Sample records for producing beta cells

  1. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells.

    PubMed

    Dumitriu, Ingrid E; Dunbar, Donald R; Howie, Sarah E; Sethi, Tariq; Gregory, Christopher D

    2009-03-01

    Dendritic cells (DCs) have a central role in the development of adaptive immune responses, including antitumor immunity. Factors present in the tumor milieu can alter the maturation of DCs and inhibit their capacity to activate T cells. Using gene expression analysis, we found that human DCs increased the expression of TGF-beta1 transcripts following culture with human lung carcinoma cells (LCCs). These DCs produced increased amounts of TGF-beta1 protein compared with DCs not exposed to tumor cells. LCCs also decreased the expression of CD86 and HLA-DR by immature DCs. Furthermore, LCCs decreased CD86 expression and the production of TNF-alpha and IL-12 p70 by mature DCs. Moreover, LCCs also converted mature DCs into cells producing TGF-beta1. These TGF-beta1-producing DCs were poor at eliciting the activation of naive CD4(+) T cells and sustaining their proliferation and differentiation into Th1 (IFN-gamma(+)) effectors. Instead, TGF-beta1-producing DCs demonstrated an increased ability to generate CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress the proliferation of T lymphocytes. These results identify a novel mechanism by which the function of human DCs is altered by tumor cells and contributes to the evasion of the immune response.

  2. Effects of beta-glucuronidase-deficient and lycopene-producing Escherichia coli strains on formation of azoxymethane-induced aberrant crypt foci in the rat colon.

    PubMed

    Arimochi, H; Kataoka, K; Kuwahara, T; Nakayama, H; Misawa, N; Ohnishi, Y

    1999-08-27

    We tried to inhibit the formation of azoxymethane-induced aberrant crypt foci (ACF) in the rat intestine by feeding a culture of a beta-glucuronidase-deficient Escherichia coli strain or a cell suspension of a lycopene-producing E. coli strain. Feeding of the former culture to F344 rats did not decrease fecal beta-glucuronidase activity or the number of ACF compared with the control beta-glucuronidase-proficient groups. However, a significant positive correlation between the fecal beta-glucuronidase activity and the ACF number was observed among groups treated with cultures of beta-glucuronidase-proficient and -deficient strains. In the group treated with lycopene-producing cells, the number of ACF was significantly lower than that in the control group. A vegetable juice containing a larger amount of lycopene than a cell suspension of the lycopene-producing E. coli also decreased the number of ACF to the same extent as a cell suspension of the lycopene-producing bacteria. These results suggest that feeding of the beta-glucuronidase-deficient E. coli is not very effective in preventing colon carcinogenesis, although activity of the fecal beta-glucuronidase is associated with AOM-induced ACF formation, and that lycopene-producing intestinal bacteria can effectively prevent colon carcinogenesis. Copyright 1999 Academic Press.

  3. Chronology of endocrine differentiation and beta-cell neogenesis.

    PubMed

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  4. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  5. Different susceptibility of rat pancreatic alpha and beta cells to hypoxia.

    PubMed

    Bloch, Konstantin; Vennäng, Julia; Lazard, Daniel; Vardi, Pnina

    2012-06-01

    Insulin-producing beta cells are known to be highly susceptible to hypoxia, which is a major factor in their destruction after pancreatic islet transplantation. However, whether the glucagon-producing pancreatic islet alpha cells are sensitive to hypoxia is not known. Our objective was to compare the sensitivity of alpha and beta cells to hypoxia. Isolated rat pancreatic islets were exposed to hypoxia (1% oxygen, 94% N(2), 5% CO(2)) for 3 days. The viability of the alpha and beta cells, as well as the stimulus-specific secretion of glucagon and insulin, was evaluated. A quantitative analysis of the proportion of beta to alpha cells indicated that, under normoxic conditions, islet cells were composed mainly of beta cells (87 ± 3%) with only 13 ± 3% alpha cells. Instead, hypoxia treatment significantly increased the proportion of alpha cells (40 ± 13%) and decreased the proportion of beta cells to 60 ± 13%. Using the fluorescent TUNEL assay we found that only a few percent of beta cells and alpha cells were apoptotic in normoxia. In contrast, hypoxia induced an abundance of apoptotic beta cells (61 ± 22%) and had no effect on the level of apoptosis in alpha cells. In conclusion, this study demonstrates that hypoxia results in severe functional abnormality in both beta and alpha cells while alpha cells display significantly decreased rate of apoptosis compared to intensive apoptotic injury of beta cells. These findings have implications for the understanding of the possible role of hypoxia in the pathophysiology of diabetes.

  6. Genetics Home Reference: sickle cell disease

    MedlinePlus

    ... of beta-globin; this abnormality is called beta thalassemia . In people with sickle cell disease , at least ... globin. If mutations that produce hemoglobin S and beta thalassemia occur together, individuals have hemoglobin S- beta thalassemia (HbSBetaThal) ...

  7. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  8. Cytokine regulation on the synthesis of nitric oxide in vivo by chronically infected human polymorphonuclear leucocytes.

    PubMed Central

    Takeichi, O; Saito, I; Okamoto, Y; Tsurumachi, T; Saito, T

    1998-01-01

    To determine if nitric oxide (NO) is produced by chronically infected human polymorphonuclear leucocytes (PMNs) in vivo, inflamed exudates (periapical exudates: PE) collected from periapical periodontitis patients were examined. Cell-free supernatants and cells were separated by centrifugation. Significant levels of nitrite concentrations were observed in the supernatants. The production of inducible NO synthase (iNOS) in highly purified PMNs derived from PEs was then immunocytochemically determined using rabbit anti-human iNOS antiserum. In vitro, human peripheral blood PMNs (PB-PMNs) isolated from patients were cultured with a combination of Esherichia coli-lipopolysaccharide (LPS), recombinant human interferon-gamma (rhIFN-gamma) and/or interleukin-1 beta (rhIL-1 beta). The stimulated PB-PMNs showed steady-state levels of nitrite. The stimulation of LPS, rhIFN-gamma and rhIL-1 beta showed more NO induction than that of LPS with either IFN-gamma or IL-1 beta, suggesting the synergistic effects of cytokines. Cryostat sections of surgically removed periapical tissues were also immunohistochemically examined for iNOS, IFN-gamma and IL-1 beta. Two-colour immunohistochemistry revealed the interaction of iNOS-producing PMNs and IFN-gamma- or IL-1 beta-producing mononuclear cells. On the basis of these data, we concluded that with the stimulation of inflammatory cytokines derived from mononuclear cells, PMNs can spontaneously produce NO at the site of chronic infection. The present studies are consistent with a hypothesis suggesting that PMNs could be regulated and delicately balanced to produce NO by mononuclear cell-derived cytokines in vivo. NO-producing cells may play a pivotal role in chronic inflammation. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:9616379

  9. Ectopic production of beta-HCG by a maxillary squamous cell carcinoma.

    PubMed

    Scholl, P D; Jurco, S; Austin, J R

    1997-12-01

    Paraneoplastic syndromes of the head and neck are rare. Hypercalcemia and leukocytosis have been described. The literature was reviewed, and a case of a squamous cell carcinoma of the maxilla producing beta human chorionic gonadotropin (beta-HCG) is presented. A 47-year-old white man with a T4N1M0 squamous cell carcinoma of the left maxilla was treated with a maxillectomy and neck dissection for an N1 positive neck. After completing his planned radiotherapy, he developed distant metastases, which included an axillary node that stained positive for human beta-HCG. Retrospective review of the primary specimen showed beta-HCG positivity in an anaplastic component of the tumor along with vascular invasion. The first case in the literature of a paraneoplastic syndrome with beta-HCG production in association with squamous cell carcinoma of the maxilla is presented. This case history fits the aggressive nature of beta HCG producing tumors elsewhere in the body.

  10. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less

  11. Epidermal differentiation during ontogeny and after hatching in the snake Liasis fuscus (Pythonidae, Serpentes, Reptilia), with emphasis on the formation of the shedding complex.

    PubMed

    Alibardi, L; Thompson, M B

    2003-04-01

    Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.

  12. HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern

    2007-04-06

    To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less

  13. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes?

    PubMed

    Li, Dong-Sheng; Warnock, Garth L; Tu, Han-Jun; Ao, Ziliang; He, Zehua; Lu, Hong; Dai, Long-Jun

    2009-10-07

    Type 1 diabetes (T1D) is the result of the autoimmune response against pancreatic insulin-producing ss-cells. Its ultimate consequence is beta-cell insufficiency-mediated dysregulation of blood glucose control. In terms of T1D treatment, immunotherapy addresses the cause of T1D, mainly through re-setting the balance between autoimmunity and regulatory mechanisms. Regulatory T cells play an important role in this immune intervention. An alternative T1D treatment is beta-cell replacement, which can reverse the consequence of the disease by replacing destroyed beta-cells in the diabetic pancreas. The applicable insulin-producing cells can be directly obtained from islet transplantation or generated from other cell sources such as autologous adult stem cells, embryonic stem cells, and induced pluripotent stem cells. In this review, we summarize the recent research progress and analyze the possible advantages and disadvantages of these two therapeutic options especially focusing on the potential synergistic effect on T1D treatment. Exploring the optimal combination of immunotherapy and beta-cell replacement will pave the way to the most effective cure for this devastating disease.

  14. Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes.

    PubMed

    Dangles, Virginie; Halberstam, Ilan; Scardino, Antonio; Choppin, Jeannine; Wertheimer, Mireille; Richon, Sophie; Quelvennec, Erwann; Moirand, Romain; Guillet, Jean-Gérard; Kosmatopoulos, Kostas; Bellet, Dominique; Zeliszewski, Dominique

    2002-02-01

    The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors.

  15. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.

    PubMed

    Ardestani, Amin; Paroni, Federico; Azizi, Zahra; Kaur, Supreet; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin

    2014-04-01

    Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.

  16. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells.

    PubMed

    Almaça, Joana; Molina, Judith; Menegaz, Danusa; Pronin, Alexey N; Tamayo, Alejandro; Slepak, Vladlen; Berggren, Per-Olof; Caicedo, Alejandro

    2016-12-20

    In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT 1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT 1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity. Published by Elsevier Inc.

  17. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation.

    PubMed

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Liu, Eric; Harlan, David M; Li, Xin; Stroncek, David F

    2007-01-03

    While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.

  18. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  19. The role of IL-1beta in reduced IL-7 production by stromal and epithelial cells: a model for impaired T-cell numbers in the gut during HIV-1 infection.

    PubMed

    Thang, P H; Ruffin, N; Brodin, D; Rethi, B; Cam, P D; Hien, N T; Lopalco, L; Vivar, N; Chiodi, F

    2010-08-01

    Interleukin (IL)-7 is a key cytokine in T-cell homeostasis. Stromal cells, intestinal epithelial cells and keratinocytes are known to produce this cytokine. The mechanisms and cellular factors regulating IL-7 production are still unclear. We assessed whether IL-1beta and interferon (IFN)-gamma, cytokines produced during inflammatory conditions, may impact on IL-7 production. We used human intestinal epithelial cells (DLD-1 cell line) and bone marrow stromal cells (HS27 cell line), known to produce IL-7; IL-7 production was evaluated at the mRNA and protein levels. To assess whether treatment of HS27 cells with IL-1beta and/or IFN-gamma leads to changes in the gene expression of cytokines, Toll-like receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole-genome microarray Human Gene 1.0 ST. We found that IFN-gamma enhanced the expression of IL-7 mRNA (P < 0.001) in both cell lines. IL-1beta treatment led to a significant down-regulation (P < 0.001) of IL-7 mRNA expression in both cell lines. The IL-7 concentration in supernatants collected from treated DLD-1 and HS27 cell cultures reflected the trend of IL-7 mRNA levels. The gene profiles revealed dramatic changes in expression of cytokines and their receptors (IL-7/IL-7R alpha; IL-1alpha,IL-1beta/IL-1R1; IFN-gamma/IFN-gammaR1), of IFN regulatory factors (IRF-1 and 2), of TLRs and of important chemo-attractants for T cells. The microarray results were verified by additional methods. Our results are discussed in the setting of inflammation and T-cell survival in the gut compartment during HIV-1 infection where stromal and epithelial cells may produce factors that contribute to impaired IL-7 homeostasis and homing of T cells.

  20. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  1. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  3. Biological functions of hCG and hCG-related molecules

    PubMed Central

    2010-01-01

    Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle. PMID:20735820

  4. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis.

    PubMed

    Apte, M V; Haber, P S; Darby, S J; Rodgers, S C; McCaughan, G W; Korsten, M A; Pirola, R C; Wilson, J S

    1999-04-01

    The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.

  5. Regeneration of hyaline articular cartilage with irradiated transforming growth factor beta1-producing fibroblasts.

    PubMed

    Song, Sun U; Hong, Young-Jin; Oh, In-Suk; Yi, Youngsuk; Choi, Kyoung Baek; Lee, Jung Woo; Park, Kwang-Won; Han, Jeoung-Uk; Suh, Jun-Kyu; Lee, Kwan Hee

    2004-01-01

    The regeneration of hyaline articular cartilage by cell-mediated gene therapy using transforming growth factor beta(1) (TGF-beta(1))-producing fibroblasts (NIH 3T3-TGF-beta(1)) has been reported previously. In this study, we investigated whether TGF-beta(1)-producing fibroblasts irradiated with a lethal dose of radiation are still capable of inducing the regeneration of hyaline articular cartilage. NIH 3T3TGF-beta(1) fibroblasts were exposed to doses of 20, 40, or 80 Gy, using a irradiator, and then injected into artificially made partial defects on the femoral condyle of rabbit knee joints. The rabbits were killed 3 or 6 weeks postinjection and hyaline articular cartilage regeneration was evaluated by histological and immunohistochemical staining (n = 5 per each group). Irradiated NIH 3T3-TGFbeta(1) fibroblasts started to die rapidly 3 days after irradiation; moreover, the kinetics of their viability were similar regardless of the radiation intensity. TGF-beta1 expression, measured by ELISA, showed that the TGF-beta(1) protein produced from the irradiated cells peaked 5 days after irradiation and thereafter declined rapidly. Complete filling of the defect with reparative tissue occurred in all the groups, although variations were observed in terms of the nature of the repair tissue. Histological and immunohistochemical staining of the repair tissue showed that the tissue newly formed by irradiated NIH 3T3-TGF-beta(1) fibroblasts after exposure to 20 Gy had hyaline cartilage-like characteristics, as was observed in the nonirradiated controls. On the other hand, the repair tissue formed by NIH 3T3-TGF-beta(1) fibroblasts irradiated with 40 or 80 Gy showed more fibrous cartilage-like tissue. These results suggest that TGF-beta(1)-producing fibroblasts irradiated up to a certain level of lethal dose (i.e., 20 Gy) are able to induce normal-appearing articular cartilage in vivo. Therefore, irradiated heterologous cell-mediated TGF-beta(1) gene therapy may be clinically useful and an efficient method of regenerating hyaline articular cartilage.

  6. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-10-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less

  11. The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds.

    PubMed

    Johnson, James D

    2016-10-01

    The production of fully functional insulin-secreting cells to treat diabetes is a major goal of regenerative medicine. In this article, I review progress towards this goal over the last 15 years from the perspective of a beta cell biologist. I describe the current state-of-the-art, and speculate on the general approaches that will be required to identify and achieve our ultimate goal of producing functional beta cells. The need for deeper phenotyping of heterogeneous cultures of stem cell derived islet-like cells in parallel with a better understanding of the heterogeneity of the target cell type(s) is emphasised. This deep phenotyping should include high-throughput single-cell analysis, as well as comprehensive 'omics technologies to provide unbiased characterisation of cell products and human beta cells. There are justified calls for more detailed and well-powered studies of primary human pancreatic beta cell physiology, and I propose online databases of standardised human beta cell responses to physiological stimuli, including both functional and metabolomic/proteomic/transcriptomic profiles. With a concerted, community-wide effort, including both basic and applied scientists, beta cell replacement will become a clinical reality for patients with diabetes.

  12. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2014-01-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase, or beta-glucosidase activity and isolated polynucleotides encoding polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    PubMed

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  14. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    PubMed

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  15. Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines.

    PubMed

    Zhu, Yong Lian; Abdo, Alexander; Gesmonde, Joan F; Zawalich, Kathleen C; Zawalich, Walter; Dannies, Priscilla S

    2004-08-01

    Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.

  16. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    NASA Astrophysics Data System (ADS)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  17. Novel function of STAT1beta in B cells: induction of cell death by a mechanism different from that of STAT1alpha.

    PubMed

    Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi

    2008-12-01

    Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.

  18. Antidiabetic Evaluation of Momordica charantia L Fruit Extracts

    PubMed Central

    Tahira, S; Hussain, F

    2014-01-01

    To investigate hypoglycaemic, hypolipidaemic and pancreatic beta cell regeneration activities of Momordica charantia L fruits (MC). Alloxan-induced diabetic rabbits were treated with methanolic and ethanolic MC extract. Effects of plant extracts and the drug glibenclamide on serum glucose, lipid profile and pancreatic beta cell were determined after two weeks of treatment. Serum glucose and lipid profiles were assayed by kit methods. Pancreatic tissue histopathology was performed to study pancreatic beta cell regeneration. Momordica charantia extracts produced significant hypoglycaemic effects (p < 0.05). Hypolipidaemic activity of MC was negligible. Momordica charantia supplementations were unable to normalize glucose and lipid profiles. Glibenclamide, a standard drug, not only lowered hyperglycaemia and hyperlipidaemia but also restored the normal levels. Regeneration of pancreatic beta cells by MC extracts was minimal, with fractional improvement produced by glibenclamide. The most significant finding of the present study was a 28% reduction in hyperglycaemia by MC ethanol extracts. To determine reliable antidiabetic potentials of MC, identification of the relevant antidiabetic components and underlying mechanisms is warranted. PMID:25429471

  19. Characteristic cytokine generation patterns in cancer cells and infiltrating lymphocytes in oral squamous cell carcinomas and the influence of chemoradiation combined with immunotherapy on these patterns.

    PubMed

    Yamamoto, Tetsuya; Kimura, Tsuyoshi; Ueta, Eisaku; Tatemoto, Yukihiro; Osaki, Tokio

    2003-01-01

    Cytokines produced by tumor cells and tumor-infiltrating lymphocytes (TIL) appear to regulate tumor cell growth and the cytotoxic activity of TIL. The objectives of the present study were to investigate cytokine generation patterns in tumor cells and TIL and to examine the influence of cancer therapy on this cytokine production and the cytotoxic activity of TIL. We determined the levels of cytokines produced by tumor cells and TIL in vitro and measured the cytotoxic activity of TIL against Daudi cells in patients with oral squamous cell carcinoma (OSC) before and 1 week after the start of concomitant chemo-radio-immunotherapy. Before the therapy, OSC cells generated higher levels of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) than did oral keratinocytes isolated from the noninflamed gingivae of healthy individuals, but both kinds of cells generated similar levels of interleukin (IL)-1beta and IL-6. Compared with peripheral blood mononuclear cells (PBMC) of the patients, TIL produced higher levels of IL-1beta, IL-6, IL-10, TNF-alpha and TGF-beta, whereas their production of IL-12 and interferon-gamma (IFN-gamma) was only slightly higher than that in PBMC. After 1 week of therapy, the cytokine production by OSC cells had largely decreased, while the production of TNF-alpha, IFN-gamma, TGF-beta and IL-12 by TIL had increased greatly, although other cytokine levels were almost constant during the investigations. The cytotoxic activity of TIL was higher than that of PBMC before the therapy, and this activity was strongly increased by 1 week of therapy. These results suggest that the cytokine productivities of TIL and tumor cells differ from those of PBMC and normal keratinocytes, respectively, and that chemo-radio-immunotherapy modulates in situ cytokine generation, which is advantageous for inhibition of tumor cell growth and activation of TIL. Copyright 2003 S. Karger AG, Basel

  20. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    PubMed

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  1. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  2. beta subunits influence the biophysical and pharmacological differences between P- and Q-type calcium currents expressed in a mammalian cell line.

    PubMed

    Moreno, H; Rudy, B; Llinás, R

    1997-12-09

    Human epithelial kidney cells (HEK) were prepared to coexpress alpha1A, alpha2delta with different beta calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney alpha1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of alpha1A, betaIb, and alpha2delta produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of omega-agatoxin IVA (omega-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by alpha1A, beta2a, alpha2delta subunits, which demonstrated the slowest inactivation and were relatively insensitive to omega-Aga IVA and sFTX. Coexpression of beta3 with the same combination as above produced inactivating currents also insensitive to low concentration of omega-Aga IVA and sFTX. These data indicate that the combination alpha1A, betaIb, alpha2delta best resembles P-type channels given the rate of inactivation and the high sensitivity to omega-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the beta subunit associated with the alpha1A subunit.

  3. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.

    PubMed Central

    Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A.

    2004-01-01

    We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. PMID:15306292

  4. In situ hybridization of nucleus basalis neurons shows increased. beta. -amyloid mRNA in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.

    1988-02-01

    To determine which cells within the brain produce ..beta..-amyloid mRNA and to assess expression of the ..beta..-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that ..beta..-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more ..beta..-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the ..beta..-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease.

  5. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    PubMed

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  6. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans.

    PubMed

    Simeonovic, Charmaine J; Popp, Sarah K; Starrs, Lora M; Brown, Debra J; Ziolkowski, Andrew F; Ludwig, Barbara; Bornstein, Stefan R; Wilson, J Dennis; Pugliese, Alberto; Kay, Thomas W H; Thomas, Helen E; Loudovaris, Thomas; Choong, Fui Jiun; Freeman, Craig; Parish, Christopher R

    2018-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.

  7. Association of Beta-Glucan Endogenous Production with Increased Stress Tolerance of Intestinal Lactobacilli▿

    PubMed Central

    Stack, Helena M.; Kearney, Niamh; Stanton, Catherine; Fitzgerald, Gerald F.; Ross, R. Paul

    2010-01-01

    The exopolysaccharide beta-glucan has been reported to be associated with many health-promoting and prebiotic properties. The membrane-associated glycosyltransferase enzyme (encoded by the gtf gene), responsible for microbial beta-glucan production, catalyzes the conversion of sugar nucleotides into beta-glucan. In this study, the gtf gene from Pediococcus parvulus 2.6 was heterologously expressed in Lactobacillus paracasei NFBC 338. When grown in the presence of glucose (7%, wt/vol), the recombinant strain (pNZ44-GTF+) displayed a “ropy” phenotype, while scanning electron microscopy (SEM) revealed strands of polysaccharide-linking neighboring cells. Beta-glucan biosynthesis was confirmed by agglutination tests carried out with Streptococcus pneumoniae type 37-specific antibodies, which specifically detect glucan-producing cells. Further analysis showed a ∼2-fold increase in viscosity in broth media for the beta-glucan-producing strain over 24 h compared to the control strain, which did not show any significant increase in viscosity. In addition, we analyzed the ability of beta-glucan-producing Lactobacillus paracasei NFBC 338 to survive both technological and gastrointestinal stresses. Heat stress assays revealed that production of the polysaccharide was associated with significantly increased protection during heat stress (60-fold), acid stress (20-fold), and simulated gastric juice stress (15-fold). Bile stress assays revealed a more modest but significant 5.5-fold increase in survival for the beta-glucan-producing strain compared to that of the control strain. These results suggest that production of a beta-glucan exopolysaccharide by strains destined for use as probiotics may afford them greater performance/protection during cultivation, processing, and ingestion. As such, expression of the gtf gene may prove to be a straightforward approach to improve strains that might otherwise prove sensitive in such applications. PMID:19933353

  8. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  9. Symmetric Fold/Super-Hopf Bursting, Chaos and Mixed-Mode Oscillations in Pernarowski Model of Pancreatic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Fallah, Haniyeh

    Pancreatic beta-cells produce insulin to regularize the blood glucose level. Bursting is important in beta cells due to its relation to the release of insulin. Pernarowski model is a simple polynomial model of beta-cell activities indicating bursting oscillations in these cells. This paper presents bursting behaviors of symmetric type in this model. In addition, it is shown that the current system exhibits the phenomenon of period doubling cascades of canards which is a route to chaos. Canards are also observed symmetrically near folds of slow manifold which results in a chaotic transition between n and n + 1 spikes symmetric bursting. Furthermore, mixed-mode oscillations (MMOs) and combination of symmetric bursting together with MMOs are illustrated during the transition between symmetric bursting and continuous spiking.

  10. [Isolation, purification and primary culture of rat pancreatic beta-cells].

    PubMed

    Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei

    2009-01-01

    To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.

  11. Generation of Beta Cells from Human Pluripotent Stem Cells: Potential for Regenerative Medicine

    PubMed Central

    Nostro, Maria Cristina; Keller, Gordon

    2015-01-01

    The loss of beta cells in Type I Diabetes ultimately leads to insulin dependence and major complications that are difficult to manage by insulin injections. Given the complications associated with long-term administration of insulin, cell-replacement therapy is now under consideration as an alternative treatment that may someday provide a cure for this disease. Over the past 10 years, islet transplantation trials have demonstrated that it is possible to replenish beta cell function in Type I Diabetes patients and, at least temporarily, eliminate their dependency on insulin. While not yet optimal, the success of these trials has provided proof-of-principle that cell replacement therapy is a viable option for treating diabetes. Limited access to donor islets has launched a search for alternative source of beta cells for cell therapy purposes and focused the efforts of many investigators on the challenge of deriving such cells from human embryonic and induced pluripotent stem cells. Over the past five years, significant advances have been made in understanding the signaling pathways that control lineage development from hPSCs and as a consequence, it is now possible to routinely generate human insulin producing cells from both hESCs and hiPSCs. While these achievements are impressive, significant challenges do still exist, as the majority of insulin producing cells generated under these conditions are polyhormonal and non functional, likely reflecting the emergence of the polyhormonal population that is known to arise in the early embryo during the phase of pancreatic development known as the ‘first transition’. Functional beta cells, which arise during the second phase or transition of pancreatic development have been generated from hPSCs, however they are detected only following transplantation of progenitor stage cells into immunocompromised mice. With this success, our challenge now is to define the pathways that control the development and maturation of this second transition population from hPSCs, and establish conditions for the generation of functional beta cells in vitro. PMID:22750147

  12. A novel approach for betavoltaic devices utilizing nitrogen doped graphene powder as an electrode

    NASA Astrophysics Data System (ADS)

    Drake, Kyle Joseph

    Nitrogen doped graphene was used to create p-n junctions with boron doped silicon wafers. When exposed to beta particle radiation, an electrical current is produced. The betavoltaic cells were fabricated and tested for comparison of power output with that of other types of betavoltaic cells reported in the literature. The electronic properties of graphene allowed it to be a plausible replacement part of the semiconductor used to convert the energy of the beta radiation to usable electrical energy. The research showed that an electric current was produced by the fabricated experimental cells.

  13. Function of beta 2-adrenergic receptors in chronic localized myalgia.

    PubMed

    Maekawa, Kenji; Kuboki, Takuo; Inoue, Eitoku; Inoue-Minakuchi, Mami; Suzuki, Koji; Yatani, Hirofumi; Clark, Glenn T

    2003-01-01

    To investigate alteration of beta 2-adrenergic receptor (beta 2 AR) function in chronic localized myalgia subjects by evaluating levels of the beta 2 AR second messenger, cyclic adenosine monophosphate (cAMP), in mononuclear cells after beta AR-agonist stimulation. Eleven chronic localized myalgia subjects and 21 matched healthy controls participated in this study. Peripheral blood (30 cc) was drawn from the subjects' anterocubital vein. Mononuclear cells were isolated from the total blood by using the Ficoll-Hypaque gradient technique. Basal and stimulated intracellular cAMP levels were determined by enzyme immunoassay using a commercially available kit. Aliquots of 5 x 10(6) cells were incubated with or without stimulation of the beta AR-agonist isoproterenol for 5 minutes. Five different concentrations of isoproterenol (10(-3) M to 10(-7) M) were utilized. cAMP levels in both groups were tested statistically by a 2-way repeated-measures ANOVA with 2 predictors, group difference and isoproterenol concentration difference. As with isoproterenol stimulation, the cAMP responses to forskolin, which activates adenylyl cyclase directly and produces cAMP, bypassing the cell surface receptors were also measured. The basal cAMP levels in both groups (myalgia: 0.33 +/- 0.02 pmol/5 x 10(6) cells; control: 0.43 +/- 0.10 pmol/5 x 10(6) cells) were almost identical, and isoproterenol-produced cAMP levels increased dose-dependently in both groups. No significant differences in the mean cAMP levels were observed between the groups (P = .909). Significant increases were observed according to the isoproterenol concentration increase (P < .0001). The cAMP responses to forskolin stimulation also showed no significant group difference (P = .971). These results suggest that beta 2 AR function is not different between localized myalgia subjects and healthy individuals.

  14. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio

    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less

  15. Beta2 toxin is not involved in in vitro cell cytotoxicity caused by human and porcine cpb2-harbouring Clostridium perfringens.

    PubMed

    Allaart, Janneke G; van Asten, Alphons J A M; Vernooij, Johannes C M; Gröne, Andrea

    2014-06-25

    Clostridium perfringens is a common cause of intestinal disease in animals and humans. Its pathogenicity is attributed to the toxins it can produce, including the beta2 toxin. The presence of cpb2, the gene encoding the beta2 toxin, has been associated with diarrhoea in neonatal piglets and humans. However, the exact role of the beta2 toxin in the development of diarrhoea is still unknown. In this study we investigated the level of cytotoxicity to porcine IPI-21 and human Caco-2 cell-lines caused by porcine and human cpb2-harbouring C. perfringens and the significance of the beta2 toxin for the induction of cell cytotoxicity. Supernatants of porcine cpb2-harbouring C. perfringens strains were cytotoxic to both cell lines. Cell cytotoxicity caused by supernatant of human cpb2-harbouring C. perfringens strains was variable among strains. However, removal of the beta2 toxin by anti-beta2 toxin antibodies or degradation of the beta2 toxin by trypsin did not reduce the cytotoxic effect of any of the supernatants. These data suggest that beta2 toxin does not play a role in the development of cell cytotoxicity in in vitro experiments. In vivo studies are necessary to definitely define the role of beta2 toxin in the development of cell cytotoxicity and subsequent diarrhoea. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  17. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    PubMed

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Purification and characterization of an endo-beta-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism.

    PubMed Central

    de la Cruz, J; Pintor-Toro, J A; Benítez, T; Llobell, A

    1995-01-01

    The enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genes. PMID:7896713

  19. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11.

    PubMed

    Paduch, Roman; Jakubowicz-Gil, Joanna; Kandefer-Szerszen, Martyna

    2009-12-01

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).

  20. Alpha-fetoprotein-producing ovarian clear cell adenocarcinoma with fetal gut differentiation: a rare case report and literature review.

    PubMed

    Chao, Wei-Ting; Liu, Chia-Hao; Lai, Chiung-Ru; Chen, Yi-Jen; Chuang, Chi-Mu; Wang, Peng-Hui

    2018-06-22

    Alpha-fetoprotein (AFP) is a useful tumor marker for ovarian germ cell tumors, particularly yolk sac tumor (YST). It is valuable for both diagnosis and further follow-up. Epithelial ovarian carcinoma (EOC) rarely secretes AFP, especially for clear cell type and in the postmenopausal women. Based on the limited knowledge about AFP-producing clear cell type EOC, a case and literature review on this topic is extensively reviewed. We report a 55-year-old postmenopausal woman experienced vaginal spotting for one month, and serum level of AFP was 60,721 ng/ml initially. Histological examination was clear cell type EOC. Tumor cells revealed strong immunoreactivity for glypican-3 (GPC3) and AFP and weak for hepatocyte nuclear factor-1 beta (HNF-1 beta), but negative for CD30, making the diagnosis of AFP-producing clear cell type EOC with fetal gut differentiation in focal areas, FIGO (International Federation of Gynecology and Obstetrics) IIIc. Although the patient underwent an intensive treatment, including optimal debulking surgery and multi-agent chemotherapy, the patient died of disease. To provide a better understanding of clinical and molecular characteristics of the AFP-producing clear cell type EOC, we conducted a systematic literature review. A total of three papers described the AFP-producing clear cell type EOC are available. The overall survival rate of these cases, including the current case is 50%. Although immunohistochemical examination is not always needed in routine for the diagnosis of clear cell type EOC, to distinguish from other tumors, especially germ cell tumors, or to provide the better way to monitor therapeutic response or to evaluate the disease status, immunostaining, including GPC3, HNF-1 beta, CD30, cytokeratin 7 or 20, and AFP is taken into account. Due to rarity, the appropriate chemotherapy regimen and the biological behavior of AFP-producing clear cell type EOC are still unclear.

  1. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Zhang, Yu

    Provided are isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Pancreatic islets and insulinoma cells express a novel isoform of group VIA phospholipase A2 (iPLA2 beta) that participates in glucose-stimulated insulin secretion and is not produced by alternate splicing of the iPLA2 beta transcript.

    PubMed

    Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A; Newgard, Christopher B; Bao, Shunzhong; Ma, Zhongmin; Turk, John

    2003-12-02

    Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.

  4. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

    PubMed

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela

    2009-04-15

    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  5. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.

    PubMed

    Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi

    2008-06-01

    Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.

  6. Restoration of Immune Surveillance in Lung Cancer by Natural Killer Cells

    DTIC Science & Technology

    2017-10-01

    microenvironment, Transforming Growth Factor-beta, nicotine, tobacco smokers, e-cigarette-users, lung cancer, microRNA-183, DAP12, NKp44, NKp46...to recognize tumor cells. This loss is caused by transforming growth factor beta (TGFb) produced by tumor cells that can induce microRNA (miR)-183...any effect on NK activation markers, whether they were measured by flow cytometry, western blotting, qPCR. In all experiments, transforming growth

  7. Signalling through NK1.1 triggers NK cells to die but induces NK T cells to produce interleukin-4.

    PubMed

    Asea, A; Stein-Streilein, J

    1998-02-01

    In vivo inoculation of specific antibody is an accepted protocol for elimination of specific cell populations. Except for anti-CD3 and anti-CD4, it is not known if the depleted cells are eliminated by signalling through the target molecule or through a more non-specific mechanism. C57BL/6 mice were inoculated with anti-natural killer (NK1.1) monoclonal antibody (mAb). Thereafter spleen cells were harvested, stained for both surface and intracellular markers, and analysed by flow cytometry. As early as 2 hr post inoculation, NK cells were signalled to become apoptotic while signalling through the NK1.1 molecule activated NK1.1+ T-cell receptor (TCR)+ (NK T) cells to increase in number, and produce interleukin-4 (IL-4). Anti NK1.1 mAb was less efficient at signalling apoptosis in NK cells when NK T-cell deficient [beta 2-microglobulin beta 2m-deficient] mice were used compared with wild type mice. Efficient apoptotic signalling was restored when beta 2m-deficient mice were reconstituted with NK T cells. NK-specific antibody best signals the apoptotic process in susceptible NK cells when resistant NK T cells are present, activated, and secrete IL-4.

  8. New precursors for direct synthesis of single phase Na- and K-{beta}{double_prime}-aluminas for use in AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, R.L.; MacQueen, D.B.; Bader, K.E.

    1997-12-31

    Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less

  9. Preservative effect of electrolyzed reduced water on pancreatic beta-cell mass in diabetic db/db mice.

    PubMed

    Kim, Mi-Ja; Jung, Kyung Hee; Uhm, Yoon Kyung; Leem, Kang-Hyun; Kim, Hye Kyung

    2007-02-01

    Oxidative stress is produced under diabetic conditions and involved in progression of pancreatic beta-cell dysfunction. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in genetically diabetic mouse strain C57BL/6J-db/db (db/db). ERW with ROS scavenging ability reduced the blood glucose concentration, increased blood insulin level, improved glucose tolerance and preserved beta-cell mass in db/db mice. The present data suggest that ERW may protects beta-cell damage and would be useful for antidiabetic agent.

  10. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  11. Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.

    PubMed

    Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A

    2008-05-01

    The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.

  12. Over-expression of the gene (bglBC1) from Bacillus circulans encoding an endo-beta-(1-->3),(1-->4)-glucanase useful for the preparation of oligosaccharides from barley beta-glucan.

    PubMed

    Kim, Ki-Hoon; Kim, Yea-Oon; Ko, Bong-Sun; Youn, Hyun-Joo; Lee, Dong-Seok

    2004-11-01

    An endo-beta-(1-->3),(1-->4)-glucanase gene (bglBC1) from Bacillus circulans ATCC21367 was modified by substituting its native promoter with a strong promoter, BJ27X, to increase expression of the gene when cloned into B. subtilis RM125 and B. megaterium ATCC14945. A 771-bp endo-beta-(1-->3),(1-->4)-glucanase open reading frame was inserted into a new shuttle plasmid, pBLC771, by ligating the ORF and pBE1, the latter of which contained the strong promoter, BJ27X. B. subtilis , transformed with the recombinant plasmid pBLC771, produced an extracellular endo-beta-(1-->3),(1-->4)-glucanase that was 130 times (7176 mU ml(-1)) more active than that of the gene donor cells (55 mU ml(-1)), while the enzyme from the transformed B. megaterium was 7 times (378 mU ml(-1)) more active than that of the gene donor cells. M(r) of the enzyme was 28 kDa, with proteolytic processing of the enzyme being observed only in B. subtilis cells. The major products of water-soluble beta-glucan hydrolyzed by over-produced endo-beta-(1-->3),(1-->4)-glucanase were tri- and tetra-oligosaccharides which can be developed as useful products such as anti-hypercholesterolemic, anti-hypertriglyceridemic, and anti-hyperglycemic agents.

  13. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  14. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    PubMed

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  15. A convenient microbiological assay employing cell-free extracts for the rapid characterization of Gram-negative carbapenemase producers.

    PubMed

    Marchiaro, Patricia; Ballerini, Viviana; Spalding, Tamara; Cera, Gabriela; Mussi, María A; Morán-Barrio, Jorgelina; Vila, Alejandro J; Viale, Alejandro M; Limansky, Adriana S

    2008-08-01

    The dissemination of metallo and serine carbapenem-hydrolysing beta-lactamases among Gram-negative nosocomial bacteria represents an acute problem worldwide. Here, we present a rapid and sensitive assay for the characterization of carbapenemase producers to aid in infection control and prevention. The assay involves a rapid disruption of bacterial isolates with silicon dioxide microbeads, followed by the testing in cell-free extracts of hydrolytic activity towards various beta-lactams including two carbapenems (imipenem and meropenem) and a cephalosporin (ceftazidime). A parallel testing of the effects of selective beta-lactamase inhibitors such as EDTA and clavulanic acid allows differentiation of metallo carbapenemases from serine carbapenemases, and also clavulanic-acid-sensitive from -resistant enzymes among the latter. The efficiency of bacterial disruption using silicon dioxide microbeads was identical to that of ultrasonic treatment. The subsequent microbiological assay aimed to evaluate both substrate specificity and inhibitor profile of carbapenem-hydrolysing enzymes present in the extracts and allowed an accurate differentiation of A, B and D types, as judged by the analysis of 24 well-characterized clinical strains that included metallo-beta-lactamase producers (i.e. VIM-, IMP- and SPM-type Pseudomonas producers; an L1 Stenotrophomonas maltophilia producer; and a GOB-18 Elizabethkingia meningoseptica producer) as well as serine carbapenemase producers (i.e. an SME-type Serratia marcescens producer, a GES-2 Pseudomonas aeruginosa producer, Klebsiella pneumoniae and Citrobacter freundii KPC-2 producers and OXA-type Acinetobacter baumannii producers). We have developed a convenient microbiological assay aimed to more accurately and in a short time characterize carbapenem-hydrolysing enzymes produced by Gram-negative bacteria. The assay possesses broad applicability in the clinical setting.

  16. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less

  17. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    PubMed

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta-mediated suppression of T cell activation may be responsible for the prevention of effector T cell-mediated autoimmune IDDM in NOD mice by TGF-beta-producing CD4+ suppressor T cells.

  18. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice

    PubMed Central

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C.; Zhou, Qiao

    2016-01-01

    Aims/hypothesis Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Methods Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. Results We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue’s response to clear the pancreas from insufficiently reprogrammed cells. Conclusions/interpretation Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications. PMID:26693711

  19. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.

    PubMed

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C; Zhou, Qiao

    2016-03-01

    Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue's response to clear the pancreas from insufficiently reprogrammed cells. Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.

  20. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    PubMed

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  1. Conversion of immortal liver progenitor cells into pancreatic endocrine progenitor cells by persistent expression of Pdx-1.

    PubMed

    Jin, Cai-Xia; Li, Wen-Lin; Xu, Fang; Geng, Zhen H; He, Zhi-Ying; Su, Juan; Tao, Xin-Rong; Ding, Xiao-Yan; Wang, Xin; Hu, Yi-Ping

    2008-05-01

    The conversion of expandable liver progenitor cells into pancreatic beta cells would provide a renewable cell source for diabetes cell therapy. Previously, we reported the establishment of liver epithelial progenitor cells (LEPCs). In this work, LEPCs were modified into EGFP/Pdx-1 LEPCs, cells with stable expression of both Pdx-1 and EGFP. Unlike previous work, with persistent expression of Pdx-1, EGFP/Pdx-1 LEPCs acquired the phenotype of pancreatic endocrine progenitor cells rather than giving rise to insulin-producing cells directly. EGFP/Pdx-1 LEPCs proliferated vigorously and expressed the crucial transcription factors involved in beta cell development, including Ngn3, NeuroD, Nkx2.2, Nkx6.1, Pax4, Pax6, Isl1, MafA and endogenous Pdx-1, but did not secrete insulin. When cultured in high glucose/low serum medium supplemented with cytokines, EGFP/Pdx-1 LEPCs stopped proliferating and gave rise to functional beta cells without any evidence of exocrine or other islet cell lineage differentiation. When transplanted into diabetic SCID mice, EGFP/Pdx-1 LEPCs ameliorated hyperglycemia by secreting insulin in a glucose regulated manner. Considering the limited availability of beta cells, we propose that our experiments will provide a framework for utilizing the immortal liver progenitor cells as a renewable cell source for the generation of functional pancreatic beta cells.

  2. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis.

    PubMed

    Conacci-Sorrell, Maralice E; Ben-Yedidia, Tamar; Shtutman, Michael; Feinstein, Elena; Einat, Paz; Ben-Ze'ev, Avri

    2002-08-15

    beta-catenin and plakoglobin (gamma-catenin) are homologous molecules involved in cell adhesion, linking cadherin receptors to the cytoskeleton. beta-catenin is also a key component of the Wnt pathway by being a coactivator of LEF/TCF transcription factors. To identify novel target genes induced by beta-catenin and/or plakoglobin, DNA microarray analysis was carried out with RNA from cells overexpressing either protein. This analysis revealed that Nr-CAM is the gene most extensively induced by both catenins. Overexpression of either beta-catenin or plakoglobin induced Nr-CAM in a variety of cell types and the LEF/TCF binding sites in the Nr-CAM promoter were required for its activation by catenins. Retroviral transduction of Nr-CAM into NIH3T3 cells stimulated cell growth, enhanced motility, induced transformation, and produced rapidly growing tumors in nude mice. Nr-CAM and LEF-1 expression was elevated in human colon cancer tissue and cell lines and in human malignant melanoma cell lines but not in melanocytes or normal colon tissue. Dominant negative LEF-1 decreased Nr-CAM expression and antibodies to Nr-CAM inhibited the motility of B16 melanoma cells. The results indicate that induction of Nr-CAM transcription by beta-catenin or plakoglobin plays a role in melanoma and colon cancer tumorigenesis, probably by promoting cell growth and motility.

  3. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2007-07-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  6. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2011-06-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. EPConDB: a web resource for gene expression related to pancreatic development, beta-cell function and diabetes.

    PubMed

    Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J

    2007-01-01

    EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.

  8. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells.

    PubMed

    Quoyer, Julie; Longuet, Christine; Broca, Christophe; Linck, Nathalie; Costes, Safia; Varin, Elodie; Bockaert, Joël; Bertrand, Gyslaine; Dalle, Stéphane

    2010-01-15

    Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.

  9. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less

  10. Trichoderma .beta.-glucosidase

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  11. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    DOEpatents

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Meprin A and meprin {alpha} generate biologically functional IL-1{beta} from pro-IL-1{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, Christian; University of Arkansas for Medical Sciences, Department of Medicine, Little Rock, AR 72205; Haun, Randy S.

    The present study demonstrates that both oligomeric metalloendopeptidase meprin A purified from kidney cortex and recombinant meprin {alpha} are capable of generating biologically active IL-1{beta} from its precursor pro-IL-1{beta}. Amino-acid sequencing analysis reveals that meprin A and meprin {alpha} cleave pro-IL-1{beta} at the His{sup 115}-Asp{sup 116} bond, which is one amino acid N-terminal to the caspase-1 cleavage site and five amino acids C-terminal to the meprin {beta} site. The biological activity of the pro-IL-1{beta} cleaved product produced by meprin A, determined by proliferative response of helper T-cells, was 3-fold higher to that of the IL-1{beta} product produced by meprin {beta}more » or caspase-1. In a mouse model of sepsis induced by cecal ligation puncture that results in elevated levels of serum IL-1{beta}, meprin inhibitor actinonin significantly reduces levels of serum IL-1{beta}. Meprin A and meprin {alpha} may therefore play a critical role in the production of active IL-1{beta} during inflammation and tissue injury.« less

  13. [Production of selected cytokines by monocytes (IL-1 beta, IL-6) and lymphocytes (IL-2, IL-4) in peripheral blood of patients with nonallergic bronchial asthma treated with Broncho-Vaxom].

    PubMed

    Moniuszko, T; Rutkowski, R; Chyrek-Borowska, S

    1995-01-01

    In 16 patients with nonallergic bronchial asthma treated with Broncho-vaxom and 10 healthy persons the mononuclear peripheral blood cells ability for IL-1 beta, IL-2, IL-4 and IL-6 production were studied. Nonallergic asthmatics were characterised by increased levels of IL-1 beta and IL-6 produced by monocytes. After Broncho-vaxom therapy a decreased for IL-1 beta and IL-6, and an increased production of IL-2 were observed. These findings indicate that orally administered Broncho-vaxom affects on biological activity of mononuclear peripheral blood cells.

  14. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    PubMed

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  15. GABA signaling stimulates α-cell-mediated β-like cell neogenesis.

    PubMed

    Napolitano, Tiziana; Avolio, Fabio; Vieira, Andhira; Ben-Othman, Nouha; Courtney, Monica; Gjernes, Elisabet; Hadzic, Biljana; Druelle, Noémie; Navarro Sanz, Sergi; Silvano, Serena; Mansouri, Ahmed; Collombat, Patrick

    2017-01-01

    Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.

  16. High levels of interleukin-1 in patients with endemic pemphigus foliaceus.

    PubMed

    Rocha-Rodrigues, Denise Bertulucci; Paschoini, Giovana; Pereira, Sanivia Aparecida Lima; dos Reis, Marlene Antonia; Teixeira, Vicente de Paula Antunes; Rodrigues Júnior, Virmondes

    2003-09-01

    Endemic pemphigus foliaceus (EPF) is an autoimmune disease characterized by blister formation with a loss of cohesion and infiltration of inflammatory cells. We observed that supernatants of peripheral blood mononuclear cells from patients produced significantly more interleukin-1beta (IL-1beta) than those from stimulated healthy controls. Furthermore, a Th2 bias was observed in EPF patients when the IL-5/gamma interferon ratio was analyzed. These results indicate that cells from pemphigus patients react with a vigorous proinflammatory response.

  17. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. PMID:22034951

  18. Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes

    PubMed Central

    Ehlers, Mario R.

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less

  20. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  1. Fenoterol, a beta(2)-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through beta-arrestin-2 in THP-1 cell line.

    PubMed

    Wang, Wei; Xu, Ming; Zhang, You-yi; He, Bei

    2009-11-01

    To investigate the molecular mechanism and signaling pathway by which fenoterol, a beta(2)-adrenergic receptor (beta(2)-AR) agonist, produces anti-inflammatory effects. THP-1, a monocytic cell line, was used to explore the mechanism of beta(2)-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by beta(2)-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of beta-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis. LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under beta(2)-AR stimulation. Furthermore, siRNA-mediated knockdown of beta-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by beta(2)-AR. beta(2)-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from beta-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex.

  2. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    PubMed

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.

  3. .beta.-glucosidase 5 (BGL5) compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-06-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  4. Cutting edge: spontaneous development of IL-17-producing gamma delta T cells in the thymus occurs via a TGF-beta 1-dependent mechanism.

    PubMed

    Do, Jeong-su; Fink, Pamela J; Li, Lily; Spolski, Rosanne; Robinson, Janet; Leonard, Warren J; Letterio, John J; Min, Booki

    2010-02-15

    In naive animals, gammadelta T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. In this study, we show that TGF-beta1 plays a key role in the generation of IL-17(+) gammadelta T cells and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17(+) gammadelta TCR(+) thymocytes were mainly CD44(high)CD25(low) cells, which seem to derive from double-negative 4 gammadelta TCR(+) cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent gammadelta T cells arise in the thymus by a TGF-beta1-dependent mechanism.

  5. Complementary deoxyribonucleic acid cloning of spermatogonial stem cell renewal factor.

    PubMed

    Miura, Takeshi; Ohta, Takashi; Miura, Chiemi I; Yamauchi, Kohei

    2003-12-01

    Spermatogonial mitosis can be subdivided into two processes: spermatogonial stem cell renewal and spermatogonial proliferation toward meiosis. Recently it has been indicated that estrogen, estradiol-17beta, is involved in regulating the renewal of spermatogonial stem cells in eel. To determine the genes that directly regulate this process, we used expression screening to identify genes whose expression is regulated by estradiol-17beta in testes. We detected a previously unidentified cDNA clone that is up-regulated by estradiol-17beta stimulation and named it eel spermatogenesis-related substances 34 (eSRS34) cDNA. Homology searching showed that eSRS34 shares amino acid sequence similarity with human platelet-derived endothelial cell growth factor. We examined the function of eSRS34 using several in vitro systems. Recombinant eSRS34 produced by a baculovirus system induced spermatogonial mitosis in testicular organ culture. Furthermore, the addition of an antibody specific for eSRS34 prevented spermatogonial mitosis induced by estradiol-17beta stimulation in a germ cell/somatic cell coculture system. We therefore conclude that eSRS34 is a "spermatogonial stem cell renewal factor."

  6. β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.

    PubMed

    Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin

    2016-08-02

    Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.

  7. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2013-01-29

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  8. BGL6 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2012-10-02

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  9. BGL5 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-02-28

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  10. BGL5 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-03-18

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  11. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn-Coleman, Nigel; Ward, Michael

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  12. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2014-03-04

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  13. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2015-04-14

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  14. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2014-03-25

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  15. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2015-08-11

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  16. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2007-09-25

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  17. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-04-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  18. BGL4 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2011-12-06

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  19. BGL4 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  20. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2011-06-14

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  1. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Ward, Michael [San Francisco, CA

    2009-09-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  2. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2012-10-30

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  3. BGL4 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-01-22

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  4. The role of oestrogens in the adaptation of islets to insulin resistance.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ropero, Ana B; Quesada, Ivan

    2009-11-01

    Pregnancy is characterized by peripheral insulin resistance, which is developed in parallel with a plasma increase of maternal hormones; these include prolactin, placental lactogens, progesterone and oestradiol among others. Maternal insulin resistance is counteracted by the adaptation of the islets of Langerhans to the higher insulin demand. If this adjustment is not produced, gestational diabetes may be developed. The adaptation process of islets is characterized by an increase of insulin biosynthesis, an enhanced glucose-stimulated insulin secretion (GSIS) and an increase of beta-cell mass. It is not completely understood why, in some individuals, beta-cell mass and function fail to adapt to the metabolic demands of pregnancy, yet a disruption of the beta-cell response to maternal hormones may play a key part. The role of the maternal hormone 17beta-oestradiol (E2) in this adaptation process has been largely unknown. However, in recent years, it has been demonstrated that E2 acts directly on beta-cells to increase insulin biosynthesis and to enhance GSIS through different molecular mechanisms. E2 does not increase beta-cell proliferation but it is involved in beta-cell survival. Classical oestrogen receptors ERalpha and ERbeta, as well as the G protein-coupled oestrogen receptor (GPER) seem to be involved in these adaptation changes. In addition, as the main production of E2 in post-menopausal women comes from the adipose tissue, E2 may act as a messenger between adipocytes and islets in obesity.

  5. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  6. Insulin release: the receptor hypothesis.

    PubMed

    Malaisse, Willy J

    2014-07-01

    It is currently believed that the stimulation of insulin release by nutrient secretagogues reflects their capacity to act as fuel in pancreatic islet beta cells. In this review, it is proposed that such a fuel concept is not incompatible with a receptor hypothesis postulating the participation of cell-surface receptors in the recognition of selected nutrients as insulinotropic agents. Pursuant to this, attention is drawn to such matters as the anomeric specificity of the beta cell secretory response to D-glucose and its perturbation in diabetes mellitus, the insulinotropic action of artificial sweeteners, the possible role of bitter taste receptors in the stimulation of insulin secretion by L-glucose pentaacetate, the recently documented presence of cell-surface sweet taste receptors in insulin-producing cells, the multimodal signalling process resulting from the activation of these latter receptors, and the presence in beta cells of a sweet taste receptor mediating the fructose-induced potentiation of glucose-stimulated insulin secretion.

  7. Application of cellular mechanisms to growth and development of food producing animals.

    PubMed

    Chung, K Y; Johnson, B J

    2008-04-01

    Postnatal skeletal muscle growth is a result of hypertrophy of existing skeletal muscle fibers in food producing animals. Accumulation of additional nuclei, as a source of DNA, to the multinucleated skeletal muscle fiber aids in fiber hypertrophy during periods of rapid skeletal muscle growth. Muscle satellite cells are recognized as the source of nuclei to support muscle hypertrophy. Exogenous growth-enhancing compounds have been used to modulate growth rate and efficiency in meat animals for over a half century. In cattle, these compounds enhance efficiency of growth by preferentially stimulating skeletal muscle growth compared with adipose tissue. There are 2 main classes of compounds approved for use in cattle in the United States, anabolic steroids and beta-adrenergic agonists (beta-AA). Administration of both trenbolone acetate and estradiol-17beta, as implants, increased carcass protein accumulation 8 to 10% in yearling steers. Muscle satellite cells isolated from steers implanted with trenbolone acetate/ estradiol-17beta had a shorter lag phase in culture compared with satellite cells isolated from control steers. Collectively, these data indicate that activation, increased proliferation, and subsequent fusion of satellite cells in muscles of implanted cattle may be an important mechanism by which anabolic steroids enhance muscle hypertrophy. Oral administration of beta-AA to ruminants does not alter DNA accumulation in skeletal muscle over a typical feeding period (28 to 42 d). Enhanced muscle hypertrophy observed due to beta-AA feeding occurs by direct, receptor-mediated changes in protein synthesis and degradation rates of skeletal muscle tissue. Proper timing of anabolic steroid administration when coupled with beta-AA feeding could result in a synergistic response in skeletal muscle growth due to the effects of anabolic steroids at increasing satellite cell activity, which then can support the rapid hypertrophic changes of the muscle fiber when exposed to beta-AA. At the same time each of these classes of compounds are stimulating lean tissue deposition, they appear to repress adipogenesis in meat animals. Increased knowledge of the mechanism by which growth promoters regulate lean tissue deposition and adipogenesis in meat animals will allow for effective application of these techniques to optimize lean tissue growth and minimize the negative effects on meat quality.

  8. Genetics Home Reference: type 1 diabetes

    MedlinePlus

    ... incidence of type 1 diabetes has been increasing by 2 to 5 percent each year. Type 1 diabetes ... the immune system damages the insulin-producing beta cells in the pancreas . Damage to these cells impairs ...

  9. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    PubMed

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding investigation of beta-cell therapeutic targets for the treatment and prevention of type 1 diabetes mellitus is fundamentally relevant and timely. This review summarizes the overall scope of research into novel type 1 diabetes mellitus therapeutics, highlighting weaknesses or caveats in current clinical trials as well as describing potential new targets to pursue. More specifically, signaling proteins that act as modulators of beta-cell function, survival, and replication, as well as immune infiltration may need to be targeted to develop the most efficient pharmaceutical interventions for type 1 diabetes mellitus. One such beta-cell signaling pathway, mediated by the alpha subunit of the heterotrimeric G z protein (Gα z ), is discussed in more detail. The work described here will be critical in moving the field forward as it emphasizes the central role of the beta-cell in type 1 diabetes mellitus disease pathology.

  10. IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats.

    PubMed

    Zhang, Rui-Xin; Li, Aihui; Liu, Bing; Wang, Linbo; Ren, Ke; Zhang, Haiqing; Berman, Brian M; Lao, Lixing

    2008-04-01

    Although it has been shown that pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) facilitate perception of noxious inputs at the spinal level, the mechanisms have not been understood. This study determined the cell type that produces IL-1beta, the co-localization of IL-1 receptor type I (IL-1RI) and Fos and NR1 in the spinal cord, and the effects of IL-1 receptor antagonist (IL-1ra) on NR1 phosphorylation and hyperalgesia in a rat model of inflammatory pain. Phosphorylation of NR1, an essential subunit of the NMDA receptor (NMDAR), is known to modulate NMDAR activity and facilitate pain. Hyperalgesia was induced by injecting complete Freund's adjuvant (CFA, 0.08ml, 40microg Mycobacterium tuberculosis) into one hind paw of each rat. Paw withdrawal latency (PWL) was tested before CFA (-48h) for baseline and 2 and 24h after CFA to assess hyperalgesia. IL-1ra was given (i.t.) 24h before CFA to block the action of basal IL-1beta and 2h prior to each of two PWL tests to block CFA-induced IL-1beta. Spinal cords were removed for double immunostaining of IL-1beta/neuronal marker and IL-1beta/glial cell markers, IL-1RI/Fos and IL-1RI/NR1, and for Western blot to measure NR1 phosphorylation. The data showed that: (1) astrocytes produce IL-1beta, (2) IL-1RI is localized in Fos- and NR1-immunoreactive neurons within the spinal dorsal horn, and (3) IL-1ra at 0.01mg/rat significantly increased PWL (P<0.05) and inhibited NR1 phosphorylation compared to saline control. The results suggest that spinal IL-1beta is produced by astrocytes and enhances NR1 phosphorylation to facilitate inflammatory pain.

  11. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.

    PubMed

    Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y

    1999-10-01

    Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

  12. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  13. The potential role of lung epithelial cells and beta-defensins in experimental latent tuberculosis.

    PubMed

    Rivas-Santiago, B; Contreras, J C L; Sada, E; Hernández-Pando, R

    2008-05-01

    Mycobacterium tuberculosis is a facultative intracellular pathogen capable of producing both progressive disease and latent infection. Latent infection is clinically asymptomatic and is manifested only by a positive tuberculin test or a chest radiograph that shows scars or calcified nodules indicative of resolved primary tuberculosis infection. In this study, we used a well-characterized model of latent tuberculosis infection in B6D2F1 mice to compare the production of beta-defensin-3 by infected bronchial epithelial cells and macrophages. We demonstrated by immunolectronmicroscopy that M. tuberculosis can actually infect epithelial cells and induce significant higher production of beta-defensin-3 associated to mycobacteria than infected macrophages. These results demonstrate that lung epithelium harbour mycobacteria during experimental chronic infection; being a possible reservoir of latent mycobacteria in vivo, beta-defensins might participate in bacilli killing or dormancy induction.

  14. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1beta and TNF-alpha.

  15. Generation of Scaffold-free, Three-dimensional Insulin Expressing Pancreatoids from Mouse Pancreatic Progenitors In Vitro.

    PubMed

    Scavuzzo, Marissa A; Teaw, Jessica; Yang, Diane; Borowiak, Malgorzata

    2018-06-02

    The pancreas is a complex organ composed of many different cell types that work together to regulate blood glucose homeostasis and digestion. These cell types include enzyme-secreting acinar cells, an arborized ductal system responsible for the transportation of enzymes to the gut, and hormone-producing endocrine cells. Endocrine beta-cells are the sole cell type in the body that produce insulin to lower blood glucose levels. Diabetes, a disease characterized by a loss or the dysfunction of beta-cells, is reaching epidemic proportions. Thus, it is essential to establish protocols to investigate beta-cell development that can be used for screening purposes to derive the drug and cell-based therapeutics. While the experimental investigation of mouse development is essential, in vivo studies are laborious and time-consuming. Cultured cells provide a more convenient platform for screening; however, they are unable to maintain the cellular diversity, architectural organization, and cellular interactions found in vivo. Thus, it is essential to develop new tools to investigate pancreatic organogenesis and physiology. Pancreatic epithelial cells develop in the close association with mesenchyme from the onset of organogenesis as cells organize and differentiate into the complex, physiologically competent adult organ. The pancreatic mesenchyme provides important signals for the endocrine development, many of which are not well understood yet, thus difficult to recapitulate during the in vitro culture. Here, we describe a protocol to culture three-dimensional, cellular complex mouse organoids that retain mesenchyme, termed pancreatoids. The e10.5 murine pancreatic bud is dissected, dissociated, and cultured in a scaffold-free environment. These floating cells self-assemble with mesenchyme enveloping the developing pancreatoid and a robust number of endocrine beta-cells developing along with the acinar and the duct cells. This system can be used to study the cell fate determination, structural organization, and morphogenesis, cell-cell interactions during organogenesis, or for the drug, small molecule, or genetic screening.

  16. .beta.-silicon carbide protective coating and method for fabricating same

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.

    1994-01-01

    A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or .mu.c-SiC film on the surface and produce .beta.--SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface.

  17. Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos.

    PubMed

    Imai, Kaoru S; Satoh, Nori; Satou, Yutaka

    2002-04-01

    In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.

  18. Production of beta-carotene by a Rhodotorula glutinis mutant in sea water medium.

    PubMed

    Bhosale, P; Gadre, R V

    2001-01-01

    Mutant 32, derived from Rhodotorula glutinis NCIM 3353 produced 76-fold more beta-carotene than the parent strain. In the growth medium prepared in seawater, the total carotenoid content and dry cell mass was 86 mg/l and 16 g/l, respectively, as compared to 70 mg/l and 12 g/l obtained with a medium prepared in distilled water. A 2-fold increase in beta-carotene with simultaneous 2.3-fold decrease in torulene content was also observed. When grown in seawater medium at pH 6.0, 83 +/- 5% carotenoids could be extracted from the cells without any mechanical disintegration.

  19. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  20. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  1. Beta-glucuronidase and hexosaminidase are marker enzymes for different compartments of the endo-lysosomal system in mussel digestive cells.

    PubMed

    Izagirre, U; Angulo, E; Wade, S C; ap Gwynn, I; Marigómez, I

    2009-02-01

    In environmental toxicology, the most commonly used techniques used to visualise lysosomes in order to determine their responses to pollutants (LSC test: lysosomal structural changes test; LMS test: lysosomal membrane stability test) are based on the histochemical application of lysosomal marker enzymes. In mussel digestive cells, the marker enzymes used are beta-glucuronidase (beta-Gus) and hexosaminidase (Hex). The present work has been aimed at determining the distribution of these lysosomal marker enzymes in the various compartments of the endo-lysosomal system (ELS) of mussel digestive cells and at exploring whether intercellular transfer of lysosomal enzymes occurs between digestive and basophilic cells. Immunogold cytochemistry has allowed us to conclude that beta-Gus is present in every compartment of the digestive cell ELS, whereas Hex is not so widely distributed. Moreover, Hex is intimately linked to the lysosomal membrane, whereas beta-Gus appears to be not necessarily membrane-bound. Therefore, two populations of heterolysosomes with different enzyme load and membrane stability have been distinguished in the digestive cell. In addition, heterolysosomes of different electron density have been commonly observed merging together by contact; we suggest that some might act as storage granules for lysosomal enzymes. On the other hand, beta-Gus seems to be released to the digestive alveolar lumen in secretory lysosomes produced by basophilic cells and endocytosed by digestive cells. Regarding the implications of the present study on the interpretation of lysosomal biomarkers, we conclude that beta-Gus, but not Hex, histochemistry provides an appropriate marker for the LSC test and that, although both lysosomal marker enzymes can be employed in the LMS test, different values would be obtained depending on the marker enzyme employed.

  2. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model.

    PubMed

    Elder, Steven H; Cooley, Avery J; Borazjani, Ali; Sowell, Brittany L; To, Harrison; Tran, Scott C

    2009-10-01

    A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.

  3. Inhibitory effect of OPC-15161, a component of fungus Thielavia minor, on proliferation and extracellular matrix production of rat cultured hepatic stellate cells.

    PubMed

    Sugawara, H; Ueno, T; Torimura, T; Inuzuka, S; Tanikawa, K

    1998-03-01

    A component of fungus Thielavia minor, OPC-15161, has been shown to inhibit the proliferation and extracellular matrix production of extracellular matrix-producing mesangial cells in the kidney in vivo. In this study, we examined the effects of OPC-15161 on the proliferation and extracellular matrix production of rat cultured hepatic stellate cells (HSCs). To determine the effect of OPC-15161 on proliferation of HSCs, the cell number and the uptake of [3H]thymidine were investigated in the presence and absence of interleukin-1beta (IL-1beta). IL-1beta significantly increased the uptake of [3H]thymidine in the HSCs, and the addition of OPC-15161 inhibited the uptake in a dose-dependent manner. The cell number of HSCs was also increased by IL-1beta, which was inhibited by OPC-15161. Production of extracellular matrix by OPC-15161 was studied by the production of [3H]-hydroxyproline in the presence and absence of transforming growth factor-beta1 (TGF-beta1). TGF-beta1 significantly increased the production of [3H]-hydroxyproline in the cells, whereas the addition of OPC-15161 inhibited this effect dose dependently. We also investigated the effects of OPC-15161 on Ca2+ mobilization and measured D-myo-inositol 1,4,5-triphosphate (IP3) in the HSCs. IL-1beta induced the increase of intracellular Ca2+ and IP3 concentrations in the HSCs, which were decreased by OPC-15161. Based on these results, we conclude that OPC-1 5161 inhibited the proliferation and production of hydroxyproline in cultured rat HSCs, and thus, it may have a role in prevention of liver fibrosis in vivo.

  4. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... help fight germs. Beta cells produce insulin to control sugars in our bodies. Melanocytes give skin its color. Most of the time, each cell has a specific job to do. One cell can't do what another cell can, just as a doctor isn't trained to design a bridge and an engineer can't do ...

  5. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells.

    PubMed

    Diaz-Garcia, Carlos Manlio; Morales-Lázaro, Sara L; Sánchez-Soto, Carmen; Velasco, Myrian; Rosenbaum, Tamara; Hiriart, Marcia

    2014-06-01

    Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 (-/-) mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 (-/-) mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.

  6. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas.

    PubMed

    Granata, Riccarda; Baragli, Alessandra; Settanni, Fabio; Scarlatti, Francesca; Ghigo, Ezio

    2010-09-01

    The ghrelin gene peptides include acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob). AG, mainly produced by the stomach, exerts its central and peripheral effects through the GH secretagogue receptor type 1a (GHS-R1a). UAG, although devoid of GHS-R1a-binding affinity, is an active peptide, sharing with AG many effects through an unknown receptor. Ob was discovered as the G-protein-coupled receptor 39 (GPR39) ligand; however, its physiological actions remain unclear. The endocrine pancreas is necessary for glucose homeostasis maintenance. AG, UAG, and Ob are expressed in both human and rodent pancreatic islets from fetal to adult life, and the pancreas is the major source of ghrelin in the perinatal period. GHS-R1a and GPR39 expression has been shown in beta-cells and islets, as well as specific binding sites for AG, UAG, and Ob. Ghrelin colocalizes with glucagon in alpha-islet cells, but is also uniquely expressed in epsilon-islet cells, suggesting a role in islet function and development. Indeed, AG, UAG, and Ob regulate insulin secretion in beta-cells and isolated islets, promote beta-cell proliferation and survival, inhibit beta-cell and human islet cell apoptosis, and modulate the expression of genes that are essential in pancreatic islet cell biology. They even induce beta-cell regeneration and prevent diabetes in streptozotocin-treated neonatal rats. The receptor(s) mediating their effects are not fully characterized, and a signaling crosstalk has been suggested. The present review summarizes the newest findings on AG, UAG, and Ob expression in pancreatic islets and the role of these peptides on beta-cell development, survival, and function.

  7. Characterization of beta-cell mass and insulin resistance in diet-induced obese and diet-resistant rats.

    PubMed

    Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels

    2010-02-01

    The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.

  8. [beta]-silicon carbide protective coating and method for fabricating same

    DOEpatents

    Carey, P.G.; Thompson, J.B.

    1994-11-01

    A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating are disclosed. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or [mu]c-SiC film on the surface and produce [beta]-SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface. 3 figs.

  9. Gastroesophageal reflux disease-associated esophagitis induces endogenous cytokine production leading to motor abnormalities.

    PubMed

    Rieder, Florian; Cheng, Ling; Harnett, Karen M; Chak, Amitabh; Cooper, Gregory S; Isenberg, Gerard; Ray, Monica; Katz, Jeffry A; Catanzaro, Andrew; O'Shea, Robert; Post, Anthony B; Wong, Richard; Sivak, Michael V; McCormick, Thomas; Phillips, Manijeh; West, Gail A; Willis, Joseph E; Biancani, Piero; Fiocchi, Claudio

    2007-01-01

    Gastroesophageal reflux disease is a condition frequently associated with esophagitis and motor abnormalities. Recent evidence suggests that proinflammatory cytokines, such as interleukin (IL)-1beta and IL-6, may be implicated because they reduce esophageal muscle contractility, but these results derive from in vitro or animal models of esophagitis. This study used human esophageal cells and tissues to identify the cellular source of cytokines in human esophagitis investigate whether cytokines can be induced by gastric refluxate, and examine whether esophageal tissue- or cell-derived mediators affect muscle contractility. Endoscopic mucosal biopsy specimens were obtained from patients with and without esophagitis, organ-cultured, and undernatants were assessed for cytokine content. The cytokine profile of esophageal epithelial, fibroblast, and muscle cells was analyzed, and esophageal mucosa and cell products were tested in an esophageal circular muscle contraction assay. The mucosa of esophagitis patients produced significantly greater amounts of IL-1beta and IL-6 compared with those of control patients. Cultured esophageal epithelial cells produced IL-6, as did fibroblasts and muscle cells. Epithelial cells exposed to buffered, but not denatured, gastric juice produced IL-6. Undernatants of mucosal biopsy cultures from esophagitis patients reduced esophageal muscle contraction, as did supernatants from esophageal epithelial cell cultures. The human esophagus produces cytokines capable of reducing contractility of esophageal muscle cells. Exposure to gastric juice is sufficient to stimulate esophageal epithelial cells to produce IL-6, a cytokine able to alter esophageal contractility. These results indicate that classic cytokines are important mediators of the motor disturbances associated with human esophageal inflammation.

  10. Regulated expression of the rat recombinant P2X(3) receptor in stably transfected CHO-K1 tTA cells.

    PubMed

    Lachnit, W G; Oglesby, I B; Gever, J R; Gever, M; Huang, C; Li, X C; Jin, H; McGivern, J G; Ford, A P

    2000-07-03

    In this report, the regulatable expression by tetracycline of the rat recombinant P2X(3) receptor in stably transfected Chinese hamster ovary (CHO-K1) expressing the tetracycline-controlled transactivator (tTA) is described. cDNA encoding the rat P2X(3)-receptor was subcloned into pTRE (a tetracycline-repressible expression vector) which was used to transfect stably CHO-K1 tTA cells. Using whole cell patch clamp techniques, 100 microM ATP evoked inward currents of 2.9+/-1.6 nA in transfected cells grown in the absence of tetracycline (tet-). The P2X(3) receptor protein was detectable by immunoblot as early as 24 h and protein expression levels continued to increase as much as 192 h following activation of tTA by the removal of the antibiotic. Saturation binding isotherms using [35S]ATP gamma S yielded a pK(d) of 8.2+/-0.1 and a B(max) of 31.9+/-3.5 pmol/mg protein in tet- cell membranes and a pK(d) of 8.1+/-0.1 and a B(max) of 5.8+/-0.8 pmol/mg protein in tet+ cell membranes. The agonist ligands 2MeSATP and alpha beta MeATP displaced the binding of [35S]ATP gamma S in tet- cell membranes with very high affinity, yielding pIC(50) values of 9.4+/-0.2 and 7.5+/-0. 2, respectively. In tet+ cell membrane, displacement of [35S]ATP gamma S by 2MeSATP and alpha beta MeATP was of much lower affinity (pIC(50) values of 7.8 and 6.2, respectively). ATP, ADP and UTP showed similar displacement of [35S]ATP gamma S binding in tet- and tet+ cell membranes. In other experiments, cytosolic Ca(2+) was monitored using the fluorescent indicator, fluo-3. Increases in cytosolic Ca(2+) were elicited by 100 nM alpha beta MeATP in tet- cells while no increases in cytosolic Ca(2+) were detected below 100 microM alpha beta MeATP in either tet+ cells or untransfected cells. These calcium responses to alpha beta MeATP had a pEC(50) of 6.7 and were transient, returning to baseline within 120 s. Suramin produced concentration-dependent, parallel, dextral shifts of E/[A] curves to alpha beta MeATP yielding a pK(B) of 5.6. PPADS produced non-parallel, dextral shifts of E/[A] curves to alpha beta MeATP which were insurmountable. These results show for the first time, expression of a functional, homomeric recombinant rat P2X(3) receptor which is under regulated expression in a stably transfected mammalian cell line.

  11. The transplantation of neural stem cells and predictive factors in hematopoietic recovery in irradiated mice.

    PubMed

    Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D

    2005-04-01

    A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.

  12. Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells

    NASA Astrophysics Data System (ADS)

    Suarez Castellanos, Ivan M.

    Type 2 diabetes (T2D) mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. Controlling T2D is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this dissertation was to explore a novel, non-pharmacological approach that utilizes the application of ultrasound energy to stimulate insulin release. Our experiments have focused on determination of effectiveness and safety of ultrasound application in stimulation of insulin release from the pancreatic beta cells. Our results showed that ultrasound treatment, applied at frequencies of 800 kHz and 1 MHz and intensities of 0.5 W/cm2 and 1 W/cm2, did not produce any significant effects on cell viability compared to sham group as assessed with trypan blue dye exclusion test and MTT cytotoxicity assay. ELISA quantification of insulin release from beta cells resulting from ultrasound treatment showed clinically-significant amounts of released insulin as compared to sham-treated beta cells. Carbon fiber amperometry detection of secretory events from dopamine-loaded beta cells treated with ultrasound showed that release of secretory content could be temporally controlled by careful selection of ultrasound parameters. Both ELISA and amperometry experiments demonstrated that ultrasound-stimulated insulin release is a calcium-dependent process, potentially mediated by the mechanical effects of ultrasound. This study demonstrated that therapeutic ultrasound is a technique capable of stimulating the release of insulin from pancreatic beta cells in a safe, effective and controlled manner.

  13. EI-2128-1, a novel interleukin-1beta converting enzyme inhibitor produced by Penicillium sp. E-2128.

    PubMed

    Koizumi, Fumito; Agatsuma, Tsutomu; Ando, Katsuhiko; Kondo, Hidemasa; Saitoh, Yutaka; Matsuda, Yuzuru; Nakanishi, Satoshi

    2003-11-01

    EI-2128-1, a novel interleukin-1beta converting enzyme (ICE) inhibitor, was isolated from the culture broths of Penicillium sp. E-2128. EI-2128-1 selectively inhibited human recombinant ICE activity with IC50 value of 0.59 microM, without inhibiting elastase and cathepsin B. EI-2128-1 also inhibited mature interleukin-1beta secretion from THP-1 cells induced by LPS with IC50 value of 0.28 microM.

  14. Induction of insulin-producing cells from human pancreatic progenitor cells.

    PubMed

    Noguchi, H; Naziruddin, B; Shimoda, M; Fujita, Y; Chujo, D; Takita, M; Peng, H; Sugimoto, K; Itoh, T; Tamura, Y; Olsen, G S; Kobayashi, N; Onaca, N; Hayashi, S; Levy, M F; Matsumoto, S

    2010-01-01

    We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we sought to identify and isolate human pancreatic stem/progenitor cells. We also tested whether growth factors and protein transduction of pancreatic and duodenal homeobox factor-1 (PDX-1) and BETA2/NeuroD into human pancreatic stem/progenitor cells induced insulin or pancreas-related gene expressions. Human pancreata from brain-dead donors were used for islet isolation with the standard Ricordi technique modified by the Edmonton protocol. The cells from a duct-rich population were cultured in several media, based on those designed for mouse pancreatic or for human embryonic stem cells. To induce cell differentiation, cells were cultured for 2 weeks with exendin-4, nicotinamide, keratinocyte growth factor, PDX-1 protein, or BETA2/NeuroD protein. The cells in serum-free media showed morphologies similar to a mouse pancreatic stem cell line, while the cells in the medium for human embryonic stem cells formed fibroblast-like morphologies. The nucleus/cytoplasm ratios of the cells in each culture medium decreased during the culture. The cells stopped dividing after 30 days, suggesting that they had entered senescence. The cells treated with induction medium differentiated into insulin-producing cells, expressing pancreas-related genes. Duplications of cells from a duct-rich population were limited. Induction therapy with several growth factors and transduction proteins might provide a potential new strategy for induction of transplantable insulin-producing cells. Copyright 2010 Elsevier Inc. All rights reserved.

  15. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    PubMed

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p < 0.05), while in the case of HBF an equal or even higher number of cells adhered to PE was observed. The number of adhered osteoblast cells was almost equal and in some days even higher than the number of adhered cells on negative control sample, while in the case of fibroblast this difference was significantly higher than TPS (p < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were observed to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  16. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest.

    PubMed

    Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang

    2010-02-18

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  17. Bombesin-dependent pro-MMP-9 activation in prostatic cancer cells requires beta1 integrin engagement.

    PubMed

    Festuccia, Claudio; Angelucci, Adriano; Gravina, Giovanni; Eleuterio, Enrica; Vicentini, Carlo; Bologna, Mauro

    2002-10-15

    Bombesin-like peptides, including the mammalian homologue gastrin-releasing peptide, are highly expressed and secreted by neuroendocrine cells in prostate carcinoma tissues and are likely to be related to the progression of this neoplastic disease. Previously, we demonstrated that bombesin increased migration and protease expression in androgen-independent cells. In this work we show that bombesin is able to activate pro-MMP-9 through a mechanism involving the beta1 integrin subunit. In fact, MMP-9 processing was evident only when beta1 integrin was engaged with specific adhesive substrates, such as type I collagen, or when cells were seeded on dishes coated with antibodies against beta1 integrin, resulting in activation of the surface ligand. When exogenous pro-MMP-9 was added to PC3 cells, MMP-9 active forms were produced within 30 min by bombesin-treated cultures while control cultures expressed activated forms only after a longer time and at lower levels. MMP-9 activation required cytoskeleton integrity since this effect was abolished by cytochalasin D. Engagement of beta1 integrin caused an increased membrane-linked uPA activity which was required for MMP-9 activation. The cross talk between bombesin- and beta1-integrin-engaged signals seems to be crucial for the modulation of both membrane-linked uPA activity and MMP-9 activation and triggers complex intracellular signaling pathways requiring activation of tyrosine kinase activity, including that of src and PI3K. The beta1 integrin may be considered an important mechanism by which bombesin induces MMP-9 activation. This finding supports the idea that cellular responses to growth factors may be driven by cell-matrix interactions and stresses the role of neuroendocrine factors in prostate carcinoma progression.

  18. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells.

    PubMed

    Sharma, Anshu; Rani, Rajni

    2017-07-12

    Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p < 0.009); however, administration of IPCs gave protective efficacy of 55% at the end of 28-30 weeks. Precursors to insulin-producing cells seem to have better potential to arrest autoimmune response in type 1 diabetes when administered before the onset of the disease in NOD mice. When translated to humans, autologous mesenchymal stem cells grown in high-glucose media for 10 to 13 passages may have beneficial effects in individuals at high risk of developing type 1 diabetes.

  19. Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus.

    PubMed

    Ma, Yan; Yu, Jun; Chan, Henry L Y; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y Y; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H M; He, Qing-Yu; Sung, Joseph J Y; Kung, Hsiang-fu; Cheng, Christopher H K; He, Ming-liang

    2009-11-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-beta1 (IFN-beta1). In this connection, the IFN-beta1-mediated 2',5'-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-beta1-2',5'-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection.

  20. Alterations induced by E-cadherin and beta-catenin antibodies during the development of Bufo arenarum (Anura-Bufonidae).

    PubMed

    Izaguirre, M F; Adur, J F; Soler, A P; Casco, V H

    2001-10-01

    E(epithelial)-cadherin is a member of a calcium-dependent family of cell surface glycoproteins involved in cell-cell adhesion and morphogenesis. Catenins are a large family of proteins that connect the cadherins to the cytoskeleton. They are important for cadherin function and for transducing signals involved in specification of cell fate during embryogenesis. The best characterized catenins include alpha-, beta-, gamma-, and p120-catenin. Using specific antibodies, we studied the expression and distribution of E-cadherin, and alpha- and beta-catenin in developmental stages of Bufo arenarum toad. The three proteins were found co-localized in stages 19 to 41 of development. Surprisingly, E-cadherin was the only of these three proteins found earlier than stage 19. To test whether E-cadherin and beta-catenin have a functional role in Bufo arenarum embryogenesis, stage 17 whole embryos were incubated with anti-E-cadherin and beta-catenin antibodies. Both anti-E-cadherin and anti-beta-catenin antibodies induced severe morphological alterations. However, while alterations produced by the anti-beta-catenin antibody, showed some variability from the most severe (neural tube and notochord duplication) to a simple delay in development, the alterations with anti-E-cadherin were homogeneous. These observations suggest a critical role for E-cadherin and beta-catenin in the early embryonic development of the Bufo arenarum toad. Our results are consistent with the developmental role of these proteins in other species. One of the most surprising findings was the blockage with the anti-beta-catenin antibodies on later embryo stages, and we hypothesize that the partial axes duplication could be mediated by the notochord induction.

  1. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.

    PubMed

    Konopiński, R; Nowak, R; Siedlecki, J A

    1996-10-17

    Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.

  2. Regulation of oocyte maturation in fish.

    PubMed

    Nagahama, Yoshitaka; Yamashita, Masakane

    2008-06-01

    A period of oocyte growth is followed by a process called oocyte maturation (the resumption of meiosis) which occurs prior to ovulation and is a prerequisite for successful fertilization. Our studies using fish models have revealed that oocyte maturation is a three-step induction process involving gonadotropin (LH), maturation-inducing hormone (MIH), and maturation-promoting factor (MPF). LH acts on the ovarian follicle layer to produce MIH (17alpha, 20beta-dihydroxy-4-pregnen-3-one, 17alpha, 20beta-DP, in most fishes). The interaction of ovarian thecal and granulosa cell layers (two-cell type model), is required for the synthesis of 17alpha,20beta-DP. The dramatic increase in the capacity of postvitellogenic follicles to produce 17alpha,20beta-DP in response to LH is correlated with decreases in P450c17 (P450c17-I) and P450 aromatase (oP450arom) mRNA and increases in the novel form of P450c17 (P450c17-II) and 20beta-hydroxysteroid dehydrogenase (20beta-HSD) mRNA. Transcription factors such as Ad4BP/SF-1, Foxl2, and CREB may be involved in the regulation of expression of these steroidogenic enzymes. A distinct family of G-protein-coupled membrane-bound MIH receptors has been shown to mediate non-genomic actions of 17alpha, 20beta-DP. The MIH signal induces the de novo synthesis of cyclin B from the stored mRNA, which activates a preexisting 35 kDa cdc2 kinase via phosphorylation of its threonine 161 by cyclin-dependent kinase activating kinase, thus producing the 34 kDa active cdc2 (active MPF). Upon egg activation, MPF is inactivated by degradation of cyclin B. This process is initiated by the 26S proteasome through the first cut in its NH(2) terminus at lysine 57.

  3. Priming affects the activity of a specific region of the promoter of the human beta interferon gene.

    PubMed Central

    Dron, M; Lacasa, M; Tovey, M G

    1990-01-01

    Treatment of Daudi or HeLa cells with human interferon (IFN) alpha 8 before induction with either poly(I)-poly(C) or Sendai virus resulted in an 8- to 100-fold increase in IFN production. The extent of priming in Daudi cells paralleled the increase in the intracellular content of IFN-beta mRNA. IFN-alpha mRNA remained undetectable in poly(I)-poly(C)-treated Daudi cells either before or after priming. An IFN-resistant clone of Daudi cells was found to produce 4- to 20-fold more IFN after priming, indicating that priming was unrelated to the phenotype of IFN sensitivity. IFN treatment of either Daudi or HeLa cells transfected with the human IFN-beta promoter (-282 to -37) linked to the chloramphenicol acetyltransferase (CAT) gene resulted in an increase in CAT activity after induction with poly(I)-poly(C) or Sendai virus. A synthetic double-stranded oligonucleotide corresponding to an authentic 30-base-pair (bp) region of the human IFN-beta promoter between positions -91 and -62 was found to confer virus inducibility upon the reporter CAT gene in HeLa cells. IFN treatment of HeLa cells transfected with this 30-bp region of the IFN-beta promoter in either the correct or reversed orientation also increased CAT activity upon subsequent induction. IFN treatment alone had no detectable effect on the activity of either the 30-bp region or the complete human IFN promoter. Images PMID:2153928

  4. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    PubMed

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  5. Potentiation of carbachol-induced detrusor smooth muscle contractions by beta-adrenoceptor activation.

    PubMed

    Klausner, Adam P; Rourke, Keith F; Miner, Amy S; Ratz, Paul H

    2009-03-15

    In strips of rabbit bladder free of urothelium, the beta-adrenoceptor agonist, isoproterenol, significantly reduced basal detrusor smooth muscle tone and inhibited contractions produced by low concentrations of the muscarinic receptor agonist, carbachol. During a carbachol concentration-response curve, instead of inhibiting, isoproterenol strengthened contractions produced by high carbachol concentrations. Thus, the carbachol concentration-response curve was shifted by isoproterenol from a shallow, graded relationship, to a steep, switch-like relationship. The tyrosine kinase inhibitor, genistein, inhibited carbachol-induced contractions only in the presence of isoproterenol. Contraction produced by a single high carbachol concentration (1 microM) displayed 1 fast and 1 slow peak. In the presence of isoproterenol, the slow peak was not strengthened, but was delayed, and U-0126 (mitogen-activated protein kinase kinase inhibitor) selectively inhibited this delay concomitantly with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation. Isoproterenol reduced ERK phosphorylation only in the absence of carbachol. These data support the concept that, by inhibiting weak contractions, potentiating strong contractions, and producing a more switch-like concentration-response curve, beta-adrenoceptor stimulation enhanced the effectiveness of muscarinic receptor-induced detrusor smooth muscle contraction. Moreover, beta-adrenoceptor stimulation changed the cellular mechanism by which carbachol produced contraction. The potential significance of multi-receptor and multi-cell crosstalk is discussed.

  6. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells.

    PubMed

    Carlson, Morgan E; Hsu, Michael; Conboy, Irina M

    2008-07-24

    Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.

  7. Expression and regulation of aromatase and 17 beta-hydroxysteroid dehydrogenase type 4 in human THP 1 leukemia cells.

    PubMed

    Jakob, F; Homann, D; Adamski, J

    1995-12-01

    Estradiol is active in proliferation and differentiation of sex-related tissues like ovary and breast. Glandular steroid metabolism was for a long time believed to dominate the estrogenic milieu around any cell of the organism. Recent reports verified the expression of estrogen receptors in "non-target" tissues as well as the extraglandular expression of steroid metabolizing enzymes. Extraglandular steroid metabolism proved to be important in the brain, skin and in stromal cells of hormone responsive tumors. Aromatase converts testosterone into estradiol and androstenedione into estrone, thereby activating estrogen precursors. The group of 17 beta-hydroxysteroid dehydrogenases catalyzes the oxidation and/or reduction of the forementioned compounds, e.g. estradiol/estrone, thereby either activating or inactivating estradiol. Aromatase is expressed and regulated in the human THP 1 myeloid leukemia cell line after vitamin D/GMCSF-propagated differentiation. Aromatase expression is stimulated by dexamethasone, phorbolesters and granulocyte/macrophage stimulating factor (GMCSF). Exons I.2 and I.4 are expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. Vitamin D-differentiated THP 1 cells produce a net excess of estradiol in culture supernatants, if testosterone is given as aromatase substrate. In contrast, the 17 beta-hydroxysteroid dehydrogenase type 4 (17 beta-HSD 4) is abundantly expressed in unstimulated THP 1 cells and is further stimulated by glucocorticoids (2-fold). The expression is unchanged after vitamin D/GMCSF-propagated differentiation. 17 beta-HSD 4 expression is not altered by phorbolester treatment in undifferentiated cells but is abolished after vitamin D-propagated differentiation along with downregulation of beta-actin. Protein kinase C activation therefore appears to dissociate the expression of aromatase and 17 beta-HSD 4 in this differentiation stage along the monocyte/phagocyte pathway of THP 1 myeloid cells. The expression of steroid metabolizing enzymes in myeloid cells is able to create a microenvironment which is uncoupled from dominating systemic estrogens. These findings may be relevant in the autocrine, paracrine or iuxtacrine cellular crosstalk of myeloid cells in their respective states of terminal differentiation, e.g. in bone metabolism and inflammation.

  8. Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akita, Shingo; Kubota, Koji; Kobayashi, Akira, E-mail: kbys@shinshu-u.ac.jp

    Highlights: Black-Right-Pointing-Pointer BMC-derived PSCs play a role in a rat CDE diet-induced pancreatitis model. Black-Right-Pointing-Pointer BMC-derived PSCs contribute mainly to the early stage of pancreatic fibrosis. Black-Right-Pointing-Pointer BMC-derived activated PSCs can produce PDGF and TGF {beta}1. -- Abstract: Bone marrow cell (BMC)-derived myofibroblast-like cells have been reported in various organs, including the pancreas. However, the contribution of these cells to pancreatic fibrosis has not been fully discussed. The present study examined the possible involvement of pancreatic stellate cells (PSCs) originating from BMCs in the development of pancreatic fibrosis in a clinically relevant rat model of acute pancreatitis induced by amore » choline-deficient/ethionine-supplemented (CDE) diet. BMCs from female transgenic mice ubiquitously expressing green fluorescent protein (GFP) were transplanted into lethally irradiated male rats. Once chimerism was established, acute pancreatitis was induced by a CDE diet. Chronological changes in the number of PSCs originating from the donor BMCs were examined using double immunofluorescence for GFP and markers for PSCs, such as desmin and alpha smooth muscle actin ({alpha}SMA), 1, 3 and 8 weeks after the initiation of CDE feeding. We also used immunohistochemical staining to evaluate whether the PSCs from the BMCs produce growth factors, such as platelet-derived growth factor (PDGF) and transforming growth factor (TGF) {beta}1. The percentage of BMC-derived activated PSCs increased significantly, peaking after 1 week of CDE treatment (accounting for 23.3 {+-} 0.9% of the total population of activated PSCs) and then decreasing. These cells produced both PDGF and TGF{beta}1 during the early stage of pancreatic fibrosis. Our results suggest that PSCs originating from BMCs contribute mainly to the early stage of pancreatic injury, at least in part, by producing growth factors in a rat CDE diet-induced pancreatitis model.« less

  9. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer.

    PubMed

    Matsuzaki, Koichi; Kitano, Chiaki; Murata, Miki; Sekimoto, Go; Yoshida, Katsunori; Uemura, Yoshiko; Seki, Toshihito; Taketani, Shigeru; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2009-07-01

    Transforming growth factor (TGF)-beta initially inhibits growth of mature epithelial cells. Later, however, autocrine TGF-beta signaling acts in concert with the Ras pathway to induce a proliferative and invasive phenotype. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also Ras-associated kinases, which differentially phosphorylate the mediators Smad2 and Smad3 to create distinct phosphorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C) and both linker and COOH-terminally phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). In this study, we investigated actions of pSmad2L/C and pSmad3L/C in cancer progression. TGF-beta inhibited cell growth by down-regulating c-Myc oncoprotein through the pSmad2C and pSmad3C pathway; TGF-beta signaling, in turn, enhanced cell growth by up-regulating c-Myc through the cyclin-dependent kinase (CDK) 4-dependent pSmad2L/C and pSmad3L/C pathways in cell nuclei. Alternatively, TbetaRI and c-Jun NH2-terminal kinase (JNK) together created cytoplasmic pSmad2L/C, which entered the nucleus and stimulated cell invasion, partly by up-regulating matrix metalloproteinase-9. In 20 clinical samples, pSmad2L/C and pSmad3L/C showed nuclear localization at invasion fronts of all TGF-beta-producing human metastatic colorectal cancers. In vitro kinase assay confirmed that nuclear CDK4 and cytoplasmic JNK obtained from the tumor tissue could phosphorylate Smad2 or Smad3 at their linker regions. We suggest that CDK4, together with JNK, alters tumor-suppressive TGF-beta signaling to malignant characteristics in later stages of human colorectal cancer. The linker phosphorylation of Smad2 and Smad3 may represent a target for intervention in human metastatic cancer.

  10. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2010-07-01

    We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.

  11. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults without known diabetes. PMID:28507444

  12. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  13. The effect of interferon on the receptor sites to rabies virus on mouse neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, D.J.

    1989-01-01

    The binding of rabies virus to mouse neuroblastoma cells (MNA) primed with alpha interferon (IFN-{alpha}), beta interferon (IFN-{beta}), or alpha bungarotoxin (BTX) was examined. A saturable number of receptor sites to rabies virus was calculated by increasing the amount of {sup 3}H-CVS added to a constant number of untreated MNA cells. MNA cells were then exposed to 20 I.U. of IFN-{alpha}, IFN-{beta}, or 1 {mu}g of BTX and assayed to determine if these treatments had an effect on the number of receptor sites to rabies virus. Total amount of {sup 3}H-CVS bound to MNA cells was determined during a threemore » hour incubation period. Cold competition assays using 1,000 fold excess unlabeled CVS were used to determine non-specific binding for each treatment. Specific binding was then calculated by subtracting non-specific binding from the total amount of CVS bound to MNA cells. A similar amount of total viral protein bound to untreated and IFN-{beta}, and BTX treated cells after 180 minutes of incubation. The bound protein varied by only 0.07 {mu}g. However, the amount of specific and non-specific binding varied a great deal between treatments. BTX caused an increase in non-specific and a decrease in specific binding of rabies virus. IFN-{beta} produced variable results in non-specific and specific binding while IFN-{alpha} caused mainly specific binding to occur. The most significant change brought about by IFN-{alpha} was an increase in the rate of viral attachment. At 30 minutes post-infection, IFN-{alpha} treated cells had bound 90% of the total amount of virus bound to untreated cells after 180 minutes. The increased binding rate did not cause a productive infection of rabies virus. No viral production was evident after an incubation period of 48 hours in either IFN-{alpha} or IFN-{beta} treated cells.« less

  14. Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells.

    PubMed

    Rutella, Sergio; Pierelli, Luca; Bonanno, Giuseppina; Sica, Simona; Ameglio, Franco; Capoluongo, Ettore; Mariotti, Andrea; Scambia, Giovanni; d'Onofrio, Giuseppe; Leone, Giuseppe

    2002-10-01

    Granulocyte colony-stimulating factor (G-CSF) may affect T-cell homeostasis by multiple mechanisms, inducing polarization of cytokine secretion, inhibition of T-cell proliferation, and enhancement of T-cell apoptosis. We analyzed the production of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-beta1) by T cells from healthy volunteer donors treated with recombinant human G-CSF. Highly purified CD4(+) T cells obtained before and after G-CSF administration (pre-G and post-G, respectively) were activated using the allogeneic mixed leukocyte reaction. Post-G CD4(+) T cells produced high levels of IL-10 but undetectable levels of IL-2 and IL-4, whereas the level of TGF-beta1 release was comparable to that of pre-G CD4(+) T cells. Notably, post-G CD4(+) T cells proliferated poorly in response to alloantigens and to recall antigens and suppressed the proliferation of autologous CD4(+) T cells in a cell contact-independent and an antigen-nonspecific manner. TGF-beta1 and IL-10 were not dispensable for post-G CD4(+) T cells to mediate suppression, as shown by neutralization studies. Compared with pre-G CD4(+) T cells, alloantigen-activated post-G CD4(+) T cells preferentially expressed markers associated with memory T cells, in conjunction with reduced levels of CD28 and CD62L. Collectively, these data demonstrate that CD4(+) T cells exposed to G-CSF in vivo acquire the properties of T regulatory (Tr) cells once triggered in vitro through the T-cell receptor, including a peculiar cytokine production profile (IL-10(++)TGF-beta1(+)IL-2(low/-)IL-4(low/-)), an intrinsic low proliferative capacity, and a contact-independent suppression of antigen-driven proliferation. Tr cells generated ex vivo after exposure to G-CSF might be clinically relevant for transplantation medicine and for the treatment of human immune-mediated diseases.

  15. Administration of IL-1beta to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract.

    PubMed

    DeBoer, Mark D; Scarlett, Jarrad M; Levasseur, Peter R; Grant, Wilmon F; Marks, Daniel L

    2009-02-01

    Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1 beta into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1 beta produced a decrease in food intake at 3 and 12h after injection which was ameliorated at the 12h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1 beta injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1 beta into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1 beta on TH neurons themselves. We conclude that IL-1 beta injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation.

  16. What couples glycolysis to mitochondrial signal generation in glucose-stimulated insulin secretion?

    PubMed

    Ishihara, H; Wollheim, C B

    2000-05-01

    Pancreatic islet beta-cells are poised to generate metabolic messengers in the mitochondria that link glucose metabolism to insulin exocytosis. This is accomplished through the tight coupling of glycolysis to mitochondrial activation. The messenger molecules ATP and glutamate are produced after the metabolism of glycolysis-derived pyruvate in the mitochondria. The entry of monocarboxylates such as pyruvate into the beta cell is limited, explaining why overexpression of monocarboxylate transporters unravels pyruvate-stimulated insulin secretion. NADH generated by glycolysis is efficiently reoxidized by highly active mitochondrial shuttles rather than by lactate dehydrogenase. Overexpression of this enzyme does not alter glucose-stimulated insulin secretion, suggesting that NADH availability restricts the conversion of pyruvate to lactate in the beta cell. These metabolic features permit the fuel function of glucose to be extended to the generation of signaling molecules, which increases cytosolic Ca2+ and promotes insulin exocytosis.

  17. Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy

    PubMed Central

    Palmar, Jim; Nava, Manuel; Tomey, Daniel; Garicano, Carlos

    2018-01-01

    Purpose of Review Describing the diverse molecular mechanisms (particularly immunological) involved in the death of the pancreatic beta cell in type 1 and type 2 diabetes mellitus. Recent Findings Beta cell death is the final event in a series of mechanisms that, up to date, have not been entirely clarified; it represents the pathophysiological mechanism in the natural history of diabetes mellitus. These mechanisms are not limited to an apoptotic process only, which is characteristic of the immune-mediated insulitis in type 1 diabetes mellitus. They also include the action of proinflammatory cytokines, the production of reactive oxygen species, DNA fragmentation (typical of necroptosis in type 1 diabetic patients), excessive production of islet amyloid polypeptide with the consequent endoplasmic reticulum stress, disruption in autophagy mechanisms, and protein complex formation, such as the inflammasome, capable of increasing oxidative stress produced by mitochondrial damage. Summary Necroptosis, autophagy, and pyroptosis are molecular mechanisms that modulate the survival of the pancreatic beta cell, demonstrating the importance of the immune system in glucolipotoxicity processes and the potential role for immunometabolism as another component of what once known as the “ominous octet.” PMID:29670917

  18. A novel D-phenylalanine-derivative hypoglycemic agent A-4166 increases cytosolic free Ca2+ in rat pancreatic beta-cells by stimulating Ca2+ influx.

    PubMed

    Fujitani, S; Yada, T

    1994-03-01

    It has recently been shown that N-[(trans-4-isopropylcyclohexyl)-carbonyl]D-phenylalanine (A-4166), a new nonsulfonylurea oral hypoglycemic agent, reduces blood glucose levels in nondiabetic and diabetic animals in a quicker and shorter lasting manner than sulfonylureas, and that the hypoglycemic effect of A-4166 is due to the stimulation of insulin release. However, the mechanism by which A-4166 stimulates insulin release is still unknown. In the present study, we investigated the effect of A-4166 on the cytosolic free Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells from normal rats by dual wavelength fura-2 microfluorometry. In the presence of 2.8 mM glucose, A-4166 produced a rapid increase in [Ca2+]i in a concentration-dependent manner over the range of 3-30 microM. The increase in [Ca2+]i was transient, oscillatory, or sustained. A-4166 did not evoke any decrease in [Ca2+]i, whereas a high concentration of glucose (16.7 mM), a metabolized secretagogue, produced an initial decrease and a subsequent increase in [Ca2+]i. In the presence of 16.7 mM glucose, low concentrations (0.03-1 microM) of A-4166 produced an increase in [Ca2+]i in some of the beta-cells tested. The [Ca2+]i response to A-4166 was completely and reversibly inhibited under Ca(2+)-free conditions as well as by nitrendipine, a blocker of the L-type Ca2+ channel. Nitrendipine also inhibited insulin release from perfused rat pancreases stimulated by A-4166. Diazoxide, an opener of the ATP-sensitive K+ channel, blocked the [Ca2+]i response to A-4166. Sulfonylureas such as tolbutamide and glibenclamide increased [Ca2+]i in a manner similar to A-4166. These results indicate that at basal glucose concentrations, A-4166 increases [Ca2+]i in rat pancreatic beta-cells by stimulating Ca2+ influx through L-type Ca2+ channels, and that this effect is markedly augmented at elevated glucose concentrations. It appears that the increase in [Ca2+]i is related to the stimulation of insulin release by A-4166. Inhibition of ATP-sensitive potassium channels, but not stimulation of beta-cell metabolism, may be involved in the increase in [Ca2+]i by A-4166.

  19. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study.

    PubMed

    Csaki, C; Matis, U; Mobasheri, A; Ye, H; Shakibaei, M

    2007-12-01

    Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, beta1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and beta1-integrins, and upregulated the adipogenic specific transcription factor PPAR-gamma. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, beta1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.

  20. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings.

    PubMed

    Nishida, Nami; Tamotsu, Satoshi; Nagata, Noriko; Saito, Chieko; Sakai, Atsushi

    2005-05-01

    Salvia leucophylla, a shrub observed in coastal south California, produces several volatile monoterpenoids (camphor, 1,8-cineole, beta-pinene, alpha-pinene, and camphene) that potentially act as allelochemicals. The effects of these were examined using Brassica campestris as the test plant. Camphor, 1,8-cineole, and beta-pinene inhibited germination of B. campestris seeds at high concentrations, whereas alpha-pinene and camphene did not. Root growth was inhibited by all five monoterpenoids in a dose-dependent manner, but hypocotyl growth was largely unaffected. The monoterpenoids did not alter the sizes of matured cells in either hypocotyls or roots, indicating that cell expansion is relatively insensitive to these compounds. They did not decrease the mitotic index in the shoot apical region, but specifically lowered mitotic index in the root apical meristem. Moreover, morphological and biochemical analyses on the incorporation of 5-bromo-2'-deoxyuridine into DNA demonstrated that the monoterpenoids inhibit both cell-nuclear and organelle DNA synthesis in the root apical meristem. These results suggest that the monoterpenoids produced by S. leucophylla could interfere with the growth of other plants in its vicinity through inhibition of cell proliferation in the root apical meristem.

  1. Effects of High Glucose Levels and Glycated Serum on GIP Responsiveness in the Pancreatic Beta Cell Line HIT-T15.

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Montecucco, Fabrizio; Viviani, Giorgio Luciano

    2015-01-01

    Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone produced in the gastrointestinal tract that stimulates glucose dependent insulin secretion. Impaired incretin response has been documented in diabetic patients and was mainly related to the inability of the pancreatic beta cells to secrete insulin in response to GIP. Advanced Glycation End Products (AGEs) have been shown to play an important role in pancreatic beta cell dysfunction. The aim of this study is to investigate whether the exposure to AGEs can induce GIP resistance in the pancreatic beta cell line HIT-T15. Cells were cultured for 5 days in low (CTR) or high glucose (HG) concentration in the presence of AGEs (GS) to evaluate the expression of GIP receptor (GIPR), the intracellular signaling activated by GIP, and secretion of insulin in response to GIP. The results showed that incubation with GS alone altered intracellular GIP signaling and decreased insulin secretion as compared to CTR. GS in combination with HG reduced the expression of GIPR and PI3K and abrogated GIP-induced AKT phosphorylation and GIP-stimulated insulin secretion. In conclusion, we showed that treatment with GS is associated with the loss of the insulinotropic effect of GIP in hyperglycemic conditions.

  2. Reduction of N-linked xylose and fucose by expression of rat beta1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression.

    PubMed

    Karg, Saskia R; Frey, Alexander D; Kallio, Pauli T

    2010-03-01

    Plant-specific N-glycosylation, such as the introduction of core alpha1,3-fucose and beta1,2-xylose residues, is a major obstacle to the utilization of plant cell- or plant-derived recombinant therapeutic proteins. The beta1,4-N-acetylglucosaminyltransferase III (GnTIII) introduces a bisecting GlcNAc residue into N-glycans, which exerts a high level of substrate mediated control over subsequent modifications, for example inhibiting mammalian core fucosylation. Based on similar findings in plants, we used Nicotianatabacum BY-2 cells to study the effects of localization and expression levels of GnTIII in the remodeling of the plant N-glycosylation pathway. The N-glycans produced by the cells expressing GnTIII were partially bisected and practically devoid of the paucimannosidic type which is typical for N-glycans produced by wildtype BY-2 suspension cultured cells. The proportion of human-compatible N-glycans devoid of fucose and xylose could be increased from an average of 4% on secreted protein from wildtype cells to as high as 59% in cells expressing chimeric GnTIII, named GnTIII(A.th.) replacing its native localization domain with the cytoplasmic tail, transmembrane, and stem region of Arabidopsis thaliana mannosidase II. The changes in N-glycosylation observed were dependent on the catalytic activity of GnTIII, as the expression of catalytically inactive GnTIII mutants did not show a significant effect on N-glycosylation. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Hb Alesha [beta67(E11)Val-->Met, GTG-->ATG] in an Argentinean girl.

    PubMed

    Eberle, Silvia Eandi; Noguera, Nélida I; Sciuccati, Gabriela; Bonduel, Mariana; Díaz, Lilian; Staciuk, Raquel; Targovnik, Héctor M; Feliu-Torres, Aurora

    2007-01-01

    Hb Alesha is caused by a GTG-->ATG mutation at codon 67 of the beta-globin gene, resulting in abnormal beta-globin chains in which the normal beta67(E11) valine is changed to methionine. This hemoglobin (Hb) is also known as Hb Bristol, the first unstable Hb described, since in a fraction of the variant the methionine is modified into an aspartic acid by a posttranslational modification. This replacement disrupts the apolar bonds between the valine and the heme group, producing an unstable Hb and severe hemolysis. We have identified this rare hemoglobinopathy in an Argentinean girl with severe hemolytic anemia, splenomegaly and frequent requirement for red blood cell transfusions.

  4. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  5. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with initiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1..mu..m. Abrahamson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will probably affect the ..beta.. component. 23 references, 5 figures, 2 tables.« less

  6. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberrration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with intiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1 ..mu..m. Abrahmson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will primarily affect the ..beta.. component, resulting in low assessments of interaction site diameters.« less

  7. [Survey of recent clinical trials of the prevention and immunointervention of type 1 diabetes mellitus].

    PubMed

    Boerschmann, H; Walter, M; Achenbach, P; Ziegler, A-G

    2010-02-01

    Immunomodulatory strategies in the management of type 1 diabetes mellitus (T1DM) have as their primary target the prevention of initiating islet autoimmunity (primary-), the secondary one is the progression to diabetes (secondary-) in non-diabetic persons at risk, and the decline of beta-cell function in new-onset patients (tertiary-prevention). This article reviews four recent immunointervention trials in patients with T1DM. (1) The Pre-POINT study is a primary prevention trial that will test whether vaccination with oral or nasal insulin can prevent the progression of islet autoimmunity and of T1DM in autoantibody-negative children who are genetically at high diabetes risk. (2) The Cord Blood study is a tertiary immunointervention trial that will test whether administration of autologous umbilical cord blood to children with T1DM can lead to regeneration of pancreatic islet insulin-producing beta-cells and improved blood glucose control. (3) The GAD Vaccination study will test whether vaccination with alum-formulated rhGAD65 (recombinant human glutamic acid decarboxylate) can preserve beta-cell function in 320 children with newly diagnosed T1DM, as has been suggested in a recent phase II study. (4) The AIDA study will test the beta-cell protective effect of interleukin-1-receptor antagonist Anakinra in 80 patients with T1DM, which has recently been shown to improve beta-cell function in patients with type 2 diabetes. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  8. 25.5 Betavoltaic Power Cells

    DTIC Science & Technology

    2006-01-01

    Conference Paper POSTPRINT 3. DATES COVERED (From - To) 2004 - 2006 4. TITLE AND SUBTITLE 25.5 Betavoltaic Power Cells 5a. CONTRACT NUMBER FA9453-04...Sources Conference, 12-15 Jun 06, Philadelphia, PA Government Purpose Rights 14. ABSTRACT Betavoltaic power cells utilize beta-emitting...radioisotopes and semiconductor devices to produce long-lived power in a variety of small form factors. Qynergy is developing betavoltaic power cells based on

  9. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.

    PubMed

    Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen

    2008-07-01

    Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.

  10. Improvement of macrophage dysfunction by administration of anti-transforming growth factor-beta antibody in EL4-bearing hosts.

    PubMed

    Maeda, H; Tsuru, S; Shiraishi, A

    1994-11-01

    An experimental therapy for improvement of macrophage dysfunction caused by transforming growth factor-beta (TGF-beta) was tried in EL4 tumor-bearing mice. TGF-beta was detected in cell-free ascitic fluid from EL4-bearers, but not in that from normal mice, by western blot analysis. The ascites also showed growth-suppressive activity against Mv1Lu cells, and the suppressive activity was potentiated by transient acidification. To investigate whether the functions of peritoneal macrophages were suppressed in EL4-bearers, the abilities to produce nitric oxide and tumor necrosis factor-alpha (TNF-alpha) upon lipopolysaccharide (LPS) stimulation were measured. Both abilities of macrophages in EL4-bearing mice were suppressed remarkably on day 9, and decreased further by day 14, compared with non-tumor-bearing controls. TGF-beta activity was abrogated by administration of anti-TGF-beta antibody to EL4-bearing mice. While a large amount of TGF-beta was detected in ascitic fluid from control EL4-bearers, little TGF-beta was detectable in ascites from EL4-bearers given anti-TGF-beta antibody. Furthermore, while control macrophages exhibited little or no production of nitric oxide and TNF-alpha on LPS stimulation in vitro, macrophages from EL4-bearers administered with anti-TGF-beta antibody showed the same ability as normal macrophages. These results clearly indicate that TGF-beta contributes to macrophage dysfunction and that the administration of specific antibody for TGF-beta reverses macrophage dysfunction in EL4-bearing hosts.

  11. Differential expression of islet glutaredoxin 1 and 5 with high reactive oxygen species production in a mouse model of diabesity.

    PubMed

    Petry, Sebastian Friedrich; Sharifpanah, Fatemeh; Sauer, Heinrich; Linn, Thomas

    2017-01-01

    The onset and progression of diabetes mellitus type 2 is highly contingent on the amount of functional beta-cell mass. An underlying cause of beta-cell decay in diabetes is oxidative stress, which markedly affects the insulin producing pancreatic cells due to their poor antioxidant defence capacity. Consequently, disturbances of cellular redox signaling have been implicated to play a major role in beta-cell loss in diabetes mellitus type 2. There is evidence suggesting that the glutaredoxin (Grx) system exerts a protective role for pancreatic islets, but the exact mechanisms have not yet been elucidated. In this study, a mouse model for diabetes mellitus type 2 was used to gain further insight into the significance of Grx for the islets of Langerhans in the diabetic metabolism. We have observed distinct differences in the expression levels of Grx in pancreatic islets between obese, diabetic db mice and lean, non-diabetic controls. This finding is the first report about a decrease of Grx expression levels in pancreatic islets of diabetic mice which was accompanied by declining insulin secretion, increase of reactive oxygen species (ROS) production level, and cell cycle alterations. These data demonstrate the essential role of the Grx system for the beta-cell during metabolic stress which may provide a new target for diabetes mellitus type 2 treatment.

  12. Variability and repertoire size of T-cell receptor V alpha gene segments.

    PubMed

    Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K

    The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.

  13. Upregulation of CD94 on CD8+T Cells in Anterior Chamber-Associated Immune Deviation

    PubMed Central

    He, Hao; Yang, Peizeng; Jiang, Liqiong; Zhang, Junfeng; Zhao, Changlin; Chen, Lina; Lin, Xiaomin; Zhou, Hongyan; Kijlstra, Aize

    2008-01-01

    Background CD8+ regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The phenotype and characteristics of CD8+Treg in ACAID remain only poorly understood. Recent studies have reported that the CD94-Qa-1 system is implicated in the induction of ACAID CD8+Treg, but the functions and characteristics of CD8+CD94+T cells remain unclear. Results Both mRNA and protein of CD94 and NKG2A were markedly up-regulated on splenic CD8+T cells of ACAID mice compared with controls. Flow cytometric analysis showed that very few CD8+CD94+T cells express granzyme B, perforin and Foxp3. CD8+CD94+T cells, but not CD8+CD94-T cells, magnetically isolated from the spleens of ACAID mice, produced large amounts of TGF-beta1 and exhibited suppressive activity in vitro. Neutralization of TGF-beta1 caused reversal of suppression mediated by CD8+CD94+T cells. Conclusion CD8+CD94+T cells from ACAID mice exhibited suppressive activity in association with enhanced expression of TGF-beta1, suggesting that CD8+Treg are mainly distributed in CD94+T cell subpopulations. PMID:18816417

  14. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus.

    PubMed

    Wieseler-Frank, Julie; Jekich, Brian M; Mahoney, John H; Bland, Sondra T; Maier, Steven F; Watkins, Linda R

    2007-07-01

    Pain is enhanced in response to elevations of proinflammatory cytokines in spinal cerebrospinal fluid (CSF), following either intrathecal injection of these cytokines or intrathecal immune challenge with HIV-1 gp120 that induces cytokine release. Spinal cord glia have been assumed to be the source of endogenous proinflammatory cytokines that enhance pain. However, assuming that spinal cord glia are the sole source of CSF cytokines may be an underestimate, as the cellular composition of the meninges surrounding the spinal cord CSF space includes several cell types known to produce proinflammatory cytokines. The present experiments provide the first investigation of the immunocompetent nature of the spinal cord meninges. Here, we explore whether rat meninges are responsive to intrathecal gp120. These studies demonstrate that: (a) intrathecal gp120 upregulates meningeal gene expression of proinflammatory signals, including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS), and (b) intrathecal gp120 induces meningeal release of TNF-alpha, IL-1beta, and IL-6. In addition, stimulation of isolated meninges in vitro with gp120 induced the release of TNF-alpha and IL-1beta, indicating that the resident cells of the meninges are able to respond without immune cell recruitment. Taken together, these data document that the meninges are responsive to immunogenic stimuli in the CSF and that the meninges may be a source of immune products detected in CSF. The ability of the meninges to release to proinflammatory signals suggests a potential role in the modulation of pain.

  15. Production of poly-beta-hydroxybutyric acid by microorganisms accumulated from river water using a two-stage perfusion culture system.

    PubMed

    Morimoto, T; Tashiro, F; Nagashima, H; Nishizawa, K; Nagata, F; Yokogawa, Y; Suzuki, T

    2000-01-01

    The perfusion culture system using a shaken ceramic membrane flask (SCMF) was employed to accumulate microorganisms separated from river water and to produce poly-beta-hydroxybutyric acid (PHB). Using a two-step culture method with a single SCMF, river microorganisms were cultured by separately feeding four representative carbon sources, n-propanol, lactic acid, methanol, and formic acid. After 140 h culture, the cell concentration and PHB content respectively reached 43 g/l and 35% when a propanol medium was fed. Using a two-stage perfusion culture with twin SCMFs, the seed cell mass was increased in the first SCMF and then supplied to the second flask for PHB production. As a consequence, the cellular PHB content rose to 51% in the second SCMF, while the cell concentration gradually increased to 25 g/l after 175 h perfusion culture. These results demonstrated the utility of the two-stage perfusion culture system for developing a cheap means of producing PHB coincident with wastewater treatment.

  16. Involvement of granulysin-producing T cells in the development of superficial microbial folliculitis.

    PubMed

    Oono, T; Morizane, S; Yamasaki, O; Shirafuji, Y; Huh, W-K; Akiyama, H; Iwatsuki, K

    2004-05-01

    Granulysin is a recently identified antimicrobial protein expressed on cytotoxic T cells, natural killer (NK) cells and NKT cells. It has been shown that granulysin contributes to the defence mechanisms against mycobacterial infection. Superficial microbial folliculitis is a common skin disease. In a previous report, we showed that, as a first line of defence, alpha-defensin, a human neutrophil peptide, and beta-defensin (human beta-defensin-2) were expressed in infiltrating neutrophils and in lesional epidermal keratinocytes, respectively, in superficial folliculitis. As we also observed many infiltrating lymphocytes in lesional dermis, we hypothesized that infiltrating lymphocytes may possess antimicrobial substances, such as granulysin, and play a role in the defence mechanism as a second line of defence. Seven specimens of superficial microbial folliculitis diagnosed clinically and histologically were examined by means of immunohistochemistry. To identify the phenotype of cells expressing granulysin, confocal laser microscopic examination was performed. A dense lymphoid cell infiltrate was observed in pustules, in the perivascular regions. A large number of these lymphoid cells were positive for granulysin. Phenotypically, cells consisted of CD3+ T cells, CD8+ T cells and UCHL-1+ T cells. CD20+ cells and CD56+ cells were not observed. Microscopic examination with a confocal laser showed that the lymphocytes producing granulysin were CD3+ and CD4+ T cells but not CD8+ T cells. We showed that many granulysin-bearing T cells infiltrated affected follicles and perilesional dermis in superficial microbial folliculitis. However, few granulysin-positive lymphoid cells were observed in sterile pustular lesions. Our observations indicated that adaptive immunity such as granulysin, a lymphocyte-produced antimicrobial protein, may play an important role in the cutaneous defence mechanism.

  17. Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells as a Potential Novel Treatment for Type 2 Diabetes.

    PubMed

    Suarez Castellanos, Ivan; Jeremic, Aleksandar; Cohen, Joshua; Zderic, Vesna

    2017-06-01

    Type 2 diabetes mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. This disease is characterized by loss of insulin secretion and, eventually, destruction of insulin-producing pancreatic beta cells. Controlling type 2 diabetes is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this study was to explore the effectiveness of a novel, non-pharmacological approach that uses the application of ultrasound energy to augment insulin release from rat INS 832/13 beta cells. The cells were exposed to unfocused ultrasound for 5 min at a peak intensity of 1 W/cm 2 and frequencies of 400 kHz, 600 kHz, 800 kHz and 1 MHz. Insulin release was measured with enzyme-linked immunosorbent assay and cell viability was assessed via the trypan blue dye exclusion test. A marked release (approximately 150 ng/10 6  cells, p < 0.05) of insulin was observed when beta cells were exposed to ultrasound at 400 and 600 kHz as compared with their initial control values; however, this release was accompanied by a substantial loss in cell viability. Ultrasound application at frequencies of 800 kHz resulted in 24 ng/10 6  cells released insulin (p < 0.05) as compared with its unstimulated base level, while retaining cell viability. Insulin release from beta cells caused by application of 800-kHz ultrasound was comparable to that reported by the secretagogue glucose, thus operating within physiological secretory capacity of these cells. Ultrasound has potential as a novel and alternative method to current approaches aimed at correcting secretory deficiencies in patients with type 2 diabetes. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Metabolomic and proteomic analysis of a clonal insulin-producing beta-cell line (INS-1 832/13).

    PubMed

    Fernandez, Céline; Fransson, Ulrika; Hallgard, Elna; Spégel, Peter; Holm, Cecilia; Krogh, Morten; Wårell, Kristofer; James, Peter; Mulder, Hindrik

    2008-01-01

    Metabolites generated from fuel metabolism in pancreatic beta-cells control exocytosis of insulin, a process which fails in type 2 diabetes. To identify and quantify these metabolites, global and unbiased analysis of cellular metabolism is required. To this end, polar metabolites, extracted from the clonal 832/13 beta-cell line cultured at 2.8 and 16.7 mM glucose for 48 h, were derivatized followed by identification and quantification, using gas chromatography (GC) and mass spectrometry (MS). After culture at 16.7 mM glucose for 48 h, 832/13 beta-cells exhibited a phenotype reminiscent of glucotoxicity with decreased content and secretion of insulin. The metabolomic analysis revealed alterations in the levels of 7 metabolites derived from glycolysis, the TCA cycle and pentose phosphate shunt, and 4 amino acids. Principal component analysis of the metabolite data showed two clusters, corresponding to the cells cultured at 2.8 and 16.7 mM glucose, respectively. Concurrent changes in protein expression were analyzed by 2-D gel electrophoresis followed by LC-MS/MS. The identities of 86 spots corresponding to 75 unique proteins that were significantly different in 832/13 beta-cells cultured at 16.7 mM glucose were established. Only 5 of these were found to be metabolic enzymes that could be involved in the metabolomic alterations observed. Anticipated changes in metabolite levels in cells exposed to increased glucose were observed, while changes in enzyme levels were much less profound. This suggests that substrate availability, allosteric regulation, and/or post-translational modifications are more important determinants of metabolite levels than enzyme expression at the protein level.

  19. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.

    PubMed

    Cooker, Laurinda A; Peterson, Darryl; Rambow, Joann; Riser, Melisa L; Riser, Rebecca E; Najmabadi, Feridoon; Brigstock, David; Riser, Bruce L

    2007-07-01

    Connective tissue growth factor (CCN2) is a profibrotic factor acting downstream and independently of TGF-beta to mediate renal fibrosis. Although inflammation is often involved in the initiation and/or progression of fibrosis, the role of inflammatory cytokines in regulation of glomerular CCN2 expression, cellular proliferation, and extracellular matrix accumulation is unknown. We studied two such cytokines, TNF-alpha and IFN-gamma, for their effects on cultured mesangial cells in the presence or absence of TGF-beta, as a model for progressive renal fibrosis. Short-term treatment with TNF-alpha, like TGF-beta, significantly increased secreted CCN2 per cell, but unlike TGF-beta inhibited cellular replication. TNF-alpha combined with TGF-beta further increased CCN2 secretion and mRNA levels and reduced proliferation. Surprisingly, however, TNF-alpha treatment decreased baseline collagen type I protein and mRNA levels and largely blocked their stimulation by TGF-beta. Long-term treatment with TGF-beta or TNF-alpha alone no longer increased CCN2 protein levels. However, the combination synergistically increased CCN2. IFN-gamma had no effect on either CCN2 or collagen activity and produced a mild inhibition of TGF-beta-induced collagen only at a high concentration (500 U/ml). In summary, we report a strong positive regulatory role for TNF-alpha, but not IFN-gamma, in CCN2 production and secretion, including that driven by TGF-beta. The stimulation of CCN2 release by TNF-alpha, unlike TGF-beta, is independent of cellular proliferation and not linked to increased collagen type I accumulation. This suggests that the paradigm of TGF-beta-driven CCN2 with subsequent collagen production may be overridden by an as yet undefined inhibitory mechanism acting either directly or indirectly on matrix metabolism.

  20. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jie, E-mail: jie.wang2@osumc.edu; Osei, Kwame

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostaticmore » balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin to insulin despite the levels of PC1/3 and PC2 proteins were not reduced somehow. The findings demonstrate that the perturbation of PIHO results in defects in the subsequent conversion process of proinsulin and is a contributor to the occurrence of disproportionate hyperproinsulinemia in diabetes.« less

  1. Differences in antimicrobial susceptibility of pigmented and unpigmented colonial variants of Mycobacterium avium.

    PubMed Central

    Stormer, R S; Falkinham, J O

    1989-01-01

    Unpigmented colonial variants were isolated from pigmented Mycobacterium avium isolates recovered from patients with acquired immunodeficiency syndrome and the environment. The variants were interconvertible: the rate of transition from unpigmented to pigmented type was 4.0 x 10(-5) variants per cell per generation. The unpigmented variants were more tolerant to antibiotics, especially beta-lactams, and Cd2+ and Cu2+ salts than were their pigmented parents. Both pigmented and unpigmented variants of the strains produced beta-lactamase, although beta-lactamase did not appear to be a determinant of beta-lactam susceptibility. Pigmented variants grew more rapidly in a number of commonly used mycobacterial media, were more hydrophobic, and had higher carotenoid contents than their unpigmented segregants. PMID:2808669

  2. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production.

    PubMed

    Aktuganov, G; Melentjev, A; Galimzianova, N; Khalikova, E; Korpela, T; Susi, P

    2008-07-01

    Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%-75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas beta-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and beta-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which beta-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.

  3. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes

    PubMed Central

    Kimple, Michelle E; Neuman, Joshua C; Linnemann, Amelia K; Casey, Patrick J

    2014-01-01

    The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology. PMID:24946790

  4. Arginine supplementation of sickle transgenic mice reduces red cell density and Gardos channel activity.

    PubMed

    Romero, José R; Suzuka, Sandra M; Nagel, Ronald L; Fabry, Mary E

    2002-02-15

    Nitric oxide (NO), essential for maintaining vascular tone, is produced from arginine by nitric oxide synthase. Plasma arginine levels are low in sickle cell anemia, and it is reported here that low plasma arginine is also found in our sickle transgenic mouse model that expresses human alpha, human beta(S), and human beta(S-Antilles) and is homozygous for the mouse beta(major) deletion (S+S-Antilles). S+S-Antilles mice were supplemented with a 4-fold increase in arginine that was maintained for several months. Mean corpuscular hemoglobin concentration (MCHC) decreased and the percent high-density red cells was reduced. Deoxy K(+) efflux is characteristic of red cells in sickle cell disease and contributes to the disease process by increasing the MCHC and rendering the cells more susceptible to polymer formation. This flux versus the room air flux was reduced in S+S-Antilles red cells from an average value of 1.6 +/- 0.3 mmol per liter of red cells x minute (FU) in nonsupplemented mice to 0.9 +/- 0.3 FU (n = 4, P < .02, paired t test) in supplemented mice. In room air, V(max) of the Ca(++)-activated K(+) channel (Gardos) was reduced from 4.1 +/- 0.6 FU (off diet) to 2.6 +/- 0.4 FU (n = 7 and 8, P < .04, t test) in arginine-supplemented mice versus clotrimazole. In conclusion, the major mechanism by which arginine supplementation reduces red cell density (MCHC) in S+S-Antilles mice is by inhibiting the Ca(++)-activated K(+) channel.

  5. Differential regulation of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-1 beta production in human myeloid leukemia cell lines and peripheral blood mononuclear cells.

    PubMed

    Kubin, M; Chow, J M; Trinchieri, G

    1994-04-01

    Natural killer cell-stimulatory factor or interleukin-12 (NKSF/IL-12) was originally identified and purified from the conditioned medium of Epstein-Barr virus (EBV)-transformed B-cell lines. Phorbol diesters were observed to be potent stimulators of NKSF/IL-12 production from the B-cell lines. Although monocytes were found to be the major producers of NKSF/IL-12 in peripheral blood (PB) in response to lipopolysaccharide (LPS) or to Staphylococcus aureus, several myeloid leukemia cell lines tested did not produce detectable NKSF/IL-12 either constitutively or upon stimulation with phorbol diesters. However, three lines, ML-3, HL-60, and THP-1, responded to LPS with significant levels of NKSF/IL-12 production, whereas S aureus was effective only on THP-1 cells. When the cell lines were preincubated with compounds known to induce them to differentiate, production of tumor necrosis factor alpha (TNF alpha) and IL-1 beta was in most cases maximal in cells with differentiated characteristics, whereas NKSF/IL-12 production in response to LPS in all three producing cell lines was significantly enhanced only by pretreatment with dimethylsulfoxide (DMSO) for 24 hours, or by costimulation with interferon gamma (IFN gamma). The efficiency of DMSO enhancement of NKSF/IL-12 production decreased after 2 to 5 days of incubation, when the cells acquired differentiated characteristics. Unlike DMSO, IFN gamma enhanced NKSF/IL-12 production, and IL-10 and dexamethasone inhibited it in cell lines and PB mononuclear cells stimulated by either LPS or S aureus. The ability of the cell lines to respond to these mediators of possibly physiologically relevant function provides a tissue-culture model for studying their mechanism of action.

  6. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  7. Clinical, genetic and fertility studies of Indians with beta S-globin gene and the influence of Hb S on Plasmodium falciparum malaria infection.

    PubMed

    Joishy, S K; Hassan, K; Lopes, M; Lie-Injo, L E

    1988-01-01

    Clinical studies were carried out on mild Indian sickle cell anaemia in Malaysia, and genetic and fertility studies were carried out on 101 families with and without sickle-cell haemoglobin (Hb S). The Indian sickle cell anaemia patients reached adulthood, and pregnancies and deliveries were uneventful without blood transfusion. There was no foetal wastage and the number of children produced was not significantly different from that in families without Hb S. 28 Indian patients hospitalized with Plasmodium falciparum malaria infection were also examined for their beta S genotype. P. falciparum malaria infection occurred much more frequently in individuals without Hb S than in Hb S carriers.

  8. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    PubMed

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  9. hCG, the wonder of today's science

    PubMed Central

    2012-01-01

    Background hCG is a wonder. Firstly, because hCG is such an extreme molecule. hCG is the most acidic glycoprotein containing the highest proportion of sugars. Secondly, hCG exists in 5 common forms. Finally, it has so many functions ranging from control of human pregnancy to human cancer. This review examines these molecules in detail. Content These 5 molecules, hCG, sulfated hCG, hyperglycosylated hCG, hCG free beta and hyperglycosylated free beta are produced by placental syncytiotrophoblast cells and pituitary gonadotrope cells (group 1), and by placental cytotrophoblast cells and human malignancies (group 2). Group 1 molecules are both hormones that act on the hCG/LH receptor. These molecules are central to human menstrual cycle and human pregnancy. Group 2 molecules are autocrines, that act by antagonizing a TGF beta receptor. These molecules are critical to all advanced malignancies. Conclusions The hCG groups are molecules critical to both the molecules of pregnancy or human life, and to the advancement of cancer, or human death. PMID:22455390

  10. The mechanism of synthesis of a mixed-linkage (1-->3), (1-->4)beta-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex

    PubMed

    Buckeridge; Vergara; Carpita

    1999-08-01

    We examined the mechanism of synthesis in vitro of (1-->3), (1-->4)beta-D-glucan (beta-glucan), a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-linkages. The ratio of cellotriosyl and cellotetraosyl units in the native polymer is strictly controlled at between 2 and 3 in all grasses, whereas the ratios of these units in beta-glucan formed in vitro vary from 1.5 with 5 &mgr;M UDP-glucose (Glc) to over 11 with 30 mM substrate. These results support a model in which three sites of glycosyl transfer occur within the synthase complex to produce the cellobiosyl-(1-->3)-D-glucosyl units. We propose that failure to fill one of the sites results in the iterative addition of one or more cellobiosyl units to produce the longer cellodextrin units in the polymer. Variations in the UDP-Glc concentration in excised maize (Zea mays) coleoptiles did not result in wide variations in the ratios of cellotriosyl and cellotetraosyl units in beta-glucan synthesized in vivo, indicating that other factors control delivery of UDP-Glc to the synthase. In maize sucrose synthase is enriched in Golgi membranes and plasma membranes and may be involved in the control of substrate delivery to beta-glucan synthase and cellulose synthase.

  11. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  12. Cross-class resistance to non-beta-lactam antimicrobials in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae.

    PubMed

    Procop, Gary W; Tuohy, Marion J; Wilson, Deborah A; Williams, Delisa; Hadziyannis, Emilia; Hall, Gerri S

    2003-08-01

    Extended spectrum beta-lactamases are modified beta-lactamase enzymes that impart resistance to third-generation cephalosporins and make all beta-lactam antibiotics and cephalosporins useless for therapy. We compared the antimicrobial susceptibility profiles of extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing isolates of Klebsiella pneumoniae. The ESBL producers had significantly diminished susceptibility compared with the non-ESBL producers for gentamicin (P < .001), tobramycin (P < .001), amikacin (P < .005), trimethoprim-sulfamethoxazole (P < .01), ciprofloxacin (P < .001), and nitrofurantoin (P < .001). All isolates were susceptible to imipenem. ESBL-producing K pneumoniae may also be resistant to non-beta-lactam antibiotics. Therefore, susceptibility testing of these isolates is critical for guiding therapy.

  13. Uroepithelial cells are part of a mucosal cytokine network.

    PubMed Central

    Hedges, S; Agace, W; Svensson, M; Sjögren, A C; Ceska, M; Svanborg, C

    1994-01-01

    This study compared the cytokine production of uroepithelial cell lines in response to gram-negative bacteria and inflammatory cytokines. Human kidney (A498) and bladder (J82) epithelial cell lines were stimulated with either Escherichia coli Hu734, interleukin 1 alpha (IL-1 alpha), or tumor necrosis factor alpha (TNF-alpha). Supernatant samples were removed, and the RNA was extracted from cells at 0, 2, 6, and 24 h. The secreted cytokine levels were determined by bioassay or immunoassay; mRNA was examined by reverse transcription-PCR. The two cell lines secreted IL-6 and IL-8 constitutively. IL-6 and IL-8 mRNA were constitutively produced in both cell lines; IL-1 beta mRNA was detected in J82 cells. IL-1 alpha induced significantly higher levels of IL-6 secretion than did E. coli Hu734 or TNF-alpha. IL-1 alpha and TNF-alpha induced significantly higher levels of IL-8 secretion than did E. coli Hu734. Secreted IL-1 beta was not detected; IL-1 alpha and TNF-alpha were not detected above the levels used for stimulation. IL-1 alpha, IL-1 beta, IL-6, and IL-8 mRNAs were detected in both cell lines after exposure to the stimulants. TNF-alpha mRNA was occasionally detected in the J82 cell line after TNF-alpha stimulation. Cytokine (IL-6 and IL-8) and control (glyceraldehyde 3-phosphate dehydrogenase [G3PDH] and beta-actin) mRNA concentrations were quantitated with internal PCR standards. Cytokine mRNA levels relative to beta-actin mRNA levels were the highest in E. coli-stimulated cells. In comparison, the cytokine mRNA levels relative to G3PDH mRNA levels were the highest in IL-1 alpha-stimulated cells. beta-Actin mRNA levels decreased after bacterial stimulation but not after cytokine stimulation, while G3PDH mRNA levels increased in response to all of the stimulants tested. These results suggested that E. coli Hu734 lowered the beta-actin mRNA levels in uroepithelial cells, thus distorting the IL-6 and IL-8 mRNA levels relative to this control. In summary, E. coli IL-1 alpha and TNF-alpha were found to activate the de novo synthesis and secretion of IL-6 and IL-8 in uroepithelial cells. These results emphasize the role of epithelial cells in cytokine-mediated responses during the early stages of infection. Images PMID:8188354

  14. Transient detection of beta-galactosidase activity in hematopoietic cells, following reinjection of retrovirally marked autologous blood progenitors in patients with breast or ovarian cancer receiving high-dose chemotherapy.

    PubMed

    Bagnis, Claude; Chabannon, Christian; Gravis, Gwenaelle; Imbert, Anne-Marie; Maroc, Christine; Bardin, Florence; Ladaique, Patrick; Viret, Frédéric; Genre, Dominique; Faucher, Catherine; Stoppa, Anne-Marie; Vey, Norbert; Blaise, Didier; Maraninchi, Dominique; Viens, Patrice; Mannoni, Patrice

    2002-02-01

    The aim of this report is to demonstrate the feasibility and safety of genetically modifying autologous human blood CD34(+) cells in vitro, with a retroviral vector that encodes a marker gene. The fate of genetically modified cells and their progeny was followed in vivo, after reinfusion in patients treated with high-dose chemotherapy for poor-prognosis breast or ovarian carcinomas. Six patients received genetically modified autologous peripheral blood progenitors, together with unmanipulated aphereses, following high-dose chemotherapy. CD34(+) cells were immunoselected from aphereses, and retrovirally transduced by coculture with the retroviral vector producing cell line, to express a nuclear localized version of E. coli beta-galactosidase, encoded by a defective Moloney-murine leukemia virus-derived retroviral vector. Cells were reinfused to the patients after myeloablation, without prior ex vivo selection. Five out of six patients showed the transient presence of low numbers of beta-galactosidase(+) cells, as detected with an immunocytochemical assay, in the peripheral blood, during the first month following infusion. One patient had beta-galactosidase(+) clonogenic progenitors in her marrow at two months after transplantation, including HPP-CFC; intriguingly, this patient had the lowest percentage of X-gal(+) cells in her graft. Patients experienced side effects that are often observed after high-dose chemotherapy. Feasibility and safety of genetic modification of human hematopoietic stem and progenitor cells are demonstrated by this study. Ex vivo or in vivo selection is not mandatory, even in clinical situations where transduced cells have no survival advantage over wild-type cells; however, significant improvements in gene transfer technology are needed to achieve potentially useful levels of expression in such clinical situations.

  15. [Antimicrobial activity of fosfomycin under various conditions against standard strains, beta-lactam resistant strains, and multidrug efflux system mutants].

    PubMed

    Mikuniya, Takeshi; Hiraishi, Toru; Maebashi, Kazunori; Ida, Takashi; Takata, Toshihiko; Hikida, Muneo; Yamada, Sakuo; Gotoh, Naomasa; Nishino, Takeshi

    2005-04-01

    The purpose of this study was to evaluate the possible benefit of fosfomycin (FOM) as prophylactic antibiotic in terms of antimicrobial activity and the potential of inducibility of beta-lactamase, compared with cefazolin, cefotiam, cefmetazole, and piperacillin that are commonly used as perioperative agents. The in vitro activity of FOM against aerobic Gram-negative bacteria using Mueller-Hinton agar or nutrient agar supplemented with glucose-6-phosphate (G6P) as tested medium increased within a range from 2 to 256 times the activity in the medium without G6P. However, the susceptibility of Gram-positive bacteria to FOM remained largely unchanged with or without G6P. There was no aerobic- or anaerobic-bacteria which changed susceptibility against beta-lactam antibiotics under various tested medium conditions. FOM demonstrated strong bactericidal activity against Escherichia coli and Pseudomonas aeruginosa in a dose dependent manner, and decreased viable cell counts of Staphylococcus aureus. In the case of P. aeruginosa, transmission electron micrographs study revealed that numerous lysed cells were present 2 hours after treatment with FOM at four times the MIC. First and second generation cephalosporins induced AmpC-type beta-lactamase in a dose dependent manner among beta-lactamase inducible strains of P. aeruginosa and Enterobacter cloacae. On the other hand, inducible activity of FOM on beta-lactamase production was less than 1/25 to 1/65 compared with those of cephalosporins. In addition, FOM maintained strong antimicrobial activity for over then 20 years after marketing, because of the excellent stability against various types of beta-lactamase produced by plasmid-carrying bacteria and clinical isolates. FOM was not extruded by four types of efflux systems, such as MexAB-OprM, MexCD-OprJ, MexXY/ OprM and MexEF-OprN, however beta-lactam antibiotics were substrates of MexAB-OprM and MexCD-OprJ. In conclusion, FOM provides adequate coverage for both aerobic Gram-positive and Gram-negative bacteria causing postoperative infections. Further, FOM would not select/concentrate beta-lactamase producing bacteria in the clinical fields and would not be a substrate for multidrug efflux system of P. aeruginosa.

  16. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajenova, Olga, E-mail: o.bazhenova@spbu.ru; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034; Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA andmore » beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.« less

  17. [Chronic mild inflammation links obesity, metabolic syndrome, atherosclerosis and diabetes].

    PubMed

    Andel, M; Polák, J; Kraml, P; Dlouhý, P; Stich, V

    2009-01-01

    Chronic low grade inflammation is relatively new concept in metabolic medicine. This concept describes the relations between the inflammation and adipose tissue, insulin resistence, atherosclerosis and type 2 diabetes mellitus. Macrophages and lymphocytes deposed in adipose tissue produce proinflammatory cytokines which directly or through the CRP liver secretion are targeting endothelial cells, hepatocytes and beta cells of Langerhans islets of pancreas. The dysfunction of these cells follows often further disturbances and in case of beta cells - the cell death. The connection between the adipose tissue insulin resistence, atherosclerosis and type 2 diabetes was earlier described with endocrine and metabolic descriptors. The concept of chronic low grade inflammation creates also another description of multilateral connections in metabolic syndome. The salicylates and the drugs related to them seem to have some glucose lowering properties. The recent development in the field ofchronic low grade inflammation represents also certain therapeutic hope for antiinflammatory intervention in type 2 diabetes.

  18. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  19. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.

    PubMed

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  20. Bimodal electric tissue ablation (BETA): a study on ablation size when the anode is placed on the peritoneum and the liver.

    PubMed

    Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J

    2012-07-01

    In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the cathode and the anode of the DC circuit. Research so far has shown that BETA works best when the anode is placed deep to the skin as the stratum corneum consisted of a layer of a-nucleated cells, which have high electrical resistivity. The liver could be the ideal location to place the anode as it has excellent electrical conductivity, therefore ensuring maximum tissue hydration around the cathode to produce the largest ablations possible. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Isolation and genetic study of p-fluoro-DL-phenylalanine-resistant mutants overproducing beta-phenethyl-alcohol in Saccharomyces cerevisiae.

    PubMed

    Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S

    1991-12-01

    p-Fluoro-DL-phenylalanine (PFP)-resistant mutants which produce a large amount of beta-phenethyl-alcohol, a rose-like flavor component, were isolated from the isogenic strains X2180-1A and X2180-1B of Saccharomyces cerevisiae. Cells of these mutants accumulated phenylalanine and tryptophan more than 3-fold times that of wild-type cells, while they accumulated less than half the tyrosine. The activity of prephenate dehydrogenase (PDG) (EC 1.3.1.12) was markedly decreased while that of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) was increased. Genetic analysis revealed that the mutation occurred at the TYR1 locus, encoding PDG, and that the mutated TYR1 gene, try1-pfp, caused both PFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies with cloned tyr1-pfp DNA.

  2. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  3. Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system.

    PubMed

    Klammt, Christian; Schwarz, Daniel; Fendler, Klaus; Haase, Winfried; Dötsch, Volker; Bernhard, Frank

    2005-12-01

    Cell-free expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. The proteins can be produced as precipitates that solubilize in mild detergents usually without any prior denaturation steps. Alternatively, membrane proteins can be synthesized in a soluble form by adding detergents to the cell-free system. However, the effects of a representative variety of detergents on the production, solubility and activity of a wider range of membrane proteins upon cell-free expression are currently unknown. We therefore analyzed the cell-free expression of three structurally very different membrane proteins, namely the bacterial alpha-helical multidrug transporter, EmrE, the beta-barrel nucleoside transporter, Tsx, and the porcine vasopressin receptor of the eukaryotic superfamily of G-protein coupled receptors. All three membrane proteins could be produced in amounts of several mg per one ml of reaction mixture. In general, the detergent 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] was found to be most effective for the resolubilization of membrane protein precipitates, while long chain polyoxyethylene-alkyl-ethers proved to be most suitable for the soluble expression of all three types of membrane proteins. The yield of soluble expressed membrane protein remained relatively stable above a certain threshold concentration of the detergents. We report, for the first time, the high-level cell-free expression of a beta-barrel type membrane protein in a functional form. Structural and functional variations of the analyzed membrane proteins are evident that correspond with the mode of expression and that depend on the supplied detergent.

  4. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  5. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pei; Li, Li; Qi, Hui

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas thatmore » expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.« less

  6. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).

    PubMed

    Litosch, Irene; Pujari, Rajeshree; Lee, Shawn J

    2009-09-01

    Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-beta(1) (PLC-beta(1)) and potentiates stimulation of PLC-beta(1) activity by Galpha(q) in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944-957, lying within the PLC-beta(1) C-terminus alphaA helix and flexible loop of the Galpha(q) binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Galpha(q) or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr(952) and Ile(955) as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr(952) and Ile(955), PLC-beta(1) (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-beta(1) in vitro. COS 7 cells co-transfected with PLC-beta(1) (Y952G/I955G) demonstrate a 10-fold increase in the EC(50) for stimulation and a 60% decrease in maximum stimulation by carbachol via Galpha(q) linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-beta(1) but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-beta(1) and PLC-beta(1) (Y952G/I955G) activity is increased comparably by co-transfection with Galpha(q) and neither is markedly affected by co-transfection with Gbeta(1)gamma(2). Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC(50) for agonist stimulation of WT-PLC-beta(1) by 10-fold, producing a phenotype similar to PLC-beta(1) (Y952G/I955G) with respect to agonist potency. 1-Butanol is without effect on carbachol stimulated PLC activity in cells co-transfected with either PLC-beta(1)(Y952G/I955G) or on endogenous PLC activity, indicating that regulation by PA requires direct interaction with the PLC-beta(1) PA-binding region. These data show that endogenous PA regulates signal output by Galpha(q)-linked GPCRs in transfected cells directly through PLC-beta(1). Galpha(q) and PA may co-ordinate to regulate signaling. Regulation by PA may constitute part of a mechanism that routes receptor signaling to specific PLC isoforms.

  7. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    PubMed

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  8. Lichenase and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  9. Three-Dimensional Bioreactor Technologies for the Cocultivation of Human Mesenchymal Stem/Stromal Cells and Beta Cells

    PubMed Central

    Petry, Florian; Weidner, Tobias; Salzig, Denise

    2018-01-01

    Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy. PMID:29731775

  10. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{submore » 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.« less

  11. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.« less

  12. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin.

    PubMed

    Takeo, Toru; Nakagata, Naomi

    2011-11-01

    Sperm cryopreservation is useful for the effective storage of genomic resources derived from genetically engineered mice. However, freezing the sperm of C57BL/6 mice, the most commonly used genetic background for genetically engineered mice, considerably reduces its fertility. We previously reported that methyl-beta-cyclodextrin dramatically improved the fertility of frozen/thawed C57BL/6 mouse sperm. Recently, it was reported that exposing sperm to reduced glutathione may alleviate oxidative stress in frozen/thawed mouse sperm, thereby enhancing in vitro fertilization (IVF); however, the mechanism underlying this effect is poorly understood. In the present study, we examined the combined effects of methyl-beta-cyclodextrin and reduced glutathione on the fertilization rate of IVF with frozen/thawed C57BL/6 mouse sperm and the characteristic changes in the zona pellucida induced by reduced glutathione. Adding reduced glutathione to the fertilization medium increased the fertilization rate. Methyl-beta-cyclodextrin and reduced glutathione independently increased fertilization rates, and their combination produced the strongest effect. We found that reduced glutathione increased the amount of free thiols in the zona pellucida and promoted zona pellucida enlargement. Finally, 2-cell embryos produced by IVF with the addition of reduced glutathione developed normally and produced live offspring. In summary, we have established a novel IVF method using methyl-beta-cyclodextrin during sperm preincubation and reduced glutathione during the IVF procedure to enhance fertility of frozen/thawed C57BL/6 mouse sperm.

  13. Nucleotide sequence of the beta-lactamase gene from Enterococcus faecalis HH22 and its similarity to staphylococcal beta-lactamase genes.

    PubMed Central

    Zscheck, K K; Murray, B E

    1991-01-01

    The nucleotide sequence of the constitutively produced beta-lactamase (Bla) gene from Enterococcus faecalis HH22 was shown to be identical to the published sequences of three of four staphylococcal type A beta-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred forty nucleotides upstream of the beta-lactamase start codon were determined for an inducible staphylococcal beta-lactamase and were identical to those of the constitutively expressed enterococcal gene, indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The genes for the enterococcal Bla and an inducible staphylococcal Bla were each cloned into a shuttle vector and transformed into enterococcal and staphylococcal recipients. The major difference between the backgrounds of the two hosts was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene. The location of the enzyme was found to be host dependent, since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell-bound enzyme in the enterococcus. On the basis of the identities of the enterococcal Bla and several staphylococcal Bla sequences, these data suggest the recent spread of beta-lactamase to enterococci and also suggest the loss of a functional repressor. PMID:1952840

  14. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.

    PubMed

    Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R

    2014-01-01

    Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.

  15. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, A.; Hamdy, M.K.

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline beta-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato beta-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcohol fermentation of the filtrate resulted in an alcohol contentmore » of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.« less

  17. Regulation of dendritic cell function through Toll-like receptors.

    PubMed

    Kaisho, Tsuneyasu; Akira, Shizuo

    2003-06-01

    Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.

  18. Biliary diseases as main causes of pyogenic liver abscess caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae.

    PubMed

    Shi, Shao-Hua; Feng, Xiao-Ning; Lai, Ming-Chun; Kong, Hai-Shen; Zheng, Shu-Sen

    2017-05-01

    Little is known about aetiology and morbidity and clinical characteristics of pyogenic liver abscess caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. An analysis between pyogenic liver abscess patients caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae isolates and those caused by non-extended-spectrum beta-lactamase-producing Enterobacteriaceae was performed. Among 817 pyogenic liver abscess patients, there were 176 patients (21.5%) with pyogenic liver abscess of biliary origin, and 67 pyogenic liver abscess patients (8.2%) caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae isolates (mainly Escherichia coli and Klebsiella pneumoniae). Of 176 pyogenic liver abscess patients related to biliary disorders, there were 48 pyogenic liver abscess patients (27.3%) caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Within 67 pyogenic liver abscess patients caused by Enterobacteriaceae expressing extended-spectrum beta-lactamases, the occurrences of 48 pyogenic liver abscess patients (71.6%) were associated with biliary disorders. When compared with pyogenic liver abscess patients caused by non-extended-spectrum beta-lactamase-producing Enterobacteriaceae, there were significantly greater incidences of polymicrobial infections, bacteremia, pulmonary infection, recurrence and death in pyogenic liver abscess patients caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Carbapenems remain mainstay drugs against extended-spectrum beta-lactamase-producing E. coli and K. pneumoniae. Independent risk factors for occurrence of pyogenic liver abscess caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae were biliary disorders including extra- and intrahepatic cholangiolithiasis and an abnormal bilioenteric communication between bile and gut, a treatment history of malignancy such as operation and chemotherapy, pulmonary infection, and diabetes mellitus. Pyogenic liver abscess caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae isolates mainly occurs in patients with biliary disorders or with a treatment history of malignancy. The mainstay of treatment remains carbapenems in combination with adequate aspiration or drainage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mitogenicity of M5 protein extracted from Streptococcus pyogenes cells is due to streptococcal pyrogenic exotoxin C and mitogenic factor MF.

    PubMed Central

    Schmidt, K H; Gerlach, D; Wollweber, L; Reichardt, W; Mann, K; Ozegowski, J H; Fleischer, B

    1995-01-01

    M proteins of Streptococcus pyogenes are virulence factors which impede phagocytosis, bind to many plasma proteins, and induce formation of cross-reactive autoimmune antibodies. Recently, it has been reported that some M proteins, extracted with pepsin from streptococci (pep M), are superantigens. One of these, pep M5, was investigated in detail and was shown to stimulate human T cells bearing V beta 2, V beta 4, and V beta 8. In the present study, we extracted and purified M5 protein by different biochemical methods from two M type 5 group A streptococcal strains. The crude extracts were fractionated by affinity chromatography and ion-exchange chromatography. All fractions were tested in parallel for M protein by immunoblotting and for T-cell-stimulating activity. Although several crude preparations of M5 protein were associated with mitogenicity for V beta 2 and V beta 8 T cells, the M5 proteins, irrespective of the extraction method, could be purified to the extent that they were no longer mitogenic. The mitogenic activity was not destroyed during the purification procedures but was found in fractions separated from M protein. In these fractions, streptococcal pyrogenic exotoxin C and mitogenic factor MF could be detected by protein blotting and enzyme-linked immunosorbent assay. Moreover, anti-M protein sera did not inhibit the mitogenic activity of crude extracts, but antisera which contained anti-streptococcal pyrogenic exotoxin C antibodies showed inhibition. The inability of M5 protein to stimulate T cells was confirmed with recombinant pep M5 produced in Escherichia coli. Our data strongly suggest that the mitogenic activity in M protein preparations is caused by traces of streptococcal superantigens different from M protein. PMID:7591107

  20. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta.

    PubMed

    Seki, E; Tsutsui, H; Nakano, H; Tsuji, N; Hoshino, K; Adachi, O; Adachi, K; Futatsugi, S; Kuida, K; Takeuchi, O; Okamura, H; Fujimoto, J; Akira, S; Nakanishi, K

    2001-02-15

    IL-18, produced as biologically inactive precursor, is secreted from LPS-stimulated macrophages after cleavage by caspase-1. In this study, we investigated the mechanism underlying caspase-1-mediated IL-18 secretion. Kupffer cells constantly stored IL-18 and constitutively expressed caspase-1. Inhibition of new protein synthesis only slightly reduced IL-18 secretion, while it decreased and abrogated their IL-1beta and IL-12 secretion, respectively. Kupffer cells deficient in Toll-like receptor (TLR) 4, an LPS-signaling receptor, did not secrete IL-18, IL-1beta, and IL-12 upon LPS stimulation. In contrast, Kupffer cells lacking myeloid differentiation factor 88 (MyD88), an adaptor molecule for TLR-mediated-signaling, secreted IL-18 without IL-1beta and IL-12 production in a caspase-1-dependent and de novo synthesis-independent manner. These results indicate that MyD88 is essential for IL-12 and IL-1beta production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD88-independent fashion after stimulation with LPS. In addition, infection with Listeria monocytogenes, products of which have the capacity to activate TLR, increased serum levels of IL-18 in wild-type and MyD88-deficient mice but not in caspase-1-deficient mice, whereas it induced elevation of serum levels of IL-12 in both wild-type and caspase-1-deficient mice but not in MyD88-deficient mice. Taken together, these results suggested caspase-1-dependent, MyD88-independent IL-18 release in bacterial infection.

  1. A novel endo-beta-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum.

    PubMed Central

    de la Cruz, J; Pintor-Toro, J A; Benítez, T; Llobell, A; Romero, L C

    1995-01-01

    The mycoparasitic fungus Trichoderma harzianum CECT 2413 produces at least three extracellular beta-1,3-glucanases. The most basic of these extracellular enzymes, named BGN13.1, was expressed when either fungal cell wall polymers or autoclaved mycelia from different fungi were used as the carbon source. BGN13.1 was purified to electrophoretic homogeneity and was biochemically characterized. The enzyme was specific for beta-1,3 linkages and has an endolytic mode of action. A synthetic oligonucleotide primer based on the sequence of an internal peptide was designed to clone the cDNA corresponding to BGN13.1. The deduced amino acid sequence predicted a molecular mass of 78 kDa for the mature protein. Analysis of the amino acid sequence indicates that the enzyme contains three regions, one N-terminal leader sequence; another, nondefined sequence; and one cysteine-rich C-terminal sequence. Sequence comparison shows that this beta-1,3-glucanase, first described for filamentous fungi, belongs to a family different from that of its previously described bacterial, yeast, and plant counterparts. Enzymatic-activity, protein, and mRNA data indicated that bgn13.1 is repressed by glucose and induced by either fungal cell wall polymers or autoclaved yeast cells and mycelia. Finally, experimental evidence showed that the enzyme hydrolyzes yeast and fungal cell walls. PMID:7592488

  2. Expression of an insulin/interleukin-1 receptor antagonist hybrid gene in insulin-producing cell lines (HIT-T15 and NIT-1) confers resistance against interleukin-1-induced nitric oxide production.

    PubMed Central

    Welsh, N; Bendtzen, K; Welsh, M

    1995-01-01

    A hybrid gene consisting of the insulin gene enhancer/promoter region, the signal sequence, the insulin B- and C-chains, and the human interleukin-1 receptor antagonist (IL-1ra) gene was constructed. This hybrid gene was transfected together with the pSV2-neo construct into the insulin-producing cell lines HIT-T15 and NIT-1. One of the geneticin-selected clones, HITra2, expressed a 1.4-kb mRNA, which hybridized both to insulin and IL-1ra-cDNA in Northern blot analysis. Three proteins, with the mol wt 23, 17, and 14 kD, were immunoprecipitated with anti-IL-1ra antibodies from [35S]methionine-labeled HITra2 cells. Both at a low and at a high glucose concentration, 4-5 ng of IL-1ra/10(6) cells (ELISA) was released from these cells. On the other hand, a high glucose concentration evoked a three-fold increase in the release of insulin, suggesting that IL-1ra was released constitutively. Measured by nitrite production, transfected HIT, and NIT-1 cells exhibited a more than 10-fold decrease in IL-1 beta sensitivity. Since the conditioned culture media from the HITra2 cells exhibited an anti-IL-1 beta activity of only 0.5 U/ml, and mixed culture of HITra2 cells and isolated rat islets prevented IL-1 beta induced inhibition of insulin release, it is likely that IL-1ra acts locally at the cell surface. It is concluded that expression of a hybrid insulin/IL-1ra gene confers resistance to IL-1 and that this technique may be used to elucidate the role of IL-1 in autoimmune disorders such as insulin-dependent diabetes mellitus. Images PMID:7706480

  3. Pregnancy and labor increase the capacity of human myometrial cells to secrete parathyroid hormone-related protein.

    PubMed

    Shenberger, J S; Dixon, P S; Choate, J; Helal, K; Shew, R L; Barth, W

    2001-02-16

    Parathyroid hormone-related protein (PTHrP), a oncofetal gene product possessing smooth muscle relaxant properties, has been found in rat and human uterine smooth muscle cells (USMC) where it is postulated to regulate myometrial tone and/or blood flow. Studies investigating the gestational regulation of PTHrP in human USMC have not been performed. This study was conducted to determine if pregnancy alters the capacity of USMC to secrete or respond to PTHrP. USMC cultures were established from 8 hysterectomy specimens (H) and 7 non-laboring (NP) and 5 laboring term pregnant uterine biopsies (LP). PTHrP secretion was measured at baseline and in response to TGF-beta1 using a immunoradiometric assay. The USMC response to PTHrP was assessed by incubating cultures with human (1-34)PTHrP and measuring cellular cAMP by radioimmunoassay. We found that cultures from the groups did not differ with respect to basal PTHrP secretion. TGF-beta1, on the other hand, produced dose-dependent increases in secreted PTHrP in each group such that LP>NP>H at 12 hrs and LP>NP and H 24 hrs. Maximal responses were found at 24 hrs in cells treated with 10 ng/ml TGF-beta1 (LP: 2034+/-366 vs NP: 1485+/-427; H: 1250+/-202 fmol/mg). Incubation of cultures with PTHrP produced dose-dependent increases in cAMP production, with 10(-7) M increasing levels by 64%. Neither pregnancy nor labor significantly affected the cAMP response. These findings indicate that the human myometrium has the capacity to increase PTHrP secretion during pregnancy and labor through a TGF-beta-dependent pathway. Such findings are consistent with a role of PTHrP in enhancing uterine blood flow.

  4. A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia.

    PubMed

    Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry

    2016-09-01

    When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.

  5. A Role for the Stele in Intertissue Signaling in the Initiation of Abscission in Bean Leaves (Phaseolus vulgaris L.).

    PubMed Central

    Thompson, D. S.; Osborne, D. J.

    1994-01-01

    A combination of microdissection and viscometric endo-[beta]-1,4-glucanhydrolase assays was used to investigate if the early appearance of the abscission-related isoelectric point-9.5 endo-[beta]-1,4-glucanhydrolase in the stele of the pulvinus and abscission zone of the foliar abscission zone of Phaseolus vulgaris L. prior to cell separation (reported by E. del Campillo, P.D. Reid, R. Sexton, L.N.Lewis [1990] Plant Cell 2: 245-254) indicates that the vascular tissue of this region has a specific role in abscission. We find that no endo-[beta]-1,4-glucanhydrolase activity or cell separation is detectable in the abscission zone cortex if the abscission zone cortex is separated from the stele tissue. If the stele is separated from the abscission zone cortex after a lag period but again before any endo-[beta]-1,4-glucanhydrolase activity is present in the abscission zone cortex, then the enzyme is produced in the cortex and abscission ensues. We conclude that the cortex of the abscission zone is able to abscind independently of the vascular tissue only after the vascular tissue has begun to respond to abscission-promoting signals. We suggest that ethylene promotes formation of an abscission-permitting signal in the stele of the abscission zone and pulvinus, and that this signal is an essential elicitor for the synthesis of cell separation enzymes in the target cells of the abscission zone cortex. PMID:12232206

  6. Dysregulation of in vitro cytokine production by monocytes during sepsis.

    PubMed Central

    Munoz, C; Carlet, J; Fitting, C; Misset, B; Blériot, J P; Cavaillon, J M

    1991-01-01

    The production by monocytes of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) in intensive care unit (ICU) patients with sepsis syndrome (n = 23) or noninfectious shock (n = 6) is reported. Plasma cytokines, cell-associated cytokines within freshly isolated monocytes and LPS-induced in vitro cytokine production were assessed at admission and at regular intervals during ICU stay. TNF alpha and IL-6 were the most frequently detected circulating cytokines. Despite the fact that IL-1 alpha is the main cytokine found within monocytes upon in vitro activation of cells from healthy individuals, it was very rarely detected within freshly isolated monocytes from septic patients, and levels of cell-associated IL-1 beta were lower than those of TNF alpha. Cell-associated IL-1 beta and TNF alpha were not correlated with corresponding levels in plasma. Upon LPS stimulation, we observed a profound decrease of in vitro IL-1 alpha production by monocytes in all patients, and of IL-1 beta, IL-6, and TNF alpha in septic patients. This reduced LPS-induced production of cytokines was most pronounced in patients with gram-negative infections. Finally, monocytes from survival patients, but not from nonsurvival ones recovered their capacity to produce normal amounts of cytokines upon LPS stimulation. In conclusion, our data indicate an in vivo activation of circulating monocytes during sepsis as well as in noninfectious shock and suggest that complex regulatory mechanisms can downregulate the production of cytokines by monocytes during severe infections. Images PMID:1939659

  7. Receptor protection studies comparing recombinant and native nicotinic receptors: Evidence for a subpopulation of mecamylamine-sensitive native alpha3beta4* nicotinic receptors.

    PubMed

    Free, R Benjamin; Kaser, Daniel J; Boyd, R Thomas; McKay, Dennis B

    2006-01-09

    Studies involving receptor protection have been used to define the functional involvement of specific receptor subtypes in tissues expressing multiple receptor subtypes. Previous functional studies from our laboratory demonstrate the feasibility of this approach when applied to neuronal tissues expressing multiple nicotinic acetylcholine receptors (nAChRs). In the current studies, the ability of a variety of nAChR agonists and antagonists to protect native and recombinant alpha3beta4 nAChRs from alkylation were investigated using nAChR binding techniques. Alkylation of native alpha3beta4* nAChRs from membrane preparations of bovine adrenal chromaffin cells resulted in a complete loss of specific [(3)H]epibatidine binding. This loss of binding to native nAChRs was preventable by pretreatment with the agonists, carbachol or nicotine. The partial agonist, cytisine, produced partial protection. Several nAChR antagonists were also tested for their ability to protect. Hexamethonium and decamethonium were without protective activity while mecamylamine and tubocurarine were partially effective. Addition protection studies were performed on recombinant alpha3beta4 nAChRs. As with native alpha3beta4* nAChRs, alkylation produced a complete loss of specific [(3)H]epibatidine binding to recombinant alpha3beta4 nAChRs which was preventable by pretreatment with nicotine. However, unlike native alpha3beta4* nAChRs, cytisine and mecamylamine, provide no protection for alkylation. These results highlight the differences between native alpha3beta4* nAChRs and recombinant alpha3beta4 nAChRs and support the use of protection assays to characterize native nAChR subpopulations.

  8. [Tissue localization and expression difference of endogenous beta-glucosidase in digestive system of Musca domestica third instar larvae].

    PubMed

    Hu, Rong; Zhang, Shu; Wu, Jian-Wei; Guo, Guo; Fu, Ping

    2013-08-01

    To study the tissue localization and expression difference of endogenous beta-glucosidase in digestive system of Musca domestica third instar larvae. The digestive system of the 3rd instar larvae of Musca domestic was taken for the below tests. Tissue localization of endogenous beta-glucosidase mRNA was identified by in situ hybridization. Cellulase was localized by immunohistochemistry. The enzymatic activity of beta-glucosidase was measured by 3, 5-dinitrosalicylic acid(DNS) assay. The relative mRNA expression levels of M. domestica beta-glucosidase gene in these organs were determined by RT-PCR. Beta-glucosidase mRNA, with in situ hybridization, was shown in the epithelial cells of midgut, salivary glands and foregut of the larvae. The immunohistochemical analysis on larvae tissues revealed that cellulase was produced and secreted by the epithelial cells of the midgut, salivary glands and foregut. beta-glucosidase activity in salivary glands, foregut, midgut, and hindgut was (0.80 +/- 0.06), (0.38 +/- 0.02), (1.20 +/- 0.05) and (0.26 +/- 0.02) IU/mg, respectively. There was significant difference in beta-glucosidase activity among these digestive organs (P < 0.05). The activity level of beta-glucosidase was highest in midgut [(45.45 +/- 1.27)%], and lowest in hindgut [(9.85 +/- 0.88)%]. However, beta-glucosidase gene were only expressed in the salivary gland, foregut and midgut. Significant differences in gene expression level of beta-glucosidase was found among these organs (P < 0.05). The relative expression quantity of beta-glucosidase gene in midgut and salivary glands were 5 and 3 times higher than that in foregut. The endogenous beta-glucosidase gene is expressed in the foregut, midgut and salivary glands. The midgut and salivary glands of Musca domestica 3rd instar larvae are the primary organs of this enzyme secretion.

  9. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    PubMed

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  10. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    PubMed

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  11. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-{beta} signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu

    2008-05-30

    Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression ofmore » Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.« less

  12. Truncated presequences of mitochondrial F1-ATPase beta subunit from Nicotiana plumbaginifolia transport CAT and GUS proteins into mitochondria of transgenic tobacco.

    PubMed

    Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M

    1994-02-01

    The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.

  13. Hemoglobin switching in sheep and goats. VI. Commitment of erythroid colony-forming cells to the synthesis of betaC globin

    PubMed Central

    1976-01-01

    Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell. PMID:993267

  14. Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues.

    PubMed

    Gronthos, Stan; McCarty, Rosa; Mrozik, Krzysztof; Fitter, Stephen; Paton, Sharon; Menicanin, Danijela; Itescu, Silviu; Bartold, P Mark; Xian, Cory; Zannettino, Andrew C W

    2009-11-01

    Mesenchymal stromal cells (MSCs) and their precursor cells (MPCs) can proliferate and differentiate into multiple mesodermal and some ectodermal and endodermal tissues. Culture-expanded MSCs are currently being evaluated as a possible cell therapy to replace/repair injured or diseased tissues. While a number of mAb reagents with specificity to human MSCs, including STRO-1, STRO-3 (BLK ALP), CD71 (SH2, SH3), CD106 (VCAM-1), CD166, and CD271, have facilitated the isolation of purified populations of human MSCs from primary tissues, few if any mAb reagents have been described that can be used to isolate equivalent cells from other species. This is of particular relevance when assessing the tissue regenerative efficacy of MSCs in large immunocompetent, preclinical animal models of disease. In light of this, we sought to generate novel monoclonal antibodies (mAb) with specific reactivity against a cell surface molecule that is expressed at high levels by MSCs from different species. Using CD106 (VCAM-1)-selected ovine MSCs as an immunogen, mAb-producing hybridomas were selected for their reactivity to both human and ovine MSCs. One such hybridoma, termed STRO-4, produced an IgG mAb that reacted with <5% of human and ovine bone marrow (BM) mononuclear cells. As a single selection reagent, STRO-4 mAb was able to enrich colony-forming fibroblasts (CFU-F) in both human and ovine BM by 16- and 8-folds, respectively. Cells isolated with STRO-4 exhibited reactivity with markers commonly associated with MSCs isolated by plastic adherence including CD29, CD44, and CD166. Moreover, when placed in inductive culture conditions in vitro, STRO-4(+) MSCs exhibited multilineage differentiation potential and were capable of forming a mineralized matrix, lipid-filled adipocytes, and chondrocytes capable of forming a glycosaminoglycan-rich matrix. Biochemical analysis revealed that STRO-4 identified the beta isoform of heat shock protein-90 (Hsp90beta). In addition to identifying an antibody reagent that identifies a highly conserved epitope expressed by MSCs from different species, our study also points to a potential role for Hsp90beta in MSC biology.

  15. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo.

    PubMed

    Chumakova, Olga V; Liopo, Anton V; Andreev, Valery G; Cicenaite, Inga; Evers, B Mark; Chakrabarty, Shilla; Pappas, Todd C; Esenaliev, Rinat O

    2008-03-18

    The goal of this study was to enhance gene delivery and tumor cell transfection in vivo by using a combination of ultrasonication with complex nanoparticles consisting of two types of nanoparticles: PEI/DNA beta-gal plasmid with highly positive zeta-potential and air-filled poly (lactic-co-glycolic acid) (PLGA) particles (with negative zeta-potential) manufactured in our laboratory. The PLGA/PEI/DNA nanoparticles were a colloid with positive zeta-potential and injected i.v. in nude mice with DU145 human prostate tumors. We found that the combination of PLGA/PEI/DNA nanoparticles with ultrasonication substantially enhanced tumor cell transfection in vivo. The overexpression of beta-gal gene was evaluated histochemically and by Western blot analysis. At least an 8-fold increase of the cell transfection efficacy was obtained in irradiated tumors compared to non-irradiated controls, while little to no cell death was produced by ultrasonication.

  16. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    PubMed

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  17. Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta Cells

    PubMed Central

    van der Meulen, Talitha; Xie, Ruiyu; Kelly, Olivia G.; Vale, Wylie W.; Sander, Maike; Huising, Mark O.

    2012-01-01

    The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. PMID:23251699

  18. Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes.

    PubMed

    Creek, K E; Geslani, G; Batova, A; Pirisi, L

    1995-01-01

    Retinoids (vitamin A and its natural and synthetic derivatives) have shown potential as chemopreventive agents, and diets poor in vitamin A and/or its precursor beta-carotene have been linked to an increased risk of cancer at several sites including the cervix. Human papillomavirus (HPV) plays an important role in the etiology of cervical cancer. We have developed an in vitro model of cancer progression using human keratinocytes (HKc) immortalized by HPV16 DNA (HKc/HPV16). Although immortal, early passage HKc/HPV16, like normal HKc, require epidermal growth factor (EGF) and bovine pituitary extract (BPE) for proliferation and undergo terminal differentiation in response to serum and calcium. However, following prolonged culture, growth factor independent HKc/HPV16 lines that no longer require EGF and BPE can be selected (HKc/GFI). Further selection of HKc/GFI produces lines that are resistant to serum- and calcium- induced terminal differentiation (HKc/DR). HKc/DR, but not early passage HKc/HPV16, are susceptible to malignant conversion following transfection with viral Harvey ras or Herpes simplex virus type II DNA. We have investigated the sensitivity of low to high passage HKc/HPV16 and HKc/GFI to growth control by all-trans-retinoic acid (RA, an active metabolite of vitamin A). Early passage HKc/HPV16 are very sensitive to growth inhibition by RA, and in these cells RA decreases the expression of the HPV16 oncogenes E6 and E7. However, as the cells progress in culture they lose their sensitivity to RA. Growth inhibition by RA may be mediated through the cytokine transforming growth factor-beta (TGF-beta), a potent inhibitor of epithelial cell proliferation. RA treatment of HKc/HPV16 and HKc/GFI results in a dose-and time-dependent induction (maximal of 3-fold) in secreted levels of TGF-beta. Also, Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced TGF-beta 1 and TGF-beta 2 expression about 3- and 50-fold, respectively. We next studied the effect of TGF-beta 1 and TGF-beta 2 on the proliferation of early to late passage HKc/HPVa6, HKc/GFI and HKc/DR. While early passage HKc/HPV16 were as sensitive as normal HKc to growth inhibition by TGF-beta 1 and TGF-beta 2, the cells became increasingly resistant to TGF-beta during in vitro progression, with the proliferation of HKc/DR being virtually unaffected by TGF-beta 1 or TGF-beta 2 treatment. Overall, loss of growth inhibition by RA parallels loss of TGF-beta sensitivity.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure.

    PubMed

    Kluth, O; Mirhashemi, F; Scherneck, S; Kaiser, D; Kluge, R; Neschen, S; Joost, H-G; Schürmann, A

    2011-03-01

    Carbohydrate-free diet prevents hyperglycaemia and beta cell destruction in the New Zealand Obese (NZO) mouse model. Here we have used a sequential dietary regimen to dissociate the effects of obesity and hyperglycaemia on beta cell function and integrity, and to study glucose-induced alterations of key transcription factors over 16 days. Mice were rendered obese by feeding a carbohydrate-free diet for 18 weeks. Thereafter, a carbohydrate-containing diet was given. Plasma glucose, plasma insulin and total pancreatic insulin were determined, and forkhead box O1 protein (FOXO1) phosphorylation and the transcription factors pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 protein (NKX6.1) and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (avian) (MAFA) were monitored by immunohistochemistry for 16 days. Dietary carbohydrates produced a rapid and continuous increase in plasma glucose in NZO mice between day 2 and 16 after the dietary challenge. Hyperglycaemia caused a dramatic dephosphorylation of FOXO1 at day 2, followed by a progressive depletion of insulin stores. The loss of beta cells was triggered by apoptosis (detectable at day 8), associated with reduction of crucial transcription factors (PDX1, NKX6.1 and MAFA). Incubation of isolated islets from carbohydrate-restricted NZO mice or MIN6 cells with palmitate and glucose for 48 h resulted in a dephosphorylation of FOXO1 and thymoma viral proto-oncogene 1 (AKT) without changing the protein levels of both proteins. The dietary regimen dissociates the effects of obesity (lipotoxicity) from those of hyperglycaemia (glucotoxicity) in NZO mice. Obese NZO mice are unable to compensate for the carbohydrate challenge by increasing insulin secretion or synthesising adequate amounts of insulin. In response to the hyperglycaemia, FOXO1 is dephosphorylated, leading to reduced levels of beta cell-specific transcription factors and to apoptosis of the cells.

  20. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function of the insulin receptor.

  1. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    PubMed Central

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133

  2. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.

  3. High production of RANTES and MIP-1alpha in the tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM).

    PubMed

    Montanheiro, Patricia; Vergara, Maria Paulina Posada; Smid, Jerusa; da Silva Duarte, Alberto José; de Oliveira, Augusto César Penalva; Casseb, Jorge

    2007-08-01

    Human T cell lymphotropic virus type 1 (HTLV-1) infection is associated with progressive neurological disorders and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). The pathogenesis of TSP/HAM is considered as immune mediated, involving cytotoxic T cell (CTL) responses to a number of viral proteins and notably the regulation protein Tax. T CD8+ cells produce beta-chemokines, which are important in the anti-viral response. In the present study, we have analyzed the CC chemokines (RANTES, MIP-1beta and MIP-1alpha) production in retrovirus-infected subjects. A total of 191 subjects were studied: 52 healthy controls, 72 asymptomatic HTLV-1-infected carriers and 67 TSP/HAM patients. Peripheral blood mononuclear cells were maintained in the presence or absence of PHA, and supernatant fluids were assayed using EIA. MIP-1beta concentration was not significantly different across groups, but RANTES and MIP-1alpha concentrations showed significant differences when the three groups were compared. In TSP/HAM patients, the increase in the production of chemokines may lead to a recruitment of pro-inflammatory factors, contributing to the membrane's myelin damage.

  4. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.

    PubMed

    Bose, Bipasha; Katikireddy, Kishore Reddy; Shenoy, P Sudheer

    2014-01-01

    Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario. © 2014 Elsevier Inc. All rights reserved.

  5. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4more » daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.« less

  6. Beta Emission and Bremsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-11-13

    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  7. Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.

    PubMed

    Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M

    1997-08-01

    beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.

  8. Functions of Tenascin-C and Integrin alpha9beta1 in Mediating Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2017-10-01

    additional engineered cell lines for verification and we plan to also generate stable knockout cell lines using CRISPR /Cas 9 gene editing technology...addition to the proposed study, we plan to also produce VCaP cells that are null (knockout) for alpha 9 integrin using CRISPR /Cas9 gene editing protocols...We are experienced with CRISPR -Cas knockdown and have successfully engineered cells previously. We do not expect any particular difficulty in

  9. Characterization of T cell repertoire changes in acute Kawasaki disease

    PubMed Central

    1993-01-01

    Kawasaki disease (KD) is an acute multisystem vasculitis of unknown etiology that is associated with marked activation of T cells and monocyte/macrophages. Using a quantitative polymerase chain reaction (PCR) technique, we recently found that the acute phase of KD is associated with the expansion of T cells expressing the V beta 2 and V beta 8.1 gene segments. In the present work, we used a newly developed anti-V beta 2 monoclonal antibody (mAb) and studied a new group of KD patients to extend our previous PCR results. Immunofluorescence analysis confirmed that V beta 2-bearing T cells are selectively increased in patients with acute KD. The increase occurred primarily in the CD4 T cell subset. The percentages of V beta 2+ T cells as determined by mAb reactivity and flow cytometry correlated linearly with V beta expression as quantitated by PCR. However, T cells from acute KD patients appeared to express proportionately higher levels of V beta 2 transcripts per cell as compared with healthy controls or convalescent KD patients. Sequence analysis of T cell receptor beta chain genes of V beta 2 and V beta 8.1 expressing T cells from acute KD patients showed extensive junctional region diversity. These data showing polyclonal expansion of V beta 2+ and V beta 8+ T cells in acute KD provide additional insight into the immunopathogenesis of this disease. PMID:8094737

  10. Structural characterisation of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia.

    PubMed

    Sims, I M; Craik, D J; Bacic, A

    1997-08-25

    Galactoglucomannan (GGM) from cultures of Nicotiana plumbaginifolia has Man:Glc:Gal:Ara:Xyl in 1.0:1.1:1.0:0.1:0.04 ratio. Linkage analysis contained 4- and 4,6-Manp, 4-Glcp, terminal Galp and 2-Galp, small amounts and terminal Arap and terminal Xylp, and approximately 0.03 mol acetyl per mol of glucosyl residue. Treatment with alpha- and beta-D-galactosidases showed that the majority of the side-chains were either single Galp-alpha-(1-->residues or the disaccharide Galp-beta-(1-->2)-Galp-alpha-(1-->linked to O-6 of the 4-Manp residues of the glucomannan backbone. Analysis of the oligosaccharides generated by endo-(1-->4)-beta-mannanase digestion confirmed that the GGM comprises a backbone of predominantly alternating-->4)-D-Manp-beta-(1-->and-->4)-D-Glcp-beta-(1-->branch ed at O-6 of 65% of the 4-Manp residues. The major oligosaccharide identified was D-Glcp-beta-(1-->4)-[D-Galp-beta-(1-->2)-D-Galp-alpha-(1-->6)]-D-Man p-beta-(1-->4)-D-Glcp-beta-(1-->4)-[D-Galp-alpha-(1-->6)]-D-Manp -beta-(1-->(27%), and most of the other oligosaccharides produced in significant quantities were based on this structure.

  11. Transcription factors in pancreatic development. Animal models.

    PubMed

    Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard

    2007-01-01

    Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.

  12. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  13. Type I Interferon Production Induced by Streptococcus pyogenes-Derived Nucleic Acids Is Required for Host Protection

    PubMed Central

    Gratz, Nina; Hartweger, Harald; Matt, Ulrich; Kratochvill, Franz; Janos, Marton; Sigel, Stefanie; Drobits, Barbara; Li, Xiao-Dong; Knapp, Sylvia; Kovarik, Pavel

    2011-01-01

    Streptococcus pyogenes is a Gram-positive human pathogen that is recognized by yet unknown pattern recognition receptors (PRRs). Engagement of these receptor molecules during infection with S. pyogenes, a largely extracellular bacterium with limited capacity for intracellular survival, causes innate immune cells to produce inflammatory mediators such as TNF, but also type I interferon (IFN). Here we show that signaling elicited by type I IFNs is required for successful defense of mice against lethal subcutaneous cellulitis caused by S. pyogenes. Type I IFN signaling was accompanied with reduced neutrophil recruitment to the site of infection. Mechanistic analysis revealed that macrophages and conventional dendritic cells (cDCs) employ different signaling pathways leading to IFN-beta production. Macrophages required IRF3, STING, TBK1 and partially MyD88, whereas in cDCs the IFN-beta production was fully dependent on IRF5 and MyD88. Furthermore, IFN-beta production by macrophages was dependent on the endosomal delivery of streptococcal DNA, while in cDCs streptococcal RNA was identified as the IFN-beta inducer. Despite a role of MyD88 in both cell types, the known IFN-inducing TLRs were individually not required for generation of the IFN-beta response. These results demonstrate that the innate immune system employs several strategies to efficiently recognize S. pyogenes, a pathogenic bacterium that succeeded in avoiding recognition by the standard arsenal of TLRs. PMID:21625574

  14. Isolation of a new class of cysteine–glycine–proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis

    PubMed Central

    Dalla Valle, Luisa; Nardi, Alessia; Alibardi, Lorenzo

    2010-01-01

    Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine–glycine–proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine–proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales. PMID:20070430

  15. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Alibardi, Lorenzo

    2010-03-01

    Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine-glycine-proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine-proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales.

  16. Signal-transducing mechanisms of ketamine-caused inhibition of interleukin-1{beta} gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.-L.; Chang, C.-C.; Lin, Y.-L.

    2009-10-01

    Ketamine may affect the host immunity. Interleukin-1{beta} (IL-1{beta}), IL-6, and tumor necrosis factor-{alpha} (TNF-{alpha}) are pivotal cytokines produced by macrophages. This study aimed to evaluate the effects of ketamine on the regulation of inflammatory cytokine gene expression, especially IL-1{beta}, in lipopolysaccharide (LPS)-activated murine macrophage-like Raw 264.7 cells and its possible signal-transducing mechanisms. Administration of Raw 264.7 cells with a therapeutic concentration of ketamine (100 {mu}M), LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. Exposure to 100 {mu}M ketamine decreased the binding affinity of LPS and LPS-binding protein but didmore » not affect LPS-induced RNA and protein synthesis of TLR4. Treatment with LPS significantly increased IL-1{beta}, IL-6, and TNF-{alpha} gene expressions in Raw 264.7 cells. Ketamine at a clinically relevant concentration did not affect the synthesis of these inflammatory cytokines, but significantly decreased LPS-caused increases in these cytokines. Immunoblot analyses, an electrophoretic mobility shift assay, and a reporter luciferase activity assay revealed that ketamine significantly decreased LPS-induced translocation and DNA binding activity of nuclear factor-kappa B (NF{kappa}B). Administration of LPS sequentially increased the phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK. However, a therapeutic concentration of ketamine alleviated such augmentations. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA reduced cellular TLR4 amounts and ameliorated LPS-induced RAS activation and IL-1{beta} synthesis. Co-treatment with ketamine and TLR4 siRNA synergistically ameliorated LPS-caused enhancement of IL-1{beta} production. Results of this study show that a therapeutic concentration of ketamine can inhibit gene expression of IL-1{beta} possibly through suppressing TLR4-mediated signal-transducing phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK and subsequent translocation and transactivation of NF{kappa}B.« less

  17. The changing of the guard: Molecular diversity and rapid evolution of beta-defensins.

    PubMed

    Semple, Colin A; Gautier, Phillipe; Taylor, Karen; Dorin, Julia R

    2006-11-01

    Defensins are small cationic peptides involved in innate immunity and are components of the first line of defence against invading pathogens. beta-defensins are a subgroup of the defensin family that display a particular cysteine spacing and pattern of intramolecular bonding. These molecules are produced mostly by epithelia lining exposed surfaces and appear to have both antimicrobial and cell signalling functions. The unusually high degree of sequence variation in the mature peptide produced by the paralogous and in some cases orthologous genes implies extensive specialisation and species specific adaptation. Here we review recent functional data that are an important addition to our knowledge of the innate immune response and novel antibiotic design. We also consider the organisation and evolution of the genomic loci harbouring these genes where radical and rapid changes in beta-defensin sequences have been shown to result from the interplay of both positive and negative selection. Consequently these genes provide some unusually clear glimpses of the processes of duplication and specialisation that have shaped the mammalian genome.

  18. [Nuclear transfer of goat somatic cells transgenic for human lactoferrin].

    PubMed

    Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie

    2006-12-01

    Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.

  19. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  20. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis.

    PubMed

    Neef, Markus; Ledermann, Monika; Saegesser, Hans; Schneider, Vreni; Reichen, Juerg

    2006-12-01

    Mammalian target of rapamycin (mTOR) signalling is central in the activation of hepatic stellate cells (HSCs), the key source of extracellular matrix (ECM) in fibrotic liver. We tested the therapeutic potential of the mTOR inhibitor rapamycin in advanced cirrhosis. Cirrhosis was induced by bile duct-ligation (BDL) or thioacetamide injections (TAA). Rats received oral rapamycin (0.5 mg/kg/day) for either 14 or 28 days. Untreated BDL and TAA-rats served as controls. Liver function was quantified by aminopyrine breath test. ECM and ECM-producing cells were quantified by morphometry. MMP-2 activity was measured by zymography. mRNA expression of procollagen-alpha1, transforming growth factor-beta1 (TGF-beta1) and beta2 was quantified by RT-PCR. Fourteen days of rapamycin improved liver function. Accumulation of ECM was decreased together with numbers of activated HSCs and MMP-2 activity in both animal models. TGF-beta1 mRNA was downregulated in TAA, TGF-beta2 mRNA was downregulated in BDL. 28 days of rapamycin treatment entailed a survival advantage of long-term treated BDL-rats. Low-dose rapamycin treatment is effectively antifibrotic and attenuates disease progression in advanced fibrosis. Our results warrant the clinical evaluation of rapamycin as an antifibrotic drug.

  1. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    PubMed

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where elevated levels of TGF-beta1 transcripts in the conjunctival epithelium have been previously detected.

  2. Release from quiescence of CD34+ CD38- human umbilical cord blood cells reveals their potentiality to engraft adults.

    PubMed Central

    Cardoso, A A; Li, M L; Batard, P; Hatzfeld, A; Brown, E L; Levesque, J P; Sookdeo, H; Panterne, B; Sansilvestri, P; Clark, S C

    1993-01-01

    Using optimal culture conditions in which the transforming growth factor beta 1 (TGF-beta 1) inhibitory loop has been interrupted by antisense TGF-beta 1 oligonucleotides or anti-TGF-beta serum, we have compared the proliferative capacities and the abilities of the CD34+ CD38- cell populations from bone marrow and umbilical cord blood to generate early progenitors in long-term cultures. The CD34+ CD38- fraction of umbilical cord blood accounts for 4% of the CD34+ fraction compared to only 1% in bone marrow, indicating that umbilical cord blood may be relatively enriched in stem cells. We estimate that the CD34+ CD38- cells from a typical umbilical cord blood sample produce equivalent numbers of colony-forming units (CFU)-granulocyte/erythrocyte/macrophage/megakaryocyte, twice as many CFU-granulocyte/macrophage (GM) and 3 times as many burst-forming units-erythroid as the same population from an average bone marrow sample used in adult transplantation. In addition, the colonies resulting from the umbilical cord blood samples were significantly larger than those from bone marrow, indicating a greater growth potential. However, the content of later progenitors, which may be important for short-term reconstitution, was less in umbilical cord blood-derived than in bone marrow-derived cell preparations, as estimated by a 4-fold lower production of CFU-GM in long-term cultures of CD34+ CD38+ cells. This deficit is partially compensated by the higher growth capacity of the resulting CFU-GM. These studies suggest that umbilical cord blood is a suitable source of cells for adult transplantation. PMID:7690969

  3. Endocrine regulation of gonadotropin and growth hormone gene transcription in fish.

    PubMed

    Melamed, P; Rosenfeld, H; Elizur, A; Yaron, Z

    1998-06-01

    The pituitary of a number of teleosts contains two gonadotropins (GtHs) which are produced in distinct populations of cells; the beta subunit of the GtH I being found in close proximity to the somatotrophs, while the II beta cells are more peripheral. In several species the GtH beta subunits are expressed at varying levels throughout the reproductive cycle, the I beta dominating in early maturing fish, after which the II beta becomes predominant. This suggests differential control of the beta subunit synthesis which may be regulated by both hypothalamic hormones and gonadal steroids. At ovulation and spawning, changes also occur in the somatotrophs, which become markedly more active, while plasma growth hormone (GH) levels increase. In a number of species, GnRH elevates either the I beta or the II beta mRNA levels, depending on the reproductive state of the fish. In tilapia, the GnRH effect on the II beta appears to be mediated through both cAMP-PKA and PKC pathways. GnRH also stimulates GH release in both goldfish and tilapia, but it increases the GH transcript levels only in goldfish; both GnRH and direct activation of PKC are ineffective in altering GH mRNA in tilapia pituitary cells. Dopamine (DA) does not alter II beta transcript levels in cultured tilapia pituitary cells, but increases GH mRNA levels in both rainbow trout and tilapia, in a PKA-dependent manner. This effect appears to be through interactions with Pit-1 and also by stabilizing the mRNA. Somatostatin (SRIF) does not alter GH transcript levels in either tilapia or rainbow trout, although it may alter GH synthesis by modulation of translation. Gonadal steroids appear to have differential effects on the transcription of the beta subunits. In tilapia, testosterone (T) elevates I beta mRNA levels in cells from immature or early maturing fish (in low doses), but depresses them in cells from late maturing fish and is ineffective in cells from regressed fish. Similar results were seen in early recrudescing male coho salmon injected with T or E2. T or E2 administered in vivo has dramatic stimulatory effects on the II beta transcript levels in immature fish of a number of species, while less powerful effects are seen in vitro. A response is also seen in cells from early maturing rainbow trout or tilapia, or regressed tilapia, but not in cells from late maturing or spawning fish. These results are substantiated by the finding that the promoter of the salmon II beta gene contains several estrogen responsive elements (EREs) which react and interact differently when exposed to varying levels of E2. In addition, activator protein-1 (AP-1) and steroidogenic factor-1 (SF-1) response elements are also found in the salmon II beta promoter; the AP-1 site is located close to a half ERE, while the SF-1 acts synergistically with the E2 receptor. The mRNA levels of both AP-1 and SP-1 are elevated, at least in mammals, by GnRH, suggesting possible sites for cross-talk between GnRH and steroid activated pathways. Reports of the effects of T or E2 on GH transcription differ. No effect is seen in vitro in pituitaries of tilapia, juvenile rainbow trout or common carp, but T does increase the transcript levels in pituitaries of both immature and mature goldfish. Reasons for these discrepancies are unclear, but other systemic hormones may be more instrumental than the gonadal steroids in regulating GH transcription. These include T3 which increases both GH mRNA levels and de novo synthesis (in tilapia and common carp) and insulin-like growth factor-I (IGF-I) which reduces GH transcript levels as well as inhibiting GH release.

  4. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.

  5. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  6. Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells.

    PubMed

    Gireesh, T; Nair, P P; Sudhakaran, P R

    2004-08-01

    The possibility of using exfoliated colonic epithelial cells for assessing the bioavailability of beta-carotene was examined. Analysis of exfoliated colonic epithelial cells showed the presence of beta-carotene and vitamin A. The beta-carotene content was significantly lower in cells from stool samples of subjects on a beta-carotene-poor diet than those receiving a single dose of a beta-carotene supplement. Colonic epithelial cells isolated from stool samples collected daily during a wash-out period while the subjects were on a beta-carotene-poor diet showed a steady decrease in beta-carotene content, reaching the lowest value on day 7. Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected. Analysis of plasma beta-carotene concentration also showed similar changes, which correlated with those of exfoliated colonic cells. A relationship between the beta-carotene content of the diet and that of the colonic epithelial cells suggests that analysis of the beta-carotene content in exfoliated human colonic epithelial cells is a useful non-invasive method to assess the bioavailability of provitamin A beta-carotene.

  7. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Il-Rae; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, knownmore » to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1-mediated degradation of {beta}-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target molecule of {beta}-catenin. These results suggest that SIRT1 activation may be a therapeutic strategy for treatment of pancreatic cancer cells that express PAUF via the down-regulation of {beta}-catenin.« less

  8. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives.

    PubMed

    Clark, Gregory O; Yochem, Robert L; Axelman, Joyce; Sheets, Timothy P; Kaczorowski, David J; Shamblott, Michael J

    2007-05-11

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and beta-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influencedmore » the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.« less

  10. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function.

    PubMed

    He, Xiaoyu; Lai, Qiaohong; Chen, Cai; Li, Na; Sun, Fei; Huang, Wenting; Zhang, Shu; Yu, Qilin; Yang, Ping; Xiong, Fei; Chen, Zhishui; Gong, Quan; Ren, Boxu; Weng, Jianping; Eizirik, Décio L; Zhou, Zhiguang; Wang, Cong-Yi

    2018-04-01

    Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9 Δbeta ) and transgenic (Ubc9 Tg ) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. Upon induction of Ubc9 deficiency, Ubc9 Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9 f/f control islets. Islets from Ubc9 Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9 Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9 Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9 Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9 Δbeta mice, which spontaneously developed diabetes, Ubc9 Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in beta cells. SUMOylation function is required to protect against oxidative stress in beta cells; this mechanism is, at least in part, carried out by the regulation of NRF2 activity to enhance ROS detoxification. Homeostatic SUMOylation is also likely to be essential for maintaining beta cell functionality.

  11. Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins.

    PubMed

    Isshiki, Soichiro; Kudo, Takashi; Nishihara, Shoko; Ikehara, Yuzuru; Togayachi, Akira; Furuya, Akiko; Shitara, Kenya; Kubota, Tetsuro; Watanabe, Masahiko; Kitajima, Masaki; Narimatsu, Hisashi

    2003-09-19

    The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.

  12. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  13. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less

  14. ICU Acquisition Rate, Risk Factors, and Clinical Significance of Digestive Tract Colonization With Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: A Systematic Review and Meta-Analysis.

    PubMed

    Detsis, Marios; Karanika, Styliani; Mylonakis, Eleftherios

    2017-04-01

    To evaluate the acquisition rate, identify risk factors, and estimate the risk for subsequent infection, associated with the colonization of the digestive tract with extended-spectrum beta-lactamase-producing Enterobacteriaceae during ICU-hospitalization. PubMed, EMBASE, and reference lists of all eligible articles. Included studies provided data on ICU-acquired colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae in previously noncolonized and noninfected patients and used the double disk synergy test for extended-spectrum beta-lactamase-producing Enterobacteriaceae phenotypic confirmation. Studies reporting extended-spectrum beta-lactamase-producing Enterobacteriaceae outbreaks or data on pediatric population were excluded. Two authors independently assessed study eligibility and performed data extraction. Thirteen studies (with 15,045 ICUs-patients) were evaluated using a random-effect model and a meta-regression analysis. The acquisition rate of digestive tract colonization during ICU stay was 7% (95% CI, 5-10) and it varies from 3% (95% CI, 2-4) and 4% (95% CI, 2-6) in the Americas and Europe to 21% (95% CI, 9-35) in the Western Pacific region. Previous hospitalization (risk ratio, 1.57 [95% CI, 1.07-2.31]) or antibiotic use (risk ratio, 1.65 [95% CI, 1.15-2.37]) and exposure to beta-lactams/beta-lactamase inhibitors (risk ratio, 1.78 [95% CI, 1.24-2.56]) and carbapenems (risk ratio, 2.13 [95% CI, 1.49-3.06]) during the ICU stay were independent risk factors for ICU-acquired colonization. Importantly, colonized patients were more likely to develop an extended-spectrum beta-lactamase-producing Enterobacteriaceae infection (risk ratio, 49.62 [95% CI, 20.42-120.58]). The sensitivity and specificity of prior colonization to predict subsequent extended-spectrum beta-lactamase-producing Enterobacteriaceae infection were 95.1% (95% CI, 54.7-99.7) and 89.2% (95% CI, 77.2-95.3), respectively. The ICU acquisition rate of extended-spectrum beta-lactamase-producing Enterobacteriaceae ranged from 5% to 10%. Previous use of beta-lactam/beta-lactamase or carbapenems and recent hospitalization were independent risk factors for extended-spectrum beta-lactamase-producing Enterobacteriaceae colonization, and colonization was associated with significantly higher frequency of extended-spectrum beta-lactamase-producing Enterobacteriaceae subsequent infection and increased mortality.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, A.; Hamdy, M.K.

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline /beta/-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. THe immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato /beta/-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol contentmore » of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%. 17 refs.« less

  16. TGF-beta1 secretion of ROS-17/2.8 cultures on NiTi implant material.

    PubMed

    Kapanen, Anita; Kinnunen, Anne; Ryhänen, Jorma; Tuukkanen, Juha

    2002-08-01

    The biocompatibility of an orthopedic implant depends on the effect of the implant on bone-forming cells, osteoblasts. Changes in osteoblastic proliferation, maturation and differentiation are important events in ossification that enable monitoring the effect of the implant. Transforming growth factor-beta (TGF-beta) is known to suppress osteoblast proliferation and, on the other hand, to induce the maturation and differentiation of osteoblasts. Moreover, osteoblasts produce TGF-beta, which is embedded in the bone matrix and activated by bone-resorbing osteoclasts. TGF-beta inhibits osteoclastic activity. Here, we show for the first time the effect of nickel titanium shape memory metal (NiTi) on osteoblastic cytokine expression. In this study, we measured the levels of TGF-beta with enzyme-linked immunosorbent assay (ELISA) from a ROS-17/2.8 osteosarcoma cell line cultured on different metal alloy discs. ELISA results were proportioned to total DNA content of the samples. We compared NiTi, to stainless steel (Stst), pure titanium (Ti) and pure nickel (Ni). The TGF-beta1/DNA value in the NiTi group (0.0007 +/- 0.0003) was comparable with those seen in the Stst (0.0008 +/- 0.0001) and Ti (0.0007 +/- 0.0001) groups. The concentration in the Ni group was lower (0.0006 +/- 0.0003), though not statistically significantly so. In addition, the effect of surface roughness on TGF-beta1 production was studied. We compared three different grades of roughness in three differently hot-rolled alloys: NiTi. hot-rolled at 950 degrees C. Ti alloy hot-rolled at 850 degrees C (TiI) and the same Ti alloy hot-rolled at 1,050 degrees C (TiII). We found that increasing roughness of the NiTi surface increased the TGF-beta1 concentration. On the other hand, all roughness groups of TiII showed low levels of TGF-beta1. while a rough TiI surface induced similar TGF-beta1, expression as rough NiTi. Further, these same measurements made with interleukine 6 (IL-6) were found to be under the detection limit in these cultures. We conclude that a rough NiTi surface promotes TGF-beta1 expression in ROS-17/2.8 cells.

  17. Elliptical-P cells in the avian perilymphatic interface of the Tegmentum vasculosum

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Lee, D. H.; Martin, D. S.

    1995-01-01

    Elliptical cells (E-P) are present at the perilymphatic interface lumen (PIL) of the lagena. The E-P cells often separate from the tegmentum vasculosum (TV) and have touching processes that form a monolayer between the K+ rich perilymph and the Na+ rich endolymph, similar to the mammalian Reissner's membrane. We examined the TV of chicks (Gallus domesticus) and quantitated the expression of anti-S100 alphaalphabetabeta and S100 beta. There was a 30% increase of S100 beta saturation in the light cells facing the PIL when compared to other TV light cells. We show that: (1) the dimer anti- S100 alphaalphabetabeta and the monomer anti-S100 beta are expressed preferentially in the light cells and the E-P cells of TV; (2) expression of S100 beta is higher in light cells facing the PIL than in adjacent cells; (3) the expression of the dimer S100 alphaalphabetabeta and monomer S100 beta overlaps in most inner ear cell types, including the cells of the TV, most S100 alphaalphabetabeta positive cells express S 100 beta, but S100 beta positive cells do not always express S100 alphaalphabetabeta; and (4) the S100 beta expression in light cells, the abundant Na+-K+ ATPase on dark cells of the TV, and previously demonstrated co-localization of S100 beta/GABA in sensory cells suggest that S100 beta could have, in the inner ear, a dual neurotrophic-ionic modulating function.

  18. From the rat to the beta cell: a fast and effective technique of separation of Langerhans islets and direct purification of pancreatic beta cells.

    PubMed

    Tamagno, Gianluca; Vigolo, Simonetta; Olivieri, Massimiliano; Martini, Chiara; De Carlo, Eugenio

    2014-01-01

    Isolated Langerhans islets represent a useful model for the study of the endocrine pancreas. The possibility to purify pancreatic beta cells from a mixed Langerhans islet cell population may lead towards a dedicated focus on beta cell research. We describe an effective and rapid immunomagnetic technique for the direct purification of beta cells from isolated Langerhans islets of rat. After the sacrifice of the rat, the Langerhans islets were separated by ductal injection of the pancreas with collagenase, altered to a mixed Langerhans islet cell population and incubated with conditioned immunomagnetic beads targeted to the beta cell surface. The beads were previously coated with a specific antibody against the surface of the beta cell, namely K14D10. The suspension of mixed Langerhans islet cells and immunomagnetic K14D10-conditioned beads was pelleted by a magnetic particle concentrator to isolate the bead-bound cells, which were finally suspended in a culture medium. The purified cells were immunoreactive for insulin and no glucagon-positive cells were detected at immunocytochemistry. Real Time PCR confirmed the purification of the pancreatic beta cells. This immunomagnetic technique allows a rapid, effective and consistent purification of beta cells from isolated Langerhans islets in a direct manner by conditioning the immunomagnetic beads only. This technique is easy, fast and reproducible. It promises to be a reliable method for providing purified beta cells for in vitro research.

  19. Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.

    1995-01-01

    We evaluated anti-S100 beta expression in the chick (Gallus domesticus) inner ear and determined that: 1) the monomer anti-S100 beta is expressed differentially in the vestibular and auditory perikarya; 2) expression of S100 beta in the afferent nerve terminals is time-related to synapse and myelin formation; 3) the expression of the dimer anti-S100 alpha alpha beta beta and monomer anti-S100 beta overlaps in most inner ear cell types. Most S100 alpha alpha beta beta positive cells express S100 beta, but S100 beta positive cells do not always express S100 alpha alpha beta beta. 4) the expression of S100 beta is diffused over the perikaryal cytoplasm and nuclei of the acoustic ganglia but is concentrated over the nuclei of the vestibular perikarya. 6) S100 beta is expressed in secretory cells, and it is co-localized with GABA in sensory cells. 7) Color thresholding objective quantitation indicates that the amount of S100 beta was higher (mean 22, SD +/- 4) at E19 than at E9 (mean 34, SD +/- 3) in afferent axons. 8) Moreover, S100 beta was unchanged between E11-E19 in the perikaryal cytoplasm, but did change over the nuclei. At E9, 74%, and at E21, 5% of vestibular perikarya were positive. The data suggest that S100 beta may be physically associated with neuronal and ionic controlling cells of the vertebrate inner ear, where it could provide a dual ionic and neurotrophic modulatory function.

  20. Cell surface expression of beta 2-microglobulin (beta 2m) correlates with stages of differentiation in B cell tumours.

    PubMed Central

    Jones, R A; Scott, C S; Norfolk, D R; Stark, A N; Child, J A

    1987-01-01

    Cell surface beta 2-microglobulin (beta 2m) densities of malignant B cells were determined by enzyme immunoassay in 97 cases of immunologically defined lymphoproliferative disease. Absolute beta 2m densities were found to depend on disease category with the lowest levels found on cells from chronic lymphocytic leukaemia (mean = 5.6 ng/10(6) cells, n = 27); atypical chronic lymphocytic leukaemia (mean = 5.9 ng/10(6) cells, n = 8); and prolymphocytoid chronic lymphocytic leukaemia variant (mean = 6.0 ng/10(6) cells, n = 16). beta 2m densities for B non-Hodgkin's lymphoma (n = 14) and B prolymphocytic leukaemia (n = 17) cases were 8.1 and 10.0 ng/10(6) cells, respectively, and the highest densities were found on cells from "late-B cell" tumours (mean = 14.3 ng/10(6) cells). Plasma cells from cases of Ig secreting tumours expressed unexpectedly low beta 2m densities (mean = 9.3 ng/10(6) cells; n = 6). PMID:3108331

  1. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  2. Beta-phenylethylamine inhibits K+ currents in neocortical neurons of the rat: a possible mechanism of beta-phenylethylamine-induced seizures.

    PubMed

    Kitamura, Taro; Munakata, Mitsutoshi; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Iinuma, Kazuie

    2008-08-01

    beta-Phenylethylamine (beta-PEA), an endogenous amine synthesized in the brain, serves as a neuromodulator and is involved in the pathophysiology of various neurological disorders such as depression, schizophrenia, and attention-deficit hyperactivity disorder. beta-PEA fully exerts the physiological effects within the nanomolar concentration range via the trace amine receptors, but beta-PEA also causes convulsions at much higher concentrations via an as yet unknown mechanism. To investigate the electrophysiological mechanism by which beta-PEA induces convulsions, we examined the effect of beta-PEA on ionic currents passing through the cell membrane of dissociated rat cerebral cortical neurons, using a patch-clamp technique. The external application of beta-PEA suppressed ionic currents which continuously flowed when the membrane potential was held at -25 mV. The suppression was in a concentration-dependent manner and a half-maximal effective concentration was 540 muM. These currents suppressed by beta-PEA consisted of two K(+) currents: a time- and voltage-dependent K(+) current (M-current) and a leakage K(+) current. The suppression of the M-current reduces the efficacy of the current in limiting excessive neuronal firing, and the suppression of the leakage K(+) current can cause membrane depolarization and thus promote neuronal excitation. Reducing both of these currents in concert may produce neuronal seizing activity, which could conceivably underlie the convulsions induced by high-dose beta-PEA.

  3. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  4. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    DOEpatents

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  5. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    PubMed

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  6. Cloning and characterization of the nagA gene that encodes beta-n-acetylglucosaminidase from Aspergillus nidulans and its expression in Aspergillus oryzae.

    PubMed

    Kim, Sunhwa; Matsuo, Ichiro; Ajisaka, Katsumi; Nakajima, Harushi; Kitamoto, Katsuhiko

    2002-10-01

    We isolated a beta-N-acetylglucosaminidase encoding gene and its cDNA from the filamentous fungus Aspergillus nidulans, and designated it nagA. The nagA gene contained no intron and encoded a polypeptide of 603 amino acids with a putative 19-amino acid signal sequence. The deduced amino acid sequence was very similar to the sequence of Candida albicans Hex1 and Trichoderma harzianum Nag1. Yeast cells containing the nagA cDNA under the control of the GAL1 promoter expressed beta-N-acetylglucosaminidase activity. The chromosomal nagA gene of A. nidulans was disrupted by replacement with the argB marker gene. The disruptant strains expressed low levels of beta-N-acetylglucosaminidase activity and showed poor growth on a medium containing chitobiose as a carbon source. Aspergillus oryzae strain carrying the nagA gene under the control of the improved glaA promoter produced large amounts of beta-N-acetylglucosaminidase in a wheat bran solid culture.

  7. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul

    2009-11-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibitedmore » increases in the transforming growth factor-beta1 (TGF-beta1) mRNA and alpha-smooth muscle actin (alpha-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of alpha-SMA and TGF-beta1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of alpha-SMA and TGF-beta1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-beta1 expression via Nrf2/ARE activation.« less

  8. Thymic B Cell-Mediated Attack of Thymic Stroma Precedes Type 1 Diabetes Development

    PubMed Central

    Pinto, Ana Isabel; Smith, Jennifer; Kissack, Miriam R.; Hogg, Karen G.; Green, E. Allison

    2018-01-01

    Type 1 diabetes (T1D) results from a coordinated autoimmune attack of insulin producing beta cells in the pancreas by the innate and adaptive immune systems, beta cell death being predominantly T cell-mediated. In addition to T cells, peripheral B cells are important in T1D progression. The thymus of mice and man also contains B cells, and lately they have been linked to central tolerance of T cells. The role of thymic B cells in T1D is undefined. Here, we show there are abnormalities in the thymic B cell compartment before beta cell destruction and T1D manifestation. Using non-obese diabetic (NOD) mice, we document that preceding T1D development, there is significant accumulation of thymic B cells-partly through in situ development- and the putative formation of ectopic germinal centers. In addition, in NOD mice we quantify thymic plasma cells and observe in situ binding of immunoglobulins to undefined antigens on a proportion of medullary thymic epithelial cells (mTECs). By contrast, no ectopic germinal centers or pronounced intrathymic autoantibodies are detectable in animals not genetically predisposed to developing T1D. Binding of autoantibodies to thymic stroma correlates with apoptosis of mTECs, including insulin-expressing cells. By contrast, apoptosis of mTECs was decreased by 50% in B cell-deficient NOD mice suggesting intrathymic autoantibodies may selectively target certain mTECs for destruction. Furthermore, we observe that these thymic B cell-associated events correlated with an increased prevalence of premature thymic emigration of T cells. Together, our data suggest that the thymus may be a principal autoimmune target in T1D and contributes to disease progression.

  9. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  10. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production.

    PubMed

    Reverberi, M; Fabbri, A A; Zjalic, S; Ricelli, A; Punelli, F; Fanelli, C

    2005-11-01

    Biosynthesis of aflatoxins, toxic metabolites produced by Aspergillus parasiticus, is correlated to the fungal oxidative stress and cell ageing. In this paper, the mechanism underlying the aflatoxin-inhibiting effect of the Lentinula edodes culture filtrates was studied by analysing their anti-oxidant activity and beta-glucan content. Mushroom beta-glucans are pharmacologically active compounds stimulating anti-oxidant responses in animal cells. L. edodes lyophilised filtrates stimulate A. parasiticus anti-oxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and aflatoxin inhibition was better correlated with beta-glucan content than with anti-oxidant activity of the filtrates. RT-PCR analyses on treated mycelia showed a delay in the activation of aflR, and norA, genes of aflatoxin cluster and a synchronous activation of hsf2-like, a homologue of a yeast transcription factor involved in oxidative stress responses. The first evidence of hsf2-like in A. parasiticus and its activation during aflatoxin biosynthesis is reported. L. edodes filtrates could play a role as external stimulus affecting the anti-oxidant status in the fungal cell that, in turn, leads to aflatoxin inhibition. In the fungal cell, beta-glucans present in the filtrates could stimulate the activation of transcription factors related to anti-oxidant response and anti-oxidant enzyme activity with a contemporaneous delay of aflatoxin genes transcription, which led to a marked reduction of aflatoxin production. This research suggests new perspectives to set suitable strategies against aflatoxins and L. edodes could be considered a promising tool.

  11. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes.

    PubMed

    Taube, Joseph H; Herschkowitz, Jason I; Komurov, Kakajan; Zhou, Alicia Y; Gupta, Supriya; Yang, Jing; Hartwell, Kimberly; Onder, Tamer T; Gupta, Piyush B; Evans, Kurt W; Hollier, Brett G; Ram, Prahlad T; Lander, Eric S; Rosen, Jeffrey M; Weinberg, Robert A; Mani, Sendurai A

    2010-08-31

    The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-beta1. Each of these factors is capable, on its own, of inducing an EMT in the human mammary epithelial (HMLE) cell line. However, the interactions between these regulators are poorly understood. Overexpression of each of the above EMT inducers up-regulates a subset of other EMT-inducing TFs, with Twist, Zeb1, Zeb2, TGF-beta1, and FOXC2 being commonly induced. Up-regulation of Slug and FOXC2 by either Snail or Twist does not depend on TGF-beta1 signaling. Gene expression signatures (GESs) derived by overexpressing EMT-inducing TFs reveal that the Twist GES and Snail GES are the most similar, although the Goosecoid GES is the least similar to the others. An EMT core signature was derived from the changes in gene expression shared by up-regulation of Gsc, Snail, Twist, and TGF-beta1 and by down-regulation of E-cadherin, loss of which can also trigger an EMT in certain cell types. The EMT core signature associates closely with the claudin-low and metaplastic breast cancer subtypes and correlates negatively with pathological complete response. Additionally, the expression level of FOXC1, another EMT inducer, correlates strongly with poor survival of breast cancer patients.

  12. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.

    PubMed

    Tsukamoto, Kentaro; Ozeki, Chikako; Kohda, Tomoko; Tsuji, Takao

    2015-01-01

    Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the study of the intracellular mechanism of botulinum neurotoxins, ganglioside-knockout neurons were generated by deletion of the gene encoding beta-1,4 N-acetylgalactosaminyltransferase 1 in P19 cells using the clustered regularly interspaced short palindromic repeats combined with Cas9 (CRISPR/Cas9) system. By using this system, knockout cells could be generated more easily than with previous methods. The sensitivity of the generated beta-1,4 N-acetylgalactosaminyltransferase 1-depleted P19 neurons to botulinum neurotoxin type C was decreased considerably, and the exogenous addition of the gangliosides GD1a, GD1b, and GT1b restored the susceptibility of P19 cells to botulinum neurotoxin type C. In particular, addition of a mixture of these three ganglioside more effectively recovered the sensitivity of knockout cells compared to independent addition of GD1a, GD1b, or GT1b. Consequently, the genome-edited P19 cells generated by the CRISPR/Cas9 system were useful for identifying and defining the intracellular molecules involved in the toxic action of botulinum neurotoxins.

  14. Id-1 promotes TGF-{beta}1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Kaijun; Wong, Y.C.; Wang Xianghong

    Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation ofmore » MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.« less

  15. Antidiabetic and Beta Cell-Protection Activities of Purple Corn Anthocyanins

    PubMed Central

    Hong, Su Hee; Heo, Jee-In; Kim, Jeong-Hyeon; Kwon, Sang-Oh; Yeo, Kyung-Mok; Bakowska-Barczak, Anna M.; Kolodziejczyk, Paul; Ryu, Ok-Hyun; Choi, Moon-Ki; Kang, Young-Hee; Lim, Soon Sung; Suh, Hong-Won; Huh, Sung-Oh; Lee, Jae-Yong

    2013-01-01

    Antidiabetic and beta cell-protection activities of purple corn anthocyanins (PCA) were examined in pancreatic beta cell culture and db/db mice. Only PCA among several plant anthocyanins and polyphenols showed insulin secretion activity in culture of HIT-T15 cells. PCA had excellent antihyperglycemic activity (in terms of blood glucose level and OGTT) and HbA1c-decreasing activity when compared with glimepiride, a sulfonylurea in db/db mice. In addition, PCA showed efficient protection activity of pancreatic beta cell from cell death in HIT-T15 cell culture and db/db mice. The result showed that PCA had antidiabetic and beta cell-protection activities in pancreatic beta cell culture and db/db mice. PMID:24244813

  16. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

    PubMed Central

    Stark, Romana; Kibbey, Richard G.

    2013-01-01

    Background Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. Scope of review A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be more important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. Major conclusions PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis. General Significance The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. PMID:24177027

  17. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  18. Live Candida albicans suppresses production of reactive oxygen species in phagocytes.

    PubMed

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.

  19. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  20. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium.

    PubMed

    Seeberger, Karen L; Dufour, Jannette M; Shapiro, Andrew M James; Lakey, Jonathan R T; Rajotte, Ray V; Korbutt, Gregory S

    2006-02-01

    Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm. Analysis by flow cytometry demonstrated that pancreatic MSCs express cell surface antigens used to define MSCs isolated from bone marrow such as CD13, CD29, CD44, CD49b, CD54, CD90 and CD105. In addition, utilizing protocols used to differentiate MSCs isolated from other somatic tissues, we successfully differentiated pancreatic MSCs into: (1) osteocytes that stained positive for alkaline phosphatase, collagen, mineralization (calcification) and expressed osteocalcin, (2) adipocytes that contained lipid inclusions and expressed fatty acid binding protein 4 and (3) chondrocytes that expressed aggrecan. We also demonstrated that pancreatic MSCs are multipotent and capable of deriving cells of endodermal origin. Pancreatic MSCs were differentiated into hepatocytes that stained positive for human serum albumin and expressed endoderm and liver-specific genes such as GATA 4 and tyrosine aminotransferase. In addition, preliminary protocols used to differentiate these cells into insulin-producing cells resulted in the expression of genes necessary for islet and beta-cell development such as Pax4 and neurogenin 3. Therefore, multipotent MSCs residing within the adult exocrine pancreas could represent a progenitor cell, which when further manipulated could result in the production of functional islet beta-cells.

  1. Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells.

    PubMed Central

    Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.

    1996-01-01

    Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226

  2. Macrophage activation-induced thymosin beta 4 production: a tissue repair mechanism

    USDA-ARS?s Scientific Manuscript database

    Macrophages play significant role in immunity which not only kill pathogens, produce cytokines but also clear dead tissues at the site of inflammation and stimulate wound healing. Much less is known how these cells contribute to tissue repair process. In course of our studies comparing the peptide...

  3. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission.

    PubMed

    Delbianco, Alice; Lanzoni, Chiara; Klein, Elodie; Rubies Autonell, Concepcion; Gilmer, David; Ratti, Claudio

    2013-05-01

    Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.

  4. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  5. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  6. Recent progress on normal and malignant pancreatic stem/progenitor cell research: therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer

    PubMed Central

    Mimeault, M; Batra, S K

    2010-01-01

    Recent progress on pancreatic stem/progenitor cell research has revealed that the putative multipotent pancreatic stem/progenitor cells and/or more committed beta cell precursors may persist in the pancreatic gland in adult life. The presence of immature pancreatic cells with stem cell-like properties offers the possibility of stimulating their in vivo expansion and differentiation or to use their ex vivo expanded progenies for beta cell replacement-based therapies for type 1 or 2 diabetes mellitus in humans. In addition, the transplantation of either insulin-producing beta cells derived from embryonic, fetal and other tissue-resident adult stem/progenitor cells or genetically modified adult stem/progenitor cells may also constitute alternative promising therapies for treating diabetic patients. The genetic and/or epigenetic alterations in putative pancreatic adult stem/progenitor cells and/or their early progenies may, however, contribute to their acquisition of a dysfunctional behaviour as well as their malignant transformation into pancreatic cancer stem/progenitor cells. More particularly, the activation of distinct tumorigenic signalling cascades, including the hedgehog, epidermal growth factor–epidermal growth factor receptor (EGF–EGFR) system, wingless ligand (Wnt)/β-catenin and/or stromal cell-derived factor-1 (SDF-1)–CXC chemokine receptor 4 (CXCR4) pathways may play a major role in the sustained growth, survival, metastasis and/or drug resistance of pancreatic cancer stem/progenitor cells and their further differentiated progenies. The combination of drugs that target the oncogenic elements in pancreatic cancer stem/progenitor cells and their microenvironment, with the conventional chemotherapeutic regimens, could represent promising therapeutic strategies. These novel targeted therapies should lead to the development of more effective treatments of locally advanced and metastatic pancreatic cancers, which remain incurable with current therapies. PMID:18791122

  7. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    PubMed

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  8. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts--oral administration protects against development of insulitis in non-obese diabetic mice.

    PubMed

    Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry

    2007-07-01

    Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB-green fluorescent protein (CTB-GFP) or interferon-GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing beta-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few beta-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing beta-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T(1) progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases.

  9. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    PubMed

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  10. Relationships of pancreatic beta-cell function with microalbuminuria and glomerular filtration rate in middle-aged and elderly population without type 2 diabetes mellitus: a Chinese community-based analysis.

    PubMed

    Fu, Shihui; Zhou, Shanjing; Luo, Leiming; Ye, Ping

    2017-01-01

    Relationships of pancreatic beta-cell function abnormality with microalbuminuria (MA) and glomerular filtration rate (GFR) may differ by age, ethnicity and accompanied diseases. Previous studies were generally conducted in Western adult patients with type 2 diabetes mellitus (T2DM), and it is uncertain whether pancreatic beta-cell function is associated with MA and GFR in Chinese community-dwelling middle-aged and elderly population without T2DM. We therefore examined the relationships of pancreatic beta-cell function with two indices of renal damage, MA and GFR, in Chinese community-dwelling middle-aged and elderly population without T2DM. This analysis focused on 380 Beijing residents older than 45 years who were free of T2DM and completed the evaluation of pancreatic beta-cell function. Median age was 67 (49-80) years. Levels of triglyceride, diastolic blood pressure and homeostasis model assessment-beta (HOMA-beta) index were positively related to urine microalbumin ( P <0.05 for all). Age, low-density lipoprotein cholesterol levels and HOMA-beta index were inversely correlated with GFR, while high-density lipoprotein cholesterol levels were positively correlated with GFR ( P <0.05 for all). In all three adjustment models, there was a significant positive association between HOMA-beta index and MA; subjects with higher beta-cell function had higher odds of MA ( P <0.05 for all). There was no association between HOMA-beta index and GFR <60 mL/min/1.73 m 2 in any model ( P >0.05 for all). Modeling the pancreatic beta-cell function with different adjusted variables provided the same conclusion of association with MA; beta-cell function was positively associated with MA. Additionally, there was a specific difference in the adjusted associations of pancreatic beta-cell function with MA and GFR <60 mL/min/1.73 m 2 ; beta-cell function was not independently associated with GFR <60 mL/min/1.73 m 2 . This result indicated that abnormal pancreatic beta-cell function plays an important role in the development of MA.

  11. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29

    PubMed Central

    Barrera, Girolamo Jose; Sanchez, Gabriela; Gonzalez, Jose Emanuele

    2012-01-01

    Trefoil factors (TFF) are secretory products of mucin producing cells. They play a key role in the maintenance of the surface integrity of oral mucosa and enhance healing of the gastrointestinal mucosa by a process called restitution. TFF comprises the gastric peptides (TFF1), spasmolytic peptide (TFF2), and the intestinal trefoil factor (TFF3). They have an important and necessary role in epithelial restitution within the gastrointestinal tract. Significant amounts of TFF are present in human milk. This study aimed to determine a possible correlation between TFF3 isolated from human breast milk and levels of cytokines (IL8 and IL6) and defensins (hBD2 and hBD4) in intestinal epithelial cells HT-29 treated with trefoil. Samples of human milk were collected within 2-4 weeks postpartum from healthy human mothers (18-30-years-old) by manual breast massage, and TFF3 was purified by ammonium sulfate precipitation, isoelectric precipitation, DEAE-chromatography, and gel filtration. In this work we measured the concentrations and mRNA levels of cytokines and defensins by immunoassay (ELISA) and semiquantitative RT-PCR technique, respectively. Also we measured the peroxidase activity. We present the first evidence of human milk TFF3 purification. Here we show that the presence of TFF3 isolated from milk strongly correlates with downregulation of IL8 and IL6 in human intestinal epithelial cells. On the other hand, TFF3 activated the epithelial cells in culture to produce beta defensins 2 (hBD2) and beta defensins 4 (hBD4). These findings suggest that TFF can activate intestinal epithelial cells and could actively participate in the immune system of breastfed babies by inducing the production of peptides related to innate defence, such as defensins. PMID:23198942

  12. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less

  13. Neurotensin protects pancreatic beta cells from apoptosis.

    PubMed

    Coppola, Thierry; Béraud-Dufour, Sophie; Antoine, Aurélie; Vincent, Jean-Pierre; Mazella, Jean

    2008-01-01

    The survival of pancreatic beta cells depends on the balance between external cytotoxic and protective molecular systems. The neuropeptide neurotensin (NT) has been shown to regulate certain functions of the endocrine pancreas including insulin and glucagon release. However, the mechanism of action of NT as well as the identification of receptors involved in the pancreatic functions of the peptide remained to be studied. We demonstrate here that NT is an efficient protective agent of pancreatic beta cells against cytotoxic agents. Both beta-TC3 and INS-1E cell lines and the mouse pancreatic islet cells express the three known NT receptors. The incubation of beta cells with NT protects cells from apoptosis induced either by staurosporine or by IL-1beta. In beta-TC3 cells, NT activates both MAP and PI-3 kinases pathways and strongly reduces the staurosporine or the Il-1beta-induced caspase-3 activity by a mechanism involving Akt activation. The NTSR2 agonist levocabastine displays the same protective effect than NT whereas the NTSR1 antagonist is unable to block the effect of NT suggesting the predominant involvement of the NTSR2 in the action of NT on beta cells. These results clearly indicate for the first time that NT is able to protect endocrine beta cells from external cytotoxic agents, a role well correlated with its release in the circulation after a meal.

  14. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  15. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis.

    PubMed

    Ferretti, M T; Merlini, M; Späni, C; Gericke, C; Schweizer, N; Enzmann, G; Engelhardt, B; Kulic, L; Suter, T; Nitsch, R M

    2016-05-01

    Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Cytokines released from blood monocytes and expressed in mucocutaneous lesions of patients with paracoccidioidomycosis evaluated before and during trimethoprim-sulfamethoxazole treatment.

    PubMed

    Parise-Fortes, M R; Marques, S A; Soares, A M V C; Kurokawa, C S; Marques, M E A; Peracoli, M T S

    2006-04-01

    Mucocutaneous lesions in paracoccidioidomycosis are granulomatous and result from tissue responses to Paracoccidioides brasiliensis, the aetiological agent. In this study we investigate the expression of tumour necrosis factor (TNF)-alpha, interleukin (IL)-10 and transforming growth factor (TGF)-beta1 by immunohistochemistry in skin and mucosa lesions from patients with the chronic form of paracoccidioidomycosis, evaluated before and at day 20 of trimethoprim-sulfamethoxazole treatment. Cytokine production by peripheral blood monocytes was also studied by enzyme immunoassay. Intense immunostaining for TNF-alpha was detected in mononuclear cells that infiltrated granulomas in all skin and mucosa lesions before treatment simultaneously with low IL-10 granular deposits in these cells. At day 20 of treatment, there was reduced TNF-alpha and IL-10 deposition. Immunoreactive TGF-beta1 was observed diffusely in the dermis and generally in the cytoplasm of macrophages and giant cells, before treatment, and as increased TGF-beta1 deposits in the fibrosis area at day 20 of treatment. Peripheral blood monocytes from patients with paracoccidioidomycosis, evaluated before treatment, produced high endogenous levels of TNF-alpha, TGF-beta1 and IL-10 in relation to healthy controls. Lipopolysaccharide-stimulated monocytes from patients secreted lower levels of TNF-alpha in both periods of evaluation while no impairment in capacity of IL-10 and TGF-beta production was observed. Trimethoprim-sulfamethoxazole therapy was effective in decreasing fungal load in the lesions, allowing patient immune response to control the infection leading to the healing of the lesions.

  17. Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta

    PubMed Central

    Zhu, Zhenzhong; Kremer, Penny; Tadmori, Iman; Ren, Yi; Sun, Dongming; He, Xijing; Young, Wise

    2011-01-01

    Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer. PMID:21931595

  18. Effect of GM-CSF on cytokine induction by soluble beta-glucan SCG in vitro in beta-glucan-treated mice.

    PubMed

    Hida, Toshie H; Kawaminami, Hiromi; Ishibashi, Ken-Ichi; Miura, Noriko N; Adachi, Yoshiyuki; Yadomae, Toshiro; Ohno, Naohito

    2009-07-01

    SCG is a 6-branched 1,3-beta-D-glucan, which are major cell wall structural components in fungi. Leukocytes from DBA/1 and DBA/2 mice are highly sensitive to SCG, producing cytokines such as GM-CSF, IFN-gamma, TNF-alpha and IL-12p70, but not IL-6. GM-CSF plays a key biological role in this activity. In the present study, we examined the effect of giving i.p. SCG to DBA/2 mice on cytokine production in vitro. SCG was given i.p. to DBA/2 mice on day 0. Splenocytes were prepared on day 7 and cultured in the presence of SCG in vitro. The levels of cytokine production induced by SCG in vitro were lower in the cells from SCG-treated mice than in control mice. Expression of the beta-glucan receptor, dectin-1, in SCG-treated mice was comparable with that shown in control mice. However, the consumption of exogenously added rmGM-CSF in vitro was observed in SCG-treated mice. The addition of a large amount of rmGM-CSF to the culture medium resulted in larger amounts of TNF-alpha and IL-6 in SCG-treated mice than in normal mice. These results suggested that GM-CSF was closely related with the reactivity of beta-glucan. Giving SCG increased the number of macrophages and granulocytes in the spleen. These results suggested that in SCG-treated mice, a change of cell population would be related to modulation of the profile of cytokine production induced by SCG in vitro.

  19. A critical developmental role for tgfbr2 in myogenic cell lineages is revealed in mice expressing SM22-Cre, not SMMHC-Cre.

    PubMed

    Frutkin, Andrew D; Shi, Haikun; Otsuka, Goro; Levéen, Per; Karlsson, Stefan; Dichek, David A

    2006-10-01

    Smooth muscle cell (SMC)-specific deletion of transforming growth factor beta (TGF-beta) signaling would help elucidate the mechanisms through which TGF-beta signaling contributes to vascular development and disease. We attempted to generate mice with SMC-specific deletion of TGF-beta signaling by mating mice with a conditional ("floxed") allele for the type II TGF-beta receptor (tgfbr2flox) to mice with SMC-targeted expression of Cre recombinase. We bred male mice transgenic for smooth muscle myosin heavy chain (SMMHC)-Cre with females carrying tgfbr2flox. Surprisingly, SMMHC-Cre mice recombined tgfbr2flox at low levels in SMC and at high levels in the testis. Recombination of tgfbr2flox in testis correlated with high-level expression of SMMHC-Cre in testis and germline transmission of tgfbr2null. In contrast, mice expressing Cre from a SM22alpha promoter (SM22-Cre) efficiently recombined tgfbr2flox in vascular and visceral SMC and the heart, but not in testis. Use of the R26R reporter allele confirmed that Cre-mediated recombination in vascular SMC was inefficient for SMMHC-Cre mice and highly efficient for SM22-Cre mice. Breedings that introduced the SM22-Cre allele into tgfbr2flox/flox zygotes in order to generate adult mice that are hemizygous for SM22-Cre and homozygous for tgfbr2flox- and would have conversion of tgfbr2flox/flox to tgfbr2null/null in SMC-produced no live SM22-Cre : tgfbr2flox/flox pups (P<0.001). We conclude: (1) "SMC-targeted" Cre lines vary significantly in specificity and efficiency of Cre expression; (2) TGF-beta signaling in the subset of cells that express SM22alpha is required for normal development; (3) generation of adult mice with absent TGF-beta signaling in SMC remains a challenge.

  20. (beta)-catenin mediates the specification of endoderm cells in ascidian embryos.

    PubMed

    Imai, K; Takada, N; Satoh, N; Satou, Y

    2000-07-01

    In the present study, we addressed the role of (beta)-catenin in the specification of embryonic cells of the ascidians Ciona intestinalis and C. savignyi and obtained the following results: (1) During cleavages, (beta)-catenin accumulated in the nuclei of vegetal blastomeres, suggesting that it plays a role in the specification of endoderm. (2) Mis- and/or overexpression of (beta)-catenin induced the development of an endoderm-specific alkaline phosphatase (AP) in presumptive notochord cells and epidermis cells without affecting differentiation of primary lineage muscle cells. (3) Downregulation of (beta)-catenin induced by the overexpression of cadherin resulted in the suppression of endoderm cell differentiation. This suppression was compensated for by the differentiation of extra epidermis cells. (4) Specification of notochord cells did not take place in the absence of endoderm differentiation. Both the overexpression of (beta)-catenin in presumptive notochord cells and the downregulation of (beta)-catenin in presumptive endoderm cells led to the suppression of Brachyury gene expression, resulting in the failure of notochord specification. These results suggest that the accumulation of (beta)-catenin in the nuclei of endoderm progenitor cells is the first step in the process of ascidian endoderm specification.

  1. Immunological characterization of eristostatin and echistatin binding sites on alpha IIb beta 3 and alpha V beta 3 integrins.

    PubMed Central

    Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S

    1996-01-01

    Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368

  2. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  3. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.

    PubMed

    Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui

    2018-02-24

    Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.

  4. Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

    PubMed Central

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.

    2012-01-01

    Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898

  5. [Transplantation in diabetes type 1--current problems and perspectives].

    PubMed

    Wasikowa, Renata; Noczyńska, Anna; Basiak, Aleksander

    2004-01-01

    Diabetes type 1 is, as we know, a chronic progressive disease, which requires a substitutional therapy with insulin for the whole life. The cause is a definite destruction of the pancreatic beta cells. For many years there have been intensive investigations on the possibility to obtain a complete, persistent withdrawal of the symptoms. Substitution of the destroyed, not active cells, could take place after transplantation of the whole pancreas, transplantation of pancreatic islets or transplantation of stem cells. This is now the only method which may cause an independence from exogenous insulin, persistent normoglycemia, normal HbA1c level, without risk of hypoglycemia. Pancreas and islets transplantations, however, are connected till now with the necessity of an immunosuppressive therapy for the whole life, with the toxicity of the drugs, incidence of frequent infections and malignancy. Pancreas transplantation is a serious surgical intervention, connected with numerous risks and complications, considerably less risk appears in islet cell transplantations. Since 2000 exclusively islet cell transplantations have been performed. One of the leading centers is Edmonton, where professor Shapiro prepared the so called. Edmonton protocol which is characterized by using corticosteroid-free immunosuppressive drugs, islet cells from two or more donors, repeated till the attainment of insulin dependence. A problem now is that the islets are obtained from cadavers. Therefore intensive research is conducted for alternative sources of beta cells. At this moment it is mostly preferred for receiving a sufficient number of insulin producing cells to develop stem cells with a subsequent differentiation to insulin producing cells. The mentioned cells have an unlimited ability of reproduction, in this case also immunosuppressive therapy is not necessary. Alternative sources of beta cells are cells achieved on the genetic engineering, embryonic or adult somatic stem cells. It is however important to stress, that adult stem cells as insulin producing cells are not unequivocally identified. For obtaining better, permanent results after transplantation the following are important: optimalization of "islands growth" in the liver, prevention of the early inflammations, further development of highly selective, well tolerated, corticosteroid-free immunosuppressive drugs, identification of rejecting markers, induction of immunotolerance, micro- and macro-capsulation of the islets to protect the recipient against the immunological attack. Several multicenter studies in important scientific centers are opened, there is also Juvenile Research Foundation International. In spite of a permanent progress there are still many important problems to solve. It is necessary to institute further multicenter, international research to ascertain the effect of transplantation concerning the normalisation of glycemia, prevention or inhibition of the progress of diabetic complications and to prolong the life span in patients with type 1 diabetes after transplantation.

  6. Effect of atorvastatin on pancreatic Beta-cell function and insulin resistance in type 2 diabetes mellitus patients: a randomized pilot study.

    PubMed

    Goyal, Aman; Singh, Surender; Tandon, Nikhil; Gupta, Nandita; Gupta, Yogendra Kumar

    2014-12-01

    Statins are commonly used for the management of dyslipidemia in type 2 diabetes mellitus patients. We hypothesized that atorvastatin could modulate the beta-cell function by altering the levels of proapoptotic and antiapoptotic lipoproteins and could also have an effect on insulin resistance. The aim of the present pilot study was to assess the effect of atorvastatin 10 mg on pancreatic beta-cell function and insulin resistance in patients with hyperlipidemia and type 2 diabetes by using the homeostasis model assessment-2 (HOMA2) index. Fifty-one type 2 diabetes patients receiving oral antidiabetes drugs, not taking statins, with baseline low-density lipoprotein cholesterol between 2.6 mmol/L and 4.1 mmol/L were included. Forty-three patients (21 in placebo group and 22 in atorvastatin group) completed the study and were taken up for final analysis. Fasting blood samples were obtained at baseline and at 12 weeks to determine levels of blood glucose, lipid profile, insulin, C-peptide and glycosylated hemoglobin (A1C). Atorvastatin nonsignificantly increased fasting serum insulin (+14.29%, p=0.18), accompanied by marginal nonsignificant increases in fasting plasma glucose and A1C. There was a decrease in HOMA2 percent beta-cell function (-2.9%, p=0.72) and increase in HOMA2 insulin resistance (+14%, p=0.16) in the atorvastatin group as compared with baseline, but the difference was not statistically significant. Atorvastatin in the dose used failed to produce significant change in pancreatic beta-cell function and insulin resistance in type 2 diabetes patients as assessed by the HOMA2 index. The possible explanations include absence of lipotoxicity at prevailing levels of dyslipidemia at baseline or inadequacy of statin dose used in the study. (Clinical Trials Registry-India: CTRI/2008/091/000099). Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  7. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.

    PubMed

    Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J

    2016-05-01

    Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.

  8. Immune intervention in type 1 diabetes.

    PubMed

    Michels, Aaron W; Eisenbarth, George S

    2011-06-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results in the specific immune destruction of insulin producing beta cells. Currently there is no cure for T1D and treatment for the disease consists of lifelong administration of insulin. Immunotherapies aimed at preventing beta cell destruction in T1D patients with residual c-peptide or in individuals developing T1D are being evaluated. Networks of researchers such as TrialNet and the Immune Tolerance Network in the U.S. and similar networks in Europe have been established to evaluate such immunotherapies. This review focuses on immune intervention for the prevention and amelioration of human T1D with a focus on potential immune suppressive, antigen specific and environmental therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits.

    PubMed

    Han, Sang Eun; Seo, Young Sam; Kim, Daeil; Sung, Soon-Kee; Kim, Woo Taek

    2007-08-01

    Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.

  10. An unconventional hypothesis of oxidation in Alzheimer's disease: intersections with excitotoxicity.

    PubMed

    Barger, Steven W

    2004-09-01

    There are two major lines of investigation from which a connection has been traditionally drawn between chemical oxidation and Alzheimer's disease. First, a major risk factor for AD is age, and oxidative stress has long been a component of general hypotheses about biological aging. The second line of reasoning is a corollary of the Amyloid Hypothesis, the assumption that the amyloid beta-peptide (A-beta) which comprises AD's pathognomic plaques is a key mediator of the neurodegeneration occurring in this disorder. Under many experimental conditions, A-beta has been shown to evoke oxidative damage to tissues, cells, and biomolecules; even the redox properties of the peptide itself have been hotly debated. These two modalities of conjecture intersect under the Inflammatory Hypothesis of AD, as inflammation produces oxidation, old age is associated with elevation in inflammatory events, and A-beta can further exacerbate such inflammatory reactions in brain cells. This review discusses these arguments about the pathogenesis of AD and how they might be generalized to other neurodegenerative conditions. But, additional speculation is offered in the form of an inclusionary mechanism that may be specific and novel enough to qualify as a third line of theory; namely, the possibility that inflammatory reactions in microglia--activated by A-beta or other factors among the "usual suspects"--initiate programmed oxidation that is converted to the neuron-specific stress of excitotoxicity.

  11. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  12. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures

    PubMed Central

    1987-01-01

    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and- valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet- derived growth factor-mediated proliferation of these cells in two- dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury. PMID:3475277

  13. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone,more » a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with low NQO1 expression, mitochondria play a critical role in beta-Lp redox activation. • In cancer cells with high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1.« less

  14. Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells.

    PubMed

    Ganjam, L S; Thornton, W H; Marshall, R T; MacDonald, R S

    1997-10-01

    The consumption of yogurt has been associated with a reduced incidence of colon cancer in population groups. Bioactive peptides produced during bacterial fermentation may alter the risk of colon cancer via modification of cell proliferation in the colon. Using our previously described cell culture model system, we have isolated a yogurt fraction that decreases cell proliferation. Yogurt was fractionated using 10,000- and 500-Da membrane dialysis. When the yogurt fraction was incubated with IEC-6 or Caco-2 cells, cell division was decreased compared with control treatments, as determined by thymidine incorporation. Cell division was not inhibited in response to a similarly produced milk fraction or in response to solutions of lactic acid. The determination of cell kinetics by flow cytometry revealed a decrease in the number of cells in the initial growth phase in response to the yogurt fraction for the IEC-6 cells, but not the Caco-2 cells. Alpha-Lactalbumin inhibited cell division of both cell lines, but beta-casein did not.

  15. The re-incarnation, re-interpretation and re-demise of the transition probability model.

    PubMed

    Koch, A L

    1999-05-28

    There are two classes of models for the cell cycle that have both a deterministic and a stochastic part; they are the transition probability (TP) models and sloppy size control (SSC) models. The hallmark of the basic TP model are two graphs: the alpha and beta plots. The former is the semi-logarithmic plot of the percentage of cell divisions yet to occur, this results in a horizontal line segment at 100% corresponding to the deterministic phase and a straight line sloping tail corresponding to the stochastic part. The beta plot concerns the differences of the age-at-division of sisters (the beta curve) and gives a straight line parallel to the tail of the alpha curve. For the SC models the deterministic part is the time needed for the cell to accumulate a critical amount of some substance(s). The variable part differs in the various variants of the general model, but they do not give alpha and beta curves with linear tails as postulated by the TP model. This paper argues against TP and for an elaboration of SSC type of model. The main argument against TP is that it assumes that the probability of the transition from the stochastic phase is time invariant even though it is certain that the cells are growing and metabolizing throughout the cell cycle; a fact that should make the transition probability be variable. The SSC models presume that cell division is triggered by the cell's success in growing and not simply the result of elapsed time. The extended model proposed here to accommodate the predictions of the SSC to the straight tailed parts of the alpha and beta plots depends on the existence of a few percent of the cell in a growing culture that are not growing normally, these are growing much slower or are temporarily quiescent. The bulk of the cells, however, grow nearly exponentially. Evidence for a slow growing component comes from experimental analyses of population size distributions for a variety of cell types by the Collins-Richmond technique. These subpopulations existence is consistent with the new concept that there are a large class of rapidly reversible mutations occurring in many organisms and at many loci serving a large range of purposes to enable the cell to survive environmental challenges. These mutations yield special subpopulations of cells within a population. The reversible mutational changes, relevant to the elaboration of SSC models, produce slow-growing cells that are either very large or very small in size; these later revert to normal growth and division. The subpopulations, however, distort the population distribution in such a way as to fit better the exponential tails of the alpha and beta curves of the TP model.

  16. Dose responses for adaption to low doses of (60)Co gamma rays and (3)H beta particles in normal human fibroblasts.

    PubMed

    Broome, E J; Brown, D L; Mitchel, R E J

    2002-08-01

    The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point.

  17. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.

  18. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLamore » cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such as APP, CD44, DCC, ErbB4, E-cadherin, LRP, N-cadherin, Nectin-1, and Notch, within their transmembranous regions (2-11); therefore, in addition to its role in AD, {gamma}-secretase has been found to participate in other important biological functions, such as intracellular signaling. {gamma}-secretase processing of APP requires prior removal of a major fragment of the APP extracellular domain (sAPP{sub {beta}}) by {beta}-secretase to yield a membrane bound fragment (APP CTF{sub {beta}}). Subsequent cleavage of this membrane bound fragment by {gamma}-secretase results in the release of the Alzheimer's disease (AD) associated amyloid {beta}-peptides (12). The proteolytic activity of {gamma}-secretase is found not to be critically dependent on the specific sequence, but instead on the size of the extracellular domain (13); such sequence independent characteristics of the substrate are reminiscent of those of the 26S proteasome complex that cleaves substrates in a non-sequence specific manner. {gamma}-secretase is present in almost all animal species, vertebrates and invertebrates; it is expressed in many human organs and tissues.« less

  19. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis.

    PubMed

    Frengova, Ginka I; Simova, Emilina D; Beshkova, Dora M

    2004-01-01

    A mutant Rhodotorula rubra with enhanced carotenoid-synthesizing activity for synthesizing total carotenoids and beta-carotene was obtained by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. When co-cultivated with yogurt starter bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus) in whey ultrafiltrate it produced 15.7 mg total carotenoids l(-1) culture fluid or 946 microg total carotenoids g(-1) dry cells of which 71% was beta-carotene. Grown as a monoculture in glucose substrate, the mutant shown 1.4 times lower carotenoid-synthesizing activity, and the relative share of beta-carotene in the total carotenoids was lower (63%). The individual pigments torulene and torularhodin were identified, whose mass fractions were (29% and 7%) and (24% and 4%), respectively, for the mutant grown as a monoculture and as a mixed culture with the yogurt bacteria.

  20. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice.

    PubMed

    Ellenbroek, Johanne H; Töns, Hendrica A; de Graaf, Natascha; Loomans, Cindy J; Engelse, Marten A; Vrolijk, Hans; Voshol, Peter J; Rabelink, Ton J; Carlotti, Françoise; de Koning, Eelco J

    2013-01-01

    Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.

  1. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed Central

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-01-01

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102

  2. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1.

    PubMed

    Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine

    2008-06-01

    The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.

  3. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes.

    PubMed

    Yamada, T; Wada, A; Itoh, K; Igari, J

    2000-07-01

    Serum amyloid A (SAA), an acute-phase protein and a precursor of fibrous components in reactive amyloid deposits, is synthesized mainly in the liver under the stimulation of inflammation-related cytokines. In addition, the SAA gene is expressed in monocytes/macrophages, which are believed to play a central role in amyloid fibrillogenesis. Consequently, the pathogenic implication of SAA produced from these cells has been of major concern. Because SAA synthesis at the protein level in such cells has never been analyzed quantitatively, in this study an enzyme-linked immunosorbent assay was generated with a detection level sufficiently high to measure SAA concentrations in the culture supernatants of the human monocytic leukaemia cell line THP-1. SAA secretion by THP-1 with interleukin (IL)-1beta required the presence of dexamethasone as proposed previously. We also found that unidentified components in fetal calf serum (FCS) could induce SAA production by THP-1 in the presence of dexamethasone. These findings are in contrast to the results obtained from hepatoma cell line HepG2, in which IL-1beta alone could induce SAA secretion, while dexamethasone-supplemented FCS could not. The method was able to quantify SAA secreted from cultured human peripheral monocytes. The findings suggest that monocytes produce SAA in almost the same manner as THP-1. Thus, THP-1 cells can be utilized to investigate a distinctive manner of SAA production from monocytes.

  4. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production.

    PubMed

    Cam, Judy A; Zerbinatti, Celina V; Knisely, Jane M; Hecimovic, Silva; Li, Yonghe; Bu, Guojun

    2004-07-09

    The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.

  5. Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion

    PubMed Central

    1995-01-01

    We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339

  6. Activation of the canonical beta-catenin pathway by histamine.

    PubMed

    Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P

    2003-12-26

    Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.

  7. Outdoor cultivation of Dunaliella salina KU 11 using brine and saline lake water with raceway ponds in northeastern Thailand.

    PubMed

    Wu, Zhe; Dejtisakdi, Wipawee; Kermanee, Prasart; Ma, Chunhong; Arirob, Wallop; Sathasivam, Ramaraj; Juntawong, Niran

    2017-11-01

    To evaluate the potential of algal biotechnology to replace traditional agriculture in northeastern Thailand, an open raceway cultivation system was developed to produce biomass and beta-carotene. Dunaliella salina KU 11 isolated from local saline soil was cultured in open raceway tanks using brine and saline lake water. Grown in modified Johnson's medium (with 2-3.5 M NaCl), the algae reached a maximum cell density on the fourth day (1.8 × 10 6 cells mL -1 ). Increasing KNO 3 and NaHCO 3 from 0.5 and 0.043 g L -1 to 1 and 2.1 g L -1 , respectively, significantly improved the yields of biomass (0.33 g L -1 ) and beta-carotene (19 mg L -1 ). Expected profits for algal production were evaluated, and it was found that this strain was suitable for outdoor cultivation and the developing algal industry in northeastern Thailand could produce high economic benefits (at least $64,120 per year per 0.16 ha). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. Expression and in vitro regulation of integrins by normal human urothelial cells.

    PubMed

    Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K

    1995-08-01

    Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.

  9. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform.

    PubMed

    Candiello, Joseph; Grandhi, Taraka Sai Pavan; Goh, Saik Kia; Vaidya, Vimal; Lemmon-Kishi, Maya; Eliato, Kiarash Rahmani; Ros, Robert; Kumta, Prashant N; Rege, Kaushal; Banerjee, Ipsita

    2018-05-25

    Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells. In this study, we report specific engineering of regenerative islet organoids of precise size and cellular heterogeneity, using a novel hydrogel system, Amikagel. Amikagel facilitated controlled and spontaneous aggregation of human embryonic stem cell derived pancreatic progenitor cells (hESC-PP) into robust homogeneous spheroids. This platform further allowed fine control over the integration of multiple cell populations to produce heterogeneous spheroids, which is a necessity for complex organoid engineering. Amikagel induced hESC-PP spheroid formation enhanced pancreatic islet-specific Pdx-1 and NKX6.1 gene and protein expression, while also increasing the percentage of committed population. hESC-PP spheroids were further induced towards mature beta-like cells which demonstrated increased Beta-cell specific INS1 gene and C-peptide protein expression along with functional insulin production in response to in vitro glucose challenge. Further integration of hESC-PP with biologically relevant supporting endothelial cells resulted in multicellular organoids which demonstrated spontaneous maturation towards islet-specific INS1 gene and C-peptide protein expression along with a significantly developed extracellular matrix support system. These findings establish Amikagel -facilitated platform ideal for islet organoid engineering. Copyright © 2018. Published by Elsevier Ltd.

  10. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells.

    PubMed

    Guo, J; Wang, Q; Wai, D; Zhang, Q Z; Shi, S H; Le, A D; Shi, S T; Yen, S L-K

    2015-04-01

    This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The islet beta-cell: fuel responsive and vulnerable.

    PubMed

    Nolan, Christopher J; Prentki, Marc

    2008-10-01

    The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.

  12. Apparent inhibition of. beta. -fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, L.; Chrispeels, M.J.

    1989-03-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in themore » cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.« less

  13. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro.

    PubMed

    Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin

    2007-01-01

    Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.

  14. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Gregory O.; Yochem, Robert L.; Axelman, Joyce

    2007-05-11

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and {beta}-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation ofmore » preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.« less

  15. Exposure of T lymphocytes to leflunomide but not to dexamethasone favors the production by monocytic cells of interleukin-1 receptor antagonist and the tissue-inhibitor of metalloproteinases-1 over that of interleukin-1beta and metalloproteinases.

    PubMed

    Déage, V; Burger, D; Dayer, J M

    1998-12-01

    On direct cell-cell contact, stimulated T lymphocytes potently trigger the production of pro-inflammatory factors such as interleukin-1beta (IL-1beta) and matrix metalloproteinases (MMP-1 and MMP-9), as well as anti-inflammatory factors such as IL-1 receptor antagonist (IL-1Ra) and the tissue inhibitor of metalloproteinases (TIMP-1) in peripheral blood monocytes and the monocytic cell line THP-1. Such mechanisms might play an important part in many inflammatory diseases where tissue destruction occurs. To assess whether anti-inflammatory agents such as dexamethasone (DEX) and leflunomide (LF) would affect contact-activation of monocytic cells, T lymphocytes were stimulated by PMA and PHA in the presence or absence of increasing concentrations of drug. LF and DEX (10- 4 M) inhibited the ability of stimulated T lymphocytes to activate monocytic cells by 66-97% and 43-70%, respectively, depending on the readout product. Upon contact with T lymphocytes stimulated in the presence of 10- 5 M LF, the molar ratio of IL-1Ra/IL-1beta and TIMP-1/MMP-1 produced by THP-1 cells was enhanced 3.6- and 1.9-fold, respectively, whereas it was enhanced only 1.3- and 1.4-fold upon contact with T lymphocytes stimulated in the presence of 10- 4 M DEX. Therefore, LF tends to favor the inhibition of pro-inflammatory and matrix-destructive factors over that of anti-inflammatory factors and metalloproteinase inhibitors, thus interfering with both inflammation and tissue destruction. These experiments indicate that LF and DEX have the potential to affect the capacity of stimulated T lymphocytes to activate, on direct cell-cell contact, monocytic cells. Furthermore, flow cytometric analysis revealed that surface molecules of T lymphocytes that were partially involved in contact-signaling of monocytes (i.e., CD69 and CD11) were not modulated by either LF or DEX, suggesting that factors which remain to be identified were mainly involved in the activation of monocytes on direct cell-cell contact.

  16. Activation of antigen-specific cytotoxic T lymphocytes by beta 2-microglobulin or TAP1 gene disruption and the introduction of recipient-matched MHC class I gene in allogeneic embryonic stem cell-derived dendritic cells.

    PubMed

    Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru

    2008-11-01

    A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.

  17. Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters

    PubMed Central

    Whim, Matthew D.

    2011-01-01

    Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341

  18. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines

    NASA Technical Reports Server (NTRS)

    Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W. B.; Meyer, M.; Fleischer, N.; Sharp, G. W.; Christakos, S.

    1999-01-01

    The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).

  19. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice.

    PubMed

    Qin, Kunhua; Zhang, Ning; Zhang, Zhao; Nipper, Michael; Zhu, Zhenxin; Leighton, Jake; Xu, Kexin; Musi, Nicolas; Wang, Pei

    2018-04-01

    Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.

  20. Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen.

    PubMed

    Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia

    2003-02-01

    The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.

  1. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells.

    PubMed

    Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E

    2007-12-24

    Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.

  2. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  3. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins

    PubMed Central

    1995-01-01

    To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947

  4. Involvement of central, but not placental corticotropin releasing hormone (CRH) in heat stress induced immunosuppression during pregnancy.

    PubMed

    Nakamura, H; Nagase, H; Ogino, K; Hatta, K; Matsuzaki, I

    2001-03-01

    To clarify whether corticotropin releasing hormone (CRH) and beta-endorphin (betaEP) system mediate maternal immunosuppression in pregnant rats exposed to heat through central or placental pathway, we examined the effects of intravenous (iv) (100 or 500 microg) or intracerebroventricular (icv) (5 microg) administration of CRH receptor antagonist alpha-helical CRH (9-41) on splenic natural killer cell activity (NKCA) as well as betaEP in blood, pituitary lobes, and placenta in pregnant rats at 15 to 16 days gestation. Two-way ANOVA revealed that heat reduced NKCA and elevated blood and pituitary betaEP but did not change placental betaEP. Iv administered 500 microg and icv administered alpha-helical CRH reversed the reduced NKCA and the elevated pituitary betaEP, while iv administration of 100 microg alpha-helical CRH did not. The increased blood betaEP was reversed by iv 100 and 500 microg alpha-helical CRH and icv administration. Both iv and icv administrations reduced placental betaEP independent of heat exposure. Thus, the response of placental betaEP to iv administration of alpha-helical CRH seemed to be stronger than that of pituitary betaEP. These results indicate that alpha-helical CRH which acts on pituitary betaEP antagonizes heat-induced immunosuppression during pregnancy, suggesting that immunosuppression produced by heat stress during pregnancy is mediated by the central CRH system. The placental CRH-betaEP system seems unlikely to be involved in the immunosuppression. Physiologic roles of placental CRH and opioid system should be clarified by future in vitro experiments using placenta specimen including placental immunocyte.

  5. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.

    PubMed

    Millette, Katelyn; Georgia, Senta

    2017-10-05

    This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.

  6. Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin.

    PubMed

    Theoret, James R; Li, Jihong; Navarro, Mauricio A; Garcia, Jorge P; Uzal, Francisco A; McClane, Bruce A

    2018-01-01

    Many Clostridium perfringens strains produce NanI as their major sialidase. Previous studies showed that NanI could potentiate C. perfringens epsilon toxin cytotoxicity by enhancing the binding of this toxin to host cells. The present study first determined that NanI exerts similar cytotoxicity-enhancing effects on C. perfringens enterotoxin and beta toxin, which are also important toxins for C. perfringens diseases (enteritis and enterotoxemia) originating in the gastrointestinal (GI) tract. Building upon previous work demonstrating that purified trypsin can activate NanI activity, this study next determined that purified chymotrypsin or mouse intestinal fluids can also activate NanI activity. Amino acid sequencing then showed that this effect involves the N-terminal processing of the NanI protein. Recombinant NanI (rNanI) species corresponding to major chymotrypsin- or small intestinal fluid-generated NanI fragments possessed more sialidase activity than did full-length rNanI, further supporting the proteolytic activation of NanI activity. rNanI species corresponding to proteolysis products also promoted the cytotoxic activity and binding of enterotoxin and beta toxin more strongly than did full-length rNanI. Since enterotoxin and beta toxin are produced in the intestines during human and animal disease, these findings suggest that intestinal proteases may enhance NanI activity, which in turn could further potentiate the activity of intestinally active toxins during disease. Coupling these new results with previous findings demonstrating that NanI is important for the adherence of C. perfringens to enterocyte-like cells, NanI sialidase is now emerging as a potential auxiliary virulence factor for C. perfringens enteritis and enterotoxemia. Copyright © 2017 American Society for Microbiology.

  7. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival.

    PubMed

    Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-02-14

    NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.

  8. Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells.

    PubMed

    Santos-Silva, Junia Carolina; Carvalho, Carolina Prado de França; de Oliveira, Ricardo Beltrame; Boschero, Antonio Carlos; Collares-Buzato, Carla Beatriz

    2012-07-01

    In this study, we investigated the cellular distribution of junctional proteins and the dependence on cell-cell contacts of pancreatic beta cells during animal development. Fetus and newborn rat islets, which display a relatively poor insulin secretory response to glucose, present an immature morphology and cytoarchitecture when compared with young and adult islets that are responsive to glucose. At the perinatal stage, beta cells display a low junctional content of neural cell adhesion molecule (N-CAM), α- and β-catenins, ZO-1, and F-actin, while a differential distribution of N-CAM and Pan-cadherin was seen in beta cells and nonbeta cells only from young and adult islets. In the absence of intercellular contacts, the glucose-stimulated insulin secretion was completely blocked in adult beta cells, but after reaggregation they partially reestablished the secretory response to glucose. By contrast, neonatal beta cells were poorly responsive to sugar, regardless of whether they were arranged as intact islets or as isolated cells. Interestingly, after 10 days of culturing, neonatal beta cells, known to display increased junctional protein content in vitro, became responsive to glucose and concomitantly dependent on cell-cell contacts. Therefore, our data suggest that the developmental acquisition of an adult-like insulin secretory pattern is paralleled by a dependence on direct cell-cell interactions.

  9. Islet immunity and beta cell reserve of indigenous Black South Africans with ketoacidosis at initial diagnosis of diabetes.

    PubMed

    Ekpebegh, Chukwuma; Longo-Mbenza, Benjamin; Blanco-Blanco, Ernesto

    2013-01-01

    Islet immunity and beta cell reserve status were utilized to classify persons with ketoacidosis as the initial manifestation of diabetes. The clinical features of the various diabetes classes were also characterized. Prospective cross sectional study. Nelson Mandela Academic Hospital, Mthatha, Eastern Cape Province, South Africa. Indigenous Black South Africans with ketoacidosis as the initial manifestation of diabetes. Islet immunity and beta cell reserve were respectively assessed using serum anti-glutamic acid decarboxylase 65 (GAD) antibody and serum C-peptide after 1 mg of intravenous glucagon. Serum anti-GAD 65 antibody > or = 5 units/L and < 5 units/L, respectively defined anti-GAD 65 positive (A+) and negative (A-). Replete (beta+) and deplete (beta-) beta cell reserve were serum C-peptide after glucagon injection of > or = 0.5 ng/mL and < 0.5 ng/mL, respectively. The proportions of patients with A+beta-, A+beta+, A-beta- and A-beta+ and their clinical characteristics were determined. Of the 38 males and 33 females who participated in the study, patients were categorized in various classes: A-beta+, 46.5% (n=33/ 71); A-beta-, 26.8% (n=19/71); A+beta-, 22.5% (n=16/71); and A+beta+, 4.2% (n=3/71). The ages of the various classes were: 41.8 +/- 13.8 years for A-beta+ (n=33); 36.5 +/- 14.6 years for A-beta- (n=19); and 20.6 +/- 7.1 years for the combination of A+beta- with A+beta+ (n=19) (P<.0001, P<.0001 for the combination of A+beta- and A+beta+ vs A-beta+, P=.001 for the combination of A+beta- and A+beta+ vs A-beta-and P=.2 for A-beta- vs A-beta+. The clinical features of type 2 diabetes were most prevalent in A-beta+ class while the A+beta- and A+beta+ groups had the clinical profile of type 1A diabetes. Most of the indigenous Black South African patients with ketoacidosis as the initial manifestation of diabetes had islet immunity, beta cell reserve status and clinical profiles of type 2 diabetes.

  10. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    PubMed

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  11. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    PubMed

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-06-01

    Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  12. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  13. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model ofmore » primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One, 2009), the results presented here strongly suggest IL-1{beta} as a key molecule guiding tissue remodelling events after myocardial infarction.« less

  14. A pseudodeficiency allele (D152N) of the human {beta}-glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vervoort, R.; Liebaers, I.; Lissens, W.

    1995-10-01

    We present evidence that a 480G{r_arrow}A transition in the coding region of the {Beta}glucuronidase gene, which results in an aspartic-acid-to-asparagine substitution at amino acid position 152 (D152N), produces a pseudodeficiency allele (GUSBp) that leads to greatly reduced levels of {Beta}-glucuronidase activity without apparent deleterious consequences. The 48OG{r_arrow}A mutation was found initially in the pseudodeficient mother of a child with mucopolysaccharidosis VII (MPSVII), but it was not on her disease-causing allele, which carried the L176F mutation. The 480G{r_arrow}A change was also present in an unrelated individual with another MPSVII allele who had unusually low {Beta}-glucuronidase activity, but whose clinical symptoms weremore » probably unrelated to {Beta}-glucuronidase deficiency. This individual also had an R357X mutation, probably on his second allele. We screened 100 unrelated normal individuals for the 480G{r_arrow}A mutation with a PCR method and detected one carrier. Reduced {Beta}-glucuronidase activity following transfection of COS cells with the D152N cDNA supported the causal relationship between the D152N allele and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due to accelerated intracellular turnover of the D152N enzyme. They also suggested that a potential glycosylation site created by the mutation is utilized in {approximately}50% of the enzyme expressed. 25 refs., 3 figs., 3 tabs.« less

  15. Increased susceptibility to beta-lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium.

    PubMed Central

    Oppezzo, O J; Avanzati, B; Antón, D N

    1991-01-01

    Isogenic derivatives carrying envB6, envB9, or envB+ alleles were obtained from a strain of Salmonella typhimurium that was partially resistant to mecillinam, a beta-lactam antibiotic specific for penicillin-binding protein 2 (PBP 2). Testing of the isogenic strains with several antibacterial agents demonstrated that envB mutations either increased resistance (mecillinam) or did not affect the response (imipemen) to beta-lactams that act primarily on PBP 2, while susceptibilities to beta-lactams that act on PBP 1B, PBP 3, or both were increased. Furthermore, the susceptibilities of envB strains to hydrophobic compounds such as rifampin, novobiocin, or chloramphenicol were not modified, even though their susceptibilities to deoxycholate and crystal violet were enhanced. Outer cell membranes of envB mutants presented a 50% reduction in protein content compared with that of the isogenic envB+ strains, and OmpF and OmpD porins were particularly affected by the reduction. No alteration in the amount or pattern of periplasmic proteins was noticed, and lipopolysaccharides from envB mutants appeared to be normal by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. By using derivatives that produced a plasmid-encoded beta-lactamase, it was demonstrated that envB cells are slightly less permeable to cephalothin than envB+ bacteria are. It is concluded that the high susceptibility of envB mutants to beta-lactams is due to the increased effectiveness of the antibiotics on PBP 1B, PBP 3, or both. Images PMID:1656857

  16. Large-scale production of embryonic red blood cells from human embryonic stem cells.

    PubMed

    Olivier, Emmanuel N; Qiu, Caihong; Velho, Michelle; Hirsch, Rhoda Elison; Bouhassira, Eric E

    2006-12-01

    To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.

  17. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach.

    PubMed

    Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A

    2014-01-01

    Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.

  18. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  19. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  20. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  1. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    PubMed

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  2. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  3. The involvement of AMPK/GSK3-beta signals in the control of metastasis and proliferation in hepato-carcinoma cells treated with anthocyanins extracted from Korea wild berry Meoru

    PubMed Central

    2014-01-01

    Background Activation of the Wnt pathway is known to promote tumorigenesis and tumor metastasis, and targeting Wnt pathway inhibition has emerged as an attractive approach for controlling tumor invasion and metastasis. The major pathway for inhibiting Wnt is through the degradation of β-catenin by the GSK3-beta/CK1/Axin/APC complex. It was found that Hep3B hepato-carcinoma cells respond to anthocyanins through GSK3-beta-induced suppression of beta-catenin; however, they cannot dephosphorylate GSK3-beta without AMPK activation. Methods We tested the effects of anthocyanins on proliferation and apoptosis by MTT and Annexin V-PI staining in vitro. Mouse xenograft models of hepato-carcinomas were established by inoculation with Hep3B cells, and mice were injected with 50 mg/kg/ml of anthocyanins. In addition, protein levels of p-GSK3-beta, beta-catenin, p-AMPK, MMP-9, VEGF, and Ang-1 were also analyzed using western blot. Results Anthocyanins decrease phospho-GSK3-beta and beta-catenin expression in an in vivo tumor xenograft model, increase AMPK activity in this model, and inhibit cell migration and invasion, possibly by inhibiting MMP-2 (in vitro) and the panendothelial marker, CD31 (in vivo). To elucidate the role of the GSK3-beta/beta-catenin pathway in cancer control, we conditionally inactivated this pathway, using activated AMPK for inhibition. Further, we showed that AMPK siRNA treatment abrogated the ability of anthocyanins to control cell proliferation and metastatic potential, and Compound C, an AMPK inhibitor, could not restore GSK3-beta regulation, as exhibited by anthocyanins in Hep3B cells. Conclusion These observations imply that the AMPK-mediated GSK3-beta/beta-catenin circuit plays crucial roles in inhibiting cancer cell proliferation and metastasis in anthocyanin-treated hepato-carcinoma cells of Meoru origin. PMID:24666969

  4. Phenotypic Characterization of Multidrug-resistant Escherichia Coli with Special Reference to Extended-spectrum-beta-lactamases and Metallo-beta-lactamases in a Tertiary Care Center.

    PubMed

    Shrestha, B; Shrestha, S; Mishra, S K; Kattel, H P; Tada, T; Ohara, H; Kirikae, T; Rijal, B P; Sherchand, J B; Pokhrel, B M

    2015-01-01

    The increasing reports on extended-spectrum-beta-lactamase and metallo-beta-lactamase producing Escherichia coli have addressed a potential threat to global health since it is found to be highly resistance to most of the currently available antibiotics including carbapenems. The present study was aimed to determine the antibiogram of extended-spectrum-beta-lactamase and metallo-beta-lactamase producing MDR E. coli isolates from various clinical samples. This was a cross-sectional study conducted over a period of seven months from December 2013 to July 2014 at bacteriology laboratory of Tribhuvan University Teaching Hospital. A total of 250 clinical specimens (urine, pus, sputum, blood, body fluid, bile, tissue and central venous pressure line tip) were processed from inpatients, with multidrug-resistant Escherichia coli infections. Standard microbiological techniques were used for isolation and identification of the isolates. The presence of extended-spectrum-beta-lactamase was detected by phenotypic confirmatory test recommended by Clinical and Laboratory Standards Institute and imipenem (IMP) /EDTA combined disc method was performed to detect metallo-beta-lactamase mediated resistance mechanism. We found high level of beta lactamase mediated resistance mechanism as part of multidrug resistance. Among 250 MDR isolates, 60% isolates were extended-spectrum-beta-lactamase producers and 17.2% isolates were metallo-beta-lactamase producers. Co-existence of extended-spectrum-beta-lactamase and metallo-beta-lactamase identified in 6.8% isolates. Beta-lactamase mediated resistance mechanisms are accounting very high in the multidrug resistant isolates of E. coli. Therefore, early detection of beta lactamase mediated resistant strains and their current antibiotic susceptibility pattern is necessary to avoid treatment failure and prevent the spread of MDR.

  5. The J beta segment of the T cell receptor contributes to the V beta-specific T cell expansion caused by staphylococcal enterotoxin B and Urtica dioica superantigens.

    PubMed

    Musette, P; Galelli, A; Truffa-Bachi, P; Peumans, W; Kourilsky, P; Gachelin, G

    1996-03-01

    We have used a new polymerase chain reaction-based technique to analyze at the clonal level the CDR3 diversity and the J beta usage associated with the V beta-dependent T cell receptor (TCR) recognition of two superantigens: the staphylococcal enterotoxin B and the Urtica dioica agglutinin. Our results show that subset of J beta elements is preferentially expanded in a given V beta family, independently of the nature of the superantigen. By contrast, the CDR3 loop does not contribute significantly to the T cell expansion induced by the superantigens. We conclude that the J beta segment of the TCR beta chain, but not the CDR3 region, participates in superantigen binding, presumably by influencing the quaternary structure of the TCR beta chain.

  6. The mechanism of cell death in human cultured colon adenocarcinoma cell line COLO 201 induced by beta-D-N-acetylglucosaminyl-p-nitrophenol.

    PubMed

    Kukidome, J; Kakizaki, I; Takagaki, K; Matsuki, A; Munakata, A; Endo, M

    2001-05-01

    COLO 201, human colon adenocarcinoma cells were incubated with artificial primers, p-nitrophenyl-glycoside derivatives at 1.0 mmol (mM) in the medium containing 10% fetal bovine serum to detect sugar chain elongation. However, when p-nitrophenyl-beta-N-acetylglucosamine (beta-GlcNAc-PNP) was added, the medium changed color to yellow and the cells were dead. To explain this finding, the cells were incubated with 1.0 mM each of beta-GlcNAc-PNP and 4-methylumbelliferyl-beta-N-acetylglucosamine, then the number of living cells was measured in a time course. In beta-GlcNAc-PNP, the living cells were decreased at 24 hours. The cells were survived with N-acetylglucosamine, whereas in the presence of p-nitrophenol (PNP) the living cells were decreased. It was suggested that PNP released from beta-GlcNAc-PNP induced the cell death. Activity of beta-D-N-acetylglucosaminidase was detected in fetal bovine serum. It was shown that PNP induced the cell death in time-and-dose dependent manner. Genomic DNA from COLO 201 analyzed by agarose gel electrophoresis was fragmentated. PNP analogues were tested for toxicity, and the results suggested that the phenolic OH-group linked to benzene ring and nitro-group linked to the structure in para-form (PNP) was the most effective.

  7. Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-kappaB-mediated expression in cultured human mesangial cells.

    PubMed

    Tsukinoki, Tomoko; Sugiyama, Hitoshi; Sunami, Reiko; Kobayashi, Mizuho; Onoda, Tetsuya; Maeshima, Yohei; Yamasaki, Yasushi; Makino, Hirofumi

    2004-09-01

    Fas ligand (FasL) is a well-known death factor; however, the role of FasL in the regulation of human glomerulonephritis remains unclear. We investigated the renal expression and localization of FasL in various forms of human glomerulonephritis by immunohistochemistry, utilizing confocal laser scanning microscopy. We further evaluated cytokine-induced FasL expression via nuclear factor (NF)kappaB in cultured human mesangial cells (HMC). The level of soluble FasL was measured by a specific enzyme-linked immunosorbent assay (ELISA). The frequency of glomerular FasL-positive cases was higher in lupus nephritis (37.9%) as compared with other forms of glomerulonephritis (8.7%). The glomerular FasL score in proliferative lupus nephritis was significantly higher than that in nonproliferative forms. Patients with a high apoptosis score, severe microhematuria, proteinuria, or decreased renal function had a high FasL score. Double immunolabelling demonstrated that the most prevalent phenotypes of FasL-positive cells were mesangial cells. In cultured HMC, interleukin (IL)1beta, lipopolysaccharide (LPS), or gamma interferon (IFN) upregulated membrane-bound FasL. IL1beta significantly, and LPS or gammaIFN weakly activated NFkappaB, but none of these agents activated NFkappaB/Rel-related nuclear factor of activated T cells (NFATc) or IFN regulatory factor-1. IL1beta-mediated NFkappaB was completely inhibited in the presence of lactacystin, a potent inhibitor of NFkappaB. Lactacystin-mediated inhibition of NFkappaB reduced FasL protein levels. Matrix metalloproteinase (MMP)-7, but not other MMPs (1, 2, 3, 8, or 9), significantly sensitized HMC to release soluble FasL after IL1beta stimulation. The results suggest that: (1) upregulation of mesangial FasL may contribute to the glomerular inflammation in proliferative lupus nephritis in vivo; (2) proinflammatory cytokines, in particular IL1beta, produced in nephritis can upregulate FasL via the transcription factor NFkappaB in HMC; and (3) MMP-7-mediated release of soluble FasL could control the mesangial inflammation.

  8. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation ofmore » {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.« less

  9. Biotin status affects nickel allergy via regulation of interleukin-1beta production in mice.

    PubMed

    Kuroishi, Toshinobu; Kinbara, Masayuki; Sato, Naoki; Tanaka, Yukinori; Nagai, Yasuhiro; Iwakura, Yoichiro; Endo, Yasuo; Sugawara, Shunji

    2009-05-01

    Biotin, a water-soluble B complex vitamin, is possibly involved in chronic inflammatory diseases, although the detailed mechanisms are unclear. In this study, we investigated the effects of biotin status on nickel (Ni) allergy in mice. Mice were fed a basal or biotin-deficient (BD) diet for 8 wk and sensitized with an intraperitoneal injection of NiCl(2) and lipopolysaccharide. Ten days after sensitization, NiCl(2) was intradermally injected into pinnas and ear swelling was measured. For in vitro analysis, we cultured a murine macrophage cell line, J774.1, under a biotin-sufficient (C, meaning control) or BD condition for 4 wk and analyzed interleukin (IL)-1 production. Significantly higher ear swelling was induced in BD mice than C mice. Adaptive transfer of splenocytes from both C and BD mice induced Ni allergy in unsensitized mice. Regardless of donor mice, ear swelling was significantly higher in BD recipient mice than C recipient mice. Ni allergy was not induced in either C or BD IL-1(-/-) mice. Splenocytes from BD mice produced a significantly higher amount of IL-1beta than those from C mice. Production and mRNA expression of IL-1beta were significantly higher in BD J774.1 cells than in C cells. Biotin supplementation inhibited the augmentation of IL-1beta production in vitro. In vivo supplementation of biotin in drinking water dose-dependently decreased ear swelling in C and BD mice. These results indicate that biotin status affects Ni allergy in the elicitation phase via the upregulation of IL-1beta production in mice, suggesting that biotin supplementation may have therapeutic effects on human metal allergy.

  10. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    PubMed

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  11. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  12. Inhibitory effect of dimeric beta peptide on the recurrence and metastasis of hepatocellular carcinoma in vitro and in mice.

    PubMed

    Wang, Song-Mei; Zhu, Jun; Pan, Luan-Feng; Liu, Yin-Kun

    2008-05-21

    To block the adhesion of tumor cells to the extracellular matrix, and prevent tumor metastasis and recurrence, the dimer of the beta peptide (DLYYLMDLSYSMKGGDLYYLMDLSYSMK, beta2) was designed and synthesized and its anti-adhesion and anti-invasion effects on hepatocellular carcinoma cells were assessed. Additionally, its influence on the metastasis and recurrence of mouse hepatocellular carcinoma was measured. The anti-adhesion effect of beta2 on the highly metastatic hepatocellular carcinoma cell line HCCLM6 cells and fibronectin (FN) was assayed by the MTT assay. The inhibition of invasion of HCCLM6 cells by beta2 was observed using a Transwell (modified Boyden chamber) and matrigel. Using the hepatocellular carcinoma metastasis model and LCI-D20 nude mice, the influence of beta2 on the metastasis and recurrence of hepatocellular carcinoma after early resection was investigated. HCCLM6 cells co-incubated with 100 mumol/L, 50 micromol/L, 20 micromol/L or 10 micromol/L beta2 for 3 h showed an obvious decrease in adhesion to FN. The adhesion inhibition ratios were 11.8%, 21.7%, 29.6% and 48.7%, respectively. Additionally, HCCLM6 cells cultured with 100 mumol/L beta2 had a dramatic decrease in cell invasion. beta2 was also observed to inhibit the incisal edge recurrence and the distant metastasis of nude mice hepatocellular carcinoma after early resection (P < 0.05). The beta2 peptide can specifically block the adhesion and invasion of HCCLM6 cells, and can inhibit HCC recurrence and metastasis of LCI-D20 model posthepatectomy in vivo. Thus, beta2 should be further studied as a new anti-tumor drug.

  13. Inhibition of beta-adrenergic receptor trafficking in adult cardiocytes by MAP4 decoration of microtubules.

    PubMed

    Cheng, Guangmao; Qiao, Fei; Gallien, Thomas N; Kuppuswamy, Dhandapani; Cooper, George

    2005-03-01

    Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.

  14. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  15. Reduction of high-affinity beta2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy.

    PubMed

    Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns

    2007-05-01

    Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.

  16. Proteomic Analysis of Human Adipose Derived Stem Cells during Small Molecule Chemical Stimulated Pre-neuronal Differentiation

    PubMed Central

    Santos, Jerran; Milthorpe, Bruce K; Herbert, Benjamin R; Padula, Matthew P

    2017-01-01

    Background Adipose derived stem cells (ADSCs) are acquired from abdominal liposuction yielding a thousand fold more stem cells per millilitre than those from bone marrow. A large research void exists as to whether ADSCs are capable of transdermal differentiation toward neuronal phenotypes. Previous studies have investigated the use of chemical cocktails with varying inconclusive results. Methods Human ADSCs were treated with a chemical stimulant, beta-mercaptoethanol, to direct them toward a neuronal-like lineage within 24 hours. Quantitative proteomics using iTRAQ was then performed to ascertain protein abundance differences between ADSCs, beta-mercaptoethanol treated ADSCs and a glioblastoma cell line. Results The soluble proteome of ADSCs differentiated for 12 hours and 24 hours was significantly different from basal ADSCs and control cells, expressing a number of remodeling, neuroprotective and neuroproliferative proteins. However toward the later time point presented stress and shock related proteins were observed to be up regulated with a large down regulation of structural proteins. Cytokine profiles support a large cellular remodeling shift as well indicating cellular distress. Conclusion The earlier time point indicates an initiation of differentiation. At the latter time point there is a vast loss of cell population during treatment. At 24 hours drastically decreased cytokine profiles and overexpression of stress proteins reveal that exposure to beta-mercaptoethanol beyond 24 hours may not be suitable for clinical application as our results indicate that the cells are in trauma whilst producing neuronal-like morphologies. The shorter treatment time is promising, indicating a reducing agent has fast acting potential to initiate neuronal differentiation of ADSCs. PMID:28844130

  17. Proteomic Analysis of Human Adipose Derived Stem Cells during Small Molecule Chemical Stimulated Pre-neuronal Differentiation.

    PubMed

    Santos, Jerran; Milthorpe, Bruce K; Herbert, Benjamin R; Padula, Matthew P

    2017-11-30

    Adipose derived stem cells (ADSCs) are acquired from abdominal liposuction yielding a thousand fold more stem cells per millilitre than those from bone marrow. A large research void exists as to whether ADSCs are capable of transdermal differentiation toward neuronal phenotypes. Previous studies have investigated the use of chemical cocktails with varying inconclusive results. Human ADSCs were treated with a chemical stimulant, beta-mercaptoethanol, to direct them toward a neuronal-like lineage within 24 hours. Quantitative proteomics using iTRAQ was then performed to ascertain protein abundance differences between ADSCs, beta-mercaptoethanol treated ADSCs and a glioblastoma cell line. The soluble proteome of ADSCs differentiated for 12 hours and 24 hours was significantly different from basal ADSCs and control cells, expressing a number of remodeling, neuroprotective and neuroproliferative proteins. However toward the later time point presented stress and shock related proteins were observed to be up regulated with a large down regulation of structural proteins. Cytokine profiles support a large cellular remodeling shift as well indicating cellular distress. The earlier time point indicates an initiation of differentiation. At the latter time point there is a vast loss of cell population during treatment. At 24 hours drastically decreased cytokine profiles and overexpression of stress proteins reveal that exposure to beta-mercaptoethanol beyond 24 hours may not be suitable for clinical application as our results indicate that the cells are in trauma whilst producing neuronal-like morphologies. The shorter treatment time is promising, indicating a reducing agent has fast acting potential to initiate neuronal differentiation of ADSCs.

  18. Interleukin 4: signalling mechanisms and control of T cell differentiation.

    PubMed

    Paul, W E

    1997-01-01

    Interleukin 4 (IL-4) is a pleiotropic type I cytokine that controls both growth and differentiation among haemopoietic and non-haemopoietic cells. Its receptor is a heterodimer. One chain, the IL-4R alpha chain, binds IL-4 with high affinity and determines the nature of the biochemical signals that are induced. The second chain, gamma c, is required for the induction of such signals. IL-4-mediated growth depends upon activation events that involve phosphorylation of Y497 of IL-4R alpha, leading to the binding and phosphorylation of 4PS/IRS-2 in haemopoietic cells and of IRS-1 in non-haemopoietic cells. By contrast, IL-4-mediated differentiation events depend upon more distal regions of the IL-4R alpha chain that include a series of STAT-6 binding sites. The distinctive roles of these receptor domains was verified by receptor-reconstruction experiments. The 'growth' and 'differentiation' domains of the IL-4R alpha chain, independently expressed as chimeric structures with a truncated version of the IL-2R beta chain, were shown to convey their functions to the hybrid receptor. The critical role of STAT-6 in IL-4-mediated gene activation and differentiation was made clear by the finding that lymphocytes from STAT-6 knockout mice are strikingly deficient in these functions but have retained the capacity to grow, at least partially, in response to IL-4. IL-4 plays a central role in determining the phenotype of naive CD4+ T cells. In the presence of IL-4, newly primed naive T cells develop into IL-4 producers while in its absence they preferentially become gamma-interferon (IFN-gamma) producers. Recently, a specialized subpopulation of T cells, CD4+/NK1.1+ cells, has been shown to produce large amounts of IL-4 upon stimulation. Two examples of mice with deficiencies in these cells are described--beta 2-microglobulin knockout mice and SJL mice. Both show defects in the development of IL-4-producing cells and in the increase in serum IgE in response to stimulation with the polyclonal stimulant anti-IgD. Both sets of mice have major diminutions in the number of CD4+/ NK1.1+ T cells, strongly indicating an important role of these cells in some but not all IgE responses to physiologic stimuli.

  19. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  20. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that the neural crest is a critical regulator of beta cell development on two levels: by negatively regulating beta cell proliferation and by promoting beta cell maturation. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Preliminary in vivo efficacy studies of a recombinant rhesus anti-alpha(4)beta(7) monoclonal antibody.

    PubMed

    Pereira, L E; Onlamoon, N; Wang, X; Wang, R; Li, J; Reimann, K A; Villinger, F; Pattanapanyasat, K; Mori, K; Ansari, A A

    2009-01-01

    Recent findings established that primary targets of HIV/SIV are lymphoid cells within the gastrointestinal (GI) tract. Focus has therefore shifted to T-cells expressing alpha(4)beta(7) integrin which facilitates trafficking to the GI tract via binding to MAdCAM-1. Approaches to better understand the role of alpha(4)beta(7)+ T-cells in HIV/SIV pathogenesis include their depletion or blockade of their synthesis, binding and/or homing capabilities in vivo. Such studies can ideally be conducted in rhesus macaques (RM), the non-human primate model of AIDS. Characterization of alpha(4)beta(7) expression on cell lineages in RM blood and GI tissues reveal low densities of expression by NK cells, B-cells, naïve and TEM (effector memory) T-cells. High densities were observed on TCM (central memory) T-cells. Intravenous administration of a single 50mg/kg dose of recombinant rhesus alpha(4)beta(7) antibody resulted in significant initial decline of alpha(4)beta(7)+ lymphocytes and sustained coating of the alpha(4)beta(7) receptor in both the periphery and GI tissues.

  2. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    PubMed

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  3. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    PubMed Central

    Zeng, Ximin; Lin, Jun

    2013-01-01

    Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147

  4. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  5. Cellular and molecular pathology of HTS: basis for treatment.

    PubMed

    Armour, Alexis; Scott, Paul G; Tredget, Edward E

    2007-01-01

    Hypertrophic scar and keloids are fibroproliferative disorders of the skin which occur often unpredictably, following trauma and inflammation that compromise cosmesis and function and commonly recur following surgical attempts for improvement. Despite decades of research in these fibrotic conditions, current non-surgical methods of treatment are slow, inconvenient and often only partially effective. Fibroblasts from these conditions are activated to produce extracellular matrix proteins such as collagen I and III, proteoglycans such as versican and biglycan and growth factors, including transforming growth factor-beta and insulin like growth factor I. However, more consistently these cells produce less remodeling enzymes including collagenase and other matrix metalloproteinases, as well as the small proteoglycan decorin which is important for normal collagen fibrillogenesis. Recently, the systemic response to injury appears to influence the local healing process whereby increases in Th2 and possibly Th3 cytokines such as IL-2, IL-4 and IL-10 and TGF-beta are present in the circulating lymphocytes in these fibrotic conditions. Finally, unique bone marrow derived cells including mesenchymal and endothelial stem cells as well as fibrocytes appear to traffic into healing wounds and influence the healing tissue. On this background, clinicians are faced with patients who require treatment and the pathophysiologic basis as currently understood is reviewed for a number of emerging modalities.

  6. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose.

    PubMed

    Zhang, L; Guo, Z P; Ding, Z Y; Wang, Z X; Shi, G Y

    2012-01-01

    The gene mel1, encoding alpha-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and beta-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanol-producing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular alpha-galactosidase and beta-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC 1 co-expressing 2 genes could achieve 0.29 OD600 h(-1) and a biomass yield up to 7.8 g l(-1) dry cell weight on medium containing 10.0 g l(-1) cellobiose and 10.0 g l(-1) melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG 1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l(-1) ethanol was produced from 100 g of cellulose supplied with 5 g l(-1) melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.

  7. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  8. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of beta-catenin.

    PubMed

    Song, Gyu-Yong; Lee, Jee-Hyun; Cho, Munju; Park, Byeoung-Soo; Kim, Dong-Eun; Oh, Sangtaek

    2007-12-01

    Alterations in the Wnt/beta-catenin pathway are associated with the development and progression of human prostate cancer. Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, inhibits the growth of androgen-independent human prostate cancer cells, but little is known about its mechanism of action. Using a cell-based screen, we found that decursin attenuates the Wnt/beta-catenin pathway. Decursin antagonized beta-catenin response transcription (CRT), which was induced with Wnt3a-conditioned medium and LiCl, by promoting the degradation of beta-catenin. Furthermore, decursin suppressed the expression of cyclin D1 and c-myc, which are downstream target genes of beta-catenin and thus inhibited the growth of PC3 prostate cancer cells. In contrast, decursinol, in which the (CH3)2-C=CH-COO- side chain of decursin is replaced with -OH, had no effect on CRT, the level of intracellular beta-catenin, or PC3 cell proliferation. Our findings suggest that decursin exerts its anticancer activity in prostate cancer cells via inhibition of the Wnt/beta-catenin pathway.

  9. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation

    PubMed Central

    De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry

    2015-01-01

    Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954

  10. Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture.

    PubMed

    Beales, Ian L P

    2002-04-05

    Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1beta production is increased in H. pylori infection and IL-1beta genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1beta on gastric epithelial cell proliferation has been examined in this study. AGS cells were cultured with IL-1beta. DNA synthesis was assed by [3H]thymidine incorporation and total viable cell numbers by MTT assay. IL-1beta dose dependently increased DNA synthesis and cell numbers. The enhanced proliferation was blocked by interleukin-1 receptor antagonist. Addition of neutralising antibody to GM-CSF reduced IL-1beta-stimulated proliferation by 31 +/- 4 %. GM-CSF alone significantly stimulated proliferation. Addition or neutralisation of IL-8 had no effect on basal or IL-1beta-stimulated proliferation. The tyrosine kinase inhibitor genistein completely blocked IL-1beta-stimulated proliferation and inhibition of the extracellular signal related kinase pathway with PD 98059 inhibited IL-1beta stimulated proliferation by 58 +/- 5 %. IL-1beta stimulates proliferation in gastric epithelial cells. Autocrine stimulation by GM-CSF contributes to this proliferative response. Signalling via tyrosine kinase activity is essential to the mitogenic response to IL-1beta. The extracellular signal related kinase pathway is involved in, but not essential to downstream signalling. IL-1beta may contribute to the hyperproliferation seen in H. pylori- infected gastric mucosa, and be involved in the carcinogenic process.

  11. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes.

    PubMed

    Nikoopour, Enayat; Schwartz, Jordan A; Huszarik, Katrina; Sandrock, Christian; Krougly, Olga; Lee-Chan, Edwin; Singh, Bhagirath

    2010-05-01

    IL-17-producing T cells are regarded as potential pathogenic T cells in the induction of autoimmune diseases. Previously, we have shown that injection of adjuvants containing Mycobacterium, such as CFA or bacillus Calmette-Guérin, can prevent type 1 diabetes in NOD mice. We injected NOD mice with mycobacterial products s.c. and analyzed the IL-17-producing cells from the draining lymph nodes and spleen by restimulating whole-cell populations or CD4(+) T cells in vitro with or without IL-17-polarizing cytokines. Mice receiving CFA had a concomitant rise in the level of IL-17, IL-22, IL-10, and IFN-gamma in the draining lymph node and spleen. Adoptive transfer of splenocytes from CFA-injected NOD mice polarized with TGF-beta plus IL-6 or IL-23 delayed the development of diabetes in recipient mice. IL-17-producing cells induced by CFA maintained their IL-17-producing ability in the recipient mice. Injection of CFA also changed the cytokine profile of cells in pancreatic tissue by increasing IL-17, IL-10, and IFN-gamma cytokine gene expression. We suggest that the rise in the level of IL-17 after adjuvant therapy in NOD mice has a protective effect on type 1 diabetes development.

  12. Islets of Langerhans in the parakeet, Psittacula krameri.

    PubMed

    Gupta, Y K; Kumar, S

    1980-01-01

    The pancreatic gland of Psittacula krameri is divisible into 4 lobes i.e. dorsal, ventral, third and splenic. The endocrine part is composed of alpha 1-, alpha 2- and beta-cells. The islets are of 4 kinds viz., alpha islets (having alpha 1- and alpha 2-cells), beta islets (having beta- and alpha 1-cells), pure beta islets (consisting of beta-cells exclusively) and mixed islets (with beta-, alpha 1- and alpha 2-cells). The distribution of alpha islets is mostly restricted to the splenic and third lobes whereas the beta islets are found in all 4 lobes. Though the alpha islets are only few in the dorsal lobe, their size is best developed in the third and dorsal lobes. Sometimes beta and alpha islets are present in very close proximity but their cells never mingle. An interesting feature was the complete absence of alpha islets from the ventral lobe.A relative abundance of alpha 2- cells in this bird seems to be associated with its comparatively higher blood glucose level and frugivorous habit. Tinctorial reactions suggest that the insulin content of the endocrine pancreas is low. There were no seasonal changes in the islet tissue of P. krameri.

  13. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2014-10-01

    has also been shown to produce human-beta-3-defensin. These antimicrobial peptides are implicated in the resistance of epithelial surfaces to...gonadotrophin receptors that regulate prostaglandin production and activity. Epithelial cells manufacture multiple vasoactive peptides , growth factors...200734 P-RCT (n Z 102) PT burns Processed Amnion vs topical antimicrobials . Significantly less dressing changes with amnion. Time to healing, length

  14. Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.

    PubMed

    Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M

    2010-03-01

    beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.

  15. Stimulation of interleukin-1 beta production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K

    1997-01-01

    IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.

  16. Interaction of Hb South Florida (codon 1; GTG-->ATG) and HbE, with beta-thalassemia (IVS1-1; G-->A): expression of different clinical phenotypes.

    PubMed

    Tan, Jin-Ai Mary Anne; Tan, Kim-Lian; Omar, Khairul Zaman; Chan, Lee-Lee; Wee, Yong-Chui; George, Elizabeth

    2009-09-01

    Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A). HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia. Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA. The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.

  17. Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice

    PubMed Central

    Oliveira, Ricardo B d; Carvalho, Carolina P d F; Polo, Carla C; Dorighello, Gabriel d G; Boschero, Antônio C; Oliveira, Helena C F d; Collares-Buzato, Carla B

    2014-01-01

    In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr−/− mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr−/− mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr−/− mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr−/− mice showed no significant changes in beta-cell mass, but lower islet–duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr−/− mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion. PMID:24853046

  18. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    PubMed

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  19. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    PubMed

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  20. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  1. Expression of the leukemia-associated CBF{beta}/SMMHC chimeric gene causes transformation of 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajra, A.; Liu, P.; Collins, E.S.

    1994-09-01

    A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less

  2. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G

    2000-01-01

    Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced elevation of CTGF mRNA (twofold) observed in whole kidney cortices indicated that the primary alteration of CTGF expression was in the glomerulus. These results suggest that CTGF upregulation is an important factor in the pathogenesis of mesangial matrix accumulation and progressive glomerulosclerosis, acting downstream of TGF-beta.

  3. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  4. Interleukin 13 and the beta-adrenergic blockade theory of asthma revisited 40 years later.

    PubMed

    Townley, Robert G

    2007-09-01

    Beta2-Adrenergic agonists are the most potent agents clinically used in inhibiting and preventing the immediate response to bronchoconstricting agents and in inhibiting mast cell mediator release. This raises the possibility that an abnormality in beta-adrenergic receptor function or circulating catecholamine levels could contribute to airway hyperresponsiveness. To link interleukin 13 (IL-13) to the pathogenesis of asthma. Almost 4 decades ago, Andor Szentivanyi published a beta-adrenergic theory of atopic abnormality in bronchial asthma. He proposed 9 characteristics to define bronchial asthma. Because he published these 9 tenets of the beta-adrenergic blockade theory of asthma in 1968, it is appropriate and important to evaluate their relevance in light of advances in pharmacology, inflammation, and immunology. We describe the effects of the allergic reaction on beta-adrenergic responses and airway responsiveness. Both IL-1beta and tumor necrosis factor a have been detected in increased amounts in bronchial lavage fluids in allergic airway inflammation. Both IL-13 and the proinflammatory cytokines IL-1beta and tumor necrosis factor a have been demonstrated in airway smooth muscle to cause a decreased relaxation response to beta-adrenergic agonist. However, IL-13 has been shown to be necessary and sufficient to produce the characteristics of asthma. The decreased adrenergic bronchodilator activity and associated hypersensitivity to mediators put forth by Szentivanyi can be elicited with IL-13 and support its role in the pathogenesis of asthma.

  5. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  6. TGF-beta1 stimulates expression of the aromatase (CYP19) gene in human osteoblast-like cells and THP-1 cells.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    2000-02-25

    Recent evidence has shown that bone is not only a target of estrogen action but also a source of local estrogen production. Bone cells such as osteoblasts express aromatase (P450arom) and the expression of P450arom in osteoblasts is positively regulated in a tissue specific fashion, as in the case of other tissues which express P450arom. To clarify the physiological factors regulating expression of P450arom in bone, we tested TGF-beta1 using osteoblast-like cells obtained from human fetuses as well as THP-1 cells. TGF-beta1 increased IL-1beta+DEX- induced aromatase activity in osteoblast-like cells, while it inhibited activity in skin fibroblasts. Similar enhancement of aromatase activity by TGF-beta1 was found in DEX-stimulated THP-1 cells and this cell line was used for further experiments. In THP-1 cells, TGF-beta1 enhanced DEX-induced aromatase activity almost linearly by 12 h and thereafter. Increased levels of P450arom transcripts were also demonstrated by RT-PCR at 3 h of TGF-beta1 treatment and thereafter. Cyclohexamide abolished enhancement of activity but did not inhibit the accumulation of P450arom transcripts induced by TGF-beta1. Increase in P450arom expression by TGF-beta1 was attributable to expression driven by promoter I.4. TGF-beta1 did not change the half life of P450arom transcripts. To identify the cis-acting elements responsible for TGF-beta1 action on aromatase expression, transient transfection assays were performed using a series of deletion constructs for promoter I.4 (P450-I.4/Luc). Two constructs (-410/+14 and-340/+14) that contain a functional glucocorticoid response element (GRE) and downstream sequence showed significant increase of luciferase activity in response to TGF-beta1. Deletion and mutation of the GRE in P450-I.4/Luc (-340/+14) abolished the TGF-beta1. The luciferase activity of a (GRE)(1)-SV40/Luc construct was also stimulated by TGF-beta1. These results indicate that TGF-beta1 increases the expression of P450arom at the level of transcription through promoter I.4, at least in part via an enhancement of transactivation activity of the GR in THP-1 cells. TGF-beta1 is suggested to be one of the physiological up-regulatory factors of bone aromatase.

  7. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin.

    PubMed

    Mor, Felix; Cohen, Irun R

    2013-02-19

    Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.

  8. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    PubMed

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  9. Toward beta cell replacement for diabetes

    PubMed Central

    Johannesson, Bjarki; Sui, Lina; Freytes, Donald O; Creusot, Remi J; Egli, Dieter

    2015-01-01

    The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. PMID:25733347

  10. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  11. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  12. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    PubMed

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  13. Genome-wide analysis of DNA methylation variations caused by chronic glucolipotoxicity in beta-cells.

    PubMed

    Hu, Y; Xu, X-H; He, K; Zhang, L-L; Wang, S-K; Pan, Y-Q; He, B-S; Feng, T-T; Mao, X-M

    2014-02-01

    There is a growing body of literature suggesting the role of interactions between genes and the environment in development of type 2 diabetes mellitus (T2DM). However, the interplay between environment and genetic in developing and progressing T2MD is not fully understood. To determine the effects of high-glucose-lipid on the status of DNA methylation in beta cells, and clarify the mechanism of glucolipotoxicity on beta-cell deterioration, the DNA methylation profile was detected in beta-cells cultured with high-glucose-lipid medium.We utilized a high throughput NimbleGen RN34 CpG Island & Promoter Microarray to investigate the DNA methylation profile in beta-cells cultured with high-glucose-lipid medium. To validate the results of microarray, the immunoprecipitation (MeDIP) PCR was used to test the methylation status of some selected genes. The mRNA and protein expression of insulin and Tcf7l2 in these cells were quantified by RT-PCR and western blot, respectively.We have identified a lot of loci which experienced aberrant DNA methylation in beta-cells cultured with high-glucose-lipid medium. The results of MeDIP PCR were consistency to the microarray. An opposite regulation in transcription and translation of Tcf7l2 gene was found. Furthermore, the insulin mRNA and protein expression in beta-cells also decreased after cultured with high-glucose-lipid medium compared with the control cells.We conclude that chronic glucolipotoxicity could induce aberrant DNA methylation of some genes and may affect these genes expression in beta-cells, which might contribute to beta-cell function failure in T2DM and be helpful to explain, at least partially, the mechanism of glucolipotoxicity on beta-cells deterioration. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  14. Autophagy and its link to type II diabetes mellitus

    PubMed Central

    Yang, Jai-Sing; Lu, Chi-Cheng; Kuo, Sheng-Chu; Hsu, Yuan-Man; Tsai, Shih-Chang; Chen, Shih-Yin; Chen, Yng-Tay; Lin, Ying-Ju; Huang, Yu-Chuen; Chen, Chao-Jung; Lin, Wei-De; Liao, Wen-Lin; Lin, Wei-Yong; Liu, Yu-Huei; Sheu, Jinn-Chyuan; Tsai, Fuu-Jen

    2017-01-01

    Autophagy, a double-edged sword for cell survival, is the research object on 2016 Nobel Prize in Physiology or Medicine. Autophagy is a molecular mechanism for maintaining cellular physiology and promoting survival. Defects in autophagy lead to the etiology of many diseases, including diabetes mellitus (DM), cancer, neurodegeneration, infection disease and aging. DM is a metabolic and chronic disorder and has a higher prevalence in the world as well as in Taiwan. The character of diabetes mellitus is hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and failure of producing insulin on pancreatic beta cells. In T2DM, autophagy is not only providing nutrients to maintain cellular energy during fasting, but also removes damaged organelles, lipids and miss-folded proteins. In addition, autophagy plays an important role in pancreatic beta cell dysfunction and insulin resistance. In this review, we summarize the roles of autophagy in T2DM. PMID:28612706

  15. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway.

    PubMed

    Pera, Tonio; Penn, Raymond B

    2014-06-01

    The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement.

    PubMed

    Zeng, Bin; Ren, Xiaofeng; Lin, Guosheng; Zhu, Chengang; Chen, Honglei; Yin, Jiechao; Jiang, Hong; Yang, Bo; Ding, Danhua

    2008-10-01

    The aim has been to determine whether the supernatants of mesenchymal stem cells (MSCs) transfected with adenovirus carrying human heme oxygenase-1 (hHO-1) gene protect cardiomyocytes from ischemic injury. We have found that hHO-1 infected MSCs (hHO-1-MSCs) increased expression of hHO-1 protein. Apoptosis of cultured hHO-1-MSCs exposed to hypoxia was suppressed. Several cytokines, including HGF, bFGF, TGF-beta, VEGF and IL-1beta, were produced by hHO-1-MSCs, some being significantly enhanced under hypoxia stimulation. Meanwhile, those cytokines reduced caspase-3 level and activity in cultured adult rat ventricular cardiomyocytes (ARVCs) exposed to hypoxia. Supernatants obtained from hHO-1-MSCs improved left ventricular function, limited myocardial infarct size, increased microvessel density, and inhibited apoptosis of cardiomyocytes in rat myocardial infarction. It can be concluded hHO-1-modified MSCs prevent myocardial cell injury via secretion of paracrine-acting mediators.

  17. Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsonii 142.

    PubMed

    Górska, Sabina; Jachymek, Wojciech; Rybka, Jacek; Strus, Magdalena; Heczko, Piotr B; Gamian, Andrzej

    2010-01-11

    This paper describes the structure of neutral exopolysaccharide (EPS) produced by Lactobacillus johnsonii 142, strain of the lactic acid bacteria isolated from the intestine of mice with experimentally induced inflammatory bowel disease (IBD). Sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY, and (1)H,(13)C HSQC experiments revealed that the repeating unit of the EPS is a pentasaccharide: -->3)-alpha-D-Galp-(1-->3)-beta-d-Glcp-(1-->5)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1--> The rabbit antiserum raised against whole cells of L. johnsonii 142 reacted with homologous EPS, and cross-reacted with exopolysaccharide from Lactobacillus animalis/murinus 148 isolated also from mice with IBD, but not reacted with EPS of L. johnsonii 151 from healthy mice. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis.

    PubMed

    Ito, Yoshinaga; Usui, Takashi; Kobayashi, Shio; Iguchi-Hashimoto, Mikiko; Ito, Hiromu; Yoshitomi, Hiroyuki; Nakamura, Takashi; Shimizu, Masakazu; Kawabata, Daisuke; Yukawa, Naoichiro; Hashimoto, Motomu; Sakaguchi, Noriko; Sakaguchi, Shimon; Yoshifuji, Hajime; Nojima, Takaki; Ohmura, Koichiro; Fujii, Takao; Mimori, Tsuneyo

    2009-08-01

    Although interleukin-17 (IL-17)-producing gamma/delta T cells were reported to play pathogenic roles in collagen-induced arthritis (CIA), their characteristics remain unknown. The aim of this study was to clarify whether gamma/delta T cells or CD4+ T cells are the predominant IL-17-producing cells, and to determine what stimulates gamma/delta T cells to secret IL-17 in mice with CIA. The involvement of IL-17-producing gamma/delta T cells in SKG mice with autoimmune arthritis and patients with rheumatoid arthritis (RA) was also investigated. IL-17-producing cells in the affected joints of mice with CIA were counted by intracellular cytokine staining during 6 distinct disease phases, and these cells were stimulated with various combinations of cytokines or specific antigens to determine the signaling requirements. Similar studies were performed using SKG mice with arthritis and patients with RA. Gamma/delta T cells were the predominant population in IL-17-producing cells in the swollen joints of mice with CIA, and the absolute numbers of these cells increased in parallel with disease activity. IL-17-producing gamma/delta T cells expressed CC chemokine receptor 6, were maintained by IL-23 but not by type II collagen in vitro, and were induced antigen independently in vivo. Furthermore, IL-17 production by gamma/delta T cells was induced by IL-1beta plus IL-23 independently of T cell receptor. In contrast to what was observed in mice with CIA, IL-17-producing gamma/delta T cells were nearly absent in the affected joints of SKG mice and patients with RA, and Th1 cells were predominant in the joints of patients with RA. Gamma/delta T cells were antigen independently stimulated by inflammation at affected joints and produced enhanced amounts of IL-17 to exacerbate arthritis in mice with CIA but not in SKG mice with arthritis or patients with RA.

  19. Cell cycle-related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line.

    PubMed

    Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica

    2017-01-01

    Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.

  20. The cytokine-protease connection: identification of a 96-kD THP-1 gelatinase and regulation by interleukin-1 and cytokine inducers.

    PubMed

    Van Ranst, M; Norga, K; Masure, S; Proost, P; Vandekerckhove, F; Auwerx, J; Van Damme, J; Opdenakker, G

    1991-05-01

    The induction of proteolytic enzymes is an important mechanism in the migration of monocytes into tissues and body fluids. The monocytic cell line THP-1 was used as a model system to study the production of a particular gelatinase. Upon stimulation with phorbol myristate acetate (PMA) the cells differentiated to the adherent phenotype and produced significant amounts of a 96-kD gelatinase in a dose-dependent way. The secretion rate was maximal between 12 and 24 h after induction. Study of gelatinase mRNA steady state levels showed that the synthesis of THP-1 gelatinase is regulated by PMA at transcriptional or posttranscriptional levels. Stimulation of signal transduction pathways with other substances, including calcium ionophore A 23187, dibutyryl cyclic AMP, and dexamethasone, were ineffective in inducing gelatinase mRNA or enzyme activity. However, THP-1 cells were responsive to the cytokine interleukin (IL)-1 beta, to bacterial lipopolysaccharide (LPS), and the lectin concanavalin A (Con A), the kinetics of gelatinase induction being similar to those of induction by PMA. The THP-1 cells did not synthesize and/or secrete detectable levels of IL-6 after stimulation with PMA, Con A, LPS, or IL-1 beta. The 96-kD monocytic THP-1 gelatinase was shown to be a neutral metalloproteinase that cross-reacted with hepatoma-derived and neutrophil gelatinases in immunoprecipitation experiments. The active enzyme produced by THP-1 cells consistently showed, however, a molecular mass different from that of normal granulocyte-, monocyte-, and tumor cell-derived gelatinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  2. beta-lactamase production by oral pigmented Prevotella species isolated from young children.

    PubMed

    Könönen, E; Nyfors, S; Mättö, J; Asikainen, S; Jousimies-Somer, H

    1997-09-01

    The frequency of beta-lactamase production by oral pigmented Prevotella species isolated from 23 healthy young children and the minimal inhibitory concentrations (MICs) for 186 available beta-lactamase-positive isolates were examined by using the chromogenic cephalosporin disk test (AB BIODISK, Solna, Sweden) and the Etest (AB BIODISK) and/or the agar dilution method of the National Committee for Clinical Laboratory Standards (Villanova, PA, USA), respectively. beta-Lactamase-positive Prevotella melaninogenica strains were isolated from all children, and more than two-thirds of the Prevotella denticola and Prevotella loescheii strains isolated from the children were beta-lactamase-positive. The beta-lactamase-producing Prevotella intermedia group consisted of Prevotella nigrescens and the P. intermedia/ P. nigrescens-like organism (PINLO); P. intermedia was not found. Only two P. nigrescens isolates but most of the PINLO isolates produced beta-lactamase. The MICs for beta-lactamase-producing strains varied between 0.38 and 64 micrograms/mL. beta-Lactamase production by oral pigmented Prevotella species colonizing young children is already frequent. The phenomenon should be taken into account in the treatment of pediatric anaerobic infections of oral origin.

  3. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  4. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.

    PubMed

    Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L

    2013-04-01

    In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.

  5. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  6. [The effect of 18beta-glycyrrhetinic acid on gap junction among cerebral arteriolar smooth muscle cells in Wistar rat and spontaneously hypertensive rat].

    PubMed

    Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao

    2013-05-01

    This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.

  7. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  8. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  9. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  10. Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy.

    PubMed

    Briviba, Karlis; Bornemann, Rainer; Lemmer, Ulrich

    2006-11-01

    Astaxanthin, a carotenoid found in plants and seafood, exhibits antiproliferative, antioxidant and anticarcinogenic properties. We show that astaxanthin delivered with tetrahydrofuran is effectively taken up by cultured colon adenocarcinoma cells and is localized mostly in the cytoplasm as detected by confocal resonance Raman and broad-band fluorescence microspectroscopy image analysis. Cells incubated with beta-carotene at the same concentration as astaxanthin (10 microM) showed about a 50-fold lower cellular amount of beta-carotene, as detected by HPLC. No detectable Raman signal of beta-carotene was found in cells, but a weak broad-band fluorescence signal of beta-carotene was observed. beta-Carotene, like astaxanthin, was localized mostly in the cytoplasm. The heterogeneity of astaxanthin and beta-carotene cellular distribution in cells of intestinal origin suggests that the possible defense against reactive molecules by carotenoids in these cells may also be heterogeneous.

  11. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    PubMed

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  12. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    PubMed

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  13. Regulation of GM-CSF-induced dendritic cell development by TGF-beta1 and co-developing macrophages.

    PubMed

    Yamaguchi, Y

    1998-01-01

    Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-beta1, a study was performed to analyze the effect of TGF-beta1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-beta1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-beta1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-beta1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-beta1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-alpha. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-beta1. These results indicate that TGF-beta1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.

  14. Increased leukotriene E4 excretion in systemic mastocytosis.

    PubMed

    Butterfield, Joseph H

    2010-06-01

    Cysteinyl leukotrienes such as LTE(4) are produced by mast cells, neutrophils, eosinophils, and macrophages. LTE(4) levels have not been reported in systemic mastocytosis, a disorder with a large increase in mast cell numbers. Urinary LTE(4) from patients referred for symptoms potentially due to mast cell degranulation or systemic mastocytosis was measured by a commercial cysteinyl leukotriene enzyme immunoassay kit. The diagnosis of systemic mastocytosis was established using current World Health Organization criteria. Compared with a control group of patients with various potential mast cell-related symptoms (e.g., "spells"), patients with systemic mastocytosis had a significant (P=.01) increase in urinary LTE(4) excretion, whether expressed as LTE(4) ng/g creatinine or as LTE(4) ng/24h. There was a moderate correlation of LTE(4) ng/24h with excretion of N-methyl histamine and serum tryptase but not with urinary 11beta-prostaglandin F(2alpha) (11beta-PGF(2alpha)) excretion. LTE(4) excretion is increased in patients with systemic mastocytosis and potentially contributes to clinical symptoms. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  16. Can transforming growth factor-beta1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells?.

    PubMed

    Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir

    2004-01-01

    Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the percentage of cells with a positive reaction to PCNA and Ki 67 antigen. TGF-beta1, isotretinoin and tretinoin added to the culture resulted in the lowest percentage of PCNA positive cells. However, the lowest fraction of Ki 67 positive cells was observed after addition of isotretinoin. The obtained results also confirm the fact that the well-known regulatory proteins Bcl-2 and p53 play an important role in the regulation of apoptosis in the MCF-7 cell line, with lowered Bcl-2 expression accompanying easier apoptotic induction. The majority of the examined compounds act via the p53 pathway although some bypass this important proapoptotic factor.

  17. Basics and applications of stem cells in the pancreas.

    PubMed

    Sekine, Keisuke; Taniguchi, Hideki

    2012-11-01

    Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin(+) cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.

  18. Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Xing

    Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermally converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate (beta-TCMP), while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. Calcium phosphate powders were prepared through different synthesis methods. Micro-size HAP rods were synthesized by hydrothermal method through a nucleation-growth mechanism. On the other hand, HAP particles, which have good crystallinity, were prepared by wet precipitation with further hydrothermal treatment. beta-TCP or beta-TCMP powders were prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate ('precursor') and calcination of the precursor at 800°C for 3 hours. beta-TCMP or beta-TCP powders were also prepared by solid-state reactions from CaHPO4 and CaCO 3 with/without MgO. Biphasic calcium phosphate, which is mixture of HAP and beta-TCP, can be prepared though mechanical mixing of HAP and beta-TCP powders synthesized as above. Dense beta-TCP and beta-TCMP ceramics can be produced by pressing green bodies at 100MPa and further sintering above 1100°C for 2 hours. beta-TCMP ceramics ˜99.4% relative dense were prepared by this method. Dense beta-TCP ceramics have average strength up to 540MPa. Macroporous beta-TCMP ceramics were produced with sucrose as the porogen following a two-step pressing method. Porous beta-TCMP ceramics were also prepared by replication of polyurethane sponge. beta-TCMP ceramics with porous structures in the center surrounded by dense structures were created. The outside dense structures give the scaffold mechanical strength, while the central porous structures enable cells migration and vascular infiltration, and finally in-growth of new bone into the scaffold.

  19. Anti-activin A antibody (IgY) specifically neutralizes various activin A activities.

    PubMed

    Murata, T; Saito, S; Shiozaki, M; Lu, R Z; Eto, Y; Funaba, M; Takahashi, M; Torii, K

    1996-01-01

    Activin A (beta A beta A), originally isolated from ovarian follicular fluids as a follicule-stimulating hormone (FSH) secretion stimulator, has also been identified as an erythroid differentiation factor (EDF), a neuron survival factor and a mesoderm-inducing factor. Thus, activin A is a multifunctional factor, and further studies on its physiological function are important. However, it is very difficult to produce a specific antibody to neutralize the activity of activin A because of its highly conserved amino acid sequence across mammalian species. In this study, we succeeded in generating an antibody against activin A, which can neutralize several activities of activin A, such as the stimulation of FSH secretion from pituitary cells and the induction of the differentiation of erythrocytes in vitro. This antibody did not affect the activity of activin B (beta B beta B), which induces the differentiation of erythrocytes in vitro, and the activity of inhibin A (alpha beta A), which inhibits FSH secretion from pituitary in vitro, but slightly neutralized that of activin AB (beta A beta B). Western blotting analysis showed that this antibody recognized both dimeric and monomeric forms of the beta A subunit of activin and inhibin. These results suggest that this antibody recognizes the beta A subunit of activin and specifically neutralizes the activity of a dimer of the beta A subunit, activin A. Furthermore, by the addition of this antibody to the culture medium, the development of murine embryos was suppressed, suggesting that endogenous activin A plays an important role in murine development. These results indicate the usefulness of this antibody for studies of endogenous activin actions.

  20. beta2-Microglobulin production by highly purified human T and B lymphocytes in cell culture stimulated with various mitogens.

    PubMed

    Kin, K; Kasahara, T; Itoh, Y; Sakurabayashi, I; Kawai, T; Morita, M

    1979-01-01

    This study attempts to evaluate beta2-microglobulin production by highly purified (greater than 98%) peripheral and tonsil T and B lymphocytes cultured with various mitogens. beta2-Microglobulin was measured by the radioimmunoassay method. It was found that PHA and Con A markedly stimulated beta2-microglobulin production in cultures of T but not B lymphocytes. B lymphocytes were greatly activated, on the other hand, by Staphylococcus aureau Cowan I organisms cSpA), though the level of beta2-microglobulin production was less than that observed in PHA- and Con A-stimulated T lymphocytes. PWM only slightly increased beta2-microglobulin production of T lymphocytes, although the incorporation of [3H]-thymidine was highly enhanced. The highest level of beta2-microglobulin obtained with PHA or Con A was observed when the T/B lymphocyte ratio was between 90/10 and 80/20. These results lead to the conclusion that: (1) SpA is a specific mitogen for B lymphocytes, and its mitogenicity is independent of the presence of T lymphocytes, while PHA, Con A, and PWM are ineffective as stimulants of B lymphocytes; (2) the beta2-microglobulin producing ability of B lymphocytes is less than that of T lymphocytes, even when the lymphocytes are markedly activated; (3) the beta2-microglobulin production and DNA synthesis by T lymphocytes is markedly enhanced by the helper effect of B lymphocytes; (4) the level of beta2-microglobulin production reflects lymphocyte activation, especially in T lymphocytes stimulated with PHA or Con A.

  1. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  2. Endoplasmic Reticulum Stress in Beta Cells and Development of Diabetes

    PubMed Central

    Fonseca, Sonya G.; Burcin, Mark; Gromada, Jesper; Urano, Fumihiko

    2009-01-01

    The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. ER stress elicits a signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can relieve stress, cells can produce the proper amount of proteins and maintain ER homeostasis. If the UPR, however, fails to maintain ER homeostasis, cells will undergo apoptosis. Activation of the UPR is critical to the survival of insulin-producing pancreatic β-cells with high secretory protein production. Any disruption of ER homeostasis in β-cells can lead to cell death and contribute to the pathogenesis of diabetes. There are several models of ER stress-mediated diabetes. In this review, we outline the underlying molecular mechanisms of ER stress-mediated β-cell dysfunction and death during the progression of diabetes. PMID:19665428

  3. Bone marrow stromal cells spontaneously produce Flt3-ligand: influence of ionizing radiations and cytokine stimulation.

    PubMed

    Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François

    2008-08-01

    To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.

  4. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less

  5. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    PubMed

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  6. Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1.

    PubMed

    Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin

    2009-10-09

    The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.

  7. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene.

    PubMed

    Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste

    2005-08-14

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.

  8. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.

    PubMed Central

    German, M S; Moss, L G; Wang, J; Rutter, W J

    1992-01-01

    The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125

  9. Proteolytic processing of endogenous and recombinant beta 4 integrin subunit

    PubMed Central

    1992-01-01

    The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432

  10. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm.

    PubMed

    Portha, Bernard

    2005-01-01

    Now that the reduction in beta-mass has been clearly established in humans with type 2 diabetes mellitus (T2DM) 1-4, the debate focuses on the possible mechanisms responsible for decreased beta-cell number and impaired beta-cell function and their multifactorial etiology. Appropriate inbred rodent models are essential tools for identification of genes and environmental factors that increase the risk of abnormal beta-cell function and of T2DM. The information available in the Goto-Kakizaki (GK) rat, one of the best characterized animal models of spontaneous T2DM, are reviewed in such a perspective. We propose that the defective beta-cell mass and function in the GK model reflect the complex interactions of three pathogenic players: (1) several independent loci containing genes causing impaired insulin secretion; (2) gestational metabolic impairment inducing a programming of endocrine pancreas (decreased beta-cell neogenesis) which is transmitted to the next generation; and (3) secondary (acquired) loss of beta-cell differentiation due to chronic exposure to hyperglycemia (glucotoxicity). An important message is that the 'heritable' determinants of T2DM are not simply dependant on genetic factors, but probably involve transgenerational epigenetic responses. Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  12. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    PubMed

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  13. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11{beta}-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Department of Orthopedics, Taizhou Hospital, Wenzhou Medical College, Lin Hai, ZJ 317000; Li, Xing-Wang

    2009-11-13

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11{beta}-hydroxysteroid dehydrogenase type 2 (11{beta}-HSD2), not 11{beta}-HSD1, is strongly expressed in murine gonadotrope L{beta}T2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11{beta}-HSD2 enzyme activity in L{beta}T2 cells at as low as 10{sup -7} M. Corticosterone (CORT) atmore » a concentration of 10{sup -6} M significantly inhibited L{beta}T2 cell proliferation after 2-day culture, and 10{sup -6} M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10{sup -5} or 10{sup -4} M MEHP, the minimal concentration of CORT to inhibit the proliferation of L{beta}T2 cells was lowered to 10{sup -7} M, and 10{sup -6} M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11{beta}-HSD2 may have a key role in glucocorticoid metabolism in L{beta}T2 cells. MEHP may participate in the glucocorticoid metabolism in L{beta}T2 cells through inhibition of 11{beta}-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.« less

  14. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels.

    PubMed

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T

    2002-06-21

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Jiawei; Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502; Lu Zhenyu

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response tomore » FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.« less

  16. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less

  17. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normalmore » glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.« less

  18. Metabolism of dehydroepiandrosterone sulfate and estrone-sulfate by human platelets.

    PubMed

    Garrido, A; Munoz, Y; Sierralta, W; Valladares, L

    2012-01-01

    The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [(3)H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [(3)H]-DHEAS to [(3)H]-androstenedione, [(3)H]-testosterone, [(3)H]-estrone and [(3)H]-17beta-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E(1)S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [(3)H]-estrone to [(3)H]-17beta-estradiol. This is the first demonstration that human platelets are able to import DHEAS and E(1)S using the OATP family and to convert DHEAS to active DHEA, and to transform E(1)S to 17beta-estradiol.

  19. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  20. The amyloid precursor protein and postnatal neurogenesis/neuroregeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yanan; Tang, Bor Luen

    2006-03-03

    The amyloid precursor protein (APP) is the source of amyloid-beta (A{beta}) peptide, produced via its sequential cleavage {beta}- and {gamma}-secretases. Various biophysical forms of A{beta} (and the mutations of APP which results in their elevated levels) have been implicated in the etiology and early onset of Alzheimer's disease. APP's evolutionary conservation and the existence of APP-like isoforms (APLP1 and APLP2) which lack the A{beta} sequence, however, suggest that these might have important physiological functions that are unrelated to A{beta} production. Soluble N-terminal fragments of APP have been known to be neuroprotective, and the interaction of its cytoplasmic C-terminus with amore » myriad of proteins associates it with diverse processes such as axonal transport and transcriptional regulation. The notion for an essential postnatal function of APP has been demonstrated genetically, as mice deficient in both APP and APLP2 or all three APP isoforms exhibit early postnatal lethality and neuroanatomical abnormalities. Recent findings have also brought to light two possible functions of the APP family in Brain-regulation of neural progenitor cell proliferation and axonal outgrowth after injury. Interestingly, these two apparently related neurogenic/neuroregenerative functions of APP involve two separate domains of the molecule.« less

Top