect of oral administration of alprazolam and diclofenac potassium on the success rate of inferior alveolar nerve block (IANB), Gow-Gates (GG) and Vazirani-Akinosi (VA) techniques for the root canal treatment of mandibular molars with irreversible pulpitis. Method: 198 emergency patients with symptomatic irreversible pulpitis were randomly divided into three groups as – A, B and C receiving IANB, GG or V-A respectively using 2% lidocaine with 1: 100,000 epinephrine. These groups were sub-divided into sub-groups I and II as control and pre-medication groups. Patients who did not react to the stimulus made by an explorer between the canine and first premolar and showing subjective lip and tongue numbness were included in the study. Result: All sub-groups showed statistically significant reduction in VAS score. However sub-groups V and VI (that is GG with and without pre-medication respectively) showed best improvement in initial severe pain in mandibular molars with irreversible pulpitis. Moreover, all pre-medication sub-groups showed better pain control compared to respective control groups. Conclusion: It was concluded that use of pre-medications in the form of combination of anxiolytics and analgesics improves the success rate of local anesthesia in teeth with irreversible pulpitis. Use of anxiolytics eases the patient in endodontic emergencies. Also use of GG along with pre-medication is the best method for effective pain management of acute pain in irreversible pulpitis. PMID:27656053
Motoki, Kosuke; Sugiura, Motoaki; Takeuchi, Hikaru; Kotozaki, Yuka; Nakagawa, Seishu; Yokoyama, Ryoichi; Kawashima, Ryuta
2016-01-01
Plasma oxytocin (OT) and arginine vasopressin (AVP) are associated with individual differences in emotional responses and behaviors. The amygdala is considered to be an important brain region for regulating emotion-based behavior, with OT and AVP modulating activity in the amygdala during the processing of negative emotions. In particular, increased OT levels may diminish amygdala activation (anxiolytic effects) and enhanced AVP levels may augment amygdala activation (anxiogenic effects) when negative emotions are processed. A growing body of research has shown that the effects of OT and AVP are modulated by sex: the aforementioned anxiolytic effects of OT and the anxiogenic effects of AVP occur in men, but not in women. However, we have little knowledge regarding the biological mechanisms underlying OT and AVP plasma levels or their respective anxiogenic and anxiolytic effects; similarly, little is known about the causes and nature of sex differences related to these neuropeptides and their effects on emotional processing. In the current study, we focused on the neural functions associated with the biological mechanisms underlying such effects. We hypothesized that amygdala activation would correlate with trait plasma OT (anxiolytic effects) and AVP (anxiogenic effects) levels because the amygdala is thought to affect the coordinated release of these neuropeptides following affective experiences. We further hypothesized that the effects would be modulated by sex. We assessed 51 participants (male and female) using a paradigm involving negative emotion in conjunction with functional magnetic resonance imaging and measurements of plasma OT and AVP levels. We determined that increased plasma AVP levels were positively associated with amygdala activation (anxiogenic effects) in men, but not in women. These findings highlight the potential underlying neural mechanisms of plasma AVP levels in men.
Del Valle-Mojica, Lisa M; Ortíz, José G
2012-11-01
Valerian extract is used in complementary and alternative medicine for its anxiolytic and sedative properties. Our previous research demonstrated valerian interactions with glutamate receptors. The purpose of this study was to determine if valerian anxiolytic properties are mediated by metabotropic glutamate receptors (mGluR) such as mGluR (1/5) (mGluR I) and mGluR (2/3) (mGluR II). Adult wild-type zebrafish (Danio rerio) prefer the black compartment and avoid the white compartment in the dark/light preference task. Zebrafish exposed to 1 mg/mL of valerian extract or 0.00117 mg/mL valerenic acid increased their residence time in the white side by 84.61 ± 6.55 % and 58.30 ± 8.97 %, respectively. LAP3 (mGluR I antagonist) and EGLU (mGluR II antagonist) significantly inhibited the effects of valerian and valerenic acid. These results demonstrated that valerian and valerenic acid have anxiolytic properties in the zebrafish. Moreover, the selective interaction of valerian with mGluR I and II represent an alternative explanation for the anxiolytic properties of this plant and support the role of mGluR in anxiety. Georg Thieme Verlag KG Stuttgart · New York.
Wang, Lei; de Kloet, Annette D.; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A.; Pioquinto, David J.; Ludin, Jacob A.; Oh, S. Paul; Katovich, Michael J.; Frazier, Charles J.; Raizada, Mohan K.; Krause, Eric G.
2016-01-01
Over-activation of brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme (ACE2) inhibits RAS activity by converting angiotensin II, the effector peptide of RAS, to angiotensin-(1-7), which activates Mas receptors (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ~62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA. PMID:26767952
Ahn, Sangzin; Choi, Mooseok; Kim, Hyunju; Yang, Eun-Jeong; Mahmood, Usman; Kang, Seong-Il; Shin, Hyun-Woo; Kim, Dae Woo; Kim, Hye-Sun
2018-04-23
Olfactory loss is known to affect both mood and quality of life. Transient anosmia was induced in mice to study the resulting changes in mood, behavior, and on a molecular level. Transient anosmia was induced by a single intranasal instillation of ZnSO4 in BALB/c mice. Hematoxylin and eosin (HE) staining, and potato chip finding test were performed to confirm olfactory loss. Tail suspension, forced swim, and splash tests were performed to evaluate depression-related behavior; while the open field, and elevated plus maze tests were used to evaluate anxiety-related behavior. The mRNA levels of amygdalar corticotropin-releasing hormone (CRH) and hypothalamic glucocorticoid receptor (GR) were quantified using real-time PCR to confirm relevant molecular change. Olfactory loss was confirmed 1-2.5 weeks after induction, and this loss was subsequently reversed over time. The results of the behavioral tests indicated increased depression-like and reduced anxiety-like behavior at week 1. Accordingly, PCR data identified decreased amygdalar CRH expression at week 1. These results suggest that transient anosmia induces both depressive and anxiolytic behavior as a result of decreased amygdalar CRH in a mouse model of anosmia.
Anesthetic considerations for pediatric electroconvulsive therapy.
Franklin, Andrew D; Sobey, Jenna H; Stickles, Eric T
2017-05-01
Electroconvulsive therapy is being used more frequently in the treatment of many chronic and acute psychiatric illnesses in children. The most common psychiatric indications for pediatric electroconvulsive therapy are refractory depression, bipolar disorder, schizophrenia, catatonia, and autism. In addition, a relatively new indication is the treatment of pediatric refractory status epilepticus. The anesthesiologist may be called upon to assist in the care of this challenging and vulnerable patient population. Unique factors for pediatric electroconvulsive therapy include the potential need for preoperative anxiolytic and inhalational induction of anesthesia, which must be weighed against the detrimental effects of anesthetic agents on the evoked seizure quality required for a successful treatment. Dexmedetomidine is likely the most appropriate preoperative anxiolytic as oral benzodiazepines are relatively contraindicated. Methohexital, though becoming less available at many institutions, remains the gold standard for induction of anesthesia for pediatric electroconvulsive therapy though ketamine, propofol, and sevoflurane are becoming increasingly viable options. Proper planning and communication between the multidisciplinary teams involved in the care of children presenting for electroconvulsive therapy treatments is vital to mitigating risks and achieving the greatest therapeutic benefit. © 2017 John Wiley & Sons Ltd.
Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan
2013-01-01
Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the “open-arm” were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity. PMID:23554792
Anticonvulsant and antipunishment effects of toluene.
Wood, R W; Coleman, J B; Schuler, R; Cox, C
1984-08-01
Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety ("anxiolytics"), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, we first demonstrated that pretreatment with injections of toluene delayed the onset of convulsive signs and prevented the tonic extension phase of the convulsant activity in a dose-related manner. Injections of another alkyl benzene, m-xylene, were of comparable potency to toluene. Inhalation of toluene delayed the time to death after pentylenetetrazol injection in a manner related to the duration and concentration of exposure; at lower convulsant doses, inhalation of moderate concentrations (EC50, 1311 ppm) prevented death. Treatment with a benzodiazepine receptor antagonist (Ro 15-1788) failed to reduce the anticonvulsant activity of inhaled toluene. Anxiolytics also attenuate the reduction in response rate produced by punishment with electric shock. Toluene increased rates of responding suppressed by punishment when responding was maintained under a multiple fixed-interval fixed-interval punishment schedule of reinforcement. Distinct antipunishment effects were observed after 2 hr of exposure to 1780 and 3000 ppm of toluene; the rate-increasing effects of toluene were related to concentration and to time after the termination of exposure. Thus, toluene and m-xylene resemble in several respects clinically useful drugs such as the benzodiazepines.
The anxiolytic activity of n-3 PUFAs enriched egg yolk phospholipids in rat behavioral studies.
Rutkowska, M; Słupski, W; Trocha, M; Szandruk, M; Rymaszewska, J
2016-11-02
Phospholipids play an important role in the biochemical and physiological processes of cells. An association between disturbed phospholipids metabolism in neuronal tissue and anxiety it was shown. The aim of this study was to examine the anxiolytic properties of phospholipids obtained from a new generation of eggs enriched in n-3 PUFA and its effect on locomotor activity in rat behavioral studies N-3 PUFA-enriched egg yolk phospholipids ("super lecithin") were added to the standard feed. Rats were fed by chow without (control group) or with (experimental group) addition of phospholipids. After six weeks of supplementation, the effect of phospholipids on locomotor activity in the open field test and anxiolytic properties in elevated plus maze and Vogel conflict test were examined. In the open field test the total distance traveled in the experimental group was similar to the control group. In the elevated plus maze test a six weeks phospholipids' administration significantly prolonged the time spent on the open arms by rats from experimental group compared to control group. The number of entries into the open arms was also increased but the difference was not statistically significant. The number of punished drinking water in the Vogel conflict test increased significantly in experimental versus control group. The obtained results suggest that the phospholipids isolated from n-3 PUFA enriched egg yolk have a specific anxiolytic effect, without general sedative influence.
Palleria, Caterina; Leo, Antonio; Andreozzi, Francesco; Citraro, Rita; Iannone, Michelangelo; Spiga, Rosangela; Sesti, Giorgio; Constanti, Andrew; De Sarro, Giovambattista; Arturi, Franco; Russo, Emilio
2017-03-15
Diabetes has been identified as a risk factor for cognitive dysfunctions. Glucagone like peptide 1 (GLP-1) receptor agonists have neuroprotective effects in preclinical animal models. We evaluated the effects of GLP-1 receptor agonist, liraglutide (LIR), on cognitive decline associated with diabetes. Furthermore, we studied LIR effects against hippocampal neurodegeneration induced by streptozotocin (STZ), a well-validated animal model of diabetes and neurodegeneration associated with cognitive decline. Diabetes and/or cognitive decline were induced in Wistar rats by intraperitoneal or intracerebroventricular injection of STZ and then rats were treated with LIR (300μg/kg daily subcutaneously) for 6 weeks. Rats underwent behavioral tests: Morris water maze, passive avoidance, forced swimming (FST), open field, elevated plus maze, rotarod tests. Furthermore, LIR effects on hippocampal neurodegeneration and mTOR pathway (AKT, AMPK, ERK and p70S6K) were assessed. LIR improved learning and memory only in STZ-treated animals. Anxiolytic effects were observed in all LIR-treated groups but pro-depressant effects in CTRL rats were observed. At a cellular/molecular level, intracerebroventricular STZ induced hippocampal neurodegeneration accompanied by decreased phosphorylation of AMPK, AKT, ERK and p70S6K. LIR reduced hippocampal neuronal death and prevented the decreased phosphorylation of AKT and p70S6K; AMPK was hyper-phosphorylated in comparison to CTRL group, while LIR had no effects on ERK. LIR reduced animal endurance in the rotarod test and this effect might be also linked to a reduction in locomotor activity during only the last two minutes of the FST. LIR had protective effects on cognitive functions in addition to its effects on blood glucose levels. LIR effects in the brain also comprised anxiolytic and pro-depressant actions (although influenced by reduced endurance). Finally, LIR protected from diabetes-dependent hippocampal neurodegeneration likely through an effect on mTOR pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula
2015-07-25
Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Potential behavioral and pro-oxidant effects of Petiveria alliacea L. extract in adult rats.
de Andrade, Thaís Montenegro; de Melo, Ademar Soares; Dias, Rui Guilherme Cardoso; Varela, Everton Luís Pompeu; de Oliveira, Fábio Rodrigues; Vieira, José Luís Fernandes; de Andrade, Marcieni Ataíde; Baetas, Ana Cristina; Monteiro, Marta Chagas; Maia, Cristiane do Socorro Ferraz
2012-09-28
Petiveria alliacea (Phytolaccaceae) is a perennial shrub indigenous to the Amazon Rainforest and tropical areas of Central and South America, the Caribbean, and sub-Saharan Africa. In folk medicine, Petiveria alliacea has a broad range of therapeutic properties; however, it is also associated with toxic effects. The present study evaluated the putative effects of Petiveria alliacea on the central nervous system, including locomotor activity, anxiety, depression-like behavior, and memory, and oxidative stress. Two-month-old male and female Wistar rats (n=7-10 rats/group) were administered with 900 mg/kg of hydroalcoholic extracts of Petiveria alliacea L. The behavioral assays included open-field, forced swimming, and elevated T-maze tests. The oxidative stress levels were measured in rat blood samples after behavioral assays and methemoglobin levels were measured in vitro. Consistent with previous reports, Petiveria alliacea increased locomotor activity. It also exerted previously unreported anxiolytic and antidepressant effects in behavioral tests. In the oxidative stress assays, the Petiveria alliacea extract decreased Trolox equivalent antioxidant capacity levels and increased methemoglobin levels, which was related to the toxic effects. The Petiveria alliacea extract exerted motor stimulatory and anxiolytic effects in the OF test, antidepressant effects in the FS test, and elicited memory improvement in ETM. Furthermore, the Petiveria alliacea extract also exerted pro-oxidant effects in vitro and in vivo, inhibiting the antioxidant status and increasing MetHb levels in human plasma, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Antioxidant and anxiolytic activities of Crataegus nigra Wald. et Kit. berries.
Popovic-Milenkovic, Marija T; Tomovic, Marina T; Brankovic, Snezana R; Ljujic, Biljana T; Jankovic, Slobodan M
2014-01-01
Hawthorn has been present for a long time in traditional medicine as antihypertensive, hypolipidemic, anti-inflammatory, gastroprotective, antimicrobial agent. Hawthorn can be used for the cure of stress, nervousness but there is no published paper about actions of Crataegus nigra Wald. et Kit. fruits. The present study was carried out to test free-radical-scavenging and anxiolytic activity of C. nigra fruits. DPPH (alpha,alpha-diphenyl-beta-picrylhydrazyl) assay was used to measure antioxidant activity. BHT, BHA, PG, quercetin and rutin were used as standards. The total amount of phenolic compounds, procyanidins, and flavonoids in the extracts, was determined spectrophotometrically. Results were expressed as equivalents of gallic acid, cyanidin chloride and quercetin equivalents, respectively. LC-MS/MS was used for identification and quantification of phenolic composition. The anxiety effect, expressed as the difference in time spent in the open and closed arms, was measured and compared between groups. Phenolic compound content of Crataegus nigra fruits was 72.7 mg/g. Yield of total flavonoid aglycones was 0.115 mg/g. Procyanidins were 5.6 mg/g. DPPH radical-scavenging capacity of the extracts showed linear concentration dependency, IC50 value were 27.33 microg/mL. Anxiolytic effect was observed. Species Crataegus nigra fruits hydroalcoholic extract showed antioxidant and anxiolytic activity.
Mora, S; Millán, R; Lungenstrass, H; Díaz-Véliz, G; Morán, J A; Herrera-Ruiz, M; Tortoriello, J
2006-06-15
Behavioral effects of a hydroalcoholic (60% ethanol) extract from the leaves of Salvia elegans Vahl (Lamiaceae) were studied in male Sprague-Dawley rats. The extract was administered intraperitoneally and its effects on spontaneous motor activity (total motility, locomotion, rearing and grooming behavior) were monitored. Putative anxiolytic and antidepressant properties of Salvia elegans were studied in the elevated plus-maze test (EPM) and in the forced swimming test (FST), respectively. Deleterious effects of Salvia elegans on learning and memory were also studied by using active and passive avoidance paradigms. The results revealed that all doses (3.12, 12.5, 25 and 50 mg/kg) of the extract caused a significant decrease in total motility, locomotion, rearing and grooming behavior. Only the dose of 12.5 mg/kg increased the exploration of the EPM open arms in a similar way to that of diazepam (1 mg/kg). In the FST, all doses of the extract induced a reduction of immobility, in a similar way to that of fluoxetine (10 mg/kg) and imipramine (12.5 mg/kg), along with a significant increase in the time spent in swimming behavior. Acquisition of active avoidance responses was disrupted by pre-treatment with the extract, but retention of a passive avoidance response was not significantly modified. These results suggest that some of the components of the hydroalcoholic extract of Salvia elegans have psychotropic properties, which deserve further investigation.
Gould, Robert W; Amato, Russell J; Bubser, Michael; Joffe, Max E; Nedelcovych, Michael T; Thompson, Analisa D; Nickols, Hilary H; Yuh, Johannes P; Zhan, Xiaoyan; Felts, Andrew S; Rodriguez, Alice L; Morrison, Ryan D; Byers, Frank W; Rook, Jerri M; Daniels, John S; Niswender, Colleen M; Conn, P Jeffrey; Emmitte, Kyle A; Lindsley, Craig W; Jones, Carrie K
2016-03-01
Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.
Aman, Urooj; Subhan, Fazal; Shahid, Muhammad; Akbar, Shehla; Ahmad, Nisar; Ali, Gowhar; Fawad, Khwaja; Sewell, Robert D E
2016-02-24
Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocin-induced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative activities in mice in order to examine possible underlying mechanisms. PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia. GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide), palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency. These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed.
Ceremuga, Tomás Eduardo; Valdivieso, Debra; Kenner, Catherine; Lucia, Amy; Lathrop, Keith; Stailey, Owen; Bailey, Heather; Criss, Jonathan; Linton, Jessica; Fried, Jordan; Taylor, Andrew; Padron, Gina; Johnson, Arthur Don
2015-04-01
Herbal medication use continues to rise and interactions with existing medications propose risks and may have significant effects and consequences on the administration of anesthesia. The purpose of this study was to investigate the anxiolytic and antidepressant effects of asiatic acid and its potential modulation of the γ-aminobutyric acid (GABAA) receptor. Fifty-five male Sprague Dawley rats were divided into 5 groups: vehicle (DMSO), asiatic acid (AA), midazolam, or a combination of flumazenil + AA or midazolam + AA, and injected intraperitoneally 30 minutes prior to testing. The rats were tested on the Elevated Plus Maze (EPM) and the Forced Swim Test (FST). Data were analyzed using a two-tailed multivariate analysis of variance (MANOVA). Significance was found regarding the ratio of open arm time, maximum speed, and time spent mobile in the AA group and the midazolam + AA group (P < .05). Flumazenil decreased the anxiolytic effects, suggesting that AA modulates the benzodiazepine site on the GABAA receptor. Further studies are recommended to determine the efficacy of prolonged treatment for anxiety and depression.
50 years of hurdles and hope in anxiolytic drug discovery
Griebel, Guy; Holmes, Andrew
2014-01-01
Anxiety disorders are the most prevalent group of psychiatric diseases, and have high personal and societal costs. The search for novel pharmacological treatments for these conditions is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. A huge volume of data has been generated by anxiolytic drug discovery studies, which has led to the progression of numerous new molecules into clinical trials. However, the clinical outcome of these efforts has been disappointing, as promising results with novel agents in rodent studies have very rarely translated into effectiveness in humans. Here, we analyse the major trends from preclinical studies over the past 50 years conducted in the search for new drugs beyond those that target the prototypical anxiety-associated GABA (γ-aminobutyric acid)–benzodiazepine system, which have focused most intensively on the serotonin, neuropeptide, glutamate and endocannabinoid systems. We highlight various key issues that may have hampered progress in the field, and offer recommendations for how anxiolytic drug discovery can be more effective in the future. PMID:23989795
Rebolledo-Solleiro, Daniela; Crespo-Ramírez, Minerva; Roldán-Roldán, Gabriel; Hiriart, Marcia; Pérez de la Mora, Miguel
2013-08-15
Conflicting results have been obtained by several groups when studying the effects of streptozotocin (STZ)-treated rats in the elevated plus-maze (EPM). Since thirst is a prominent feature in STZ-induced diabetic-like condition, we studied whether the walls of the closed arms of the EPM, by limiting the search for water in the environment, may contribute to the observed differential behavioral outcomes. The aim of this study was to ascertain whether visual barriers within the EPM have an influence on the behavior of STZ-treated rats in this test of anxiety. A striking similarity between STZ-treated (50 mg/kg, i.p., in two consecutive days) and water deprived rats (72 h) was found in exploratory behavior in the EPM, showing an anxiolytic-like profile. However the anxiolytic response of STZ-treated rats exposed to the EPM shifts into an anxiogenic profile when they are subsequently tested in the open-field test, which unlike the EPM is devoid of visual barriers. Likewise, water deprived rats (72 h) also showed an anxiogenic profile when they were exposed to the open-field test. Our results indicate that experimental outcomes based on EPM observations can be misleading when studying physiological or pathological conditions, e.g. diabetes, in which thirst may increase exploratory behavior. © 2013.
Phylogenetic appearance of Neuropeptide S precursor proteins in tetrapods
Reinscheid, Rainer K.
2007-01-01
Sleep and emotional behavior are two hallmarks of vertebrate animal behavior, implying that specialized neuronal circuits and dedicated neurochemical messengers may have been developed during evolution to regulate such complex behaviors. Neuropeptide S (NPS) is a newly identified peptide transmitter that activates a typical G protein-coupled receptor. Central administration of NPS produces profound arousal, enhances wakefulness and suppresses all stages of sleep. In addition, NPS can alleviate behavioral responses to stress by producing anxiolytic-like effects. A bioinformatic analysis of current genome databases revealed that the NPS peptide precursor gene is present in all vertebrates with the exception of fish. A high level of sequence conservation, especially of aminoterminal structures was detected, indicating stringent requirements for agonist-induced receptor activation. Duplication of the NPS precursor gene was only found in one out of two marsupial species with sufficient genome coverage (Monodelphis domestica; opossum), indicating that the duplicated opossum NPS sequence might have arisen as an isolated event. Pharmacological analysis of both Monodelphis NPS peptides revealed that only the closely related NPS peptide retained agonistic activity at NPS receptors. The duplicated precursor might be either a pseudogene or could have evolved different receptor selectivity. Together, these data show that NPS is a relatively recent gene in vertebrate evolution whose appearance might coincide with its specialized physiological functions in terrestrial vertebrates. PMID:17293003
Holmes, A; Rodgers, R J
1999-11-01
It has been widely reported that the anxiolytic efficacy of benzodiazepines in the elevated plus-maze test is abolished in subjects (rats or mice) that have been given a single prior undrugged experience of the test apparatus. The present series of experiments was designed to further characterise the key experiential determinants of this intriguing phenomenon in Swiss Webster mice. Using a standard 5 min test duration for both trials, Experiment 1 confirmed the anxiolytic efficacy of chlordiazepoxide (CDP; 5-20 mg/kg) in mice naive to the plus-maze, but a virtual elimination of drug effects in animals that had been pre-exposed to the maze 24 h earlier. Experiments 2 and 3 demonstrated that, while extending the duration of initial exposure to 10 min did not prevent the loss of CDP (10 mg/kg) efficacy in a standard-duration second trial, increasing the duration of both trials reinstated an anxiolytic profile for the compound. Finally, although trial 1 confinement to an open arm did not compromise CDP efficacy when animals were subsequently allowed to freely explore the maze (Experiment 4), closed arm confinement during initial exposure abolished the drug's anxiolytic action upon retest (Experiment 5). In contrast to previous findings in rats, these data suggest that the experientially induced loss of benzodiazepine efficacy in the mouse plus-maze depends rather critically upon prior discovery and exploration of relatively safe areas of the maze (i.e. closed arms). Results are discussed in relation to the hypothesis that the absence of an anxiolytic response to benzodiazepines in plus-maze-experienced subjects reflects the acquisition of an open arm phobia during trial 1.
Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.
Shaw, D; Annett, J M; Doherty, B; Leslie, J C
2007-09-01
To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.
Gutiérrez-Mariscal, Mariana; de Gortari, Patricia; López-Rubalcava, Carolina; Martínez, Adrián; Joseph-Bravo, Patricia
2008-02-01
Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the levels of serum corticosterone. WKY rats showed higher anxiety-like behaviour in the DBT than Wistar, as well as increased PVN mRNA levels of CRH and GR. TRH mRNA levels increased in the PVN and TSH values remained unchanged in both strains although TRH content decreased in the medial basal hypothalamus of Wistar rats only. TRH content was measured in several limbic regions but only amygdala showed specific task-related changes after DBT exposure of both strains: increased TRH content. Expression of TRH mRNA decreased in the amygdala of Wistar, suggesting inhibition of TRHergic neuronal activity in this region. The participation of amygdalar TRH neurons in anxiety was confirmed in the EPM where TRH expression and release correlated with the number of entries, and the % of time spent in open arms, supporting an anxiolytic role of these TRH-neurons. These results contribute to the understanding of the involvement of TRH during emotionally charged situations and shed light on the participation of particular circuits in related behaviours.
Messaoudi, Michaël; Lalonde, Robert; Violle, Nicolas; Javelot, Hervé; Desor, Didier; Nejdi, Amine; Bisson, Jean-François; Rougeot, Catherine; Pichelin, Matthieu; Cazaubiel, Murielle; Cazaubiel, Jean-Marc
2011-03-01
In a previous clinical study, a probiotic formulation (PF) consisting of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 (PF) decreased stress-induced gastrointestinal discomfort. Emerging evidence of a role for gut microbiota on central nervous system functions therefore suggests that oral intake of probiotics may have beneficial consequences on mood and psychological distress. The aim of the present study was to investigate the anxiolytic-like activity of PF in rats, and its possible effects on anxiety, depression, stress and coping strategies in healthy human volunteers. In the preclinical study, rats were daily administered PF for 2 weeks and subsequently tested in the conditioned defensive burying test, a screening model for anti-anxiety agents. In the clinical trial, volunteers participated in a double-blind, placebo-controlled, randomised parallel group study with PF administered for 30 d and assessed with the Hopkins Symptom Checklist (HSCL-90), the Hospital Anxiety and Depression Scale (HADS), the Perceived Stress Scale, the Coping Checklist (CCL) and 24 h urinary free cortisol (UFC). Daily subchronic administration of PF significantly reduced anxiety-like behaviour in rats (P < 0·05) and alleviated psychological distress in volunteers, as measured particularly by the HSCL-90 scale (global severity index, P < 0·05; somatisation, P < 0·05; depression, P < 0·05; and anger-hostility, P < 0·05), the HADS (HADS global score, P < 0·05; and HADS-anxiety, P < 0·06), and by the CCL (problem solving, P < 0·05) and the UFC level (P < 0·05). L. helveticus R0052 and B. longum R0175 taken in combination display anxiolytic-like activity in rats and beneficial psychological effects in healthy human volunteers.
Drobish, Julie K; Kelz, Max B; DiPuppo, Patricia M; Cook-Sather, Scott D
2015-06-01
Multiple factors may contribute to the development of emergence delirium in a child. We present the case of a healthy 12-year-old girl who received preoperative midazolam with the desired anxiolytic effect, underwent a brief general anesthetic, and then exhibited postoperative delirium, consisting of a transient associative agnosia and expressive aphasia. Administration of flumazenil led to immediate and lasting resolution of her symptoms. We hypothesize that γ-aminobutyric acid type A receptor-mediated effects, most likely related to an atypical offset of midazolam, are an important subset of emergence delirium that is amenable to pharmacologic therapy with flumazenil.
Drobish, Julie K.; Kelz, Max B.; DiPuppo, Patricia M.; Cook-Sather, Scott D.
2014-01-01
Multiple factors may contribute to the development of emergence delirium in a child. We present the case of a healthy 12-year-old girl who received preoperative midazolam with the desired anxiolytic effect, underwent a brief general anesthetic, and then exhibited postoperative delirium, consisting of a transient associative agnosia and expressive aphasia. Administration of flumazenil led to immediate and lasting resolution of her symptoms. We hypothesize that γ-aminobutyric acid type A receptor-mediated effects, most likely related to an atypical offset of midazolam, are an important subset of emergence delirium that is amenable to pharmacologic therapy with flumazenil. PMID:26035220
de Craen, A J; Roos, P J; de Vries, A L; Kleijnen, J
To assess the impact of the colour of a drug's formulation on its perceived effect and its effectiveness and to examine whether antidepressant drugs available in the Netherlands are different in colour from hypnotic, sedative, and anxiolytic drugs. Systematic review of 12 published studies. Six studies examined the perceived action of different coloured drugs and six the influence of the colour of a drug on its effectiveness. The colours of samples of 49 drugs affecting the central nervous system were assessed using a colour atlas. Perceived stimulant action versus perceived depressant action of colour of drugs; the trials that assessed the effect of drugs in different colours were done in patients with different diseases and had different outcome measures. The studies on perceived action of coloured drugs showed that red, yellow, and orange are associated with a stimulant effect, while blue and green are related to a tranquillising effect. The trials that assessed the impact of the colour of drugs on their effectiveness showed inconsistent differences between colours. The quality of the methods of these trials was variable. Hypnotic, sedative, and anxiolytic drugs were more likely than antidepressants to be green, blue, or purple. Colours affect the perceived action of a drug and seem to influence the effectiveness of a drug. Moreover, a relation exists between the colouring of drugs that affect the central nervous system and the indications for which they are used. Research contributing to a better understanding of the effect of the colour of drugs is warranted.
Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.
2014-01-01
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711
Donatti, Alberto Ferreira; Soriano, Renato Nery; Leite-Panissi, Christie Ramos Andrade; Branco, Luiz G S; de Souza, Albert Schiaveto
2017-03-06
Hydrogen sulfide (H 2 S), an endogenous gaseous mediator, modulates many physiological functions in mammals but evidence of its involvement in emotional and behavioral aspects is currently scarce. We hypothesized that this gas plays a modulatory role in behavioral parameters in rats submitted to tests (for 5min) in the open field (OF) and elevated plus-maze (EPM - test and retest). Male Wistar rats (200-250g) were intraperitoneally injected with saline or Na 2 S (a H 2 S donor; 4, 8 and 12mg/kg) either once or for 8days, and submitted to the OF test or to the EPM test and retest. A third group (naïve) was not injected but exposed to the same experimental protocols. In the OF test, Na 2 S injected for 8days caused a decrease in self-cleaning (4, 8 and 12mg/kg) and freezing behaviors (8 and 12mg/kg), and a rise in the rate of line crossings in the central part of the arena (12mg/kg). In the EPM test and retest, Na 2 S at 12mg/kg for 8days caused an increase in the number of open arm entries and in the percentage of time spent on open arms. Our data are consistent with the notion that H 2 S exerts anxiolytic-like effects in rats submitted to the EPM and OF tests. Moreover, this gaseous modulator reduces aversive learning in the EPM retest. Copyright © 2017 Elsevier B.V. All rights reserved.
Pytka, Karolina; Głuch-Lutwin, Monika; Knutelska, Joanna; Jakubczyk, Magdalena; Waszkielewicz, Anna; Kotańska, Magdalena
2016-01-01
Older and even new antidepressants cause adverse effects, such as orthostatic hypotension, hyper- or hypoglycemia, liver injury or lipid disorders. In our previous experiments we showed significant antidepressant- and anxiolytic-like activities of dual 5-HT1A and 5-HT7 antagonists with α1-adrenolitic properties i.e. 1-[(2,6-dimethylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-14) and 1-[(2-chloro-6-methylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-15). Here, we evaluated the influence of chronic administration of HBK-14 and HBK-15 on blood pressure (non-invasive blood pressure measurement system for rodents), lipid profile (total cholesterol, low density lipoproteins-LDL, high density lipoproteins-HDL, triglycerides), glucose level, and liver enzymes activity (aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transferase). We determined potential antihistaminic (isolated guinea pig ileum) and antioxidant properties (ferric reducing ability of plasma-FRAP, non-protein thiols-NPSH, stable free radical diphenylpicrylhydrazyl-DPPH) cytotoxicity. Our experiments revealed that HBK-14 and HBK-15 did not influence blood pressure, lipid profile, glucose level or liver enzymes activity in rats after 2-week treatment. We also showed that none of the compounds possessed antioxidant or cytotoxic properties at antidepressant- and anxiolytic-like doses. HBK-14 and HBK-15 very weakly blocked H1 receptors in guinea pig ileum. Positive results of our preliminary experiments on the safety of HBK-14 and HBK-15 encourage further studies concerning their effectiveness in the treatment of depression and/or anxiety disorders.
Cagni, Priscila; Barros, Marilia
2013-03-01
Cannabinoid type 1 receptors (CB1r) are an important modulatory site for emotional behavior. However, little is known on the effects of CB1r ligands on emotionality aspects of primates, even with their highly similar behavioral response and receptor density/distribution as humans. Thus, we analyzed the effects of the CB1r agonist WIN 55,212-2 (WIN; 1mg/kg) and the antagonist AM 251 (AM; 2mg/kg), systemically administered prior to a single brief (15 min) exposure to a novel open-field (OF) environment, on the behavior of individually tested adult black tufted-ear marmosets. Both WIN- and AM-treated subjects, compared to vehicle controls, had significantly lower rates of long (contact) calls and exploration, while higher levels of vigilance-related behaviors (scan/glance); these are indicators of anxiolysis in this setup. Changes in locomotion were not detected. However, in the vehicle and AM-groups, sojourn in the peripheral zone of the OF was significantly higher than in its central region. WIN-treated marmosets spent an equivalent amount of time in both zones. Therefore, activation or blockade CB1r function prior to a short and individual exposure to an unfamiliar environment exerted a significant and complex influence on different behavioral indicators of anxiety in these monkeys (i.e., a partially overlapping anxiolytic-like profile). AM 251, however, has no anxiolytic effect when the time spent in the center of the OF is considered. This is a major difference when compared to the WIN-treated group. Data were compared to the response profile reported in other pre-clinical (rodent) and clinical studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Acute effects of bergamot oil on anxiety-related behaviour and corticosterone level in rats.
Saiyudthong, Somrudee; Marsden, Charles A
2011-06-01
Bergamot essential oil (BEO), Citrus aurantium subsp. bergamia (Risso) Wright & Arn. (Rutaceae), is used widely in aromatherapy to reduce stress and anxiety despite limited scientific evidence. A previous study showed that BEO significantly increased gamma-aminobutyric acid levels in rat hippocampus, suggesting potential anxiolytic properties. The aim of this study was to investigate the effect of BEO (1.0%, 2.5% and 5.0% w/w) administered to rats on both anxiety-related behaviours (the elevated plus-maze (EPM) and hole-board tests) and stress-induced levels of plasma corticosterone in comparison with the effects of diazepam. Inhalation of BEO (1% and 2.5%) and injection of diazepam (1 mg/kg, i.p.) significantly increased the percentage of open arm entries on the EPM. The percentage time spent in the open arms was also significantly enhanced following administration of either BEO (2.5% and 5%) or diazepam. Total arm entries were significantly increased with the highest dose (5%), suggesting an increase in locomotor activity. In the hole-board test, 2.5% BEO and diazepam significantly increased the number of head dips. 2.5% BEO and diazepam attenuated the corticosterone response to acute stress caused by exposure to the EPM. In conclusion, both BEO and diazepam exhibited anxiolytic-like behaviours and attenuated HPA axis activity by reducing the corticosterone response to stress. Copyright © 2010 John Wiley & Sons, Ltd.
Anti-dermatitis, anxiolytic and analgesic effects of Rhazya stricta from Balochistan.
Ahmad, Mansoor; Muhammed, Shafi; Mehjabeen; Jahan, Noor; Jan, Syed Umer; Qureshi, Zia-Ul-Rehaman
2014-05-01
Current study was carried out on Rhazya stricta. Plant material was collected from Jhalmagsi Dist. Balochistan, Pakistan. Methanolic extract of Rhazya stricta was tested for anti-dermatitis, analgesic, anxiolytic effects, insecticidal activity and Brine shrimp Bioassay. Crude extract showed significant anti-dermatitis activity, as the results of intensity score showed mild Excoriation or erosion, moderate Edema or populations and absence of Erythema or hemorrhage, Scratching time was decreased to 1.45 and histological observations of mice treated with crude extract showed mild changes and few inflammatory cells in several microscopic fields. The results of analgesic activity were significant and the percentage inhibition of writhes were 73.54% and 69.38% at 300mg/kg and 500mg/kg respectively. The overall response of crude extract in anxiolytic activities were depressive and crude extract showed sedative effects. In Brine shrimp (Artemsia salina) lethality bioassay crude extract showed dose depended significant activity, and showed positive lethality with LD(50) 3.3004μg/ml. Insecticidal activity was positive against Callosbruchus analis, the percent mortality was 40%.
The impact of the Canterbury earthquakes on prescribing for mental health.
Beaglehole, Ben; Bell, Caroline; Frampton, Christopher; Hamilton, Greg; McKean, Andrew
2015-08-01
The aim of this study is to evaluate the impact of the Canterbury earthquakes on the mental health of the local population by examining prescribing patterns of psychotropic medication. Dispensing data from community pharmacies for antidepressants, antipsychotics, anxiolytics and sedatives/hypnotics are routinely recorded in a national database. The close relationship between prescribing and dispensing provides the opportunity to assess prescribing trends for Canterbury compared to national data and therefore examines the longitudinal impact of the earthquakes on prescribing patterns. Short-term increases in the use of anxiolytics and sedatives/hypnotics were observed after the most devastating February 2011 earthquake, but this effect was not sustained. There were no observable effects of the earthquakes on antidepressant or antipsychotic dispensing. Short-term increases in dispensing were only observed for the classes of anxiolytics and sedatives/hypnotics. No sustained changes in dispensing occurred. These findings suggest that long-term detrimental effects on the mental health of the Canterbury population were either not present or have not resulted in increased prescribing of psychotropic medication. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Psychiatric effects of antiepileptic drugs in adults.
Dussaule, Claire; Bouilleret, Viviane
2018-06-01
Epileptic and psychiatric diseases share overlaps. Indeed, anxiety and depression are common comorbidities in epilepsy, and patients with psychiatric disease are at risk of epilepsy. Some antiepileptic drugs (AED) have psychiatric side effects; conversely, some AED could be used to treat psychiatric pathologies. Based on current literature data, the aim of this study is to determine the psychiatric effects induced by the most frequently prescribed AED in epileptic adults. Some AED will have positive mood or anxiolytic effects like sodium channel blockers, valproate and benzodiazepines; conversely, others might induce negative psychiatric effect, especially depression, anxiety or aggression, like levetiracetam, perampanel, topiramate, zonisamide, and barbiturates. The main risk factor for presenting these side effects is a personal history of psychiatric pathology. We therefore recommend monitoring the occurrence of psychiatric side effects, especially when using the most at risk AED and/or in case of psychiatric history. Moreover, in this latter case, it is preferable to use AED with positive psychiatric effects. The use of anxiety and depression scales could be useful detection tools.
Varty, G B; Hyde, L A; Hodgson, R A; Lu, S X; McCool, M F; Kazdoba, T M; Del Vecchio, R A; Guthrie, D H; Pond, A J; Grzelak, M E; Xu, X; Korfmacher, W A; Tulshian, D; Parker, E M; Higgins, G A
2005-10-01
Previous studies have demonstrated behaviors indicative of anxiolysis in rats pretreated with the nociceptin receptor (opioid receptor like-1, ORL-1) agonist, Ro64-6198. The aim of this study was to examine the effects of Ro64-6198 in anxiety models across three species: rat, guinea pig, and mouse. In addition, the receptor specificity of Ro64-6198 was studied, using the ORL-1 receptor antagonist, J-113397, and ORL-1 receptor knockout (KO) mice. Finally, neurological studies examined potential side effects of Ro64-6198 in the rat and mouse. Ro64-6198 (3-10 mg/kg) increased punished responding in a rat conditioned lick suppression test similarly to chlordiazepoxide (6 mg/kg). This effect of Ro64-6198 was attenuated by J-113397 (10 mg/kg), but not the mu opioid antagonist, naltrexone (3 mg/kg). In addition, Ro64-6198 (1-3 mg/kg) reduced isolation-induced vocalizations in rat and guinea pig pups. Ro64-6198 (3 mg/kg) increased the proportion of punished responding in a mouse Geller-Seifter test in wild-type (WT) but not ORL-1 KO mice, whereas diazepam (1-5.6 mg/kg) was effective in both genotypes. In rats, Ro64-6198 reduced locomotor activity (LMA) and body temperature and impaired rotarod, beam walking, and fixed-ratio (FR) performance at doses of 10-30 mg/kg, i.e., three to ten times higher than an anxiolytic dose. In WT mice, Ro64-6198 (3-10 mg/kg) reduced LMA and rotarod performance, body temperature, and FR responding, but these same measures were unaffected in ORL-1 KO mice. Haloperidol (0.3-3 mg/kg) reduced these measures to a similar extent in both genotypes. These studies confirm the potent, ORL-1 receptor-mediated, anxiolytic-like effects of Ro64-6198, extending the findings across three species. Ro64-6198 has target-based side effects, although the magnitude of these effects varies across species.
Abbe, Adeline; Falissard, Bruno
2017-10-23
Internet is a particularly dynamic way to quickly capture the perceptions of a population in real time. Complementary to traditional face-to-face communication, online social networks help patients to improve self-esteem and self-help. The aim of this study was to use text mining on material from an online forum exploring patients' concerns about treatment (antidepressants and anxiolytics). Concerns about treatment were collected from discussion titles in patients' online community related to antidepressants and anxiolytics. To examine the content of these titles automatically, we used text mining methods, such as word frequency in a document-term matrix and co-occurrence of words using a network analysis. It was thus possible to identify topics discussed on the forum. The forum included 2415 discussions on antidepressants and anxiolytics over a period of 3 years. After a preprocessing step, the text mining algorithm identified the 99 most frequently occurring words in titles, among which were escitalopram, withdrawal, antidepressant, venlafaxine, paroxetine, and effect. Patients' concerns were related to antidepressant withdrawal, the need to share experience about symptoms, effects, and questions on weight gain with some drugs. Patients' expression on the Internet is a potential additional resource in addressing patients' concerns about treatment. Patient profiles are close to that of patients treated in psychiatry. ©Adeline Abbe, Bruno Falissard. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.10.2017.
Saletu, B; Grünberger, J; Linzmayer, L
1977-10-01
Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.
Hattesohl, Miguel; Feistel, Björn; Sievers, Hartwig; Lehnfeld, Romanus; Hegger, Mirjam; Winterhoff, Hilke
2008-01-01
Extracts of Valeriana officinalis L. s.l. are used for treating mild sleep disorders and nervous tension. Despite intensive research efforts, the pharmacological actions accounting for the clinical efficacy of valerian remain unclear. Thus, it was the aim of this study to evaluate CNS-related effects of different valerian extracts using behavioral paradigms (mice and rats). Following oral administration two commercially available preparations (extraction solvents: 45% methanol m/m and 70% ethanol v/v), a 35% ethanolic v/v extract and a refined extract derived from it (patented special extract phytofin Valerian 368) were tested for sedative (locomotor activity, ether-induced anaesthesia) and anxiolytic (elevated plus maze) activity. Using the forced swimming and the horizontal wire test the latter two extracts were additionally tested for antidepressant and myorelaxant properties. Up to maximum dosages of 500 or 1000 mg/kg bw none of the valerian extracts displayed sedative effects. Neither spontaneous activity was reduced nor the duration of ether-induced narcosis was prolonged. In contrast, results obtained in the elevated plus maze test revealed a pronounced anxiolytic effect of the 45% methanolic and 35% ethanolic extract as well as of phyotofin Valerian 368 in a dose range of 100-500 mg/kg bw. Additionally and different from its primary extract (35% ethanolic extract) phytofin Valerian 368 showed antidepressant activity in the forced swimming test after subacute treatment. Myorelaxant effects were not observed in dosages up to 1000 mg/kg bw. Due to these findings it is proposed that not sedative but anxiolytic and antidepressant activity, which was elaborated particularly in the special extract phytofin Valerian 368, considerably contribute to the sleep-enhancing properties of valerian.
Anticonvulsant and antipunishment effects of toluene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.W.; Coleman, J.B.; Schuler, R.
1984-01-01
Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety (anxiolytics), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, the authors first demonstrated that pretreatment of mice with injections of toluene delayed the onset of convulsive signs and prevented the tonic extension phase of the convulsant activity in a dose-related manner. Injections of another alkyl benzene, m-xylene, were of comparable potency to toluene. Inhalation of toluene delayed themore » time of death after pentylenetetrazol injection in a manner related to the duration and concentration of exposure; at lower convulsant doses, inhalation of moderate concentrations (EC/sub 58/, 1300 ppm) prevented death. Treatment with a benzodiazepine receptor antagonist (Ro 15-1788) failed to reduce the anticonvulsant activity of inhaled toluene. Anxiolytics also attenuate the reduction in response rate produced by punishment with electric shock. Toluene increased rates of responding suppressed by punishment when responding was maintained under a multiple fixed-interval fixed-interval punishment schedule of reinforcement. Distinct antipunishment effects were observed in rats after 2 hr of exposure to 1780 and 3000 ppm of toluene; the rate-increasing effects of toluene were related to concentration and to time after the termination of exposure. Thus, toluene and m-xylene resemble in several respects clinically useful drugs such as the benzodiazepines. 51 references, 3 figures, 2 tables.« less
Abdolmaleki, Arash; Moghimi, Ali; Ghayour, Mohammad B; Rassouli, Morteza B
2016-10-15
Citicoline (cytidine-5'-diphosphocholine) is a neuroprotective agent that is administered following ischemic and traumatic brain injuries. There is little information about the antiseizure and anxiolytic effects of citicoline, which are therefore addressed in the present study. For evaluating the anticonvulsant effect of citicoline in the pentylentetrazole seizure model, a single intraperitoneal dose of citicoline was administered at 50, 100 or 150mg/kg. Sedative and anxiolytic effects of citicoline were examined via elevated plus maze and pentobarbital induced sleep tests. Results show that citicoline at the doses of 100 and 150mg/kg significantly delayed the latent period compared with the control (P<0.05). Citicoline at the doses of 100 and 150mg/kg significantly decreased total locomotion compared with the control (P<0.05). Additionally, citicoline at the doses of 100 and 150mg/kg significantly increased both percentage of entry and time spent in the open arms in the elevated plus maze test (P<0.05). The pentobarbital induced sleep test showed that citicoline significantly reduced the latency to sleep (P<0.05). Our results suggest that acute administration of citicoline has anticonvulsant activity and sedative effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Calvó-Perxas, Laia; Turró-Garriga, Oriol; Aguirregomozcorta, Maria; Bisbe, Josep; Hernández, Erélido; López-Pousa, Secundino; Manzano, Anna; Palacios, Mónica; Pericot-Nierga, Imma; Perkal, Héctor; Ramió, Lluís; Vilalta-Franch, Joan; Garre-Olmo, Josep
2014-07-01
Psychotropic drugs are usually prescribed to deal with behavioral and psychological symptoms of dementia, especially when nonpharmacologic approaches are not available or have limited efficacy. Poor outcomes and serious adverse events of the drugs used must be addressed, and risk-benefit ratios need to be considered. The aim of this longitudinal study was to describe the evolution of dispensation of psychotropic drugs in patients with Alzheimer's disease (AD) and to identify the associated demographic and clinical variables. Longitudinal study using 698 cases with AD included in the Registry of Dementias of Girona in 2007 and 2008 and followed up during 3 years. Drugs were categorized according to the Anatomical Therapeutic Chemical classification. Binary logistic regression analyses were used to detect the variables associated with the use of antipsychotics, selective serotonin reuptake inhibitors (SSRIs), anxiolytics, and hypnotics. Of the patients, 51.2% consumed antipsychotics at least once during the three years of the study, whereas 73.3% and 58.2% consumed SSRIs and anxiolytics, respectively; 32.8% used hypnotics. Antipsychotic use was associated with a diagnosis of AD with delusions) [odds ratio (OR) = 5.7] and with increased behavior disorders (OR = 1.2). Patients with AD with depressed mood were more likely to be treated with SSRIs (OR = 3.1), while being a woman was associated with increased dispensation of anxiolytics (OR = 1.9) and SSRIs (OR = 2.2). Consumption of psychotropic drugs by the patients with AD registered in the Registry of Dementias of Girona is very high. Despite all the described adverse effects and recommendations of caution in their use, antipsychotics still are extensively used. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
[Effect of the economic crisis on consumption of psychotropic drugs in Asturias (Spain)].
Nicieza-García, María Luisa; Alonso-Lorenzo, Julio C; Suárez-Gil, Patricio; Rilla-Villar, Natalia
To assess whether the economic crisis of 2008 has changed the consumption of anxiolytics, hypnotics-sedatives and antidepressants in Asturias (Spain). We conducted a descriptive study of drug use from 2003 -2013. The defined daily doses of 1000 inhabitants per day (DHD) were calculated for anxiolytics, hypnotics-sedatives and antidepressants. Linear regression coefficients (b) of the DHD were obtained for the pre-crisis period (2003-2008) and the crisis period (2009-2013). The consumption of anxiolytics increased by 40.25%, that of hypnotics by 88.11% and that of antidepressants by 80.93%. For anxiolytics: b-(2003-2008)=4.38 DDI/year and b-(2009-2013)=1.08 DDI/year. For hypnotics-sedatives: b-(2003-2008)=2.30 DDI/year and b-(2009-2013)=0.40 DDI/year. For antidepressants: b-(2003-2008)=5.79 DDI/year and b-(2009-2013)=2.83 DDI/year. The rise in consumption of the three subgroups during the crisis period was lower than that of the pre-crisis period. This study does not confirm the influence of the economic crisis on the rise in consumption of these drugs. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Sedative and sleep-enhancing properties of linarin, a flavonoid-isolated from Valeriana officinalis.
Fernández, Sebastián; Wasowski, Cristina; Paladini, Alejandro C; Marder, Mariel
2004-02-01
We have recently reported the presence of the anxiolytic flavone 6-methylapigenin (MA) and of the sedative and sleep-enhancing flavanone glycoside 2S (-) hesperidin (HN) in Valeriana officinalis and Valeriana wallichii. MA, in turn, was able to potentiate the sleep-inducing properties of HN. The present paper reports the identification in V. officinalis of the flavone glycoside linarin (LN) and the discovery that it has, like HN, sedative and sleep-enhancing properties that are potentiated by simultaneous administration of valerenic acid (VA). These effects should be taken into account when considering the pharmacological actions of valeriana extracts.
Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models
Mahendra, Poonam; Bisht, Shradha
2011-01-01
Interest in alternative medicine and plant-derived medications that affect the “mind” is growing. The aim of present study was to explore the anti-anxiety activity of hydroalcoholic extract of Coriandrum sativum (Linn.) using different animal models (elevated plus maze, open field test, light and dark test and social interaction test) of anxiety in mice. Diazepam (0.5 mg/kg) was used as the standard and dose of hydroalcoholic extract of C. sativum fruit (50, 100 and 200 mg/kg) was selected as per OECD guidelines. Results suggested that extract of C. sativum at 100 and 200 mg/kg dose produced anti-anxiety effects almost similar to diazepam, and at 50 mg/kg dose did not produce anti-anxiety activity on any of the paradigm used. Further studies are needed to identify the anxiolytic mechanism(s) and the phytoconstituents responsible for the observed central effects of the hydroalcoholic extract of C. sativum. PMID:22022003
Food restriction does not relieve PTSD-like anxiety.
Hendriksen, Hendrikus; Bink, Diewertje I; Vergoossen, Dana L E; Suzet van Slobbe, E; Olivier, Berend; Oosting, Ronald S
2015-04-15
We used the inescapable foot shock paradigm (IFS) in rats as an animal model for post-traumatic stress disorder (PTSD). Previously we showed that exercise reversed the enhanced stress sensitivity induced by IFS. From literature it is known that food restriction has antidepressant and anxiolytic effects. Since both treatments influence energy expenditure, we questioned whether food restriction reduces anxiety in the IFS model via a comparable, NPY dependent mechanism as enrichment. Anxiety of IFS-exposed animals was measured as change in locomotion and freezing after sudden silence in an open field test, before and after two weeks of food restriction. In addition a forced swim test (FST) was performed. Next, using qPCR, the expression of neuropeptide Y (NPY) and the neuropeptide Y1 receptor (Y1 receptor) was measured in the amygdala. Food restriction increased locomotion and decreased freezing behavior both in control and IFS animals. These effects were small. IFS-induced anxiety was not abolished after two weeks of food restriction. IFS did not influence immobility or the duration of swimming in the FST of animals fed ad libitum. However, food restriction increased swimming and decreased the duration of immobility in IFS-exposed animals. Y1 receptor expression in the basolateral amygdala decreased after both IFS and food restriction. Although food restriction seems to induce a general anxiolytic effect, it does not operate via enhanced Y1 receptor expression and has no effect on the more pathogenic anxiety induced by IFS. Copyright © 2014 Elsevier B.V. All rights reserved.
Anxiolytic effects of orcinol glucoside and orcinol monohydrate in mice.
Wang, Xiaohong; Li, Guiyun; Li, Peng; Huang, Linyuan; Huang, Jianmei; Zhai, Haifeng
2015-06-01
Anxiety is a common psychological disorder, often occurring in combination with depression, but therapeutic drugs with high efficacy and safety are lacking. Orcinol glucoside (OG) was recently found to have an antidepressive action. To study the therapeutic potential of OG and orcinol monohydrate (OM) as anxiolytic agents. Anxiolytic effects in mice were measured using the elevated plus-maze, hole-board, and open-field tests. Eight groups of mice were included in each test. Thirty minutes before each test, mice in each group received one oral administration of OG (5, 10, or 20 mg/kg), OM (2.5, 5, or 10 mg/kg), the positive control diazepam (1 or 5 mg/kg), or control vehicle. Each mouse underwent only one test. Uptake of orcinol (5 mg/kg) in the brain was qualitatively detected using the HPLC-MS method. OG (5, 10, and 20 mg/kg) and OM (2.5 and 5 mg/kg) increased the time spent in open arms and the number of entries into open arms in the elevated plus-maze test. OG (5 and 10 mg/kg) and OM (2.5 and 5 mg/kg) increased the number of head-dips in the hole-board test. At all tested doses, OG and OM did not significantly affect the locomotion of mice in the open-field test. Orcinol could be detected in the mouse brain homogenates 30 min after oral OM administration, having confirmed that OM is centrally active. The results demonstrated that OG and OM are anxiolytic agents without sedative effects, indicating their therapeutic potential for anxiety.
Macúchová, E; Ševčíková, M; Hrebíčková, I; Nohejlová, K; Šlamberová, R
2016-06-01
Different forms of anxiety-related behavior have been reported after a single drug use of many abused substances, however, less is known about how males and females are affected differently from exposure to various drugs. Furthermore, chronic prenatal methamphetamine (MA) exposure was shown to predispose the animal to an increased sensitivity to drugs administrated in adulthood. Using the Elevated plus-maze test (EPM), the first aim of the present study was to examine how male and female rats are affected by acute drug treatment with subcutaneously (s.c.) administrated (a) MA (1mg/kg); (b) drugs with a similar mechanism of action to MA: amphetamine (AMP, 1mg/kg), cocaine (COC, 5mg/kg), 3,4-methylenedioxymethamphetamine (MDMA, 5mg/kg); and (c) drugs with different mechanisms of action: morphine (MOR, 5mg/kg), and Δ 9-tetrahydrocannabinol (THC, 2mg/kg). The second aim was to determine if prenatally MA-exposed (5mg/kg) animals show an increased sensitivity to adult drug treatment. The parameters analyzed were divided into two categories: anxiety-related behavior and anxiety-unrelated/exploratory behavior. Our results showed in female rats a decreased percentage of the time spent in the closed arms (CA) after MA, and an increased percentage of the time spent in the open arms (OA) after MA, AMP, and COC treatment, indicating an anxiolytic-like effect. In females, MDMA and THC treatment increased the percentage of the time spent in the CA. An increased percentage of the time spent in the CA was also seen after MOR treatment in females as well as in males, indicating an anxiogenic-like effect. As far as the interaction between prenatal MA exposure and adult drug treatment is concerned, there was no effect found. In conclusion, it seems that: (a) in some cases female rats are more vulnerable to acute drug treatment, in terms of either anxiogenic- or anxiolytic-like effects; (b) prenatal MA exposure does not sensitize animals to the anxiety-related effects of any of the drugs. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj
2014-01-01
Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.
Wang, D; Zhai, X; Chen, P; Yang, M; Zhao, J; Dong, J; Liu, H
2014-09-26
Uncoupling protein-2 (UCP2) reduces oxidative stress by facilitating the influx of protons into mitochondrial matrix, thus dissociating mitochondrial oxidation from ATP synthesis. UCP2 is expressed abundantly in brain areas and plays a key role in neuroprotection. Here, we sought to determine if UCP2 deficiency produces cognitive impairment and anxiety in young mice, and to determine if hippocampal UCP2 is essential for the beneficial effects of voluntary exercise. Antisense oligonucleotide (ASO) was used to produce UCP2 knockdown in mice. Our results firstly showed that UCP2-targeted ASO significantly reduced UCP2 mRNA and protein expression in the hippocampus. ASO treatment impaired learning and memory of the mice in Y-maze, T-maze, and object recognition tests (ORT). ASO-treated mice exhibited more anxiously in OPT, light/dark box test, and elevated plus maze (EPM) than the control mice. We also found that wheel running ameliorated cognitive dysfunction and anxiety-like behaviors in ASO-treated mice. Furthermore, voluntary exercise reversed ASO-induced changes in hippocampal levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE). However, UCP2 protein in the hippocampus was not correlated with cognitive and anxiolytic benefits of exercise. These findings suggest that hippocampal UCP2 is essential for cognitive function and the resistance to anxiety of mice, but not required for the beneficial effects of exercise. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Strickland, Justin C; Bolin, B Levi; Romanelli, Michael R; Rush, Craig R; Stoops, William W
2017-01-01
Cocaine users display deficits in inhibitory control and make impulsive choices that may increase risky behavior. Buspirone is an anxiolytic that activates dopaminergic and serotonergic systems and improves impulsive choice (i.e., reduces sexual risk-taking intent) in cocaine users when administered chronically. We evaluated the effects of acutely administered buspirone on inhibitory control and impulsive choice. Eleven subjects with a recent history of cocaine use completed this within-subject, placebo-controlled study. Subjects performed two cued go/no-go and a sexual risk delay-discounting task following oral administration of buspirone (10 and 30 mg), triazolam (0.375 mg; positive control), and placebo (negative control). Physiological and psychomotor performance and subject-rated data were also collected. Buspirone failed to change inhibitory control or impulsive choice; however, slower reaction times were observed at the highest dose tested. Buspirone did not produce subject-rated drug effects but dose-dependently decreased diastolic blood pressure. Triazolam impaired psychomotor performance and increased ratings of positive subject-rated effects (e.g., Like Drug). These findings indicate that acutely administered buspirone has little impact on behavioral measures of inhibitory control and impulsive sexual decision-making. Considering previous findings with chronic dosing, these findings highlight that the behavioral effects of buspirone differ as a function of dosing conditions. Copyright © 2017 John Wiley & Sons, Ltd.
Plant-based medicines for anxiety disorders, Part 1: a review of preclinical studies.
Sarris, Jerome; McIntyre, Erica; Camfield, David A
2013-03-01
Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. This article (part 1) reviews herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In part 2, we review herbal medicines for which there have been clinical investigations for anxiolytic activity. An open-ended, language-restricted (English) search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) using specific search criteria to identify herbal medicines that have been investigated for anxiolytic activity. This search of the literature revealed 1,525 papers, from which 53 herbal medicines were included in the full review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed in part 2), with another 32 having solely preclinical studies (reviewed here in part 1). Preclinical evidence of anxiolytic activity (without human clinical trials) was found for Albizia julibrissin, Sonchus oleraceus, Uncaria rhynchophylla, Stachys lavandulifolia, Cecropia glazioui, Magnolia spp., Eschscholzia californica, Erythrina spp., Annona spp., Rubus brasiliensis, Apocynum venetum, Nauclea latifolia, Equisetum arvense, Tilia spp., Securidaca longepedunculata, Achillea millefolium, Leea indica, Juncus effusus, Coriandrum sativum, Eurycoma longifolia, Turnera diffusa, Euphorbia hirta, Justicia spp., Crocus sativus, Aloysia polystachya, Albies pindrow, Casimiroa edulis, Davilla rugosa, Gastrodia elata, Sphaerathus indicus, Zizyphus jujuba and Panax ginseng. Common mechanisms of action for the majority of botanicals reviewed primarily involve GABA, either via direct receptor binding or ionic channel or cell membrane modulation; GABA transaminase or glutamic acid decarboxylase inhibition; a range of monoaminergic effects; and potential cannabinoid receptor modulation. Future research should focus on conducting human clinical trials on the plants reviewed with promising anxiolytic activity.
Utilization of health care services in cancer patients with elevated fear of cancer recurrence.
Champagne, Alexandra; Ivers, Hans; Savard, Josée
2018-05-02
Cancer patients commonly report experiencing fear of cancer recurrence (FCR), which may lead to several negative consequences. This study aimed at examining whether clinical levels of FCR are linked to a greater use of health care services. This is a secondary analysis of a longitudinal study of 962 cancer patients on the epidemiology of cancer-related insomnia. They completed the Fear of Cancer Recurrence Inventory-Short form (FCRI-SF) and reported information on their consultations (medical, psychosocial, and complementary and alternative medicine [CAM]) and medication usage (anxiolytics/hypnotics and antidepressants) at 6 time points over an 18-month period. Results indicated that clinical FCR at baseline was associated with greater consultation rates of medical and psychosocial professionals and a greater usage of anxiolytics/hypnotics and antidepressants. No significant association was found between the FCR level and use of CAM services. While consultation rates of medical and CAM professionals and usage of antidepressants generally increased over time, consultation rates of psychosocial professionals and usage of anxiolytics/hypnotics tended to decrease. Cancer patients with clinical levels of FCR are more likely to consult health care providers and to use psychotropic medications, which may translate into significant costs for society and the patients themselves. Copyright © 2018 John Wiley & Sons, Ltd.
Breuer, Aviva; Haj, Christeene G; Fogaça, Manoela V; Gomes, Felipe V; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A; Hallak, Jaime C; Crippa, José A; Zuardi, Antonio W; Mechoulam, Raphael; Guimarães, Francisco S
2016-01-01
Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.
Bahi, Amine; Dreyer, Jean-Luc
2017-06-01
Myelin Transcription Factor 1 (MyT1), a member of the Zinc Finger gene family, plays a fundamental role in the nervous system. Recent research has suggested that this transcription factor is associated with the pathophysiology of psychiatric disorders including addiction, schizophrenia, and depression. However, the role of MyT1 in anxiety- and ethanol-related behaviors is still unknown. We evaluated the effects of lentiviral-mediated overexpression of MyT1 in the dentate gyrus (DG) on anxiety- and ethanol-related behaviors in rats. We used the elevated plus maze (EPM) and the open field (OF) tests to assess anxiety-like behavior and a two-bottle choice procedure to measure the effects of MyT1 on ethanol intake and preference. MyT1 overexpression produced anxiolytic-like effects in the EPM test and decreased the number of fecal boli in the OF test, without affecting locomotor activity in both behavioral tests. Next, we demonstrated that ethanol intake and preference were decreased in the MyT1-overexpressing rats with no effect on saccharin and quinine, used to assess taste discrimination, and no effect on ethanol clearance suggesting specific alterations in the rewarding effects of ethanol. Most importantly, ectopic MyT1 overexpression increased both MyT1 and BDNF mRNA levels in the DG. Using Pearson's correlation, results showed a strong negative relationship between MyT1 mRNA and anxiety parameters and ethanol consumption and a positive correlation between MyT1 and BDNF mRNAs. Taken together, MyT1 along with being a key component in anxiety may be a suitable candidate in the search of the molecular underpinnings of alcoholism.
Brito, Adriane F; Braga, Patrícia C C S; Moreira, Lorrane K S; Silva, Dayane M; Silva, Daiany P B; Sanz, Germán; Vaz, Boniek G; de Carvalho, Flávio S; Lião, Luciano M; Silva, Rafaela R; Noël, François; Neri, Hiasmin F S; Ghedini, Paulo C; de Carvalho, Murilo F; de S Gil, Eric; Costa, Elson A; Menegatti, Ricardo
2018-03-01
In the scope of a research program aimed at developing new drugs for the treatment of central nervous system diseases, we describe herein the synthesis and pharmacological evaluation of 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one (LQFM180). This compound showed antioxidant activity in two models, electroanalytical assays, and DPPH activity. Moreover, in behavioral tests as the open field test LQFM180 (9.4, 18.8, and 37.6 mg/kg, per oral (p.o.)), we detected anxiolytic-like activity. In the sodium pentobarbital-induced sleep test, LQFM180, in all doses, decreased the latency to sleep and increased sleep duration, indicating central depressant activity; moreover, in the chimney test, LQFM180 did not alter motor activity. LQFM180 (18.8 mg/kg, p.o.) increased the time and number of entries on open arms in the elevated plus maze test, suggesting anxiolytic-like activity, which was reversed by NAN-190 and p-chlorophenylalanine, indicating a role of the serotonergic pathway on this effect. In the forced swimming test, LFQM180 (18.8 mg/kg, p.o.) decreased immobility time, suggesting antidepressant-like activity, which was reversed by monoaminergic antagonists, indicating a role for the serotonergic, noradrenergic, and dopaminergic pathways. Competition binding assays showed that LQFM180 was able to bind to the α 1B , 5-HT 1A , and D 2 receptors, however, within the low micromolar range. We conclude that LQFM180 should be considered as a scaffold for drug candidate development.
Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne
2016-03-01
Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Widzowski, D; Maciag, C; Zacco, A; Hudzik, T; Liu, J; Nyberg, S; Wood, M W
2015-01-01
Background and Purpose Quetiapine has a range of clinical activity distinct from other atypical antipsychotic drugs, demonstrating efficacy as monotherapy in bipolar depression, major depressive disorder and generalized anxiety disorder. The neuropharmacological mechanisms underlying this clinical profile are not completely understood; however, the major active metabolite, norquetiapine, has been shown to have a distinct in vitro pharmacological profile consistent with a broad therapeutic range and may contribute to the clinical profile of quetiapine. Experimental Approach We evaluated quetiapine and norquetiapine, using in vitro binding and functional assays of targets known to be associated with antidepressant and anxiolytic drug actions and compared these activities with a representative range of established antipsychotics and antidepressants. To determine how the in vitro pharmacological properties translate into in vivo activity, we used preclinical animal models with translational relevance to established antidepressant‐like and anxiolytic‐like drug action. Key Results Norquetiapine had equivalent activity to established antidepressants at the noradrenaline transporter (NET), while quetiapine was inactive. Norquetiapine was active in the mouse forced swimming and rat learned helplessness tests. In in vivo receptor occupancy studies, norquetiapine had significant occupancy at NET at behaviourally relevant doses. Both quetiapine and norquetiapine were agonists at 5‐HT1A receptors, and the anxiolytic‐like activity of norquetiapine in rat punished responding was blocked by the 5‐HT1A antagonist, WAY100635. Conclusions and Implications Quetiapine and norquetiapine have multiple in vitro pharmacological actions, and results from preclinical studies suggest that activity at NET and 5‐HT1A receptors contributes to the antidepressant and anxiolytic effects in patients treated with quetiapine. PMID:26436896
Zagozdzon, Pawel; Kolarzyk, Emilia; Marcinkowski, Jerzy T
2013-05-01
The majority of studies show a substantially higher consumption of anxiolytics and antidepressants among women than among men and in the age bracket above 45 years. To analyse association between the use of hypnotics/anxiolytics, and various characteristics of Polish women, including health-related quality of life. One thousand, five hundred and sixty (1,560) women aged 45-60 years completed a questionnaire dealing with the use of hypnotics/anxiolytics, demographic characteristics, environmental and work stress exposure, and self-reported quality of life (SF-36 form). The following variables were revealed as the predictors of hypnotic/anxiolytic use on univariate analysis: age; social pension; stress at work and environmental stress; hormone replacement therapy; headache; palpitations; mood swings or increased muscular tension; anger; duration of symptoms longer than one week; consulting a specialist; and low physical and mental health-related quality of life. The significant protective factors included: vocational and tertiary education; job satisfaction; and home as place of rest. The independent predictors of anxiolytic/hypnotic use included consulting a specialist and symptoms lasting more than one week, while job satisfaction and home as place of rest were the independent protective factors. The use of hypnotic/anxiolytic medication is strongly associated with environmental and psychosocial characteristics of women between 40 and 65 years of age.
Ryu, Sun; Kim, Hyoun Geun; Kim, Joo Youn; Kim, Seong Yun; Cho, Kyung-Ok
2018-02-01
Versatile biological activities of Hericium erinaceus (HE) have been reported in many brain diseases. However, roles of HE in major psychiatric disorders such as depression and anxiety remain to be investigated. Therefore, we evaluated whether HE could reduce anxiety and depressive behaviors in the adult mouse and its underlying mechanisms. Male C57BL/6 mice were administered HE (20 or 60 mg/kg, p.o.) or saline once a day for 4 weeks. Open field and tail suspension tests were performed 30 min after the last administration of HE, followed by forced swim test 2 days later. We found that chronic administration of HE showed anxiolytic and antidepressant-like effects. To elucidate possible mechanisms, proliferative activity of the hippocampal progenitor cells was assessed by immunohistochemistry of proliferating cell nuclear antigen (PCNA) and Ki67. Moreover, to evaluate neuronal survival in the dentate gyrus, 5-bromo-2'-deoxyuridine (BrdU) (120 mg/kg, i.p.) was given at the first day of HE administration, followed by isolation of the brains 4 weeks later. HE (60 mg/kg) increased the number of PCNA- and Ki67-positive cells in the subgranular zone of the hippocampus, indicating increased proliferation of hippocampal progenitors. In addition, BrdU- and BrdU/NeuN-positive cells in the dentate gyrus were significantly increased when treated with HE (60 mg/kg) compared with the saline-treated group, demonstrating enhanced neurogenesis by HE treatment. Taken together, the results indicate that chronic HE administration can exert anxiolytic and antidepressant-like effects, possibly by enhancing adult hippocampal neurogenesis.
Anxiolytic-like effect of oxytocin in the simulated public speaking test.
de Oliveira, Danielle C G; Zuardi, Antonio W; Graeff, Frederico G; Queiroz, Regina H C; Crippa, José A S
2012-04-01
Oxytocin (OT) is known to be involved in anxiety, as well as cardiovascular and hormonal regulation. The objective of this study was to assess the acute effect of intranasally administered OT on subjective states, as well as cardiovascular and endocrine parameters, in healthy volunteers (n = 14) performing a simulated public speaking test. OT or placebo was administered intranasally 50 min before the test. Assessments were made across time during the experimental session: (1) baseline (-30 min); (2) pre-test (-15 min); (3) anticipation of the speech (50 min); (4) during the speech (1:03 h), post-test time 1 (1:26 h), and post-test time 2 (1:46 h). Subjective states were evaluated by self-assessment scales. Cortisol serum and plasma adrenocorticotropic hormone (ACTH) were measured. Additionally, heart rate, blood pressure, skin conductance, and the number of spontaneous fluctuations in skin conductance were measured. Compared with placebo, OT reduced the Visual Analogue Mood Scale (VAMS) anxiety index during the pre-test phase only, while increasing sedation at the pre-test, anticipation, and speech phases. OT also lowered the skin conductance level at the pre-test, anticipation, speech, and post-test 2 phases. Other parameters evaluated were not significantly affected by OT. The present results show that OT reduces anticipatory anxiety, but does not affect public speaking fear, suggesting that this hormone has anxiolytic properties.
Benson, Sarah; Downey, Luke A; Stough, Con; Wetherell, Mark; Zangara, Andrea; Scholey, Andrew
2014-04-01
Little research exists in humans concerning the anxiolytic, antidepressant, sedative, and adaptogenic actions the traditional Ayurvedic medicine Bacopa monnieri (BM) possesses in addition to its documented cognitive-enhancing effects. Preclinical work has identified a number of acute anxiolytic, nootropic, and adaptogenic effects of BM that may also co-occur in humans. The current double-blind, placebo-controlled cross-over study assessed the acute effects of a specific extract of BM (KeenMind® - CDRI 08) in normal healthy participants during completion of a multitasking framework (MTF). Seventeen healthy volunteers completed the MTF, at baseline, then 1 h and 2 h after consuming a placebo, 320 mg BM and 640 mg of BM. Treatments were separated by a 7-day washout with order determined by Latin Square. Outcome measures included cognitive outcomes from the MTF, with mood and salivary cortisol measured before and after each completion of the MTF. Change from baseline scores indicated positive cognitive effects, notably at both 1 h post and 2 h post BM consumption on the Letter Search and Stroop tasks, suggesting an earlier nootropic effect of BM than previously investigated. There were also some positive mood effects and reduction in cortisol levels, pointing to a physiological mechanism for stress reduction associated with BM consumption. It was concluded that acute BM supplementation produced some adaptogenic and nootropic effects that need to be replicated in a larger sample and in isolation from stressful cognitive tests in order to quantify the magnitude of these effects. The study was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12612000834853). Copyright © 2013 John Wiley & Sons, Ltd.
Deng, Lei; Shi, Ai-Min; Wang, Qiang
2018-03-24
Peanut stems and leaves (PSL) have traditionally been used as both a special food and a herbal medicine in Asia. The sedative-hypnotic and anxiolytic effects of PSL have been recorded in classical traditional Chinese literature, and more recently by many other researchers. In a previous study, four sleep-related ingredients (linalool, 5-hydroxy-4',7-dimethoxyflavanone, 2'-O-methylisoliquiritigenin and ferulic acid), among which 5-hydroxy-4',7-dimethoxyflavanone and 2'-O-methylisoliquiritigenin were newly found in Arachis species, were screened by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). In the current study, quantitative examination of the above four ingredients was conducted. Serious fundamental functional studies were done in mice, including locomotor activity, direct sleep tests, pentobarbital-induced sleeping time tests, subthreshold dose of pentobarbital tests and barbital sodium sleep incubation period tests, to determine the material base for the sedative-hypnotic and anxiolytic effects of aqueous extracts of PSL. Furthermore, neurotransmitter levels in three brain regions (cerebrum, cerebellum and brain stem) were determined using UHPLC coupled with triple-quadrupole mass spectrometry (UHPLC/QQQ-MS) in order to elucidate the exact mechanism of action. Aqueous extract of PSL at a dose of 500 mg kg -1 (based on previous experience), along with different concentrations of the above four functional ingredients (189.86 µg kg -1 linalool, 114.75 mg kg -1 5-hydroxy-4',7-dimethoxyflavanone, 32.4mg kg -1 2'-O-methylisoliquiritigenin and 44.44 mg kg -1 ferulic acid), had a sedative-hypnotic effect by affecting neurotransmitter levels in mice. The data demonstrate that these four ingredients are the key functional factors for the sedative-hypnotic and anxiolytic effects of PSL aqueous extracts and that these effects occur via changes in neurotransmitter levels and pathways. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Seibt, Kelly Juliana; Oliveira, Renata da Luz; Zimmermann, Fernanda Francine; Capiotti, Katiúcia Marques; Bogo, Maurício Reis; Ghisleni, Gabriele; Bonan, Carla Denise
2010-12-25
Glutamate N-methyl-d-aspartate (NMDA) receptor antagonists, such as dizocilpine (MK-801), elicit schizophrenia-like symptoms in humans and a behavioral syndrome in rodents, characterized by hyperlocomotion and stereotyped actions, which is antagonized by antipsychotic drugs. Animal models of schizophrenia have been established and used for the development of new antipsychotic drugs. In this work we characterized the behavioral effects of MK-801 and investigated the effect of typical and atypical antipsychotic treatments on locomotor activity as well on the hyperlocomotion induced by MK-801 in zebrafish. MK-801 (20 microM) increased the locomotor behavior as measured by the number of line crossings, distance traveled, and the mean speed in the tank test after 15, 30, and 60 min of exposure. All tested antipsychotics counteracted MK-801-induced hyperactivity on all parameters analyzed and at doses that, given alone, had no effect on spontaneous locomotor activity. The results suggest a similar profile between typical and atypical antipsychotics in the reversal of locomotor disorders induced by MK-801. Moreover, an anxiolytic effect was verified at 30 and 60 min of MK-801 exposure, which was not reversed by antipsychotics tested in this work. In addition, olanzapine, which alone caused an anxiolytic response, when given with MK-801 potentiated the latter's effect on anxiety. In this work we demonstrated the value of the zebrafish, a simple to use animal model, in developing some behavioral features observed in schizophrenia, which may indicate a new approach for drug screening. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Lalonde, Robert; Strazielle, Catherine
2010-06-01
Two 5HT(1A) receptor agonists and chlordiazepoxide were examined in open-field, elevated plus maze, and emergence tests. At doses with no effect in the open-field, chlordiazepoxide increased open and open/total arm visits as well as open arm duration in the elevated plus maze, whereas 5HT(1A) receptor agonists showed an anxiolytic response on a single measure. The anxiolytic action of chlordiazepoxide was limited to the less active BALB/c strain. Unlike the 5HT(1A) receptor agonists, chlordiazepoxide was also anxiolytic in the emergence test, once again only in BALB/c and not C57BL/6J mice. Significant correlations were found between emergence latencies and specific indicators of anxiety in the elevated plus-maze in chlordiazepoxide-treated but not in mice treated with buspirone and 8-OH-DPAT. These results indicate that elevated plus-maze and emergence tests depend on benzodiazepine receptors. In contrast, 5HT(1A) receptor agonists were ineffective in the emergence test and no correlation was found between emergence latencies and specific indicators of anxiety in the elevated plus-maze. Though superficially similar, the emergence test seems to tap into a partially separate facet of anxiety.
Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.
Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu
2010-08-06
Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.
Effect of Inhaling Bergamot Oil on Depression-Related Behaviors in Chronic Stressed Rats.
Saiyudthong, Somrudee; Mekseepralard, Chantana
2015-10-01
Bergamot essential oil (BEO) possesses sedation and anxiolytic properties similar to diazepam. After long period of exposure to stressors, including restrained stress, depressive-like behavior can be produced. BEO has been suggested to reduce depression. However, there is no scientific evidence supporting this property. To investigate the effect of BEO in chronic stressed rats on: 1) behavior related depressive disorder, 2) hypothalamic pituitary adrenal (HPA) axis response, and iii) brain-derived neurotrophic factor (BDNF) protein levels in hippocampus. Male Wistar rats, weighing 200 to 250 g, were induced chronic restrained stress 15 minutes dailyfor two weeks. For the next two weeks, these rats were divided intofour groups, control-i.p., fluoxetine-i.p., control-inhale, and BEO-inhale. Fluoxetine (10 mg/kg i.p.) or saline was intraperitoneally administered daily while 2.5% BEO or saline was inhaled daily. At the end of the treatment, rats were assessed for depressive-like behavior using the forced swimming test (FST). After the behavioral test, the animals were immediately decapitated and trunk blood samples were collected for the measurement ofcorticosterone and adrenocorticotropic hormone (ACTH) levels and hippocampus was dissected and stored in afreezer at -80 °C until assay for BDNF protein. BEO andfluoxetine significantly decreased the immobility time in the FST (p < 0.05). Fluoxetine tended to decrease serum corticosterone and significantly (p < 0.05) decreased serum ACTH while BEO had no effect on these two stress hormones. For BDNF protein determination, neither BEO norfluoxetine had any effect on BDNF protein levels in hippocampus compared to their controls. The inhalation ofBEO decrease behavior related depressive disorder similar tofluoxetine but has no effect on HPA axis response and BDNF protein levels in chronic restrained stress.
de Noronha, Sylvana Rendeiro; Campos, Glenda Viggiano; Abreu, Aline Rezende; de Souza, Aline Arlindo; Chianca, Deoclécio A; de Menezes, Rodrigo C
2017-01-01
Overweight and obesity are conditions associated with an overall range of clinical health consequences, and they could be involved with the development of neuropsychiatric diseases, such as generalized anxiety disorder (GAD) and panic disorder (PD). A crucial brain nuclei involved on the physiological functions and behavioral responses, especially fear, anxiety and panic, is the dorsomedial hypothalamus (DMH). However, the mechanisms underlying the process whereby the DMH is involved in behavioral changes in obese rats still remains unclear. The current study further investigates the relation between obesity and generalized anxiety, by investigating the GABA A sensitivity to pharmacological manipulation within the DMH in obese rats during anxiety conditions. Male Wistar rats were divided in two experimental groups: the first was fed a control diet (CD; 11% w/w) and second was fed a high fat diet (HFD; 45% w/w). Animals were randomly treated with muscimol, a GABA A agonist and bicuculline methiodide (BMI), a GABA A antagonist. Inhibitory avoidance and escape behaviors were investigated using the Elevated T-Maze (ETM) apparatus. Our results revealed that the obesity facilitated inhibitory avoidance acquisition, suggesting a positive relation between obesity and the development of an anxiety-like state. The injection of muscimol (an anxiolytic drug), within the DMH, increased the inhibitory avoidance latency in obese animals (featuring an anxiogenic state). Besides, muscimol prolonged the escape latency and controlling the possible panic-like behavior in these animals. Injection of BMI into the DMH was ineffective to produce an anxiety-like effect in obese animals opposing the results observed in lean animals. These findings support the hypotheses that obese animals are susceptible to develop anxiety-like behaviors, probably through changes in the GABAergic neurotransmission within the DMH. Copyright © 2016 Elsevier B.V. All rights reserved.
Narváez, Manuel; Borroto-Escuela, Dasiel O; Santín, Luis; Millón, Carmelo; Gago, Belén; Flores-Burgess, Antonio; Barbancho, Miguel A; Pérez de la Mora, Miguel; Narváez, José; Díaz-Cabiale, Zaida; Fuxe, Kjell
2018-01-01
Anxiety is evoked by a threatening situation and display adaptive or defensive behaviors, found similarly in animals and humans. Neuropeptide Y (NPY) Y1 receptor (NPYY1R) and Galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the amygdala. In a previous study, GALR2 enhanced NPYY1R mediated anxiolytic actions on spatiotemporal parameters in the open field and elevated plus maze, involving the formation of GALR2/NPYY1R heteroreceptor complexes in the amygdala. Moreover, the inclusion of complementary ethological parameters provides a more comprehensive profile on the anxiolytic effects of a treatment. The purpose of the current study is to evaluate the anxiolytic effects and circuit activity modifications caused by coactivation of GALR2 and NPYY1R. Ethological measurements were performed in the open field, the elevated plus-maze and the light-dark box, together with immediate early gene expression analysis within the amygdala-hypothalamus-periaqueductal gray (PAG) axis, as well as in situ proximity ligation assay (PLA) to demonstrate the formation of GALR2/NPYY1R heteroreceptor complexes. GALR2 and NPYY1R coactivation resulted in anxiolytic behaviors such as increased rearing and head-dipping, reduced stretch attend postures and freezing compared to single agonist or aCSF injection. Neuronal activity indicated by cFos expression was decreased in the dorsolateral paracapsular intercalated (ITCp-dl) subregion of the amygdala, ventromedial hypothalamic (VMH) nucleus and ventrolateral part of the periaqueductal gray (vlPAG), while increased in the perifornical nucleus of the hypothalamus (PFX) following coactivation of GALR2 and NPYY1R. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was explicitly observed in ITCp-dl, following GALR2 and NPYY1R coactivation. Besides, knockdown of GALR2 was found to reduce the density of complexes in ITCp-dl. Taken together, these results open up the possibility that the increased anxiolytic activity demonstrated upon coactivation of NPYY1R and GALR2 receptor was related to actions on the ITCp-dl. GALR2-NPYY1R heteroreceptor complexes may inhibit neuronal activity, by also modifying the neuronal networks of the hypothalamus and the PAG. These results indicate that GALR2/NPYY1R interactions in medial paracapsular intercalated amygdala can provide a novel integrative mechanism in anxiolytic behavior and the basis for the development of heterobivalent agonist drugs targeting GALR2/NPYY1R heteromers, especially in the ITCp-dl of the amygdala for the treatment of anxiety.
Sikiric, P; Jelovac, N; Jelovac-Gjeldum, A; Dodig, G; Staresinic, M; Anic, T; Zoricic, I; Ferovic, D; Aralica, G; Buljat, G; Prkacin, I; Lovric-Bencic, M; Separovic, J; Seiwerth, S; Rucman, R; Petek, M; Turkovic, B; Ziger, T
2001-03-01
To study anxiolytic effect of a gastric pentadecapeptide, BPC-157. In shock probe/burying test, pentadecapeptide BPC-157 (10 microg/kg, 10 ng/kg, ip), diazepam (0.075, 0.0375 mg/kg, ip), and an equivolume of saline (5 mL/kg, ip) were given at 30 min prior test. In light/dark test, the same dosage of diazepam, BPC-157, and saline were given at 45 min prior procedure. Shock probe/burying test: rats treated with either diazepam or pentadecapeptide BPC-157 were much less afraid after the shock: almost not burying and the total time spent in burying was clearly less than in controls. However, while in the diazepam treated rats the number of shocks received increased over control values, in pentadecapeptide BPC-157 treated groups the number of shocks remained not modified compared with the control values. Light/dark test: after exposure to the intense light, diazepam treated mice had longer latencies of crossing to the dark compartment, a greater number of crossing and a greater number of exploratory rearing, and spent longer time in the light compartment, as compared to the control mice, while BPC-157 mice had a similar behavior to that of the control mice. In contrast with the effect in light area, in dark zone diazepam produced no change with respect to controls, while BPC-157 (10 microg/kg) mice had a greater number of crossing and a greater number of exploratory rearing. Both diazepam and BPC-157 displayed a bidirectional effect, but the activity of pentadecapeptide BPC-157 was particular, and different from diazepam.
Skwara, Amanda J.; Karwoski, Tracy E.; Czambel, R. Kenneth; Rubin, Robert T.; Rhodes, Michael E.
2012-01-01
In the present study, we determined the effects of environmental enrichment (EE; Kong Toys® and Nestlets®) on sexually diergic HPA axis responses to single-dose nicotine (NIC), single-dose NIC following continuous NIC administration for two weeks, and NIC withdrawal by single-dose mecamylamine (MEC) in male and female rats. Blood sampling occurred before and after MEC and NIC administrations for the determination of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Supporting and extending our previous findings, EE appeared to produce anxiolytic effects by reducing hormone responses: Male and female rats housed with EE had lower baseline ACTH and significantly lower HPA axis responses to the mild stress of saline (SAL) injection than did those housed without EE. The sexually diergic responses to single dose NIC, continuous NIC, and MEC-induced NIC withdrawal were reduced by EE in many male and female groups. ACTH responses to continuous NIC and MEC-induced NIC withdrawal were blunted to a greater extent in female EE groups than in male EE groups, suggesting that females are more sensitive to the anxiolytic effects of EE. Because EE lowered stress-responsive hormones of the HPA axis in most groups, EE may be a useful intervention for stress reduction in animal models of NIC addiction. As well, the effectiveness of EE in animal studies of NIC withdrawal may enlighten human studies addressing coping styles and tobacco cessation in men and women. PMID:22705101
Neurobehavioural evaluation of resveratrol in murine models of anxiety and schizophrenia.
Magaji, Mohammed Garba; Iniaghe, Loretta Oghenekome; Abolarin, Mutiat; Abdullahi, Opeyemi Isa; Magaji, Rabiu Abdusalam
2017-04-01
Resveratrol, a caloric restriction mimetic, is a naturally occurring polyphenolic compound with antioxidant and anti-inflammatory properties. Oxidative stress has been implicated in the etiology of a number of neuropsychiatric disorders including generalized anxiety and schizophrenia. This study investigated the anxiolytic and antipsychotic potentials of resveratrol in murine models of anxiety and schizophrenia. Mice were pretreated with resveratrol (200 and 400 mg/kg) in 1% carboxymethyl cellulose for 14 days and subjected to behavioural tests on the 15th day. Anxiolytic activity of resveratrol was determined using the hole board and staircase tests while its anti-psychotic property was evaluated via apormorphine induced stereotypy and swim-induced grooming tests. Although resveratrol did not significantly reduce the mean number of head dips at doses used in the hole board test, it significantly (p < 0.01) decreased the mean episodes of rearing without significantly altering the total number of upward steps climbed in the staircase test. Resveratrol significantly (p < 0.05) reduced the mean climbing scores in the first ten minutes of the apormorphine induced stereotypic climbing and significantly decreased (p < 0.01) episodes and total duration of swim induced grooming in mice. Administration of resveratrol at doses used in this study produced anxiolysis and anti-psychotic effects in mice.
Anxiolytic action of neuromedin-U and neurotransmitters involved in mice.
Telegdy, G; Adamik, A
2013-09-10
Peptide Neuromedin-U (NmU) is widely distributed in the central nervous system and the peripheral tissues. Its physiological effects include the regulation of blood pressure, heart rate, and body temperature, and the inhibition of gastric acid secretion. The action of NmU in rats is mediated by two G-protein-coupled receptors, NmU-1R and NmU-2R. NmU-2R is present mainly in the brain, and NmU-1R mainly in the periphery. Despite the great variety of the physiological action of NmU, little is known about its possible effects in different forms of behavior, such as anxiety. In the present work, NmU-23 (the rodent form of the peptide) was tested for its effect on anxiety in elevated plus maze test in mice. For detection of the possible involvement of neurotransmitters, the mice were pretreated with receptor blockers: haloperidol (a D2, dopamine receptor antagonist), propranolol (a β-adrenergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), phenoxybenzamine (a nonselective α-adrenergic receptor antagonist) or nitro-l-arginine (a nitric oxide synthase inhibitor). The peptide and nitro-l-arginine were administered into the lateral brain ventricle, while the receptor blockers were applied intraperitoneally. An NmU-23 dose 0.5μg elicited anxiolytic action, whereas this action is faded away when the dose was increased. For further testing therefore 0.5μg i.c.v. was used. Propranolol and atropine fully blocked the NmU-induced anxiolytic action, while haloperidol, phenoxybenzamine and nitro-l-arginine were ineffective. The results suggest that β-adrenergic and cholinergic mechanisms are involved in the anxiolytic action of NmU. © 2013.
Fogaça, Manoela V.; Gomes, Felipe V.; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A.; Hallak, Jaime C.; Crippa, José A.; Zuardi, Antonio W.; Guimarães, Francisco S.
2016-01-01
Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors. PMID:27416026
Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner
Takillah, Samir; Naudé, Jérémie; Didienne, Steve; Sebban, Claude; Decros, Brigitte; Schenker, Esther; Spedding, Michael; Mourot, Alexandre; Mariani, Jean; Faure, Philippe
2017-01-01
Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6–12 Hz) oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7–12 Hz), related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7–12 Hz range (“Mu-bursts”) in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg) acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABAA receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age. PMID:29033825
Branchi, I; Santucci, D; Alleva, E
2001-11-01
Ultrasonic vocalisations (USVs) emitted by altricial rodent pups are whistle-like sounds with frequencies between 30 and 90 kHz. These signals play an important communicative role in mother-offspring interaction since they elicit in the dam a prompt response concerning caregiving behaviours. Both physical and social parameters modulate the USV emission in the infant rodent. Recently, a more detailed analysis of the ultrasonic vocalisation pattern, considering the spectrographic structure of sounds has allowed a deeper investigation of this behaviour. In order to investigate neurobehavioural development, the analysis of USVs presents several advantages, mainly: (i) USVs are one of the few responses produced by very young mice that can be quantitatively analysed and elicited by quantifiable stimuli; (ii) USV production follows a clear ontogenetic profile from birth to PND 14-15, thus allowing longitudinal neurobehavioural analysis during very early postnatal ontogeny. The study of this ethologically-ecologically relevant behaviour represent a valid model to evaluate possible alterations in the neurobehavioural development of perinatally treated or genetically modified infant rodents. Furthermore, the role played by several receptor agonists and antagonists in modulating USV rate makes this measure particularly important when investigating the effects of anxiogenic and anxiolytic compounds, and emotional behaviour in general.
Evaluation of n-hexane extract of Viola betonicifolia for its neuropharmacological properties.
Muhammad, Naveed; Saeed, Muhammad; Khan, Haroon; Haq, Ikramul
2013-01-01
Viola betonicifolia (whole plant) has been used as a sedative and in various nervous disorders in Pakistani traditional medicines. The n-hexane extract of the whole plant of V. betonicifolia (HEVB) was investigated for neuropharmacological properties such as anxiolytic, muscle relaxant, sleep induction, antidepressant and sedative to ascertain its folk use. Anxiolytic activity was tested using the staircase test, while the muscle relaxing property of the extract was tested in various muscle relaxant paradigms, i.e. chimney test, traction test, rota rod and inclined plane. In anxiolytic and muscle relaxant tests, HEVB (0.3, 0.4 and 0.5 g/kg, i.p.), diazepam (1 mg/kg, i.p.) or distilled water (10 ml/kg i.p.) were administered 30, 60 and 90 min before performing the tests in mice. HEVB was also screened for a sleep-inducing effect. The antidepressant activity was determined by using the forced swimming test (FST), while line crossing in a special box was used for locomotor activity. HEVB showed a significant (P < 0.05) dose-dependent anxiolytic action in the staircase test. In muscle relaxant paradigms, a dose-dependent muscle relaxation was observed. For the phenobarbitone sleep induction test, HEVB notably (P < 0.05) reduced the latency time and increased the total sleeping duration. However, HEVB was devoid of any antidepressant activity, while the movements of mice were reduced significantly (P < 0.05) in locomotor activity. The results suggest that HEVB has anxiolytic, muscle relaxant, sleep-inducing (sedative) activity and, thus, provides pharmacological justification for the use of this plant as a sedative and for the relief of various nervous disorders.
Reddy, D S; Kulkarni, S K
1998-06-01
The present studies were undertaken to investigate the neuroactive steroidal modulation of feeding behavior and possible involvement of gamma-aminobutyric acid type-A (GABA-A) and mitochondrial diazepam binding inhibitor (DBI) receptors (MDR) in food-deprived male mice. Allopregnanolone (0.5-2 mg/kg), a neurosteroid, progesterone (1-10 mg/kg), a neurosteroid precursor, and 4'-chlordiazepam (0.25-1 mg/kg), a specific high affinity MDR agonist, produced a dose-dependent hyperphagic effects. In contrast, neurosteroids pregnenolone sulfate (PS) (1-10 mg/kg) and dehydroepiandrosterone sulfate (DHEAS) (1-10 mg/kg) produced a hypophagic effect, in a dose-dependent manner. The allopregnanolone-, progesterone- and 4'-chlordiazepam-induced hyperphagic effect was blocked by picrotoxin (1 mg/kg), a GABA-A chloride channel antagonist, but not by flumazenil (2 mg/kg), a benzodiazepine (BZD) antagonist. The 4'-chlordiazepam-induced hyperphagic effect was prevented by pretreatment with PK11195 (2 mg/kg), a selective partial MDR antagonist. The hypophagic effect of DHEAS (10 mg/kg) was reversed by dizocilpine (10 microg/kg), an NMDA receptor antagonist, but resistant to muscimol (0.1 mg/kg), a selective GABA-A receptor agonist. In contrast, the PS (10 mg/kg)-induced hypophagic response was resistant to dizocilpine, but sensitive to muscimol (0.1 mg/kg). Both the sulfated neurosteroids PS and DHEAS also reversed the hyperphagic effect of allopregnanolone. In addition, the BZD agonist triazolam (0.05-0.25 mg/kg) also produced a flumazenil- and picrotoxin-sensitive hyperphagic effects, thereby suggesting the changes in feeding behavior by neurosteroids represent GABA-A receptor mediated hyperphagic action. Although the possible antistress or anxiolytic actions of neurosteroids may confound the hyperphagia, behavioral effects observed were specific to food because the mice were adopted to the test environment and diet, and of a possible variation between various neurosteroids in the extent to which antistress or anxiolytic effect produced at hyperphagic doses. The hyperphagic effects of progesterone and 4'-chlordiazepam resembled that of neurosteroid allopregnanolone. Therefore, the effect of progesterone may be imputed to its metabolism to allopregnanolone, while the 4'-chlordiazepam-induced hyperphagic response is related to its MDR-stimulated neurosteroidogenesis and subsequent modulation of GABA-A receptors. The hypophagic response following DHEAS may, at least partly, involve an NMDA receptor mechanism. However, PS-induced hypophagia may be mediated by GABA-A or other receptor systems. These data suggest a pivotal role for GABA-A and mitochondrial DBI receptors in the hyperphagic effects of neurosteroids and reinforces a role for endogenous neurosteroids in regulating feeding behavior. Future studies may lead to the development of neurosteroid-based anorectic/hyperphagic agents for therapeutic use.
Effects of N, N-Dimethyltryptamine on Rat Behaviors Relevant to Anxiety and Depression.
Cameron, Lindsay P; Benson, Charlie J; Dunlap, Lee E; Olson, David E
2018-04-24
Depression and anxiety disorders are debilitating diseases resulting in substantial economic costs to society. Traditional antidepressants often take weeks to months to positively affect mood and are ineffective for about 30% of the population. Alternatives, such as ketamine, a dissociative anesthetic capable of producing hallucinations, and the psychoactive tisane ayahuasca, have shown great promise due to their fast-acting nature and effectiveness in treatment-resistant populations. Here, we investigate the effects of N, N-dimethyltryptamine (DMT), the principle hallucinogenic component of ayahuasca, in rodent behavioral assays relevant to anxiety and depression using adult, male, Sprague-Dawley rats. We find that while DMT elicits initial anxiogenic responses in several of these paradigms, its long-lasting effects tend to reduce anxiety by facilitating the extinction of cued fear memory. Furthermore, DMT reduces immobility in the forced swim test, which is a characteristic behavioral response induced by many antidepressants. Our results demonstrate that DMT produces antidepressant and anxiolytic behavioral effects in rodents, warranting further investigation of ayahuasca and classical psychedelics as treatments for depression and post-traumatic stress disorder.
Kennedy, David O; Little, Wendy; Haskell, Crystal F; Scholey, Andrew B
2006-02-01
Melissa officinalis (lemon balm) and Valeriana officinalis (valerian) have been used both traditionally and contemporaneously as mild sedatives, anxiolytics and hypnotics. Recent research has suggested that both may attenuate laboratory induced stress. As the two herbs are most often sold in combination with each other the current study assessed the anxiolytic properties of such a combination during laboratory-induced stress. In this double-blind, placebo-controlled, randomized, balanced cross-over experiment, 24 healthy volunteers received three separate single doses (600 mg, 1200 mg, 1800 mg) of a standardized product containing M. officinalis and V. officinalis extracts, plus a placebo, on separate days separated by a 7 day wash out period. Modulation of mood and anxiety were assessed during pre-dose and 1 h, 3 h and 6 h post-dose completions of a 20 min version of the Defined Intensity Stressor Simulation (DISS) battery. Cognitive performance on the four concurrent tasks of the battery was also assessed. The results showed that the 600 mg dose of the combination ameliorated the negative effects of the DISS on ratings of anxiety. However, the highest dose (1800 mg) showed an increase in anxiety that was less marked but which reached significance during one testing session. In addition, all three doses led to decrements in performance on the Stroop task module within the battery, and the two lower doses led to decrements on the overall score generated on the DISS battery. These results suggest that a combination of Melissa officinalis and Valeriana officinalis possesses anxiolytic properties that deserve further investigation. Copyright 2006 John Wiley & Sons, Ltd.
Effects of day-length variations on emotional responses towards unfamiliarity in Swiss mice.
Kopp, C; Misslin, R; Vogel, E; Rettori, M C; Delagrange, P; Guardiola-Lemaitre, B
1997-11-01
Pineal melatonin secretion occurs at night in all vertebrates and the duration of its secretion is negatively correlated with day length. As an anxiolytic activity of melatonin has been shown in rats and mice, this study examined possible changes of emotional reactivity in response to day length variations in Swiss mice. Three groups of mice were observed in a free-exploratory test: a group submitted to a short-day exposure (6:18 h light-dark cycle) for 2 weeks, a group submitted to a long-day exposure (18:6 h light-dark cycle) for 2 weeks and a control group which was maintained in housing 12:12 h light-dark cycle. The short-day exposed group of mice exhibited significantly fewer attempts to enter into the unfamiliar enclosure, spent significantly more time in it and presented significantly more rears than controls whereas the long-day exposed group of mice made more attempts than controls. These results suggest a decreased emotional level in short-day exposed mice and an increased level in long-day exposed mice. This could be interpreted as confirming the idea of anxiolytic-like properties of melatonin; however, the specific role of this hormone in the changes of anxiety related to day length must be assessed by further measures of potential variations of circulating melatonin.
Chen, Chieh V; Brummet, Jennifer L; Jordan, Cynthia L; Breedlove, S Marc
2016-02-01
We previously found that androgen receptor (AR) activity mediates two effects of T in adult male mice: reduction of anxiety-like behaviors and dampening of the hypothalamic-pituitary-adrenal response to stress. To determine whether brain ARs mediate these effects, we used the Cre/loxP technology seeking to disable AR throughout the central nervous system (CNS). Female mice carrying the floxed AR allele (ARlox) were crossed with males carrying cre recombinase transgene controlled by the nestin promoter (NesCre), producing cre in developing neurons and glia. Among male offspring, four genotypes resulted: males carrying ARlox and NesCre (NesARko), and three control groups (wild types, NesCre, and ARlox). Reporter mice indicated ubiquitous Cre expression throughout the CNS. Nevertheless, AR immunocytochemistry in NesARko mice revealed efficient knockout (KO) of AR in some brain regions (hippocampus and medial prefrontal cortex [mPFC]), but not others. Substantial AR protein was seen in the amygdala and hypothalamus among other regions, whereas negligible AR remained in others like the bed nucleus of the stria terminalis and dorsal periaqueductal gray. This selective KO allowed for testing the role of AR in hippocampus and mPFC. Males were castrated and implanted with T at postnatal day 60 before testing on postnatal day 90-100. In contrast with males with global KO of AR, T still modulated anxiety-related behavior and hypothalamic-pituitary-adrenal activity in NesARko males. These results leave open the possibility that AR acting in the CNS mediates these effects of T, but demonstrate that AR is not required in the hippocampus or mPFC for T's anxiolytic effects.
Brummet, Jennifer L.; Jordan, Cynthia L.; Breedlove, S. Marc
2016-01-01
We previously found that androgen receptor (AR) activity mediates two effects of T in adult male mice: reduction of anxiety-like behaviors and dampening of the hypothalamic-pituitary-adrenal response to stress. To determine whether brain ARs mediate these effects, we used the Cre/loxP technology seeking to disable AR throughout the central nervous system (CNS). Female mice carrying the floxed AR allele (ARlox) were crossed with males carrying cre recombinase transgene controlled by the nestin promoter (NesCre), producing cre in developing neurons and glia. Among male offspring, four genotypes resulted: males carrying ARlox and NesCre (NesARko), and three control groups (wild types, NesCre, and ARlox). Reporter mice indicated ubiquitous Cre expression throughout the CNS. Nevertheless, AR immunocytochemistry in NesARko mice revealed efficient knockout (KO) of AR in some brain regions (hippocampus and medial prefrontal cortex [mPFC]), but not others. Substantial AR protein was seen in the amygdala and hypothalamus among other regions, whereas negligible AR remained in others like the bed nucleus of the stria terminalis and dorsal periaqueductal gray. This selective KO allowed for testing the role of AR in hippocampus and mPFC. Males were castrated and implanted with T at postnatal day 60 before testing on postnatal day 90–100. In contrast with males with global KO of AR, T still modulated anxiety-related behavior and hypothalamic-pituitary-adrenal activity in NesARko males. These results leave open the possibility that AR acting in the CNS mediates these effects of T, but demonstrate that AR is not required in the hippocampus or mPFC for T's anxiolytic effects. PMID:26562258
Bundgaard, Kristian; Hansen, Steen M; Mortensen, Rikke Nørmark; Wissenberg, Mads; Hansen, Malta; Lippert, Freddy; Gislason, Gunnar; Køber, Lars; Nielsen, Jimmi; Torp-Pedersen, Christian; Rasmussen, Bodil Steen; Kragholm, Kristian
2017-06-01
This study aimed to examine rates of redeemed prescriptions of antidepressants and anxiolytics, used as markers for cerebral dysfunction in out-of-hospital cardiac arrest (OHCA) survivors, and examine the association between bystander CPR and these psychoactive drugs. We included all 30-day survivors of OHCA in Denmark between 2001 and 2011, who had not redeemed prescriptions for antidepressants or anxiolytics in the last six months prior to OHCA. Main outcome measures were redeemed prescriptions of antidepressants and anxiolytics within one year after OHCA. Among 2,001 30-day survivors, 174 (8.6% died and 12.0% redeemed a first prescription for an antidepressant and 8.2% for an anxiolytic drug within one year after arrest. The corresponding frequencies for redeemed prescribed drugs among age- and sex-matched population controls were 7.5% and 5.2%, respectively. Among survivors who received bystander CPR, prescriptions for antidepressants and anxiolytics were redeemed in 11.1% [95% CI 9.2-13.3%] and 6.3% [95% CI 4.9-8.0%] of the cases, respectively, versus 17.2% [95% CI 13.9-21.1%] and 13.4% [95% CI 10.5-17.0%], respectively, among patients who had not received bystander CPR. Adjusted for age, sex, year of arrest, comorbidity, witnessed status and socioeconomic status, bystander CPR was associated with significant reductions in redeemed prescriptions for antidepressants, Hazard Ratio (HR) 0.71 [95% CI 0.52-0.98], P=0.031; and anxiolytics, HR 0.55 [95% CI 0.38-0.81], P=0.002. Relative to no bystander CPR, redeemed prescriptions for antidepressants and anxiolytics were significantly lower among 30-day survivors of OHCA who received bystander CPR, suggesting a cerebral dysfunction-lowering potential of bystander CPR. Copyright © 2017 Elsevier B.V. All rights reserved.
Oxytocin's role in anxiety: a critical appraisal.
MacDonald, Kai; Feifel, David
2014-09-11
A growing literature suggests that the oxytocin (OT) system may play a role in human anxiety states, anxiety-related traits, and moreover, that this system may be a target for the development of novel anxiolytic treatments. However, studies of OT's acute and chronic effects on various aspects of anxiety have produced mixed results. In this forward-looking review, we discuss the myriad phenomena to which the term "anxiety" is applied in the OT literature and the problem this presents developing a coherent picture of OT's role in anxiety. We then survey several different fields of research that support the role of the OT system in human anxiety, including evolutionary perspectives, translational and neuroimaging research, genetic studies, and clinical trials of intranasal OT. As an outgrowth of this data, we propose a "bowtie" model of OT's role at the interface of social attachment and anxiety. We next direct attention to understudied brain regions and neural circuits which may be important to study in OT experiments in humans anxiety disorders. Finally, we conclude by proposing questions and priorities for studying both the clinical potential of OT in anxiety, as well as mechanisms that may underlie this potential. Crucially, these priorities include targeted proof-of-concept clinical trials of IN OT in certain anxiety disorders, including investigations of individual moderators of OT's anxiolytic effects (i.e. sex, genetic factors, and early experience). This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014 Elsevier B.V. All rights reserved.
Behavioral effects of plant-derived essential oils in the geller type conflict test in mice.
Umezu, T
2000-06-01
The present study was conducted to further explore plant-derived essential oils that possess an anticonflict effect using the Geller type conflict test in ICR mice. The benzodiazepine anxiolytic diazepam increased the response (lever pressing) rate during the alarm period (i.e., an anticonflict effect), but the 5-HT1A partial agonist buspirone did not. Oils of juniper, cypress, geranium and jasmine did not produce any effect in this test. Frankincense oil decreased the response rate during the safe period at 1600 mg/kg, but did not exhibit any effect on the response rate during the alarm period. In contrast, lavender oil increased the response rate during the alarm period in a dose-dependent manner in the same manner as diazepam. These results indicate that not only rose oil but also lavender oil possess an anticonflict effect in mice.
Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy.
Packer, Rowena M A; Law, Tsz Hong; Davies, Emma; Zanghi, Brian; Pan, Yuanlong; Volk, Holger A
2016-02-01
Epilepsy in humans and rodent models of epilepsy can be associated with behavioral comorbidities including an increased prevalence of attention-deficit/hyperactivity disorder (ADHD). Attention-deficit/hyperactivity disorder symptoms and seizure frequency have been successfully reduced in humans and rodents using a ketogenic diet (KD). The aims of this study were (i) to describe the behavioral profile of dogs with idiopathic epilepsy (IE) while on a standardized nonketogenic placebo diet, to determine whether ADHD-like behaviors are present, and (ii) to examine the effect of a ketogenic medium chain triglyceride diet (MCTD) on the behavioral profile of dogs with idiopathic epilepsy (IE) compared with the standardized placebo control diet, including ADHD-like behaviors. A 6-month prospective, randomized, double-blinded, placebo-controlled, crossover dietary trial comparing the effects of the MCTD with a standardized placebo diet on canine behavior was carried out. Dogs diagnosed with IE, with a seizure frequency of at least 3 seizures in the past 3months (n=21), were fed the MCTD or placebo diet for 3months and were then switched to the alternative diet for 3months. Owners completed a validated behavioral questionnaire to measure 11 defined behavioral factors at the end of each diet period to report their dogs' behavior, with three specific behaviors hypothesized to be related to ADHD: excitability, chasing, and trainability. The highest scoring behavioral factors in the placebo and MCTD periods were excitability (mean±SE: 1.910±0.127) and chasing (mean±SE: 1.824±0.210). A markedly lower trainability score (mean±SE: 0.437±0.125) than that of previously studied canine populations was observed. The MCTD resulted in a significant improvement in the ADHD-related behavioral factor chasing and a reduction in stranger-directed fear (p<0.05) compared with the placebo diet. The latter effect may be attributed to previously described anxiolytic effects of a KD. These data support the supposition that dogs with IE may exhibit behaviors that resemble ADHD symptoms seen in humans and rodent models of epilepsy and that a MCTD may be able to improve some of these behaviors, along with potentially anxiolytic effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Barbosa Júnior, Augusto; Alves, Fabiana Luca; Pereira, Aparecida de Sousa Fim; Ide, Liliam Midori; Hoffmann, Anette
2012-02-01
In Ostariophysan fish, the detection of the alarm substance liberated into the water as a consequence of an attack by a predator elicits an alarm reaction or anti-predatory behavior. In this study, experiments were performed to: (i) describe and quantitatively characterize the behavioral and ventilatory responses in piauçu fish (Leporinus macrocephalus), individually and as part of a school, to conspecific alarm substance (CAS) and; (ii) test the effect of acute fluoxetine treatment on alarm reaction. Histological analysis revealed the presence of club cells in the intermediate and superficial layers of the epidermis. The predominant behavioral response to CAS was freezing for fish held individually, characterized by the cessation of the swimming activity as the animal settles to a bottom corner of the aquarium. Fish exposed to CAS showed decrease in the mean ventilatory frequency (approximately 13%) relative to control. In schools, CAS elicited a biphasic response that was characterized by erratic movements followed by increased school cohesion and immobility, reflected as an increased school cohesion (65.5% vs. -5.8% for controls) and in the number of animals near the bottom of the aquarium (42.0% vs. 6.5% for controls). Animals treated with single i.p. injections of fluoxetine (10 μg/g b.w.) did not exhibit alarm behavior following CAS stimulation. These results show that an alarm pheromone system is present in piauçu fish, evidenced by the presence of epidermal club cells and an alarm reaction induced by CAS and consequently of a chemosensory system to transmit the appropriate information to neural structures responsible for initiating anti-predator behavioral responses. In addition, fluoxetine treatment caused an anxiolytic-like effect following CAS exposure. Thus, the alarm reaction in piauçu can be a useful model for neuroethological and pharmacological studies of anxiety-related states. Copyright © 2011 Elsevier Inc. All rights reserved.
A guide to benzodiazepine selection. Part II: Clinical aspects.
Teboul, E; Chouinard, G
1991-02-01
To suit the specific needs of various clinical situations, selection of an appropriate benzodiazepine derivative should be based on consideration of their different pharmacokinetic and pharmacodynamic properties. Benzodiazepine derivatives that are rapidly eliminated produce the most pronounced rebound and withdrawal syndromes. Benzodiazepines that are slowly absorbed and slowly eliminated are most appropriate for the anxious patient, since these derivatives produce a gradual and sustained anxiolytic effect. Rapidly absorbed and slowly eliminated benzodiazepines are usually more appropriate for patients with sleep disturbances, since the rapid absorption induces sleep and the slower elimination rate may induce less tolerance to the sedative effect. Rational selection of a benzodiazepine for the elderly and for the suspected drug abuser is more problematic. The relevant pharmacokinetic and clinical considerations for these users are discussed. Certain derivatives may possess pharmacodynamic properties not shared by the entire benzodiazepine class; empirical studies have suggested the existence of anti-panic properties for alprazolam and clonazepam, antidepressant properties for alprazolam, and anti-manic properties for clonazepam and possibly lorazepam.
Acute effects of triazolam on false recognition.
Mintzer, M Z; Griffiths, R R
2000-12-01
Neuropsychological, neuroimaging, and electrophysiological techniques have been applied to the study of false recognition; however, psychopharmacological techniques have not been applied. Benzodiazepine sedative/anxiolytic drugs produce memory deficits similar to those observed in organic amnesia and may be useful tools for studying normal and abnormal memory mechanisms. The present double-blind, placebo-controlled repeated measures study examined the acute effects of orally administered triazolam (Halcion; 0.125 and 0.25 mg/70 kg), a benzodiazepine hypnotic, on performance in the Deese (1959)/Roediger-McDermott (1995) false recognition paradigm in 24 healthy volunteers. Paralleling previous demonstrations in amnesic patients, triazolam produced significant dose-related reductions in false recognition rates to nonstudied words associatively related to studied words, suggesting that false recognition relies on normal memory mechanisms impaired in benzodiazepine-induced amnesia. The results also suggested that relative to placebo, triazolam reduced participants' reliance on memory for item-specific versus list-common semantic information and reduced participants' use of remember versus know responses.
Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li
2014-09-01
Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.
Skelly, M J; Chappell, A E; Carter, E; Weiner, J L
2015-10-01
Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. Copyright © 2015 Elsevier Ltd. All rights reserved.
Skelly, M. J.; Chappell, A. E.; Carter, E.; Weiner, J. L.
2015-01-01
Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. PMID:26044636
Burda-Malarz, Kinga; Kus, Krzysztof; Ratajczak, Piotr; Czubak, Anna; Hardyk, Szymon; Nowakowska, Elżbieta
2014-07-01
Some study results indicate a positive effect of aripiprazole (ARI) on impaired cognitive functions caused by brain damage resulting from chronic EtOH abuse. However, other research shows that to manifest itself, an ARI antidepressant effect requires a combined therapy with another selective serotonin reuptake inhibitor antidepressant, namely, fluoxetine (FLX). The aim of this article was to assess antidepressant and anxiolytic effects of ARI as well as its effect on spatial memory in ethanol-treated (alcoholized) rats. On the basis of alcohol consumption pattern, groups of (1) ethanol-preferring rats, with mean ethanol intake above 50%, and (2) ethanol-nonpreferring rats (EtNPRs), with mean ethanol intake below 50% of total daily fluid intake, were formed. The group of EtNPRs was used for this study, subdivided further into three groups administered ARI, FLX and a combination of both, respectively. Behavioral tests such as Porsolt's forced swimming test, the Morris water maze test and the two-compartment exploratory test were employed. Behavioral test results demonstrated (1) no antidepressant effect of ARI in EtNPRs in subchronic treatment and (2) no procognitive effect of ARI and FLX in EtNPRs in combined single administration. Combined administration of both drugs led to an anxiogenic effect and spatial memory deterioration in study animals. ARI had no antidepressant effect and failed to improve spatial memory in rats. However, potential antidepressant, anxiolytic and procognitive properties of the drug resulting from its mechanism of action encourage further research aimed at developing a dose of both ARI and FLX that will prove such effects in alcoholized EtNPRs.
Rate of prescription of antidepressant and anxiolytic drugs after Cyclone Yasi in North Queensland.
Usher, Kim; Brown, Lawrence H; Buettner, Petra; Glass, Beverley; Boon, Helen; West, Caryn; Grasso, Joseph; Chamberlain-Salaun, Jennifer; Woods, Cindy
2012-12-01
The need to manage psychological symptoms after disasters can result in an increase in the prescription of psychotropic drugs, including antidepressants and anxiolytics. Therefore, an increase in the prescription of antidepressants and anxiolytics could be an indicator of general psychological distress in the community. The purpose of this study was to determine if there was a change in the rate of prescription of antidepressant and anxiolytic drugs following Cyclone Yasi. A quantitative evaluation of new prescriptions of antidepressants and anxiolytics was conducted. The total number of new prescriptions for these drugs was calculated for the period six months after the cyclone and compared with the same six month period in the preceding year. Two control drugs were also included to rule out changes in the general rate of drug prescription in the affected communities. After Cyclone Yasi, there was an increase in the prescription of antidepressant drugs across all age and gender groups in the affected communities except for males 14-54 years of age. The prescription of anxiolytic drugs decreased immediately after the cyclone, but increased by the end of the six-month post-cyclone period. Control drug prescription did not change. There was a quantifiable increase in the prescription of antidepressant drugs following Cyclone Yasi that may indicate an increase in psychosocial distress in the community.
Refractory case of adrenergic urticaria successfully treated with clotiazepam.
Kawakami, Yukari; Gokita, Mari; Fukunaga, Atsushi; Nishigori, Chikako
2015-06-01
Adrenergic urticaria (AU) is a rare type of stress-induced physical urticaria characterized by widespread pruritic urticarial papules. Diagnosis can be made by i.d. injection of adrenaline or noradrenaline, which produces the characteristic rash. Although the lesions of AU typically respond to beta-blockers such as propranolol, the therapeutic options for AU are limited. Here, we report a case of AU that was resistant to beta-blockers and successfully treated with clotiazepam. The clinical picture of AU resembles that of cholinergic urticaria (CU), however, positive noradrenaline test and negative acetylcholine skin test were useful for the differential diagnosis of AU and CU. Although his symptoms were resistant to several therapeutic methods including olopatadine (H1 antagonist), lafutidine (H2 antagonist) and propranolol, the severity and frequency of his attacks and his subjective symptoms were reduced by oral clotiazepam, an anxiolytic benzodiazepine. Dermatologists should be aware that anxiolytic benzodiazepines may be a therapeutic option in AU. © 2015 Japanese Dermatological Association.
Evaluating psychological interventions in a novel experimental human model of anxiety
Ainsworth, Ben; Marshall, Jemma E.; Meron, Daniel; Baldwin, David S.; Chadwick, Paul; Munafò, Marcus R.; Garner, Matthew
2015-01-01
Inhalation of 7.5% carbon dioxide increases anxiety and autonomic arousal and provides a novel experimental model of anxiety with which to evaluate pharmacological and psychological treatments for anxiety. To date several psychotropic drugs including benzodiazepines, SSRIs and SNRIs have been evaluated using the 7.5% CO2 model; however, it has yet to be used to evaluate psychological interventions. We compared the effects of two core psychological components of mindfulness-meditation (open monitoring and focused attention) against general relaxation, on subjective, autonomic and neuropsychological outcomes in the 7.5% CO2 experimental model. 32 healthy screened adults were randomized to complete 10 min of guided open monitoring, focused attention or relaxation, immediately before inhaling 7.5% CO2 for 20 min. During CO2-challenge participants completed an eye-tracking measure of attention control and selective attention. Measures of subjective anxiety, blood pressure and heart rate were taken at baseline and immediately following intervention and CO2-challenge. OM and FA practice reduced subjective feelings of anxiety during 20-min inhalation of 7.5% CO2 compared to relaxation control. OM practice produced a strong anxiolytic effect, whereas the effect of FA was more modest. Anxiolytic OM and FA effects occurred in the absence of group differences in autonomic arousal and eye-movement measures of attention. Our findings are consistent with neuropsychological models of mindfulness-meditation that propose OM and FA activate prefrontal mechanisms that support emotion regulation during periods of anxiety and physiological hyper-arousal. Our findings complement those from pharmacological treatment studies, further supporting the use of CO2 challenge to evaluate future therapeutic interventions for anxiety. PMID:25765144
Hargreaves, Garth A; McGregor, Iain S
2007-11-01
In recent human studies, the anticonvulsant drug topiramate (TPM) has shown efficacy in treating alcohol craving and mood disorders. However, preclinical evidence supporting such effects is surprisingly sparse. Three experiments were conducted here to assess possible anticraving and antidepressant effects of TPM using animal models. In Experiment 1, rats were given 23 weeks ad libitum access to food, water, and either beer (4.44% ethanol v/v) or "near-beer" (a calorie-matched nonalcoholic beer, 0.44% ethanol) in their home cages. They were then restricted to daily 1 hour operant sessions in which they licked for water and either beer or near-beer under a progressive ratio schedule of reinforcement in a lickometer apparatus. The acute effects of TPM on the motivation to consume beer or near-beer were then assessed. The effects of naloxone were also assessed (as a positive control) after TPM testing. In Experiment 2, rats were given 11 weeks of ad libitum home-cage access to food, water, and beer. They then received repeated daily injections of TPM and effects on beer consumption under ad libitum home cage access conditions were monitored. In Experiment 3, the effects of TPM were assessed in the modified Porsolt forced swim test, emergence test, and elevated plus-maze (EPM) using alcohol naïve rats. Topiramate (10, 20, and 40 mg/kg) significantly reduced the motivation to lick for beer, although the maximal effect was moderate in comparison with naloxone (10 mg/kg). However, naloxone, unlike TPM, also reduced responding for near-beer suggesting an alcohol-specific effect of TPM. In Experiment 2, TPM (40 and 80 mg/kg) tended to transiently reduce alcohol consumption in the home cage under ad libitum access but this effect disappeared with repeated administration of the drug. TPM (10 to 80 mg/kg, given twice over 4 hours before test) produced a robust dose-dependent decrease in immobility and increase in active coping strategies in the forced swim test similar to that seen with desipramine (2 x 20 mg/kg). There were modest anxiolytic effects of TPM on the EPM and emergence tests. With acute administration, TPM is moderately effective and relatively selective in reducing the drive to consume alcohol in Wistar rats. This anti-alcohol effect is modest in comparison with naloxone and appears to dissipate under conditions of chronic treatment and ad libitum alcohol access. A marked antidepressant-like effect in the forced swim test and partial anxiolytic effects in other animal models suggests that TPM may be a beneficial treatment for affective disorders. These preliminary results suggest further research is warranted to resolve the mechanisms involved in TPM modulation of both mood and alcohol consumption.
Nordenankar, Karin; Bergfors, Assar; Wallén-Mackenzie, Åsa
2015-01-01
Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans.
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
The endocannabinoid system as a target for the treatment of cannabis dependence.
Clapper, Jason R; Mangieri, Regina A; Piomelli, Daniele
2009-01-01
The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.
Antidepressant effects of Soyo-san on Immobilization stress in ovariectomized female rats.
Oh, Jin Kyung; Kim, Yoon-Sang; Park, Hyun-Jung; Lim, Eun-Mee; Pyun, Kwang-Ho; Shim, Insop
2007-08-01
Soyo-san is a traditional oriental medicinal formula, a mixture of 9 crude drugs, and it has been clinically used for treating mild depressive disorders. The purpose of the study was to examine the effect of Soyo-san on repeated stress-induced alterations of learning and memory on a Morris water maze (MWM) task and also the anxiety-related behavior on the elevated pulse maze (EPM) in ovariectomized female rats. We assessed the changes in the reactivity of the cholinergic system by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and reactivity of acetylcholinesterase (AChE) in the hippocampus, and the serum levels of corticosterone were assessed after behavioral testing. The female rats were randomly divided into three groups: the nonoperated and nonstressed group (normal), the ovariectomized and stressed group (control), and the ovariectomized, stressed and Soyo-san treated group (SOY). The rats were exposed to immobilization stress (IMO) for 14 d (2 h/d), and Soyo-san (400 mg/kg, i.p.) was administered 30 min before IMO stress. Treatments with SOY caused significant reversals of the stress-induced deficits in learning and memory on a spatial memory task, and it also produced an anxiolytic-like effect on the EPM, and increased the ChAT and AChE reactivities (p<0.05, respectively). The serum level of corticosterone in the SOY group was significantly lower than that in the control group (p<0.05). These results suggest that Soyo-san might prove to be an effective antidepressant agent.
[Effects of diazepam on mixed anxiety/depression state in male mice].
Galiamina, A G; Smagin, D A; Kovalenko, I L; Bondar', N P; Kudriavtseva, N N
2013-11-01
Chronic social defeat stress in daily agonistic interactions leads to the development of mixed anxiety/depression state in male mice. This paper aimed to study the effects of chronic diazepam treatment on the psychoemotional state of these animals. Diazepam (0.5 mg/kg, i/p, Polfa Tarchomin S. A.) or saline was chronically injected into male mice for two weeks on the background of continuing agonistic interactions (preventive treatment) or into male mice with mixed anxiety/depression state after stopping of social confrontations (therapeutic treatment). Then, the animals were studied in the partition, plus-maze and Porsolt' tests, estimating the levels of communicativeness, anxiety and depressiveness, respectively. Preventive diazepam treatment had a weak protective anxiolytic and pro-depressive effect. The therapeutic diazepam treatment didn't influence on the anxiety and depression-like state. Chronic diazepam was ineffective for the treatment of the mixed anxiety/depression state in male mice. Different effects ofdiazepam on anxiety and depression-like states under preventive treatment confirmed our conclusion shown earlier about the independent development of these pathologies at least in our experimental paradigm.
Antidepressant-like effects of erythropoietin: a focus on behavioural and hippocampal processes.
Osborn, Meagan; Rustom, Nazneen; Clarke, Melanie; Litteljohn, Darcy; Rudyk, Chris; Anisman, Hymie; Hayley, Shawn
2013-01-01
Depression is a chronic and debilitating condition with a significant degree of relapse and treatment resistance that could stem, at least in part, from disturbances of neuroplasticity. This has led to an increased focus on treatment strategies that target brain derived neurotrophic factor (BDNF), synaptic plasticity and adult neurogenesis. In the current study we aimed to assess whether erythropoietin (EPO) would have antidepressant-like effects given its already established pro-trophic actions. In particular, we assessed whether EPO would diminish the deleterious effects of a social stressor in mice. Indeed, EPO induced anxiolytic and antidepressant-like responses in a forced swim test, open field, elevated-plus maze, and a novelty test, and appeared to blunt some of the negative behavioural effects of a social stressor. Furthermore, EPO promoted adult hippocampal neurogenesis, an important feature of effective antidepressants. Finally, a separate study using the mTOR inhibitor rapamycin revealed that antagonizing this pathway prevented the impact of EPO upon forced swim performance. These data are consistent with previous findings showing that the mTOR pathway and its neurogenic and synaptogenic effects might mediate the behavioral consequences of antidepressant agents. Our findings further highlight EPO as a possible adjunct treatment for affective disorders, as well as other stressor associated disorders of impaired neuroplasticity.
Exogenous cortisol acutely influences motivated decision making in healthy young men.
Putman, Peter; Antypa, Niki; Crysovergi, Panagiota; van der Does, Willem A J
2010-02-01
The glucocorticoid (GC) hormone cortisol is the end product of the hypothalamic-pituitary-adrenal axis (HPA axis). Acute psychological stress increases HPA activity and GC release. In humans, chronic disturbances in HPA activity have been observed in affective disorders and in addictive behaviour. Recent research indicates that acute effects of GCs may be anxiolytic and increase reward sensitivity. Furthermore, cortisol acutely influences early cognitive processing of emotional stimuli. In order to extend such findings to more complex emotional-cognitive behaviour, the present study tested acute effects of 40 mg cortisol on motivated decision making in 30 healthy young men. Results showed that cortisol indeed increased risky decision making, as predicted. This effect occurred for decisions where making a risky choice could potentially yield a big reward. These results are discussed with respect to currently proposed mechanisms for cortisol's potential anxiolytic effect and GCs' involvement in reward systems.
Bradwejn, J; Zhou, Y; Koszycki, D; Shlik, J
2000-12-01
Investigations of the pharmacologic profile of medicinal plants have revealed that a number of plants with purported anxiolytic activity bind to cholecystokinin (CCK) receptors. This finding is intriguing in view of the proposed involvement of CCK in the pathophysiology of fear and anxiety. This double-blind, placebo-controlled study was undertaken to evaluate the anxiolytic activity of Gotu Kola (Centella asiatica) in healthy subjects. Gotu Kola has been used for centuries in Ayurvedic and traditional Chinese medicine to alleviate symptoms of depression and anxiety. Recent studies in the rat have shown that long-term pretreatment with Gotu Kola decreases locomotor activity, enhances elevated-plus maze performance, and attenuates the acoustic startle response (ASR). In this study, the authors evaluated the effects of Gotu Kola on the ASR in humans. Subjects were randomly assigned to receive either a single 12-g orally administered dose of Gotu Kola (N = 20) or placebo (N = 20). The results revealed that compared with placebo, Gotu Kola significantly attenuated the peak ASR amplitude 30 and 60 minutes after treatment. Gotu Kola had no significant effect on self-rated mood, heart rate, or blood pressure. These preliminary findings suggest that Gotu Kola has anxiolytic activity in humans as revealed by the ASR. It remains to be seen whether this herb has therapeutic efficacy in the treatment of anxiety syndromes.
Zagórska, Agnieszka; Kołaczkowski, Marcin; Bucki, Adam; Siwek, Agata; Kazek, Grzegorz; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pawłowski, Maciej
2015-06-05
A novel series of arylpiperazinylalkyl purine-2,4-diones (4-27) and purine-2,4,8-triones (31-38) was synthesized and tested to evaluated their affinity for the serotoninergic (5-HT1A, 5-HT6, 5-HT7) and dopaminergic (D2) receptors. Compounds with purine-2,4-dione nucleus generally had affinity values higher than the corresponding purine-2,4,8-trione compounds. A spectrum of receptor activities was observed for compounds with a substituent at the 7-position of the imidazo[2,1-f]purine-2,4-dione system and some potent 5-HT1A (18, 25), 5-HT7 (14) and mixed 5-HT1A/5-HT7 (8, 9) receptor ligands with additional affinity for dopamine D2 receptors (15) has been identified. Moreover, docking studies proved that a substituent at the 7-position of 1,3-dimethyl-(1H,8H)-imidazo[2,1-f]purine-2,4-dione could be essential for receptor affinity and selectivity, especially towards 5-HT1A and 5-HT7. The results of the preliminary pharmacological in vivo studies of selected derivatives of 1,3-dimethyl-(1H,8H)-imidazo[2,1-f]purine-2,4-dione, including 9 as a potential anxiolytic, 8 and 15 as potential antidepressants, and 18 and 25 as potential antidepressant and anxiolytic agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Adamec, R E; Burton, P; Shallow, T; Budgell, J
It has been proposed that NMDA-dependent long-term potentiation (LTP) of limbic system circuits controlling defensive behavior underlies stressor-induced lasting increases in anxiety-like behavior (ALB). Findings in cats given the stress-inducing beta-carboline, FG-7142, support this hypothesis. An animal model of lasting affective change following traumatic stress has recently been developed. In this model, lasting increases in anxiety-like behavior (ALB) assessed in the elevated plus maze are produced by a single 5-min exposure of a rat to a cat. Rats become more anxious in the plus maze for up to 3 weeks after the exposure. The present study demonstrates that blockade of NMDA receptors in rats with MK-801, AP7, or CPP, given 30 min prior to exposure to a cat, prevents the increase in ALB assessed 1 week later. MK-801 or AP7, given 30 min after exposure to a cat, do not prevent the increase in ALB seen 1 week later, however. MK-801, but not CPP or AP7, promotes approaches to cats during exposure. This "fearlessness" may reflect some anxiolytic action of MK-801. Approach to cats following injection of MK-801 was eliminated by prior injection of Prazosin. Prazosin did not interfere with the block of increases in ALB following cat exposure, however. These findings are consistent with the view that NMDA receptors are involved in initiation, but not maintenance of neural changes mediating lasting increases in anxiety following severe stress. The significance of these findings for PTSD are discussed.
Ramirez, Karol; Niraula, Anzela; Sheridan, John F
2016-01-01
Psychosocial stress is associated with altered immunity, anxiety, and depression. Repeated social defeat (RSD), a model of social stress, triggers egress of inflammatory myeloid progenitor cells (MPCs; CD11b(+)/Ly6C(hi)) that traffic to the brain, promoting anxiety-like behavior. In parallel, RSD enhances neuroinflammatory signaling and long-lasting social avoidant behavior. Lorazepam and clonazepam are routinely prescribed anxiolytics that act by enhancing GABAergic activity in the brain. Besides binding to the central benzodiazepine binding site (CBBS) in the central nervous system (CNS), lorazepam binds to the translocator protein (TSPO) with high affinity causing immunomodulation. Clonazepam targets the CBBS and has low affinity for the TSPO. Here the aims were to determine if lorazepam and clonazepam would: (1) prevent stress-induced peripheral and central inflammatory responses, and (2) block anxiety and social avoidance behavior in mice subjected to RSD. C57/BL6 mice were divided into experimental groups, and treated with either lorazepam (0.10mg/kg), clonazepam (0.25mg/kg) or vehicle (0.9% NaCl). Behavioral data and tissues were collected the morning after the last cycle of RSD. Lorazepam and clonazepam were effective in attenuating mRNA expression of CRH in the hypothalamus and corticosterone in plasma in mice subjected to RSD. Both drugs blocked stress-induced levels of IL-6 in plasma. Lorazepam and clonazepam had different effects on stress-induced enhancement of myelopoiesis and inhibited trafficking of monocytes and granulocytes in circulation. Furthermore, lorazepam, but not clonazepam, inhibited splenomegaly and the production of pro-inflammatory cytokines in the spleen following RSD. Additionally, lorazepam and clonazepam, blocked stress-induced accumulation of macrophages (CD11b(+)/CD45(high)) in the CNS. In a similar manner, both lorazepam and clonazepam prevented neuroinflammatory signaling and reversed anxiety-like and depressive-like behavior in mice exposed to RSD. These data support the notion that lorazepam and clonazepam, aside from exerting anxiolytic and antidepressant effects, may have therapeutic potential as neuroimmunomodulators during psychosocial stress. The reversal of RSD-induced behavioral outcomes may be due to the enhancement of GABAergic neurotransmission, or some other off-target effect. The peripheral actions of lorazepam, but not clonazepam, seem to be mediated by TSPO activation. Copyright © 2015 Elsevier Inc. All rights reserved.
Ramirez, Karol; Niraula, Anzela; Sheridan, John F.
2015-01-01
Objective Psychosocial stress is associated with altered immunity, anxiety, and depression. Repeated social defeat (RSD), a model of social stress, triggers egress of inflammatory myeloid progenitor cells (MPCs; CD11b+ /Ly6Chi) that traffic to the brain, promoting anxiety-like behavior. In parallel, RSD enhances neuroinflammatory signaling and long-lasting social avoidant behavior. Lorazepam and clonazepam are routinely prescribed anxiolytics that act by enhancing GABAergic activity in the brain. Besides binding to the central benzodiazepine binding site (CBBS) in the central nervous system (CNS), lorazepam binds to the translocator protein (TSPO) with high affinity causing immunomodulation. Clonazepam targets the CBBS and has low affinity for the TSPO. Here the aims were to determine if lorazepam and clonazepam would: 1) prevent stress-induced peripheral and central inflammatory responses, and 2) block anxiety and social avoidance behavior in mice subjected to RSD. Methods C57/BL6 mice were divided into experimental groups, and treated with either lorazepam (0.10mg/kg), clonazepam (0.25 mg/kg) or vehicle (0.9%NaCl). Behavioral data and tissues were collected the morning after the last cycle of RSD. Results Lorazepam and clonazepam were effective in attenuating mRNA expression of CRH in the hypothalamus and corticosterone in plasma in mice subjected to RSD. Both drugs blocked stress-induced levels of IL-6 in plasma. Lorazepam and clonazepam had different effects on stress-induced enhancement of myelopoiesis and inhibited trafficking of monocytes and granulocytes in circulation. Furthermore, lorazepam, but not clonazepam, inhibited splenomegaly and the production of pro-inflammatory cytokines in the spleen following RSD. Additionally, lorazepam and clonazepam, blocked stress-induced accumulation of macrophages (CD11b+/CD45high) in the CNS. In a similar manner, both lorazepam and clonazepam prevented neuroinflammatory signaling and reversed anxiety-like and depressive-like behavior in mice exposed to RSD. Conclusion These data support the notion that lorazepam and clonazepam, aside from exerting anxiolytic and antidepressant effects, may have therapeutic potential as neuroimmunomodulators during psychosocial stress. The reversal of RSD-induced behavioral outcomes may be due to the enhancement of GABAergic neurotransmission, or some other off-target effect. The peripheral actions of lorazepam, but not clonazepam, seem to be mediated by TSPO activation. PMID:26342944
Khan, Imran; Karim, Nasiara; Ahmad, Waqar; Abdelhalim, Abeer; Chebib, Mary
2016-01-01
Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system's function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures), depression (tail suspension and forced swim tests), and anxiety (elevated plus maze and light/dark box paradigms). Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg) but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors. PMID:27143980
Binge-like intake of HFD attenuates alcohol intake in rats.
Sirohi, Sunil; Van Cleef, Arriel; Davis, Jon F
2017-09-01
Binge eating and binge alcohol intake are behavioral manifestations of pathological feeding and alcohol use disorder (AUD), respectively. Binge-feeding and AUD have high comorbidity with other psychiatric disorders such as depression, which could have important implications for the management of these conditions. Importantly, these behaviors share many common features suggesting a singular etiology. However, the nature by which binge-feeding affects the development or maintenance of AUD is unclear. The present study examined the impact of a binge-feeding from a nutritionally complete high-fat diet (HFD) on initiation and maintenance of alcohol intake, anxiolytic behavior and central genetic changes in brain regions that control alcohol-reinforced behaviors. To do this, male Long-Evans rats received chow (controls) or HFD every three days (HFD-3D) or every day (HFD-ED) for 5weeks. Rodent chow and water were available ad-libitum to all groups throughout the experiment. Following 5weeks of HFD cycling, 20.0% ethanol or 2.0% sucrose intake was evaluated. In addition, anxiety-like behavior was measured using a light-dark box apparatus. Both HFD-3D and -ED groups of rats consumed significantly large amount of food during 2h HFD access sessions and reduced their chow intake in the next 22h. Surprisingly, binge-fed rats displayed attenuated acquisition of alcohol intake whereas sucrose consumption was unaffected. Rats exposed to HFD spent more time in the light side compared to chow controls, indicating that binge-feeding induced anxiolytic effects. In addition, alterations in the brain neurotensin system were observed following HFD exposure. These data indicate that binge-feeding behavior induces behavioral and genetic changes that help explain how alcohol intake is influenced by co-morbid eating disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
[Clinical choice of a benzodiazepine].
Villeneuve, A
1983-01-01
If the differential specific anxiolytic activity between various benzodiazepines remains controverted , the clinician nevertheless now possesses scientific data allowing him to make a more rational selection, in order to obtain a better overall efficacy, either for an anxiolytic or hypnotic action. In other respects, the concept of anxiety has evolved and given rise to distinctions that will need to be taken into account in the choice of the adequate psychotropic medication, either a benzodiazepine or another psychotropic drug. When a benzodiazepine must be prescribed, the main criteria involved in its choice need to be considered. As anxiolytic medication, besides a selective action on anxiety, the absence of cumbersome effect on psychomotor activity and vigilance, pharmacokinetics constitute an important factor that must be looked at. Although the classification of benzodiazepines according to their half-life is only an approximation, some overlapping being possible between the various groups, it proves nevertheless extremely useful with respect to the therapeutic goal considered and the various clinical parameters involved. Some other aspects must also be considered, for example the rebound phenomenon. Finally, the variability of individual responses to drug treatment must be remembered.
Niculescu, M; Cagiano, R; Caprio, M; Damian, S; Boia, E; Vermesan, D; Tattoli, M; Haragus, H
2016-12-01
The aim of the present study was to evaluate the anxiolytic properties of the new isoxazoline compounds BTG1640 and BTG1675A in comparison with diazepam. We evaluated the ultrasonic distress emission in both sexes of neonatal rat pups (which seems to be a sensitive indicator of the rat emotional reactivity and represents a valuable tool to screen compounds with expected anxiolytic properties) and the locomotor activity in 30-day old rat pups. We found a significant reduction in the number of emitted ultrasonic calls only after i.p. administration of diazepam 1 mg/kg, while no significant reduction have been detected after i.p. administration of BTG 1640 and BTG 1675A. Furthermore, we found a significant reduction of locomotor activity in the first 10' of the test, only in the group treated with diazepam 0.1 mg. The tests validating the supposed anxiolytic properties of the new isoxazoline compounds BTG1640 and BTG1675A, in comparison with diazepam, gave negative results.
Connors, Kristin A.; Valenti, Theodore W.; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S.; Brooks, Bryan W.; Gould, Georgianna G.
2014-01-01
The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitolizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [3H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of simalarly Gαi/o-coupled cannabinoid receptors. [3H] 8-OH-DPAT specific binding was 176 ± 8, 275 ± 32, and 230 ± 36 fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [3H] WIN55,212-2 binding density was higher in those same brain regions at 6 ± 0.3, 5.5 ± 0.4 and 7.3 ± 0.3 pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50 mg/L), or dietary exposure to WIN55,212-2 (7 μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p < 0.05). Acute exposure to WIN55,212-2 at 0.5-50 mg/L, reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID:24411165
Papp, Mariusz; Gruca, Piotr; Lason-Tyburkiewicz, Magdalena; Willner, Paul
2017-02-01
Ketamine is the prototype of a new generation of antidepressant drugs, which is reported in clinical studies to be effective in treatment-resistant patients, with an effect that appears within hours and lasts for a few days. Chronic mild stress (CMS) is a well-established and widely used animal model of depression, in which anhedonia, anxiogenesis and cognitive dysfunction can be observed reliably. Studies using acute or brief ketamine treatment following withdrawal from CMS have replicated the clinical finding of a rapid onset of antidepressant action. However, there have been no CMS studies of chronic daily ketamine treatment or continued stress following ketamine treatment, which would have greater translational potential in relation to the long-term maintenance of antidepressant effects. Wistar rats were drug treated following an initial 2 weeks of CMS exposure, which continued alongside daily drug treatment. A first experiment tested a range of chronic (5 weeks) ketamine doses (5-30 mg/kg); a second compared the effects of subacute (3-5 days) and chronic (5 weeks) treatment. CMS-induced anhedonic, anxiogenic and dyscognitive effects, as measured, respectively, by decreased sucrose intake, avoidance of open arms in the elevated plus maze and loss of discrimination in the novel object recognition test. A sustained antidepressant-like effect of ketamine in the sucrose intake test was observed in both experiments, with an onset at around 1 week, faster than imipramine, and an optimum dose of 10 mg/kg. Anxiogenic and dyscognitive effects of CMS, in the elevated plus maze and novel object recognition test, respectively, were fully reversed by both subacute and chronic ketamine treatment. Daily treatment with ketamine in the CMS model causes sustained long-term antidepressant, anxiolytic and procognitive effects. The demonstration of a procognitive effect of ketamine may have particular translational value.
Burgdorf, Jeffrey; Colechio, Elizabeth M; Ghoreishi-Haack, Nayereh; Gross, Amanda L; Rex, Christopher S; Zhang, Xiao-Lei; Stanton, Patric K; Kroes, Roger A; Moskal, Joseph R
2017-06-01
Posttraumatic stress disorder is an anxiety disorder characterized by deficits in the extinction of aversive memories. Insulin-like growth factor 1 (IGF1) is the only growth factor that has shown anxiolytic and antidepressant properties in human clinical trials. In animal studies, insulin-like growth factor binding protein 2 (IGFBP2) shows both IGF1-dependent and IGF1-independent pharmacological effects, and IGFBP2 expression is upregulated by rough-and-tumble play that induces resilience to stress. IGFBP2 was evaluated in Porsolt, contextual fear conditioning, and chronic unpredictable stress models of posttraumatic stress disorder. The dependence of IGFBP2 effects on IGF1- and AMPA-receptor activation was tested using selective receptor antagonists. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex 24 hours after in vivo dosing. IGFBP2 was 100 times more potent than IGF1 in the Porsolt test. Unlike IGF1, effects of IGFBP2 were not blocked by the IGF1-receptor antagonist JB1, or by the AMPA-receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) in the Porsolt test. IGFBP2 (1 µg/kg) and IGF1 (100 µg/kg i.v.) each facilitated contextual fear extinction and consolidation. Using a chronic unpredictable stress paradigm, IGFBP2 reversed stress-induced effects in the Porsolt, novelty-induced hypophagia, sucrose preference, and ultrasonic vocalization assays. IGFBP2 also increased mature dendritic spine densities in the medial prefrontal cortex and hippocampus 24 hours postdosing. These data suggest that IGFBP2 has therapeutic-like effects in multiple rat models of posttraumatic stress disorder via a novel IGF1 receptor-independent mechanism. These data also suggest that the long-lasting effects of IGFBP2 may be due to facilitation of structural plasticity at the dendritic spine level. IGFBP2 and mimetics may have therapeutic potential for the treatment of posttraumatic stress disorder. © The Author 2017. Published by Oxford University Press on behalf of CINP.
[Electroencephalography measures in motor skill learning and effects of bromazepam].
Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Portella, Claudio Elidio; Cagy, Maurício; Furtado, Vernon; Piedade, Roberto; Ribeiro, Pedro
2005-06-01
Neuromodulators change brain's neural circuitry. Bromazepam is often been used in the pharmacological treatment of anxiety disorders. Few papers links this anxiolytic to motor tasks. The purpose of this study was to examine motor and electrophysiological changes produced by administration of bromazepam in differents doses (3 and 6 mg). The sample consisted of 39 healthy individuals, of both sexes, between 20 and 30 years of age. The control (placebo) and experimental (bromazepam 3mg and bromazepam 6 mg) groups were submitted to a typewriting task, in a randomized, double-blind design. The results did not reveal differences on score and time of the attention test. In the comportamental analysis was noticed blocks as main effect to behavioral variables (time and mistakes in the task). Electrophysiological data showed significants interactions to: laterally/condition/moment; laterally/condition; laterally/moment; condition/moment; condition/site.
2014-01-01
Background Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Methods Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. Results In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. Discussion High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period. PMID:25179125
Zou, D; Chen, L; Deng, D; Jiang, D; Dong, F; McSweeney, C; Zhou, Y; Liu, L; Chen, G; Wu, Y; Mao, Y
2016-01-01
Parvalbumin (PV)-positive interneurons in the hippocampus play a critical role in animal memory, such as spatial working memory. However, how PV-positive interneurons in the subregions of the hippocampus affect animal behaviors remains poorly defined. Here, we achieved specific and reversible activation of PV-positive interneurons using designer receptors exclusively activated by designer drugs (DREADD) technology. Inducible DREADD expression was demonstrated in vitro in cultured neurons, in which co-transfection of the hM3D-Gq-mCherry vector with a Cre plasmid resulted in a cellular response to hM3Dq ligand clozapine-N-oxide (CNO) stimulation. In addition, the dentate gyrus (DG) of PV-Cre mice received bilateral injection of control lentivirus or lentivirus expressing double floxed hM3D-Gq-mCherry. Selective activation of PV-positive interneurons in the DG did not affect locomotor activity or depression-related behavior in mice. Interestingly, stimulation of PV-positive interneurons induced an anxiolytic effect. Activation of PVpositive interneurons appears to impair social interaction to novelty, but has no effect on social motivation. However, this defect is likely due to the anxiolytic effect as the exploratory behavior of mice expressing hM3DGq is significantly increased. Mice expressing hM3D-Gq did not affect novel object recognition. Activation of PV-positive interneurons in the DG maintains intact cued and contextual fear memory but facilitates fear extinction. Collectively, our results demonstrated that proper control of PV interneurons activity in the DG is critical for regulation of the anxiety, social interaction and fear extinction. These results improve our fundamental understanding of the physiological role of PV-positive interneurons in the hippocampus.
Iarkova, M A
2011-01-01
The level of specific 3H-flunitrazepam binding in synaptosomal membranes of C57BL/6 and BALB/c mice brain underwent to the stress of different types has been studied. Mild stress (Elevated Plus Maze) was shown to induce the decrease of benzodiazepine binding in BALB/c mice only, while the strong one (Exposure to a predator) was revealed to cause this decrease in both strains. Behavioral effects of different non-benzodiazepine drugs possessing anxiolytic properties (Afobazol, Ladasten and Noopept) was accompanied with the normalization of the level of benzodiazepine reception, reduced by the stress of both modalities.
Dezsi, Gabi; Ozturk, Ezgi; Salzberg, Michael R; Morris, Margaret; O'Brien, Terence J; Jones, Nigel C
2016-09-01
The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour. GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing. Then, we exposed male GAERS to early enrichment or standard housing and generated F1 progeny, which also underwent EEG recordings. Hippocampal CRH mRNA expression and DNA methylation were assessed using RT-PCR and pyrosequencing, respectively. Early environmental enrichment delayed the onset of epilepsy in GAERS, and resulted in fewer seizures in adulthood, compared with standard housed GAERS. Enrichment also reduced the frequency of seizures when initiated in adulthood. Anxiety levels were reduced by enrichment, and these anti-epileptogenic and anxiolytic effects were heritable into the next generation. We also found reduced expression of CRH mRNA in GAERS exposed to enrichment, but this was not due to changes in DNA methylation. Environmental enrichment produces disease-modifying effects on genetically determined absence epilepsy and anxiety, and these beneficial effects are transferable to the subsequent generation. Reduced CRH expression was associated with these phenotypic improvements. Environmental stimulation holds promise as a naturalistic therapy for genetically determined epilepsy which may benefit subsequent generations. Copyright © 2016 Elsevier Inc. All rights reserved.
Meshavkin, V K; Kost, N V; Sokolov, O Yu; Zolotarev, Yu A; Myasoedov, N F; Zozulya, A A
2006-11-01
Peptide anxiolytic selank (Thr-Lys-Pro-Arg-Pro-Gly-Pro) applied intraperitoneally in doses of 0.01, 0.1, 1.0, and 10.0 mg/kg to mice reduces behavioral manifestations of dopaminergic system induced by apomorphine in the verticalization test. This effect was comparable to that of atypical antipsychotic olanzapine in near-therapeutic doses (0.1 and 1.0 mg/kg, intraperitoneally) and was blocked with nonselective opioid receptor antagonist naloxone (10 mg/kg, intraperitoneally). Radioreceptor assay showed that selank did not displace nonselective D2-dopamine receptor antagonist (3)H-spiperone (EC50>100 microM) and delta- and micro-opioid receptor ligand 3H-DADLE (EC50>40 microM) from specific binding sites on rat brain membranes. It is hypothesized that the revealed behavioral effect of selank is mediated by its modulating effect on the endogenous opioid system and specifically, by its effect on activity of enkephalin-degrading enzymes.
Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas
2010-05-01
Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.
Anxiolytic action of pterostilbene: involvement of hippocampal ERK phosphorylation
USDA-ARS?s Scientific Manuscript database
Pterostilbene, a natural analog of resveratrol, has diverse health-beneficial properties. However, the neurological activities of this compound are largely unexplored. Here we report that pterostilbene shows anxiolytic action by downregulating phosphorylated levels of ERKs in the hippocampus of mice...
Mineur, Yann S; Bentham, Matthew P; Zhou, Wen-Liang; Plantenga, Margreet E; McKee, Sherry A; Picciotto, Marina R
2015-10-01
The a2A-noradrenergic agonist guanfacine can decreases stress-induced smoking in female, but not male, human smokers. It is not known whether these effects are due to effects on mood regulation and/or result from nicotinic-cholinergic interactions. The objective of the study was to determine whether there are sex differences in the effect of guanfacine in tests of anxiolytic and antidepressant efficacy in mice at baseline and in a hypercholinergic model of depression induced by the acetylcholinesterase inhibitor physostigmine. The effects of guanfacine were measured in the light/dark box, tail suspension, and the forced swim test in female and male C57BL/6J mice. In parallel, electrophysiological properties were evaluated in the prefrontal cortex, a critical brain region involved in stress responses. c-fos immunoreactivity was measured in other brain regions known to regulate mood. Despite a baseline sex difference in behavior in the forced swim test (female mice were more immobile), guanfacine had similar, dose-dependent, antidepressant-like effects in mice of both sexes (optimal dose, 0.15 mg/kg). An antidepressant-like effect of guanfacine was also observed following pre-treatment with physostigmine. A sex difference in the paired-pulse ratio in the prefrontal cortex (PFC) (male, 1.4; female, 2.1) was observed at baseline that was normalized by guanfacine. Other brain areas involved in cholinergic control of depression-like behaviors, including the basolateral amygdala and lateral septum, showed sex-specific changes in c-fos expression. Guanfacine has a robust antidepressant-like effect and can reverse a depression-like state induced by increased acetylcholine (ACh) signaling. These data suggest that different brain areas are recruited in female and male mice, despite similar behavioral responses to guanfacine.
Anxiolytic Effect of Aromatherapy Massage in Patients with Breast Cancer
Kuriyama, Hiroko; Shigemori, Ichiro; Watanabe, Satoko; Aihara, Yuka; Kita, Masakazu; Sawai, Kiyoshi; Nakajima, Hiroo; Yoshida, Noriko; Kunisawa, Masahiro; Kawase, Masanori; Fukui, Kenji
2009-01-01
We examined how aromatherapy massage influenced psychologic and immunologic parameters in 12 breast cancer patients in an open semi-comparative trial. We compared the results 1 month before aromatherapy massage as a waiting control period with those during aromatherapy massage treatment and 1 month after the completion of aromatherapy sessions. The patients received a 30 min aromatherapy massage twice a week for 4 weeks (eight times in total). The results showed that anxiety was reduced in one 30 min aromatherapy massage in State-Trait Anxiety Inventory (STAI) test and also reduced in eight sequential aromatherapy massage sessions in the Hospital Anxiety and Depression Scale (HADS) test. Our results further suggested that aromatherapy massage ameliorated the immunologic state. Further investigations are required to confirm the anxiolytic effect of aromatherapy in breast cancer patients. PMID:18955225
Assessing anxiety in C57BL/6J mice: a pharmacological characterization of the zero maze test.
Heredia, Luis; Torrente, Margarita; Colomina, María T; Domingo, José L
2013-01-01
Anxiety disorders affect the quality of life and good health of millions of people over the world. Because clinical trials are expensive and frequently show high rates of placebo responses, animal models have become an important tool for drug discovery and brain research. Zero maze is a commonly used test to assess anxiety-like levels in mice, being the C57BL/6J strain one of the most widely used. However, only few studies have focused on the pharmacological characterization of this strain in the various anxiety tests. In this study, we analyzed the changes in the anxiety-like behaviors of mice exposed to chlordiazepoxide (CLZ), as an anxiolytic drug, at doses of 2.5, 5 and 10mg/kg, picrotoxine (PTX), as an anxiogenic drug, at doses of 0.5, 1 and 2mg/kg, and methylphenidate (MPH), as a psychomotor stimulant, at doses of 2.5, 5 and 10mg/kg. Data were hand recorded in situ by an observer and through a camcorder by computer software. Results showed that CLZ and MPH had an anxiogenic effect at the two highest doses. Only CLZ at 2.5mg/kg reduced the anxiety-like levels of mice. Moreover, PTX exerted an anxiogenic effect in mice only at 2mg/kg. The drugs affecting the anxiety-like levels also affected the activity levels. Thus, the differences might have been mediated by changes in activity levels. Globally, these data demonstrate that the results obtained from the zero maze test are difficult to interpret when the C57BL/6J strain is used. On the other hand, high doses of substances that interact with the GABAergic system, as CLZ, can produce sedation in these mice. In contrast, high doses of GABAA antagonists, as PTX, are necessary if anxiogenic effects should be observed. Further investigations with this strain are necessary in order to corroborate the results of the present study. Copyright © 2013 Elsevier Inc. All rights reserved.
Linares, Ila M. P.; Guimaraes, Francisco S.; Eckeli, Alan; Crippa, Ana C. S.; Zuardi, Antonio W.; Souza, Jose D. S.; Hallak, Jaime E.; Crippa, José A. S.
2018-01-01
Cannabidiol (CBD) is a component of Cannabis sativa that has a broad spectrum of potential therapeutic effects in neuropsychiatric and other disorders. However, few studies have investigated the possible interference of CBD on the sleep-wake cycle. The aim of the present study was to evaluate the effect of a clinically anxiolytic dose of CBD on the sleep-wake cycle of healthy subjects in a crossover, double-blind design. Twenty-seven healthy volunteers that fulfilled the eligibility criteria were selected and allocated to receive either CBD (300 mg) or placebo in the first night in a double-blind randomized design (one volunteer withdrew from the study). In the second night, the same procedure was performed using the substance that had not been administered in the previous occasion. CBD or placebo were administered 30 min before the start of polysomnography recordings that lasted 8 h. Cognitive and subjective measures were performed immediately after polysomnography to assess possible residual effects of CBD. The drug did not induce any significant effect (p > 0.05). Different from anxiolytic and antidepressant drugs such as benzodiazepines and selective serotonin reuptake inhibitors, acute administration of an anxiolytic dose of CBD does not seem to interfere with the sleep cycle of healthy volunteers. The present findings support the proposal that CBD do not alter normal sleep architecture. Future studies should address the effects of CBD on the sleep-wake cycle of patient populations as well as in clinical trials with larger samples and chronic use of different doses of CBD. Such studies are desirable and opportune. PMID:29674967
Gaburro, Stefano; Stiedl, Oliver; Giusti, Pietro; Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas
2011-11-01
Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments.
Rodríguez-Landa, Juan Francisco; Cueto-Escobedo, Jonathan; Flores-Aguilar, Luis Ángel; Rosas-Sánchez, Gilberto Uriel; Rovirosa-Hernández, María de Jesús; García-Orduña, Francisco; Carro-Juárez, Miguel
2018-01-01
Montanoa frutescens and Montanoa grandiflora have been indistinctly used for centuries in traditional Mexican medicine for reproductive impairments, anxiety, and mood disorders. Preclinical studies support their aphrodisiac and anxiolytic properties, but their effects on mood are still unexplored. The effects of 25 and 50 mg/kg of M frutescens and M grandiflora extracts were evaluated on days 1, 7, 14, 21, and 28 of treatment, and compared with fluoxetine (1 mg/kg) and Remotiv (7.14 mg/kg) in Wistar rats. The participation of GABA A receptor in the effects produced by the treatments was explored. Montanoa extracts reduced immobility since day 1 of treatment, while fluoxetine and Remotiv required 14 days. The GABA A antagonism blocked the effects of Montanoa extracts, but not of fluoxetine or Remotiv. Montanoa extracts prevented quickly the stress-induced behaviors in the swimming test through action at the GABA A receptor, exerting a protective effect different to the typical antidepressants drugs.
Effect of sweet orange aroma on experimental anxiety in humans.
Goes, Tiago Costa; Antunes, Fabrício Dias; Alves, Péricles Barreto; Teixeira-Silva, Flavia
2012-08-01
The objective of this study was to evaluate the potential anxiolytic effect of sweet orange (Citrus sinensis) aroma in healthy volunteers submitted to an anxiogenic situation. Forty (40) male volunteers were allocated to five different groups for the inhalation of sweet orange essential oil (test aroma: 2.5, 5, or 10 drops), tea tree essential oil (control aroma: 2.5 drops), or water (nonaromatic control: 2.5 drops). Immediately after inhalation, each volunteer was submitted to a model of anxiety, the video-monitored version of the Stroop Color-Word Test (SCWT). Psychologic parameters (state-anxiety, subjective tension, tranquilization, and sedation) and physiologic parameters (heart rate and gastrocnemius electromyogram) were evaluated before the inhalation period and before, during, and after the SCWT. Unlike the control groups, the individuals exposed to the test aroma (2.5 and 10 drops) presented a lack of significant alterations (p>0.05) in state-anxiety, subjective tension and tranquillity levels throughout the anxiogenic situation, revealing an anxiolytic activity of sweet orange essential oil. Physiologic alterations along the test were not prevented in any treatment group, as has previously been observed for diazepam. Although more studies are needed to find out the clinical relevance of aromatherapy for anxiety disorders, the present results indicate an acute anxiolytic activity of sweet orange aroma, giving some scientific support to its use as a tranquilizer by aromatherapists.
Pieri, L; Schaffner, R; Scherschlicht, R; Polc, P; Sepinwall, J; Davidson, A; Möhler, H; Cumin, R; Da Prada, M; Burkard, W P; Keller, H H; Müller, R K; Gerold, M; Pieri, M; Cook, L; Haefely, W
1981-01-01
8-Chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a][1,4]benzodiazepine (midazolam, Ro 21-3981, Dormicum) is an imidazobenzodiazepine whose salts are soluble and stable in aqueous solution. It has a quick onset and, due to rapid metabolic inactivation, a rather short duration of action in all species studied. Midazolam has a similar pharmacologic potency and broad therapeutic range as diazepam. It produces all the characteristic effects of the benzodiazepine class, i.e., anticonvulsant, anxiolytic, sleep-inducing, muscle relaxant, and "sedative" effects. The magnitude of the anticonflict effect of midazolam is smaller than that of diazepam in rats and squirrel monkeys, probably because a more pronounced sedative component interferes with the increase of punished responses. In rodents, surgical anaesthesia is not attained with midazolam alone even in high i.v. doses, whereas this state is obtained in monkeys. The drug potentiates the effect of various central depressant agents. Midazolam is virtually free of effects on the cardiovascular system in conscious animals and produces only slight decreases in cardiac performance in dogs anaesthetized with barbiturates. No direct effects of the drugs on autonomic functions were found, however, stress-induced autonomic disturbances are prevented, probably by an effect on central regulatory systems. All animal data suggest the usefulness of midazolam as a sleep-inducer and i.v. anaesthetic of rapid onset and short duration.
Cubuk, R; Tasali, N; Yilmazer, S; Gokalp, P; Celik, L; Dagdeviren, B; Guney, S
2011-02-01
The aim of the study was to investigate the relationship between image quality in 64-slice multidetector computed tomography (MDCT) and patients' preimaging anxiety status and heart rate variability (HRV), and to evaluate the efficacy of an orally administered anxiolytic medication on HRV and image quality. Sixty patients [14 women, 46 men; mean age 52.53 ± 10.55 (SD), range 33-78 years] were studied. Anxiety levels were assessed with the State-Trait Anxiety Inventory 60 min before the procedure. The participating patients were randomly assigned to one of the two study groups: a control group (no medication administered for anxiety reduction) and an anxiolytic medication group, with 30 patients in each group. The presence of motion artefacts and image quality for each coronary artery segment were evaluated using a four-point grading system. To estimate HRV, the duration of each heartbeat during MDCT data acquisition was measured in each patient. A moderate correlation was found between HRV during MDCT scanning and the mean image quality for all coronary segments (r=0.47, p<0.01). There was an association between HRV and state anxiety scores in all cases (r=0.370, p<0.01). HRV in the patients who received alprazolam was statistically significantly lower than in controls (p<0.05). The average image quality in patients who used alprazolam was also statistically significantly higher than in controls (p<0.05). The most important finding in our study is that oral premedication to reduce anxiety is also effective in decreasing HRV and improves image quality. Therefore, we suggest that using alprazolam in addition to a β-blocker may improve image quality in patients undergoing MDCT coronary angiography (MDCT-CA). Anxiolytic usage may improve image quality by lowering the HRV in selected cases where administration of a β-blocker is contraindicated. We also suggest that further studies in larger series are required to validate this finding.
Quantification of Ethanol's Anti-Punishment Effect in Humans Using the Generalized Matching Equation
ERIC Educational Resources Information Center
Rasmussen, Erin B.; Newland, M. Christopher
2009-01-01
Increases in rates of punished behavior by the administration of drugs with anxiolytic effects (called antipunishment effects) are well established in animals but not humans. The present study examined antipunishment effects of ethanol in humans using a choice procedure. The behavior of 5 participants was placed under six concurrent…
Is lavender an anxiolytic drug? A systematic review of randomised clinical trials.
Perry, R; Terry, R; Watson, L K; Ernst, E
2012-06-15
Lavender (Lavandula angustifolia) is often recommended for stress/anxiety relief and believed to possess anxiolytic effects. To critically evaluate the efficacy/effectiveness of lavender for the reduction of stress/anxiety. Seven electronic databases were searched to identify all relevant studies. All methods of lavender administration were included. Data extraction and the assessment of the methodological quality of all included trials were conducted by two independent reviewers. Fifteen RCTs met the inclusion criteria. Two trials scored 4 points on the 5-point Jadad scale, the remaining 13 scored two or less. Results from seven trials appeared to favour lavender over controls for at least one relevant outcome. Methodological issues limit the extent to which any conclusions can be drawn regarding the efficacy/effectiveness of lavender. The best evidence suggests that oral lavender supplements may have some therapeutic effects. However, further independent replications are needed before firm conclusions can be drawn. Copyright © 2012 Elsevier GmbH. All rights reserved.
The impact of sex as a biological variable in the search for novel antidepressants.
Williams, Alexia V; Trainor, Brian C
2018-05-31
A roadblock to successful treatment for anxiety and depression is the high proportion of individuals that do not respond to existing treatments. Different underlying neurobiological mechanisms may drive similar symptoms, so a more personalized approach to treatment could be more successful. There is increasing evidence that sex is an important biological variable modulating efficacy of antidepressants and anxiolytics. We review evidence for sex-specific effects of traditional monoamine based antidepressants and newer pharmaceuticals targeting kappa opioid receptors (KOR), oxytocin receptors (OTR), and N-methyl-D-aspartate receptors (ketamine). In some cases, similar behavioral effects are observed in both sexes while in other cases strong sex-specific effects are observed. Most intriguing are cases such as ketamine which has similar behavioral effects in males and females, perhaps through sex-specific neurobiological mechanisms. These results show how essential it is to include both males and females in both clinical and preclinical evaluations of novel antidepressants and anxiolytics. Copyright © 2018 Elsevier Inc. All rights reserved.
Schmauss, C.
2015-01-01
Depression is a prevalent and debilitating psychiatric illnesses. However, currently prescribed antidepressant drugs are only efficacious in a limited group of patients. Studies on Balb/c mice suggested that histone deacetylase (HDAC) inhibition may enhance the efficacy of the widely-prescribed antidepressant drug fluoxetine. This study shows that reducing HDAC activity in fluoxetine-treated Balb/c mice leads to robust antidepressant and anxiolytic effects. While reducing the activity of class I HDACs 1 and 3 led to antidepressant effects, additional class II HDAC inhibition was necessary to exert anxiolytic effects. In fluoxetine-treated mice, HDAC inhibitors increased enrichment of acetylated histone H4 protein and RNA polymerase II at promotor 3 of the brain-derived neurotrophic factor (Bdnf) gene and increased Bdnf transcription from this promotor. Reducing Bdnf-stimulated tropomyosin kinase B receptor activation in fluoxetine-treated mice with low HDAC activity abolished the behavioral effects of fluoxetine, suggesting that the HDAC-triggered epigenetic stimulation of Bdnf expression is critical for therapeutic efficacy. PMID:25639887
Meissner, H O; Mrozikiewicz, P; Bobkiewicz-Kozlowska, T; Mscisz, A; Kedzia, B; Lowicka, A; Reich-Bilinska, H; Kapczynski, W; Barchia, I
2006-09-01
Ovariectomized rats were used in a model laboratory study to examine biochemical and pharmacodynamic effects of pre-gelatinized organic preparation of Lepidium peruvianum Chacon (Maca-GO). Biochemical and Pharmacodynamic effects of Maca-GO (250 mg Maca-GO per kg body weight (bw) administered by intubation twice daily) were assessed in a 28 day model laboratory study on ovariectomized (by laparoscopy) Wistar rats with pharmacodynamic tests performed at the conclusion of the trial followed by blood collection for morphology and biochemical tests. Toxicity of Maca-GO used in the study was determined in bioassay on mice and rats. Anti-depressive function (Porsolt's test) and anxiolytic sedative and cognitive effects (using elevated-plus maze, locomotor activity and passive avoidance tests) were assessed against control (laparotomized female rats with intact ovaries). In addition to blood morphology, the following blood serum constituents were analyzed: Estrogen (E2), Progesterone (PGS), Cortisol (CT), Adrenocorticotropic Hormone (ACTH), Thyroid Hormones (TSH, T3, and T4), Iron (Fe) and lipid profile (Triglycerides, Total Cholesterol, LDL, HDL). Analytically-determined non-toxic status of Maca-GO was confirmed in bioassays when applied to mice and rats at levels of 0.5 and up to 15mg/kg bw which shows it safe use in humans with the LD50>15 mg/kg bw. Maca-GO showed a distinctive, (P<0.05) antidepressant-like and sedative effect in ovariectomized rats only, while there was no anxiolytic activity nor disturbance of cognitive function observed in both, test and control animals. Observed in this study balancing effect of Maca-GO on sex hormone levels show its potential as a safe preparation for use in correcting physiological symptoms characteristic in postmenopausal stage with an indication of potentially even more value for its use in pre-menopausal women.
Meissner, H. O.; Mrozikiewicz, P.; Bobkiewicz-Kozlowska, T.; Mscisz, A.; Kedzia, B.; Lowicka, A.; Reich-Bilinska, H.; Kapczynski, W.; Barchia, I.
2006-01-01
Ovariectomized rats were used in a model laboratory study to examine biochemical and pharmacodynamic effects of pre-gelatinized organic preparation of Lepidium peruvianum Chacon (Maca-GO). Biochemical and Pharmacodynamic effects of Maca-GO (250 mg Maca-GO per kg body weight (bw) administered by intubation twice daily) were assessed in a 28 day model laboratory study on ovariectomized (by laparoscopy) Wistar rats with pharmacodynamic tests performed at the conclusion of the trial followed by blood collection for morphology and biochemical tests. Toxicity of Maca-GO used in the study was determined in bioassay on mice and rats. Anti-depressive function (Porsolt’s test) and anxiolytic sedative and cognitive effects (using elevated-plus maze, locomotor activity and passive avoidance tests) were assessed against control (laparotomized female rats with intact ovaries). In addition to blood morphology, the following blood serum constituents were analyzed: Estrogen (E2), Progesterone (PGS), Cortisol (CT), Adrenocorticotropic Hormone (ACTH), Thyroid Hormones (TSH, T3, and T4), Iron (Fe) and lipid profile (Triglycerides, Total Cholesterol, LDL, HDL). Analytically-determined non-toxic status of Maca-GO was confirmed in bioassays when applied to mice and rats at levels of 0.5 and up to 15mg/kg bw which shows it safe use in humans with the LD50>15 mg/kg bw. Maca-GO showed a distinctive, (P<0.05) antidepressant-like and sedative effect in ovariectomized rats only, while there was no anxiolytic activity nor disturbance of cognitive function observed in both, test and control animals. Observed in this study balancing effect of Maca-GO on sex hormone levels show its potential as a safe preparation for use in correcting physiological symptoms characteristic in postmenopausal stage with an indication of potentially even more value for its use in pre-menopausal women. PMID:23674989
Selakovic, Dragica; Joksimovic, Jovana; Zaletel, Ivan; Puskas, Nela; Matovic, Milovan
2017-01-01
The aim of this study was to evaluate the behavioral effects of chronic (six weeks) nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose) administration (in order to mimic heavy human abuse), and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break), applied alone and simultaneously with ND, in male rats (n = 40). Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV) content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF) test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone) and in elevated plus maze (EPM) test (decrease in frequency and cumulative duration in open arms, and total exploratory activity), that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region), followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters), and in evoked beam-walking test (increase in time to cross the beam), compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system) may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols. PMID:29232412
Selakovic, Dragica; Joksimovic, Jovana; Zaletel, Ivan; Puskas, Nela; Matovic, Milovan; Rosic, Gvozden
2017-01-01
The aim of this study was to evaluate the behavioral effects of chronic (six weeks) nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose) administration (in order to mimic heavy human abuse), and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break), applied alone and simultaneously with ND, in male rats (n = 40). Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV) content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF) test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone) and in elevated plus maze (EPM) test (decrease in frequency and cumulative duration in open arms, and total exploratory activity), that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region), followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters), and in evoked beam-walking test (increase in time to cross the beam), compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system) may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols.
Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw
2015-03-06
We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Pezzato, Fernanda A.; Can, Adem; Hoshino, Katsumasa; Horta, José de Anchieta C.; Mijares, Miriam G.
2014-01-01
Rationale Alterations in brainstem circuits have been proposed as a possible mechanism underlying the etiology of mood disorders. Projections from the median raphe nucleus (MnR) modulate dopaminergic activity in the forebrain and are also part of a behavioral disinhibition/inhibition system that produces phenotypes resembling behavioral variations manifested during manic and depressive phases of bipolar disorder. Objective Assess the effect of chronic lithium treatment on behavioral disinhibition induced by MnR lesions. Methods MnR electrolytic lesions were performed in C57BL/6J mice, with sham operated and intact animals as control groups. Following recovery, mice were chronically treated with lithium (LiCl, added in chow) followed by behavioral testing. Results MnR lesion induced manic-like behavioral alterations including hyperactivity in the open field (OF), stereotyped circling, anxiolytic/risk taking in the elevated plus maze (EPM) and light/dark box (LDB) tests, and increased basal body temperature. Lithium was specifically effective in reducing OF hyperactivity and stereotypy but did not reverse (EPM) or had a nonspecific effect (LDB) on anxiety/risk taking measures. Additionally, lithium decreased saccharin preference and prevented weight loss during single housing. Conclusions Our data support electrolytic lesions of the MnR as an experimental model of a hyper-excitable/disinhibited phenotype consistent with some aspects of mania that are attenuated by the mood stabilizer lithium. Given lithium’s relatively specific efficacy in treating mania, these data support the hypothesis that manic symptoms derive not only from the stimulation of excitatory systems but also from inactivation or decreased activity of inhibitory mechanisms. PMID:25345734
Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials.
Carlezon, William A; Krystal, Andrew D
2016-10-01
Kappa-opioid receptor (KOR) antagonists are currently being considered for the treatment of a variety of neuropsychiatric conditions, including depressive, anxiety, and substance abuse disorders. A general ability to mitigate the effects of stress, which can trigger or exacerbate these conditions, may explain their putative efficacy across such a broad array of conditions. The discovery of their potentially therapeutic effects evolved from preclinical research designed to characterize the molecular mechanisms by which experience causes neuroadaptations in the nucleus accumbens (NAc), a key element of brain reward circuitry. This research established that exposure to drugs of abuse or stress increases the activity of the transcription factor CREB (cAMP response element binding protein) in the NAc, which leads to elevated expression of the opioid peptide dynorphin that in turn causes core signs of depressive- and anxiety-related disorders. Disruption of KORs-the endogenous receptors for dynorphin-produces antidepressant- and anxiolytic-like actions in screening procedures that identify standard drugs of these classes, and reduces stress effects in tests used to study addiction and stress-related disorders. Although interest in this target is high, prototypical KOR antagonists have extraordinarily persistent pharmacodynamic effects that complicate clinical trials. The development of shorter acting KOR antagonists together with more rapid designs for clinical trials may soon provide insight on whether these drugs are efficacious as would be predicted by preclinical work. If successful, KOR antagonists would represent a unique example in psychiatry where the therapeutic mechanism of a drug class is understood before it is shown to be efficacious in humans. © 2016 Wiley Periodicals, Inc.
Twardowschy, André; Castiblanco-Urbina, Maria Angélica; Uribe-Mariño, Andres; Biagioni, Audrey Francisco; Salgado-Rohner, Carlos José; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne
2013-12-01
The potential anxiolytic and antipanic properties of cannabidiol have been shown; however, its mechanism of action seems to recruit other receptors than those involved in the endocannabinoid-mediated system. It was recently shown that the model of panic-like behaviors elicited by the encounters between mice and snakes is a good tool to investigate innate fear-related responses, and cannabidiol causes a panicolytic-like effect in this model. The aim of the present study was to investigate the 5-hydroxytryptamine (5-HT) co-participation in the panicolytic-like effects of cannabidiol on the innate fear-related behaviors evoked by a prey versus predator interaction-based paradigm. Male Swiss mice were treated with intraperitoneal (i.p.) administrations of cannabidiol (3 mg/kg, i.p.) and its vehicle and the effects of the peripheral pre-treatment with increasing doses of the 5-HT1A receptor antagonist WAY-100635 (0.1, 0.3 and 0.9 mg/kg, i.p.) on instinctive fear-induced responses evoked by the presence of a wild snake were evaluated. The present results showed that the panicolytic-like effects of cannabidiol were blocked by the pre-treatment with WAY-100635 at different doses. These findings demonstrate that cannabidiol modulates the defensive behaviors evoked by the presence of threatening stimuli, and the effects of cannabidiol are at least partially dependent on the recruitment of 5-HT1A receptors.
Sarris, Jerome; McIntyre, Erica; Camfield, David A
2013-04-01
Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. Thus, our aim was to provide a comprehensive narrative review of plant-based medicines that have clinical and/or preclinical evidence of anxiolytic activity. We present the article in two parts. In part one, we reviewed herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In this current article (part two), we review herbal medicines for which there have been both preclinical and clinical investigations of anxiolytic activity. A search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) for English language papers using the search terms 'anxiety' OR 'anxiety disorder' OR 'generalized anxiety disorder' OR 'social phobia' OR 'post-traumatic stress disorder' OR 'panic disorder' OR 'agoraphobia' OR 'obsessive compulsive disorder' in combination with the search terms 'Herb*' OR 'Medicinal Plants' OR 'Botanical Medicine' OR 'Chinese herb*', in addition to individual herbal medicines. This search of the literature revealed 1,525 papers, of which 53 plants were included in the review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed here in part two), with the other 32 having solely preclinical evidence (reviewed in part one). Support for efficacy was found for chronic use (i.e. greater than one day) of the following herbs in treating a range of anxiety disorders in human clinical trials: Piper methysticum, Matricaria recutita, Ginkgo biloba, Scutellaria lateriflora, Silybum marianum, Passiflora incarnata, Withania somniferum, Galphimia glauca, Centella asiatica, Rhodiola rosea, Echinacea spp., Melissa officinalis and Echium amoenum. For several of the plants studied, conclusions need to be tempered due to methodological issues such as small sample sizes, brief intervention durations and non-replication. Current evidence does not support Hypericum perforatum or Valeriana spp. for any anxiety disorder. Acute anxiolytic activity was found for Centella asiatica, Salvia spp., Melissa officinalis, Passiflora incarnata and Citrus aurantium. Bacopa monnieri has shown anxiolytic effects in people with cognitive decline. The therapeutic application of psychotropic plant-based treatments for anxiety disorders is also discussed, specifically Psychotria viridis and Banisteriopsis caarti (ayahuasca), Psilocybe spp. and cannabidiol-enriched (low tetrahydrocannabinol (Δ(9)-THC)) Cannabis spp.
Morrison, Thomas R; Ricci, Lesley A; Melloni, Richard H
2015-03-01
Anabolic/androgenic steroid (AAS) use remains high in both teens and adults in the U.S. and worldwide despite studies showing that AAS use is associated with a higher incidence of aggression and anxiety. Recently we showed that chronic exposure to AAS through adolescence increases aggression and decreases anxious behaviors, while during AAS-withdrawal aggression is lowered to species-normative levels and anxiety increases. AAS exposure is known to differentially alter behaviors and their underlying neural substrates between adults and adolescents and thus the current study investigated whether exposure to AAS during adulthood affects the relationship between aggression and anxiety in a manner similar to that previously observed in adolescents. Male hamsters were administered a moderate dose of AAS (5.0mg/kg/day×30days) during adolescence (P27-56) or young adulthood (P65-P94) and then tested for aggression and anxiety during AAS exposure (i.e., on P57 or P95) and during AAS withdrawal (i.e., 30days later on P77 or P115). Adolescent exposure to AAS increased aggressive responding during the AAS exposure period and anxiety-like responding during AAS withdrawal. Neither behavior was similarly influenced by adult exposure to AAS. Adult AAS exposure produced no difference in aggressive responding during AAS exposure (P95) or AAS withdrawal (P115); however, while AAS exposure during adulthood produced no difference in anxiety-like responding during AAS exposure, adult hamsters administered AAS were less anxious than vehicle control animals following AAS withdrawal. Together these data suggest that the aggression and anxiety provoking influence of AAS are likely a developmental phenomenon and that adult exposure to AAS may be anxiolytic over the long term. Copyright © 2015 Elsevier Inc. All rights reserved.
Ayanwuyi, Lydia O.; Kwanashie, Helen O.; Hussaini, Isa M.; Yaro, Abdullahi H.
2016-01-01
Background: Leonotis nepetifolia Linn (Lamiaceae) is used in traditional medicine for its calming (tranquilizing) effects. The aim of this study was to determine whether there is any scientific justification for this use. To achieve this purpose, we investigated the behavioural effects of the methanol extract of Leonotis nepetifolia stem (37.5, 75 and 150 mg/kg) in mice. Methods: Acute toxicity studies were carried out on the methanol stem extract of Leonotis nepetifolia to determine the LD50. The behavioural tests employed were diazepam-induced sleep onset and duration, hole board assay for exploratory activity, mouse beam walk assay for motor coordination, and the staircase test for the detection of anxiolytic compounds. Preliminary phytochemical screening was also carried out on the extract. Results: The intraperitoneal LD50 value was found to be 3.8 g/kg. The results showed that the extract significantly prolonged the duration of diazepam-induced sleep at the highest dose (150 mg/kg). There was no observable effect on exploratory activity and motor coordination at the doses tested (37.5, 75 and 150 mg/kg). The extract, however, at 150 mg/kg elicited a significant decrease in the number of rearings in the staircase test, an effect also observed in the group of mice injected with an anxiolytic dose of diazepam. The preliminary phytochemical screening revealed the presence of alkaloids, saponins, glycosides and triterpenoids. Conclusion: The results obtained suggest that the crude methanol extract of Leonotis nepetifolia stem possesses some biologically active constituents with potential anxiolytic activity and thus may justify its traditional use as a tranquilizer. PMID:28852715
Concomitant medication of psychoses in a lifetime perspective.
Vares, Maria; Saetre, Peter; Strålin, Pontus; Levander, Sten; Lindström, Eva; Jönsson, Erik G
2011-01-01
Patients treated with antipsychotic drugs often receive concomitant psychotropic compounds. Few studies address this issue from a lifetime perspective. Here, an analysis is presented of the prescription pattern of such concomitant medication from the first contact with psychiatry until the last written note in the case history documents, in patients with a diagnosis of psychotic illness. A retrospective descriptive analysis of all case history data of 66 patients diagnosed with schizophrenia or schizophrenia-like psychotic disorders. Benzodiazepines and benzodiazepine-related anxiolytic drugs had been prescribed to 95% of the patients, other anxiolytics, sedatives or hypnotic drugs to 61%, anti-parkinsonism drugs to 86%, and antidepressants to 56% of the patients. However, lifetime doses were small and most of the time patients had no concomitant medication. The prescribed lifetime dose of anti-parkinsonism drugs was associated with that of prescribed first-generation but not second-generation antipsychotics. Most psychosis patients are sometimes treated with concomitant drugs but mainly over short periods. Lifetime concomitant add-on medication at the individual patient level is variable and complex but not extensive. Copyright © 2011 John Wiley & Sons, Ltd.
GABAergic anxiolytic drug in water increases migration behaviour in salmon
NASA Astrophysics Data System (ADS)
Hellström, Gustav; Klaminder, Jonatan; Finn, Fia; Persson, Lo; Alanärä, Anders; Jonsson, Micael; Fick, Jerker; Brodin, Tomas
2016-12-01
Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.
Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew
2014-10-01
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. © 2014 The British Pharmacological Society.
Effects of piracetam on behavior and memory in adult zebrafish.
Grossman, Leah; Stewart, Adam; Gaikwad, Siddharth; Utterback, Eli; Wu, Nadine; Dileo, John; Frank, Kevin; Hart, Peter; Howard, Harry; Kalueff, Allan V
2011-04-25
Piracetam, a derivative of γ-aminobutyric acid, exerts memory-enhancing and mild anxiolytic effects in human and rodent studies. To examine the drug's behavioral profile further, we assessed its effects on behavioral and endocrine (cortisol) responses of adult zebrafish (Danio rerio)--a novel model species rapidly gaining popularity in neurobehavioral research. Overall, acute piracetam did not affect zebrafish novel tank and light-dark box behavior at mild doses (25-400mg/L), but produced nonspecific behavioral inhibition at 700mg/L. No effects on cortisol levels or inter-/intra-session habituation in the novel tank test were observed for acute or chronic mild non-sedative dose of 200mg/L. In contrast, fish exposed to chronic piracetam at this dose performed significantly better in the cued learning plus-maze test. This observation parallels clinical and rodent literature on the behavioral profile of piracetam, supporting the utility of zebrafish paradigms for testing nootropic agents. Copyright © 2011 Elsevier Inc. All rights reserved.
Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior.
Jin, Zeng-Liang; Liu, Jin-Xu; Liu, Xu; Zhang, Li-Ming; Ran, Yu-Hua; Zheng, Yuan-Yuan; Tang, Yu; Li, Yun-Feng; Xiong, Jie
2016-09-01
In the present study, we investigated the effectiveness of GLYX-13, an NMDA receptor glycine site functional partial agonist, to alleviate the enhanced anxiety and fear response in both a mouse and rat model of stress-induced behavioral changes that might be relevant to posttraumatic stress disorder (PTSD). Studies over the last decades have suggested that the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in stress-related disease. Herein, we used these animal models to further investigate the effect of GLYX-13 on the stress hormone levels and glucocorticoid receptor (GR) expression. We found that exposure to foot shock induced long-lasting behavioral deficiencies in mice, including freezing and anxiety-like behaviors, that were significantly ameliorated by the long-term administration of GLYX-13 (5 or 10 mg/kg). Our enzyme-linked immunosorbent assay results showed that long-term administration of GLYX-13 at behaviorally effective doses (5 or 10 mg/kg) significantly decreased the elevated serum levels of both corticosterone and its upstream stress hormone adrenocorticotropic hormone in rats subjected to the TDS procedure. These results suggest that GLYX-13 exerts a therapeutic effect on PTSD-like stress responding that is accompanied by (or associated with) modulation of the HPA axis, including inhibition of stress hormone levels and upregulation of hippocampal GR expression. © The Author(s) 2016.
Kulkarni, Pushkar; Chaudhari, Girish Hari; Sripuram, Vijaykumar; Banote, Rakesh Kumar; Kirla, Krishna Tulasi; Sultana, Razia; Rao, Pallavi; Oruganti, Srinivas; Chatti, Kiranam
2014-02-01
We describe a method for obtaining pharmacokinetics (PK) and pharmacology data from adult zebrafish in terms of mg/kg using a novel method of oral administration. Using carbamazepine (CBZ) as a test drug, we employed dried blood spot (DBS) cards to enable drug quantification for PK; and we evaluated the pharmacological anxiolytic effect using novel tank test. The PK study confirmed the presence of CBZ in both blood and brain and the behavioural study showed dose dependent anxiolytic effect. The reproducibility of oral dosing was confirmed by the fact that the results obtained in both the experiments had negligible errors. This report enables a novel approach for optimizing the utility of zebrafish in drug discovery and drug delivery research. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Elucidating the mechanism of action of pregabalin: α(2)δ as a therapeutic target in anxiety.
Micó, Juan-Antonio; Prieto, Rita
2012-08-01
This review provides a brief summary of what is known about the anxiolytic mechanism of action of pregabalin, a highly selective, high-affinity ligand of the P/Q type of voltage-gated calcium channel (CaV). Evidence from in vivo models of neuronal hyperexcitability suggests that pregabalin reduces synaptic release of neurotransmitters in selected CNS regions including the cortex, olfactory bulb, hypothalamus, amygdala, hippocampus, cerebellum and dorsal horn of the spinal cord. Release of neurotransmitters from the synaptic vesicle, and propagation of neurotransmission, requires the vesicle to fuse with the presynaptic membrane. Pregabalin binding to the α(2)δ type 1 protein of the P/Q type CaV reduces the availability of Ca2+ required for membrane fusion and exocytosis of neurotransmitters. Evidence that the anxiolytic mechanism of action of pregabalin is mediated by binding to the α(2)δ type 1 protein comes from animal models, which have demonstrated a structure-activity relationship between the affinity of ligands for the α(2)δ type 1 protein and their potency in models of anxiety such as the Vogel conflict test. Furthermore, the anxiolytic activity of pregabalin is lost in transgenic mice with specific point mutations in the CaV α(2)δ type 1 protein. Pregabalin-mediated reduction in calcium currents has also been shown to result in a significant inhibition of the release of neurotransmitters implicated in pathological anxiety such as glutamate and monoamine neurotransmitters. However, further research is needed to confirm that these effects contribute to the anxiolytic mechanism of action of pregabalin. Finally, pregabalin may also act by inhibiting synaptogenesis of excitatory neurons formed in response to chronic stress or anxiety, or more acutely inhibit the trafficking of CaV to the plasma membrane.
Aloysia triphylla in the zebrafish food: effects on physiology, behavior, and growth performance.
Zago, Daniane C; Santos, Alessandro C; Lanes, Carlos F C; Almeida, Daniela V; Koakoski, Gessi; de Abreu, Murilo S; Zeppenfeld, Carla C; Heinzmann, Berta M; Marins, Luis F; Baldisserotto, Bernardo; Barcellos, Leonardo J G; Cunha, Mauro A
2018-04-01
Dietary supplements are commonly used by animals and humans and play key roles in diverse systems, such as the immune and reproductive systems, and in metabolism. Essential oils (EOs), which are natural substances, have potential for use in food supplementation; however, their effects on organisms remain to be elucidated. Here, we examine the effects of dietary Aloysia triphylla EO supplementation on zebrafish behavior, metabolism, stress response, and growth performance. We show that fish fed diets containing A. triphylla EO presented an anxiolytic response, with reduced exploratory activity and oxygen consumption; no changes were observed in neuroendocrine stress axis functioning and growth was not impaired. Taken together, these results suggest that the A. triphylla EO supplementation is a strong candidate for use in feed, since it ensures fish welfare (anxiolytic behavior) with decreased oxygen consumption. This makes it suitable for use in high-density production systems without causing damage to the neuroendocrine stress axis and without growth performance being impaired.
Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake.
Chicca, Andrea; Nicolussi, Simon; Bartholomäus, Ruben; Blunder, Martina; Aparisi Rey, Alejandro; Petrucci, Vanessa; Reynoso-Moreno, Ines Del Carmen; Viveros-Paredes, Juan Manuel; Dalghi Gens, Marianela; Lutz, Beat; Schiöth, Helgi B; Soeberdt, Michael; Abels, Christoph; Charles, Roch-Philippe; Altmann, Karl-Heinz; Gertsch, Jürg
2017-06-20
The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N -substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC 50 = 10 nM) inhibitor N -(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.
Keough, Matthew T; O'Connor, Roisin M
2015-01-01
Reinforcement Sensitivity Theory predicts that those with a strong behavioral inhibition system (BIS) likely experience considerable anxiety and uncertainty during the transition out of university. Accordingly, they may continue to drink heavily to cope during this time (a period associated with normative reductions in heavy drinking), but only if they also have a strong behavioral approach system (BAS) to enhance the anxiolytic effects of drinking. The purpose of this study was to test this hypothesis. Participants completed online measures prior to and at 3-month intervals over the course of the year following graduation. As hypothesized, results showed that an elevated BIS predicted impeded maturing out, but only when the impulsivity facet of BAS was also elevated. In contrast, a strong BIS predicted rapid maturing out if BAS impulsivity was weak. Study findings advance our understanding of BIS-related alcohol misuse trajectories in young adulthood and provide direction for clinical interventions.
Salomons, Amber R; Pinzon, Nathaly Espitia; Boleij, Hetty; Kirchhoff, Susanne; Arndt, Saskia S; Nordquist, Rebecca E; Lindemann, Lothar; Jaeschke, Georg; Spooren, Will; Ohl, Frauke
2012-06-11
Previous studies have demonstrated a profound lack of habituation in 129P3 mice compared to the habituating, but initially more anxious, BALB/c mice. The present study investigated whether this non-adaptive phenotype of 129P3 mice is primarily based on anxiety-related characteristics. To test this hypothesis and extend our knowledge on the behavioural profile of 129P3 mice, the effects of the anxiolyticdiazepam (1, 3 and 5 mg/kg) and the putative anxiolytic metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 3, 10 and 30 mg/kg) treatment on within-trial (intrasession) habituation, object recognition (diazepam: 1 mg/kg; MPEP 10 mg/kg) and on the central-nervous expression of the immediate early gene c-Fos (diazepam: 1 mg/kg; MPEP 10 mg/kg) were investigated. Behavioural findings validated the initially high, but habituating phenotype of BALB/c mice, while 129P3 mice were characterized by impaired intrasession habituation. Diazepam had an anxiolytic effect in BALB/c mice, while in higher doses caused behavioural inactivity in 129P3 mice. MPEP revealed almost no anxiolytic effects on behaviour in both strains, but reduced stress-induced corticosterone responses only in 129P3 mice. These results were complemented by reduced expression of c-Fos after MPEP treatment in brain areas related to emotional processes, and increased c-Fos expression in higher integrating brain areas such as the prelimbic cortex compared to vehicle-treated 129P3 mice. These results suggest that the strain differences observed in (non)adaptive anxiety behaviour are at least in part mediated by differences in gamma-aminobutyric acid- A and mGluR5 mediated transmission.
Lima, Eliane Brito Cortez; de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; E Silva Pereira, Yuri Freitas; Matos, Natália Castelo Branco; de Freitas, Rayanne Brito; Lima, Nycole Brito Cortez; Patrocínio, Manoel Cláudio Azevedo; Leal, Luzia Kalyne Almeida Moreira; Viana, Glauce Socorro Barros; Vasconcelos, Silvânia Maria Mendes
2017-01-01
Extracts from the husk fiber of Cocos nucifera are used in folk medicine, but their actions on the central nervous system have not been studied. Here, the anxiolytic and antidepressant effects of the standardized hydroalcoholic extract of C. nucifera husk fiber (HECN) were evaluated. Male Swiss mice were treated with HECN (50, 100, or 200 mg/kg) 60 min before experiments involving the plus maze test, hole-board test, tail suspension test, and forced swimming test (FST). HECN was administered orally (p.o.) in acute and repeated-dose treatments. The forced swimming test was performed with dopaminergic and noradrenergic antagonists, as well as a serotonin release inhibitor. Administration of HECN in the FST after intraperitoneal (i.p.) pretreatment of mice with sulpiride (50 mg/kg), prazosin (1 mg/kg), or p-chlorophenylalanine (PCPA, 100 mg/kg) caused the actions of these three agents to be reversed. However, this effect was not observed after pretreating the animals with SCH23390 (15 µg/kg, i.p.) or yohimbine (1 mg/kg, i.p.) The dose chosen for HECN was 100 mg/kg, p.o., which increased the number of entries as well as the permanence in the open arms of the maze after acute and repeated doses. In both the forced swimming and the tail suspension tests, the same dose decreased the time spent immobile but did not disturb locomotor activity in an open-field test. The anxiolytic effect of HECN appears to be related to the GABAergic system, while its antidepressant effect depends upon its interaction with the serotoninergic, noradrenergic (α1 receptors), and dopaminergic (D2 dopamine receptors) systems.
Allio, Arianna; Calorio, Chiara; Franchino, Claudio; Gavello, Daniela; Carbone, Emilio; Marcantoni, Andrea
2015-08-22
Tilia tomentosa Moench bud extracts (TTBEs) is used in traditional medicine for centuries as sedative compound. Different plants belonging to the Tilia genus have shown their efficacy in the treatment of anxiety but still little is known about the mechanism of action of their bud extracts. To evaluate the action of TTBEs as anxiolytic and sedative compound on in vitro hippocampal neurons. The anxiolytic effect of TTBEs was assayed by testing the effects of these compounds on GABAA receptor-activated chloride current of hippocampal neurons by means of the patch-clamp technique and microelectrode-arrays (MEAs). TTBEs acutely administered on mouse hippocampal neurons, activated a chloride current comparable to that measured in the presence of GABA (100 µM). Bicuculline (100 µM) and picrotoxin (100 µM) blocked about 90% of this current, while the remaining 10% was blocked by adding the benzodiazepine (BDZ) antagonist flumazenil (30 µM). Flumazenil alone blocked nearly 60% of the TTBEs activated current, suggesting that TTBEs binds to both GABAA and BDZ receptor sites. Application of high-doses of TTBEs on spontaneous active hippocampal neurons grown for 3 weeks on MEAs blocked the synchronous activity of these neurons. The effects were mimicked by GABA and prevented by picrotoxin (100µM) and flumazenil (30 µM). At minimal doses, TTBEs reduced the frequency of synchronized bursts and increased the cross-correlation index of synchronized neuronal firing. Our data suggest that TTBEs mimics GABA and BDZ agonists by targeting hippocampal GABAergic synapses and inhibiting network excitability by increasing the strength of inhibitory synaptic outputs. Our results contribute toward the validation of TTBEs as effective sedative and anxiolytic compound. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Safety of ipsapirone treatment compared with lorazepam: discontinuation effects.
Busto, U E; Naranjo, C A; Bremner, K E; Peachey, J E; Bologa, M
1998-01-01
OBJECTIVE: To determine discontinuation effects of ipsapirone, a novel azapirone and partial 5-HTIA agonist that has anxiolytic effects clinically and has not caused dependence or withdrawal symptoms in animals, and to compare these effects with those of the benzodiazepine lorazepam, owing to concern about dependence or withdrawal symptoms following use of these drugs. DESIGN: Prospective, randomized, double-blind, placebo-controlled trial. SETTING: Outpatient and inpatient treatment. PARTICIPANTS: Sixty-five healthy male volunteers who had experience with sedative-hypnotics or anxiolytics and did not meet DSM-III-R criteria for abuse or dependence. INTERVENTIONS: Participants were randomized to receive ipsapirone 15 mg per day (n = 17), ipsapirone 22.5 mg per day (n = 16), lorazepam 3 mg per day (n = 16), or placebo (n = 16) as outpatients for 36 days (treatment) followed by single-blind placebo as inpatients for 3 days and as outpatients for 6 days (withdrawal). OUTCOME MEASURES: Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Scale (HAM-D), Spielberger State Anxiety Scale, Sleep Quality Questionnaire, General Symptom Checklist, self-rated intoxication, Clinical Institute Withdrawal Assessment--Benzodiazepines (CIWA-Benzo), psychomotor testing and urine drug screen. RESULTS: Only 45 subjects completed the study; discontinuation rates did not significantly differ among treatment groups. At day 39, fewer and less severe symptoms (e.g., insomnia and fatigue) were found on the CIWA-Benzo scale after treatment with ipsapirone or placebo than after treatment with lorazepam (p < 0.05). Subjects reported longer sleep latency and poorer sleep quality after receiving lorazepam than after receiving ipsapirone or placebo. Scores on the HAM-D, Spielberger State Anxiety and HAM-A scales did not change from baseline. CONCLUSIONS: Withdrawal symptoms were detected after discontinuation of therapeutic doses of lorazepam. Significantly fewer symptoms were observed after withdrawal from anxiolytic doses of ipsapirone. PMID:9505058
Safety of ipsapirone treatment compared with lorazepam: discontinuation effects.
Busto, U E; Naranjo, C A; Bremner, K E; Peachey, J E; Bologa, M
1998-01-01
To determine discontinuation effects of ipsapirone, a novel azapirone and partial 5-HTIA agonist that has anxiolytic effects clinically and has not caused dependence or withdrawal symptoms in animals, and to compare these effects with those of the benzodiazepine lorazepam, owing to concern about dependence or withdrawal symptoms following use of these drugs. Prospective, randomized, double-blind, placebo-controlled trial. Outpatient and inpatient treatment. Sixty-five healthy male volunteers who had experience with sedative-hypnotics or anxiolytics and did not meet DSM-III-R criteria for abuse or dependence. Participants were randomized to receive ipsapirone 15 mg per day (n = 17), ipsapirone 22.5 mg per day (n = 16), lorazepam 3 mg per day (n = 16), or placebo (n = 16) as outpatients for 36 days (treatment) followed by single-blind placebo as inpatients for 3 days and as outpatients for 6 days (withdrawal). Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Scale (HAM-D), Spielberger State Anxiety Scale, Sleep Quality Questionnaire, General Symptom Checklist, self-rated intoxication, Clinical Institute Withdrawal Assessment--Benzodiazepines (CIWA-Benzo), psychomotor testing and urine drug screen. Only 45 subjects completed the study; discontinuation rates did not significantly differ among treatment groups. At day 39, fewer and less severe symptoms (e.g., insomnia and fatigue) were found on the CIWA-Benzo scale after treatment with ipsapirone or placebo than after treatment with lorazepam (p < 0.05). Subjects reported longer sleep latency and poorer sleep quality after receiving lorazepam than after receiving ipsapirone or placebo. Scores on the HAM-D, Spielberger State Anxiety and HAM-A scales did not change from baseline. Withdrawal symptoms were detected after discontinuation of therapeutic doses of lorazepam. Significantly fewer symptoms were observed after withdrawal from anxiolytic doses of ipsapirone.
Elgot, Abdeljalil; El hiba, Omar; Gamrani, Halima
2012-10-01
Dehydration is a powerful stimulus causing disequilibrium in homeostasis of water and electrolytes resulting from depletion in total body water. Most studies have focused on domestic and laboratory animals; however, the study of desert animals allows improved understanding about water balance and resistance to dehydration and associated behavioral changes, including those related to mood disorders. Meriones shawi (Shaw's Jird) is a desert rodent characterized by its resistance to long periods of thirst that can extend for several months. In the present study, M. shawi were subjected to water deprivation for 1 and 3 months. We used 5-HT immunohistochemistry to evaluate the effects of prolonged dehydration on the serotoninergic system in both dorsal and median raphe nuclei (DRN, MRN), which are the main sources of 5-HT input to several brain areas. In addition, a dark/light box was used to evaluate the anxiolytic-like or anxiogenic-like effects of dehydration on M. shawi. The results showed a reduction in the 5-HT immunolabelling in both DRN and MRN following 1 and 3 months of dehydration. This diminution of serotonin immunoreactivity was accompanied by noticeable changes in anxiety behavior of Meriones, with animals spending more time in the light box, suggesting anxiogenic-like effects caused by dehydration. Overall, the results indicate that dehydration is able to reduce serotoninergic neurotransmission, which might be involved in generating anxiety behavior in this desert animal. Copyright © 2011. Published by Elsevier GmbH.
Prohedonic Effect of Cannabidiol in a Rat Model of Depression.
Shoval, Gal; Shbiro, Liat; Hershkovitz, Liron; Hazut, Noa; Zalsman, Gil; Mechoulam, Raphael; Weller, Aron
2016-01-01
Accumulating evidence suggests that cannabidiol (CBD) may be an effective and safe anxiolytic agent and potentially also an antidepressant. The objective of this study was to further examine these properties of CBD using the 'depressive-like' Wistar-Kyoto (WKY) rat, focusing on the drug's effect on anhedonia-like behaviors. Forty-eight WKY and 48 control Wistar adult male rats were pretreated orally with CBD (15, 30 and 45 mg/kg) or vehicle. The saccharin preference test (SPT), the elevated plus maze (EPM) test and the novel object exploration (NOE) test were used. CBD showed a prohedonic effect on the WKY rats at 30 mg/kg in the SPT. In the NOE, CBD increased exploration of the novel object and locomotion at 45 mg/kg and increased locomotion at 15 mg/kg, indicating an improvement in the characteristically low motivation of WKY rats to explore. There was no similar effect at any dose in the EPM or in open-field behavior in the habituation to the NOE. These findings extend the limited knowledge on the antidepressant effect of CBD, now shown for the first time in a genetic animal model of depression. These results suggest that CBD may be beneficial for the treatment of clinical depression and other states with prominent anhedonia. © 2016 S. Karger AG, Basel.
Knight, Andrea M; Xie, Ming; Mandell, David S
2016-07-01
To estimate the national prevalence and racial/ethnic differences in psychiatric diagnoses and pharmacologic treatment in a US Medicaid beneficiary population of youth with systemic lupus erythematosus (SLE). We included youth aged 10 to 18 years with a diagnosis of SLE (defined as ≥ 3 outpatient visit claims with an International Classification of Diseases, 9th ed. code of 710.0, each > 30 days apart) in the US Medicaid Analytic Extract database from 2006 and 2007. This database contains all inpatient and outpatient Medicaid claims from 49 states and the District of Columbia. We calculated the prevalence of psychiatric diagnoses and treatment, and used logistic regression to compare depression and anxiety diagnoses, antidepressant, and anxiolytic use among racial/ethnic groups. Of 970 youth with SLE, 15% were white, 42% were African American, 27% were Latino, and 16% were of other races/ethnicities. Diagnoses of depression were present for 19%, anxiety for 7%, acute stress/adjustment for 6%, and other psychiatric disorders for 18%. Twenty percent were prescribed antidepressants, 7% were prescribed anxiolytics, 6% were prescribed antipsychotics, and 5% were prescribed stimulants. In adjusted analyses, African Americans were less likely than whites to be diagnosed with depression (OR 0.56, 95% CI 0.34-0.90) or anxiety (OR 0.49, 95% CI 0.25-0.98), or to be prescribed anxiolytics (OR 0.23, 95% CI 0.11-0.48). We present population-level estimates showing high psychiatric morbidity in youth with SLE, but less prevalent diagnosis and treatment in African Americans. Mental health interventions should address potential racial/ethnic disparities in care.
[Management of somatization in depression].
Azorin, J M
1995-12-01
Management of somatization in depression depends on understanding its mechanisms. This kind of somatization is the product of both specific and nonspecific factors which interact to create a chronic and hypocondriacal picture. Biological treatment looks like treatment of chronic depression. Antidepressants with anxiolytic properties have a place of choice. Psychotherapy is frequently used, particularly cognitive behavior therapy which allows the reattribution of somatic symptoms to psychological events. General practitioners need to be trained to these techniques as they are, more frequently than psychiatrists, involved in the management of these patients.
Ng, Chong Guan; Mohamed, Salina; Wern, Tai Yi; Haris, Azwa; Zainal, Nor Zuraida; Sulaiman, Ahmad Hatim
2014-01-01
To examine the prescription rates in cancer patients of three common psychotropic drugs: anxiolytic/ hypnotic, antidepressant and antipsychotic. In this retrospective cohort study, data were extracted from the pharmacy database of University Malaya Medical Center (UMMC) responsible for dispensing records of patients stored in the pharmacy's Medication Management and Use System (Ascribe). We analyzed the use of psychotropics in patients from the oncology ward and cardiology from 2008 to 2012. Odds ratios (ORs) were adjusted for age, gender and ethnicity. A total of 3,345 oncology patients and 8,980 cardiology patients were included. Oncology patients were significantly more often prescribed psychotropic drugs (adjusted OR: anxiolytic/hypnotic=5.55 (CI: 4.64-6.63); antidepressants=6.08 (CI: 4.83-7.64) and antipsychotics=5.41 (CI: 4.17-7.02). Non-Malay female cancer patients were at significantly higher risk of anxiolytic/hypnotic use. Psychotropic drugs prescription is common in cancer patients. Anxiolytic/hypnotic prescription rates are significantly higher in non-Malay female patients in Malaysia.
Roncon, Camila Marroni; Biesdorf de Almeida, Camila; Klein, Traudi; de Mello, João Carlos Palazzo; Audi, Elisabeth Aparecida
2011-02-01
The objective of this study was to investigate the effects of chronic administration of a semi-purified extract (Purified Extract A--PEA; 4, 8, or 16 mg/kg) of PAULLINIA CUPANA (guaraná) seeds on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (5-HT) reuptake inhibitor (SSRI) paroxetine (PAR; 3 mg/kg), was used as a positive control. To evaluate possible serotonergic and dopaminergic neurotransmission involvement in the action of PEA during the ETM test, ineffective doses of metergoline (MET; 5-HT (2A/2C) antagonist receptor) or sulpiride (SUL; dopaminergic receptor antagonist) were acutely administered together with the PEA. The locomotion of the rats was assessed in a circular arena following each drug treatment. Both PEA (8 and 16 mg/kg) and PAR (3 mg/kg) increased one-way escape latencies from the open arm of the ETM, indicating a panicolytic effect compared to the control group. MET, in higher doses (1, 2 or 3 mg/kg), produced a panicolytic effect in the ETM test, whereas SUL did not (10, 20 or 40 mg/kg). The panicolytic effect produced by PEA (8 mg/kg) was blocked by both MET (2 mg/kg) and SUL (20 mg/kg), whereas the panicolytic effect produced by PAR (3 mg/kg) was blocked only by MET (2 mg/kg). These results show that chronic treatment with PEA produces a panicolytic effect during the ETM test, and that the dopaminergic and the serotonergic neurotransmission systems are involved in this effect. © Georg Thieme Verlag KG Stuttgart · New York.
Gacsályi, István; Móricz, Krisztina; Gigler, Gábor; Wellmann, János; Nagy, Katalin; Ling, István; Barkóczy, József; Haller, József; Lambert, Jeremy J; Szénási, Gábor; Spedding, Michael; Antoni, Ferenc A
2017-10-01
Previous work has shown that S44819 is a novel GABAA receptor (GABA A R) antagonist, which is selective for extrasynaptic GABA A Rs incorporating the α5 subunit (α5-GABA A Rs). The present study reports on the preclinical neuropsychopharmacological profile of S44819. Significantly, no sedative or pro-convulsive side effects of S44819 were found at doses up to 30 mg/kg i.p. Object recognition (OR) memory in intact mice was enhanced by S44819 (0.3 mg/kg p.o.) given before the acquisition trial. Mice treated with phencyclidine for two weeks and tested six days after the cessation of treatment failed to show OR memory. This deficit was corrected by a single administration of S44819 (0.1, 0.3 or 1 mg/kg p.o.) prior to the acquisition trial. The amnestic effect of ketamine in rats tested in the eight-arm radial maze (reference and working memory versions) was blocked by S44819 (3 mg/kg p.o.). Extinction of cued fear was preserved during treatment with S44819 (3 mg/kg/diem i.p.). Administration of S44819 had no significant effect in the Vogel-conflict test, the elevated plus maze, the forced swim, the marble-burying and the tail-suspension tests. In contrast, anxiolytic/antidepressant-like effects of the compound were found in paradigms that have mnemonic components, such as social interaction, fear-potentiated startle and social avoidance induced by negative life experience. In summary, S44819 enhanced intact recognition memory and ameliorated memory deficits induced by inhibition of NMDA receptors. Anxiolytic/antidepressant efficacy was limited to paradigms involving cognitive function. In conclusion, S44819 is a novel psychoactive pro-cognitive compound with potential as a therapeutic agent in dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Busick, Tamra; Kussman, Mary; Scheidt, Troy; Tobias, Joseph D
2008-01-01
Dexmedetomidine is an alpha2-adrenergic agonist that produces anxiolysis, amnesia, sedation, potentiation of opioid analgesia, and sympatholysis. It is currently approved by the U.S. Food & Drug Administration for the sedation of adults in the intensive care setting for up to 24 hours during mechanical ventilation. Given its beneficial sedative and anxiolytic properties and limited adverse effect profile, it has been used in several other clinical scenarios. The authors present their experience using dexmedetomidine for monitored anesthesia care (MAC) during "awake" ENT procedures such as thyroplasty, a procedure requiring a patient to verbalize when requested but to otherwise remain immobile to allow for completion of the procedure, and in a patient with post-polio syndrome with poor pulmonary reserve requiring esophagoscopy with dilation and botulinum toxin injection for cricopharyngeal dysfunction. Our preliminary experience suggests that dexmedetomidine provides effective sedation as the primary agent for MAC during such procedures in adult patients. The end-organ effects of dexmedetomidine and previous reports of its use during MAC are reviewed.
Effects of an Exercise Programme on Anxiety in Adults with Intellectual Disabilities
ERIC Educational Resources Information Center
Carraro, Attilio; Gobbi, Erica
2012-01-01
Although high anxiety is common in people with intellectual disabilities (ID) and the anxiolytic effects of exercise have been systematically recognised in clinical and non-clinical populations, research is scant concerning the role played by exercise on anxiety in people with ID. The purpose of this study was to investigate the effects of a…
Grace, Elsie L; Allen, Rebecca S; Ivey, Keisha; Knapp, Shannon M; Burgio, Louis D
2018-04-01
Little is known about the patterns of psychotropic medication use in community-dwelling minority persons with dementia (PWD). The purpose of this study was to investigate racial/ethnic differences in psychotropic medication use across a diverse population of community-dwelling PWD and to examine the extent to which caregiver characteristics influence this use. Data were drawn from the baseline assessment of the Resources for Enhancing Alzheimer's Caregiver Health II trial. Generalized linear models were used to identify racial/ethnic differences in psychotropic medication use. Akaike Information Criterion (AIC) model selection was used to evaluate possible explanations for observed differences across racial/ethnic group. Differences in anxiolytic and antipsychotic medication use were observed across racial/ethnic groups; however, race/ethnicity alone was not sufficient to explain those differences. Perceptions of caregiving and caregiver socioeconomic status were important predictors of anxiolytic use while PWD characteristics, including cognitive impairment, functional impairment, problem behavior frequency, pain, relationship to the caregiver, sex, and age were important for antipsychotic use. Racial/ethnic differences in psychotropic medication use among community-dwelling PWD cannot be explained by race/ethnicity alone. The importance of caregiver characteristics in predicting anxiolytic medication use suggest that interventions aimed at caregivers may hold promise as an effective alternative to pharmacotherapy.
Kuniishi, Hiroshi; Ichisaka, Satoshi; Yamamoto, Miki; Ikubo, Natsuko; Matsuda, Sae; Futora, Eri; Harada, Riho; Ishihara, Kohei; Hata, Yoshio
2017-10-01
The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh
2015-01-01
Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum.
Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh
2015-01-01
Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum. PMID:26779273
Etaee, Farshid; Asadbegi, Masoumeh; Taslimi, Zahra; Shahidi, Siamak; Sarihi, Abdolrahman; Soleimani Asl, Sara; Komaki, Alireza
2017-08-10
Methamphetamine (Meth) abuse and dependence are major global problems. Most of previous studies showed that Meth is anxiogenic. While buprenorphine (Bup) is used to treat anxiety-related behaviors, the effects of Meth in combination with Bup on anxiety-like behavior are unclear. In this study, we examined the effects of these drugs on anxiety-like behavior with the elevated plus maze (EPM) and open field (OF) tests, which are widely used to assess anxiety-like behavior in small rodents. Forty male Wistar rats were divided into four groups: sham, Meth, Bup, and Bup+Meth. The groups were administered their assigned treatments for 7days. The time spent in the open arms, and number of total entries into the arms (total activity) in the EPM were recorded. In addition, locomotor activity and number of entrances into the center area in the OF were recorded. The 7-day administration of Meth or Bup increased open arm exploration in the EPM. In contrast, the combined administration of Bup and Meth had the opposite effects. In addition, Meth and Bup had no effects on total and locomotor activity. Furthermore, the rats in the Meth and Bup groups spent more time in the center of the OF, while the group given both Bup and Meth spent less time in the center of the OF. The administration of Meth and Bup alone was anxiolytic in rats, whereas the coadministration of Bup and Meth was anxiogenic. Copyright © 2017 Elsevier B.V. All rights reserved.
Caamano-Isorna, Francisco; Figueiras, Adolfo; Sastre, Isabel; Montes-Martínez, Agustín; Taracido, Margarita; Piñeiro-Lamas, María
2011-05-21
During the summer of 2006, a wave of wildfires struck Galicia (north-west Spain), giving rise to a disaster situation in which a great deal of the territory was destroyed. Unlike other occasions, the wildfires in this case also threatened farms, houses and even human lives, with the result that the perception of disaster and helplessness was the most acute experienced in recent years. This study sought to analyse the respiratory and mental health effects of the August-2006 fires, using consumption of anxiolytics-hypnotics and drugs for obstructive airway diseases as indicators. We conducted an analytical, ecological geographical- and temporal-cluster study, using municipality-month as the study unit. The independent variable was exposure to wildfires in August 2006, with municipalities thus being classified into the following three categories: no exposure; medium exposure; and high exposure. Dependent variables were: (1) anxiolytics-hypnotics; and (2) drugs for obstructive airway diseases consumption. These variables were calculated for the two 12-month periods before and after August 2006. Additive models for time series were used for statistical analysis purposes. The results revealed a higher consumption of drugs for obstructive airway diseases among pensioners during the months following the wildfires, in municipalities affected versus those unaffected by fire. In terms of consumption of anxiolytics-hypnotics, the results showed a significant increase among men among men overall -pensioners and non-pensioners- in fire-affected municipalities. Our study indicates that wildfires have a significant effect on population health. The coherence of these results suggests that drug utilisation research is a useful tool for studying morbidity associated with environmental incidents.
Effects of Psychological Stress and Alprazolam on Development of Oral Candidiasis in Rats
Núñez, M. J.; Balboa, J.; Riveiro, P.; Liñares, D.; Mañá, P.; Rey-Méndez, M.; Rodríguez-Cobos, A.; Suárez-Quintanilla, J. A.; García-Vallejo, L. A.; Freire-Garabal, M.
2002-01-01
Psychological stress has been found to suppress cell-mediated immune responses that are important in limiting the proliferation of Candida albicans. Since anxiolytic drugs can restore cellular immunity in rodents exposed to stress conditions, we designed experiments conducted to evaluate the effects of alprazolam (1 mg/kg of body weight/day), a central benzodiazepine anxiolytic agonist, on the development of oral candidiasis in Sprague-Dawley rats exposed to a chronic auditory stressor. Animals were submitted to surgical hyposalivation in order to facilitate the establishment and persistence of C. albicans infection. Application of stress and treatment with drugs (placebo or alprazolam) were initiated 7 days before C. albicans inoculation and lasted until the end of the experiments (day 15 postinoculation). Establishment of C. albicans infection was evaluated by swabbing the inoculated oral cavity with a sterile cotton applicator on days 2 and 15 after inoculation, followed by plating on YEPD (yeast extract-peptone-dextrose) agar. Tissue injury was determined by the quantification of the number and type (normal or abnormal) of papillae on the dorsal tongue per microscopic field. A semiquantitative scale was devised to assess the degree of colonization of the epithelium by fungal hyphae. Our results show that stress exacerbates C. albicans infection of the tongues of rats. Significant increases in Candida counts, the percentage of the tongue's surface covered with clinical lesions, the percentage of abnormal papillae, and the colonization of the epithelium by fungal hyphae were found in stressed rats compared to those found in the unstressed rats. Treatment with alprazolam significantly reversed these adverse effects of stress, showing that, besides the psychopharmacological properties of this anxiolytic drug against stress, it has consequences for Candida infection. PMID:12093685
Cognitive burden of common non-antiretroviral medications in HIV-infected women.
Rubin, Leah H; Radtke, Kendra K; Eum, Seenae; Tamraz, Bani; Kumanan, Krithika N; Springer, Gayle; Maki, Pauline M; Anastos, Kathryn; Merenstein, Daniel; Karim, Roksana; Weber, Kathleen M; Gustafson, Deborah; Greenblatt, Ruth M; Bishop, Jeffrey R
2018-05-16
The aging HIV population has increased comorbidity burden and consequently non-antiretroviral (ARV) medication utilization. Many non-ARV medications have known neurocognitive-adverse effects ("NC-AE medications"). We assessed the cognitive effects of NC-AE medications in HIV+ and HIV- women. 1558 participants (1037 HIV+; mean age 46) from the Women's Interagency HIV Study completed a neuropsychological test battery between 2009 and 2011. The total number of NC-AE medications and subgroups (e.g., anticholinergics) were calculated based on self-report. Generalized linear models for non-normal data were used to examine the cognitive burden of medications and factors which exacerbate these effects. HIV+ women reported taking more NC-AE medications versus HIV- women (p<0.05). NC-AE medication use altogether was not associated with cognitive performance. However, among NC-AE medication subgroups, anticholinergic-acting medications, but not opioids or anxiolytics/anticonvulsants, were negatively associated with performance. HIV-status moderated the association between these NC-AE medication subgroups and performance (p's<0.05). HIV-serostatus differences (HIV- < HIV+) in global, learning, fluency and motor function were greatest among women taking >1 anticholinergic medications. HIV-serostatus differences in performance on learning and psychomotor speed were also greatest among women taking 1 or more anxiolytics/anticonvulsants and 1 or more opioids, respectively. HIV+ women have increased cognitive vulnerabilities to anticholinergic, anxiolytic/anticonvulsant, and opioid medications. Potential synergy between these medications and HIV may explain some HIV-related cognitive impairments. It may be important clinically to consider these specific types of medications as a contributor to impaired cognitive performance in HIV+ women and assess the cost/benefit of treatment dosage for underlying conditions.
2011-01-01
Background During the summer of 2006, a wave of wildfires struck Galicia (north-west Spain), giving rise to a disaster situation in which a great deal of the territory was destroyed. Unlike other occasions, the wildfires in this case also threatened farms, houses and even human lives, with the result that the perception of disaster and helplessness was the most acute experienced in recent years. This study sought to analyse the respiratory and mental health effects of the August-2006 fires, using consumption of anxiolytics-hypnotics and drugs for obstructive airway diseases as indicators. Methods We conducted an analytical, ecological geographical- and temporal-cluster study, using municipality-month as the study unit. The independent variable was exposure to wildfires in August 2006, with municipalities thus being classified into the following three categories: no exposure; medium exposure; and high exposure. Dependent variables were: (1) anxiolytics-hypnotics; and (2) drugs for obstructive airway diseases consumption. These variables were calculated for the two 12-month periods before and after August 2006. Additive models for time series were used for statistical analysis purposes. Results The results revealed a higher consumption of drugs for obstructive airway diseases among pensioners during the months following the wildfires, in municipalities affected versus those unaffected by fire. In terms of consumption of anxiolytics-hypnotics, the results showed a significant increase among men among men overall -pensioners and non-pensioners- in fire-affected municipalities. Conclusions Our study indicates that wildfires have a significant effect on population health. The coherence of these results suggests that drug utilisation research is a useful tool for studying morbidity associated with environmental incidents. PMID:21600035
Feinstein, Justin S; Khalsa, Sahib S; Yeh, Hung; Al Zoubi, Obada; Arevian, Armen C; Wohlrab, Colleen; Pantino, Marie K; Cartmell, Laci J; Simmons, W Kyle; Stein, Murray B; Paulus, Martin P
2018-06-01
Floatation-REST (Reduced Environmental Stimulation Therapy), an intervention that attenuates exteroceptive sensory input to the nervous system, has recently been found to reduce state anxiety across a diverse clinical sample with high levels of anxiety sensitivity (AS). To further examine this anxiolytic effect, the present study investigated the affective and physiological changes induced by Floatation-REST and assessed whether individuals with high AS experienced any alterations in their awareness for interoceptive sensation while immersed in an environment lacking exteroceptive sensation. Using a within-subject crossover design, 31 participants with high AS were randomly assigned to undergo a 90-minute session of Floatation-REST or an exteroceptive comparison condition. Measures of self-reported affect and interoceptive awareness were collected before and after each session, and blood pressure was measured during each session. Relative to the comparison condition, Floatation-REST generated a significant anxiolytic effect characterized by reductions in state anxiety and muscle tension and increases in feelings of relaxation and serenity (p < .001 for all variables). Significant blood pressure reductions were evident throughout the float session and reached the lowest point during the diastole phase (average reduction >12 mm Hg). The float environment also significantly enhanced awareness and attention for cardiorespiratory sensations. Floatation-REST induced a state of relaxation and heightened interoceptive awareness in a clinical sample with high AS. The paradoxical nature of the anxiolytic effect in this sample is discussed in relation to Wolpe's theory of reciprocal inhibition and the regulation of distress via sustained attention to present moment visceral sensations such as the breath. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Haque, Zeba; Akbar, Nazia; Yasmin, Farzana; Haleem, Muhammad A; Haleem, Darakhshan J
2013-05-01
Leptin, originally identified as an anti-obesity hormone, also has an important role in the regulation of mood and emotion. The present study was designed to monitor effects of injected leptin on immobilization stress-induced anorexia, behavioral deficits, and plasma corticosterone secretion in rats. Exposure to 2 h immobilization stress decreased food intake and body weight in saline-injected animals. Animals exposed to open field, elevated plus maze, and light-dark transition tests the day following immobilization exhibited anxiety-like behavior. Leptin injected at doses of 0.1 and 0.5 mg/kg also decreased food intake and body weight in unstressed animals and elicited anxiolytic effects at dose of 0.5 mg/kg, monitored on the following day. Immobilization-induced decreases in food intake, body weight, as well as stress-induced behavioral deficits in the open field, elevated plus maze, and light-dark transition test were reversed by exogenous leptin in a dose-dependent (0.1-0.5 mg/kg) manner. Acute exposure to 2 h immobilization produced a fourfold rise in plasma levels of corticosterone. Animals injected with leptin at a dose of 0.1 mg/kg, but not at dose of 0.5 mg/kg, exhibited a marginal increase in plasma corticosterone. Immobilization-induced increases of plasma corticosterone were reversed by leptin injected at doses of 0.1 or 0.5 mg/kg. The data suggest that exogenous leptin can reduce stress perception, resulting in an inhibition of stress effects on the activity of hypothalamic-pituitary-adrenal axis and behavior. The reported pharmacological effects of leptin represent an innovative approach for the treatment of stress-related disorders.
Michopoulos, Vasiliki; Checchi, Marta; Sharpe, Desiree; Wilson, Mark E
2011-04-01
Despite the well-documented relation between estradiol (E2) and behavior, exposure to stressors may modify sensitivity to E2. The effects of E2 on behavior are, in part, likely related to their modulation of the serotonin (5HT) and oxytocin systems. The short allele (s-variant) polymorphism found in the promoter region of the SLC6A4 gene that encodes the 5HT transporter (5HTT) modulates responsivity to stressors. The current study used ovariectomized adult female rhesus monkeys to evaluate how exposure to the psychosocial stressor of social subordination and polymorphisms in the gene encoding 5HTT influence the behavioral effects of E2 and immunoreactive serum oxytocin. Dominant females had higher levels of oxytocin than subordinate animals even though E2 increased immunoreactive serum oxytocin in all females. E2 increased affiliative behaviors in all animals, with even more of these prosocial behaviors directed at dominant females. S-variant females, regardless of social status, were more aggressive toward more subordinate cage mates and these behaviors too were increased by E2. Subordinate s-variant females are most often involved in agonistic behavior, less affiliative behavior, and were less responsive to the anxiolytic action of E2. The results show that the short allele of the 5HTT gene synergizes with psychosocial stress exposure to affect the behavioral efficacy of E2 while confirming the actions of E2 for producing generalized behavioral arousal in females. Whether differences in the central action of 5HT and/or oxytocin are responsible for this effect requires further study. Copyright © 2011 Elsevier Inc. All rights reserved.
Inam, Qurrat-ul-Aen; Ikram, Huma; Shireen, Erum; Haleem, Darakhshan Jabeen
2016-05-01
Lower levels of 5-hydroxytryptamine (5-HT; serotonin) in the brain elicit sugar craving, while ingestion of sugar rich diet improves mood and alleviates anxiety. Gender differences occur not only in brain serotonin metabolism but also in a serotonin mediated functional responses. The present study was therefore designed to investigate gender related differences on the effects of long term consumption of sugar rich diet on the metabolism of serotonin in the hypothalamus and whole brain which may be relevant with the hyperphagic and anxiety reducing effects of sugar rich diet. Male and female rats were fed freely on a sugar rich diet for five weeks. Hyperphagic effects were monitored by measuring total food intake and body weights changes during the intervention. Anxiolytic effects of sugar rich diet was monitored in light-dark transition test. The results show that ingestion of sugar rich diet decreased serotonin metabolism more in female than male rats. Anxiolytic effects were elicited only in male rats. Hyperphagia was comparable in both male and female rats. Finings would help in understanding the role of sugar rich diet-induced greater decreases of serotonin in sweet craving in women during stress.
Tanchuck-Nipper, Michelle A; Ford, Matthew M; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K; Finn, Deborah A
2015-05-01
Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol's effect on total entries versus wildtype (WT) mice and significantly decreased ethanol's anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids.
Tanchuck-Nipper, Michelle A.; Ford, Matthew M.; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K.; Finn, Deborah A.
2015-01-01
Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol’s effect on total entries versus wildtype (WT) mice and significantly decreased ethanol’s anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids. PMID:25355320
[Trends in the consumption of anxiolytic and hypnotic drugs in a Colombian population].
Machado-Alba, Jorge Enrique; Alzate-Carvajal, Verónica; Jimenez-Canizales, Carlos Eduardo
2015-01-01
In Latin America, psychotropic medications are the third most marketed drug group, especially antidepressants (35%) and anxiolytics (5%). The objective of this study was to determine the trends in the consumption and the costs of anxiolytic and hypnotic drugs in a population of patients enrolled in the Health System of Colombia. A descriptive, observational study was performed using the data recorded inprescriptions for any anxiolytic or hypnotic drug prescribed to outpatients in the period between January 2008 and December 2013 in a population of 3.5 million people. Sociodemographic, pharmacological variables, overall costs, and cost per thousand inhabitants per day (CHD), were also recorded. The number of patients who received the drugs studied varied from 11,097 to 19,231 between 2008 and 2013. The most used drugs were clonazepam (44.1% of formulations), alprazolam (31.2%), and lorazepam (13.2%). The invoiced value of anxiolytics increased from US$ 207,673.63 in 2008 to US$ 488,977 in 2013, an increase of 135.4%. The CHD was US$ 0.31 for benzodiazepines, and US$ 0.02 for zaleplon, zolpidem and zopiclone (Z drugs) for 2008, and US$ 0.36 and US$ 0.02 in 2013 respectively. The CHD declined after 2010 following the introduction of generic drugs. Patients receiving benzodiazepines in Colombia are mostly women, average age 55 years, with very low frequency in defined daily doses per thousand inhabitants when compared with other countries. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Ramirez, Karol; Sheridan, John F
2016-10-01
In order to relieve anxiety and depression accompanying stress, physicians resort to tricyclic antidepressants, such as imipramine. We had previously shown that imipramine reversed stress-induced social avoidance behavior, and down-regulated microglial activation 24days after stress cessation. To further characterize the effects of imipramine on stress induced neuroimmune dysregulation and associated changes in behavior, the aims of this study were to determine if imipramine 1) ameliorated stress-induced inflammation in the periphery and central nervous system, and 2) prevented stress related anxiety- and depressive-like behaviors. C57BL/6 mice were treated with imipramine (15mg/kg) in their drinking water, and exposed to repeated social defeat (RSD). Imipramine attenuated stress-induced corticosterone and IL-6 responses in plasma. Imipramine decreased the percentage of monocytes and granulocytes in the bone marrow and circulation. However, imipramine did not prevent splenomegaly, stress-related increased percentage of granulocytes in this organ, and the production of pro-inflammatory cytokines in the spleen, following RSD. Moreover, imipramine abrogated the accumulation of macrophages in the brain in mice exposed to RSD. Imipramine blocked neuroinflammatory signaling and prevented stress-related anxiety- and depressive-like behaviors. These data support the notion that pharmacomodulation of the monoaminergic system, besides exerting anxiolytic and antidepressant effects, may have therapeutic effects as a neuroimmunomodulator during stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Ramirez, Karol; Sheridan, John F.
2016-01-01
In order to relieve anxiety and depression accompanying stress, physicians resort to tricyclic antidepressants, such as imipramine. We had previously shown that imipramine reversed stress-induced social avoidance behavior, and down-regulated microglial activation 24 days after stress cessation. To further characterize the effects of imipramine on stress induced neuroimmune dysregulation and associated changes in behavior, the aims of this study were to determine if imipramine 1) ameliorated stress-induced inflammation in the periphery and central nervous system, and 2) prevented stress related anxiety- and depressive-like behaviors. C57BL/6 mice were treated with imipramine (15mg/kg) in their drinking water, and exposed to repeated social defeat (RSD). Imipramine attenuated stress-induced corticosterone and IL-6 responses in plasma. Imipramine decreased the percentage of monocytes and granulocytes in the bone marrow and circulation. However, imipramine did not prevent splenomegaly, stress-related increased percentage of granulocytes in this organ, and the production of pro-inflammatory cytokines in the spleen, following RSD. Moreover, imipramine abrogated the accumulation of macrophages in the brain in mice exposed to RSD. Imipramine blocked neuroinflammatory signaling and prevented stress-related anxiety- and depressive-like behaviors. These data support the notion that pharmacomodulation of the monoaminergic system, besides exerting anxiolytic and antidepressant effects, may have therapeutic effects as a neuroimmunomodulator during stress. PMID:27223094
Choi, Young-Jun; Kim, Jin Young; Jin, Wei-Peng; Kim, Yoon-Tae; Lee, Jong-Ho; Jahng, Jeong Won
2015-07-01
This study was conducted to examine if taste over load with oral capsaicin improves the adverse behavioural effects induced by partial aberration of oral sensory relays to brain with bilateral transections of the lingual and chorda tympani nerves. Male Sprague-Dawley rats received daily 1 ml of 0.02% capsaicin or water drop by drop into the oral cavity following the bilateral transections of the lingual and chorda tympani nerves. Rats were subjected to ambulatory activity, elevated plus maze and forced swim tests after 11th, 14th and 17th daily administration of capsaicin or water, respectively. The basal and stress-induced plasma corticosterone levels were examined after the end of behavioural tests. Ambulatory counts, distance travelled, centre zone activities and rearing were increased, and rostral grooming decreased, during the activity test in capsaicin treated rats. Behavioural scores of capsaicin rats during elevated plus maze test did not differ from control rats. Immobility during the swim test was decreased in capsaicin rats with near significance (P = 0.0547). Repeated oral capsaicin increased both the basal level and stress-induced elevation of plasma corticosterone in rats with bilateral transections of the lingual and chorda tympani nerves. It is concluded that repeated oral administration of capsaicin reduces anxiety-like behaviours in rats that received bilateral transections of the lingual and chorda tympani nerves, and that the increased corticosterone response, possibly modulating the hippocampal neural plasticity, may be implicated in the anxiolytic efficacy of oral capsaicin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jochum, Thomas; Boettger, Michael Karl; Wigger, Alexandra; Beiderbeck, Daniela; Neumann, Inga D; Landgraf, Rainer; Sauer, Heinrich; Bär, Karl-Jürgen
2007-10-01
Complex interactions between pain perception, anxiety and depressive symptoms have repeatedly been described. However, pathophysiological or biochemical mechanisms underlying the alterations of pain perception in patients suffering from anxiety or depression still remain a matter of debate. Thus, we aimed to perform an investigation on pain perception in an animal model of extremes in anxiety-related behaviour, which might provide a tool for future studies. Here, thermal pain thresholds were obtained from rats with a genetic predisposition to high anxiety-related behaviour (HAB), including signs of comorbid depression-like behaviour and from controls (low-anxiety rats (LAB); cross-bred HAB and LAB rats; Wistar rats). Furthermore, the effect of eight-week antidepressive treatment using citalopram and of short-term anxiolytic treatment with diazepam on pain-related behaviour was assessed. Simultaneously, anxiety-related behaviour was monitored. At baseline, HAB animals showed 35% higher thresholds for thermal pain than controls. These were normalized to control levels after eight weeks of continuous citalopram treatment paralleled by a reduction of anxiety-related behaviour, but also acutely after diazepam administration. Overall, thermal pain thresholds in HAB animals are shifted in a similar fashion as seen in patients suffering from major depressive disorder. Antidepressive, as well as anxiolytic treatments, attenuated these differences. As the relative importance of the factors anxiety and depression cannot be derived from this study with certainty, extending these investigations to additional animal models might represent a valuable tool for future investigations concerning the interrelations between anxiety, depression, and pain at a molecular level.
Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues.
Bellavite, Paolo; Bonafini, Clara; Marzotto, Marta
Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
A beta-blocker as anxiolytic and haemostatic in tonsillectomy.
Basjrah, R; Lubis, H R; Tann, G
1983-01-01
Administration of a beta-blocker, pindolol, was utilized in the premedication of patients selected for tonsillectomies (dissection), to study anxiolytic effects. A curious result observed was that bleeding during and after operation in patients on pindolol was remarkably reduced compared to those not on beta-blocker treatment. This effect was further explored in a small controlled study. Nineteen patients were given pindolol, 5 mg the evening before and on the morning, an hour prior to surgery. Seventeen controls were on placebos. The amount of bleeding was measured in both groups. Patients on pindolol show significantly reduced bleeding when compared to controls (1.77 +/- 1.15 ml versus 7.30 +/- 6.05 ml; p less than 0.005). Coagulation and fibrinolytic profiles were studied in a number of patients in both groups attempting to clarify the cause of the reduced bleeding. The results will be reported. This preliminary study shows that pindolol is a useful drug for controlling bleeding in tonsillectomies. To our knowledge the haemostatic properties of pindolol have been reported before.
Mikulecká, A; Mareš, P; Kubová, H
2011-01-01
The purpose of our study was to determine whether a single administration of anticonvulsant doses of two ligands of benzodiazepine receptors, clonazepam and Ro 19-8022, leads to development of rebound phenomena in immature 12-day-old rats. Three tests were used: pentylenetetrazole (PTZ)-induced seizures, isolation-induced ultrasonic vocalizations, and motor performance. Susceptibility to the convulsant effects of PTZ decreased 24 hours, but increased 48 hours, after clonazepam administration. Ultrasonic vocalizations were completely suppressed 30 minutes and 3 hours after clonazepam; a moderate inhibitory effect persisted even at 48 hours. Motor abilities were slightly compromised up to 3 hours. Similar effects of Ro 19-8022 on PTZ-induced seizures and ultrasonic vocalizations were observed 24 and 48 hours after administration; motor performance was not affected. Rebound proconvulsant effects followed different time courses after administration of the two benzodiazepine receptor ligands in developing animals. Anxiolytic-like effects of these drugs were still present at the time when animals exhibited rebound proconvulsant effects. Copyright © 2010 Elsevier Inc. All rights reserved.
Ketamine as a Rapid Treatment for Post-Traumatic Stress Disorder
2011-10-01
Post - traumatic stress disorder ( PTSD ) is a debilitating anxiety disorder characterized by intrusive re-experiences of the traumatic events...08-1-0602 TITLE: Ketamine as a Rapid Treatment for Post - Traumatic Stress Disorder PRINCIPAL INVESTIGATOR: Dennis Charney...dissociative effects of ketamine but not have any sustained anxiolytic and antidepressant effects. Forty individuals diagnosed with post - traumatic
González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L
2006-08-30
The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.
Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in rats.
Hascoët, M; Bourin, M
1997-02-01
A comparative study between two drugs acting on the GABAA receptor, alprazolam and alpidem was undertaken, using simple tests such as measurement of spontaneous locomotor activity, four plates test and rotarod in mice. Additional conflict test was further performed using a new conflict paradigm where the opportunity existed for rats to choose during punished periods between immediate, punished reinforcement and delayed non-punished reinforcement. The benzodiazepine alprazolam, demonstrated, as expected, strong anxiolytic effects in mice and increased punished response in rats at non sedative doses (0.5, 1 mg/kg). High doses of alprazolam decreased spontaneous locomotor activity and induced myorelaxant effects in mice. Alpidem, an imidazopyridine derivative, induced motor impairment in mice and only very weak anxiolytic effects in the four plates test in mice (4 mg/kg) and in punished procedure in rats (32 mg/kg). As alprazolam is a full agonist for the GABAA receptor complex and alpidem is a partial agonist acting with specificity on omega 1 GABAA receptor subtypes, the results are discussed. Activity on omega 1 receptor subtypes is perhaps not sufficient in order to obtain a true anti-conflict effect and compounds such as alpidem only relieve some of the symptoms of anxiety disorders.