NASA Astrophysics Data System (ADS)
Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang
2017-12-01
Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.
Fast, Dense Low Cost Scintillator for Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, Craig
2009-07-31
We have studied the morphology, transparency, and optical properties of SrHfO{sub 3}:Ce ceramics. Ceramics can be made transparent by carefully controlling the stoichiometry of the precursor powders. When fully dense, transparent samples can be obtained. Ceramics with a composition close to stoichiometry (Sr:Hf ~ 1) appear to show good transparency and a reasonable light yield several times that of BGO. The contact and distance transparency of ceramics hot-pressed at about 1450ºC is very good, but deteriorates at increasingly higher hot-press temperatures. If these ceramics can be produced in large quantities and sizes, at low cost, they may be of considerablemore » interest for PET and CT.« less
Material forming apparatus using a directed droplet stream
Holcomb, David E.; Viswanathan, Srinath; Blue, Craig A.; Wilgen, John B.
2000-01-01
Systems and methods are described for rapidly forming precision metallic and intermetallic alloy net shape parts directly from liquid metal droplets. A directed droplet deposition apparatus includes a crucible with an orifice for producing a jet of material, a jet destabilizer, a charging structure, a deflector system, and an impact zone. The systems and methods provide advantages in that fully dense, microstructurally controlled parts can be fabricated at moderate cost.
NASA Astrophysics Data System (ADS)
Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka
2016-04-01
Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
NASA Astrophysics Data System (ADS)
Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.
2018-05-01
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.
2012-01-26
Resistance , Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 "With SiC, TaSi2, and LaB6 Additives Sb. GRANT NUMBER... RESISTANCE , ELECTRICAL AND THERMAL CONDUCTIVITY, AND SPECTRAL EMITTANCE OF FULLY DENSE HfB2 AND ZrB2 WITH SiC, TaSi2, AND LaB6 ADDITIVES Air Force Office...thickened regions with dry 220 grit SiC sandpaper so that a low- resistance electrical connection could be achieved. A handheld multimeter was used to measure
Performance Evaluation of a Pose Estimation Method based on the SwissRanger SR4000
2012-08-01
however, not suitable for navigating a small robot. Commercially available Flash LIDAR now has sufficient accuracy for robotic application. A...Flash LIDAR simultaneously produces intensity and range images of the scene at a video frame rate. It has the following advantages over stereovision...fully dense depth data across its field-of-view. The commercially available Flash LIDAR includes the SwissRanger [17] and TigerEye 3D [18
MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.
Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram
2015-11-01
We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.
Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt
NASA Astrophysics Data System (ADS)
Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.
One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.
Composite material and method of making
Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.
2004-04-20
The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...
2018-03-07
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less
NASA Astrophysics Data System (ADS)
Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.
2017-02-01
Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.
NASA Astrophysics Data System (ADS)
Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-01-01
Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less
Electromagnetic Effices from Impacts on Spacecraft
NASA Astrophysics Data System (ADS)
Close, Sigrid
2018-04-01
Hypervelocity micro particles, including meteoroids and space debris with masses < 1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.
A deep learning model observer for use in alterative forced choice virtual clinical trials
NASA Astrophysics Data System (ADS)
Alnowami, M.; Mills, G.; Awis, M.; Elangovanr, P.; Patel, M.; Halling-Brown, M.; Young, K. C.; Dance, D. R.; Wells, K.
2018-03-01
Virtual clinical trials (VCTs) represent an alternative assessment paradigm that overcomes issues of dose, high cost and delay encountered in conventional clinical trials for breast cancer screening. However, to fully utilize the potential benefits of VCTs requires a machine-based observer that can rapidly and realistically process large numbers of experimental conditions. To address this, a Deep Learning Model Observer (DLMO) was developed and trained to identify lesion targets from normal tissue in small (200 x 200 pixel) image segments, as used in Alternative Forced Choice (AFC) studies. The proposed network consists of 5 convolutional layers with 2x2 kernels and ReLU (Rectified Linear Unit) activations, followed by max pooling with size equal to the size of the final feature maps and three dense layers. The class outputs weights from the final fully connected dense layer are used to consider sets of n images in an n-AFC paradigm to determine the image most likely to contain a target. To examine the DLMO performance on clinical data, a training set of 2814 normal and 2814 biopsy-confirmed malignant mass targets were used. This produced a sensitivity of 0.90 and a specificity of 0.92 when presented with a test data set of 800 previously unseen clinical images. To examine the DLMOs minimum detectable contrast, a second dataset of 630 simulated backgrounds and 630 images with simulated lesion and spherical targets (4mm and 6mm diameter), produced contrast thresholds equivalent to/better than human observer performance for spherical targets, and comparable (12 % difference) for lesion targets.
Shock interactions with heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.
2018-03-01
The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.
Shock interactions with heterogeneous energetic materials
Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.
2018-03-14
The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.
The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less
Musa, Clara; Licheri, Roberta; Orrù, Roberto; Cao, Giacomo; Sciti, Diletta; Silvestroni, Laura; Zoli, Luca; Balbo, Andrea; Mercatelli, Luca; Meucci, Marco; Sani, Elisa
2016-06-18
In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1-2.4) in the 1000-1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.
Electron-ion temperature equilibration in warm dense tantalum
Doppner, T; LePape, S.; Ma, T.; ...
2014-11-05
We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.
Fully kinetic simulations of dense plasma focus Z-pinch devices.
Schmidt, A; Tang, V; Welch, D
2012-11-16
Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.
Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations
NASA Astrophysics Data System (ADS)
Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul
2017-10-01
Hypervelocity micro particles, including meteoroids and space debris with masses <1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.
Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks
NASA Astrophysics Data System (ADS)
Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku
2018-03-01
Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.
Neutron measurements of stresses in a test artifact produced by laser-based additive manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnäupel-Herold, Thomas; Slotwinski, John; Moylan, Shawn
2014-02-18
A stainless steel test artifact produced by Direct Metal Laser Sintering and similar to a proposed standardized test artifact was examined using neutron diffraction. The artifact contained a number of structures with different aspect ratios pertaining to wall thickness, height above base plate, and side length. Through spatial resolutions of the order of one millimeter the volumetric distribution of stresses in several was measured. It was found that the stresses peak in the tensile region around 500 MPa near the top surface, with balancing compressive stresses in the interior. The presence of a support structure (a one millimeter high, thinmore » walled, hence weaker, lattice structure deposited on the base plate, followed by a fully dense AM structure) has only minor effects on the stresses.« less
Physical evaluations of Co-Cr-Mo parts processed using different additive manufacturing techniques
NASA Astrophysics Data System (ADS)
Ghani, Saiful Anwar Che; Mohamed, Siti Rohaida; Harun, Wan Sharuzi Wan; Noar, Nor Aida Zuraimi Md
2017-12-01
In recent years, additive manufacturing with highly design customization has gained an important technique for fabrication in aerospace and medical fields. Despite the ability of the process to produce complex components with highly controlled architecture geometrical features, maintaining the part's accuracy, ability to fabricate fully functional high density components and inferior surfaces quality are the major obstacles in producing final parts using additive manufacturing for any selected application. This study aims to evaluate the physical properties of cobalt chrome molybdenum (Co-Cr-Mo) alloys parts fabricated by different additive manufacturing techniques. The full dense Co-Cr-Mo parts were produced by Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) with default process parameters. The density and relative density of samples were calculated using Archimedes' principle while the surface roughness on the top and side surface was measured using surface profiler. The roughness average (Ra) for top surface for SLM produced parts is 3.4 µm while 2.83 µm for DMLS produced parts. The Ra for side surfaces for SLM produced parts is 4.57 µm while 9.0 µm for DMLS produced parts. The higher Ra values on side surfaces compared to the top faces for both manufacturing techniques was due to the balling effect phenomenon. The yield relative density for both Co-Cr-Mo parts produced by SLM and DMLS are 99.3%. Higher energy density has influence the higher density of produced samples by SLM and DMLS processes. The findings of this work demonstrated that SLM and DMLS process with default process parameters have effectively produced full dense parts of Co-Cr-Mo with high density, good agreement of geometrical accuracy and better surface finish. Despite of both manufacturing process yield that produced components with higher density, the current finding shows that SLM technique could produce components with smoother surface quality compared to DMLS process with default parameters.
Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Feldman, J.; Venkatapathy, E.
2013-01-01
WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes greater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.
Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
NASA Astrophysics Data System (ADS)
Medina, Fransisco
Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.
Aerothermal Testing of Woven TPS Ablative Materials
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Feldman, Jay; Olson, Michael; Venkatapathy, Ethiraj
2012-01-01
Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing a variety of TPS materials capable of wide ranging performances demanded by a spectrum of solar system exploration missions. Currently, missions anticipated to encounter heat fluxes in the range of 1500 4000 Watts per square centimeter are limited to using one proven material fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 Watts per square centimeter, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This poster will summarize some recent arc jet testing to evaluate the performance of WTPS. Both mid density and fully dense WTPS test results will be presented and results compared to heritage carbon phenolic where applicable.
Dense image registration through MRFs and efficient linear programming.
Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos
2008-12-01
In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.
Musa, Clara; Licheri, Roberta; Orrù, Roberto; Cao, Giacomo; Sciti, Diletta; Silvestroni, Laura; Zoli, Luca; Balbo, Andrea; Mercatelli, Luca; Meucci, Marco; Sani, Elisa
2016-01-01
In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1–2.4) in the 1000–1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers. PMID:28773611
Properties of HIPed stainless steel powder
NASA Astrophysics Data System (ADS)
Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.
1996-10-01
In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.
Boron-carbide-aluminum and boron-carbide-reactive metal cermets
Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.
1986-01-01
Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.
Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al
Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.
1985-05-06
Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.
Photons in dense nuclear matter: Random-phase approximation
NASA Astrophysics Data System (ADS)
Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay
2018-04-01
We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Shengtai; Jungman, Gerard
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
Effect of driver impedance on dense plasma focus Z-pinch neutron yield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov
2014-12-15
The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less
Diamond-silicon carbide composite
Qian, Jiang; Zhao, Yusheng
2006-06-13
Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.
Diamond-Silicon Carbide Composite And Method For Preparation Thereof
Qian, Jiang; Zhao, Yusheng
2005-09-06
Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.
Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Venkatapathy, Ethiraj; Feldman, Jay
2013-01-01
Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing many TPS architectures capable of performances demanded by the many potential solar system exploration missions. Currently, missions that encounter heat fluxes in the range of 1500 4000 W/sq cm and pressures greater than 1.5 atm have very limited TPS options - only one proven material, fully dense Carbon Phenolic, is currently available for these missions. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 W/sq cm, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will introduce some woven TPS architectures considered in this project and summarize some recent arc jet testing to evaluate the performance of fully dense and mid density WTPS. Performance comparisons to heritage carbon phenolic will be drawn where applicable.
NASA Astrophysics Data System (ADS)
Wei, Ying-Kang; Luo, Xiao-Tao; Li, Cheng-Xin; Li, Chang-Jiu
2017-01-01
Magnesium-based alloys have excellent physical and mechanical properties for a lot of applications. However, due to high chemical reactivity, magnesium and its alloys are highly susceptible to corrosion. In this study, Al6061 coating was deposited on AZ31B magnesium by cold spray with a commercial Al6061 powder blended with large-sized stainless steel particles (in-situ shot-peening particles) using nitrogen gas. Microstructure and corrosion behavior of the sprayed coating was investigated as a function of shot-peening particle content in the feedstock. It is found that by introducing the in-situ tamping effect using shot-peening (SP) particles, the plastic deformation of deposited particles is significantly enhanced, thereby resulting in a fully dense Al6061 coating. SEM observations reveal that no SP particle is deposited into Al6061 coating at the optimization spraying parameters. Porosity of the coating significantly decreases from 10.7 to 0.4% as the SP particle content increases from 20 to 60 vol.%. The electrochemical corrosion experiments reveal that this novel in-situ SP-assisted cold spraying is effective to deposit fully dense Al6061 coating through which aqueous solution is not permeable and thus can provide exceptional protection of the magnesium-based materials from corrosion.
Critical infrastructure monitoring using UAV imagery
NASA Astrophysics Data System (ADS)
Maltezos, Evangelos; Skitsas, Michael; Charalambous, Elisavet; Koutras, Nikolaos; Bliziotis, Dimitris; Themistocleous, Kyriacos
2016-08-01
The constant technological evolution in Computer Vision enabled the development of new techniques which in conjunction with the use of Unmanned Aerial Vehicles (UAVs) may extract high quality photogrammetric products for several applications. Dense Image Matching (DIM) is a Computer Vision technique that can generate a dense 3D point cloud of an area or object. The use of UAV systems and DIM techniques is not only a flexible and attractive solution to produce accurate and high qualitative photogrammetric results but also is a major contribution to cost effectiveness. In this context, this study aims to highlight the benefits of the use of the UAVs in critical infrastructure monitoring applying DIM. A Multi-View Stereo (MVS) approach using multiple images (RGB digital aerial and oblique images), to fully cover the area of interest, is implemented. The application area is an Olympic venue in Attica, Greece, at an area of 400 acres. The results of our study indicate that the UAV+DIM approach respond very well to the increasingly greater demands for accurate and cost effective applications when provided with, a 3D point cloud and orthomosaic.
Composite oxygen transport membrane
Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.
2016-11-08
A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.
1991-01-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.
NASA Technical Reports Server (NTRS)
1998-01-01
As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.
1990-01-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, M.A.; LaSalvia, J.C.; Hoke, D.
The objectives of this research program were to apply combustion synthesis and dynamic forging in order to produce fully dense ceramics. The program was successfully carried out but was unfortunately terminated. TiC and TiB2 ceramics, TiC-Ni cermets, and A12O3-TiB2 an TiB2-SiC ceramic-ceramic composites were successfully produced and characterized. Th research effort carried out from October 1988 to the present yielded eleven technical publications, of which seven were (or will be) published in archival journals and four in conference proceedings. The work has been presented at eight technical meetings and has been very well received by the community. Three students weremore » supported by this research program. Three M.S. degrees were awarded and two Ph.D. theses are in progress, with projected completion in August 1992 and January 1993. Collaboration with BRL and CERACON was.« less
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-01-01
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-05-10
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.
Producing Foils From Direct Cast Titanium Alloy Strip
NASA Technical Reports Server (NTRS)
Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.
1996-01-01
This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.
NASA Astrophysics Data System (ADS)
Gaytan, S. M.; Murr, L. E.; Martinez, E.; Martinez, J. L.; Machado, B. I.; Ramirez, D. A.; Medina, F.; Collins, S.; Wicker, R. B.
2010-12-01
The microstructures and mechanical behavior of simple, as-fabricated, solid geometries (with a density of 8.4 g/cm3), as-fabricated and fabricated and annealed femoral (knee) prototypes, and reticulated mesh components (with a density of 1.5 g/cm3) all produced by additive manufacturing (AM) using electron beam melting (EBM) of Co-26Cr-6Mo-0.2C powder are examined and compared in this study. Microstructures and microstructural issues are examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD), while mechanical properties included selective specimen tensile testing and Vickers microindentation hardness (HV) and Rockwell C-scale hardness (HRC) measurements. Orthogonal (X-Y) melt scanning of the electron beam during AM produced unique, orthogonal and related Cr23C6 carbide (precipitate) arrays (a controlled microstructural architecture) with dimensions of 2 μm in the build plane perpendicular to the build direction, while connected carbide columns were formed in the vertical plane, parallel to the build direction, with microindentation hardnesses ranging from 4.4 to 5.9 GPa, corresponding to a yield stress and ultimate tensile strength (UTS) of 0.51 and 1.45 GPa with elongations ranging from 1.9 to 5.3 pct. Annealing produced an equiaxed fcc grain structure with some grain boundary carbides, frequent annealing twins, and often a high density of intrinsic {111} stacking faults within the grains. The reticulated mesh strut microstructure consisted of dense carbide arrays producing an average microindentation hardness of 6.2 GPa or roughly 25 pct higher than the fully dense components.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
O(minus 2) grain boundary diffusion and grain growth in pure dense MgO
NASA Technical Reports Server (NTRS)
Kapadia, C. M.; Leipold, M. H.
1973-01-01
Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.
Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1997-01-01
Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.
Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Feldman, Jay D.
2013-01-01
NASAs Office of the Chief Technologist (OCT) Game Changing Division recently funded an effort to advance a Woven TPS (WTPS) concept. WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes g(reater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.
Development of fully dense and high performance powder metallurgy HSLA steel using HIP method
NASA Astrophysics Data System (ADS)
Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping
2018-05-01
In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.
Processing of transparent polycrystalline AlON:Ce 3+ scintillators
Chen, Ching -Fong; Yang, Pin; King, Graham; ...
2015-10-23
A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce 3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce 3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce 4+ to Ce 3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce 3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystalmore » field splitting around the Ce 3+ activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce 3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.« less
Reconstructing the Seismic Wavefield using Curvelets and Distributed Acoustic Sensing
NASA Astrophysics Data System (ADS)
Muir, J. B.; Zhan, Z.
2017-12-01
Distributed Acoustic Sensing (DAS) offers an opportunity to produce cost effective and uniquely dense images of the surface seismic wavefield - DAS also produces extremely large data volumes that require innovative methods of data reduction and seismic parameter inversion to handle efficiently. We leverage DAS and the super-Nyquist sampling enabled by compressed sensing of the wavefield in the curvelet domain to produce accurate images of the horizontal velocity within a target region, using only short ( 1-10 minutes) records of either active seismic sources or ambient seismic signals. Once the wavefield has been fully described, modern "tomographic" techniques, such as Helmholtz tomography or Wavefield Gradiometry, can be employed to determine seismic parameters of interest such as phase velocity. An additional practical benefit of employing a wavefield reconstruction step is that multiple heterogeneous forms of instrumentation can be naturally combined - therefore in this study we also explore the addition of three component nodal seismic data into the reconstructed wavefield. We illustrate these techniques using both synthetic examples and data taken from the Brady Geothermal Field in Nevada during the PoroTomo (U. Wisconsin Madison) experiment of 2016.
Dense power-law networks and simplicial complexes
NASA Astrophysics Data System (ADS)
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.
Jetté, Bruno; Brailovski, Vladimir; Dumas, Mathieu; Simoneau, Charles; Terriault, Patrick
2018-01-01
The current total hip prostheses with dense femoral stems are considerably stiffer than the host bones, which leads to such long-term complications as aseptic loosening, and eventually, the need for a revision. Consequently, the lifetime of the implantation does not match the lifetime expectation of young patients. A femoral stem design featuring a porous structure is proposed to lower its stiffness and allow bone tissue ingrowth. The porous structure is based on a diamond cubic lattice in which the pore size and the strut thickness are selected to meet the biomechanical requirements of the strength and the bone ingrowth. A porous stem and its fully dense counterpart are produced by laser powder-bed fusion using Ti-6Al-4V alloy. To evaluate the stiffness reduction, static testing based on the ISO standard 7206-4 is performed. The experimental results recorded by digital image correlation are analyzed and compared to the numerical model. The numerical and experimental force-displacement characteristics of the porous stem show a 31% lower stiffness as compared to that of its dense counterpart. Moreover, the correlation analysis of the total displacement and equivalent strain fields allows the preliminary validation of the numerical model of the porous stem. Finally, the analysis of the surface-to-volume and the strength-to-stiffness ratios of diamond lattice structures allow the assessment of their potential as biomimetic constructs for load-bearing orthopaedic implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Processing and mechanical characterization of alumina laminates
NASA Astrophysics Data System (ADS)
Montgomery, John K.
2002-08-01
Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces and interface afforded an explanation of the behavior that failure initiates at the interface between the layers for the thinnest configuration, rather than the sample surface.
Functionally Graded Metal-Metal Composite Structures
NASA Technical Reports Server (NTRS)
Brice, Craig A. (Inventor)
2017-01-01
Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.
Densification of oxide superconductors by hot isostatic pressing
NASA Astrophysics Data System (ADS)
Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.
1988-07-01
Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.
Scale-Up Method for the Shock Compaction of Powders
NASA Astrophysics Data System (ADS)
Carton, E. P.; Stuivinga, M.
2004-07-01
Shock wave compaction in the cylindrical configuration lends itself to be scaled-up for small-scale industrial applications. While scaling up in the axial direction is easy, scaling up in the lateral direction is less straightforward and may lead to cracks in the center. A different scale up method is presented here; aluminum tubes are filled with the powder to be compacted and placed in a circle inside a large metal tube, with a metal shock wave reflector in the center. The space in between is filled with an inert powder medium: alumina, salt or sand. It is found that salt is the best medium for the integrity of the aluminum tube and for the ease of removal of the aluminum tube out of the (densified) powder medium. Experimental results of (slightly ellipsoidal) shock compacted tubes that are produced this way are shown as an example. In the case of B4C, after infiltration with the aluminum of the tube, fully dense cermet compacts without any cracks are thus produced, batch by batch.
Dense high temperature ceramic oxide superconductors
Landingham, Richard L.
1993-01-01
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Dense high temperature ceramic oxide superconductors
Landingham, R.L.
1993-10-12
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean
2013-01-01
This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.
Local Crystalline Structure in an Amorphous Protein Dense Phase
Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.
2015-01-01
Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663
The Importance of the Initial State in Understanding Shocked Porous Materials
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Cochrane, Kyle R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Shulenburger, Luke
Modeling the response of porous materials to shock loading presents a variety of theoretical challenges, however if done well it can open a whole new area of phase space for probing the equation of state of materials. Shocked porous materials achieve significantly hotter temperatures for the same drive than fully dense ones. By combining ab initio calculations of fully dense material with a model of porosity we show the critical importance of an accurate treatment of the initial state in understanding these experiments. This approach is also directly applicable to present application of tabular equations of state to the modeling of porous material. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Parlesak, Alexandr; Geelhoed, Diederike; Robertson, Aileen
2014-06-01
Chronic undernutrition is prevalent in Mozambique, where children suffer from stunting, vitamin A deficiency, anemia, and other nutrition-related disorders. Complete diet formulation products (CDFPs) are increasingly promoted to prevent chronic undernutrition. Using linear programming, to investigate whether diet diversification using local foods should be prioritized in order to reduce the prevalence of chronic undernutrition. Market prices of local foods were collected in Tete City, Mozambique. Linear programming was applied to calculate the cheapest possible fully nutritious food baskets (FNFB) by stepwise addition of micronutrient-dense localfoods. Only the top quintile of Mozambican households, using average expenditure data, could afford the FNFB that was designed using linear programming from a spectrum of local standard foods. The addition of beef heart or liver, dried fish and fresh moringa leaves, before applying linear programming decreased the price by a factor of up to 2.6. As a result, the top three quintiles could afford the FNFB optimized using both diversification strategy and linear programming. CDFPs, when added to the baskets, were unable to overcome the micronutrient gaps without greatly exceeding recommended energy intakes, due to their high ratio of energy to micronutrient density. Dietary diversification strategies using local, low-cost, nutrient-dense foods can meet all micronutrient recommendations and overcome all micronutrient gaps. The success of linear programming to identify a low-cost FNFB depends entirely on the investigators' ability to select appropriate micronutrient-dense foods. CDFPs added to food baskets are unable to overcome micronutrient gaps without greatly exceeding recommended energy intake.
Invited Article: Refractive index matched scanning of dense granular materials
NASA Astrophysics Data System (ADS)
Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang
2012-01-01
We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.
Microporous polymer films and methods of their production
Aubert, James H.
1995-01-01
A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.
CO2 exchange in a temperate marginal sea of the Mediterranean Sea: processes and carbon budget
NASA Astrophysics Data System (ADS)
Cossarini, G.; Querin, S.; Solidoro, C.
2012-08-01
Marginal seas play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal seas are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal seas and assist in the compilation of a complete global budget. In this study, we investigated the air-sea exchange and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean Sea (the Adriatic Sea) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic Sea is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO2 sequestration in the Mediterranean Sea. The results of the model simulation show that the Adriatic Sea, as a whole, is a CO2 sink with a mean annual flux of 36 mg m-2 day-1. The northern part absorbs more carbon (68 mg m-2 day-1) due to an efficient continental shelf pump process, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic Sea accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean Sea.
How to form planetesimals from mm-sized chondrules and chondrule aggregates
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.
2015-07-01
The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org
Microporous polymer films and methods of their production
Aubert, J.H.
1995-06-06
A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.
NASA Technical Reports Server (NTRS)
Barr, Francis A.; Page, Russell J.
1987-01-01
The adaptation of the powdered particle process used for pure metal oxides to the coprocessing of rhenium oxides suitable to produce pure miniature resistojet hardware has been successful. Both slip casting and extrusion processes were used. The metal oxide ZrO2 was stabilized into the cubic phase with Y2O3, for use as a potentially grain stabilizing additive to rhenium. Straight meter long tubing in two sizes are reported. Tubing suitable for resistojet ohmic heater use of fully fired dimensions of nominally 3.8 mm o.d. x 2.2 mm i.d.. and 1.26 mm o.d. x .45 mm i.d. with 0, 0.5, 1.0 and 5.0% zirconia additives were produced for further study. Photomicrographs of these are discussed. The addition of the metal oxide zirconia to rhenium resulted in more dense and less porous parts. The additions of phase stabilized zirconia most likely act as a sintering aid. Tubes of varying diameter were slip cast which were representative of miniature pressure cases.
Biasotto, M; Ricceri, R; Scuor, N; Schmid, C; Sandrucci, M A; Di Lenarda, R; Matteazzi, P
2003-01-01
This study concerns a novel powder metallurgy method for producing porous titanium (pTi) exhibiting high mechanical properties. The preparation procedure consisted of the following stages: first, the preparation of Ti and titanium hydride (TiH2) powder mixtures and their consolidation with a cold isostatic press, followed by a sintering of the green bodies performed with hot isostatic press (HIP) equipment. Thermal decomposition in controlled environment of the TiH2 phase results in the foam structure. The resulting porosity percolates with a volume fraction of approximately 20%. The final material exhibits interesting mechanical properties, comparable to those of full density titanium (between grade 2 and grade 3), with the advantage of a minor density. The samples produced were tested to verify their biological response by studying the effectiveness of osteoblast adhesion and growth. In this preliminary study, osteoblastic cell morphology was investigated and compared to that observed on fully dense commercially pure titanium (Ti-cp) (ASTM, grade 3). The preliminary results were promising regarding cellular adhesion and spreading. (Journal of Applied Biomaterials & Biomechanics 2003; 1: 172-7).
NASA Astrophysics Data System (ADS)
Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.
2011-10-01
Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.
Dynamics of dense direct-seeded stands of southern pines
J.C.G. Goelz
2006-01-01
Direct seeding of southern pines is an effective method of artificial regeneration, producing extremely dense stands when survival exceeds expectations. Long-term studies of dense direct-seeded stands provide ideal data for exploring development of stands as they approach the limit of maximum stand density. I present data from seven studies with ages of stands ranging...
Current status and recent topics of rare-earth permanent magnets
NASA Astrophysics Data System (ADS)
Sugimoto, S.
2011-02-01
After the development of Nd-Fe-B magnets, rare-earth magnets are now essential components in many fields of technology, because of their ability to provide a strong magnetic flux. There are two, well-established techniques for the manufacture of rare earth magnets: powder metallurgy is used to obtain high-performance, anisotropic, fully dense magnet bodies; and the melt-spinning or HDDR (hydrogenation, disproportionation, desorption and recombination) process is widely used to produce magnet powders for bonded magnets. In the industry of sintered Nd-Fe-B magnets, the total amount of production has increased and their dominant application has been changed to motors. In particular, their use for motors in hybrid cars is one of the most attractive applications. Bonded magnets have also been used for small motors, and the studies of nanocomposite and Sm-Fe-N magnets have become widespread. This paper reviews the current status and future trend in the research of permanent magnets.
Lancia, L; Albertazzi, B; Boniface, C; Grisollet, A; Riquier, R; Chaland, F; Le Thanh, K-C; Mellor, Ph; Antici, P; Buffechoux, S; Chen, S N; Doria, D; Nakatsutsumi, M; Peth, C; Swantusch, M; Stardubtsev, M; Palumbo, L; Borghesi, M; Willi, O; Pépin, H; Fuchs, J
2014-12-05
The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.μm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.
Dysprosium-free melt-spun permanent magnets.
Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W
2014-02-12
Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.
Nonlinear site response in medium magnitude earthquakes near Parkfield, California
Rubinstein, Justin L.
2011-01-01
Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).
Topological quantum distillation.
Bombin, H; Martin-Delgado, M A
2006-11-03
We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding, and computation with magic states.
YAMAZAKI, Toshimitsu; AKAISHI, Yoshinori; HASSANVAND, Maryam
2011-01-01
A recent successful observation of a dense and deeply bound 𝐾̄ nuclear system, K−pp, in the p + p → K+ + K−pp reaction in a DISTO experiment indicates that the double-𝐾̄ dibaryon, K−K−pp, which was predicted to be a dense nuclear system, can also be formed in p + p collisions. We find theoretically that the K−-K− repulsion plays no significant role in reducing the density and binding energy of K−K−pp and that, when two Λ(1405) resonances are produced simultaneously in a short-range p + p collision, they act as doorways to copious formation of K−K−pp, if and only if K−K−pp is a dense object, as predicted. PMID:21670568
NASA Astrophysics Data System (ADS)
Tan, Shurun
The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green's functions including periodic scatterers.
Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
Mondal, Sudipta; Narayanan, V.; Ding, Wen Jun; Lad, Amit D.; Hao, Biao; Ahmad, Saima; Wang, Wei Min; Sheng, Zheng Ming; Sengupta, Sudip; Kaw, Predhiman; Das, Amita; Kumar, G. Ravindra
2012-01-01
Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy “hot” electrons created by the laser pulse and “cold” return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments. PMID:22566660
Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas.
Mondal, Sudipta; Narayanan, V; Ding, Wen Jun; Lad, Amit D; Hao, Biao; Ahmad, Saima; Wang, Wei Min; Sheng, Zheng Ming; Sengupta, Sudip; Kaw, Predhiman; Das, Amita; Kumar, G Ravindra
2012-05-22
Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (10(18) W/cm(2)) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.
Estimating snow depth in real time using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej; Witek, Matylda; Spallek, Waldemar; Szymanowski, Mariusz
2016-04-01
In frame of the project no. LIDER/012/223/L-5/13/NCBR/2014, financed by the National Centre for Research and Development of Poland, we elaborated a fully automated approach for estimating snow depth in real time in the field. The procedure uses oblique aerial photographs taken by the unmanned aerial vehicle (UAV). The geotagged images of snow-covered terrain are processed by the Structure-from-Motion (SfM) method which is used to produce a non-georeferenced dense point cloud. The workflow includes the enhanced RunSFM procedure (keypoint detection using the scale-invariant feature transform known as SIFT, image matching, bundling using the Bundler, executing the multi-view stereo PMVS and CMVS2 software) which is preceded by multicore image resizing. The dense point cloud is subsequently automatically georeferenced using the GRASS software, and the ground control points are borrowed from positions of image centres acquired from the UAV-mounted GPS receiver. Finally, the digital surface model (DSM) is produced which - to improve the accuracy of georeferencing - is shifted using a vector obtained through precise geodetic GPS observation of a single ground control point (GCP) placed on the Laboratory for Unmanned Observations of Earth (mobile lab established at the University of Wroclaw, Poland). The DSM includes snow cover and its difference with the corresponding snow-free DSM or digital terrain model (DTM), following the concept of the digital elevation model of differences (DOD), produces a map of snow depth. Since the final result depends on the snow-free model, two experiments are carried out. Firstly, we show the performance of the entire procedure when the snow-free model reveals a very high resolution (3 cm/px) and is produced using the UAV-taken photographs and the precise GCPs measured by the geodetic GPS receiver. Secondly, we perform a similar exercise but the 1-metre resolution light detection and ranging (LIDAR) DSM or DTM serves as the snow-free model. Thus, the main objective of the paper is to present the performance of the new procedure for estimating snow depth and to compare the two experiments.
Two-way coupled SPH and particle level set fluid simulation.
Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald
2008-01-01
Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.
Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang
2017-01-11
Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.
Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang
2017-01-01
Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416
Mammographic Breast Density Evaluation in Korean Women Using Fully Automated Volumetric Assessment
2016-01-01
The purpose was to present mean breast density of Korean women according to age using fully automated volumetric assessment. This study included 5,967 screening normal or benign mammograms (mean age, 46.2 ± 9.7; range, 30–89 years), from cancer-screening program. We evaluated mean fibroglandular tissue volume, breast tissue volume, volumetric breast density (VBD), and the results were 53.7 ± 30.8 cm3, 383.8 ± 205.2 cm3, and 15.8% ± 7.3%. The frequency of dense breasts and mean VBD by age group were 94.3% and 19.1% ± 6.7% for the 30s (n = 1,484), 91.4% and 17.2% ± 6.8% for the 40s (n = 2,706), 72.2% and 12.4% ± 6.2% for the 50s (n = 1,138), 44.0% and 8.6% ± 4.3% for the 60s (n = 89), 39.1% and 8.0% ± 3.8% for the 70s (n = 138), and 39.1% and 8.0% ± 3.5% for the 80s (n = 12). The frequency of dense breasts was higher in younger women (n = 4,313, 92.3%) than older women (n = 1,654, 59.8%). Mean VBD decreased with aging or menopause, and was about 16% for 46-year-old-Korean women, much higher than in other countries. The proportion of dense breasts sharply decreases in Korean women between 40 and 69 years of age. PMID:26955249
Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya
2010-08-01
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.
Interband and intraband electron kinetics in non-thermal warm dense gold
NASA Astrophysics Data System (ADS)
Brennan Brown, Shaughnessy; Chen, Zhijiang; Curry, Chandra; Hering, Philippe; Hoffmann, Matthias C.; Ng, Andrew; Reid, Matthew; Tsui, Ying Y.; Glenzer, Siegfried H.
2015-11-01
Single-state warm dense matter may be produced via isochoric heating of thin metal foils using ultrafast high-power lasers. Previous experiments have confirmed that electron temperatures exceed ion temperatures during the initial picoseconds following excitation; however, electron kinetics in non-thermal states preceding establishment of a well-defined electron thermal distribution remain little understood. X-ray and optical probing techniques provide necessary resolution to investigate these electronic properties. Here, we will present a study of electron kinetics in warm dense gold produced by irradiating free-standing 30 nm Au foils with a 400 nm FWHM, 45 fs Ti:Sapphire laser system at SLAC National Accelerator Laboratory. The temporal evolutions of AC conductivity for 400 nm and 800 nm laser pulses are simultaneously determined with sub-100 fs resolution, providing insight into the 5 d-6 s/ p interband and 6 s / p intraband transitions respectively. Our results suggest that Auger decay and three-body recombination play important roles in electron thermalization of warm dense gold.
Metallurgy and properties of plasma spray formed materials
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.
1992-01-01
Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.
Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhigang Zak
This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method was developed for producing ultrafine grain tungsten from nanosize tungsten powders. Grain growth was significantly controlled during sintering by certain alloy compositions, particularly Ti, and most compositions sintered to maximum densification. To optimize this process, the effect of processing parameters on the densification and grain growth of nano-W powders was investigated. Near-fully densified tungsten was obtained at sintering temperatures between 1100 and 1300 °C, and both Ar and H2 sintering atmospheres were investigated. The Ar sintering atmosphere was determined to more favorably promote densification and minimize grain growth. The nanosized tungsten powder compacts were subjected to reduction in H2 as a part of the sintering cycle. The reduction temperature was found to have significant effects on the sintering of nano-W powder, primarily as a result of grain coarsening, which was seen at temperatures as low as 700 °C. In an effort to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this project. The addition of 1 wt.% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. Compared to conventional high temperature sintering, a lower temperature sintering cycle for a longer hold time resulted in both near-full density and fine grain size. The roles of the Ti additives include not only the inhibition of grain growth, but also the potential absorption of oxygen from W particles. The project has resulted in the publication; thus far, of six peer reviewed journal articles and seven conference presentations, as well as a master’s thesis. Two additional journal articles are currently in preparation. Presentations and articles were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the W research teams with Prof. Fang had a strong presence at multiple international conferences during 2015 and 2016. Several research groups in the US are now performing experiments using the ultrafine grained W materials.« less
APPARATUS FOR CHARGING A RECEPTACLE WITH A DENSE SUBLIMATE FORM OF URANIUM CHLORIDE
Davidson, P.H.
1959-08-18
An apparatus for filling a tubular storage receptacle with a dense massive form of uranium chloride is described. The apparatus includes an evacuated housing divided into a vaporizing chamber and a portion adapted to receive the receptacle. A nozzle conducts vaporized uranium chloride from the chamber to the interior of the receptacle. The nozzle is withdrawable to progressively deposit the uranium chloride under controlled conditions to produce a dense sublimate which fills the receptacle.
NASA Astrophysics Data System (ADS)
Herbst, E.
2000-09-01
The reactions of the molecular ion H3+ are pivotal to the chemistry of dense interstellar clouds. Produced by the cosmic-ray ionizati on of molecular hydrogen, H3+ reacts with a variety of a toms and molecules to produce species that are precursors to many of the detect ed molecules in dense clouds. For example, the reaction of H3+ with atomic O leads, eventually, to the production of water, while the re action with HD leads to the production of a wide variety of deuterated isotopom ers. In this article, the chemistry of H3+ and the produc ts derived from it are discussed in the larger context of interstellar chemistr y.
Automatic Building Abstraction from Aerial Photogrammetry
NASA Astrophysics Data System (ADS)
Ley, A.; Hänsch, R.; Hellwich, O.
2017-09-01
Multi-view stereo has been shown to be a viable tool for the creation of realistic 3D city models. Nevertheless, it still states significant challenges since it results in dense, but noisy and incomplete point clouds when applied to aerial images. 3D city modelling usually requires a different representation of the 3D scene than these point clouds. This paper applies a fully-automatic pipeline to generate a simplified mesh from a given dense point cloud. The mesh provides a certain level of abstraction as it only consists of relatively large planar and textured surfaces. Thus, it is possible to remove noise, outlier, as well as clutter, while maintaining a high level of accuracy.
ERIC Educational Resources Information Center
Payne, Jessica D.; Jackson, Eric D.; Hoscheidt, Siobhan; Ryan, Lee; Jacobs, W. Jake; Nadel, Lynn
2007-01-01
Stressful events frequently comprise both neutral and emotionally arousing information, yet the impact of stress on emotional and neutral events is still not fully understood. The hippocampus and frontal cortex have dense concentrations of receptors for stress hormones, such as cortisol, which at high levels can impair performance on hippocampally…
METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS
Magel, T.T.
1959-08-11
A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.
Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation
Jones, Clinton F.; Campbell, Robert A.; Brooks, Amanda E.; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S.; Brooks, Benjamin D.; Ghandehari, Hamidreza; Grainger, David W.
2012-01-01
Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated through electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos (ZFE) were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regards to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity. PMID:23062017
Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape
NASA Astrophysics Data System (ADS)
Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.
2014-10-01
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.
Microstructured Electrolyte Membranes to Improve Fuel Cell Performance
NASA Astrophysics Data System (ADS)
Wei, Xue
Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.
Cloud photogrammetry with dense stereo for fisheye cameras
NASA Astrophysics Data System (ADS)
Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens
2016-11-01
We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.
Application of powder densification models to the consolidation processing of composites
NASA Technical Reports Server (NTRS)
Wadley, H. N. G.; Elzey, D. M.
1991-01-01
Unidirectional fiber reinforced metal matrix composite tapes (containing a single layer of parallel fibers) can now be produced by plasma deposition. These tapes can be stacked and subjected to a thermomechanical treatment that results in a fully dense near net shape component. The mechanisms by which this consolidation step occurs are explored, and models to predict the effect of different thermomechanical conditions (during consolidation) upon the kinetics of densification are developed. The approach is based upon a methodology developed by Ashby and others for the simpler problem of HIP of spherical powders. The complex problem is devided into six, much simpler, subproblems, and then their predicted contributions are added to densification. The initial problem decomposition is to treat the two extreme geometries encountered (contact deformation occurring between foils and shrinkage of isolated, internal pores). Deformation of these two geometries is modelled for plastic, power law creep and diffusional flow. The results are reported in the form of a densification map.
Quantification of eggshell microstructure using X-ray micro computed tomography
Riley, A.; Sturrock, C. J.; Mooney, S. J.
2014-01-01
1. X-ray microcomputed tomography can be used to produce rapid, fully analysable, three-dimensional images of biological and other materials without the need for complex or tedious sample preparation and sectioning. We describe the use of this technique to visualise and analyse the microstructure of fragments of shell taken from three regions of chicken eggs (sharp pole, blunt pole and equatorial region). 2. Two- and three-dimensional images and data were obtained at a resolution of 1.5 microns. The images were analysed to provide measurements of shell thickness, the spacial density of mammillary bodies, the frequency, shape, volume and effective diameter of individual pore spaces, and the intrinsic sponginess (proportion of non-X-ray dense material formed by vesicles) of the shell matrix. Measurements of these parameters were comparable with those derived by traditional methods and reported in the literature. 3. The advantages of using this technology for the quantification of eggshell microstructural parameters and its potential application for commercial, research and other purposes are discussed. PMID:24875292
NASA Astrophysics Data System (ADS)
Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung
2015-03-01
Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.
Approximate registration of point clouds with large scale differences
NASA Astrophysics Data System (ADS)
Novak, D.; Schindler, K.
2013-10-01
3D reconstruction of objects is a basic task in many fields, including surveying, engineering, entertainment and cultural heritage. The task is nowadays often accomplished with a laser scanner, which produces dense point clouds, but lacks accurate colour information, and lacks per-point accuracy measures. An obvious solution is to combine laser scanning with photogrammetric recording. In that context, the problem arises to register the two datasets, which feature large scale, translation and rotation differences. The absence of approximate registration parameters (3D translation, 3D rotation and scale) precludes the use of fine-registration methods such as ICP. Here, we present a method to register realistic photogrammetric and laser point clouds in a fully automated fashion. The proposed method decomposes the registration into a sequence of simpler steps: first, two rotation angles are determined by finding dominant surface normal directions, then the remaining parameters are found with RANSAC followed by ICP and scale refinement. These two steps are carried out at low resolution, before computing a precise final registration at higher resolution.
NASA Astrophysics Data System (ADS)
Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.
2016-06-01
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.
Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili
2012-06-07
Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.
High Temperature Deformation Mechanisms in a DLD Nickel Superalloy
Davies, Sean; Jeffs, Spencer; Lancaster, Robert; Baxter, Gavin
2017-01-01
The realisation of employing Additive Layer Manufacturing (ALM) technologies to produce components in the aerospace industry is significantly increasing. This can be attributed to their ability to offer the near-net shape fabrication of fully dense components with a high potential for geometrical optimisation, all of which contribute to subsequent reductions in material wastage and component weight. However, the influence of this manufacturing route on the properties of aerospace alloys must first be fully understood before being actively applied in-service. Specimens from the nickel superalloy C263 have been manufactured using Powder Bed Direct Laser Deposition (PB-DLD), each with unique post-processing conditions. These variables include two build orientations, vertical and horizontal, and two different heat treatments. The effects of build orientation and post-process heat treatments on the materials’ mechanical properties have been assessed with the Small Punch Tensile (SPT) test technique, a practical test method given the limited availability of PB-DLD consolidated material. SPT testing was also conducted on a cast C263 variant to compare with PB-DLD derivatives. At both room and elevated temperature conditions, differences in mechanical performances arose between each material variant. This was found to be instigated by microstructural variations exposed through microscopic and Energy Dispersive X-ray Spectroscopy (EDS) analysis. SPT results were also compared with available uniaxial tensile data in terms of SPT peak and yield load against uniaxial ultimate tensile and yield strength. PMID:28772817
NASA Astrophysics Data System (ADS)
Jonusas, Mindaugas; Guillemin, Jean-Claude; Krim, Lahouari
2017-07-01
The knowledge of the H-addition reactions on unsaturated organic molecules bearing a triple or a double carbon-carbon bond such as propargyl or allyl alcohols and a CO functional group such as propynal, propenal or propanal may play an important role in the understanding of the chemical complexity of the interstellar medium. Why different aldehydes like methanal, ethanal, propynal and propanal are present in dense molecular clouds while the only alcohol detected in those cold regions is methanol? In addition, ethanol has only been detected in hot molecular cores. Are those saturated and unsaturated aldehyde and alcohol species chemically linked in molecular clouds through solid phase H-addition surface reactions or are they formed through different chemical routes? To answer such questions, we have investigated a hydrogenation study of saturated and unsaturated aldehydes and alcohols at 10 K. We prove through this experimental study that while pure unsaturated alcohol ices bombarded by H atoms lead to the formation of the corresponding fully or partially saturated alcohols, surface H-addition reactions on unsaturated aldehyde ices exclusively lead to the formation of fully saturated aldehyde. Such results show that in addition to a chemoselective reduction of C≡C and C=C bonds over the C=O group, there is no link between aldehydes and their corresponding alcohols in reactions involving H atoms in dense molecular clouds. Consequently, this could be one of the reasons why some aldehydes such as propanal are abundant in dense molecular clouds in contrast to the non-detection of alcohol species larger than methanol.
Process for fabrication of large titanium diboride ceramic bodies
Moorhead, Arthur J.; Bomar, E. S.; Becher, Paul F.
1989-01-01
A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.
Thinning balsam fir thickets with soil sterilants
Arthur C. Hart
1961-01-01
Under certain conditions that we do not yet fully understand, balsam fir has a tendency to form dense thickets that cause stagnation of growth. This condition is common throughout the spruce-fir region, and it presents the landowner with one of his most perplexing management problems. A typical thicket averaging 15 feet tall may contain 5,000 to 10,000 stems per acre (...
Spin-resolved band structure of a densely packed Pb monolayer on Si(111)
NASA Astrophysics Data System (ADS)
Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.
2017-07-01
Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.
Video Salient Object Detection via Fully Convolutional Networks.
Wang, Wenguan; Shen, Jianbing; Shao, Ling
This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).
NASA Astrophysics Data System (ADS)
Borodin, V. A.; Vladimirov, P. V.
2017-12-01
The determination of primary damage production efficiency in metals irradiated with fast neutrons is a complex problem. Typically, the majority of atoms are displaced from their lattice positions not by neutrons themselves, but by energetic primary recoils, that can produce both single Frenkel pairs and dense localized cascades. Though a number of codes are available for the calculation of displacement damage from fast ions, they commonly use binary collision (BC) approximation, which is unreliable for dense cascades and thus tend to overestimate the number of created displacements. In order to amend the radiation damage predictions, this work suggests a combined approach, where the BC approximation is used for counting single Frenkel pairs only, whereas the secondary recoils able to produce localized dense cascades are stored for later processing, but not followed explicitly. The displacement production in dense cascades is then determined independently from molecular dynamics (MD) simulations. Combining contributions from different calculations, one gets the total number of displacements created by particular neutron spectrum. The approach is applied here to the case of beryllium irradiation in a fusion reactor. Using a relevant calculated energy spectrum of primary knocked-on atoms (PKAs), it is demonstrated that more than a half of the primary point defects (˜150/PKA) is produced by low-energy recoils in the form of single Frenkel pairs. The contribution to the damage from the dense cascades as predicted using the mixed BC/MD scheme, i.e. ˜110/PKA, is remarkably lower than the value deduced from uncorrected SRIM calculations (˜145/PKA), so that in the studied case SRIM tends to overpredict the total primary damage level.
One step process for producing dense aluminum nitride and composites thereof
Holt, J.B.; Kingman, D.D.; Bianchini, G.M.
1989-10-31
A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.
One step process for producing dense aluminum nitride and composites thereof
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1989-01-01
A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.
Keller, Brad M; Chen, Jinbo; Daye, Dania; Conant, Emily F; Kontos, Despina
2015-08-25
Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA). Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided. All automated density measures had a significant association with breast cancer (OR = 1.47-2.23, AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64, AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68, P = 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 1.47, P = 0.06). This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80). Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.
Modeling of Dense Plasma Effects in Short-Pulse Laser Experiments
NASA Astrophysics Data System (ADS)
Walton, Timothy; Golovkin, Igor; Macfarlane, Joseph; Prism Computational Sciences, Madison, WI Team
2016-10-01
Warm and Hot Dense Matter produced in short-pulse laser experiments can be studied with new high resolving power x-ray spectrometers. Data interpretation implies accurate modeling of the early-time heating dynamics and the radiation conditions that are generated. Producing synthetic spectra requires a model that describes the major physical processes that occur inside the target, including the hot-electron generation and relaxation phases and the effect of target heating. An important issue concerns the sensitivity of the predicted K-line shifts to the continuum lowering model that is used. We will present a set of PrismSPECT spectroscopic simulations using various continuum lowering models: Hummer/Mihalas, Stewart-Pyatt, and Ecker-Kroll and discuss their effect on the formation of K-shell features. We will also discuss recently implemented models for dense plasma shifts for H-like, He-like and neutral systems.
A model for collisionally induced disturbed structure in disk galaxies
NASA Technical Reports Server (NTRS)
Gerber, Richard A.; Lamb, Susan A.
1994-01-01
We derive analytic expressions, using the impulse and epicycle approximations, which describe the kinematic response of a disk galaxy following a collision with a second spherical galaxy which collides perpendicular to, but not through the center of, the disk. This model can reporduce the morphologies found in n-body experiments in which distant encounters produce two-armed spiral patterns and more central collisions produce rings in the disk galaxy, thereby confirming that simple kinematics can be used to describe the early evolution of these systems. Application of this procedure provides a convenient method with which to conduct parameter studies of these collisions. Comparison of the kinematic description with a fully self-gravitating, three-dimensional n-body/gasdynamics computer model shows that the disk galaxy's response is initially well represented by the kinematic model but that the self-gravity of the disk becomes important at longer times after the collision. The flows of gas and stars decouple from one another where stellar orbits cross, leaving regions of elevated gas density behind as the stars move freely past each other. If star formation rates are enhanced in these regions of high gas density, active star formation could be taking place where there is no corresponding dense feature in the old stellar population.
Metal Alloy ICF Capsules Created by Electrodeposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.
Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less
Metal Alloy ICF Capsules Created by Electrodeposition
Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.
2017-12-04
Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less
Unterlass, Miriam M; Emmerling, Franziska; Antonietti, Markus; Weber, Jens
2014-01-14
Fully aromatic polyimides are synthesized via solid-state polymerization of the corresponding monomer salts. The crystal structure of salts shows strong hydrogen bonding of the reactive groups and thereby paves the way for solid-state transformations. The polycondensation yields copies of the initial salt crystallite habits, accompanied by the development of a porosity especially suited for CO2.
Thermodynamics of Thomas-Fermi screened Coulomb systems
NASA Technical Reports Server (NTRS)
Firey, B.; Ashcroft, N. W.
1977-01-01
We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.
Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites
NASA Astrophysics Data System (ADS)
Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.
2018-03-01
Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow conduit conditions, and predict that sintering of ash to dense glass can seal tuffisites in minutes to hours, depending on pressure (i.e., depth), temperature, and ash size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.
2016-06-15
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less
Hugoniot measurements of double-shocked precompressed dense xenon plasmas
NASA Astrophysics Data System (ADS)
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.
2012-12-01
The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.
Plasma X-Ray Sources for Lithography
1980-05-12
in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.
Method of forming and assembly of parts
Ripley, Edward B.
2010-12-28
A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.
CuC1 thermochemical cycle for hydrogen production
Fan, Qinbai [Chicago, IL; Liu, Renxuan [Chicago, IL
2012-01-03
An electrochemical cell for producing copper having a dense graphite anode electrode and a dense graphite cathode electrode disposed in a CuCl solution. An anion exchange membrane made of poly(ethylene vinyl alcohol) and polyethylenimine cross-linked with a cross-linking agent selected from the group consisting of acetone, formaldehyde, glyoxal, glutaraldehyde, and mixtures thereof is disposed between the two electrodes.
Inferring segmented dense motion layers using 5D tensor voting.
Min, Changki; Medioni, Gérard
2008-09-01
We present a novel local spatiotemporal approach to produce motion segmentation and dense temporal trajectories from an image sequence. A common representation of image sequences is a 3D spatiotemporal volume, (x,y,t), and its corresponding mathematical formalism is the fiber bundle. However, directly enforcing the spatiotemporal smoothness constraint is difficult in the fiber bundle representation. Thus, we convert the representation into a new 5D space (x,y,t,vx,vy) with an additional velocity domain, where each moving object produces a separate 3D smooth layer. The smoothness constraint is now enforced by extracting 3D layers using the tensor voting framework in a single step that solves both correspondence and segmentation simultaneously. Motion segmentation is achieved by identifying those layers, and the dense temporal trajectories are obtained by converting the layers back into the fiber bundle representation. We proceed to address three applications (tracking, mosaic, and 3D reconstruction) that are hard to solve from the video stream directly because of the segmentation and dense matching steps, but become straightforward with our framework. The approach does not make restrictive assumptions about the observed scene or camera motion and is therefore generally applicable. We present results on a number of data sets.
NASA Astrophysics Data System (ADS)
Mishra, Rohini
Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.
Fully Ceramic Microencapsulated Fuel Development for LWR Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A
2012-01-01
The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less
Insulator-to-conducting transition in dense fluid helium.
Celliers, P M; Loubeyre, P; Eggert, J H; Brygoo, S; McWilliams, R S; Hicks, D G; Boehly, T R; Jeanloz, R; Collins, G W
2010-05-07
By combining diamond-anvil-cell and laser-driven shock wave techniques, we produced dense He samples up to 1.5 g/cm(3) at temperatures reaching 60 kK. Optical measurements of reflectivity and temperature show that electronic conduction in He at these conditions is temperature-activated (semiconducting). A fit to the data suggests that the mobility gap closes with increasing density, and that hot dense He becomes metallic above approximately 1.9 g/cm(3). These data provide a benchmark to test models that describe He ionization at conditions found in astrophysical objects, such as cold white dwarf atmospheres.
Method for producing dense lithium lanthanum tantalate lithium-ion conducting ceramics
Brown-Shaklee, Harlan James; Ihlefeld, Jon; Spoerke, Erik David; Blea-Kirby, Mia Angelica
2018-05-08
A method to produce high density, uniform lithium lanthanum tantalate lithium-ion conducting ceramics uses small particles that are sintered in a pressureless crucible that limits loss of Li2O.
High-aspect ratio zone plate fabrication for hard x-ray nanoimaging
NASA Astrophysics Data System (ADS)
Parfeniukas, Karolis; Giakoumidis, Stylianos; Akan, Rabia; Vogt, Ulrich
2017-08-01
We present our results in fabricating Fresnel zone plate optics for the NanoMAX beamline at the fourth-generation synchrotron radiation facility MAX IV, to be used in the energy range of 6-10 keV. The results and challenges of tungsten nanofabrication are discussed, and an alternative approach using metal-assisted chemical etching (MACE) of silicon is showcased. We successfully manufactured diffraction-limited zone plates in tungsten with 30 nm outermost zone width and an aspect ratio of 21:1. These optics were used for nanoimaging experiments at NanoMAX. However, we found it challenging to further improve resolution and diffraction efficiency using tungsten. High efficiency is desirable to fully utilize the advantage of increased coherence on the optics at MAX IV. Therefore, we started to investigate MACE of silicon for the nanofabrication of high-resolution and high-efficiency zone plates. The first type of structures we propose use the silicon directly as the phase-shifting material. We have achieved 6 μm deep dense vertical structures with 100 nm linewidth. The second type of optics use iridium as the phase material. The structures in the silicon substrate act as a mold for iridium coating via atomic layer deposition (ALD). A semi-dense pattern is used with line-to-space ratio of 1:3 for a so-called frequency-doubled zone plate. This way, it is possible to produce smaller structures with the tradeoff of the additional ALD step. We have fabricated 45 nm-wide and 3.6 μm-tall silicon/iridium structures.
SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.
Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E
2016-06-01
Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dense plasma focus (DPF) accelerated non radio isotopic radiological source
Rusnak, Brian; Tang, Vincent
2017-01-31
A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.
Radial particle-size segregation during packing of particulates into cylindrical containers
Ripple, C.D.; James, R.V.; Rubin, J.
1973-01-01
In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.
Energetic additive manufacturing process with feed wire
Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.
2000-11-07
A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.
United States Air Force Summer Faculty Research Program. Management Report. Volume 1
1988-12-01
sensors , measure reaction characteristics of fuel and oxidizer at various inlet velocities and initial conditions. Application of spectroscopy, high... applications in armament systems. False signals caused by cloud, fog, and snow interfere with proper response of the sensors , and efforts to... sensor for this application have not been fully successful (1-18). Presence of dense clouds, fog, or snow will create false signals and will obscure
Numerical and Analytical Modeling of Laser Deposition with Preheating (Preprint)
2007-03-01
temperature materials, Numerical Heat Transfer 11 (1987) 477-491. [9] L. Han, F.W. Liou, K.M. Phatk, Modeling of laser cladding with powder injection... cladding process. This laser additive manufacturing technique allows quick fabrication of fully-dense metallic components directly from Computer...1, laser deposition uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2008-12-01
axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third axis is used for the ultra-high-speed photography. The...to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can be rendered completely transparent, making it a viable... tribological loading conditions. During indentation, the region beneath the indenter is effectively confined due to the surrounding medium, and it
Farlow, Janice L; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Pieter; Deelen, Patrick; Swertz, Morris A; Verweij, Bon H; Regli, Luca; Rinkel, Gabriel J E; Ruigrok, Ynte M; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana
2015-01-01
Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.
Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines
2000-01-01
We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...
Characterizing wood properties of small diameter Northwest trees
Thomas M. Gorman; David W. Green
2002-01-01
Forest lands of the Rocky Mountain region of the U.S. have many timber stands consisting of overgrown, densely stocked trees that create a fire hazard and are prone to disease. These stands need to be thinned, but the cost of harvesting often exceeds the value of the timber produced. However, because of the dense stocking and the resulting slow growth these trees may...
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less
Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations.
Bouldin, T. W.; Goines, N. D.; Bagnell, R. C.; Krigman, M. R.
1981-01-01
The ultrastructural cytopathologic and cytochemical effects of trimethyltin (TMT) neurotoxicity were delineated in hippocampal and pyriform neurons of acutely intoxicated adult rats. TMT produced neuronal necrosis that preferentially involved hippocampal formation pyriform cortex. The first subcellular alterations were multifocal collection of dense-cored vesicles and tubules and membrane-delimited vacuoles in the cytoplasm of the perikaryon and proximal dendrite. Ultrastructural cytochemical examination revealed that the vesicles and tubules had acid phosphatase activity analagous to Golgi-associated endoplasmic reticulum (GERL). Shortly after the appearance of the GERL-like vesicles and tubules, autophagic vacuoles and polymorphic dense bodies accumulated in the neuronal cytoplasm. Some dense bodies appeared to arise from the dense-cored tubules. Neuronal necrosis was characterized by increased electron density of the cytoplasm and large, electron-dense intranuclear masses. Alterations of mitochondria and other organelles were not observed in the early stages of cell injury. No light- or electron-microscopic alterations were found in liver or kidney. Comparable subcellular alterations were observed in adult and neonatal rats chronically intoxicated with TMT. A series of other trialkyl and tricyclic tins and dimethyltin did not produce similar pathologic findings. The GERL-like accumulations are unique in neuronal cytopathology. These findings suggests that GERL and autophagy play an important role in the pathogenesis of TMT-induced neuronal injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7294153
Extreme ultraviolet interferometry of warm dense matter in laser plasmas.
Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B
2010-11-15
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).
Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing.
Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen
2016-08-03
Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.
Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Titran, Robert H.
1988-01-01
Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity.
Probing massive stars around gamma-ray burst progenitors
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan; Smoot, George F.
2015-10-01
Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.
An automated 3D reconstruction method of UAV images
NASA Astrophysics Data System (ADS)
Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping
2015-10-01
In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.
Fabrication of Fiber-Reinforced Celsian Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Setlock, John A.
2000-01-01
A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.
Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing
Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen
2016-01-01
Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production. PMID:28773774
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
Measurements of [C I] Emission from Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Oliversen, R. J.; Doane, N.; Scherb, F.; Harris, W. M.; Morgenthaler, J. P.
2002-12-01
We present quantitative measurements of cometary [C I] 9850 Å emission obtained during observations of comet Hale-Bopp (C/1995 O1) in 1997 March and April. The observations were carried out using a high-resolution (λ/Δλ~40,000) Fabry-Pérot/CCD spectrometer at the McMath-Pierce Solar telescope on Kitt Peak. This forbidden line, the carbon analog of [O I] 6300 Å, is emitted in the radiative decay of C(1D) atoms. In the absence of other sources and sinks, [C I] 9850 Å emission can be used as a direct tracer of CO photodissociation in comets. However, in Hale-Bopp's large, dense coma, other processes, such as collisional excitation of ground-state C(3P), dissociative recombination of CO+, and collisional dissociation of CO and CO2 may produce significant amounts of C(1D). The long C(1D) radiative lifetime (~4000 s) makes collisional deexcitation (quenching) the primary loss mechanism in the inner coma. Thus, a detailed, self-consistent global model of collisional and photochemical interactions is necessary to fully account for [C I] 9850 Å emission in comet Hale-Bopp.
Exploring warm dense matter using quantum molecular dynamics
NASA Astrophysics Data System (ADS)
Clérouin, J.; Mazevet, S.
2006-06-01
For dense plasmas produced in shock experiments, the influence of the media on the isolated atomic properties can no longer be treated as a perturbation and conventional atomic physics approaches usually fail. Recently, quantum molecular dynamics (QMD) has been used to successfully predict static, dynamical and optical properties in this regime within the framework of a first principle method. In this short report, we illustrate the usefulness of the method for dense plasmas with a few selected examples: the equation of state of liquid deuterium, the electrical properties of expanded metals, the optical properties of shocked insulators, and the interaction of femto-second lasers with gold thin films.
NASA Astrophysics Data System (ADS)
Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.
2018-04-01
Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
Method of forming and assembly of metal and ceramic parts
Ripley, Edward B
2014-04-22
A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.
Method of forming and assembly of metal parts and ceramic parts
Ripley, Edward B [Knoxville, TN
2011-11-22
A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.
NASA Astrophysics Data System (ADS)
Ryu, Jungho; Choi, Jong-Jin; Hahn, Byung-Dong; Park, Dong-Soo; Yoon, Woon-Ha; Kim, Ki-Hoon
2007-04-01
Lead-free piezoelectric thick films of (K0.5Na0.5)NbO3 were fabricated by aerosol-deposition method. The thickness of KNN film was 7.1μm and fully dense films were obtained. The dielectric constants ɛ3T/ɛ0 of the as-deposited and annealed films at 1kHz were 116 and 545, respectively, which are higher than any previously reported values for lead-free piezoelectric thin/thick films, either without or with heat treatment. The ferroelectric properties were improved after annealing and the maximum values of Pr=8.1μC/cm3 and Ec=100kV/cm were achieved. These values are markedly superior to those of sintered KNN ceramic counterparts.
Flexible fiber in interaction with a dense granular flow close to the jamming transition
NASA Astrophysics Data System (ADS)
Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne
2017-06-01
We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.
Dense chitosan surgical membranes produced by a coincident compression-dehydration process
Dooley, Thomas P.; Ellis, April L.; Belousova, Maria; Petersen, Don; DeCarlo, Arthur A.
2012-01-01
High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients. PMID:23565872
2006-03-01
Evaluation of fully 3D emission mammotomography with a compact cadmium zinc telluride detector,” IEEE Trans. Med. Imag. (Submitted) 2005. [16] M.P...times over a few months, and the degradation due to compromised adipose tissue boundaries as well as other physical breast features are becoming...breast lesions, especially in radiographically dense breasts,2,11-13 through the removal of contrast-reducing overlying tissue ; (2) uncompressed
W. G. Wahlenberg
1929-01-01
It is obvious that seedlings grown in dense stands can not develop so well as those grown without crowding. Nurserymen naturally wish to avoid injury to their stock from crowding, but they also desire to utilize their soil space as fully as possible. The optimum density of stand for each species and age class of nursery stock can be determined within reasonably close...
Casting fine grained, fully dense, strong inorganic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.
2015-11-24
Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.
DUKW 21 - Amphibious Cargo Transfer from Ship to Shore
2007-08-10
issue of the pontoons and propulsors not being fully immersed is not as easily solved , but may be acceptable as is. The increased resistance of the...AGP1500 through improved fuel efficiency and reduced maintenance costs. The 1,500 shaft horsepower ( SHP ) engine is very power dense, and, since it uses a...Lawlor, 2006) The navigation method used by DARPA is also significant to this project. The DARPA Grand Challenge had a comprehensive mapping
NASA Astrophysics Data System (ADS)
Ellsworth-Bowers, Timothy P.
The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular cloud structures. This distance catalog of 1,802 objects across the Galactic plane represents the first large-scale analysis of clump-scale objects in a variety of Galactic environments. The Galactocentric positions of these objects begin to trace out the spiral structure of the Milky Way, and suggest that dense molecular gas settles nearer the Galactic midplane than tracers of less-dense gas such as CO. Physical properties computed from the DPDFs reveal that BGPS objects trace a continuum of scales within giant molecular clouds, and extend the scaling relationships known as Larson's Laws to lower-mass substructures. The results presented here represent the first step on the road to seeing the molecular content of the Milky Way as a forest rather than individual nearby trees.
Structural Integrity of an Electron Beam Melted Titanium Alloy.
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-06-14
Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.
Prioritization of Threatened and Endangered Species Sound Research on Army Installations
2002-11-01
Currently, soldiers are restricted from disturbing dense stands of Agave plants (e.g., Agave palmeri, A. deserti, and A. parryi , etc.) and from...bats are present (AERTA 1999). Threats to Lesser Long-nosed Bat survival – Habitat destruction of desert vegeta- tion and over harvesting of Agave ...currently restricted from conducted fire producing training activities in dense stands of agave as a way to reduce any military impacts on the species
A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays
NASA Technical Reports Server (NTRS)
Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence
2017-01-01
Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.
Fine coal cleaning via the micro-mag process
Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.
1991-01-01
A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.
Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A.
2014-12-15
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off throughmore » the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.« less
DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.
2011-11-01
SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less
NASA Astrophysics Data System (ADS)
Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul
2015-04-01
Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.
NASA Astrophysics Data System (ADS)
Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian
2017-06-01
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Taylor, A.J.; Weber, G.W.
Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.
The hot spot of vegetation canopies
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Kanemasu, Edward T.
1988-01-01
A conventional radiometer is used to identify the hot spot (the peak in reflected radiation in the retrosolar direction) of vegetation. A multiwavelength-band radiometer collected radiances on fully grown dense wheat and maize canopies on several clear sunny days. It is noted that the hot spot is difficult to detect in the near IR wavelengths because the shadows are much darker. In general, the retrosolar brightness is found to be higher for smaller sun polar angles than for larger angles.
Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila
2014-12-01
Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P < .001). Percent and absolute dense volume were associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.
2014-12-01
Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.
Nanotwinned metal MEMS films with unprecedented strength and stability
Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.
2017-01-01
Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015
Kinetic simulations of gas breakdown in the dense plasma focus
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.
2017-06-01
The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.
Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea
2016-10-01
We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Heat transfer model and finite element formulation for simulation of selective laser melting
NASA Astrophysics Data System (ADS)
Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.
2017-10-01
A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Tomoyuki; Kajino, Toshitaka; Yasutake, Nobutoshi
2012-11-12
We calculate neutrino scattering and absorption on the hot and dense neutron-star matter with hyperons under the strong magnetic field using a perturbative approach. We find that the absorption cross-sections show a remarkable angular dependence. Its strength is reduced in the direction parallel to the magnetic field and enhanced in the opposite direction. This asymmetric variation becomes maximally 2.2 % of entire neutrino momentum when the magnetic field is assumed as about 2 Multiplication-Sign 10{sup 17} G. Since the pulsar kick after the supernova explosion may have relationships to this asymmetry, detailed discussions about the pulsar kick and the asymmetrymore » are presented with the comparison to the observed kick velocities in a fully relativistic approach.« less
Consolidation of lunar regolith: Microwave versus direct solar heating
NASA Technical Reports Server (NTRS)
Kunitzer, J.; Strenski, D. G.; Yankee, S. J.; Pletka, B. J.
1991-01-01
The production of construction materials on the lunar surface will require an appropriate fabrication technique. Two processing methods considered as being suitable for producing dense, consolidated products such as bricks are direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various size. The regolith was considered to be a mare basalt with an overall density of 60 pct. of theoretical. Densification was assumed to take place by vitrification since this process requires moderate amounts of energy and time while still producing dense products. Microwave heating was shown to be significantly faster compared to solar furnace heating for rapid production of realistic-size bricks.
2010-01-01
prevailing benthic habitat was mapped as sediment with little to no microalgal biofilm. Moderate to dense sea- grass meadows of Thalassia testudinum were...dense seagrass meadows of Thalassia testudinum were the dominant primary producers and contributed over 80% of NPP in the region. If the vast majority of...density of the seagrasses Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass) were estimated
Fine-grained linings of leveed channels facilitate runout of granular flows
Kokelaar, B.P.; Graham, R. L.; Gray, J.M.N.T.; Vallance, James W.
2014-01-01
Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300–425 μm) mixed with spherical fine ballotini (150–250 μm), on rough slopes of 27–29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30–40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow–substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.
Fine-grained linings of leveed channels facilitate runout of granular flows
NASA Astrophysics Data System (ADS)
Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.
2014-01-01
Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.
Effects of Automobile Emissions on Air Pollution in the United States
NASA Astrophysics Data System (ADS)
Cohen, Ryan; Singh, Ramesh
2016-07-01
Currently, about more than 253,000,000 automobiles and trucks, some are new, old, gas and electric, ply on the roads in the United States of America. Around the world, human activities and energy demand are the main sources for the air pollution and ozone depletion, causing dense haze, fog and smog especially during winter season in the country like China and India and also observed in different parts of the world. In recent years, automakers have been pushed by new governmental regulations and global expectations to create more fuel-efficient vehicles that burn less fossil fuels and create fewer harmful emissions. Automakers are exploring alternative fuel options such as hydrogen, natural gas, hybrids, and completely electric vehicles. Since the Nissan Leaf's introduction in 2010, fully electric vehicles have become widely produced and just fewer than 400,000 fully electric cars have been sold in the United States. Taking the influx of more fuel-efficient and alternative energy vehicles in the market into account, we have analyzed satellite and ground observed atmospheric pollution and greenhouse gases during 2009-2014 in the United States of America. Our results show that the increasing population of hybrid and fuel efficient vehicles have cut down the atmospheric pollution and greenhouse emissions in US in general, whereas in California the pollution level has increased as a result frequency of fog and haze events are seen during winter season. We will present a comparison of atmospheric pollution over US and California State in view of the increasing hybrid and fuel efficient vehicles.
The Slc35d3 gene, encoding an orphan nucleotide sugar transporter, regulates platelet-dense granules
Chintala, Sreenivasulu; Tan, Jian; Gautam, Rashi; Rusiniak, Michael E.; Guo, Xiaoli; Li, Wei; Gahl, William A.; Huizing, Marjan; Spritz, Richard A.; Hutton, Saunie; Novak, Edward K.; Swank, Richard T.
2007-01-01
Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency. PMID:17062724
Powder and particulate production of metallic alloys
NASA Technical Reports Server (NTRS)
Grant, N. J.
1982-01-01
Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.
2000-06-01
the chemical can contact and fully react with contaminants in situ. The advantage of in situ destruction is that the process is completed in the ground...Because chemical oxidation is primarily targeted at dissolved plumes and is only marginally applicable to DNAPL source zones exhibiting relatively low...refer to a “DNAPL plume .” Certainly, a portion of the chemical components of a DNAPL may become dissolved in ground water, and this solution may spread
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2009-09-01
in a prismatic specimen along one of the three specimen axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third ...AlON are generally comparable to those of α-Al2O3. Owing to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can...illustrated in indentation experiments on Al2O3 [46]) or under tribological loading conditions. During indentation, the region beneath the indenter is
Liquefaction sites, Imperial Valley, California.
Youd, T.L.; Bennett, M.J.
1983-01-01
Sands that did and did not liquefy at two sites during the 1979 Imperial Valley, Calif., earthquake (ML = 6.6) are identified and their properties evaluated. SPT tests were used to evaluate liquefaction susceptibility. Loose fine sands in an abandoned channel liquefied and produced sand boils, ground fissures, and a lateral spread at the Heber Road sites. Evidence of liquefaction was not observed over moderately dense over-bank sand east of the channel nor over dense point-bar sand to the west. -from ASCE Publications Information
Experimental Determination of DT Yield in High Current DD Dense Plasma Focii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, D. R.; Hagen, E. C.; Meehan, B. T.
2013-06-18
Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentallymore » verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.« less
Samarra, Filipa I P
2015-07-01
Killer whales produce herding calls to increase herring school density but previous studies suggested that these calls were made only when feeding upon spawning herring. Herring schools less densely when spawning compared to overwintering; therefore, producing herding calls may be advantageous only when feeding upon less dense spawning schools. To investigate if herding calls were produced across different prey behavioural contexts and whether structural variants occurred and correlated with prey behaviour, this study recorded killer whales when feeding upon spawning and overwintering herring. Herding calls were produced by whales feeding on both spawning and overwintering herring, however, calls recorded during overwintering had significantly different duration and peak frequency to those recorded during spawning. Calls recorded in herring overwintering grounds were more variable and sometimes included nonlinear phenomena. Thus, herding calls were not produced exclusively when feeding upon spawning herring, likely because the call increases feeding efficiency regardless of herring school density or behaviour. Variations in herding call structure were observed between prey behavioural contexts and did not appear to be adapted to prey characteristics. Herding call structural variants may be more likely a result of individual or group variation rather than a reflection of properties of the food source. Copyright © 2015. Published by Elsevier B.V.
Becker, B S; Bolton, J D
1997-12-01
Artificial hip joints have an average lifetime of 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 year for a longer lasting joint of 25 years or more. Compliant layers incorporated into the acetabular cup generate elastohydrodynamic lubrication conditions between the bearing surfaces, reduce joint friction coefficients and wear debris production and could increase the average life of total hip replacements, and other human load-bearing joint replacements, i.e. total knee replacements. Poor adhesion between a fully dense substrate and the compliant layer has so far prevented any further exploitation. This work investigated the possibility of producing porous metallic, functionally gradient type acetabular cups using powder metallurgy techniques - where a porous surface was supported by a denser core - into which the compliant layers could be incorporated. The corrosion behaviour and mechanical properties of three biomedically approved alloys containing two levels of total porosity (>30% and <10%) were established, resulting in Ti-6Al-4V being identified as the most promising biocompatible functionally graded material, not only for this application but for other hard-tissue implants.
Richards, K S; Arme, C
1983-02-01
Prior to scolex-retraction, the tegumentary syncytial cytoplasm of the presumptive rostellar region of Hymenolepis diminuta (from Tenebrio molitor kept at 26 degrees C) is indistinguishable from that of the rest of the cysticercoid. At 1 day after scolex-retraction differentiation of the rostellum has commenced, the tegumentary cytoplasm containing a small number of membrane-bound, ovoid, electron-dense granules which are absent from all other tegumentary regions of the metacestode. By 3 days after scolex-withdrawal there is a substantial increase in the number of ovoid granules within the rostellar tegumentary syncytium and the Golgi systems of the rostellar cytons are highly secretory. At this stage, although the cyst wall tissues are not fully developed, the metacestode is infective. This early and rapid development of the rostellar region presumably enables the 'adult' condition to be readily attained. In older metacestodes there is a progressive accumulation of ovoid granules within the rostellar tegumentary cytoplasm, accompanied by a decrease within the rostellar cytons. At 23 days following scolex-retraction the rostellar syncytium has the appearance of that of the adult tapeworm. The rostellar cytons also produce tegumentary discs and vesicles and are therefore regarded as homologous to the other tegumentary cytons of the metacestode.
Peñarrubia, Luis; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi
2015-01-01
The zebra mussel (Dreissena polymorpha, Pallas, 1771) is one of the most invasive species of freshwater bivalves, due to a combination of biological and anthropogenic factors. Once this species has been introduced to a new area, individuals form dense aggregations that are very difficult to remove, leading to many adverse socioeconomic and ecological consequences. In this study, we identified, tested, and validated a new set of polymorphic microsatellite loci (also known as SSRs, Single Sequence Repeats) using a Massive Parallel Sequencing (MPS) platform. After several pruning steps, 93 SSRs could potentially be amplified. Out of these SSRs, 14 were polymorphic, producing a polymorphic yield of 15.05%. These 14 polymorphic microsatellites were fully validated in a first approximation of the genetic population structure of D. polymorpha in the Iberian Peninsula. Based on this polymorphic yield, we propose a criterion for establishing the number of SSRs that require validation in similar species, depending on the final use of the markers. These results could be used to optimize MPS approaches in the development of microsatellites as genetic markers, which would reduce the cost of this process. PMID:25780924
Parameters in selective laser melting for processing metallic powders
NASA Astrophysics Data System (ADS)
Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek
2012-03-01
The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.
Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel
NASA Astrophysics Data System (ADS)
Sun, Y.; Moroz, A.; Alrbaey, K.
2014-02-01
Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.
Measurements of [C I] 9850 A Emission from Comet Hale-Bopp
NASA Technical Reports Server (NTRS)
Oliversen, R. J.; Doane, N.; Scherb, F.; Harris, W. M.; Morgenthaler, J. P.
2002-01-01
We present quantitative measurements of cometary [C I] 9850 A, emission obtained during observations of comet Hale-Bopp (C/1995 O1) in 1997 March and April. The observations were carried out using a high-resolution (lambda/Delta lambda approx. 40,000) Fabry-Perot/CCD spectrometer at the McMath-Pierce solar telescope on Kitt Peak. This forbidden line, the carbon analog of [O I] 6300 A, is emitted in the radiative decay of C(1D) atoms. In the absence of other sources and sinks, [C I] 9850 A emission may be used as a direct tracer of CO photodissociation in comets. However, in Hale-Bopp's large, dense coma, other processes, such as collisional excitation of ground-state C(3P), dissociative recombination of CO+, and collisional dissociation of CO and CO2 may produce significant amounts of C(1D). The long C(1D) radiative lifetime (approx. 4000 s) makes collisional de-excitation (quenching) the primary loss mechanism in the inner coma. Thus, a detailed, self-consistent global model of collisional and photochemical interactions is necessary to fully account for [C I] 9850 A emission in comet Hale-Bopp.
ERIC Educational Resources Information Center
Stevenson, Paul
1980-01-01
Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)
Colloidal spray method for low cost thin coating deposition
Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.
2005-01-25
A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.
Colloidal spray method for low cost thin coating deposition
Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.
2002-01-01
A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.
Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei
2010-12-01
Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.
Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong
2017-07-31
Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
Medeiros, Lia Carolina Soares; Gomes, Fabio; Maciel, Luis Renato Maia; Seabra, Sergio Henrique; Docampo, Roberto; Moreno, Silvia; Plattner, Helmut; Hentschel, Joachim; Kawazoe, Urara; Barrabin, Hector; de Souza, Wanderley; DaMatta, Renato Augusto; Miranda, Kildare
2012-01-01
The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites. PMID:21699625
Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets
NASA Astrophysics Data System (ADS)
Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.
2018-03-01
Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.
Structural Integrity of an Electron Beam Melted Titanium Alloy
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-01-01
Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response. PMID:28773590
NASA Astrophysics Data System (ADS)
Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.
2018-04-01
Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.
Kelvin-Helmholtz evolution in subsonic cold streams feeding galaxies
NASA Astrophysics Data System (ADS)
Angulo, Adrianna; Coffing, S.; Kuranz, C.; Drake, R. P.; Klein, S.; Trantham, M.; Malamud, G.
2017-10-01
The most prolific star formers in cosmological history lie in a regime where dense filament structures carried substantial mass into the galaxy to sustain star formation without producing a shock. However, hydrodynamic instabilities present on the filament surface limit the ability of such structures to deliver dense matter deeply enough to sustain star formation. Simulations lack the finite resolution necessary to allow fair treatment of the instabilities present at the stream boundary. Using the Omega EP laser, we simulate this mode of galaxy formation with a cold, dense, filament structure within a hotter, subsonic flow and observe the interface evolution. Machined surface perturbations stimulate the development of the Kelvin-Helmholtz (KH) instability due to the resultant shear between the two media. A spherical crystal imaging system produces high-resolution radiographs of the KH structures along the filament surface. The results from the first experiments of this kind, using a rod with single-mode, long-wavelength modulations, will be discussed. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
..., but begin to produce new shoot growth around February. While growth accelerates in May, plants produce... bicolored, with green, sparsely pubescent (covered with short, fine hairs) upper surfaces and veiny, white, and hairy under surfaces that are densely matted with branching hairs (Munz and Johnston 1924). Plants...
Producing high-quality negatives from ERTS black-and-white transparancies
Richard J. Myhre
1973-01-01
A method has been devised for producing high-quality black-and-white negatives quickly and efficiently from dense transparencies orgininating from Earth Resources Technology Satellite imagery. Transparencies are evaluated on a standard light source to determine exposure and processing information needed for making negatives. A âSystem ASA Ratingâ was developed by...
Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu
2011-01-04
Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.
SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.
2015-02-01
Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as amore » solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.« less
DOT National Transportation Integrated Search
1984-01-01
Recently, much criticism has been directed toward the use of vibratory rollers to compact bituminous concrete. The results of the study reported here indicate that when these rollers are operated properly they can produce dense, strong, smooth riding...
NASA Astrophysics Data System (ADS)
Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander
2016-04-01
Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.
CSM interaction and dust formation in SN 2010jl .
NASA Astrophysics Data System (ADS)
Krafton, K.; Clayton, G. C.
The origin of dust in galaxies >1 Gyr old has remained an unsolved mystery for over a decade. One proposed solution is dust produced by core collapse supernovae (CCSNe). Theorists have shown that 0.1-1 M⊙ of dust must be produced per supernova for this to work as an explanation for the dust in young galaxies. SN 1987A has produced ˜1 M⊙ of dust since its detonation. However, most supernovae have been found to only produce 10-4 - 10-2 M⊙ of dust. The energetic type IIn SN 2010jl is located in UGC 5189, in a dense shell of CSM. As dust condenses in the SN ejecta, we see, (1) a sudden decrease in continuum brightness in the visible due to increased dust extinction, (2) the development of an infrared excess in the SN light curve arising from dust grains absorbing high-energy photons and re-emitting them in the infrared, and (3) the development of asymmetric, blue-shifted emission-line profiles, caused by dust forming in the ejecta, and preferentially extinguishing redshifted emission. A dense circumstellar material (CSM) may increase the dust production by supernovae. We observe signs of strong interaction between the SN ejecta and a dense CSM in SN 2010jl. SN 2010jl has been a source of much debate in the CCSN community, particularly over when and how much dust it formed. The light curve shows strong signs of dust formation after 260 days. Arguments over these subjects have been based on the evolution of the light curve and spectra. We present new optical and IR photometry, as well as optical spectroscopy, of SN 2010jl over 2000 days. We estimate dust masses using the DAMOCLES and MOCASSIN radiative transfer codes.
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.
An experiment utilizing cowpeas Vigna unguiculata pinto beans Phaseolus vulgaris L and Apogee ultra-dwarf wheat was conducted in the soil-based closed ecological facility Laboratory Biosphere from February to May 2005 The lighting regime was 13 hours light 11 hours dark at a light intensity of 960 mu mol m -2 s -1 45 moles m -2 day -1 supplied by high-pressure sodium lamps The pinto beans and cowpeas were grown at two different plant densities The pinto bean produced 710 g m -2 total aboveground biomass and 341 g m -2 at 33 5 plants per m 2 and at 37 5 plants per m 2 produced 1092 g m -2 total biomass and 537 g m -2 of dry seed an increase of almost 50 Cowpeas at 28 plants m -2 yielded 1060 g m -2 of total biomass and 387 g seed m -2 outproducing the less dense planting by more than double 209 in biomass and 86 more seed as the planting of 21 plants m -2 produced 508 g m-2 of total biomass and 209 g m-2 of seed Edible yield rate EYR for the denser cowpea bean was 4 6 g m -2 day -1 vs 2 5 g m -2 day -1 for the less dense stand average yield was 3 5 g m -2 day -1 EYR for the denser pinto bean was 8 5 g m -2 day -1 vs 5 3 g m -2 day -1 average EYR for the pinto beans was 7 0 g m -2 day -1 Yield efficiency rate YER the ratio of edible to non-edible biomass was 0 97 for the dense pinto bean 0 92 for the less dense pinto bean and average 0 94 for the entire crop The cowpeas
Electromagnetic scattering calculations on the Intel Touchstone Delta
NASA Technical Reports Server (NTRS)
Cwik, Tom; Patterson, Jean; Scott, David
1992-01-01
During the first year's operation of the Intel Touchstone Delta system, software which solves the electric field integral equations for fields scattered from arbitrarily shaped objects has been transferred to the Delta. To fully realize the Delta's resources, an out-of-core dense matrix solution algorithm that utilizes some or all of the 90 Gbyte of concurrent file system (CFS) has been used. The largest calculation completed to date computes the fields scattered from a perfectly conducting sphere modeled by 48,672 unknown functions, resulting in a complex valued dense matrix needing 37.9 Gbyte of storage. The out-of-core LU matrix factorization algorithm was executed in 8.25 h at a rate of 10.35 Gflops. Total time to complete the calculation was 19.7 h-the additional time was used to compute the 48,672 x 48,672 matrix entries, solve the system for a given excitation, and compute observable quantities. The calculation was performed in 64-b precision.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Kinetic simulations of gas breakdown in the dense plasma focus
Bennett, N.; Blasco, M.; Breeding, K.; ...
2017-06-09
We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan
We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several testmore » cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).« less
Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G
2015-04-17
Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.
An application of cascaded 3D fully convolutional networks for medical image segmentation.
Roth, Holger R; Oda, Hirohisa; Zhou, Xiangrong; Shimizu, Natsuki; Yang, Ying; Hayashi, Yuichiro; Oda, Masahiro; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku
2018-06-01
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ∼10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. 1 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Pedestrian detection in video surveillance using fully convolutional YOLO neural network
NASA Astrophysics Data System (ADS)
Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.
2017-06-01
More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.
SU-C-207B-04: Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, E; Waard, SN de; Veldhuis, WB
Purpose: To develop and evaluate a fully automated method for segmentation of the pectoral muscle boundary in Magnetic Resonance Imaging (MRI) of dense breasts. Methods: Segmentation of the pectoral muscle is an important part of automatic breast image analysis methods. Current methods for segmenting the pectoral muscle in breast MRI have difficulties delineating the muscle border correctly in breasts with a large proportion of fibroglandular tissue (i.e., dense breasts). Hence, an automated method based on dynamic programming was developed, incorporating heuristics aimed at shape, location and gradient features.To assess the method, the pectoral muscle was segmented in 91 randomly selectedmore » participants (mean age 56.6 years, range 49.5–75.2 years) from a large MRI screening trial in women with dense breasts (ACR BI-RADS category 4). Each MR dataset consisted of 178 or 179 T1-weighted images with voxel size 0.64 × 0.64 × 1.00 mm3. All images (n=16,287) were reviewed and scored by a radiologist. In contrast to volume overlap coefficients, such as DICE, the radiologist detected deviations in the segmented muscle border and determined whether the result would impact the ability to accurately determine the volume of fibroglandular tissue and detection of breast lesions. Results: According to the radiologist’s scores, 95.5% of the slices did not mask breast tissue in such way that it could affect detection of breast lesions or volume measurements. In 13.1% of the slices a deviation in the segmented muscle border was present which would not impact breast lesion detection. In 70 datasets (78%) at least 95% of the slices were segmented in such a way it would not affect detection of breast lesions, and in 60 (66%) datasets this was 100%. Conclusion: Dynamic programming with dedicated heuristics shows promising potential to segment the pectoral muscle in women with dense breasts.« less
Trinh, Thang; Eriksson, Mikael; Darabi, Hatef; Bonn, Stephanie E; Brand, Judith S; Cuzick, Jack; Czene, Kamila; Sjölander, Arvid; Bälter, Katarina; Hall, Per
2015-04-02
High physical activity has been shown to decrease the risk of breast cancer, potentially by a mechanism that also reduces mammographic density. We tested the hypothesis that the risk of developing breast cancer in the next 10 years according to the Tyrer-Cuzick prediction model influences the association between physical activity and mammographic density. We conducted a population-based cross-sectional study of 38,913 Swedish women aged 40-74 years. Physical activity was assessed using the validated web-questionnaire Active-Q and mammographic density was measured by the fully automated volumetric Volpara method. The 10-year risk of breast cancer was estimated using the Tyrer-Cuzick (TC) prediction model. Linear regression analyses were performed to assess the association between physical activity and volumetric mammographic density and the potential interaction with the TC breast cancer risk. Overall, high physical activity was associated with lower absolute dense volume. As compared to women with the lowest total activity level (<40 metabolic equivalent hours [MET-h] per day), women with the highest total activity level (≥50 MET-h/day) had an estimated 3.4 cm(3) (95% confidence interval, 2.3-4.7) lower absolute dense volume. The inverse association was seen for any type of physical activity among women with <3.0% TC 10-year risk, but only for total and vigorous activities among women with 3.0-4.9% TC risk, and only for vigorous activity among women with ≥5.0% TC risk. The association between total activity and absolute dense volume was modified by the TC breast cancer risk (P interaction = 0.05). As anticipated, high physical activity was also associated with lower non-dense volume. No consistent association was found between physical activity and percent dense volume. Our results suggest that physical activity may decrease breast cancer risk through reducing mammographic density, and that the physical activity needed to reduce mammographic density may depend on background risk of breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, V. A., E-mail: victordemin88@gmail.com; Blank, V. D.; Karaeva, A. R.
A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.
NASA Astrophysics Data System (ADS)
Khan, Burhan; Shah, Muhammad Raza; Rabnawaz, Muhammad
2018-03-01
Macrocycles with ultra dense functionalities are very useful but are difficult to synthesize. In this study, we report six novel macrocycles bearing a pincer ligand alone or a combination of pincer-calixarenes, and pincer-fluorene moieties. Click chemistry was utilized to synthesize the desired macrocycles in good yields. These macrocycles were fully characterized using mass spectrometry (EI-MS, ESI-MS, and MALDI-TOF MS), and NMR spectroscopy. These macrocycles are under investigations as size-selective and recyclable catalysts for various chemical transformations.
NASA Astrophysics Data System (ADS)
Savage, B.; Murdin, P.
2000-11-01
The enormous volume of space between the stars in the Milky Way Galaxy is filled with interstellar matter (ISM). The ISM plays a central role in the processes of STAR FORMATION and GALAXY EVOLUTION. Stars form from the ISM in dense molecular clouds. The radiant and mechanical energy produced by stars heats, ionizes, and produces structures in the ISM. Gradual or catastrophic mass loss from stars ...
Ao, T.; Harding, E. C.; Bailey, J. E.; ...
2016-01-13
Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH 2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm 3, andmore » temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less
Laser-Produced Colliding Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew
2005-10-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them shocks which transport energy. We study the collision of two dense, laser-produced plasmas expanding perpendicular to the background magnetic field, each with an Alfv'en Mach number of approximately 0.5. The plasmas are launched off of two carbon targets, 9cm apart, by a short pulse of laser energy (Nd:YAG, 1J 8ns). Experiments are currently in progress in a small test chamber at UCLA (background plasma n 3x10^12, 3 meters long, B0<700G) and will shortly be migrated to the LaPD (LArge Plasma Device; n 3x10^12, 18 meters long, 70cm diameter, 400G
NASA Astrophysics Data System (ADS)
de Cassagnac, Raphael Granier
I present here a concise review of the experimental results obtained at the Relativistic Heavy Ion Collider (RHIC), which shed light on the hot and dense quark gluon matter produced at these high temperature and density conditions.
PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassgold, A. E.; Najita, J. R.
2015-09-10
Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less
Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory
Sjostrom, Travis; Daligault, Jérôme
2015-12-09
We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less
Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, X.; Chen, Q.; Yang, Y.
1996-12-31
Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Sadowski, M. J.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Munzar, V.; Rezac, K.; Zielinska, E.; Skladnik-Sadowska, E.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2018-01-01
This paper considers regions of a fast deuteron production in a correlation with an evolution of ordered structures inside a pinch column of a mega-ampere plasma focus discharge. Ion pinhole cameras equipped with plastic PM-355 track-detectors recorded fast deuterons escaping in the downstream and other directions (up to 60° to the z-axis). Time-integrated ion images made it possible to estimate sources of the deuteron acceleration at the known magnetic field and deuteron energy values. The images of the fast deuterons emitted in the solid angle ranging from 0° to 4° showed two forms: central spots and circular images. The spots of 1-2 cm in diameter were produced by deuterons from the central pinch regions. The circular-shaped images of a radius above 3 cm (or their parts) were formed by deuterons from the region surrounding the dense pinch column. The ion pinhole cameras placed at angles above 20° to the z-axis recorded the ion spots only, and the ring-images were missing. The central region of the deuteron acceleration could be associated mainly with plasmoids, and the circular images could be connected with ring-shaped regions of the radius corresponding to tops of the plasma lobules outside the dense pinch column. The deuteron tracks forming ring-shaped images of a smaller (0.5-1) cm radius could be produced by deflections of the fast deuterons, which were caused by a magnetic field inside the dense pinch column.
Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okawa, David
Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less
Anschutz, Doeschka J; Engels, Rutger C M E; Van Strien, Tatjana
2010-08-01
The present study experimentally tested the effects of adult targeted food commercials (energy-dense and light food products) on actual snack food intake in young children while watching television. Furthermore, the moderating role of maternal behaviors was investigated. The children (N=121, aged between 8 and 12 years) were exposed to a neutral movie that was interrupted by two commercial breaks. These breaks contained commercials promoting either energy-dense foods, low energy versions of the same energy-dense foods (light food commercials), or neutral commercials aimed at adults. Snack food intake during watching television was measured. Children filled out questionnaires and were weighed and measured afterwards. Children who perceived maternal encouragement to be thin ate slightly more when exposed to energy-dense food commercials and especially when exposed to light food commercials than when exposed to neutral commercials. In contrast, children who perceived no maternal encouragement to be thin ate more when exposed to neutral commercials than when exposed to either energy-dense food commercials or light food commercials. These findings suggest that exposure to adult targeted light food cues produced disinhibition in children who experienced maternal encouragement to be thin, resulting in elevated snack food intake. 2010 Elsevier Ltd. All rights reserved.
Generation of warm dense matter using an argon based capillary discharge laser
NASA Astrophysics Data System (ADS)
Rossall, A. K.; Tallents, G. J.
2015-06-01
Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.
Equol-producing status, isoflavone intake, and breast density in a sample of U.S. Chinese women.
Tseng, Marilyn; Byrne, Celia; Kurzer, Mindy S; Fang, Carolyn Y
2013-11-01
Differences in ability to metabolize daidzein to equol might help explain inconsistent findings about isoflavones and breast cancer. We examined equol-producing status in relation to breast density, a marker of breast cancer risk, and evaluated whether an association of isoflavone intake with breast density differs by equol-producing status in a sample of Chinese immigrant women. Participants were 224 women, ages 36 to 58 years, enrolled in a study on diet and breast density. All women completed dietary recall interviews, underwent a soy challenge to assess equol-producing status, and received a mammogram assessed for breast density using a computer-assisted method. In our sample, 30% were classified as equol producers. In adjusted linear regression models, equol producers had significantly lower mean dense tissue area (32.8 vs. 37.7 cm(2), P = 0.03) and lower mean percent breast density (32% vs. 35%, P = 0.03) than nonproducers. Significant inverse associations of isoflavone intake with dense area and percent density were apparent, but only in equol producers (interaction P = 0.05 for both). These results support the possibility that equol-producing status affects breast density and that effects of isoflavones on breast density depend on ability to metabolize daidzein to equol. Although these findings warrant confirmation in a larger sample, they offer a possible explanation for the inconsistent findings about soy intake and breast density and possibly breast cancer risk as well. The findings further suggest the importance of identifying factors that influence equol-producing status and exploring appropriate targeting of interventions. ©2013 AACR.
An extended GS method for dense linear systems
NASA Astrophysics Data System (ADS)
Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi
2009-09-01
Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less
Does Compact Development Increase or Reduce Traffic Congestion?
DOT National Transportation Integrated Search
2017-10-01
From years of research, we know that compact development that is dense, diverse, well-designed, etc. produces fewer vehicle miles traveled (VMT) than sprawling development. But compact development also concentrates origins and destinations. No one ha...
Building a Successful Technology Cluster
Silicon Valley is the iconic cluster—a dense regional network of companies, universities, research institutions, and other stakeholders involved in a single industry. Many regions have sought to replicate the success of Silicon Valley, which has produced technological innov...
Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase
NASA Technical Reports Server (NTRS)
Sikora, P. F.; Yeh, H. C.
1976-01-01
The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vechernin, Vladimir
2016-01-22
The transverse momentum dependence of the yields of particles produced from the clusters of dense cold nuclear matter in nuclei is calculated in the approach based on perturbative QCD calculations of the corresponding quark diagrams near the thresholds. It is shown that the transverse momentum dependence of the pion and proton spectra at different values of the Feynman variable x in the cumulative region, x > 1, can be described by the only parameter - the constituent quark mass, taken to be equal 300 MeV. It is found that the cumulative protons are formed predominantly via a coherent coalescence of threemore » fast cluster quarks, whereas the production of cumulative pions is dominated by one fast cluster quark hadronization. This enabled to explain the experimentally observed more slow increase of the mean transverse momentum of cumulative protons with the increase of the cumulative variable x, compared to pions.« less
Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.
Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu
2011-01-01
Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.
Asymptotic density and effective negligibility
NASA Astrophysics Data System (ADS)
Astor, Eric P.
In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both randomness and classical computability theory. For instance, we prove that the stochasticities corresponding to permutation randomness and injection randomness coincide, and identify said stochasticity as intrinsic density 1/2. We then define sets of intrinsic density 0 to be effectively negligible, and classify this as a new immunity property, determining its position in the standard hierarchy from immune to cohesive for both general and Delta02 sets. We further characterize the Turing degrees of effectively negligible sets as those which are either high (a' ≥T 0") or compute a DNC (diagonally non-computable) function. In fact, this result holds over RCA0, demonstrating the reverse-mathematical equivalence of the principles ID0 and DOM \\sext DNR. . Replacing Jockusch and Schupp's negligibility (density 0) by effective negligibility (intrinsic density 0), we then obtain new notions of intrinsically dense computation. Finally, we generalize Rice's Theorem to all forms of intrinsic dense computation, showing that no set that is 1-equivalent to a non-trivial index set is intrinsically densely computable; in particular, in contrast to ordinary dense computation, we see that the halting problem cannot be intrinsically densely computable.
Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate.
Tavares, Débora dos Santos; Castro, Leticia de Oliveira; Soares, Gloria Dulce de Almeida; Alves, Gutemberg Gomes; Granjeiro, José Mauro
2013-01-01
The aim of this study was to produce dense granules of tricalcium phosphate (β-TCP) and magnesium (Mg) substituted β-TCP, also known as β-TCMP (Mg/Ca=0.15 mol), in order to evaluate the impact of Mg incorporation on the physicochemical parameters and in vitro biocompatibility of this novel material. The materials were characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), electron microscopy and inductively coupled plasma (ICP). Biocompatibility was assayed according to ISO 10993-12:2007 and 7405:2008, by two different tests of cell survival and integrity (XTT and CVDE). The XRD profile presented the main peaks of β-TCP (JCPDS 090169) and β-TCMP (JCPDS 130404). The characteristic absorption bands of TCP were also identified by FTIR. The ICP results of β-TCMP granules extract showed a precipitation of calcium and release of Mg into the culture medium. Regarding the cytotoxicity assays, β-TCMP dense granules did not significantly affect the mitochondrial activity and relative cell density in relation to β-TCP dense granules, despite the release of Mg from granules into the cell culture medium. β-TCMP granules were successfully produced and were able to release Mg into media without cytotoxicity, indicating the suitability of this promising material for further biological studies on its adequacy for bone therapy.
Reeves, Katherine W.; Stone, Roslyn A.; Modugno, Francesmary; Ness, Roberta B.; Vogel, Victor G.; Weissfeld, Joel L.; Habel, Laurel A.; Sternfeld, Barbara; Cauley, Jane A.
2009-01-01
High percent mammographic breast density is strongly associated with increased breast cancer risk. Though body mass index (BMI) is positively associated with risk of postmenopausal breast cancer, BMI is negatively associated with percent breast density in cross-sectional studies. Few longitudinal studies have evaluated associations between BMI and weight and mammographic breast density. We studied the longitudinal relationships between anthropometry and breast density in a prospective cohort of 834 pre- and perimenopausal women enrolled in an ancillary study to the Study of Women's Health Across the Nation (SWAN). Routine screening mammograms were collected and read for breast density. Random intercept regression models were used to evaluate whether annual BMI change was associated with changes over time in dense breast area and percent density. The study population was 7.4% African American, 48.8% Caucasian, 21.8% Chinese, and 21.9% Japanese. Mean follow-up was 4.8 years. Mean annual weight change was +0.32 kg/year, mean change in dense area was -0.77 cm2/year, and mean change in percent density was -1.14%/year. In fully adjusted models, annual change in BMI was not significantly associated with changes in dense breast area (-0.17 cm2, 95% CI -0.64, 0.29). Borderline significant negative associations were observed between annual BMI change and annual percent density change, with percent density decreasing 0.36% (95% CI -0.74, 0.02) for a one unit increase in BMI over a year. This longitudinal study provides modest evidence that changes in BMI are not associated with changes in dense area, yet may be negatively associated with percent density. PMID:19065651
NASA Astrophysics Data System (ADS)
Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V.
2018-04-01
The investigation of changes in spatial patterns of vegetation and identification of potential micro-refugia requires detailed topographic and terrain information. However, mapping alpine topography at very detailed scales is challenging due to limited accessibility of sites. Close-range sensing by photogrammetric dense matching approaches based on terrestrial images captured with hand-held cameras offers a light-weight and low-cost solution to retrieve high-resolution measurements even in steep terrain and at locations, which are difficult to access. We propose a novel approach for rapid capturing of terrestrial images and a highly automated processing chain for retrieving detailed dense point clouds for topographic modelling. For this study, we modelled 249 plot locations. For the analysis of vegetation distribution and location properties, topographic parameters, such as slope, aspect, and potential solar irradiation were derived by applying a multi-scale approach utilizing voxel grids and spherical neighbourhoods. The result is a micro-topography archive of 249 alpine locations that includes topographic parameters at multiple scales ready for biogeomorphological analysis. Compared with regional elevation models at larger scales and traditional 2D gridding approaches to create elevation models, we employ analyses in a fully 3D environment that yield much more detailed insights into interrelations between topographic parameters, such as potential solar irradiation, surface area, aspect and roughness.
H2 Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?
NASA Astrophysics Data System (ADS)
Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Caselli, P.
2017-11-01
Deuterium fractionation, I.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H2 ratio. In this Letter we explore the effect of the ortho-para (o-p) H2 conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (I) the o-p H2 conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (II) that the process is controlled by the temperature and the residence time of ortho-H2 on the surface, I.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o-p H2 conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D frac in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.
NASA Astrophysics Data System (ADS)
Kong, Shuo; Tan, Jonathan C.; Arce, Héctor G.; Caselli, Paola; Fontani, Francesco; Butler, Michael J.
2018-03-01
Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ⊙) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the “dense gas” detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define “dense gas.” We then estimate the dense gas mass fraction, f dg, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ɛ ff ∼ 10%, with approximately a factor of two systematic uncertainties.
Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Sanjay
2013-09-06
It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as keymore » input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.« less
Combustion synthesis method and products
Holt, J.B.; Kelly, M.
1993-03-30
Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.
Combustion synthesis method and products
Holt, J. Birch; Kelly, Michael
1993-01-01
Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.
Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illner, Doris; Zinner, Roman; Handtke, Violet
2010-06-10
Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicatemore » that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.« less
Kageyama, Tatsuto; Kakegawa, Takahiro; Osaki, Tatsuya; Enomoto, Junko; Ito, Taichi; Nittami, Tadashi; Fukuda, Junji
2014-06-01
Fabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures. The in situ crosslinkable hydrogel was composed of hydrazide-modified gelatin (gelatin-ADH) and aldehyde-modified hyaluronic acid (HA-CHO). By simply mixing these two solutions, the gelation occurred in less than 20 s through the formation of a stable hydrazone bond. To rapidly transfer cells from a culture surface to the hydrogel, we utilized a zwitterionic oligopeptide, which forms a self-assembled molecular layer on a gold surface. Human umbilical vein endothelial cells adhering on a gold surface via the oligopeptide layer were transferred to the hydrogel within 5 min, along with electrochemical desorption of the oligopeptides. This approach was applicable to cylindrical needles 200-700 µm in diameter, resulting in the formation of perfusable microchannels where the internal surface was fully enveloped with the transferred endothelial cells. The entire fabrication process was completed within 10 min, including 20 s for the hydrogel crosslinking and 5 min for the electrochemical cell transfer. This rapid fabrication approach may provide a promising strategy to construct perfusable vasculatures in cell-dense tissue constructs and subsequently allow cells to organize complicated and fully vascularized tissues while preventing hypoxic cell injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.
2011-04-01
The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expectedmore » to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).« less
NASA Astrophysics Data System (ADS)
Guarino, Paolo Maria; Santo, Antonio
2013-04-01
In the last years, many studies about sinkholes have been produced. These sudden phenomena can be generated from natural or artificial causes: the first ones are developed in soluble rocks like carbonate or sulphates, the second are linked to the presence of artificial caves or mines. In Italy both the typologies are widely present, but more often the anthropogenic sinkholes are cause of most damages and fatalities, because many ancient city center were built using the local rock, giving rise to complex and widespread networks of underground cavities, whose collapse brings about the formation of sinkholes. Examples are the Lazio, Toscana, Umbria, Campania, Puglia and Sicily regions, where important towns like Rome, Naples and Palermo are frequently affected by sinkholes. Identifying and analyzing natural and anthropogenic predisposing and triggering factors are essential steps for evaluating susceptibility to sinkholes; nevertheless, the susceptibility zoning must be considered the starting point towards further detailed studies. This study aims to provide a contribution to the definition of a more accurate planning of geological studies at the municipality scale, in order to mitigate the risk in densely urbanized areas affected by anthropogenic sinkholes. The considered study area includes the metropolitan area northeast of Naples (Italy), where sinkholes are very frequent because of the widespread presence of artificial caves dug in pyroclastic rocks. In a first phase, data and information relative to stratigraphic logs, presence and distribution of cavities and sinkholes phenomena were collected and organized in a GIS associated database. Thereafter, the processing of contour maps of tuff top surface and caves depth has been realized, as well as fully detailed cross sections, in order to recognize different characteristics and genesis of sinkholes. At the end, with reference to high susceptibility areas, a list of possible geological surveys and monitoring systems as well early warning activities were reported in order to mitigate the risk.
GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma
Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.
2016-01-01
This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327
GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma
NASA Astrophysics Data System (ADS)
Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.
2016-10-01
This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.
Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.
Han, Zhao Jun; Ostrikov, Kostya
2012-04-04
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
Immunogenicity is preferentially induced in sparse dendritic cell cultures.
Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence
2017-03-09
We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation.
Flash photoionization of gamma-ray burst environments
NASA Technical Reports Server (NTRS)
Band, David L.; Hartmann, Dieter H.
1992-01-01
The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.
Brygoo, Stephanie; Millot, Marius; Loubeyre, Paul; ...
2015-11-16
Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high ~10 3–10 4 K temperatures. We describe in this paper a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity, and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Finally, using our improved analysis framework, we report a re-analysis of previouslymore » published data on warm dense hydrogen and helium, compare the newly inferred pressure, density, and temperature data with most advanced equation of state models and provide updated reflectivity values.« less
Production of dense plasmas in a hypocycloidal pinch apparatus
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1977-01-01
A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Laboratory evaluation of Trinidad Lake Asphalt : final report.
DOT National Transportation Integrated Search
1985-05-01
The Department has examined several asphalt cement additives over the last 6 - 8 years in an attempt to produce an increased strength dense graded asphaltic concrete or an acceptable mix using marginal sand aggregates. Trinidad Lake Asphalt, an natur...
NASA Astrophysics Data System (ADS)
Cominelli, Alessandro; Acconcia, Giulia; Ghioni, Massimo; Rech, Ivan
2018-03-01
Time-correlated single-photon counting (TCSPC) is a powerful optical technique, which permits recording fast luminous signals with picosecond precision. Unfortunately, given its repetitive nature, TCSPC is recognized as a relatively slow technique, especially when a large time-resolved image has to be recorded. In recent years, there has been a fast trend toward the development of TCPSC imagers. Unfortunately, present systems still suffer from a trade-off between number of channels and performance. Even worse, the overall measurement speed is still limited well below the saturation of the transfer bandwidth toward the external processor. We present a routing algorithm that enables a smart connection between a 32×32 detector array and five shared high-performance converters able to provide an overall conversion rate up to 10 Gbit/s. The proposed solution exploits a fully digital logic circuit distributed in a tree structure to limit the number and length of interconnections, which is a major issue in densely integrated circuits. The behavior of the logic has been validated by means of a field-programmable gate array, while a fully integrated prototype has been designed in 180-nm technology and analyzed by means of postlayout simulations.
Building Extraction from Remote Sensing Data Using Fully Convolutional Networks
NASA Astrophysics Data System (ADS)
Bittner, K.; Cui, S.; Reinartz, P.
2017-05-01
Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.
Obari, Abdulkader; Sano, Toshiaki; Ohyama, Kenichi; Kudo, Eiji; Qian, Zhi Rong; Yoneda, Akiko; Rayhan, Nasim; Mustafizur Rahman, Muhammad; Yamada, Shozo
2008-01-01
Pituitary adenomas producing almost exclusively growth hormones (GH) have been ultrastructurally classified into two distinct types: densely granulated somatotroph (DG) adenomas and sparsely granulated (SG) adenomas. Fibrous body (FB), an intracytoplasmic globular aggregation of cytokeratin (CK) filaments, is a hallmark of SG adenomas. Under light microscope, FB could be identified by CK immunohistochemistry as a dot-pattern immunoreaction versus a perinuclear pattern for cells without FB. However, it has been noted that numerous adenomas contain mixed populations of the two patterns. To clarify clinicopathological characteristics of the adenomas with mixed populations ("intermediate type" adenomas) and to confirm clinicopathological differences between strictly defined DG-type and SG-type adenomas, we performed this study on 104 GH cell adenomas. Having segregated "intermediate-type" adenomas (26 cases), we found significant differences between typical DG-type (47 cases) and SG-type adenomas (31 cases); SG-type adenomas had younger ages (44 vs. 50), higher frequency of macroadenomas (86% vs. 58%), invasiveness (65% vs. 38%), advanced grades (3 or 4) in Knosp's classification (50% vs. 24%), and weaker immunoreaction for GH, beta-TSH, alpha-subunit, E-cadherin, and beta-catenin. Clinicopathological characteristics of "intermediate-type" adenomas were identical to those of DG-type adenomas. These findings confirm that SG-type adenoma is a distinct section of GH cell adenomas with special properties and biological behavior, and suggest that intermediate-phenotype adenomas are enrolled in DG-type adenomas. Special properties and biological behavior of SG-type adenomas may appear after the majority of tumor cells possess a fully developed fibrous body.
IDEAS and App Development Internship in Hardware and Software Design
NASA Technical Reports Server (NTRS)
Alrayes, Rabab D.
2016-01-01
In this report, I will discuss the tasks and projects I have completed while working as an electrical engineering intern during the spring semester of 2016 at NASA Kennedy Space Center. In the field of software development, I completed tasks for the G-O Caching Mobile App and the Asbestos Management Information System (AMIS) Web App. The G-O Caching Mobile App was written in HTML, CSS, and JavaScript on the Cordova framework, while the AMIS Web App is written in HTML, CSS, JavaScript, and C# on the AngularJS framework. My goals and objectives on these two projects were to produce an app with an eye-catching and intuitive User Interface (UI), which will attract more employees to participate; to produce a fully-tested, fully functional app which supports workforce engagement and exploration; to produce a fully-tested, fully functional web app that assists technicians working in asbestos management. I also worked in hardware development on the Integrated Display and Environmental Awareness System (IDEAS) wearable technology project. My tasks on this project were focused in PCB design and camera integration. My goals and objectives for this project were to successfully integrate fully functioning custom hardware extenders on the wearable technology headset to minimize the size of hardware on the smart glasses headset for maximum user comfort; to successfully integrate fully functioning camera onto the headset. By the end of this semester, I was able to successfully develop four extender boards to minimize hardware on the headset, and assisted in integrating a fully-functioning camera into the system.
Ding, Fan; Zhang, Qianru; Ung, Carolina Oi Lam; Wang, Yitao; Han, Yifan; Hu, Yuanjia; Qi, Jin
2015-01-01
As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD), this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development. PMID:25658855
Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers
2015-01-01
Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706
Numerical simulation of solar coronal magnetic fields
NASA Technical Reports Server (NTRS)
Dahlburg, Russell B.; Antiochos, Spiro K.; Zang, T. A.
1990-01-01
Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity.
Al2O3/ZrO2/Y3Al5O12 Composites: A High-Temperature Mechanical Characterization
Palmero, Paola; Pulci, Giovanni; Marra, Francesco; Valente, Teodoro; Montanaro, Laura
2015-01-01
An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C. PMID:28787961
Sawada, Takashi
2015-12-01
Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.
NASA Astrophysics Data System (ADS)
Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.
2016-03-01
Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.
Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration
NASA Technical Reports Server (NTRS)
Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve
2003-01-01
This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.
Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J
2011-09-01
Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, R.; Soler, R.; Terradas, J.
Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presentedmore » here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.« less
Ion-Neutral Coupling in Solar Prominences
NASA Technical Reports Server (NTRS)
Gilbert, Holly
2011-01-01
Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material.
Nasi, Aikaterini; Rethi, Bence
2013-01-01
We observed a cell concentration-dependent differentiation switch among cultured dendritic cells (DCs) triggered by lactic acid, a product of glycolytic metabolism. In particular, while interleukin (IL)-12, IL-23, and tumor necrosis factor α (TNFα)-producing, migratory DCs developed in sparse cultures, IL-10-producing, non-migratory DCs differentiated in dense cultures. This points to a novel opportunity for tailoring DC-based anticancer therapies through metabolism modulation in developing DCs. PMID:24575378
Design of a high-binder--high-modulus asphalt mixture.
DOT National Transportation Integrated Search
2006-01-01
Recent studies on long-life flexible pavements indicate that it may be advantageous to design and construct asphalt mixtures comprising the underlying layers in such a manner that very dense mixtures are produced. This will improve not only the fatig...
NASA Astrophysics Data System (ADS)
Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John
2004-08-01
A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.
Fabrication Studies of Ternary Rare Earth Sulfides for Infrared Applications.
1981-05-01
sulfides. 1 The initial thrust of this investigation has been two-fold. The first objective was to satisfy a need for small , fully dense samples of...0I 60 55.50 45 40 15 30 25 20 28, CuKa Figure 3. X-ray diffraction pattern of CaLa 2S 4fired for 100 hours at 10600C. Small amounts of CaS (and...been increased 9 PBN-81-511 100 urn Figure 4. SEM micrograph of a mixture of La O and CaCO 3 before firing. The small cubes are CaCO The Ia2ോ
Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4
NASA Astrophysics Data System (ADS)
Kivotides, Demosthenes
2018-06-01
It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.
Beryllium R&D for blanket application
NASA Astrophysics Data System (ADS)
Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.
1998-10-01
The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.
Shear Induced Structural Relaxation in a Supercooled Colloidal Liquid
NASA Astrophysics Data System (ADS)
Chen, Dandan; Semwogerere, Denis; Weeks, Eric R.
2009-11-01
Amorphous materials include many common products we use everyday, such as window glass, moisturizer, shaving cream and peanut butter. These materials have liquid-like disordered structure, but keep their shapes like a solid. The rheology of dense amorphous materials under large shear strain is not fully understood, partly due to the difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to simulate amorphous materials, and study the shear- induced structural relaxation with fast confocal microscopy. We quantify the plastic rearrangements of the particles using standard analysis techniques based on the motion of the particles.
NASA Astrophysics Data System (ADS)
Lui, E. W.; Xu, W.; Pateras, A.; Qian, M.; Brandt, M.
2017-12-01
Recent progress has shown that Ti-6Al-4V fabricated by selective laser melting (SLM) can achieve a fully lamellar α + β microstructure using 60 µm layer thickness in the as-built state via in situ martensite decomposition by manipulating the processing parameters. The potential to broaden the processing window was explored in this study by increasing the layer thickness to the less commonly used 90 µm. Fully lamellar α + β microstructures were produced in the as-built state using inter-layer times in the range of 1-12 s. Microstructural features such as the α-lath thickness and morphology were sensitive to both build height and inter-layer time. The α-laths produced using the inter-layer time of 1 s were much coarser than those produced with the inter-layer time of 12 s. The fine fully lamellar α + β structure resulted in tensile ductility of 11% and yield strength of 980 MPa. The tensile properties can be further improved by minimizing the presence of process-induced defects.
Jeffers, Abra M; Sieh, Weiva; Lipson, Jafi A; Rothstein, Joseph H; McGuire, Valerie; Whittemore, Alice S; Rubin, Daniel L
2017-02-01
Purpose To compare three metrics of breast density on full-field digital mammographic (FFDM) images as predictors of future breast cancer risk. Materials and Methods This institutional review board-approved study included 125 women with invasive breast cancer and 274 age- and race-matched control subjects who underwent screening FFDM during 2004-2013 and provided informed consent. The percentage of density and dense area were assessed semiautomatically with software (Cumulus 4.0; University of Toronto, Toronto, Canada), and volumetric percentage of density and dense volume were assessed automatically with software (Volpara; Volpara Solutions, Wellington, New Zealand). Clinical Breast Imaging Reporting and Data System (BI-RADS) classifications of breast density were extracted from mammography reports. Odds ratios and 95% confidence intervals (CIs) were estimated by using conditional logistic regression stratified according to age and race and adjusted for body mass index, parity, and menopausal status, and the area under the receiver operating characteristic curve (AUC) was computed. Results The adjusted odds ratios and 95% CIs for each standard deviation increment of the percentage of density, dense area, volumetric percentage of density, and dense volume were 1.61 (95% CI: 1.19, 2.19), 1.49 (95% CI: 1.15, 1.92), 1.54 (95% CI: 1.12, 2.10), and 1.41 (95% CI: 1.11, 1.80), respectively. Odds ratios for women with extremely dense breasts compared with those with scattered areas of fibroglandular density were 2.06 (95% CI: 0.85, 4.97) and 2.05 (95% CI: 0.90, 4.64) for BI-RADS and Volpara density classifications, respectively. Clinical BI-RADS was more accurate (AUC, 0.68; 95% CI: 0.63, 0.74) than Volpara (AUC, 0.64; 95% CI: 0.58, 0.70) and continuous measures of percentage of density (AUC, 0.66; 95% CI: 0.60, 0.72), dense area (AUC, 0.66; 95% CI: 0.60, 0.72), volumetric percentage of density (AUC, 0.64; 95% CI: 0.58, 0.70), and density volume (AUC, 0.65; 95% CI: 0.59, 0.71), although the AUC differences were not statistically significant. Conclusion Mammographic density on FFDM images was positively associated with breast cancer risk by using the computer assisted methods and BI-RADS. BI-RADS classification was as accurate as computer-assisted methods for discrimination of patients from control subjects. © RSNA, 2016.
Extracting Communities from Complex Networks by the k-Dense Method
NASA Astrophysics Data System (ADS)
Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro
To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.
Filamentation in the pinched column of the dense plasma focus
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-03-01
The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...
2015-08-14
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
Haas, Fernando; Mahmood, Shahzad
2015-11-01
Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.
Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy
NASA Astrophysics Data System (ADS)
Haas, Fernando; Mahmood, Shahzad
2015-11-01
Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.
NASA Astrophysics Data System (ADS)
Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.
2017-11-01
Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.
Phosphorus detection in vitrified bacteria by cryo-STEM annular dark-field analysis.
Wolf, Sharon Grayer; Rez, Peter; Elbaum, Michael
2015-11-01
Bacterial cells often contain dense granules. Among these, polyphosphate bodies (PPBs) store inorganic phosphate for a variety of essential functions. Identification of PPBs has until now been accomplished by analytical methods that required drying or chemically fixing the cells. These methods entail large electron doses that are incompatible with low-dose imaging of cryogenic specimens. We show here that Scanning Transmission Electron Microscopy (STEM) of fully hydrated, intact, vitrified bacteria provides a simple means for mapping of phosphorus-containing dense granules based on quantitative sensitivity of the electron scattering to atomic number. A coarse resolution of the scattering angles distinguishes phosphorus from the abundant lighter atoms: carbon, nitrogen and oxygen. The theoretical basis is similar to Z contrast of materials science. EDX provides a positive identification of phosphorus, but importantly, the method need not involve a more severe electron dose than that required for imaging. The approach should prove useful in general for mapping of heavy elements in cryopreserved specimens when the element identity is known from the biological context. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
On Edge Exchangeable Random Graphs
NASA Astrophysics Data System (ADS)
Janson, Svante
2017-06-01
We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).
How much does the MSW effect contribute to the reactor antineutrino anomaly?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdiviesso, G. A.
2015-05-15
It has been pointed out that there is a 5.7 ± 2.3 discrepancy between the predicted and the observed reactor antineutrino flux in very short baseline experiments. Several causes for this anomaly have been discussed, including a possible non-standard forth sterile neutrino. In order to quantify how much non-standard this anomaly really is, the standard MSW effect is reviewed. Knowing that reactor antineutrinos are produced in a dense medium (the nuclear fuel) and is usually detected in a less dense one (water, or scintillator), non-adiabatic effects are expected to happen, creating a difference between the creation and detection mixing angles.
Development of ODOT guidelines for the use of geogrids in aggregate bases.
DOT National Transportation Integrated Search
2012-11-01
A primary objective of the current study was to help ODOT expand its selection of approved : geogrid products for base reinforcement applications by producing measured data on selected : geogrids and a dense-graded base aggregate commonly used in ODO...
Fully On-the-Job Training: Experiences and Steps Ahead: Support Document
ERIC Educational Resources Information Center
Wood, Susanne
2004-01-01
This document was produced by DBM Consultants, who provided the research on Susanne Wood's report "Fully On-the-Job Training: Experiences and Steps Ahead." It contains the appendix: Stage 3--CATI Questionnaire for Fully On-the-Job trainees/apprentices and is provided as an added resource for further information. [Full Report available at ED493985.
Automated mammographic breast density estimation using a fully convolutional network.
Lee, Juhun; Nishikawa, Robert M
2018-03-01
The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Levay, Z. G.
2004-12-01
A new, freely-available accessory for Adobe's widely-used Photoshop image editing software makes it much more convenient to produce presentable images directly from FITS data. It merges a fully-functional FITS reader with an intuitive user interface and includes fully interactive flexibility in scaling data. Techniques for producing attractive images from astronomy data using the FITS plugin will be presented, including the assembly of full-color images. These techniques have been successfully applied to producing colorful images for public outreach with data from the Hubble Space Telescope and other major observatories. Now it is much less cumbersome for students or anyone not experienced with specialized astronomical analysis software, but reasonably familiar with digital photography, to produce useful and attractive images.
Encapsidated Host Factors in Alphavirus Particles Influence Midgut Infection of Aedes aegypti.
Mackenzie-Liu, David; Sokoloski, Kevin J; Purdy, Sarah; Hardy, Richard W
2018-05-16
Transmission of mosquito-borne viruses requires the efficient infection of both a permissive vertebrate host and a competent mosquito vector. The infectivity of Sindbis virus (SINV), the type species of the Alphavirus genus, is influenced by both the original and new host cell. We have shown that infection of vertebrate cells by SINV, chikungunya virus (CHIKV), and Ross River virus (RRV) produces two subpopulations of virus particles separable based on density. In contrast, a single population of viral particles is produced by mosquito cells. Previous studies demonstrated that the denser vertebrate-derived particles and the mosquito-derived particles contain components of the small subunit of the host cell ribosome, whereas the less dense vertebrate-derived particles do not. Infection of mice with RRV showed that both particle subpopulations are produced in an infected vertebrate, but in a tissue specific manner with serum containing only the less dense version of the virus particles. Previous infectivity studies using SINV particles have shown that the denser particles (SINV Heavy ) and mosquito derived particles SINV C6/36 are significantly more infectious in vertebrate cells than the less dense vertebrate derived particles (SINV Light ). The current study shows that SINV Light particles, initiate the infection of the mosquito midgut more efficiently than SINV Heavy particles and that this enhanced infectivity is associated with an exacerbated immune response to SINV Light infection in midgut tissues. The enhanced infection of SINV Light is specific to the midgut as intrathoracically injected virus do not exhibit the same fitness advantage. Together, our data indicate a biologically significant role for the SINV Light subpopulation in the efficient transmission from infected vertebrates to the mosquito vector.
Disarmed by density: A glycolytic break for immunostimulatory dendritic cells?
Nasi, Aikaterini; Rethi, Bence
2013-12-01
We observed a cell concentration-dependent differentiation switch among cultured dendritic cells (DCs) triggered by lactic acid, a product of glycolytic metabolism. In particular, while interleukin (IL)-12, IL-23, and tumor necrosis factor α (TNFα)-producing, migratory DCs developed in sparse cultures, IL-10-producing, non-migratory DCs differentiated in dense cultures. This points to a novel opportunity for tailoring DC-based anticancer therapies through metabolism modulation in developing DCs.
Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopya)
NASA Astrophysics Data System (ADS)
Hansen, Stephanie B.
2012-05-01
Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.
Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada
2015-01-01
Abstract The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly related also to different environments, as mancae develop in marsupial fluid. Bacteria, evenly distributed within the homogenous electron dense material in the hindgut lumen, were observed only in one specimen of early marsupial manca. The morphological features of gut cuticle renewal are evident in the late marsupial mancae, and are similar to those observed in the exoskeleton. PMID:26261443
Dendritic cell reprogramming by endogenously produced lactic acid.
Nasi, Aikaterini; Fekete, Tünde; Krishnamurthy, Akilan; Snowden, Stuart; Rajnavölgyi, Eva; Catrina, Anca I; Wheelock, Craig E; Vivar, Nancy; Rethi, Bence
2013-09-15
The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.
Colliding Laser-Produced Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew; Gekelman, Walter
2007-11-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations using a fast (3ns exposure) camera indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation consists of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, S.; Grassi, T.; Schleicher, D. R. G.
Deuterium fractionation, i.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H{sub 2} ratio. In this Letter we explore the effect of the ortho–para (o–p) H{sub 2} conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (i) the o–p H{sub 2} conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (ii) that the processmore » is controlled by the temperature and the residence time of ortho-H{sub 2} on the surface, i.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o–p H{sub 2} conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D {sub frac} in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, R.; Soler, R.; Terradas, J.
Observations of active regions and limb prominences often show cold, dense blobs descending with an acceleration smaller than that of free fall. The dynamics of these condensations falling in the solar corona is investigated in this paper using a simple fully ionized plasma model. We find that the presence of a heavy condensation gives rise to a dynamical rearrangement of the coronal pressure that results in the formation of a large pressure gradient that opposes gravity. Eventually this pressure gradient becomes so large that the blob acceleration vanishes or even points upward. Then, the blob descent is characterized by anmore » initial acceleration phase followed by an essentially constant velocity phase. These two stages can be identified in published time-distance diagrams of coronal rain events. Both the duration of the first stage and the velocity attained by the blob increase for larger values of the ratio of blob to coronal density, for larger blob mass, and for smaller coronal temperature. Dense blobs are characterized by a detectable density growth (up to 60% in our calculations) and by a steepening of the density in their lower part, that could lead to the formation of a shock. They also emit sound waves that could be detected as small intensity changes with periods of the order of 100 s and lasting between a few and about 10 periods. Finally, the curvature of falling paths with large radii is only relevant when a very dense blob falls along inclined magnetic field lines.« less
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-01-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557
NASA Astrophysics Data System (ADS)
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-03-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.
NASA Astrophysics Data System (ADS)
Roskin, Joel
2017-10-01
The location of the Gaza Strip at the southeastern corner of the Mediterranean Sea along a transition zone between Mediterranean and arid climate zones at the meeting point between fluvial, coastal, and aeolian sediments makes the Strip an important region for Quaternary, hydrogeologic, geomorphic, and palaeoclimatic studies (Aish, 2004). Wadi Gaza, the only water course that fully crosses the Gaza Strip into the southeastern Mediterranean Sea is an important water source for the proliferating and dense population of the Gaza Strip (Zaineldeen and Aish, 2012), is an indispensable part of natural life in Gaza and has an interesting history and rich vegetation (Abd Rabou et al., 2016). As such, the hydrogeologic conditions of Wadi Gaza need to be fully resolved. This includes the study of the wadi's palaeohydrology and the current anthropogenic impact upon flow and deposition along the watercourse.
Varying Radii of On-Axis Anode Hollows For kJ-Class Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Shaw, Brian; Chapman, Steven; Falabella, Steven; Pankin, Alexei; Liu, Jason; Link, Anthony; Schmidt, Andréa
2017-10-01
A dense plasma focus (DPF) is a compact plasma gun that produces high energy ion beams, up to several MeV, through strong potential gradients. Motivated by particle-in-cell simulations, we have tried a series of hollow anodes on our kJ-class DPF. Each anode has varying hollow sizes, and has been studied to optimize ion beam production in Helium, reduce anode sputter, and increase neutron yields in deuterium. We diagnose the rate at which electrode material is ablated and deposited onto nearby surfaces. This is of interest in the case of solid targets, which perform poorly in the presence of sputter. We have found that the larger the hollow radius produces more energetic ion beams, higher neutron yield, and sputter less than a flat top anode. A complete comparison is presented. This work was prepared by LLNL under Contract DE-AC52-07NA27344 and supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.
NASA Technical Reports Server (NTRS)
Rice, R. W.
1972-01-01
Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-
A pilot scale ultrasonic system to enhance extraction processes with dense gases
NASA Astrophysics Data System (ADS)
Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.
2012-05-01
The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.
Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media
NASA Astrophysics Data System (ADS)
Ito, G.; Mishchenko, M. I.; Glotch, T. D.
2017-12-01
Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles sizes and polydispersed clusters in search for the most effective modeling of spectra of densely packed particulate media.
Seagle, Brandon-Luke L; Shahabi, Shohreh
2017-04-01
To determine the cost-effectiveness of dose-dense versus standard intravenous adjuvant chemotherapy for ovarian cancer using results from the no-bevacizumab cohort of the Gynecologic Oncology Group protocol 262 (GOG-262) randomized controlled trial, which reported a smaller absolute progression-free survival (PFS) benefit than the prior Japanese trial. A three-state Markov decision model from a healthcare system perspective with a 21day cycle length and 28month time-horizon was used to calculate incremental cost-effectiveness ratio (ICER) values per progression-free life-year saved (PFLYS) using results from GOG-262. Costs of chemotherapy, complications, and surveillance were from Medicare or institutional data. PFS, discontinuation, and complication rates were from GOG-262. Time-dependent transition probabilities and within-cycle corrections were used. One-way and probabilistic sensitivity analyses were performed. The model produces standard and dose-dense cohorts with 84.3% and 68.3% progression event proportions at 28months, matching GOG-262 rates at the trial's median follow-up. With a median PFS of 10.3months after standard chemotherapy and a hazard ratio for progression of 0.62 after dose-dense therapy, the ICER for dose-dense chemotherapy is $8074.25 (95% confidence interval: $7615.97-$10,207.16) per PFLYS. ICER estimates are sensitive only to the hazard ratio estimate but do not exceed $100,000 per PFLYS. 99.8% of ICER estimates met a more stringent willingness-to-pay of $50,000 per PFLYS. The willingness-to-pay value at which there is a 90% probability of dose-dense treatment being cost-effective is $12,000 per PFLYS. Dose-dense adjuvant chemotherapy is robustly cost-effective for advanced ovarian cancer from a healthcare system perspective based on results from GOG-262. Copyright © 2017 Elsevier Inc. All rights reserved.
Sprague, Brian L.; Stout, Natasha K.; Schechter, Clyde; van Ravesteyn, Nicolien T.; Cevik, Mucahit; Alagoz, Oguzhan; Lee, Christoph I.; van den Broek, Jeroen J.; Miglioretti, Diana L.; Mandelblatt, Jeanne S.; de Koning, Harry J.; Kerlikowske, Karla; Lehman, Constance D.; Tosteson, Anna N. A.
2014-01-01
Background At least nineteen states have laws that require telling women with dense breasts and a negative screening mammogram to consider supplemental screening. The most readily available supplemental screening modality is ultrasound, yet little is known about its effectiveness. Objective To evaluate the benefits, harms, and cost-effectiveness of supplemental ultrasound screening for women with dense breasts. Design Comparative modeling with 3 validated simulation models. Data Sources Surveillance, Epidemiology, and End Results Program; Breast Cancer Surveillance Consortium; the medical literature. Target Population A contemporary cohort of women eligible for routine screening. Time Horizon Lifetime. Perspective Payer. Interventions Supplemental ultrasound screening for women with dense breasts following a negative screening mammogram. Outcome Measures Breast cancer deaths averted, quality-adjusted life years (QALYs) gained, false positive ultrasound biopsy recommendations, costs, costs per QALY gained. Results of Base-Case Analysis Supplemental ultrasound screening after a negative mammogram for women aged 50–74 with heterogeneously or extremely dense breasts averted 0.36 additional breast cancer deaths (range across models: 0.14–0.75), gained 1.7 QALYs (0.9–4.7), and resulted in 354 false-positive ultrasound biopsy recommendations (345–421) per 1000 women with dense breasts compared with biennial screening by mammography alone. The cost-effectiveness ratio was $325,000 per QALY gained ($112,000-$766,000). Restricting supplemental ultrasound screening to women with extremely dense breasts cost $246,000 per QALY gained ($74,000-$535,000). Results of Sensitivity Analysis The conclusions were not sensitive to ultrasound performance characteristics, screening frequency, or starting age. Limitations Provider costs for coordinating supplemental ultrasound were not considered. Conclusions Supplemental ultrasound screening for women with dense breasts undergoing screening mammography would substantially increase costs while producing relatively small benefits in breast cancer deaths averted and QALYs gained. Primary Funding Source National Institutes of Health PMID:25486550
OH megamasers: dense gas & the infrared radiation field
NASA Astrophysics Data System (ADS)
Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie
2018-06-01
To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.
Retrieving Coherent Receiver Function Images with Dense Arrays
NASA Astrophysics Data System (ADS)
Zhong, M.; Zhan, Z.
2016-12-01
Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.
Detection of short-term changes in vegetation cover by use of LANDSAT imagery. [Arizona
NASA Technical Reports Server (NTRS)
Turner, R. M. (Principal Investigator); Wiseman, F. M.
1975-01-01
The author has identified the following significant results. By using a constant band 6 to band 5 radiance ratio of 1.25, the changing pattern of areas of relatively dense vegetation cover was detected for the semiarid region in the vicinity of Tucson, Arizona. Electronically produced binary thematic masks were used to map areas with dense vegetation. The foliar cover threshold represented by the ratio was not accurately determined but field measurements show that the threshold lies in the range of 10 to 25 percent foliage cover. Montana evergreen forests with constant dense cover were correctly shown to exceed the threshold on all dates. The summer active grassland exceeded the threshold in the summer unless rainfall was insufficient. Desert areas exceeded the threshold during the spring of 1973 following heavy rains; the same areas during the rainless spring of 1974 did not exceed threshold. Irrigated fields, parks, golf courses, and riparian communities were among the habitats most frequently surpassing the threshold.
Immunogenicity is preferentially induced in sparse dendritic cell cultures
Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence
2017-01-01
We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-09-16
If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4} eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.
Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai
2013-06-01
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
Plant litter produced in the interior of dense emergent stands may directly or indirectly influence invertebrate communities. Low litter may provide structure and refuge to invertebrates while high litter may shade out vegetation and algae and decrease oxygen concentrations. With...
Lateral pile cap load tests with gravel backfill of limited width.
DOT National Transportation Integrated Search
2010-08-01
This study investigated the increase in passive force produced by compacting a dense granular fill adjacent to a pile cap or abutment wall when the surrounding soil is in a relative loose state. Lateral load tests were performed on a pile cap with th...
A laboratory method for precisely determining the micro-volume-magnitudes of liquid efflux
NASA Technical Reports Server (NTRS)
Cloutier, R. L.
1969-01-01
Micro-volumetric quantities of ejected liquid are made to produce equal volumetric displacements of a more dense material. Weight measurements are obtained on the displaced heavier liquid and used to calculate volumes based upon the known density of the heavy medium.
Olson, J.M.; Carleton, K.L.
1982-06-10
A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Olson, Jerry M.; Carleton, Karen L.
1984-01-01
A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Moiduddin, Khaja
2018-02-01
The traditional methods of metallic bone implants are often dense and suffer from adverse reactions, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. The objective of this study is to evaluate the customized porous cranial implant with mechanical properties closer to that of bone and to improve the aesthetic outcome in cranial surgery with precision fitting for a better quality of life. Two custom cranial implants (bulk and porous) are digitally designed based on the Digital Imaging and Communications in Medicine files and fabricated using additive manufacturing. Initially, the defective skull model and the implant were fabricated using fused deposition modeling for the purpose of dimensional validation. Subsequently, the implant was fabricated using titanium alloy (Ti6Al4V extra low interstitial) by electron beam melting technology. The electron beam melting-produced body diagonal node structure incorporated in cranial implant was evaluated based on its mechanical strength and structural characterization. The results show that the electron beam melting-produced porous cranial implants provide the necessary framework for the bone cells to grow into the pores and mimic the architecture and mechanical properties closer to the region of implantation. Scanning electron microscope and micro-computed tomography scanning confirm that the produced porous implants have a highly regular pattern of porous structure with a fully interconnected network channel without any internal defect and voids. The physical properties of the titanium porous structure, containing the compressive strength of 61.5 MPa and modulus of elasticity being 1.20 GPa, represent a promising means of reducing stiffness and stress-shielding effect on the surrounding bone. This study reveals that the use of porous structure in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength and structural characteristics, thus restoring better functionality and aesthetic outcomes for the patients.
Characteristics of light reflected from a dense ionization wave with a tunable velocity.
Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V
2009-11-20
An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.
Mather-type dense plasma focus as a new optical pump for short-wavelength high-power lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, J.J.; Kim, K.
For the first time, a Mather-type dense plasma focus (MDPF) is successfully operated as an optical pump for lasers. Rhodamine-6G dye is optically pumped using the MDPF fluorescence, producing a laser pulse 1 ..mu..s in duration and more than 50 kW in output power. No optimization is attempted either of the laser cavity or of the lasing medium concentration and volume. A brief description of the experimental setup is presented, along with a summary and discussion of the results. The advantages of the present optical pump source and, in particular, their implications for the pumping of short-wavelength lasers are discussed.
Strengthening of ferrous binder jet 3D printed components through bronze infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Zachary C.; Siddel, Derek H.; Peter, William H.
Fully-dense, net shape objects have been fabricated from a rapidly-solidified ferrous powder using binder-jet 3D printing and molten bronze infiltration. X-ray diffraction, scanning electron microscopy, and differential thermal analysis were used to characterize the structural evolution of the powder feedstock during an infiltration heating cycle. Microindentation and bend tests were performed on the infiltrated material to evaluate its mechanical properties. The infiltrated material had an 11 GPa hardness and moderate damage tolerance. It was found that infiltration improved both the ductility and strength of the sintered preforms by eliminating the stress concentration at the interparticle necks.
Strengthening of ferrous binder jet 3D printed components through bronze infiltration
Cordero, Zachary C.; Siddel, Derek H.; Peter, William H.; ...
2017-04-08
Fully-dense, net shape objects have been fabricated from a rapidly-solidified ferrous powder using binder-jet 3D printing and molten bronze infiltration. X-ray diffraction, scanning electron microscopy, and differential thermal analysis were used to characterize the structural evolution of the powder feedstock during an infiltration heating cycle. Microindentation and bend tests were performed on the infiltrated material to evaluate its mechanical properties. The infiltrated material had an 11 GPa hardness and moderate damage tolerance. It was found that infiltration improved both the ductility and strength of the sintered preforms by eliminating the stress concentration at the interparticle necks.
A comparison of mechanical properties of some foams and honeycombs
NASA Technical Reports Server (NTRS)
Bhat, Balakrishna T.; Wang, T. G.
1990-01-01
A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.
Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.
Kumar, S Santosh; Hong, Jiarong
2018-05-14
We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.
Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes
NASA Astrophysics Data System (ADS)
Zhang, Xing
Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermally converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate (beta-TCMP), while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. Calcium phosphate powders were prepared through different synthesis methods. Micro-size HAP rods were synthesized by hydrothermal method through a nucleation-growth mechanism. On the other hand, HAP particles, which have good crystallinity, were prepared by wet precipitation with further hydrothermal treatment. beta-TCP or beta-TCMP powders were prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate ('precursor') and calcination of the precursor at 800°C for 3 hours. beta-TCMP or beta-TCP powders were also prepared by solid-state reactions from CaHPO4 and CaCO 3 with/without MgO. Biphasic calcium phosphate, which is mixture of HAP and beta-TCP, can be prepared though mechanical mixing of HAP and beta-TCP powders synthesized as above. Dense beta-TCP and beta-TCMP ceramics can be produced by pressing green bodies at 100MPa and further sintering above 1100°C for 2 hours. beta-TCMP ceramics ˜99.4% relative dense were prepared by this method. Dense beta-TCP ceramics have average strength up to 540MPa. Macroporous beta-TCMP ceramics were produced with sucrose as the porogen following a two-step pressing method. Porous beta-TCMP ceramics were also prepared by replication of polyurethane sponge. beta-TCMP ceramics with porous structures in the center surrounded by dense structures were created. The outside dense structures give the scaffold mechanical strength, while the central porous structures enable cells migration and vascular infiltration, and finally in-growth of new bone into the scaffold.
Mangla, Onkar; Roy, Savita; Ostrikov, Kostya (Ken)
2015-01-01
The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III–V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III–V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well. PMID:28344261
Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus
2009-05-01
This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
Benchmarking variable-density flow in saturated and unsaturated porous media
NASA Astrophysics Data System (ADS)
Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas
2015-04-01
In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.
Classical and quantum simulations of warm dense carbon
NASA Astrophysics Data System (ADS)
Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin
We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV
Mangla, Onkar; Roy, Savita; Ostrikov, Kostya Ken
2015-12-29
The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III-V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III-V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.
Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media
NASA Astrophysics Data System (ADS)
Cremer, C.; Graf, T.
2012-04-01
In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not coincide. Alternatively, similar to saturated flow, applying either a random concentration noise (iv) or a random K-field (v) generates realistic plume fingering. Future work will focus on the generation mechanisms of plume finger splitting.
Fabrication of large tungsten structures by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.
1971-01-01
Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.
1989-01-27
carbon dioxide laser has caused the droplet to undergo vaporization. --- - -(tont-nued) 20. DISTRIBUTION /AVAILABIUTV OF ATRACT 21. ABSTRACT SECURITY...breakdown threshold and produced a dense, high temperature plasma which can abosrb the stimulated Raman radiation; (3) studies on the dependence of the
Deaf Sociality and the Deaf Lutheran Church in Adamorobe, Ghana
ERIC Educational Resources Information Center
Kusters, Annelies
2014-01-01
This article provides an ethnographic analysis of "deaf sociality" in Adamorobe, a village in Ghana, where the relatively high prevalence of hereditary deafness has led to dense social and spatial connections. Deaf people are part of their hearing environment particularly through family networks, and produce deaf sociality through many…
Optical breakdown of air triggered by femtosecond laser filaments
NASA Astrophysics Data System (ADS)
Polynkin, Pavel; Moloney, Jerome V.
2011-10-01
We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.
Deletion of a target gene in Indica rice via CRISPR/Cas9.
Wang, Ying; Geng, Lizhao; Yuan, Menglong; Wei, Juan; Jin, Chen; Li, Min; Yu, Kun; Zhang, Ya; Jin, Huaibing; Wang, Eric; Chai, Zhijian; Fu, Xiangdong; Li, Xianggan
2017-08-01
Using CRISPR/Cas9, we successfully deleted large fragments of the yield-related gene DENSE AND ERECT PANICLE1 in Indica rice at relatively high frequency and generated gain-of-function dep1 mutants. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a rapidly developing technology used to produce gene-specific modifications in both mammalian and plant systems. Most CRISPR-induced modifications in plants reported to date have been small insertions or deletions. Few large target gene deletions have thus far been reported, especially for Indica rice. In this study, we designed multiple CRISPR sgRNAs and successfully deleted DNA fragments in the gene DENSE AND ERECT PANICLE1 (DEP1) in the elite Indica rice line IR58025B. We achieved deletion frequencies of up to 21% for a 430 bp target and 9% for a 10 kb target among T0 events. Constructs with four sgRNAs did not generate higher full-length deletion frequencies than constructs with two sgRNAs. The multiple mutagenesis frequency reached 93% for four targets, and the homozygous mutation frequency reached 21% at the T0 stage. Important yield-related trait characteristics, such as dense and erect panicles and reduced plant height, were observed in dep1 homozygous T0 mutant plants produced by CRISPR/Cas9. Therefore, we successfully obtained deletions in DEP1 in the Indica background using the CRISPR/Cas9 editing tool at relatively high frequency.
NASA Astrophysics Data System (ADS)
Mencos, Alejandro; Krim, Lahouari
2016-08-01
We experimentally show that the reaction between ground state nitrogen atoms N(4S) and acetonitrile CH3CN can lead to two distinct chemical pathways that are both thermally activated at very low temperatures. First is CH3CN isomerization which produces CH3NC and H2CCNH. Second is CH3CN decomposition which produces HNC and CH3CNH+CN- fragments, with the possible release of H2. Our results reveal that the mobility of N(4S)-atoms is stimulated in the 3-11 K temperature range, and that its subsequent encounter with one acetonitrile molecule is sufficient for the aforementioned reactions to occur without the need for additional energy to be supplied to the CH3CN + N(4S) system. These findings shed more light on the nitrogen chemistry that can possibly take place in dense molecular clouds, which until now was thought to only involve high-energy processes and therefore be unlikely to occur in such cold and dark interstellar regions. The reaction pathways we propose in this study have very important astrochemical implications, as it was shown recently that the atomic nitrogen might be more abundant, in many interstellar icy grain mantles, than previously thought. Also, these reaction pathways can now be considered within dense molecular clouds, and possibly affect the branching ratios for N-bearing molecules computed in astrochemical modelling.
Single event burnout of high-power diodes
NASA Astrophysics Data System (ADS)
Maier, K. H.; Denker, A.; Voss, P.; Becker, H.-W.
1998-12-01
High-power diodes might be damaged by a single particle of cosmic radiation. This particle has first to produce a secondary nucleus, that ionizes more densely, through a nuclear reaction with the silicon of the diode. A multiplication of the number of charge carriers, primarily produced by this nucleus, can occur and eventually lead to a break down. The onset of this charge carrier multiplication is investigated with accelerated heavy ions under well controlled conditions. Clear trends are revealed, but the process is not yet understood.
Did the formation of D″ cause the Archaean-Proterozoic transition?
NASA Astrophysics Data System (ADS)
Campbell, Ian H.; Griffiths, Ross W.
2014-02-01
The MgO content of the highest MgO plume-related komatiites and picrites remained constant at 32±2.5% between 3.5 and 2.7 Ga, then fell to 21±3% by ca. 2.0 Ga, a value similar to the present day value. Because there is a linear relationship between the liquidus temperature of dry magmas and their MgO content this observation implies that the temperature of mantle plumes changed little between 3.5 and 2.7 Ga, and then fell by 200-250 °C between 2.7 and 2.0 Ga to a temperature similar to that of present plumes. We suggest that Archaean plumes originate from the core-mantle boundary and that their temperature remained constant because the temperature of the outer core was buffered by solidification of the Fe-Ni inner core. At about 2.7 Ga dense former basaltic crust began to accumulate at the core and eventually covered it to produce an insulating layer that reduced the heat flux out of the core and lowered the temperature of mantle plumes. The temperature of mantle plumes fell as the dense layer above the core thickened until it exceeded the critical thickness required for convection. Because heat is transferred rapidly across the convecting part of the insulating layer, any further increase in its thickness by the addition more basaltic material has no influence on the temperature at the top of the layer, which is the source of Post-Archaean mantle plumes. We equate the dense layer above the core with the seismically identified layer D″. Our analyses suggest the drop in plume temperatures produced by a dense insulating layer above the core will be about 40% once it starts to convect, which is consistent with the observed drop inferred from the decrease in the MgO content of komatiites and picrites at that time.
Multiple imputation for handling missing outcome data when estimating the relative risk.
Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B
2017-09-06
Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.
NASA Astrophysics Data System (ADS)
Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.
2017-07-01
Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.
2016-01-11
The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.
NASA Astrophysics Data System (ADS)
Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.
2017-04-01
It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.
Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids
Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; ...
2015-05-19
Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore » the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less
Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.
2017-03-01
Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.
Alterations in morphology and hepatorenal indices in rats subacutely exposed to bitumen extract.
Otuechere, Chiagoziem A; Adesanya, Oluseyi; Otsupius, Precious; Seyitan, Nathaniel
2016-10-01
Bitumen is a complex mixture of dense and extremely viscous organic liquids produced by distillation of crude oil during petroleum refining. Nigeria has a large deposit of natural bitumen, yet to be fully exploited. Discharges of petroleum hydrocarbons and other petroleum-derived products have caused environmental pollution and adverse human health effects in several oil-rich communities. In this study, bitumen obtained from a seepage source in Agbabu, the town of first discovery, was used in sub-acute toxicity studies in a rat experimental model, in order to assess potential health risks posed to local populace sequel to full exploitation of bitumen. Dosages were chosen to accommodate low to high cases of environmental exposures. Male Wistar rats were administered, per os, dosages of bitumen extract at 5, 3, 2, and 1 mg/kg body weight. Following euthanasia 28 days later, histological findings revealed severe portal congestion and cellular infiltration in the liver, while in the kidney there were protein casts in the tubular lumen. The relative liver and kidney weights in the 5 mg/kg groups were 34% and 40% higher than in the controls, with a concomitant decrease in food and water consumption. Furthermore, plasma clinical analyses revealed marked elevation in aspartate aminotransferase and triglycerides levels in bitumen extract-intoxicated rats. The results indicate the potential hepatorenal toxicity in adult rats following repeated exposure to bitumen extract.
Multiphase flow modeling and simulation of explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Neri, Augusto
Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation of the initial vertical jet, the column collapse, and the building of the pyroclastic fountain, followed by the generation of radially spreading pyroclastic flows. The development of thermal convective instabilities in the flow lead to the formation of co-ignimbritic or phoenix clouds. Simulation results strongly highlight the importance of the multiphase flow formulation of the mixture. Large particles tend to segregate and sediment along the ground, whereas fine particles tend to form ascending buoyant plumes. Mixtures rich in fine grained particles produce larger runout of the flow and larger ascending plumes than mixtures rich in coarse particles. Simulation results appear to be qualitatively in agreement with field observations, but require to be fully validated by the simulation of well-known test cases.
NASA Astrophysics Data System (ADS)
Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert
2018-05-01
In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, M.; Uematsu, S.; Abe, J., E-mail: yokosawa@mx.ibaraki.ac.j
The standard massive accretion disk with Keplerian angular momentum (standard accretion disk) producing gamma-ray bursts (GRBs) is investigated on the bases of the microphysics of neutrinos and general relativity. Since the accretion disk gradually heated by viscosity is efficiently cooled by antielectron neutrinos, the accreting flow maintains a relatively low temperature, T {approx} 3 x 10{sup 10} K, over a long range of accreting radius that produces very high dense matter around a rotating black hole, {rho} {>=} 10{sup 13} g cm{sup -3}. Thus, the massively accreting matter is in the domain of heavy nuclei all over the accreting flowmore » onto a central black hole where the fraction of evaporated free neutrons is large, Y{sub n} {approx} 0.8, and that of protons is infinitesimal, Y{sub p} {approx} 10{sup -4}. The electron neutrinos in the disk are almost absorbed by rich neutrons while the antielectron neutrinos are little absorbed by rarefied protons. The mean energy of antielectron neutrinos ejected from the disk is extraordinarily high, because the antielectron neutrinos are degenerated in the high dense disk. The huge antielectron neutrinos with high mean energy and large luminosity, are ejected from the massive accretion disk. The antielectron neutrinos are possibly the sources of the relativistic jets producing GRBs.« less
NASA Astrophysics Data System (ADS)
Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert
2018-04-01
In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.
NASA Astrophysics Data System (ADS)
Ye, L.; Wu, B.
2017-09-01
High-resolution imagery is an attractive option for surveying and mapping applications due to the advantages of high quality imaging, short revisit time, and lower cost. Automated reliable and dense image matching is essential for photogrammetric 3D data derivation. Such matching, in urban areas, however, is extremely difficult, owing to the complexity of urban textures and severe occlusion problems on the images caused by tall buildings. Aimed at exploiting high-resolution imagery for 3D urban modelling applications, this paper presents an integrated image matching and segmentation approach for reliable dense matching of high-resolution imagery in urban areas. The approach is based on the framework of our existing self-adaptive triangulation constrained image matching (SATM), but incorporates three novel aspects to tackle the image matching difficulties in urban areas: 1) occlusion filtering based on image segmentation, 2) segment-adaptive similarity correlation to reduce the similarity ambiguity, 3) improved dense matching propagation to provide more reliable matches in urban areas. Experimental analyses were conducted using aerial images of Vaihingen, Germany and high-resolution satellite images in Hong Kong. The photogrammetric point clouds were generated, from which digital surface models (DSMs) were derived. They were compared with the corresponding airborne laser scanning data and the DSMs generated from the Semi-Global matching (SGM) method. The experimental results show that the proposed approach is able to produce dense and reliable matches comparable to SGM in flat areas, while for densely built-up areas, the proposed method performs better than SGM. The proposed method offers an alternative solution for 3D surface reconstruction in urban areas.
Panoramic 3D Reconstruction by Fusing Color Intensity and Laser Range Data
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lu, Jian
Technology for capturing panoramic (360 degrees) three-dimensional information in a real environment have many applications in fields: virtual and complex reality, security, robot navigation, and so forth. In this study, we examine an acquisition device constructed of a regular CCD camera and a 2D laser range scanner, along with a technique for panoramic 3D reconstruction using a data fusion algorithm based on an energy minimization framework. The acquisition device can capture two types of data of a panoramic scene without occlusion between two sensors: a dense spatio-temporal volume from a camera and distance information from a laser scanner. We resample the dense spatio-temporal volume for generating a dense multi-perspective panorama that has equal spatial resolution to that of the original images acquired using a regular camera, and also estimate a dense panoramic depth-map corresponding to the generated reference panorama by extracting trajectories from the dense spatio-temporal volume with a selecting camera. Moreover, for determining distance information robustly, we propose a data fusion algorithm that is embedded into an energy minimization framework that incorporates active depth measurements using a 2D laser range scanner and passive geometry reconstruction from an image sequence obtained using the CCD camera. Thereby, measurement precision and robustness can be improved beyond those available by conventional methods using either passive geometry reconstruction (stereo vision) or a laser range scanner. Experimental results using both synthetic and actual images show that our approach can produce high-quality panoramas and perform accurate 3D reconstruction in a panoramic environment.
Fast Molecular Cloud Destruction Requires Fast Cloud Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Low, Mordecai-Mark; Burkert, Andreas; Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de
A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular cloudsmore » must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.« less
A likely universal model of fracture scaling and its consequence for crustal hydromechanics
NASA Astrophysics Data System (ADS)
Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.
2010-10-01
We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.
Chen, Baoying; Wang, Wei; Huang, Jin; Zhao, Ming; Cui, Guangbin; Xu, Jing; Guo, Wei; Du, Pang; Li, Pei; Yu, Jun
2010-10-01
To retrospectively evaluate the diagnostic abilities of 2 post-processing methods provided by GE Senographe DS system, tissue equalization (TE) and premium view (PV) in full field digital mammography (FFDM). In accordance with the ethical standards of the World Medical Association, this study was approved by regional ethics committee and signed informed patient consents were obtained. We retrospectively reviewed digital mammograms from 101 women (mean age, 47 years; range, 23-81 years) in the modes of TE and PV, respectively. Three radiologists, fully blinded to the post-processing methods, all patient clinical information and histologic results, read images by using objective image interpretation criteria for diagnostic information end points such as lesion border delineation, definition of disease extent, visualization of internal and surrounding morphologic features of the lesions. Also, overall diagnostic impression in terms of lesion conspicuity, detectability and diagnostic confidence was assessed. Between-group comparisons were performed with Wilcoxon signed rank test. Readers 1, 2, and 3 demonstrated significant overall better impression of PV in 29, 27, and 24 patients, compared with that for TE in 12, 13, and 11 patients, respectively (p<0.05). Significant (p<0.05) better impression of PV was also demonstrated for diagnostic information end points. Importantly, PV proved to be more sensitive than TE while detecting malignant lesions in dense breast rather than benign lesions and malignancy in non-dense breast (p<0.01). PV compared with TE provides marked better diagnostic information in FFDM, particularly for patients with malignancy in dense breast. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Yatheendradas, Soni; Peters-Lidard, Christa D.; Koren, Victor; Cosgrove, Brian A.; DeGoncalves, Luis G. D.; Smith, Michael; Geiger, James; Cui, Zhengtao; Borak, Jordan; Kumar, Sujay V.;
2012-01-01
Snow cover area affects snowmelt, soil moisture, evapotranspiration, and ultimately streamflow. For the Distributed Model Intercomparison Project - Phase 2 Western basins, we assimilate satellite-based fractional snow cover area (fSCA) from the Moderate Resolution Imaging Spectroradiometer, or MODIS, into the National Weather Service (NWS) SNOW-17 model. This model is coupled with the NWS Sacramento Heat Transfer (SAC-HT) model inside the National Aeronautics and Space Administration's (NASA) Land Information System. SNOW-17 computes fSCA from snow water equivalent (SWE) values using an areal depletion curve. Using a direct insertion, we assimilate fSCAs in two fully distributed ways: 1) we update the curve by attempting SWE preservation, and 2) we reconstruct SWEs using the curve. The preceding are refinements of an existing simple, conceptually-guided NWS algorithm. Satellite fSCA over dense forests inadequately accounts for below-canopy snow, degrading simulated streamflow upon assimilation during snowmelt. Accordingly, we implement a below-canopy allowance during assimilation. This simplistic allowance and direct insertion are found to be inadequate for improving calibrated results, still degrading them as mentioned above. However, for streamflow volume for the uncalibrated runs, we obtain: (1) substantial to major improvements (64-81 %) as a percentage of the control run residuals (or distance from observations), and (2) minor improvements (16-22 %) as a percentage of observed values. We highlight the need for detailed representations of canopy-snow optical radiative transfer processes in mountainous, dense forest regions if assimilation-based improvements are to be seen in calibrated runs over these areas.
Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.
2015-01-01
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
NASA Astrophysics Data System (ADS)
Yin, A.; Yu, X.; Shen, Z.
2014-12-01
Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.
Yusop, Abdul Hakim Md; Daud, Nurizzati Mohd; Nur, Hadi; Kadir, Mohammed Rafiq Abdul; Hermawan, Hendra
2015-01-01
Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron. PMID:26057073
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
Silva, W R; Giaretta, A A
2008-05-01
Leptodactylus labyrinthicus tadpoles reach a large size in the nest through consumption of trophic eggs. We previously suggested that the trophic eggs are laid just after amplexus has finished, but our new data do not support this hypothesis. We also present further details on the natural history of the species with regard to breeding activity, spawning site, retreats and the ability of tadpoles in preying upon fully-growth heterospecific tadpoles. We also show that the tadpoles are mainly nocturnal and take diurnal refuges. We collected the data in Brazil in three localities within the Cerrado Biome. We examined burrows used by L. labyrinthicus males, verified if females still contained mature eggs just after released from amplexus, and tested the ability of tadpoles in preying fully-growth heterospecific tadpoles. Field observations and experiments were conducted on tadpole activity time, hiding behaviour and level of susceptibility to predation by the bird leaf-scrapers in four sheltering situations. Reproduction could start before the first rains; this may be advantageous by allowing the tadpoles to exploit eggs of other frogs. We found one floating nest built in a temporary pool. The nest of the species is normally circumscribed in an excavated basin beside the water body. Adult males were found during the day with their head-out of the entrance of underwater burrows, which were perforations through dense root mats beside calling/spawning sites. Probably, these burrows in permanently water-filled soil are actively excavated by males. Females released all their eggs during the amplexus, so trophic eggs are not produced by the currently-accepted mechanism. Fully-grown heterospecific tadpoles were not preyed upon by L. labyrinthicus tadpoles, which can prey only slow-moving newly hatched ones. Field tadpoles took shelter under mud/dead leaves during daylight and became exposed on the bottom at night. Free-ranging leaf-scrapers removed dead leaves from a pool with their beaks and preyed upon tadpoles. In the experiments, the tadpoles sheltered under gravel/leaves during daylight, but they were exposed at night. Leaf-scrapers ate all exposed tadpoles, but no tadpole of the gravel/leaves trays was consumed. Hence the nocturnal habits and use of diurnal refuges may protect the tadpoles from visual predators, such as the leaf-scrapers.
Application of fully stressed design procedures to redundant and non-isotropic structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Tsach, U.
1980-01-01
An evaluation is presented of fully stressed design procedures for sizing highly redundant structures including structures made of composite materials. The evaluation is carried out by sizing three structures: a simple box beam of either composite or metal construction; a low aspect ratio titanium wing; and a titanium arrow wing for a conceptual supersonic cruise aircraft. All three structures are sized by ordinary fully-stressed design (FSD) and thermal fully stressed design (TFSD) for combined mechanical and thermal loads. Where possible, designs are checked by applying rigorous mathematical programming techniques to the structures. It is found that FSD and TFSD produce optimum designs for the metal box beam, but produce highly non-optimum designs for the composite box beam. Results from the delta wing and arrow wing indicate that FSD and TFSD exhibits slow convergence for highly redundant metal structures. Further, TFSD exhibits slow oscillatory convergence behavior for the arrow wing for very high temperatures. In all cases where FSD and TFSD perform poorly either in obtaining nonoptimum designs or in converging slowly, the assumptions on which the algorithms are based are grossly violated. The use of scaling, however, is found to be very effective in obtaining fast convergence and efficiently produces safe designs even for those cases when FSD and TFSD alone are ineffective.
Consolidation of Si3N4 without additives (by hot isostatic pressing)
NASA Technical Reports Server (NTRS)
Yeh, H. C.
1983-01-01
The potential of using hot isostatic pressing (HIP'ing) technique to produce dense silicon nitride materials without or with a reduced amount of additives (much less than 5 w/o) was investigated. Hot isostatic pressing technique can provide higher pressure and temperature than hot pressing can, thus has the potential of requiring less densification aids to consolidate Si3N4 materials. It was anticipated that if such dense materials could be fabricated, the high temperature strength of the material should be improved significantly. Observations on the phase transformation, densification behavior, and microstructures of the samples are also documented. Density, microhardness, four point bend strength (room temperature and 1370 C) were measured on selected densified materials.
Megajoule Dense Plasma Focus Solid Target Experiments
NASA Astrophysics Data System (ADS)
Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.
2016-10-01
Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
X-ray absorption radiography for high pressure shock wave studies
NASA Astrophysics Data System (ADS)
Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.
2018-01-01
The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have opposite effects on word processing. Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of traditional models of neighborhood effects in terms of attractor dynamics, which allow both inhibitory and facilitative effects to emerge. PMID:18194055
Rathaus, M; Bernheim, J L; Griffel, B; Bernheim, J; Taragan, R; Gutman, A
1979-10-22
A leiomyoma of the small bowel produced laboratory features of hyperparathyroidism which disappeared promptly after tumour resection. Hypercalcaemia, hypophosphatemia, hyperchloremia, elevated chloride/phosphorus ratio, increased urinary cyclic AMP, and blood levels of immunoreactive parathormone were present. Electron microscopy showed dense round granules in the tumour cells.
USDA-ARS?s Scientific Manuscript database
Guayule is a perennial shrub grown in the southwestern United States that is used to produce high quality, natural rubber latex. However, only about 10% of the plant material is used for latex production; the remaining biomass, called bagasse, can be used for renewable fuel production. Fast pyroly...
Thomas T. Lei; Shawn W. Semones; John F. Walker; Barton D. Clinton; Erik T. Nilsen
2002-01-01
In the southern Appalachian forests, the regeneration of canopy trees is severely inhibited by Rhododendron maximum L., an evergreen understory shrub producing dense rhickets. While light availability is a major cause, other factors may also contribute to the absence of tree seedlings under R. maximum. We examined the effects of...
Ecology and silviculture of poplar plantations
John A. Stanturf; Cees van Oosten; Daniel A. Netzer; Mark D. Coleman; C. Jeffrey Portwood
2002-01-01
Poplars are some of the fastest growing trees in North America and foresters have sought to capitalize on this potential since the 1940s. Interest in growing poplars has fluctuated, and objectives have shifted between producing sawlogs, pulp-wood, or more densely spaced "woodgrass" or biofuels. Currently, most poplar plantations are established for pulpwood...
USDA-ARS?s Scientific Manuscript database
Global food insecurity and rapidly diminishing water, soil, and energy resources resulting from increases in population numbers and wealth are putting pressure on agroecosystems to efficiently produce the most nutrient dense food while maintaining or enhancing natural resources. To address these ne...
theoretically. Negative ions are produced by a corona discharge from a needle placed along the axis of a nozzle. A dense air-vapor mixture is...interaction with the gas molecules to an electrode of high potential. The effectiveness of the viscous coupling depends on the charge mobility being
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin
2017-09-22
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin
2017-01-01
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633
Method for producing ceramic particles and agglomerates
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2001-01-01
A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.
Colliding Laser-Produced Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew; Gekelman, Walter
2008-11-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes. We describe a series of experiments which involve the collision of two dense (initially n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma at the UCLA Large Plasma Device facility. These plasmas form diamagnetic cavities in which a large fraction of the background field (600G) has been expelled. Fast (3ns) camera observations of this experiment recorded complicated structures, including coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. In order to directly investigate the evolution of the magnetic field, we developed a novel diagnostic system composed of small (1-mm) 3-axis differential magnetic field probes, in conjunction with a vacuum ceramic motor system capable of sub-micron positioning accuracy. Using an ensemble of magnetic field data from fixed and movable probes, we calculate the cross-spectral function, from which the dominant modes and ultimately the dispersion relation of waves in this region may be deduced.
High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping
2018-06-13
The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.
Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach.
Ng, Heung-Sun; Wu, Tai-Pang; Tang, Chi-Keung
2010-11-01
Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading.
Geologic and engineering properties investigations: Project Sulky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutton, R.J.; Girucky, F.E.
1966-09-01
The Sulky event was a nuclear cratering experiment in which a device yielding 85 + 15 tons was detonated at a depth of 90 ft in jointed basalt. The explosion produced a rubble-covered mound roughly circular in plan and extending approximately 24 ft above the original ground surface. Prior to the event the Sulky site was explored by means of 6 core borings and the emplacement calyx hole. Geophysical logging was conducted and laboratory tests were performed on representative samples. Postshot investigations consisted of trenching through the mound and drilling 3 core borings to determine the extent of the rupturemore » zone. The rock consists of vesicular basalt over dense basalt and each type is structurally modified by layering of vesicles resulting from viscous flow of the lava. Unconfined compressive strengths range from about 10,000 psi for vesicular basalt to about 20,000 psi for dense basalt. Bulk specific gravities for dense basalt are about 2.74, but with increasing vesicle content the bulk specific gravity reaches values as low as 2.40.« less
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles
Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang
2014-01-01
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832
Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM
NASA Astrophysics Data System (ADS)
Ramey, Nicholas; Coleman, Joshua; Perry, John
2017-10-01
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor
2014-10-17
The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. Copyright © 2014 Elsevier Ltd. All rights reserved.
Digamma diagnostics for the mixed-phase generation at NICA
NASA Astrophysics Data System (ADS)
Kukulin, V. I.; Platonova, M. N.
2017-03-01
A novel type of diagnostics for dense and/or hot nuclear matter produced in heavy-ion collisions at NICA and similar future colliders (FAIR, etc.) is suggested. The diagnostics is based on an assumption (confirmed in many experiments worldwide) about intensive generation of light scalar mesons (σ) the consequent decay of which produces γγ pairs with the mass and width dependent upon density and temperature of the fireball produced in the collision process. Thus, measurements of the absolute yield, mass and width of the γγ signal carry valuable information about the state of fireball generated during the high-energy nuclear collision.
Diagnosis and surgical management of abdominal cocoon: results from 12 cases.
Liu, Hai-yan; Wang, Yong-sheng; Yang, Wan-guang; Yin, Sheng-lu; Pei, Hui; Sun, Tong-wen; Wang, Lexin
2009-01-01
This study was designed to describe the characteristics, diagnostic and therapeutic methods of abdominal cocoon. Twelve patients with abdominal cocoon were surgically treated. The clinical findings from these patients were analyzed. All patients presented with acute complete intestinal obstruction, and 10 had a previous history of abdominal mass. In nine patients, the whole or part of the small intestines were covered by an ash gray, dense and tough fibrous membrane. The capsule was surgically excised, and the adhesion was released. Partial resection of the small intestines was performed. In the other three patients, the small intestines were only partially covered by a membrane, and there was an extensive adhesion of intestinal tract, forming a large mass which could not be relieved by surgical lysis. Intestinal tube was put in, and fistulation procedures were performed. All patients recovered fully after the surgery. There are four types of surgical findings in abdominal cocoon. The most common type is that the small intestines are fully covered by a thick white membrane, causing intestinal obstruction. Surgical excision of the membrane and the release of adhesion is the treatment of choice.
NASA Astrophysics Data System (ADS)
Ferreira, C. S. S.; Walsh, R. P. D.; Shakesby, R. A.; Keizer, J. J.; Soares, D.; González-Pelayo, O.; Coelho, C. O. A.; Ferreira, A. J. D.
2016-02-01
Forest hydrology has been widely investigated, but the impacts of different woodland types on hydrological processes within a peri-urban catchment mosaic are poorly understood. This paper investigates overland flow generation processes in three different types of woodland in a small (6.2 km2) catchment in central Portugal that has undergone strong urban development over the past 50 years. A semi-natural oak stand and a sparse eucalyptus stand on partly abandoned peri-urban land and a dense eucalyptus plantation were each instrumented with three 16 m2 runoff plots and 15 throughfall gauges, which were monitored at c. 1- to 2-week intervals over two hydrological years. In addition, surface soil moisture content (0-5 cm) and hydrophobicity (0-2 cm, 2-5 cm and 5-7 cm) were measured at the same time as overland flow and throughfall. Although all three woodland types produced relatively little overland flow (<3% of the incident rainfall overall), the dense eucalypt stand produced twice as much overland flow as the sparse eucalypt and oak woodland types. This contrast in overland flow can be attributed to infiltration-excess processes operating in storms following dry antecedent weather when severe hydrophobicity was widespread in the dense eucalypt plantation, whereas it was of moderate and low severity and less widespread in the sparse eucalypt and oak woodlands, respectively. In contrast, under wet conditions greater (albeit still small) percentages of overland flow were produced in oak woodland than in the two eucalypt plantations; this was probably linked to saturation-excess overland flow being generated more readily at the oak site as a result of its shallower soil. Differences in water retention in surface depressions affected overland flow generation and downslope flow transport. Implications of the seasonal differentials in overland flow generation between the three distinct woodland types for the hydrological response of peri-urban catchments are addressed.
Lin, Kuang-Wei; Kim, Yohan; Maxwell, Adam D.; Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.
2014-01-01
Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the “shock-scattering” mechanism). In our recent work, the peak negative pressure (P−) for generation of dense bubble clouds directly by a single negative half cycle, the “intrinsic threshold,” was measured. In this paper, the dense bubble clouds and resulting lesions (in RBC phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500 kHz therapy transducer was used to generate very short (< 2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P− from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P− increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P− = 26–35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the −6dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Since the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term “microtripsy.” PMID:24474132
Saindane, A M; Qiu, D; Oshinski, J N; Newman, N J; Biousse, V; Bruce, B B; Holbrook, J F; Dale, B M; Zhong, X
2018-02-01
Intracranial pressure is estimated invasively by using lumbar puncture with CSF opening pressure measurement. This study evaluated displacement encoding with stimulated echoes (DENSE), an MR imaging technique highly sensitive to brain motion, as a noninvasive means of assessing intracranial pressure status. Nine patients with suspected elevated intracranial pressure and 9 healthy control subjects were included in this prospective study. Controls underwent DENSE MR imaging through the midsagittal brain. Patients underwent DENSE MR imaging followed immediately by lumbar puncture with opening pressure measurement, CSF removal, closing pressure measurement, and immediate repeat DENSE MR imaging. Phase-reconstructed images were processed producing displacement maps, and pontine displacement was calculated. Patient data were analyzed to determine the effects of measured pressure on pontine displacement. Patient and control data were analyzed to assess the effects of clinical status (pre-lumbar puncture, post-lumbar puncture, or control) on pontine displacement. Patients demonstrated imaging findings suggesting chronically elevated intracranial pressure, whereas healthy control volunteers demonstrated no imaging abnormalities. All patients had elevated opening pressure (median, 36.0 cm water), decreased by the removal of CSF to a median closing pressure of 17.0 cm water. Patients pre-lumbar puncture had significantly smaller pontine displacement than they did post-lumbar puncture after CSF pressure reduction ( P = .001) and compared with controls ( P = .01). Post-lumbar puncture patients had statistically similar pontine displacements to controls. Measured CSF pressure in patients pre- and post-lumbar puncture correlated significantly with pontine displacement ( r = 0.49; P = .04). This study establishes a relationship between pontine displacement from DENSE MR imaging and measured pressure obtained contemporaneously by lumbar puncture, providing a method to noninvasively assess intracranial pressure status in idiopathic intracranial hypertension. © 2018 by American Journal of Neuroradiology.
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.
2017-09-01
Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.
Carbon chemistry in dense molecular clouds: Theory and observational constraints
NASA Technical Reports Server (NTRS)
Blake, Geoffrey A.
1990-01-01
For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.
Manufacturing techniques for titanium aluminide based alloys and metal matrix composites
NASA Astrophysics Data System (ADS)
Kothari, Kunal B.
Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.
NASA Astrophysics Data System (ADS)
Klaer, Vincent B.; Moore, Guy D.
2017-11-01
We evaluate the efficiency of axion production from spatially random initial conditions in the axion field, so a network of axionic strings is present. For the first time, we perform numerical simulations which fully account for the large short-distance contributions to the axionic string tension, and the resulting dense network of high-tension axionic strings. We find nevertheless that the total axion production is somewhat less efficient than in the angle-averaged misalignment case. Combining our results with a recent determination of the hot QCD topological susceptibility [1], we find that if the axion makes up all of the dark matter, then the axion mass is ma = 26.2 ± 3.4 μeV.
Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering
NASA Technical Reports Server (NTRS)
Takatori, K.; Shimade, M.; Koizumi, M.
1984-01-01
Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.
NASA Astrophysics Data System (ADS)
Stern, L. A.; Kirby, S. H.
2006-12-01
In the investigation of natural gas hydrates, distinguishing in situ grain textures and microstructures from artifacts produced during retrieval, storage, and examination can be quite challenging. Using cryogenic scanning electron microscopy, we investigated the physical states of gas hydrates produced in our lab as well as of those in drill core of hydrate-bearing sediment from marine and Arctic permafrost environments. Here, we compare grain and pore structures observed in samples from the Cascadia margin (courtesy IODP Expedition 311), McKenzie River Delta (Mallik Well 5L-38), and Gulf of Mexico (RSV Marion Dufresne 2002), with those present in hydrocarbon hydrates grown in our laboratory and subjected to controlled P-T conditions. The following trends are apparent for the natural gas hydrates imaged to-date: (1) Samples typically contain massive domains of polycrystalline gas hydrate that in turn contain isolated gas-filled pores that are sometimes lined with euhedral hydrate crystals. Pores are typically 5 50 microns in diameter and occupy roughly 10-30 percent of the domain. Grain sizes, where visible, are commonly 20 to 50 microns. (2) Hydrate grain boundaries, particularly near the exposed sample surface, are often replaced by a nanoporous material. Based on its location and behavior, this material is presumed to be gas-charged porous ice produced by hydrate decomposition along grain surfaces. In some samples, grains are instead bounded by a framework of dense, tabular material embedded within the sample, best revealed upon sublimation of the hydrate. Their composition is yet unknown but may be salt or carbonate-bearing minerals. (3) Where hydrate grows into clayey sediments, the clays typically arrange with platelets subparallel around the pods or veins of hydrate. (4) Domains of nano-to-micro- porous water ice are also seen in all recovered natural samples, presumed to be hydrate decomposition product produced during drill-core retrieval and handling. Based on lab experiments, we believe the initial liquid product is frozen as a result of the local temperature reduction accompanying the endothermic dissociation reaction. The porous texture is then preserved by liquid nitrogen quenching. (5) Samples from both marine and permafrost environments also display closely juxtaposed regions of dense and porous hydrate and ice. Although the close association of these regions remains puzzling, lab tests verify that dense hydrate can exhibit such porous appearance along it's surface after even minor decomposition at cold conditions (below 273 K). In turn, companion experiments show that nanoporous hydrate anneals to a densely crystalline habit at conditions within the hydrate stability region above 273 K, suggesting that nanoporous gas hydrate is not stable at most in situ natural conditions.
Gatch, Michael B; Rutledge, Margaret A; Carbonaro, Theresa; Forster, Michael J
2009-07-01
There has been increased recreational use of dimethyltryptamine (DMT), but little is known of its discriminative stimulus effects. The present study assessed the similarity of the discriminative stimulus effects of DMT to other types of hallucinogens and to psychostimulants. Rats were trained to discriminate DMT from saline. To test the similarity of DMT to known hallucinogens, the ability of (+)-lysergic acid diethylamide (LSD), (-)-2,5-dimethoxy-4-methylamphetamine (DOM), (+)-methamphetamine, or (+/-)3,4-methylenedioxymethyl amphetamine (MDMA) to substitute in DMT-trained rats was tested. The ability of DMT to substitute in rats trained to discriminate each of these compounds was also tested. To assess the degree of similarity in discriminative stimulus effects, each of the compounds was tested for substitution in all of the other training groups. LSD, DOM, and MDMA all fully substituted in DMT-trained rats, whereas DMT fully substituted only in DOM-trained rats. Full cross-substitution occurred between DMT and DOM, LSD and DOM, and (+)-methamphetamine and MDMA. MDMA fully substituted for (+)-methamphetamine, DOM, and DMT, but only partially for LSD. In MDMA-trained rats, LSD and (+)-methamphetamine fully substituted, whereas DMT and DOM did not fully substitute. No cross-substitution was evident between (+)-methamphetamine and DMT, LSD, or DOM. DMT produces discriminative stimulus effects most similar to those of DOM, with some similarity to the discriminative stimulus effects of LSD and MDMA. Like DOM and LSD, DMT seems to produce predominately hallucinogenic-like discriminative stimulus effects and minimal psychostimulant effects, in contrast to MDMA which produced hallucinogen- and psychostimulant-like effects.
Ultramap v3 - a Revolution in Aerial Photogrammetry
NASA Astrophysics Data System (ADS)
Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.
2012-07-01
In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.
NASA Astrophysics Data System (ADS)
Lube, G.; Cronin, S. J.; Breard, E.; Valentine, G.; Bursik, M. I.; Hort, M. K.; Freundt, A.
2013-12-01
We report on the first systematic series of large-scale Pyroclastic Density Current (PDC) experiments using the New Zealand PDC Generator, a novel international research facility in Physical Volcanology recently commissioned at Massey University. Repeatable highly energetic and hot PDCs are synthesized by the controlled ';eruption column-collapse' of up to 3500 kg of homogenously aerated Taupo ignimbrite material from a 15 m-elevated hopper onto an instrumented inclined flume. At discharge rates between 250-1300 kg/s and low- to moderate gas injection rates (yielding initial solids concentration of 15-70 vol%) channelized gas-particle mixture flows life-scaled to dense PDCs can be generated. The flow fronts of the currents reach velocities of up to 9.5 m/s over their first 12 m of travel and rapidly develop strong vertical density stratification. The PDCs typically form a highly mobile, <60 cm-thick dense and channel-confined underflow, with an overriding dilute and turbulent ash cloud surge that also laterally escapes the flume boundaries. Depending on the PDC starting conditions underflows with 1-45 vol% solids concentration are formed, while the upper surge contains <<1 vol.% solids. A characteristic feature of the underflow is the occurrence of 'ignitive' front breakouts, producing jetted lobes that accelerate outward from the flow front, initially forming a lobe-cleft structure, followed by segregation downslope into multiple flow pulses. Depending on initial solids concentration and discharge rate, stratified, dune-bedded and inversely graded bedforms are created whose thicknesses are remarkably uniform along the medial to distal runout path characterising highly mobile flow runout. Along with high-speed video footage we present time-series data of basal arrays of load- and gas-pore pressure transducers to characterise the mobile dense underflows. Data shows that the PDCs are comprised of a turbulent coarse-grained and air-ingesting front with particle-solids concentrations of 1-5 vol%. The front shows a brief phase of negative pore pressure due to the entrainment and upward elutriation of ambient air inside this front. It is immediately followed by the fine-ash rich and highly impermeable main flow body. Passage of the flow body is accompanied by strongly increasing pore-pressures of 1-3 kPa that almost fully supports the weight of the entire underflow - depicting flow-induced fluidisation of the main flow part. The remainder of the flow body shows further increases in pore-pressure aside with strong reductions in flow mass. This suggests the occurrence of zones of air-cushions forming at the base of the underflow that largely aid its inviscid runout. This sequence is repeated during arrival and passage of up to three more flow pulses. The low-permeability deposits maintain high internal gas pore pressures for several minutes after emplacement, before sudden deaeration, settling and gas loss is caused by fracturing. Flow-induced fluidisation and basal air-cushioning provide key processes behind the enigmatic long runout behaviour of dense PDCs.
Modelling the light-scattering properties of a planetary-regolith analog sample
NASA Astrophysics Data System (ADS)
Vaisanen, T.; Markkanen, J.; Hadamcik, E.; Levasseur-Regourd, A. C.; Lasue, J.; Blum, J.; Penttila, A.; Muinonen, K.
2017-12-01
Solving the scattering properties of asteroid surfaces can be made cheaper, faster, and more accurate with reliable physics-based electromagnetic scattering programs for large and dense random media. Existing exact methods fail to produce solutions for such large systems and it is essential to develop approximate methods. Radiative transfer (RT) is an approximate method which works for sparse random media such as atmospheres fails when applied to dense media. In order to make the method applicable to dense media, we have developed a radiative-transfer coherent-backscattering method (RT-CB) with incoherent interactions. To show the current progress with the RT-CB, we have modeled a planetary-regolith analog sample. The analog sample is a low-density agglomerate produced by random ballistic deposition of almost equisized silicate spheres studied using the PROGRA2-surf experiment. The scattering properties were then computed with the RT-CB assuming that the silicate spheres were equisized and that there were a Gaussian particle size distribution. The results were then compared to the measured data and the intensity plot is shown below. The phase functions are normalized to unity at the 40-deg phase angle. The tentative intensity modeling shows good match with the measured data, whereas the polarization modeling shows discrepancies. In summary, the current RT-CB modeling is promising, but more work needs to be carried out, in particular, for modeling the polarization. Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC
Nouicer, Rachid
2015-05-29
Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons havemore » been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, R AA(p T), for J/ψ in U + U collisions at √ sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.« less
Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R
The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.
Integration of mask and silicon metrology in DFM
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka
2009-03-01
We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based on the profiling method of the field proven CD metrology algorithm. The detected edges are then converted to GDSII format, which is a standard format for a design data, and utilized for various DFM systems such as simulation. Namely, by integrating pattern shapes of mask and silicon formed during a manufacturing process into GDSII format, it makes it possible to bridge highly accurate pattern profile information over to the design field of various EDA systems. These are fully integrated into design data and automated. Bi-directional cross probing between mask data and process control data is allowed by linking them. This method is a solution for total optimization that covers Design, MDP, mask production and silicon device producing. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.
Method of Making Uranium Dioxide Bodies
Wilhelm, H. A.; McClusky, J. K.
1973-09-25
Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.
ERIC Educational Resources Information Center
Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.
2011-01-01
The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…
USDA-ARS?s Scientific Manuscript database
Ornamental plant producers often rely on chemical control to manage insect pests. However, cultural practices, such as pruning, can influence plant architecture which may, in turn, affect pesticide penetration. Spray penetration was studied to determine the effect of canopy density on beneficial ins...
Variational Theory of Hot Dense Matter
ERIC Educational Resources Information Center
Mukherjee, Abhishek
2009-01-01
We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…
2001-10-01
core passage of the dark matter subcluster, was not violent enough to produce a shock wave in the dense main cluster core. The core was only...such as Chandra. At later merger stages, turbulent gas motion, which is stirred by violently relaxing dark matter cores, should have erased many of
IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, L.E.; Harrison, J.D.L.; Brett, N.H.
A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)
Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production
NASA Astrophysics Data System (ADS)
Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.
2018-05-01
The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.
Gallium arsenide/gold nanostructures deposited using plasma method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.
2016-05-23
The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less
NASA Astrophysics Data System (ADS)
Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr
2014-11-01
Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.
Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.
2011-01-01
Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850
NASA Astrophysics Data System (ADS)
Davy, P.; Darcel, C.; Le Goc, R.; Bour, O.
2011-12-01
We discuss the parameters that control fracture density on the Earth. We argue that most of fracture systems are spatially organized according to two main regimes. The smallest fractures can grow independently of each others, defining a "dilute" regime controlled by nuclei occurrence rate and individual fracture growth law. Above a certain length, fractures stop growing due to mechanical interactions between fractures. For this "dense" regime, we derive the fracture density distribution by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of kilometers for faults systems, and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on both flow and mechanical properties. In the dense regime, networks appears to be very close to a critical state.
Toward Automatic Georeferencing of Archival Aerial Photogrammetric Surveys
NASA Astrophysics Data System (ADS)
Giordano, S.; Le Bris, A.; Mallet, C.
2018-05-01
Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i) the computation of a coarse absolute image orientation; (ii) the use of the coarse Digital Surface Model (DSM) information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.
Explaining compact groups as change alignments
NASA Technical Reports Server (NTRS)
Mamon, Gary A.
1990-01-01
The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams & Rood 1987; Sulentic 1987; Hickson & Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke & Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups.
ISM gas studies towards the TeV PWN HESS J1825-137 and northern region
NASA Astrophysics Data System (ADS)
Voisin, F.; Rowell, G.; Burton, M. G.; Walsh, A.; Fukui, Y.; Aharonian, F.
2016-05-01
HESS J1825-137 is a pulsar wind nebula (PWN) whose TeV emission extends across ˜1 . Its large asymmetric shape indicates that its progenitor supernova interacted with a molecular cloud located in the north of the PWN as detected by previous CO Galactic survey (e.g. Lemiere, Terrier & Djannati-Ataï). Here, we provide a detailed picture of the interstellar medium (ISM) towards the region north of HESS J1825-137, with the analysis of the dense molecular gas from our 7 and 12 mm Mopra survey and the more diffuse molecular gas from the Nanten CO(1-0) and GRS 13CO(1-0) surveys. Our focus is the possible association between HESS J1825-137 and the unidentified TeV source to the north, HESS J1826-130. We report several dense molecular regions whose kinematic distance matched the dispersion measured distance of the pulsar. Among them, the dense molecular gas located at (RA, Dec.) = (18h421h,-13.282°) shows enhanced turbulence and we suggest that the velocity structure in this region may be explained by a cloud-cloud collision scenario. Furthermore, the presence of a H α rim may be the first evidence of the progenitor supernova remnant (SNR) of the pulsar PSR J1826-1334 as the distance between the H α rim and the TeV source matched with the predicted SNR radius RSNR ˜ 120 pc. From our ISM study, we identify a few plausible origins of the HESS J1826-130 emission, including the progenitor SNR of PSR J1826-1334 and the PWN G018.5-0.4 powered by PSR J1826-1256. A deeper TeV study however, is required to fully identify the origin of this mysterious TeV source.
NASA Astrophysics Data System (ADS)
Hoidn, Oliver; Seidler, Gerald T.
2018-01-01
The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.
A Viscoplastic Constitutive Theory for Monolithic Ceramic Materials. Series 1
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.; Duffy, Stephen F.
1997-01-01
With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior. This paper, which is the first of two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g., creep, stress relaxation, etc.) in monolithic structural ceramics. Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by hydrostatic stress. This is not the case, however, for ceramic-based material systems, unless the ceramic is fully dense. The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperature. When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current conditions, but also on thermo-mechanical history. The objective of this work is to present the formulation of a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the overview contained in this paper focuses on the multiaxial derivation of the constitutive model, and examines the scalar threshold function and its attending geometrical implications.
Regeneration of defective epithelial basement membrane and restoration of corneal transparency
Marino, Gustavo K.; Santhiago, Marcony R.; Santhanam, Abirami; Torricelli, Andre A. M.; Wilson, Steven E.
2018-01-01
PURPOSE To study regeneration of the normal ultrastructure of the epithelial basement membrane (EBM) in rabbit corneas that had -9D photorefractive keratectomy (PRK) and developed late haze (fibrosis) with restoration of transparency over one to four months after surgery and in corneas that had incisional wounds. METHODS Twenty-four rabbits had one of their eyes included into one of the two procedure groups (-9D PRK or nearly full-thickness incisional wounds), while the opposite eye serving as unwounded controls. All corneas were evaluated with slit lamp photos, transmission electron microscopy and immunohistochemistry for the myofibroblast marker alpha-smooth muscle actin and collagen type III. RESULTS In the ‘-9D PRK group’, corneas at one month after surgery had dense corneal haze and no evidence of regenerated EBM ultrastructure. By two months after surgery, however, small areas of stromal clearing began to appear within the confluent opacity (lacunae), and these corresponded to small islands of normally-regenerated EBM detected within larger area of the excimer laser-ablated zone with no evidence of normal EBM. By four months after surgery, the EBM was fully-regenerated and the corneal transparency was completely restored to the ablated zone. In the ‘Incisional wound group’, the two dense, linear corneal opacities were observed at one month after surgery and progressively faded by two and three months after surgery. The EBM ultrastructure was fully regenerated at the site of the incisions, including around epithelial plugs that extended into the stroma, by one month after surgery in all eyes. CONCLUSIONS In the rabbit model, spontaneous resolution of corneal fibrosis (haze) after high correction PRK is triggered by regeneration of EBM with normal ultrastructure in the excimer laser- ablated zone. Conversely, incisional wounds heal in rabbit corneas without the development of myofibroblasts because the EBM regenerates normally by one month after surgery. PMID:28486725
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
High-Energy Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, Tom
2003-01-01
A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant was chosen to test whether or not the reduced electrode erosion found in the Lithium Lorentz Force Accelerator (LiLFA) could also be realized in a pulsed plasma thruster. The use of the molten lithium dense plasma injector also eliminates the need for a gas valve and electrical switch; the injector design fulfills both roles, and uses no moving parts to provide, in principle, a highly reliable propellant feed and electrical switching system. Experimental results reported in this paper include: second-stage current traces, high-speed photographic and holographic imaging of the thruster exit plume, and internal mapping of the discharge chamber magnetic field from B-dot probe data. The magnetic field data is used to create a two-dimensional description of the evolution of the current sheet inside the thruster.
Matsushita, Hiroaki; Sano, Akiko; Wu, Hua; Jiao, Jin-an; Kasinathan, Poothappillai; Sullivan, Eddie J.; Wang, Zhongde; Kuroiwa, Yoshimi
2014-01-01
Towards the goal of producing fully human polyclonal antibodies (hpAbs or hIgGs) in transchromosomic (Tc) cattle, we previously reported that Tc cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin (Ig) heavy-chain (hIGH), kappa-chain (hIGK), and lambda-chain (hIGL) germline loci produced physiological levels of hIgGs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, were homozygously inactivated (bIGHM−/−, bIGHML1−/−; double knockouts or DKO). However, because endogenous bovine immunoglobulin light chain loci are still intact, the light chains are produced both from the hIGK and hIGL genomic loci on the HAC and from the endogenous bovine kappa-chain (bIGK) and lambda-chain (bIGL) genomic loci, resulting in the production of fully hIgGs (both Ig heavy-chains and light-chains are of human origin: hIgG/hIgκ or hIgG/hIgλ) and chimeric hIgGs (Ig heavy-chains are of human origin while the Ig light-chains are of bovine origin: hIgG/bIgκ or hIgG/bIgλ). To improve fully hIgG production in Tc cattle, we here report the deletion of the entire bIGL joining (J) and constant (C) gene cluster (bIGLJ1-IGLC1 to bIGLJ5-IGLC5) by employing Cre/loxP mediated site-specific chromosome recombination and the production of triple knockout (bIGHM−/−, bIGHML1−/− and bIGL−/−; TKO) Tc cattle. We further demonstrate that bIGL cluster deletion greatly improves fully hIgGs production in the sera of TKO Tc cattle, with 51.3% fully hIgGs (hIgG/hIgκ plus hIgG/hIgλ). PMID:24603704
Reaction-in-Flight neutrons as a test of stopping power in degenerate plasmas
NASA Astrophysics Data System (ADS)
Hayes, A. C.; Cerjan, C. J.; Jungman, G.; Fowler, M. M.; Gooden, M. E.; Grim, G. P.; Henry, E.; Rundberg, R. S.; Sepke, S. M.; Schneider, D. H. G.; Singleton, R. L.; Tonchev, A. P.; Wilhelmy, J. B.; Yeamans, C. B.
2016-05-01
Cryogenically cooled inertial confinement fusion capsule designs are suitable for studies of reaction-in-flight (RIF) neutrons. RIF neutrons occur when energetically up-scattered ions undergo DT reactions with a thermal ion in the plasma, producing neutrons in the energy range 9-30 MeV. The knock-on ions lose energy as they traverse the plasma, which directly affects the spectrum of the produced RIF neutrons. Here we present measurements from the National Ignition Facility (NIF) of RIF neutrons produced in cryogenic capsules, with energies above 15 MeV. We show that the measured RIFs probe stopping under previously unexplored degenerate plasma conditions and constrain stopping models in warm dense plasma conditions.
Partial connectivity increases cultural accumulation within groups.
Derex, Maxime; Boyd, Robert
2016-03-15
Complex technologies used in most human societies are beyond the inventive capacities of individuals. Instead, they result from a cumulative process in which innovations are gradually added to existing cultural traits across many generations. Recent work suggests that a population's ability to develop complex technologies is positively affected by its size and connectedness. Here, we present a simple computer-based experiment that compares the accumulation of innovations by fully and partially connected groups of the same size in a complex fitness landscape. We find that the propensity to learn from successful individuals drastically reduces cultural diversity within fully connected groups. In comparison, partially connected groups produce more diverse solutions, and this diversity allows them to develop complex solutions that are never produced in fully connected groups. These results suggest that explanations of ancestral patterns of cultural complexity may need to consider levels of population fragmentation and interaction patterns between partially isolated groups.
Partial connectivity increases cultural accumulation within groups
Boyd, Robert
2016-01-01
Complex technologies used in most human societies are beyond the inventive capacities of individuals. Instead, they result from a cumulative process in which innovations are gradually added to existing cultural traits across many generations. Recent work suggests that a population’s ability to develop complex technologies is positively affected by its size and connectedness. Here, we present a simple computer-based experiment that compares the accumulation of innovations by fully and partially connected groups of the same size in a complex fitness landscape. We find that the propensity to learn from successful individuals drastically reduces cultural diversity within fully connected groups. In comparison, partially connected groups produce more diverse solutions, and this diversity allows them to develop complex solutions that are never produced in fully connected groups. These results suggest that explanations of ancestral patterns of cultural complexity may need to consider levels of population fragmentation and interaction patterns between partially isolated groups. PMID:26929364
Gatch, Michael B.; Rutledge, Margaret A.; Carbonaro, Theresa; Forster, Michael J.
2010-01-01
Rationale There has been increased recreational use of dimethyltryptamine (DMT), but little is known of its discriminative stimulus effects. Objectives The present study assessed the similarity of the discriminative stimulus effects of DMT to other types of hallucinogens and to psychostimulants. Methods Rats were trained to discriminate DMT from saline. To test the similarity of DMT to known hallucinogens, the ability of (+)-lysergic acid diethylamide (LSD), (−)-2,5-dimethoxy-4-methylamphetamine (DOM), (+)-methamphetamine, or (±)3,4-methylenedioxymethyl-amphetamine (MDMA) to substitute in DMT-trained rats was tested. The ability of DMT to substitute in rats trained to discriminate each of these compounds was also tested. To assess the degree of similarity in discriminative stimulus effects, each of the compounds was tested for substitution in all of the other training groups. Results LSD, DOM, and MDMA all fully substituted in DMT-trained rats, whereas DMT fully substituted only in DOM-trained rats. Full cross-substitution occurred between DMT and DOM, LSD and DOM, and (+)-methamphetamine and MDMA. MDMA fully substituted for (+)-methamphetamine, DOM, and DMT, but only partially for LSD. In MDMA-trained rats, LSD and (+)-methamphetamine fully substituted, whereas DMT and DOM did not fully substitute. No cross-substitution was evident between (+)-methamphetamine and DMT, LSD, or DOM. Conclusions DMT produces discriminative stimulus effects most similar to those of DOM, with some similarity to the discriminative stimulus effects of LSD and MDMA. Like DOM and LSD, DMT seems to produce predominately hallucinogenic-like discriminative stimulus effects and minimal psychostimulant effects, in contrast to MDMA which produced hallucinogen- and psychostimulant-like effects. PMID:19288085
Geophysical Age Dating of Seamounts using Dense Core Flexure Model
NASA Astrophysics Data System (ADS)
Hwang, Gyuha; Kim, Seung-Sep
2016-04-01
Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.
Numerical modeling for dilute and dense sprays
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.
1992-01-01
We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.
The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs
Merriam, R. W.
1959-01-01
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae. PMID:13630942
Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing
NASA Astrophysics Data System (ADS)
De Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth
2017-11-01
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the "no-WIMP era". Galaxy formation is suppressed below a Jeans scale, of ≃ 10^8 M_⊙ by setting the axion mass to, m_B ˜ 10^{-22}eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, ω_B= (2.5 months)^{-1}(m_B/10^{-22}eV), would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size ≃ 150pc, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of ≃ 400nsec/(m_B/10^{-22}eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Bernardi Aubry, Fabrizio; Falcieri, Francesco Marcello; Chiggiato, Jacopo; Boldrin, Alfredo; Luna, Gian Marco; Finotto, Stefania; Camatti, Elisa; Acri, Francesco; Sclavo, Mauro; Carniel, Sandro; Bongiorni, Lucia
2018-03-14
Dense waters (DW) formation in shelf areas and their cascading off the shelf break play a major role in ventilating deep waters, thus potentially affecting ecosystem functioning and biogeochemical cycles. However, whether DW flow across shelves may affect the composition and structure of plankton communities down to the seafloor and the particles transport over long distances has not been fully investigated. Following the 2012 north Adriatic Sea cold outbreak, DW masses were intercepted at ca. 460 km south the area of origin and compared to resident ones in term of plankton biomass partitioning (pico to micro size) and phytoplankton species composition. Results indicated a relatively higher contribution of heterotrophs in DW than in deep resident water masses, probably as result of DW-mediated advection of fresh organic matter available to consumers. DWs showed unusual high abundances of Skeletonema sp., a diatom that bloomed in the north Adriatic during DW formation. The Lagrangian numerical model set up on this diatom confirmed that DW flow could be an important mechanism for plankton/particles export to deep waters. We conclude that the predicted climate-induced variability in DW formation events could have the potential to affect the ecosystem functioning of the deeper part of the Mediterranean basin, even at significant distance from generation sites.
Casein Micelle Dispersions under Osmotic Stress
Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard
2009-01-01
Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314
Edge compression techniques for visualization of dense directed graphs.
Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher
2013-12-01
We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.
Phase transitions in shocked porous quartz
NASA Astrophysics Data System (ADS)
Akin, M. C.; Crum, R. S.; Lind, J.; Pagan, D. C.; Homel, M. A.; Hurley, R. C.; Herbold, E. B.
2017-06-01
The presence of porosity in granular media provides the means to probe regions of the phase diagram that do not coincide with the principal Hugoniot. In particular, the potential for increased heating is likely to lead to observable changes in phase boundaries. 55% dense quartz and forsterite were prepared by tap filling. These samples were shock compressed using the two stage light gas gun at DCS-APS to examine the impact of the increased porosity on the phase boundary. Here we discuss the observed changes to phase in quartz and forsterite compared to the fully dense materials, the effects of porosity upon compaction and phase transitions, and the implications for constructing the phase diagram. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work was supported by LLNL's LDRD program under Grant 16-ERD-010. The Dynamic Compression Sector (35) is supported by Department of Energy / National Nuclear Security Administration under Award Number DE-NA0002442. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
A Massive Molecular Outflow in the Dense Dust Core AGAL G337.916-00.477
NASA Astrophysics Data System (ADS)
Torii, Kazufumi; Hattori, Yusuke; Hasegawa, Keisuke; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Tokuda, Kazuki; Onishi, Toshikazu; Hattori, Yasuki; Ishihara, Daisuke; Kaneda, Hidehiro; Fukui, Yasuo
2017-05-01
Massive molecular outflows erupting from high-mass young stellar objects (YSOs) provide important clues to understanding the mechanism of high-mass star formation. Based on new CO J = 3-2 and J = 1-0 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and Mopra telescope facilities, we discovered a massive bipolar outflow associated with the dense dust core AGAL G337.916-00.477 (AGAL337.9-S), located 3.48 kpc from the Sun. The outflow lobes have extensions of less than 1 pc—and thus were not fully resolved in the angular resolutions of ASTE and Mopra—and masses of ˜50 M ⊙. The maximum velocities of the outflow lobes are as high as 36-40 {km} {{{s}}}-1. Our analysis of the infrared and submillimeter data indicates that AGAL337.9-S is in an early evolutionary stage of high-mass star formation, having the total far-infrared luminosity of ˜ 5× {10}4 {L}⊙ . We also found that another dust core, AGAL G337.922-00.456 (AGAL337.9-N), located 2‧ north of AGAL337.9-S, is a high-mass YSO in an earlier evolutionary stage than AGAL337.9-S, as it is less bright in the mid-infrared than AGAL337.9-S.
Nearly full-dense and fine-grained AZO:Y ceramics sintered from the corresponding nanoparticles
2012-01-01
Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of 4.6 × 10−3 Ω·cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with better optical and electrical properties. PMID:22929049
Casein micelle dispersions under osmotic stress.
Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard
2009-01-01
Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their kappa-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.
Measuring the development of a common scientific lexicon in nanotechnology
NASA Astrophysics Data System (ADS)
Arora, Sanjay K.; Youtie, Jan; Carley, Stephen; Porter, Alan L.; Shapira, Philip
2014-01-01
Over the last two decades, nanotechnology has not only grown considerably but also evolved in its use of scientific terminology. This paper examines the growth in nano-prefixed terms in a corpus of nanotechnology scholarly publications over a 21-year time period. The percentage of publications using a nano-prefixed term has increased from <10 % in the early 1990s to nearly 80 % by 2010. A co-word analysis of nano-prefixed terms indicates that the network of these terms has moved from being densely organized around a few common nano-prefixed terms such as "nanostructure" in 2000 to becoming less dense and more differentiated in using additional nano-prefixed terms while continuing to coalesce around the common nano-prefixed terms by 2010. We further observe that the share of nanotechnology papers oriented toward biomedical and clinical medicine applications has risen from just over 5 % to more than 11 %. While these results cannot fully distinguish between the use of nano-prefixed terms in response to broader policy or societal influences, they do suggest that there are intellectual and scientific underpinnings to the growth of a collectively shared vocabulary. We consider whether our findings signify the maturation of a scientific field and the extent to which this denotes the emergence of a shared scientific understanding regarding nanotechnology.
Anatomy and dry weight yields of two Populus clones grown under intensive culture.
John B. Crist; David H. Dawson
1975-01-01
Two Populus clones grown for short rotations at three dense planting spacings produced some extremely high yields of material of acceptable quality. However, variation in yields and quality illustrates that selection of genetic material and the cultured regime under which a species is growth are significant factors that must be determined in maximum-yield systems....
PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE
Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.
1963-12-31
A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)
Production and early field performance of RPM® seedlings in Missouri floodplains
Daniel C. Dey; Wayne Lovelace; John M. Kabrick; Michael A. Gold
2004-01-01
A new nursery culture process has been developed to produce large container RPM? seedlings in an effort to improve the success in artificially regenerating hardwoods. Major features of the process include air root pruning of seedlings grown in a well aerated soil medium to encourage a dense, fibrous root system. Production has focused on native bottomland tree, shrub,...
Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes
2010-01-01
photocathodes produce picosecond-pulsed, high- current electron beams for photoinjection applications like free electron lasers . In photoinjectors, a...pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a...relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser
The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines
Newhall, Christopher G.; Hendley, James W.; Stauffer, Peter H.
1997-01-01
The second-largest volcanic eruption of this century, and by far the largest eruption to affect a densely populated area, occurred at Mount Pinatubo in the Philippines on June 15, 1991. The eruption produced high-speed avalanches of hot ash and gas, giant mudflows, and a cloud of volcanic ash hundreds of miles across. The impacts of the eruption continue to this day.
Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling
NASA Astrophysics Data System (ADS)
Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.
2018-05-01
Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.
Wang, Cheng; Zhang, Qingfang
2015-01-01
To what extent do phonological codes constrain orthographic output in handwritten production? We investigated how phonological codes constrain the selection of orthographic codes via sublexical and lexical routes in Chinese written production. Participants wrote down picture names in a picture-naming task in Experiment 1or response words in a symbol—word associative writing task in Experiment 2. A sublexical phonological property of picture names (phonetic regularity: regular vs. irregular) in Experiment 1and a lexical phonological property of response words (homophone density: dense vs. sparse) in Experiment 2, as well as word frequency of the targets in both experiments, were manipulated. A facilitatory effect of word frequency was found in both experiments, in which words with high frequency were produced faster than those with low frequency. More importantly, we observed an inhibitory phonetic regularity effect, in which low-frequency picture names with regular first characters were slower to write than those with irregular ones, and an inhibitory homophone density effect, in which characters with dense homophone density were produced more slowly than those with sparse homophone density. Results suggested that phonological codes constrained handwritten production via lexical and sublexical routes. PMID:25879662
NASA Astrophysics Data System (ADS)
de Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M.
2016-06-01
This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.
Locomotor and discriminative stimulus effects of four novel hallucinogens in rodents.
Gatch, Michael B; Dolan, Sean B; Forster, Michael J
2017-08-01
There has been increasing use of novel synthetic hallucinogenic compounds, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25B-NBOMe), 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25C-NBOMe), 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25I-NBOMe), and N,N-diallyl-5-methoxy tryptamine (5-MeO-DALT), which have been associated with severe toxicities. These four compounds were tested for discriminative stimulus effects similar to a prototypical hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM) and the entactogen (±)-3,4-methylenedioxymethamphetamine (MDMA). Locomotor activity in mice was tested to obtain dose range and time-course information. 25B-NBOMe, 25C-NBOMe, and 25I-NBOMe decreased locomotor activity. 5-MeO-DALT dose dependently increased locomotor activity, with a peak at 10 mg/kg. A higher dose (25 mg/kg) suppressed activity. 25B-NBOMe fully substituted (≥80%) in both DOM-trained and MDMA-trained rats at 0.5 mg/kg. However, higher doses produced much lower levels of drug-appropriate responding in both DOM-trained and MDMA-trained rats. 25C-NBOMe fully substituted in DOM-trained rats, but produced only 67% drug-appropriate responding in MDMA-trained rats at doses that suppressed responding. 25I-NBOMe produced 74-78% drug-appropriate responding in DOM-trained and MDMA-trained rats at doses that suppressed responding. 5-MeO-DALT fully substituted for DOM, but produced few or no MDMA-like effects. All of the compounds, except 25I-NBOMe, fully substituted for DOM, whereas only 25B-NBOMe fully substituted for MDMA. However, the failure of 25I-NBOMe to fully substitute for either MDMA or DOM was more likely because of its substantial rate-depressant effects than weak discriminative stimulus effects. All of the compounds are likely to attract recreational users for their hallucinogenic properties, but probably of much less interest as substitutes for MDMA. Although no acute adverse effects were observed at the doses tested, the substantial toxicities reported in humans, coupled with the high likelihood for illicit use, suggests that these compounds have the same potential for abuse as other, currently scheduled compounds.
Koudounas, Konstantinos; Manioudaki, Maria E.; Kourti, Anna; Banilas, Georgios; Hatzopoulos, Polydefkis
2015-01-01
The olive leaf trichomes are multicellular peltate hairs densely distributed mainly at the lower leaf epidermis. Although, non-glandular, they have gained much attention since they significantly contribute to abiotic and biotic stress tolerance of olive leaves. The exact mechanisms by which olive trichomes achieve these goals are not fully understood. They could act as mechanical barrier but they also accumulate high amounts of flavonoids among other secondary metabolites. However, little is currently known about the exact compounds they produce and the respective metabolic pathways. Here we present the first EST analysis from olive leaf trichomes by using 454-pyrosequencing. A total of 5368 unigenes were identified out of 7258 high quality reads with an average length of 262 bp. Blast search revealed that 27.5% of them had high homologies to known proteins. By using Blast2GO, 1079 unigenes (20.1%) were assigned at least one Gene Ontology (GO) term. Most of the genes were involved in cellular and metabolic processes and in binding functions followed by catalytic activity. A total of 521 transcripts were mapped to 67 KEGG pathways. Olive trichomes represent a tissue of highly unique transcriptome as per the genes involved in developmental processes and the secondary metabolism. The results indicate that mature olive trichomes are trancriptionally active, mainly through the potential production of enzymes that contribute to phenolic compounds with important roles in biotic and abiotic stress responses. PMID:26322070
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.
2017-06-01
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.
Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.
2014-01-01
Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153
NASA Astrophysics Data System (ADS)
Acharya, Ranadip; Das, Suman
2015-09-01
This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.
Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia
NASA Astrophysics Data System (ADS)
Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan
2017-05-01
Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.
Construction of monomer-free, highly crosslinked, water-compatible polymers.
Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W
2014-12-01
Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.
How much can a single webcam tell to the operation of a water system?
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero
2017-04-01
Recent advances in environmental monitoring are making a wide range of hydro-meteorological data available with a great potential to enhance understanding, modelling and management of environmental processes. Despite this progress, continuous monitoring of highly spatiotemporal heterogeneous processes is not well established yet, especially in inaccessible sites. In this context, the unprecedented availability of user-generated data on the web might open new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this work, we focus on snow and contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. The operational value of the obtained virtual snow indexes is then assessed for a real-world water-management problem, where we use these indexes for informing the daily control of a regulated lake supplying water for multiple purposes. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available.
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero
2016-12-01
Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.
Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R
2014-08-06
Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.
Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; Huang, Lianjie
2015-01-28
Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less
A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson
2009-12-01
Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.
Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, Eric J.; Yousefi, Hamid R.
2014-10-15
Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less
Carbon dioxide remediation via oxygen-enriched combustion using dense ceramic membranes
Balachandran, Uthamalingam; Bose, Arun C.; McIlvried, Howard G.
2001-01-01
A method of combusting pulverized coal by mixing the pulverized coal and an oxidant gas to provide a pulverized coal-oxidant gas mixture and contacting the pulverized coal-oxidant gas mixture with a flame sufficiently hot to combust the mixture. An oxygen-containing gas is passed in contact with a dense ceramic membrane of metal oxide material having electron conductivity and oxygen ion conductivity that is gas-impervious until the oxygen concentration on one side of the membrane is not less than about 30% by volume. An oxidant gas with an oxygen concentration of not less than about 30% by volume and a CO.sub.2 concentration of not less than about 30% by volume and pulverized coal is contacted with a flame sufficiently hot to combust the mixture to produce heat and a flue gas. One dense ceramic membrane disclosed is selected from the group consisting of materials having formulae SrCo.sub.0.8 Fe.sub.0.2 O.sub.x, SrCo.sub.0.5 FeO.sub.x and La.sub.0.2 Sr.sub.0.8 Co.sub.0.4 Fe.sub.0.6 O.sub.x.
Direct ink write fabrication of transparent ceramic gain media
NASA Astrophysics Data System (ADS)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.
2018-01-01
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.
Theory of cavitons in complex plasmas.
Shukla, P K; Eliasson, B; Sandberg, I
2003-08-15
Nonlinear coupling between Langmuir waves with finite amplitude dispersive dust acoustic perturbations is considered. It is shown that the interaction is governed by a pair of coupled nonlinear differential equations. Numerical results reveal the formation of Langmuir envelope solitons composed of the dust density depression created by the ponderomotive force of bell-shaped Langmuir wave envelops. The associated ambipolar potential is positive. The present nonlinear theory should be able to account for the trapping of large amplitude Langmuir waves in finite amplitude dust density holes. This scenario may appear in Saturn's dense rings, and the Cassini spacecraft should be able to observe fully nonlinear cavitons, as presented herein. Furthermore, we propose that new electron-beam plasma experiments should be conducted to verify our theoretical prediction.
Obliquely propagating ion acoustic solitary structures in the presence of quantized magnetic field
NASA Astrophysics Data System (ADS)
Iqbal Shaukat, Muzzamal
2017-10-01
The effect of linear and nonlinear propagation of electrostatic waves have been studied in degenerate magnetoplasma taking into account the effect of electron trapping and finite temperature with quantizing magnetic field. The formation of solitary structures has been investigated by employing the small amplitude approximation both for fully and partially degenerate quantum plasma. It is observed that the inclusion of quantizing magnetic field significantly affects the propagation characteristics of the solitary wave. Importantly, the Zakharov-Kuznetsov equation under consideration has been found to allow the formation of compressive solitary structures only. The present investigation may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments such as those found in white dwarfs.
Fused silicon-rich coatings for superalloys
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1974-01-01
Various compositions of nickel-silicon and aluminum-silicon slurries were sprayed on IN 100 specimens and fusion-sintered to form fully dense coatings. Cyclic furnace oxidation tests in 1 atm air at 1100 C showed all the coatings to be protective for at least 600 hours, and one slurry, Al-60Si, was protective for 1000 hours. This coating also protected NASA TAZ 8A and NASA-TRW VIA for 1000 hours in the same furnace test. Alloys B 1900, TD-NiCr, and Mar-M200 were protected for lesser times, while NX 188 and NASA WAZ 20 were scarcely protected at all. Limited stress-rupture testing on 0.64-cm-diam IN 100 specimens detected no degradation of mechanical properties due to silicon diffusion.
Automatic extraction of road features in urban environments using dense ALS data
NASA Astrophysics Data System (ADS)
Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra
2018-02-01
This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.
Belchansky, G.I.; Douglas, David C.; Eremeev, V.A.; Platonov, Nikita G.
2005-01-01
A 26-year (1979-2004) observational record of January multiyear sea ice distributions, derived from neural network analysis of SMMR-SSM/I passive microwave satellite data, reveals dense and persistent cover in the central Arctic basin surrounded by expansive regions of highly fluctuating interannual cover. Following a decade of quasi equilibrium, precipitous declines in multiyear ice area commenced in 1989 when the Arctic Oscillation shifted to a pronounced positive phase. Although extensive survival of first-year ice during autumn 1996 fully replenished the area of multiyear ice, a subsequent and accelerated decline returned the depletion to record lows. The most dramatic multiyear sea ice declines occurred in the East Siberian, Chukchi, and Beaufort Seas.
Kalal, M; Nugent, K A; Luther-Davies, B
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Nugent, K.A.; Luther-Davies, B.
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.
2016-04-01
The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.
Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.
Gronostajski, Zbigniew; Bandoła, P; Skubiszewski, T
2010-01-01
The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, nearly as dense as a solid material and having a lamellar structure (alpha+beta), was obtained from the titanium alloy powder produced in the HDH process.
Megagauss magnetic fields in ultra-intense laser generated dense plasmas
NASA Astrophysics Data System (ADS)
Shaikh, Moniruzzaman; Lad, Amit D.; Jana, Kamalesh; Sarkar, Deep; Dey, Indranuj; Kumar, G. Ravindra
2017-01-01
Table-top terawatt lasers can create relativistic light intensities and launch megaampere electron pulses in a solid. These pulses induce megagauss (MG) magnetic pulses, which in turn strongly affect the hot electron transport via electromagnetic instabilities. It is therefore crucial to characterize the MG magnetic fields in great detail. Here, we present measurements of the spatio-temporal evolution of MG magnetic fields produced by a high contrast (picosecond intensity contrast 10-9) laser in a dense plasma on a solid target. The MG magnetic field is measured using the magneto-optic Cotton-Mouton effect, with a time delayed second harmonic (400 nm) probe. The magnetic pulse created by the high contrast laser in a glass target peaks much faster and has a more rapid fall than that induced by a low contrast (10-6) laser.