Science.gov

Sample records for producing marker-free transgenic

  1. A Site-Specific Recombinase-Based Method to Produce Antibiotic Selectable Marker Free Transgenic Cattle

    PubMed Central

    Tong, Qi; Liu, Xu; Su, Feng; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-01-01

    Antibiotic selectable marker genes have been widely used to generate transgenic animals. Once transgenic animals have been obtained, the selectable marker is no longer necessary but raises public concerns regarding biological safety. The aim of this study was to prepare competent antibiotic selectable marker free transgenic cells for somatic cell nuclear transfer (SCNT). PhiC31 intergrase was used to insert a transgene cassette into a “safe harbor” in the bovine genome. Then, Cre recombinase was employed to excise the selectable marker under the monitoring of a fluorescent double reporter. By visually tracking the phenotypic switch from red to green fluorescence, antibiotic selectable marker free cells were easily detected and sorted by fluorescence-activated cell sorting. For safety, we used phiC31 mRNA and cell-permeant Cre protein in this study. When used as donor nuclei for SCNT, these safe harbor integrated marker-free transgenic cells supported a similar developmental competence of SCNT embryos compared with that of non-transgenic cells. After embryo transfer, antibiotic selectable marker free transgenic cattle were generated and anti-bacterial recombinant human β-defensin-3 in milk was detected during their lactation period. Thus, this approach offers a rapid and safe alternative to produce antibiotic selectable marker free transgenic farm animals, thereby making it a valuable tool to promote the healthy development and welfare of transgenic farm animals. PMID:23658729

  2. A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle.

    PubMed

    Yu, Yuan; Wang, Yongsheng; Tong, Qi; Liu, Xu; Su, Feng; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-01-01

    Antibiotic selectable marker genes have been widely used to generate transgenic animals. Once transgenic animals have been obtained, the selectable marker is no longer necessary but raises public concerns regarding biological safety. The aim of this study was to prepare competent antibiotic selectable marker free transgenic cells for somatic cell nuclear transfer (SCNT). PhiC31 intergrase was used to insert a transgene cassette into a "safe harbor" in the bovine genome. Then, Cre recombinase was employed to excise the selectable marker under the monitoring of a fluorescent double reporter. By visually tracking the phenotypic switch from red to green fluorescence, antibiotic selectable marker free cells were easily detected and sorted by fluorescence-activated cell sorting. For safety, we used phiC31 mRNA and cell-permeant Cre protein in this study. When used as donor nuclei for SCNT, these safe harbor integrated marker-free transgenic cells supported a similar developmental competence of SCNT embryos compared with that of non-transgenic cells. After embryo transfer, antibiotic selectable marker free transgenic cattle were generated and anti-bacterial recombinant human β-defensin-3 in milk was detected during their lactation period. Thus, this approach offers a rapid and safe alternative to produce antibiotic selectable marker free transgenic farm animals, thereby making it a valuable tool to promote the healthy development and welfare of transgenic farm animals.

  3. A new double right border binary vector for producing marker-free transgenic plants

    PubMed Central

    2013-01-01

    Background Once a transgenic plant is developed, the selectable marker gene (SMG) becomes unnecessary in the plant. In fact, the continued presence of the SMG in the transgenic plant may cause unexpected pleiotropic effects as well as environmental or biosafety issues. Several methods for removal of SMGs that have been reported remain inaccessible due to protection by patents, while development of new ones is expensive and cost prohibitive. Here, we describe the development of a new vector for producing marker-free plants by simply adapting an ordinary binary vector to the double right border (DRB) vector design using conventional cloning procedures. Findings We developed the DRB vector pMarkfree5.0 by placing the bar gene (representing genes of interest) between two copies of T-DNA right border sequences. The β-glucuronidase (gus) and nptII genes (representing the selectable marker gene) were cloned next followed by one copy of the left border sequence. When tested in a model species (tobacco), this vector system enabled the generation of 55.6% kanamycin-resistant plants by Agrobacterium-mediated transformation. The frequency of cotransformation of the nptII and bar transgenes using the vector was 66.7%. Using the leaf bleach and Basta assays, we confirmed that the nptII and bar transgenes were coexpressed and segregated independently in the transgenic plants. This enable separation of the transgenes in plants cotransformed using pMarkfree5.0. Conclusions The results suggest that the DRB system developed here is a practical and effective approach for separation of gene(s) of interest from a SMG and production of SMG-free plants. Therefore this system could be instrumental in production of “clean” plants containing genes of agronomic importance. PMID:24207020

  4. Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.

    PubMed

    Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru

    2016-10-01

    Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding. PMID:27055463

  5. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops.

  6. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  7. Development of Marker-Free Transgenic Potato Tubers Enriched in Caffeoylquinic Acids and Flavonols.

    PubMed

    Li, Yang; Tang, Wenzhao; Chen, Jing; Jia, Ru; Ma, Lianjie; Wang, Shaoli; Wang, Jiao; Shen, Xiangling; Chu, Zhaohui; Zhu, Changxiang; Ding, Xinhua

    2016-04-13

    Potato (Solanum tuberosum L.) is a major crop worldwide that meets human economic and nutritional requirements. Potato has several advantages over other crops: easy to cultivate and store, cheap to consume, and rich in a variety of secondary metabolites. In this study, we generated three marker-free transgenic potato lines that expressed the Arabidopsis thaliana flavonol-specific transcriptional activator AtMYB12 driven by the tuber-specific promoter Patatin. Marker-free potato tubers displayed increased amounts of caffeoylquinic acids (CQAs) (3.35-fold increases on average) and flavonols (4.50-fold increase on average). Concentrations of these metabolites were associated with the enhanced expression of genes in the CQA and flavonol biosynthesis pathways. Accumulation of CQAs and flavonols resulted in 2-fold higher antioxidant capacity compared to wild-type potatoes. Tubers from these marker-free transgenic potatoes have therefore improved antioxidant properties. PMID:27019017

  8. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows

    PubMed Central

    Lu, Dan; Liu, Shen; Ding, Fangrong; Wang, Haiping; Li, Jing; Li, Ling; Dai, Yunping; Li, Ning

    2016-01-01

    Human lysozyme is an important natural non-specific immune protein that is highly expressed in breast milk and participates in the immune response of infants against bacterial and viral infections. Considering the medicinal value and market demand for human lysozyme, an animal model for large-scale production of recombinant human lysozyme (rhLZ) is needed. In this study, we generated transgenic cloned cows with the marker-free vector pBAC-hLF-hLZ, which was shown to efficiently express rhLZ in cow milk. Seven transgenic cloned cows, identified by polymerase chain reaction, Southern blot, and western blot analyses, produced rhLZ in milk at concentrations of up to 3149.19 ± 24.80 mg/L. The purified rhLZ had a similar molecular weight and enzymatic activity as wild-type human lysozyme possessed the same C-terminal and N-terminal amino acid sequences. The preliminary results from the milk yield and milk compositions from a naturally lactating transgenic cloned cow 0906 were also tested. These results provide a solid foundation for the large-scale production of rhLZ in the future. PMID:26961596

  9. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    PubMed

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice. PMID:26172549

  10. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision

    PubMed Central

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice. PMID:26172549

  11. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    PubMed

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice.

  12. [Generation of vector backbone-free and selectable marker-free transgenic maize (Zea mays L.) via ovary-drip method].

    PubMed

    Yang, Ai-Fu; Su, Qiao; An, Li-Jia

    2009-01-01

    The presence of vector backbone sequences and selectable marker genes in transgenic plants has been the key concern for biosafety. A direct solution is to totally avoid the use of vector backbone sequences and selectable marker genes from the beginning of transgenic plant generation. In this study, the ovary-drip method was established and optimized. The key features of this method focused on the complete removal of the whole styles, and the subsequent application of a DNA solution directly to the ovaries. A vector backbone-free and selectable marker-free linear GFP cassette (Ubi-GFP -nos) was transformed into maize via the ovary-drip method. PCR analysis showed that suitable maize variety was 9818 and optimal transformation time was 18-20 h after pollination, which produced the highest PCR positive frequency (3.01%). Southern blotting analysis showed that the transgenic plants had simple integration patterns (1-2 bands). GFP transcription was de-tected by RT-PCR analysis. Green fluorescence was observed in roots and immature embryos of transgenic plants by a fluorescence microscopy.

  13. Generation of Marker-free Transgenic Plants Concurrently Resistant to a DNA Geminivirus and a RNA Tospovirus

    PubMed Central

    Yang, Ching-Fu; Chen, Kuan-Chun; Cheng, Ying-Hui; Raja, Joseph A. J.; Huang, Ya-Ling; Chien, Wan-Chu; Yeh, Shyi-Dong

    2014-01-01

    Global threats of ssDNA geminivirus and ss(-)RNA tospovirus on crops necessitate the development of transgenic resistance. Here, we constructed a two-T DNA vector carrying a hairpin of the intergenic region (IGR) of Ageratum yellow vein virus (AYVV), residing in an intron inserted in an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV). Transgenic tobacco lines highly resistant to AYVV and MYSV were generated. Accumulation of 24-nt siRNA, higher methylation levels on the IGR promoters of the transgene, and suppression of IGR promoter activity of invading AYVV indicate that AYVV resistance is mediated by transcriptional gene silencing. Lack of NP transcript and accumulation of corresponding siRNAs indicate that MYSV resistance is mediated through post-transcriptional gene silencing. Marker-free progenies with concurrent resistance to both AYVV and MYSV, stably inherited as dominant nuclear traits, were obtained. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses with less biosafety concerns. PMID:25030413

  14. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System.

    PubMed

    Kasai, Yuki; Harayama, Shigeaki

    2016-01-01

    The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after

  15. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System

    PubMed Central

    Kasai, Yuki; Harayama, Shigeaki

    2016-01-01

    The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after

  16. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination

    PubMed Central

    2013-01-01

    Background Antibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype. Results Allium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding

  17. Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects.

    PubMed

    Manimaran, P; Ramkumar, G; Sakthivel, K; Sundaram, R M; Madhav, M S; Balachandran, S M

    2011-01-01

    Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program. PMID:21672619

  18. Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects.

    PubMed

    Manimaran, P; Ramkumar, G; Sakthivel, K; Sundaram, R M; Madhav, M S; Balachandran, S M

    2011-01-01

    Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program.

  19. Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation.

    PubMed

    Yang, Aifu; Su, Qiao; An, Lijia

    2009-03-01

    The presence of selectable marker genes and vector backbone sequences has affected the safe assessment of transgenic plants. In this study, the ovary-drip method for directly generating vector- and selectable marker-free transgenic plants was described, by which maize was transformed with a linear GFP cassette (Ubi-GFP-nos). The key features of this method center on the complete removal of the styles and the subsequent application of a DNA solution directly to the ovaries. The movement of the exogenous DNA was monitored using fluorescein isothiocyanate-labeled DNA, which showed that the time taken by the exogenous DNA to enter the ovaries was shortened compared to that of the pollen-tube pathway. This led to an improved transformation frequency of 3.38% compared to 0.86% for the pollen-tube pathway as determined by PCR analysis. The use of 0.05% surfactant Silwet L-77 + 5% sucrose as a transformation solution further increased the transformation frequency to 6.47%. Southern blot analysis showed that the transgenic plants had low transgene copy number and simple integration pattern. Green fluorescence was observed in roots and immature embryos of transgenic plants by fluorescence microscopy. Progeny analysis showed that GFP insertions were inherited in T(1) generation. The ovary-drip method would become a favorable choice for directly generating vector- and marker-free transgenic maize expressing functional genes of agronomic interest.

  20. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.

    PubMed

    Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar

    2016-04-01

    Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW. PMID:26925624

  1. Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus)

    PubMed Central

    2014-01-01

    Background The potential biofuel plant Jatropha curcas L. is affected by larvae of Archips micaceanus (Walker), a moth of the family Tortricidae. The hybrid Bacillus thuringiensis (Bt) δ-endotoxin protein Cry1Ab/1Ac confers resistance to lepidopteran insects in transgenic rice. Results Here, we report the production of a marker-free transgenic line of J. curcas (L10) expressing Cry1Ab/1Ac using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L10 carries a single copy of marker-free T-DNA that contains the Cry1Ab/1Ac gene under the control of a maize phosphoenolpyruvate carboxylase gene promoter (P Pepc :Cry1Ab/1Ac:T Nos ). The P Pepc :Cry1Ab/1Ac:T Nos gene was highly expressed in leaves of L10 plants. Insecticidal bioassays using leaf explants of L10 resulted in 80-100% mortality of larvae of A. micaceanus at 4 days after infestation. Conclusion The results demonstrate that the hybrid Bt δ-endotoxin protein Cry1Ab/1Ac expressed in Jatropha curcas displays strong insecticidal activity to A. micaceanus. The marker-free transgenic J. curcas line L10 can be used for breeding of insect resistance to A. micaceanus. PMID:24808924

  2. How To Produce and Characterize Transgenic Plants.

    ERIC Educational Resources Information Center

    Savka, Michael A.; Wang, Shu-Yi; Wilson, Mark

    2002-01-01

    Explains the process of establishing transgenic plants which is a very important tool in plant biology and modern agriculture. Produces transgenic plants with the ability to synthesize opines. (Contains 17 references.) (YDS)

  3. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars. PMID:15359604

  4. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    PubMed

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations. PMID:24802621

  5. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    PubMed

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.

  6. [DEVELOPMENT OF MARKER-FREE TRANSFORMANTS BY SITE-SPECIFIC RECOMBINASES].

    PubMed

    Sekan, A S; Isaenkov, S V; Blume, Ya B

    2015-01-01

    To produce transgenic plants in current biotechnology selectable marker genes are used that lead to the selectivity.of transformants from non-transformed organisms. However, after the transgenic event has been occurred, the presence of these genes in transformed genome in general is uselless. Moreover, the continued presence of this kind of genes in transgenic plants with their further commercialization may raise certain public concern. Therefore, various techniques have been developed in recent years to obtain marker free transgenic plants. In the present review the main strategies for removal of selective marker DNA sequences that are used in genetic engineering are described. The most popular among them is site-specific recombination technology. The particular attention is paid to site-specific recombinase system Cre/loxP. The using of a new approach with site-specific recombinase system Cre/loxP under the control of 35S promoter to generate marker-free genetically modified plants is described. PMID:26841495

  7. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker.

    PubMed

    Khan, Raham Sher; Ntui, Valentine Otang; Chin, Dong Poh; Nakamura, Ikuo; Mii, Masahiro

    2011-04-01

    The use of antibiotic or herbicide resistant genes as selection markers for production of transgenic plants and their continuous presence in the final transgenics has been a serious problem for their public acceptance and commercialization. MAT (multi-auto-transformation) vector system has been one of the different strategies to excise the selection marker gene and produce marker-free transgenic plants. In the present study, ipt (isopentenyl transferase) gene was used as a selection marker gene. A chitinase gene, ChiC (isolated from Streptomyces griseus strain HUT 6037) was used as a gene of interest. ChiC gene was cloned from the binary vector, pEKH1 to an ipt-type MAT vector, pMAT21 by gateway cloning and transferred to Agrobacterium tumefaciens strain EHA105. The infected tuber discs of potato were cultured on hormone- and antibiotic-free MS medium. Seven of the 35 explants infected with the pMAT21/ChiC produced shoots. The same antibiotic- and hormones-free MS medium was used in subcultures of the shoots (ipt like and normal shoots). Molecular analyses of genomic DNA from transgenic plants confirmed the integration of gene of interest and excision of the selection marker in 3 of the 7 clones. Expression of ChiC gene was confirmed by Northern blot and western blot analyses. Disease-resistant assay of the marker-free transgenic, in vitro and greenhouse-grown plants exhibited enhanced resistance against Alternaria solani (early blight), Botrytis cinerea (gray mold) and Fusarium oxysporum (Fusarium wilt). From these results it could be concluded that ipt gene can be used as a selection marker to produce marker-free disease-resistant transgenic potato plants on PGR- and antibiotic-free MS medium.

  8. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  9. Pathogen resistance of transgenic tobacco plants producing caffeine.

    PubMed

    Kim, Yun-Soo; Sano, Hiroshi

    2008-02-01

    Caffeine (1,3,7-trimethylxanthine) is a typical purine alkaloid, and produced by a variety of plants such as coffee and tea. Its physiological function, however, is not completely understood, but chemical defense against pathogens and herbivores, and allelopathic effects against competing plant species have been proposed. Previously, we constructed transgenic tobacco plants, which produced caffeine up to 5 microg per gram fresh weight of leaves, and showed them to repel caterpillars of tobacco cutworms (Spodoptera litura). In the present study, we found that these transgenic plants constitutively expressed defense-related genes encoding pathogenesis-related (PR)-1a and proteinase inhibitor II under non-stressed conditions. We also found that they were highly resistant against pathogens, tobacco mosaic virus and Pseudomonas syringae. Expression of PR-1a and PR-2 was higher in transgenic plants than in wild-type plants during infection. Exogenously applied caffeine to wild-type tobacco leaves exhibited the similar resistant activity. These results suggested that caffeine stimulated endogenous defense system of host plants through directly or indirectly activating gene expression. This assumption is essentially consistent with the idea of chemical defense, in which caffeine may act as one of signaling molecules to activate defense response. It is thus conceivable that the effect of caffeine is bifunctional; direct interference with pest metabolic pathways, and activation of host defense systems.

  10. [Construction of Fat-1 eukaryotic expression vector of excision markers and the establishment of transgenic sheep cell lines].

    PubMed

    Lima, A; Zhu, Heping; Wang, Ruiyao; Yan, Tao; Su, Xiaohu; Li, Lu; Wang, Bingping; Na, Shunwendoule; Qi, Guichun; Zhou, Huanmin

    2016-02-01

    In order to establish marker-free transgenic cell lines, we cloned Fat-1 gene, attB and Loxp sequences by PCR. Then we inserted these sequences to pN1-EGFP vector and got pEGFP-N1-Fat-1 expression vector. PhiC31 integrase mRNA which was generated by in vitro transcription and a pEGFP-N1-Fat-1 expression vector co-electroporated into sheep fetal fibroblasts, and then we got transgenic cell lines expressing green fluorescence. Prokaryotic expression and purification of Cre recombinant protein was performed. Cre recombinant protein was transducted into stably-transfected cell colonies. We identified cell colonies by sequencing and established marker-free transgenic cell lines and eventually- established marker-free transgenic cell lines which were building more safely basic for producing Fat-1 transgenic animals. PMID:27382771

  11. [Construction of Fat-1 eukaryotic expression vector of excision markers and the establishment of transgenic sheep cell lines].

    PubMed

    Lima, A; Zhu, Heping; Wang, Ruiyao; Yan, Tao; Su, Xiaohu; Li, Lu; Wang, Bingping; Na, Shunwendoule; Qi, Guichun; Zhou, Huanmin

    2016-02-01

    In order to establish marker-free transgenic cell lines, we cloned Fat-1 gene, attB and Loxp sequences by PCR. Then we inserted these sequences to pN1-EGFP vector and got pEGFP-N1-Fat-1 expression vector. PhiC31 integrase mRNA which was generated by in vitro transcription and a pEGFP-N1-Fat-1 expression vector co-electroporated into sheep fetal fibroblasts, and then we got transgenic cell lines expressing green fluorescence. Prokaryotic expression and purification of Cre recombinant protein was performed. Cre recombinant protein was transducted into stably-transfected cell colonies. We identified cell colonies by sequencing and established marker-free transgenic cell lines and eventually- established marker-free transgenic cell lines which were building more safely basic for producing Fat-1 transgenic animals.

  12. The use of nuclear transfer to produce transgenic pigs.

    PubMed

    Macháty, Zoltán; Bondioli, Kenneth R; Ramsoondar, Jagdeece J; Fodor, William L

    2002-01-01

    Manipulation of the pig genome has the potential to improve pig production and offers powerful biomedical applications. Genetic manipulation of mammals has been possible for over two decades, but the technology available has proven both difficult and inefficient. The development of new techniques to enhance efficiency and overcome the complications of random insertion is of importance. Nuclear transfer combined with homologous recombination provides a possible solution: precise genetic modifications in the pig genome may be induced via homologous recombination, and viable offspring can be produced by nuclear transfer using cultured transfected cell lines. The technique is still ineffective, but it is believed to have immense potential. One area that would benefit from the technology is that of xenotransplantation: transgenic pigs are expected to be available as organ donors in the foreseeable future. PMID:12006153

  13. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.

    PubMed

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash

    2014-05-01

    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques.

  14. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.

    PubMed

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash

    2014-05-01

    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques. PMID:24330327

  15. Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population.

    PubMed

    Zapiola, María L; Mallory-Smith, Carol A

    2012-10-01

    Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral-regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off-type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.

  16. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer.

    PubMed

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-10-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition. PMID:27565868

  17. Assessment of simple marker-free genetic transformation techniques in alfalfa.

    PubMed

    Ferradini, Nicoletta; Nicolia, Alessandro; Capomaccio, Stefano; Veronesi, Fabio; Rosellini, Daniele

    2011-11-01

    Methods to avoid the presence of selectable marker genes (SMG) in transgenic plants are available but not implemented in many crop species. We assessed the efficiency of simple marker-free Agrobacterium-mediated transformation techniques in alfalfa: regeneration without selection, or marker-less, and co-transformation with two vectors, one containing the SMG and one containing a non-selected gene. To easily estimate the efficiency of marker-less transformation, the nptII and the GUS markers were used as non-selected genes. After Agrobacterium treatment, somatic embryos were regenerated without selection. The percentage of transgenic embryos was determined by a second cycle of regeneration using the embryos as starting material, in the presence of kanamycin, by PCR screening of T1 progenies, and by the GUS test. In two experiments, from 0 to 1.7% of the somatic embryos were transgenic. Co-transformation was performed with two vectors, one with the hemL SMG and one with the unselected nptII gene, each carried by a different culture of Agrobacterium. Only 15 putative co-transformed plants were regenerated from two experiments, with an average co-transformation percentage of 3.7. Southern blot hybridizations and/or T(1) progeny segregation were used to confirm transgene integration, and qPCR was also used to estimate the T-DNA copy number. In the T(1) progenies obtained by crossing with a non-transgenic pollinator, marker-free segregants were obtained. Both marker-free approaches showed very low efficiency. PMID:21691741

  18. PERSISTENCE IN SOIL OF TRANSGENIC PLANT PRODUCED BACILLUS THURINGIENSIS VAR. KURSTAKI O-ENDOTOXIN1

    EPA Science Inventory

    Transgenic plants that produce pesticidal proteins will release these proteins into the soil when these plants are incorporated into the soil by tillage or as leaf litter. Little is known about the fate and persistence of transgenic plant pesticidal products in the soil. We used ...

  19. Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus.

    PubMed

    Le, Dung Tien; Chu, Ha Duc; Sasaya, Takahide

    2015-01-01

    Rice tungro spherical virus (RTSV), also known as Rice waika virus, does not cause visible symptoms in infected rice plants. However, the virus plays a critical role in spreading Rice tungro bacilliform virus (RTBV), which is the major cause of severe symptoms of rice tungro disease. Recent studies showed that RNA interference (RNAi) can be used to develop virus-resistance transgenic rice plants. In this report, we presented simple procedures and protocols needed for the creation of transgenic rice plants capable of producing small interfering RNA specific against RTSV sequences. Notably, our study showed that 60 out of 64 individual hygromycin-resistant lines (putative transgenic lines) obtained through transformation carried transgenes designed for producing hairpin double-stranded RNA. Northern blot analyses revealed the presence of small interfering RNA of 21- to 24-mer in 46 out of 56 confirmed transgenic lines. Taken together, our study indicated that transgenic rice plants carrying an inverted repeat of 500-bp fragments encoding various proteins of RTSV can produce small interfering RNA from the hairpin RNA transcribed from that transgene. In light of recent studies with other viruses, it is possible that some of these transgenic rice lines might be resistant to RTSV.

  20. Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus

    PubMed Central

    Le, Dung Tien; Chu, Ha Duc; Sasaya, Takahide

    2015-01-01

    ABSTRACT Rice tungro spherical virus (RTSV), also known as Rice waika virus, does not cause visible symptoms in infected rice plants. However, the virus plays a critical role in spreading Rice tungro bacilliform virus (RTBV), which is the major cause of severe symptoms of rice tungro disease. Recent studies showed that RNA interference (RNAi) can be used to develop virus-resistance transgenic rice plants. In this report, we presented simple procedures and protocols needed for the creation of transgenic rice plants capable of producing small interfering RNA specific against RTSV sequences. Notably, our study showed that 60 out of 64 individual hygromycin-resistant lines (putative transgenic lines) obtained through transformation carried transgenes designed for producing hairpin double-stranded RNA. Northern blot analyses revealed the presence of small interfering RNA of 21- to 24-mer in 46 out of 56 confirmed transgenic lines. Taken together, our study indicated that transgenic rice plants carrying an inverted repeat of 500-bp fragments encoding various proteins of RTSV can produce small interfering RNA from the hairpin RNA transcribed from that transgene. In light of recent studies with other viruses, it is possible that some of these transgenic rice lines might be resistant to RTSV. PMID:25984767

  1. Simultaneous activation of salicylate production and fungal resistance in transgenic chrysanthemum producing caffeine

    PubMed Central

    Kim, Yun-Soo; Lim, Soon; Yoda, Hiroshi; Choi, Chang-Sun; Choi, Yong-Eui

    2011-01-01

    Caffeine functions in the chemical defense against biotic attackers in a few plant species including coffee and tea. Transgenic tobacco plants that endogenously produced caffeine by expressing three N-methyltransferases involved in the caffeine biosynthesis pathway exhibited a strong resistance to pathogens and herbivores. Here we report that transgenic Chrysanthemum, which produced an equivalent level of caffeine as the tobacco plants at approximately 3 µg g−1 fresh tissues, also exhibited a resistance against grey mold fungal attack. Transcripts of PR-2 gene, a marker for pathogen response, were constitutively accumulated in mature leaves without pathogen attack. The levels of salicylic acid and its glucoside conjugate in mature leaves of the transgenic lines were found to be 2.5-fold higher than in the wild type control. It is suggested that endogenous caffeine stimulated production and/or deposition of salicylates, which possibly activated a series of defense reactions even under non-stressed conditions. PMID:21346420

  2. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori)

    PubMed Central

    Tada, Minoru; Tatematsu, Ken-Ichiro; Ishii-Watabe, Akiko; Harazono, Akira; Takakura, Daisuke; Hashii, Noritaka; Sezutsu, Hideki; Kawasaki, Nana

    2015-01-01

    In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO− and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity. PMID:26261057

  3. Minimization of viral contamination in human pharmaceuticals produced in the milk of transgenic goats.

    PubMed

    Ziomek, C A

    1996-01-01

    The minimization of viral contamination in therapeutic proteins produced in transgenic goats' milk can be achieved by a combinatorial approach. It begins with reduction in the risk in the starting material followed by appropriate clearance/inactivation steps in the purification process. To minimize risk in the starting material, Genzyme Transgenics Corporation (GTC)'s closed goat herds are subjected to routine serological surveillance for known viral diseases, especially those transmitted through milk. Although scrapie is defined as a slow-acting virus of sheep and goats, its incidence in goats in the US is rare (only four cases) and all four were in goats co-mingled with scrapie-infected sheep. All GTC's domestic goats were selected for previous non-exposure to sheep, cows or scrapie. In addition, milk, which is the starting material for transgenic protein production, is categorized as non-infectious for prions. Standard operating procedures are in place at GTC Farm sites to minimize human, animal or vehicular vectoring of viral diseases and the transgenic production animals are milked according to high standard Good Agricultural Practices (GAP). The transgenic protein (ATIII) purification process contains steps that should provide a high level of viral reduction. Validation of viral and prion removal will also be undertaken.

  4. High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein

    PubMed Central

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  5. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.

    PubMed

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.

  6. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.

    PubMed

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  7. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing.

    PubMed

    Grosse-Hovest, Ludger; Müller, Sigrid; Minoia, Rosa; Wolf, Eckhard; Zakhartchenko, Valeri; Wenigerkind, Hendrik; Lassnig, Caroline; Besenfelder, Urban; Müller, Mathias; Lytton, Simon D; Jung, Gundram; Brem, Gottfried

    2004-05-01

    Complex recombinant antibody fragments for modulation of immune function such as tumor cell destruction have emerged at a rapid pace and diverse anticancer strategies are being developed to benefit patients. Despite improvements in molecule design and expression systems, the quantity and stability, e.g., of single-chain antibodies produced in cell culture, is often insufficient for treatment of human disease, and the costs of scale-up, labor, and fermentation facilities are prohibitive. The ability to yield mg/ml levels of recombinant antibodies and the scale-up flexibility make transgenic production in plants and livestock an attractive alternative to mammalian cell culture as a source of large quantities of biotherapeutics. Here, we report on the efficient production of a bispecific single-chain antibody in the serum of transgenic rabbits and a herd of nine cloned, transgenic cattle. The bispecific protein, designated r28M, is directed to a melanoma-associated proteoglycan and the human CD28 molecule on T cells. Purified from the serum of transgenic animals, the protein is stable and fully active in mediating target cell-restricted T cell stimulation and tumor cell killing.

  8. A Standardized Lepidopteran Bioassay to Investigate the Bioactivity of Insecticidal Proteins Produced in Transgenic Crops.

    PubMed

    Graser, Gerson; Walters, Frederick S

    2016-01-01

    Insecticidal bioassays are the only reliable method to investigate the biological activity of an insecticidal protein and therefore provide an essential toolkit for the characterization and potency determination of these proteins. Here we present a standardized method for a lepidopteran larval bioassay, which is optimized to specifically estimate activity of insecticidal proteins produced in transgenic plants. The treatment can be either applied to the surface of the artificial diet, or blended into the diet. PMID:26614295

  9. Marker-free cell discrimination by holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Schaal, F.; Warber, M.; Zwick, S.; van der Kuip, H.; Haist, T.; Osten, W.

    2009-06-01

    We introduce a method for marker-free cell discrimination based on optical tweezers. Cancerous, non-cancerous, and drug-treated cells could be distinguished by measuring the trapping forces using holographic optical tweezers. We present trapping force measurements on different cell lines: normal pre-B lymphocyte cells (BaF3; "normal cells"), their Bcr-Abl transformed counterparts (BaF3-p185; "cancer cells") as a model for chronic myeloid leukaemia (CML) and Imatinib treated BaF3-p185 cells. The results are compared with reference measurements obtained by a commercial flow cytometry system.

  10. Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes.

    PubMed

    Oliva, Norman; Chadha-Mohanty, Prabhjit; Poletti, Susanna; Abrigo, Editha; Atienza, Genelou; Torrizo, Lina; Garcia, Ruby; Dueñas, Conrado; Poncio, Mar Aristeo; Balindong, Jeanette; Manzanilla, Marina; Montecillo, Florencia; Zaidem, Maricris; Barry, Gerard; Hervé, Philippe; Shou, Huxia; Slamet-Loedin, Inez H

    2014-01-01

    Biofortification of rice (Oryza sativa L.) using a transgenic approach to increase the amount of iron in the grain is proposed as a low-cost, reliable, and sustainable solution to help developing countries combat anemia. In this study, we generated and evaluated a large number of rice or soybean ferritin over-accumulators in rice mega-variety IR64, including marker-free events, by introducing soybean or rice ferritin genes into the endosperm for product development. Accumulation of the protein was confirmed by ELISA, in situ immunological detection, and Western blotting. As much as a 37- and 19-fold increase in the expression of ferritin gene in single and co-transformed plants, respectively, and a 3.4-fold increase in Fe content in the grain over the IR64 wild type was achieved using this approach. Agronomic characteristics of a total of 1,860 progenies from 58 IR64 single independent transgenic events and 768 progenies from 27 marker-free transgenic events were evaluated and most trait characteristics did not show a penalty. Grain quality evaluation of high-Fe IR64 transgenic events showed quality similar to that of the wild-type IR64. To understand the effect of transgenes on iron homeostasis, transcript analysis was conducted on a subset of genes involved in iron uptake and loading. Gene expression of the exogenous ferritin gene in grain correlates with protein accumulation and iron concentration. The expression of NAS2 and NAS3 metal transporters increased during the grain milky stage. PMID:24482599

  11. Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants.

    PubMed

    Peréz Aguirreburualde, María Sol; Gómez, María Cristina; Ostachuk, Agustín; Wolman, Federico; Albanesi, Guillermo; Pecora, Andrea; Odeon, Anselmo; Ardila, Fernando; Escribano, José M; Dus Santos, María José; Wigdorovitz, Andrés

    2013-02-15

    Bovine viral diarrhea virus (BVDV) is considered an important cause of economic loss within bovine herds worldwide. In Argentina, only the use of inactivated vaccines is allowed, however, the efficacy of inactivated BVDV vaccines is variable due to its low immunogenicity. The use of recombinant subunit vaccines has been proposed as an alternative to overcome this difficulty. Different studies on protection against BVDV infection have focused the E2 protein, supporting its putative use in subunit vaccines. Utilization of transgenic plants expressing recombinant antigens for the formulation of experimental vaccines represents an innovative and cost effective alternative to the classical fermentation systems. The aim of this work was to develop transgenic alfalfa plants (Medicago sativa, L.) expressing a truncated version of the structural protein E2 from BVDV fused to a molecule named APCH, that target to antigen presenting cells (APCH-tE2). The concentration of recombinant APCH-tE2 in alfalfa leaves was 1 μg/g at fresh weight and its expression remained stable after vegetative propagation. A methodology based an aqueous two phases system was standardized for concentration and partial purification of APCH-tE2 from alfalfa. Guinea pigs parentally immunized with leaf extracts developed high titers of neutralizing antibodies. In bovine, the APCH-tE2 subunit vaccine was able to induce BVDV-specific neutralizing antibodies. After challenge, bovines inoculated with 3 μg of APCH-tE2 produced in alfalfa transgenic plants showed complete virological protection. PMID:23291101

  12. Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus.

    PubMed

    Wang, Yong Sheng; He, Xiaoning; Du, Yue; Su, Jianmin; Gao, Mingqing; Ma, Yefei; Hua, Song; Quan, Fusheng; Liu, Jun; Zhang, Yong

    2015-09-01

    This study aimed to assess the effects of the intracellular pathogen resistance 1 (Ipr1) transgene on preventing infection of Mycobacterium bovis in cattle. A specific expression vector for the Ipr1 gene was constructed and inserted in the genome between surfactant protein A and methionine adenosyltransferase I of bovine fetal fibroblasts. After SCNT, cleavage (86.9% vs. 87.4%, P > 0.05) and blastocyst developmental rates (34.6% vs. 33.5%, P > 0.05) were similar between transgenic and nontransgenic bovine fetal fibroblasts. Four surviving and one dead Ipr1-transgenic female cattle were produced by transfer of the SCNT blastocysts. Polymerase chain reaction and Southern blot analyses confirmed that the Ipr1 transgene of the cattle was located at the expected site. Inserting Ipr1 gene did not affect the expression of the surrounding genes. Main death modality of M bovis-infected peripheral blood mononuclear cells (PBMCs) derived from Ipr1-transgenic cattle was apoptosis, whereas that of PBMCs from control cattle was necrosis. In addition, the number of colony-forming units in PBMCs of Ipr1-transgenic cattle was significantly lower than that of the control cattle (P < 0.05). The finding that expression of Ipr1 transgene in PBMCs significantly increased anti-M bovis activity suggested breeding anti-M bovis cattle population by the transgenic SCNT technique could be a feasible strategy.

  13. Migratory beekeeping practices contribute insignificantly to transgenic pollen flow among fields of alfalfa produced for seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially iso...

  14. Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives.

    PubMed

    Mason, Peter; Braun, Lorraine; Warwick, Suzanne I; Zhu, Bin; Stewart, C Neal

    2003-01-01

    Release of transgenic insect-resistant crops creates the potential not only for the insect pest to evolve resistance but for the escape of transgenes that may confer novel or enhanced fitness-related traits through hybridization with their wild relatives. The differential response of diamondback moth (Plutella xylostella) populations in eastern and western Canada to Bt-producing (GT) Brassica napus and the potential for enhanced fitness of GT B. napus and weedy GT Brassica rapa x B. napus hybrid populations (F1, BC1, BC2) were studied. Comparative bioassays using neonates and 4th instars showed that GT B. napus and GT B. rapa x B. napus hybrids are lethal to larvae from both populations. No measurable plant fitness advantage (reproductive dry weight) was observed for GT B. napus (crop) and GT B. rapa x B. napus hybrid populations at low insect pressure (1 larva per leaf). At high insect densities (>10 larvae per leaf), vegetative plant weight was not significantly different for GT B. napus and non-GT B. napus, whereas reproductive plant weight and proportion of reproductive material were significantly higher in GT B. napus. Establishment of the Bt trait in wild B. rapa populations may also increase its competitive advantage under high insect pressure.

  15. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  16. Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice.

    PubMed

    Wrabetz, Lawrence; D'Antonio, Maurizio; Pennuto, Maria; Dati, Gabriele; Tinelli, Elisa; Fratta, Pietro; Previtali, Stefano; Imperiale, Daniele; Zielasek, Jurgen; Toyka, Klaus; Avila, Robin L; Kirschner, Daniel A; Messing, Albee; Feltri, M Laura; Quattrini, Angelo

    2006-02-22

    Missense mutations in 22 genes account for one-quarter of Charcot-Marie-Tooth (CMT) hereditary neuropathies. Myelin Protein Zero (MPZ, P0) mutations produce phenotypes ranging from adult demyelinating (CMT1B) to early onset [Déjérine-Sottas syndrome (DSS) or congenital hypomyelination] to predominantly axonal neuropathy, suggesting gain of function mechanisms. To test this directly, we produced mice in which either the MpzS63C (DSS) or MpzS63del (CMT1B) transgene was inserted randomly, so that the endogenous Mpz alleles could compensate for any loss of mutant P0 function. We show that either mutant allele produces demyelinating neuropathy that mimics the corresponding human disease. However, P0S63C creates a packing defect in the myelin sheath, whereas P0S63del does not arrive to the myelin sheath and is instead retained in the endoplasmic reticulum, where it elicits an unfolded protein response (UPR). This is the first evidence for UPR in association with neuropathy and provides a model to determine whether and how mutant proteins can provoke demyelination from outside of myelin. PMID:16495463

  17. Vesicles Cytoplasmic Injection: An Efficient Technique to Produce Porcine Transgene-Expressing Embryos.

    PubMed

    Luchetti, C G; Bevacqua, R J; Lorenzo, M S; Tello, M F; Willis, M; Buemo, C P; Lombardo, D M; Salamone, D F

    2016-08-01

    The use of vesicles co-incubated with plasmids showed to improve the efficiency of cytoplasmic injection of transgenes in cattle. Here, this technique was tested as a simplified alternative for transgenes delivery in porcine zygotes. To this aim, cytoplasmic injection of the plasmid alone was compared to the injection with plasmids co-incubated with vesicles both in diploid parthenogenic and IVF zygotes. The plasmid pcx-egfp was injected circular (CP) at 3, 30 and 300 ng/μl and linear (LP) at 30 ng/μl. The experimental groups using parthenogenetic zygotes were as follows: CP naked at 3 ng/μl (N = 105), 30 ng/μl (N = 95) and 300 ng/μl (N = 65); Sham (N = 105); control not injected (N = 223); LP naked at 30 ng/μl (N = 78); LP vesicles (N = 115) and Sham vesicles (N = 59). For IVF zygotes: LP naked (N = 44) LP vesicles (N = 94), Sham (N = 59) and control (N = 79). Cleavage, blastocyst and GFP+ rates were analysed by Fisher's test (p < 0.05). The parthenogenic CP naked group showed lower cleavage respect to control (p < 0.05). The highest concentration of plasmids to allow development to blastocyst stage was 30 ng/μl. There were no differences in DNA fragmentation between groups. The parthenogenic LP naked group resulted in high GFP rates (46%) and also allowed the production of GFP blastocysts (33%). The cytoplasmic injection with LP vesicles into parthenogenic zygotes allowed 100% GFP blastocysts. Injected IVF showed higher cleavage rates than control (p < 0.05). In IVF zygotes, only the use of vesicles produced GFP blastocysts. The use of vesicles co-incubated with plasmids improves the transgene expression efficiency for cytoplasmic injection in porcine zygotes and constitutes a simple technique for easy delivery of plasmids.

  18. Vesicles Cytoplasmic Injection: An Efficient Technique to Produce Porcine Transgene-Expressing Embryos.

    PubMed

    Luchetti, C G; Bevacqua, R J; Lorenzo, M S; Tello, M F; Willis, M; Buemo, C P; Lombardo, D M; Salamone, D F

    2016-08-01

    The use of vesicles co-incubated with plasmids showed to improve the efficiency of cytoplasmic injection of transgenes in cattle. Here, this technique was tested as a simplified alternative for transgenes delivery in porcine zygotes. To this aim, cytoplasmic injection of the plasmid alone was compared to the injection with plasmids co-incubated with vesicles both in diploid parthenogenic and IVF zygotes. The plasmid pcx-egfp was injected circular (CP) at 3, 30 and 300 ng/μl and linear (LP) at 30 ng/μl. The experimental groups using parthenogenetic zygotes were as follows: CP naked at 3 ng/μl (N = 105), 30 ng/μl (N = 95) and 300 ng/μl (N = 65); Sham (N = 105); control not injected (N = 223); LP naked at 30 ng/μl (N = 78); LP vesicles (N = 115) and Sham vesicles (N = 59). For IVF zygotes: LP naked (N = 44) LP vesicles (N = 94), Sham (N = 59) and control (N = 79). Cleavage, blastocyst and GFP+ rates were analysed by Fisher's test (p < 0.05). The parthenogenic CP naked group showed lower cleavage respect to control (p < 0.05). The highest concentration of plasmids to allow development to blastocyst stage was 30 ng/μl. There were no differences in DNA fragmentation between groups. The parthenogenic LP naked group resulted in high GFP rates (46%) and also allowed the production of GFP blastocysts (33%). The cytoplasmic injection with LP vesicles into parthenogenic zygotes allowed 100% GFP blastocysts. Injected IVF showed higher cleavage rates than control (p < 0.05). In IVF zygotes, only the use of vesicles produced GFP blastocysts. The use of vesicles co-incubated with plasmids improves the transgene expression efficiency for cytoplasmic injection in porcine zygotes and constitutes a simple technique for easy delivery of plasmids. PMID:27260090

  19. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori.

    PubMed

    Long, Dingpei; Lu, Weijian; Zhang, Yuli; Bi, Lihui; Xiang, Zhonghuai; Zhao, Aichun

    2015-01-01

    We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs.

  20. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori

    PubMed Central

    Long, Dingpei; Lu, Weijian; Zhang, Yuli; Bi, Lihui; Xiang, Zhonghuai; Zhao, Aichun

    2015-01-01

    We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs. PMID:25739894

  1. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    PubMed

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy.

  2. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    PubMed

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy. PMID:7542671

  3. N-/O-glycosylation analysis of human FVIIa produced in the milk of transgenic rabbits.

    PubMed

    Chevreux, Guillaume; Faid, Valegh; Scohyers, Jean-Marc; Bihoreau, Nicolas

    2013-12-01

    Human coagulation factor VIIa is a glycoprotein that promotes haemostasis through activation of the coagulation cascade extrinsic pathway. Most haemophilia A/B patients with inhibitors are treated by injection of plasma-derived or recombinant FVIIa. The use of recombinant products raises questions about the ability of the host cell to produce efficiently post-translationally modified proteins. Glycosylation is especially critical considering that it can modulate protein safety and efficacy. The present paper reports the N-/O-glycosylation pattern of a new recombinant human factor VIIa expressed in the mammary glands of transgenic rabbits. Glycosylation was investigated by chromatography and advanced mass spectrometry techniques for glycan identification and quantitation. Mass spectrometry (MS)/MS analyses were performed to confirm the glycan structures as well as the position and branching of specific monosaccharides or substituents. The two N-glycosylation sites were found to be fully occupied mostly by mono- and bi-sialylated biantennary complex-type structures, the major form being A(2)G(2)S(1). Some oligomannose/hybrid structures were retrieved in lower abundance, the major ones being GlcNAcα1,O-phosphorylated at the C6-position of a Man residue (Man-6-(GlcNAcα1,O-)phosphate motif) as commonly observed on lysosomal proteins. No immunogenic glycotopes such as Galili (Galα1,3Gal) and HD antigens (N-glycolylneuraminic acid (NeuGc)) were detected. Concerning O-glycosylation, the product exhibited O-fucose and O-glucose-(xylose)(0, 1, 2) motifs as expected. The N-glycosylation consistency was also investigated by varying production parameters such as the period of lactation, the number of consecutive lactations and rabbit generations. Results show that the transgenesis technology is suitable for the long-term production of rhFVIIa with a reproducible glycosylation pattern.

  4. A Cyclosporine-Sensitive Psoriasis-Like Disease Produced in Tie2 Transgenic Mice

    PubMed Central

    Voskas, Daniel; Jones, Nina; Van Slyke, Paul; Sturk, Celina; Chang, Wing; Haninec, Alex; Babichev, Yael Olya; Tran, Jennifer; Master, Zubin; Chen, Stephen; Ward, Nicole; Cruz, Maribelle; Jones, Jamie; Kerbel, Robert S.; Jothy, Serge; Dagnino, Lina; Arbiser, Jack; Klement, Giannoula; Dumont, Daniel J.

    2005-01-01

    Psoriasis is a common, persistent skin disorder characterized by recurrent erythematous lesions thought to arise as a result of inflammatory cell infiltration and activation of keratinocyte proliferation. Unscheduled angiogenic growth has also been proposed to mediate the pathogenesis of psoriasis although the cellular and molecular basis for this response remains unclear. Recently, a role for the angiopoietin signaling system in psoriasis has been suggested by studies that demonstrate an up-regulation of the tyrosine kinase receptor Tie2 (also known as Tek) as well as angiopoietin-1 and angiopoietin-2 in human psoriatic lesions. To examine temporal expression of Tie2, we have developed a binary transgenic approach whereby expression of Tie2 can be conditionally regulated by the presence of tetracycline analogs in double-transgenic mice. A psoriasis-like phenotype developed in double-transgenic animals within 5 days of birth and persisted throughout adulthood. The skin of affected mice exhibited many cardinal features of human psoriasis including epidermal hyperplasia, inflammatory cell accumulation, and altered dermal angiogenesis. These skin abnormalities resolved completely with tetracycline-mediated suppression of transgene expression, thereby illustrating a complete dependence on Tie2 signaling for disease maintenance and progression. Furthermore, the skin lesions in double-transgenic mice markedly improved after administration of the immunosuppressive anti-psoriatic agent cyclosporine, thus demonstrating the clinical significance of this new model. PMID:15743796

  5. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector.

    PubMed

    Cabot, R A; Kühholzer, B; Chan, A W; Lai, L; Park, K W; Chong, K Y; Schatten, G; Murphy, C N; Abeydeera, L R; Day, B N; Prather, R S

    2001-11-01

    Here we report the production of transgenic pigs that express enhanced green fluorescent protein (eGFP). Porcine oocytes were matured in vitro in a serum-free, chemically defined maturation medium, subsequently infected with a replication deficient pseudotyped retrovirus, fertilized and cultured in vitro before being transferred to a recipient female. Two litters were born from these embryo transfers; one pig from each litter was identified as transgenic and both expressed eGFP. From a tool in basic research to direct applications in production agriculture, domestic livestock capable of expressing foreign genes have many scientific applications. PMID:11808636

  6. Assessment of Fecundity and Germ Line Transmission in Two Transgenic Pig Lines Produced by Sleeping Beauty Transposition

    PubMed Central

    Garrels, Wiebke; Holler, Stephanie; Cleve, Nicole; Niemann, Heiner; Ivics, Zoltan; Kues, Wilfried A.

    2012-01-01

    Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal welfare or fecundity, we analyzed reproductive parameters of two founder boars, germ line transmission, and organ and cell specific transgene expression in animals of the F1 and F2 generation. Molecular analysis of ejaculated sperm cells suggested three monomeric integrations of the Venus transposon in both founders. To test germ line transmission of the three monomeric transposon integrations, wild-type sows were artificially inseminated. The offspring were nursed to sexual maturity and hemizygous lines were established. A clear segregation of the monomeric transposons following the Mendelian rules was observed in the F1 and F2 offspring. Apparently, almost all somatic cells, as well as oocytes and spermatozoa, expressed the Venus fluorophore at cell-type specific levels. No detrimental effects of Venus expression on animal health or fecundity were found. Importantly, all hemizygous lines expressed the fluorophore in comparable levels, and no case of transgene silencing or variegated expression was found after germ line transmission, suggesting that the insertions occurred at transcriptionally permissive loci. The results show that Sleeping Beauty transposase-catalyzed transposition is a promising approach for stable genetic modification of the pig genome. PMID:24705079

  7. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop.

    PubMed

    de Vetten, Nick; Wolters, Anne-Marie; Raemakers, Krit; van der Meer, Ingrid; ter Stege, Renaldo; Heeres, Els; Heeres, Paul; Visser, Richard

    2003-04-01

    It is generally thought that transformation of plant cells using Agrobacterium tumefaciens occurs at a very low frequency. Therefore, selection marker genes are used to identify the rare plants that have taken up foreign DNA. Genes encoding antibiotic and herbicide resistance are widely used for this purpose in plant transformation. Over the past several years, consumer and environmental groups have expressed concern about the use of antibiotic- and herbicide-resistance genes from an ecological and food safety perspective. Although no scientific basis has been determined for these concerns, generating marker-free plants would certainly contribute to the public acceptance of transgenic crops. Several methods have been reported to create marker gene-free transformed plants, for example co-transformation, transposable elements, site-specific recombination, or intrachromosomal recombination. Not only are most of these systems time-consuming and inefficient, but they are also employed on the assumption that isolation of transformants without a selective marker gene is not feasible. Here we present a method that permits the identification of transgenic plants without the use of selectable markers. This strategy relies on the transformation of tissue explants or cells with a virulent A. tumefaciens strain and selection of transformed cells or shoots after PCR analysis. Incubation of potato explants with A. tumefaciens strain AGL0 resulted in transformed shoots at an efficiency of 1-5% of the harvested shoots, depending on the potato genotype used. Because this system does not require genetic segregation or site-specific DNA-deletion systems to remove marker genes, it may provide a reliable and efficient tool for generating transgenic plants for commercial use, especially in vegetatively propagated species like potato and cassava.

  8. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes

    PubMed Central

    Chan, Anthony W. S.; Homan, E. Jane; Ballou, Linda U.; Burns, Jane C.; Bremel, Robert D.

    1998-01-01

    A critical requirement for integration of retroviruses, other than HIV and possibly related lentiviruses, is the breakdown of the nuclear envelope during mitosis. Nuclear envelope breakdown occurs during mitotic M-phase, the envelope reforming immediately after cell division, thereby permitting the translocation of the retroviral preintegration complex into the nucleus and enabling integration to proceed. In the oocyte, during metaphase II (MII) of the second meiosis, the nuclear envelope is also absent and the oocyte remains in MII arrest for a much longer period of time compared with M-phase in a somatic cell. Pseudotyped replication-defective retroviral vector was injected into the perivitelline space of bovine oocytes during MII. We show that reverse-transcribed gene transfer can take place in an oocyte in MII arrest of meiosis, leading to production of offspring, the majority of which are transgenic. We discuss the implications of this mechanism both as a means of production of transgenic livestock and as a model for naturally occurring recursive transgenesis. PMID:9826647

  9. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces.

    PubMed

    Alexander, William G; Peris, David; Pfannenstiel, Brandon T; Opulente, Dana A; Kuang, Meihua; Hittinger, Chris Todd

    2016-04-01

    Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. PMID:26555931

  10. Relevance of traditional integrated pest management (IPM) strategies for commercial corn producers in a transgenic agroecosystem: a bygone era?

    PubMed

    Gray, Michael E

    2011-06-01

    The use of transgenic Bt maize hybrids continues to increase significantly across the Corn Belt of the United States. In 2009, 59% of all maize planted in Illinois was characterized as a "stacked" gene variety. This is a 40% increase since 2006. Stacked hybrids typically express one Cry protein for corn rootworm control and one Cry protein for control of several lepidopteran pests; they also feature herbicide tolerance (to either glyphosate or glufosinate). Slightly more than 50 years has passed since Vernon Stern and his University of California entomology colleagues published (1959) their seminal paper on the integrated control concept, laying the foundation for modern pest management (IPM) programs. To assess the relevance of traditional IPM concepts within a transgenic agroecosystem, commercial maize producers were surveyed at a series of meetings in 2009 and 2010 regarding their perceptions on their use of Bt hybrids and resistance management. Special attention was devoted to two insect pests of corn, the European corn borer and the western corn rootworm. A high percentage of producers who participated in these meetings planted Bt hybrids in 2008 and 2009, 97 and 96.7%, respectively. Refuge compliance in 2008 and 2009, as mandated by the U.S. Environmental Protection Agency (EPA), was 82 and 75.7%, respectively, for those producers surveyed. A large majority of producers (79 and 73.3% in 2009 and 2010, respectively) revealed that they would, or had, used a Bt hybrid for corn rootworm (Diabrotica virgifera virgifera LeConte) or European corn borer (Ostrinia nubilalis Hübner) control even when anticipated densities were low. Currently, the EPA is evaluating the long-term use of seed blends (Bt and non-Bt) as a resistance management strategy. In 2010, a large percentage of producers, 80.4%, indicated they would be willing to use this approach. The current lack of integration of management tactics for insect pests of maize in the U.S. Corn Belt, due primarily to

  11. Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas.

    PubMed

    Reay-Jones, Francis P F; Reisig, Dominic D

    2014-06-01

    Transgenic corn, Zea mays L., hybrids expressing insecticidal Cry proteins from Bacillus thuringiensis (Bt) and insecticide applications to suppress injury from Helicoverpa zea (Boddie) were evaluated in Florence, SC, and in Plymouth, NC, in 2012 and 2013. Based on kernel area injured, insecticide applications (chlorantraniliprole) every 3-4 d from R1 until H. zea had cycled out of corn reduced injury by 80-93% in Florence and 94-95% in Plymouth. Despite intensive applications of insecticide (13-18 per trial), limited injury still occurred in all treated plots in 2012, except in DKC 68-03 (Genuity VT Double PRO), based on kernels injured (both locations) and proportion of injured ears (Florence only). In 2013, ear injury was low in Plymouth, with no kernel injury in any insecticide-treated plots, except P1498R (non-Bt) and P1498YHR (Optimum Intrasect). Injury in Florence in 2013 did not occur in treated plots of DKC 68-04 (non-Bt), DKC 68-03 (Genuity VT Double PRO), and N785-3111 (Agrisure Viptera). Yields were not significantly affected by insecticide treatment and were not statistically different among near-isolines with and without Bt traits. Yields were not significantly associated with kernel injury based on regression analyses. The value of using Bt corn hybrids to manage H. zea is discussed.

  12. Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer.

    PubMed

    Kumar Pramod, R; Kumar, Rakesh; Mitra, Abhijit

    2016-01-15

    Current methods of transgenic animal production are afflicted by low efficiency and high cost. Recently, the electroporation aided sperm-mediated gene transfer (SMGT) emerges as a promising alternative with variable success rate. Among the domestic animal species, the electroporation-aided SMGT is less investigated in goats, except a few reports in which attempts have been made using the auto-uptake method of SMGT. In this study, we report an optimized electroporation condition for SMGT of caprine sperm cells. Results of this study demonstrated that electroporation of caprine sperm cells at 300 V for 200 mS in TALP medium allowed the maximum uptake of foreign DNA with minimum adverse effects on the vital semen parameters viz., progressive motility, viability, and membrane and acrosome integrity. Further, DNA binding assay revealed DNA uptake by 81.3% sperm cells when 1.0 μg of DNA was used under optimum electroporation conditions as compared to 16.5% on simple incubation. The qPCR analysis showed four-fold more (P<0.05) DNA uptake by sperm cells under electroporation than incubation. A similar cleavage rate was observed after IVF using either electroporated (23.20 ± 1.20) or non-electroporated (25.20 ± 2.41) sperm cells suggesting the absence of adverse effect of electroporation on the fertilizing ability. Out of the 116 embryos produced by electroporated sperm, five (4.31%) embryos showed the expression of the foreign gene. In conclusion, our results confirm that using optimized electroporation conditions, the caprine sperm cells can uptake foreign DNA effectively with minimum negative effect on the semen parameters and could produce transgenic embryos.

  13. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector.

    PubMed

    Yamaguchi, Shigeyuki; Kazuki, Yasuhiro; Nakayama, Yuji; Nanba, Eiji; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2011-01-01

    The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression. PMID:21390305

  14. Development of ELISA for the detection of transgenic vegetative insecticidal protein in GM crops/produce.

    PubMed

    Kumar, R

    2012-01-11

    In the process of the development of insect-resistant genetically modified (GM) crops and also to evaluate the consistency in the expression of toxin under field conditions, immunological assays are commonly being used. An immunoassay was developed to support the labelling of vegetative insecticidal protein (Vip3A)-based GM produce. The developed ELISA for the measurement of Vip3A is a triple antibody sandwich procedure utilising a polyclonal capture antibody (mouse anti-Vip3A) and a polyclonal detection antibody (rabbit anti-Vip3A) followed by use of a third HRP-conjugated anti-species antibody (goat anti-rabbit IgG). The limit of detection limit of the ELISA assay was 16 ng ml(-1) with a linear quantification range from approximately 31 to 500 ng ml(-1) of Vip3A protein. Furthermore, the assay was in-house validated with GM brinjal samples. The assay was specific, sensitive and reproducible, which can be helpful to detect and track down the spread of unapproved and intentionally/unintentionally released GM produce harbouring Vip protein.

  15. Co-transformation of grapevine somatic embryos to produce transgenic plants free of marker genes.

    PubMed

    Dutt, Manjul; Li, Zhijian T; Dhekney, Sadanand A; Gray, Dennis J

    2012-01-01

    A cotransformation system using somatic embryos was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. "Thompson Seedless" somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bidirectional dual promoter complex. Our technique included a short positive selection phase of cotransformed somatic embryos on liquid medium containing 100 mg/L kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg/L 5-fluorocytosine. PMID:22351010

  16. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.

  17. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein. PMID:25115849

  18. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE PAGESBeta

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; Kelbe, David; Cawse-Nicholson, Kerry

    2016-04-04

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  19. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants.

    PubMed

    Ma, Julian K-C; Drossard, Jürgen; Lewis, David; Altmann, Friedrich; Boyle, Julia; Christou, Paul; Cole, Tom; Dale, Philip; van Dolleweerd, Craig J; Isitt, Valerie; Katinger, Dietmar; Lobedan, Martin; Mertens, Hubert; Paul, Mathew J; Rademacher, Thomas; Sack, Markus; Hundleby, Penelope A C; Stiegler, Gabriela; Stoger, Eva; Twyman, Richard M; Vcelar, Brigitta; Fischer, Rainer

    2015-10-01

    Although plant biotechnology has been widely investigated for the production of clinical-grade monoclonal antibodies, no antibody products derived from transgenic plants have yet been approved by pharmaceutical regulators for clinical testing. In the Pharma-Planta project, the HIV-neutralizing human monoclonal antibody 2G12 was expressed in transgenic tobacco (Nicotiana tabacum). The scientific, technical and regulatory demands of good manufacturing practice (GMP) were addressed by comprehensive molecular characterization of the transgene locus, confirmation of genetic and phenotypic stability over several generations of transgenic plants, and by establishing standard operating procedures for the creation of a master seed bank, plant cultivation, harvest, initial processing, downstream processing and purification. The project developed specifications for the plant-derived antibody (P2G12) as an active pharmaceutical ingredient (API) based on (i) the guidelines for the manufacture of monoclonal antibodies in cell culture systems; (ii) the draft European Medicines Agency Points to Consider document on quality requirements for APIs produced in transgenic plants; and (iii) de novo guidelines developed with European national regulators. From the resulting process, a GMP manufacturing authorization was issued by the competent authority in Germany for transgenic plant-derived monoclonal antibodies for use in a phase I clinical evaluation. Following preclinical evaluation and ethical approval, a clinical trial application was accepted by the UK national pharmaceutical regulator. A first-in-human, double-blind, placebo-controlled, randomized, dose-escalation phase I safety study of a single vaginal administration of P2G12 was carried out in healthy female subjects. The successful completion of the clinical trial marks a significant milestone in the commercial development of plant-derived pharmaceutical proteins.

  20. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Ge, Hengtao; Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90-111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5-10.5, 21.8-23.0 and 17.3-18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×10(3) and 95.4×10(3) CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×10(5) and 622.2×10(5) cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.

  1. Anti-Bacterial Activity of Recombinant Human β-Defensin-3 Secreted in the Milk of Transgenic Goats Produced by Somatic Cell Nuclear Transfer

    PubMed Central

    Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals. PMID:23799010

  2. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    NASA Technical Reports Server (NTRS)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; Rowe, D. W. (Principal Investigator)

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  3. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells

    PubMed Central

    Cortés, Daniel; Robledo-Arratia, Yolanda; Hernández-Martínez, Ricardo; Escobedo-Ávila, Itzel; Bargas, José; Velasco, Iván

    2016-01-01

    Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance

  4. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells

    PubMed Central

    Cortés, Daniel; Robledo-Arratia, Yolanda; Hernández-Martínez, Ricardo; Escobedo-Ávila, Itzel; Bargas, José; Velasco, Iván

    2016-01-01

    Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance

  5. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells.

    PubMed

    Cortés, Daniel; Robledo-Arratia, Yolanda; Hernández-Martínez, Ricardo; Escobedo-Ávila, Itzel; Bargas, José; Velasco, Iván

    2016-01-01

    Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance

  6. Transgenic Cows That Produce Recombinant Human Lactoferrin in Milk Are Not Protected from Experimental Escherichia coli Intramammary Infection▿

    PubMed Central

    Hyvönen, P.; Suojala, L.; Orro, T.; Haaranen, J.; Simola, O.; Røntved, C.; Pyörälä, S.

    2006-01-01

    This is the first study describing an experimental mastitis model using transgenic cows expressing recombinant human lactoferrin (rhLf) in their milk. The aim of the study was to investigate the concentrations in milk and protective effects of bovine and recombinant human lactoferrin in experimental Escherichia coli mastitis. Experimental intramammary infection was induced in one udder quarter of seven first-lactating rhLf-transgenic cows and six normal cows, using an E. coli strain isolated from cows with clinical mastitis and known to be susceptible to Lf in vitro. Clinical signs were recorded during the experimental period, concentrations of human and bovine Lf and indicators of inflammation and bacterial counts were determined for milk, and concentrations of acute-phase proteins and tumor necrosis factor alpha were determined for sera and milk. Serum cortisol and blood hematological and biochemical parameters were also determined. Expression levels of rhLf in the milk of transgenic cows remained constant throughout the experiment (mean, 2.9 mg/ml). The high Lf concentrations in the milk of transgenic cows did not protect them from intramammary infection. All cows became infected and developed clinical mastitis. The rhLf-transgenic cows showed milder systemic signs and lower serum cortisol and haptoglobin concentrations than did controls. This may be explained by lipopolysaccharide-neutralizing and immunomodulatory effects of the high Lf concentrations in their milk. However, Lf does not seem to be a very efficient protein for genetic engineering to enhance the mastitis resistance of dairy cows. PMID:16954396

  7. Engineering and characterization of a symbiotic selection-marker-free vector-host system for therapeutic plasmid production.

    PubMed

    Shi, Xinchang; Wang, Junzhi

    2015-09-01

    The present study aimed to develop a symbiotic selection-marker-free plasmid and host system that would allow successful plasmid maintenance and amplification for use in gene therapy. Initially, the chromosomal aspartate‑semialdehyde dehydrogenase (asd) gene was disrupted in DH10B Escherichia coli using Red recombinase‑mediated homologous recombination. This method required the use of linear DNA fragments carrying kan‑kil genes, and/or homologous extensions to the targeted locus. The resultant auxotrophic cell wall‑deficient strain (DH10BΔasd) was evaluated as a symbiotic host for amplification of the marker‑free plasmid, allowing it to supply ASD activity. In order to construct the plasmid, an asd expression cassette was inserted, under the control of the nirB promoter, into a eukaryotic expression vector, and its kanamycin resistance gene was subsequently removed. The symbiotic plasmid and host system was assessed for numerous plasmid production and stability parameters, including structure, yield, plasmid‑retention rate, and bacterial storability, under various conditions. The presence of the plasmid was subsequently confirmed by growth test, restriction enzyme mapping, and sequencing. The plasmid yield and copy number produced in the symbiotic cells, in the absence of antibiotic selection, were shown to be similar to those produced under kanamycin selection, in the cells containing the precursor plasmid and kanamycin resistance gene. Furthermore, the results of the present study demonstrated that when inoculated with <1% inoculant volume, >98% of the cells in the culture retained the plasmid regardless of the number of passages. The strain was stable when stored at ‑70˚C, with negligible viability loss over 12 months. The constructed plasmid is stable and has potential in future gene therapy, while much work is still required.

  8. Contribution to a marker-free system for human motion analysis

    NASA Astrophysics Data System (ADS)

    Calais, Elodie F.; Legrand, Louis; Voisin, Yvon; Diou, Alan

    2002-07-01

    This paper presents a novel approach to human gait analysis using a marker-free system. The devised acquisition system is composed of three synchronized and calibrated charge coupled device cameras. The aim of this work is to recognize in gray level image sequences the leg of a walking human and to reconstruct it in the three-dimensional space. An articulated three- dimensional (3D) model of the human body, based on the use of tapered superquadric curves, is first introduced. A motion-based segmentation, using morphological operators, is then applied to the image sequences in order to extract the boundaries of the leg in motion. A reconstruction process, based on the use of a least median of squares regression is next performed, to determine the location of the human body in the 3D space. Finally, a spatial coherence is imposed on the reconstructed curves in order to better fit the anatomy of the leg and to take into account the articulated model. Each stage of the proposed methodology has been tested both on synthetic images and on real world images of walking humans. The obtained results suggest that this approach is quite promising and should be useful in the study of the gait.

  9. Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Tong, Qi; Li, Zhongxia; Tian, Jinhai; Wang, Yizhi; Su, Feng; Wang, Yongsheng; Liu, Jun; Zhang, Yong

    2014-02-01

    PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.

  10. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    PubMed

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts.

  11. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    PubMed

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts. PMID:25554634

  12. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels

    PubMed Central

    Willis, Jonathan D.; Mazarei, Mitra; Stewart, C. Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review. PMID:27303411

  13. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels.

    PubMed

    Willis, Jonathan D; Mazarei, Mitra; Stewart, C Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review. PMID:27303411

  14. Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington's disease.

    PubMed

    Chiu, Chi-Tso; Liu, Guangping; Leeds, Peter; Chuang, De-Maw

    2011-11-01

    Emerging evidence suggests that the mood stabilizers lithium and valproate (VPA) have broad neuroprotective and neurotrophic properties, and that these occur via inhibition of glycogen synthase kinase 3 (GSK-3) and histone deacetylases (HDACs), respectively. Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by impaired movement, cognitive and psychiatric disturbances, and premature death. We treated N171-82Q and YAC128 mice, two mouse models of HD varying in genetic backgrounds and pathological progressions, with a diet containing therapeutic doses of lithium, VPA, or both. Untreated, these transgenic mice displayed a decrease in levels of GSK-3β serine 9 phosphorylation and histone H3 acetylation in the striatum and cerebral cortex around the onset of behavioral deficits, indicating a hyperactivity of GSK-3β and HDACs. Using multiple well-validated behavioral tests, we found that co-treatment with lithium and VPA more effectively alleviated spontaneous locomotor deficits and depressive-like behaviors in both models of HD mice. Furthermore, compared with monotherapy with either drug alone, co-treatment more successfully improved motor skill learning and coordination in N171-82Q mice, and suppressed anxiety-like behaviors in YAC128 mice. This combined treatment consistently inhibited GSK-3β and HDACs, and caused a sustained elevation in striatal as well as cortical brain-derived neurotrophic factor and heat shock protein 70. Importantly, co-treatment markedly prolonged median survival of N171-82Q mice from 31.6 to 41.6 weeks. Given that there is presently no proven treatment for HD, our results suggest that combined treatment with lithium and VPA, two mood stabilizers with a long history of safe use in humans, may have important therapeutic potential for HD patients.

  15. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    PubMed

    Asante, Emmanuel A; Linehan, Jacqueline M; Smidak, Michelle; Tomlinson, Andrew; Grimshaw, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Powell, Caroline; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2013-01-01

    Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  16. Fluorescent marker-based and marker-free discrimination between healthy and cancerous human tissues using hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2015-06-01

    Two problems are addressed in this paper (i) the fluorescent marker-based and the (ii) marker-free discrimination between healthy and cancerous human tissues. For both applications the performance of hyper-spectral methods are quantified. Fluorescent marker-based tissue classification uses a number of fluorescent markers to dye specific parts of a human cell. The challenge is that the emission spectra of the fluorescent dyes overlap considerably. They are, furthermore disturbed by the inherent auto-fluorescence of human tissue. This results in ambiguities and decreased image contrast causing difficulties for the treatment decision. The higher spectral resolution introduced by tunable-filter-based spectral imaging in combination with spectral unmixing techniques results in an improvement of the image contrast and therefore more reliable information for the physician to choose the treatment decision. Marker-free tissue classification is based solely on the subtle spectral features of human tissue without the use of artificial markers. The challenge in this case is that the spectral differences between healthy and cancerous tissues are subtle and embedded in intra- and inter-patient variations of these features. The contributions of this paper are (i) the evaluation of hyper-spectral imaging in combination with spectral unmixing techniques for fluorescence marker-based tissue classification, (ii) the evaluation of spectral imaging for marker-free intra surgery tissue classification. Within this paper, we consider real hyper-spectral fluorescence and endoscopy data sets to emphasize the practical capability of the proposed methods. It is shown that the combination of spectral imaging with multivariate statistical methods can improve the sensitivity and specificity of the detection and the staging of cancerous tissues compared to standard procedures.

  17. Oral immunogenicity and protective efficacy in mice of transgenic rice plants producing a vaccine candidate antigen (As16) of Ascaris suum fused with cholera toxin B subunit.

    PubMed

    Matsumoto, Yasunobu; Suzuki, Seiko; Nozoye, Tomoko; Yamakawa, Takashi; Takashima, Yasuhiro; Arakawa, Takeshi; Tsuji, Naotoshi; Takaiwa, Fumio; Hayashi, Yoshihiro

    2009-04-01

    Cereal crops such as maize and rice are considered attractive for vaccine production and oral delivery. Here, we evaluated the rice Oryza sativa for production of As16-an antigen protective against the roundworm Ascaris suum. The antigen was produced as a chimeric protein fused with cholera toxin B subunit (CTB), and its expression level in the endosperm reached 50 microg/g seed. Feeding the transgenic (Tg) rice seeds to mice elicited an As16-specific serum antibody response when administered in combination with cholera toxin (CT) as the mucosal adjuvant. Although omitting the adjuvant from the vaccine formulation resulted in failure to develop the specific immune response, subcutaneous booster immunization with bacterially expressed As16 induced the antibody response, indicating priming capability of the Tg rice. Tg rice/CT-fed mice orally administered A. suum eggs had a lower lung worm burden than control mice. This suggests that the rice-delivered antigen functions as a prophylactic edible vaccine for controlling parasitic infection in animals.

  18. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    PubMed

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  19. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse

    PubMed Central

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 107 TCID50/mL 10 days after infection when using an MOI of 10−4. The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  20. [Current status and industrialization of transgenic tomatoes].

    PubMed

    Wang, Ao-Xue; Chen, Xiu-Ling

    2011-09-01

    In this review, the progress in transgenic tomato research, including disease and insect resistance, herbicide resistance, stress tolerance, long-term storage, quality improvement, and male sterility, were described. The recent researches on producing heterologous proteins using transgenic tomatoes were also reviewed. Furthermore, the industrialization status and problems of transgenic tomatoes were analyzed and the prospects of both research and industrialization in transgenic tomatoes were discussed.

  1. Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean.

    PubMed

    Espinoza-Moreno, Ramona J; Reyes-Moreno, Cuauhtémoc; Milán-Carrillo, Jorge; López-Valenzuela, José A; Paredes-López, Octavio; Gutiérrez-Dorado, Roberto

    2016-06-01

    The snack foods market is currently demanding healthier products. A ready-to-eat expanded snack with high nutritional and antioxidant value was developed from a mixture (70:30) of whole amarantin transgenic maize (Zea mays L.) and black common bean (Phaseolus vulgaris L.) by optimizing the extrusion process. Extruder operation conditions were: feed moisture content (FMC, 15-25 %, wet basis), barrel temperature (BT, 120-170 °C), and screw speed (SS, 50-240). The desirability numeric method of the response surface methodology (RSM) was applied as the optimization technique over four response variables [expansion ratio (ER), bulk density (BD), hardness (H), antioxidant activity (AoxA)] to obtain maximum ER and AoxA, and minimum BD, and H values. The best combination of extrusion process variables for producing an optimized expanded snack (OES, healthy snack) were: FMC = 15 %/BT = 157 °C/SS = 238 rpm. The OES had ER = 2.86, BD = 0.119 g/cm (3) , H = 1.818 N, and AoxA = 13,681 μmol Trolox equivalent (TE)/100 g, dry weight. The extrusion conditions used to produce the OES increased the AoxA (ORAC: +18 %, ABTS:+20 %) respect to the unprocessed whole grains mixture. A 50 g portion of OES had higher protein content (7.23 vs 2.32 g), total dietary fiber (7.50 vs 1.97 g), total phenolic content (122 vs 47 mg GAE), and AoxA (6626 vs 763 μmol TE), and lower energy (169 vs 264 kcal) than an expanded commercial snack (ECS = Cheetos™). Because of its high content of quality protein, dietary fiber and phenolics, as well as high AoxA and low energy density, the OES could be used for health promotion and chronic disease prevention and as an alternative to the widely available commercial snacks with high caloric content and low nutritional/nutraceutical value. PMID:27170034

  2. Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean.

    PubMed

    Espinoza-Moreno, Ramona J; Reyes-Moreno, Cuauhtémoc; Milán-Carrillo, Jorge; López-Valenzuela, José A; Paredes-López, Octavio; Gutiérrez-Dorado, Roberto

    2016-06-01

    The snack foods market is currently demanding healthier products. A ready-to-eat expanded snack with high nutritional and antioxidant value was developed from a mixture (70:30) of whole amarantin transgenic maize (Zea mays L.) and black common bean (Phaseolus vulgaris L.) by optimizing the extrusion process. Extruder operation conditions were: feed moisture content (FMC, 15-25 %, wet basis), barrel temperature (BT, 120-170 °C), and screw speed (SS, 50-240). The desirability numeric method of the response surface methodology (RSM) was applied as the optimization technique over four response variables [expansion ratio (ER), bulk density (BD), hardness (H), antioxidant activity (AoxA)] to obtain maximum ER and AoxA, and minimum BD, and H values. The best combination of extrusion process variables for producing an optimized expanded snack (OES, healthy snack) were: FMC = 15 %/BT = 157 °C/SS = 238 rpm. The OES had ER = 2.86, BD = 0.119 g/cm (3) , H = 1.818 N, and AoxA = 13,681 μmol Trolox equivalent (TE)/100 g, dry weight. The extrusion conditions used to produce the OES increased the AoxA (ORAC: +18 %, ABTS:+20 %) respect to the unprocessed whole grains mixture. A 50 g portion of OES had higher protein content (7.23 vs 2.32 g), total dietary fiber (7.50 vs 1.97 g), total phenolic content (122 vs 47 mg GAE), and AoxA (6626 vs 763 μmol TE), and lower energy (169 vs 264 kcal) than an expanded commercial snack (ECS = Cheetos™). Because of its high content of quality protein, dietary fiber and phenolics, as well as high AoxA and low energy density, the OES could be used for health promotion and chronic disease prevention and as an alternative to the widely available commercial snacks with high caloric content and low nutritional/nutraceutical value.

  3. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro; Liao, Hongen

    2014-04-01

    Computer-assisted oral and maxillofacial surgery (OMS) has been rapidly evolving since the last decade. State-of-the-art surgical navigation in OMS still suffers from bulky tracking sensors, troublesome image registration procedures, patient movement, loss of depth perception in visual guidance, and low navigation accuracy. We present an augmented reality navigation system with automatic marker-free image registration using 3-D image overlay and stereo tracking for dental surgery. A customized stereo camera is designed to track both the patient and instrument. Image registration is performed by patient tracking and real-time 3-D contour matching, without requiring any fiducial and reference markers. Real-time autostereoscopic 3-D imaging is implemented with the help of a consumer-level graphics processing unit. The resulting 3-D image of the patient's anatomy is overlaid on the surgical site by a half-silvered mirror using image registration and IP-camera registration to guide the surgeon by exposing hidden critical structures. The 3-D image of the surgical instrument is also overlaid over the real one for an augmented display. The 3-D images present both stereo and motion parallax from which depth perception can be obtained. Experiments were performed to evaluate various aspects of the system; the overall image overlay error of the proposed system was 0.71 mm.

  4. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods.

  5. A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains.

    PubMed

    Zakataeva, Natalia P; Nikitina, Oksana V; Gronskiy, Sergey V; Romanenkov, Dmitriy V; Livshits, Vitaliy A

    2010-01-01

    A simple method to introduce marker-free deletions, insertions, and point mutations into the chromosomes of naturally nontransformable Bacillus amyloliquefaciens strains has been developed. The method is efficient and fast, and it allows for the generation of genetic modifications without the use of a counter-selectable marker or a special prerequisite strain. This method uses the combination of the following: the effective introduction of a delivery plasmid into cells for gene replacement; a two-step replacement recombination procedure, which occurs at a very high frequency due to the use of a thermosensitive rolling-circle replication plasmid; and colony polymerase chain reaction (PCR) analysis for screening. Using PCR primers with mismatches at the 3' end enables the selection of strains that contain a single nucleotide substitution in the target gene. This approach can be used as a routine method for the investigation of complex physiological pathways and for the metabolic engineering of food-grade industrial B. amyloliquefaciens and other Bacillus strains.

  6. Transgenic Animals.

    ERIC Educational Resources Information Center

    Jaenisch, Rudolf

    1988-01-01

    Describes three methods and their advantages and disadvantages for introducing genes into animals. Discusses the predictability and tissue-specificity of the injected genes. Outlines the applications of transgenic technology for studying gene expression, the early stages of mammalian development, mutations, and the molecular nature of chromosomes.…

  7. A high throughput transformation system allows the regeneration of marker-free plum plants (Prunus domestica L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-throughput transformation system previously developed in our laboratory was used for the regeneration of transgenic plum plants without the use of antibiotic selection. The system was first tested with two experimental constructs, pGA482GGi and pCAMBIAgfp94(35S), that contain selective marke...

  8. Transgenic animal bioreactors.

    PubMed

    Houdebine, L M

    2000-01-01

    The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes

  9. N-ACYL HOMOSERINE LACTONe LACTONASE, AiiA, INACTIVATION OF QUORUM-SENSING AGONISTS PRODUCED BY CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) AND CHARACTERIZATION OF aiiA TRANSGENIC ALGAE(1).

    PubMed

    Rajamani, Sathish; Teplitski, Max; Kumar, Anil; Krediet, Cory J; Sayre, Richard T; Bauer, Wolfgang D

    2011-10-01

    Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N-acyl homoserine lactone (AHL) bacterial quorum-sensing (QS) signals and alter QS-regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal-mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR-stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal-mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL-producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS.

  10. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    SciTech Connect

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. )

    1991-09-01

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing the minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.

  11. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9.

    PubMed

    Jessop-Fabre, Mathew M; Jakočiūnas, Tadas; Stovicek, Vratislav; Dai, Zongjie; Jensen, Michael K; Keasling, Jay D; Borodina, Irina

    2016-08-01

    Saccharomyces cerevisiae is an established industrial host for production of recombinant proteins, fuels and chemicals. To enable stable integration of multiple marker-free overexpression cassettes in the genome of S. cerevisiae, we have developed a vector toolkit EasyClone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained with 90-100% and 60-70% targeting efficiency, respectively. We demonstrate application of the vector toolkit by constructing a haploid laboratory strain (CEN.PK113-7D) and a diploid industrial strain (Ethanol Red) for production of 3-hydroxypropionic acid, where we tested three different acetyl-CoA supply strategies, requiring overexpression of three to six genes each. Among the tested strategies was a bacterial cytosolic pyruvate dehydrogenase complex, which was integrated into the genome in a single transformation. The publicly available EasyClone-MarkerFree vector suite allows for facile and highly standardized genome engineering, and should be of particular interest to researchers working on yeast chassis with limited markers available.

  12. [Transgenic plants].

    PubMed

    Blum, H E

    2002-12-01

    Advances in molecular genetics and recombinant DNA technology have revolutionized our understanding of the pathogenesis as well as the diagnosis, therapy and prevention of human diseases. Similar developments characterize plant biotechnology with the production of plant derived biomedical as well as health products. Apart from the fundamentals of molecular plant genetics, the production of transgenic plants as well as the clinical relevance, benefits, limitations and potential problems of plant biotechnology will be reviewed in some detail. It is a particular challenge to physicians in an increasingly informed environment to be informed about the new developments in molecular biology and recombinant DNA technology and to have a qualified opinion about their clinical relevance.

  13. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene.

    PubMed

    Ramana Rao, Mangu Venkata; Parameswari, Chidambaram; Sripriya, Rajasekaran; Veluthambi, Karuppannan

    2011-07-01

    Rice chitinase (chi11) and tobacco osmotin (ap24) genes, which cause disruption of fungal cell wall and cell membrane, respectively, were stacked in transgenic rice to develop resistance against the sheath blight disease. The homozygous marker-free transgenic rice line CoT23 which harboured the rice chi11 transgene was sequentially re-transformed with a second transgene ap24 by co-transformation using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector pGV2260::pSSJ1 and a multi-copy binary vector pBin19∆nptII-ap24 in the same cell. pGV2260::pSSJ1 T-DNA carried the hygromycin phosphotransferase (hph) and β-glucuronidase (gus) genes. pBin19∆nptII-ap24 T-DNA harboured the tobacco osmotin (ap24) gene. Co-transformation of the gene of interest (ap24) with the selectable marker gene (SMG, hph) occurred in 12 out of 18 T(0) plants (67%). Segregation of hph from ap24 was accomplished in the T(1) generation in one (line 11) of the four analysed co-transformed plants. The presence of ap24 and chi11 transgenes and the absence of the hph gene in the SMG-eliminated T(1) plants of the line 11 were confirmed by DNA blot analyses. The SMG-free transgenic plants of the line 11 harboured a single copy of the ap24 gene. Homozygous, SMG-free T(2) plants of the transgenic line 11 harboured stacked transgenes, chi11 and ap24. Northern blot analysis of the SMG-free plants revealed constitutive expression of chi11 and ap24. The transgenic plants with stacked transgenes displayed high levels of resistance against Rhizoctonia solani. Thus, we demonstrate the development of transgene-stacked and marker-free transgenic rice by sequential Agrobacterium-mediated co-transformation with the same SMG.

  14. Transgenic mouse offspring generated by ROSI

    PubMed Central

    MOREIRA, Pedro; PÉREZ-CEREZALES, Serafín; LAGUNA, Ricardo; FERNÁNDEZ-GONZALEZ, Raúl; SANJUANBENITO, Belén Pintado; GUTIÉRREZ-ADÁN, Alfonso

    2015-01-01

    The production of transgenic animals is an important tool for experimental and applied biology. Over the years, many approaches for the production of transgenic animals have been tried, including pronuclear microinjection, sperm-mediated gene transfer, transfection of male germ cells, somatic cell nuclear transfer and the use of lentiviral vectors. In the present study, we developed a new transgene delivery approach, and we report for the first time the production of transgenic animals by co-injection of DNA and round spermatid nuclei into non-fertilized mouse oocytes (ROSI). The transgene used was a construct containing the human CMV immediate early promoter and the enhanced GFP gene. With this procedure, 12% of the live offspring we obtained carried the transgene. This efficiency of transgenic production by ROSI was similar to the efficiency by pronuclear injection or intracytoplasmic injection of male gamete nuclei (ICSI). However, ICSI required fewer embryos to produce the same number of transgenic animals. The expression of Egfp mRNA and fluorescence of EGFP were found in the majority of the organs examined in 4 transgenic lines generated by ROSI. Tissue morphology and transgene expression were not distinguishable between transgenic animals produced by ROSI or pronuclear injection. Furthermore, our results are of particular interest because they indicate that the transgene incorporation mediated by intracytoplasmic injection of male gamete nuclei is not an exclusive property of mature sperm cell nuclei with compact chromatin but it can be accomplished with immature sperm cell nuclei with decondensed chromatin as well. The present study also provides alternative procedures for transgene delivery into embryos or reconstituted oocytes. PMID:26498042

  15. [The safety and usefulness of transgenic plants].

    PubMed

    Ondrej, M; Drobník, M

    1997-05-29

    Transgenic crop plants, used in food and feed production, carry different beneficial transgenes, mostly for resistance to pests, herbicides and diseases. All new transgenic plant varieties, the genes they carry and their products have been thoroughly tested before released for agriculture and even more for marketing. Genetically modified organisms carry the same risk as any other organism. Food derived from genetically modified organisms due to legal regulation is most controlled and therefore most safe food ever placed on the market. In future, transgenic plants offer many new possibilities also for medical use, like plant vaccines, antibiotics and rare proteins of clinical importance produced by plants.

  16. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    PubMed

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  17. Production of transgenic livestock: promise fulfilled.

    PubMed

    Wheeler, M B

    2003-01-01

    The introduction of specific genes into the genome of farm animals and its stable incorporation into the germ line has been a major technological advance in agriculture. Transgenic technology provides a method to rapidly introduce "new" genes into cattle, swine, sheep, and goats without crossbreeding. It is a more extreme methodology, but in essence, not really different from crossbreeding or genetic selection in its result. Methods to produce transgenic animals have been available for more than 20 yr, yet recently lines of transgenic livestock have been developed that have the potential to improve animal agriculture and benefit producers and/or consumers. There are a number of methods that can be used to produce transgenic animals. However, the primary method to date has been the microinjection of genes into the pronuclei of zygotes. This method is one of an array of rapidly developing transgenic methodologies. Another method that has enjoyed recent success is that of nuclear transfer or "cloning." The use of this technique to produce transgenic livestock will profoundly affect the use of transgenic technology in livestock production. Cell-based, nuclear transfer or cloning strategies have several distinct advantages for use in the production of transgenic livestock that cannot be attained using pronuclear injection of DNA. Practical applications of transgenesis in livestock production include enhanced prolificacy and reproductive performance, increased feed utilization and growth rate, improved carcass composition, improved milk production and/or composition, and increased disease resistance. One practical application of transgenics in swine production is to improve milk production and/or composition. To address the problem of low milk production, transgenic swine over-expressing the milk protein bovine alpha-lactalbumin were developed and characterized. The outcomes assessed were milk composition, milk yield, and piglet growth. Our results indicate that

  18. Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA.

    PubMed

    Leibman, Diana; Prakash, Shanmugam; Wolf, Dalia; Zelcer, Aaron; Anfoka, Ghandi; Haviv, Sabrina; Brumin, Marina; Gaba, Victor; Arazi, Tzahi; Lapidot, Moshe; Gal-On, Amit

    2015-11-01

    Gene silencing is a natural defense response of plants against invading RNA and DNA viruses. The RNA post-transcriptional silencing system has been commonly utilized to generate transgenic crop plants that are "immune" to plant virus infection. Here, we applied this approach against the devastating DNA virus tomato yellow leaf curl virus (TYLCV) in its host tomato (Solanum lycopersicum L.). To generate broad resistance to a number of different TYLCV viruses, three conserved sequences (the intergenic region [NCR], V1-V2 and C1-C2 genes) from the genome of the severe virus (TYLCV) were synthesized as a single insert and cloned into a hairpin configuration in a binary vector, which was used to transform TYLCV-susceptible tomato plants. Eight of 28 independent transgenic tomato lines exhibited immunity to TYLCV-Is and to TYLCV-Mld, but not to tomato yellow leaf curl Sardinia virus, which shares relatively low sequence homology with the transgene. In addition, a marker-free (nptII-deleted) transgenic tomato line was generated for the first time by Agrobacterium-mediated transformation without antibiotic selection, followed by screening of 1180 regenerated shoots by whitefly-mediated TYLCV inoculation. Resistant lines showed a high level of transgene-siRNA (t-siRNA) accumulation (22% of total small RNA) with dominant sizes of 21 nt (73%) and 22 nt (22%). The t-siRNA displayed hot-spot distribution ("peaks") along the transgene, with different distribution patterns than the viral-siRNA peaks observed in TYLCV-infected tomato. A grafting experiment demonstrated the mobility of 0.04% of the t-siRNA from transgenic rootstock to non-transformed scion, even though scion resistance against TYLCV was not achieved. PMID:26255053

  19. Accuracy assessment of a marker-free method for registration of CT and stereo images applied in image-guided implantology: a phantom study.

    PubMed

    Mohagheghi, Saeed; Ahmadian, Alireza; Yaghoobee, Siamak

    2014-12-01

    To assess the accuracy of a proposed marker-free registration method as opposed to the conventional marker-based method using an image-guided dental system, and investigating the best configurations of anatomical landmarks for various surgical fields in a phantom study, a CT-compatible dental phantom consisting of implanted targets was used. Two marker-free registration methods were evaluated, first using dental anatomical landmarks and second, using a reference marker tool. Six implanted markers, distributed in the inner space of the phantom were used as the targets; the values of target registration error (TRE) for each target were measured and compared with the marker-based method. Then, the effects of different landmark configurations on TRE values, measured using the Parsiss IV Guided Navigation system (Parsiss, Tehran, Iran), were investigated to find the best landmark arrangement for reaching the minimum registration error in each target region. It was proved that marker-free registration can be as precise as the marker-based method. This has a great impact on image-guided implantology systems whereby the drawbacks of fiducial markers for patient and surgeon are removed. It was also shown that smaller values of TRE could be achieved by using appropriate landmark configurations and moving the center of the landmark set closer to the surgery target. Other common factors would not necessarily decrease the TRE value so the conventional rules accepted in the clinical community about the ways to reduce TRE should be adapted to the selected field of dental surgery.

  20. Transgenic resistance.

    PubMed

    Cillo, Fabrizio; Palukaitis, Peter

    2014-01-01

    Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such.

  1. Transgenic resistance.

    PubMed

    Cillo, Fabrizio; Palukaitis, Peter

    2014-01-01

    Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such. PMID:25410101

  2. Screening for recombinants of Crambe abyssynica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration

    PubMed Central

    Qi, Weicong; Tinnenbroek-Capel, Iris E. M.; Salentijn, Elma M. J.; Schaart, Jan G.; Cheng, Jihua; Denneboom, Christel; Zhang, Zhao; Zhang, Xiaolin; Zhao, Han; Visser, Richard G. F.; Huang, Bangquan; Van Loo, Eibertus N.; Krens, Frans A.

    2015-01-01

    The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera. PMID:26358007

  3. Screening for recombinants of Crambe abyssynica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration.

    PubMed

    Qi, Weicong; Tinnenbroek-Capel, Iris E M; Salentijn, Elma M J; Schaart, Jan G; Cheng, Jihua; Denneboom, Christel; Zhang, Zhao; Zhang, Xiaolin; Zhao, Han; Visser, Richard G F; Huang, Bangquan; Van Loo, Eibertus N; Krens, Frans A

    2015-09-11

    The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera.

  4. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    PubMed

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives.

  5. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    PubMed

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives. PMID:27468303

  6. [Progress in transgenic fish techniques and application].

    PubMed

    Ye, Xing; Tian, Yuan-Yuan; Gao, Feng-Ying

    2011-05-01

    Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.

  7. Cryopreservation of transgenic mouse lines.

    PubMed

    Pomeroy, K O

    1993-01-01

    A transgenic animal represents an enormous investment in time and money. Animals can be destroyed through disease, fire, malfuncnons in the control of the environment, negligence, sabotage, or accidental disposal. Researchers can protect valuable transgenic lines from accrdental destruction by "banking" them in liquid nitrogen. Cryopreservation can also reduce animal costs by decreasing the number of live animals investigators must maintain. Often, when one is trying to produce a transgenic animal, some lines will be derived that may not initially appear interesting. These animals can be stored in liquid nitrogen for future recovery and study. The maintenance of just one line of mice, say 25 mice at 15 cents/d, can cost over $1000 (US) in a single year. PMID:21390665

  8. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  9. Neuroanatomy and transgenic technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  10. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    PubMed Central

    2012-01-01

    Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412

  11. Transgenic animals: current and alternative strategies.

    PubMed

    Chan, A W

    1999-01-01

    Transgenic animal technology is one of the most fascinating technologies developed in the last two decades. It allows us to address questions in life sciences that no other methods have achieved. The impact on biomedical and biological research, as well as commercial interests are overwhelming. The questions accompanying this fast growing technology and its diversified applications attract the attention from a variety of entities. Still, one of the most fundamental problems remaining is the search for an efficient and reliable gene delivery system for creating transgenic animals. The traditional method of pronuclear microinjection has displayed great variability in success among species. While an acceptable efficiency in the production of transgenic mice has been attained, the relative low efficiency (<1%) in creating transgenic livestock has become one of the barriers for its application. In the past decades, improvements in producing transgenic livestock have made a slow progression, however, the recent advancement in cloning technology and the ability to create transgenic livestock in a highly efficient manner, have opened the gate to a new era in transgenic technology. Discoveries of new gene delivery systems have created an enthusiastic atmosphere that has made this technology so unique. This review focuses on gene delivery strategies as well as various approaches that may assist the advancement of transgenic efficiency in large animals.

  12. Generation of red fluorescent protein transgenic dogs.

    PubMed

    Hong, So Gun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Park, Jung Eun; Kang, Jung Taek; Koo, Ok Jae; Kim, Teoan; Kwon, Mo Sun; Koo, Bon Chul; Ra, Jeong Chan; Kim, Dae Yong; Ko, CheMyong; Lee, Byeong Chun

    2009-05-01

    Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene-expressing construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFP-fibroblasts. Using this approach, we produced the first generation of transgenic dogs with four female and two male expressing RFP.

  13. Efficient Generation of Mice with Consistent Transgene Expression by FEEST.

    PubMed

    Gao, Lei; Jiang, Yonghua; Mu, Libing; Liu, Yanbin; Wang, Fengchao; Wang, Peng; Zhang, Aiqun; Tang, Nan; Chen, Ting; Luo, Minmin; Yu, Lei; Gao, Shaorong; Chen, Liang

    2015-01-01

    Transgenic mouse models are widely used in biomedical research; however, current techniques for producing transgenic mice are limited due to the unpredictable nature of transgene expression. Here, we report a novel, highly efficient technique for the generation of transgenic mice with single-copy integration of the transgene and guaranteed expression of the gene-of-interest (GOI). We refer to this technique as functionally enriched ES cell transgenics, or FEEST. ES cells harboring an inducible Cre gene enabled the efficient selection of transgenic ES cell clones using hygromycin before Cre-mediated recombination. Expression of the GOI was confirmed by assaying for the GFP after Cre recombination. As a proof-of-principle, we produced a transgenic mouse line containing Cre-activatable tTA (cl-tTA6). This tTA mouse model was able to induce tumor formation when crossed with a transgenic mouse line containing a doxycycline-inducible oncogene. We also showed that the cl-tTA6 mouse is a valuable tool for faithfully recapitulating the clinical course of tumor development. We showed that FEEST can be easily adapted for other genes by preparing a transgenic mouse model of conditionally activatable EGFR L858R. Thus, FEEST is a technique with the potential to generate transgenic mouse models at a genome-wide scale. PMID:26573149

  14. Molecular Analyses of Transgenic Plants.

    PubMed

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue. PMID:26614292

  15. Transgenic animals resistant to infectious diseases.

    PubMed

    Tiley, L

    2016-04-01

    The list of transgenic animals developed to test ways of producing livestock resistant to infectious disease continues to grow. Although the basic techniques for generating transgenic animals have not changed very much in the ten years since they were last reviewed for the World Organisation for Animal Health, one recent fundamental technological advance stands to revolutionise genome engineering. The advent of technically simple and efficient site-specific gene targeting has profound implications for genetically modifying livestock species.

  16. An Efficient Procedure for Marker-Free Mutagenesis of S. coelicolor by Site-Specific Recombination for Secondary Metabolite Overproduction

    PubMed Central

    Dai, Ruixue; Yu, Meiying; Zhao, Guoping; Ding, Xiaoming

    2013-01-01

    Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four ‘entry clones’ were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four ‘entry clones’ contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes. PMID:23409083

  17. Transgenic models for the study of lung biology and disease.

    PubMed

    Ho, Y S

    1994-04-01

    Transgenic models provide a means of understanding the molecular mechanisms for the temporal, spatial, and stimulus-responsive regulation of gene expression in vivo and importantly the pathophysiological consequences of the altered expression of a normal or mutated gene. To facilitate the application of transgenic models in lung research, this review describes several practical considerations in generation of transgenic mice. The potential of transgenic models in lung research is also illustrated by depicting the current models in lung research including those for understanding lung gene regulation, tumorigenesis, mutation detection, antioxidant defense, emphysema, fibrosis, and hypertension. The impact of important new development of producing transgenic mice carrying large fragments of DNA contained in yeast artificial chromosomes to achieve proper control of transgene expression and gene targeting technology is also discussed. It is anticipated that transgenic models will provide invaluable information in future lung research.

  18. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay.

    PubMed

    Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua

    2014-08-01

    For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.

  19. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.

    PubMed

    Liu, Yong-Bo; Darmency, Henry; Stewart, C Neal; Wei, Wei; Tang, Zhi-Xi; Ma, Ke-Ping

    2015-06-01

    This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present. PMID:25487040

  20. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.

    PubMed

    Liu, Yong-Bo; Darmency, Henry; Stewart, C Neal; Wei, Wei; Tang, Zhi-Xi; Ma, Ke-Ping

    2015-06-01

    This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.

  1. Polyhydroxybutyrate synthesis in transgenic flax.

    PubMed

    Wróbel, Magdalena; Zebrowski, Jacek; Szopa, Jan

    2004-01-01

    Flax (Linum usitatissimum L.) is an annual plant species widely cultivated in temperate climates for bast fibres and linseed oil. Apart from traditional textile use, the fibres are fast becoming an integral part of new composite materials utilized in automobile and constructive industry. Especially attractive for environmental safety demands are biodegradable and renewable biocomposities based on polyhydroxybutyrate (PHB) polymer as a matrix and reinforced with the flax fibres. Manufacturing of PHB by bacteria fermentation is however substantially more expansive as compared to technologies producing conventional plastics. We report for the first time generation of transgenic plants which produce both components of flax/PHB composites, i.e. the fibres and the thermoplastic matrix in the same plant organ of a crop. The flax (cv. Nike) plants were transformed using constructs bearing either single cDNA, encoding the beta-ketothiolase enzyme (C plants), or all three of the genes necessary for poly-beta-hydroxybutyrate (PHB) synthesis (M plants). Both constructs contained a plastidial targeting sequence. The amount of PHB produced by the transgenic plants was up to over 70-fold higher than in wild-type plants, when analysed using the gas chromatography/mass spectrometry (GC-MS method). The PHB accumulation in plastids caused change both in their shape and size. The use of a stem-specific promoter for transgene expression protected the transgenic plant from growth retardation and also provided higher PHB synthesis than in the case of constructs governed by the 35S CaMV constitutive promoter. None toxic effects that could lead to stunted growth or the loss of fertility were observed, when 14-3-3 promoter was used as the stem-specific. Significant modifications in stem mechanical properties were accompanied to the PHB accumulation in growing cell of fibres in the transgenic plants. The Young's modulus E, the average measure of stem tissues resistance to tensile loads

  2. Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple.

    PubMed

    Smolka, Anders; Li, Xue-Yuan; Heikelt, Catrin; Welander, Margareta; Zhu, Li-Hua

    2010-12-01

    Although cultivation of genetic modified (GM) annual crops has been steadily increasing in the recent 10 years, the commercial cultivation of GM fruit tree is still very limited and reports of field trials on GM fruit trees are rare. This is probably because development and evaluation of GM fruit trees require a long period of time due to long life cycles of trees. In this study, we report results from a field trial on three rolB transgenic dwarfing apple rootstocks of M26 and M9 together with non-transgenic controls grafted with five non-transgenic scion cultivars. We intended to investigate the effects of transgenic rootstock on non-transgenic scion cultivars under natural conditions as well as to evaluate the potential value of using the rolB gene to modify difficult-to-root rootstocks of fruit trees. The results showed that all rolB transgenic rootstocks significantly reduced vegetative growth including tree height regardless of scion cultivar, compared with the non-transgenic rootstocks. Flowering and fruiting were also decreased for cultivars grown on the transgenic rootstocks in most cases, but the fruit quality was not clearly affected by the transgenic rootstocks. Cutting experiment and RT-PCR analysis showed that the rolB gene was stably expressed under field conditions. PCR and RT-PCR analyses displayed that the rolB gene or its mRNA were not detectable in the scion cultivars, indicating no translocation of the transgene or its mRNA from rootstock to scion. Our results suggest that rolB modified rootstocks should be used in combination with vigorous scion cultivars in order to obtain sufficient vegetative growth and good yield. Alternatively, the rolB gene could be used to dwarf vigorous rootstocks of fruit trees or produce bonzai plants as it can significantly reduce the vegetative growth of plants.

  3. Pharming and transgenic plants.

    PubMed

    Liénard, David; Sourrouille, Christophe; Gomord, Véronique; Faye, Loïc

    2007-01-01

    Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.

  4. Pharming and transgenic plants.

    PubMed

    Liénard, David; Sourrouille, Christophe; Gomord, Véronique; Faye, Loïc

    2007-01-01

    Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories. PMID:17875476

  5. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    SciTech Connect

    Chakravarthy, Balu; Gaudet, Chantal; Menard, Michel; Brown, Leslie; Atkinson, Trevor; LaFerla, Frank M.; Ito, Shingo; Armato, Ubaldo; Dal Pra, Ilaria; Whitfield, James

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatin receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.

  6. Transgenic dairy cattle: genetic engineering on a large scale.

    PubMed

    Wall, R J; Kerr, D E; Bondioli, K R

    1997-09-01

    Amid the explosion of fundamental knowledge generated from transgenic animal models, a small group of scientists has been producing transgenic livestock with goals of improving animal production efficiency and generating new products. The ability to modify mammary-specific genes provides an opportunity to pursue several distinctly different avenues of research. The objective of the emerging gene "pharming" industry is to produce pharmaceuticals for treating human diseases. It is argued that mammary glands are an ideal site for producing complex bioactive proteins that can be cost effectively harvested and purified. Consequently, during the past decade, approximately a dozen companies have been created to capture the US market for pharmaceuticals produced from transgenic bioreactors estimated at $3 billion annually. Several products produced in this way are now in human clinical trials. Another research direction, which has been widely discussed but has received less attention in the laboratory, is genetic engineering of the bovine mammary gland to alter the composition of milk destined for human consumption. Proposals include increasing or altering endogenous proteins, decreasing fat, and altering milk composition to resemble that of human milk. Initial studies using transgenic mice to investigate the feasibility of enhancing manufacturing properties of milk have been encouraging. The potential profitability of gene "pharming" seems clear, as do the benefits of transgenic cows producing milk that has been optimized for food products. To take full advantage of enhanced milk, it may be desirable to restructure the method by which dairy producers are compensated. However, the cost of producing functional transgenic cattle will remain a severe limitation to realizing the potential of transgenic cattle until inefficiencies of transgenic technology are overcome. These inefficiencies include low rates of gene integration, poor embryo survival, and unpredictable transgene

  7. Transgenic plants protected from insect attack

    NASA Astrophysics Data System (ADS)

    Vaeck, Mark; Reynaerts, Arlette; Höfte, Herman; Jansens, Stefan; de Beuckeleer, Marc; Dean, Caroline; Zabeau, Marc; Montagu, Marc Van; Leemans, Jan

    1987-07-01

    The Gram-positive bacterium Bacillus thuringiensis produces proteins which are specifically toxic to a variety of insect species. Modified genes have been derived from bt2, a toxin gene cloned from one Bacillus strain. Transgenic tobacco plants expressing these genes synthesize insecticidal proteins which protect them from feeding damage by larvae of the tobacco hornworm.

  8. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation

    PubMed Central

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D.; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of “clean” GM wheat containing only the foreign genes of agronomic importance. PMID:27708648

  9. Stable, fertile, high polyhydroxyalkanoate producing plants and methods of producing them

    DOEpatents

    Bohmert-Tatarev, Karen; McAvoy, Susan; Peoples, Oliver P.; Snell, Kristi D.

    2015-08-04

    Transgenic plants that produce high levels of polyhydroxybutyrate and methods of producing them are provided. In a preferred embodiment the transgenic plants are produced using plastid transformation technologies and utilize genes which are codon optimized. Stably transformed plants able to produce greater than 10% dwt PHS in tissues are also provided.

  10. Effect of transgene number of spontaneous and radiation-induced micronuclei in lacl transgenic mice

    SciTech Connect

    O`Loughlin, K.G.; Hamer, J.D.; Winegar, R.A.; Mirsalis, J.C.; Short, J.M.

    1994-12-31

    Lacl transgenic mice are widely used for the measurement of mutations in specific target issues. The lacl transgene is present in mice as 40 tandem repeats; this sequence is homozygous (contained in both copies of chromosome 5) in C57Bl/6 mice, and is hemizygous in B6C3F1 mice. Previous reports have indicated that tandem repeats can produce chromosome instability, fragile sites, and other effects. To determine whether the presence of the transgene effects micronucleus induction we compared the response of nontransgenic (NTR) to hemizygous (HEMI) transgenic B6C3F1 mice and to hemizygous and homozygous (HOMO) transgenic C57Bl/6 mice. Five mice/group were irradiated with 500 cGy from a {sup 137}Cs source. Bone marrow was harvested 24 hr after treatment and 2000 polychromatic erythrocytes (PCE) were analyzed per animal. The presence or absence of the lacl transgene had no effect in unirradiated mice on the percent of micronucleated PCE (MN) or on the ratio of PCE to total red blood cells for either strain: B6C3F1 mice had MN frequencies of 0.26% and 0.20% for NTR and HEMI mice, respectively; C57Bl/6 mice had MN frequencies of 0.34%, 0.32%, and 0.38% for NTR, HEMI, and HOMO mice, respectively. Radiation-induced micronucleus frequencies were significantly higher in HEMI lacl B6C3F1 mice (2.85%) than in NTR litter mates (1.59%); the converse was true in C57Bl/6 mice: NTR were 2.45%, HEMI were 1.25%, HOMO were 1.65%. These data suggest that the lacl transgene does not cause chromosome instability as measured by spontaneous micronucleus levels. However, the response of these transgenic mice to a variety of clastogenic agents needs to be investigated before they are integrated into standard in vivo assays for chromosome damage.

  11. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  12. Viable transgenic goats derived from skin cells.

    PubMed

    Behboodi, Esmail; Memili, Erdogan; Melican, David T; Destrempes, Margaret M; Overton, Susan A; Williams, Jennifer L; Flanagan, Peter A; Butler, Robin E; Liem, Hetty; Chen, Li How; Meade, Harry M; Gavin, William G; Echelard, Yann

    2004-06-01

    The current study was undertaken to evaluate the possibility of expanding transgenic goat herds by means of somatic cell nuclear transfer (NT) using transgenic goat cells as nucleus donors. Skin cells from adult, transgenic goats were first synchronized at quiescent stage (G0) by serum starvation and then induced to exit G0 and proceed into G1. Oocytes collected from superovulated donors were enucleated, karyoplast-cytoplast couplets were constructed, and then fused and activated simultaneously by a single electrical pulse. Fused couplets were either co-cultured with oviductal cells in TCM-199 medium (in vitro culture) or transferred to intermediate recipient goat oviducts (in vivo culture) until final transfer. The resulting morulae and blastocysts were transferred to the final recipients. Pregnancies were confirmed by ultrasonography 25-30 days after embryo transfer. In vitro cultured NT embryos developed to morulae and blastocyst stages but did not produce any pregnancies while 30% (6/20) of the in vivo derived morulae and blastocysts produced pregnancies. Two of these pregnancies were resorbed early in gestation. Of the four recipients that maintained pregnancies to term, two delivered dead fetuses 2-3 days after their due dates, and two recipients gave birth to healthy kids at term. Fluorescence in situ hybridization (FISH) analysis confirmed that both kids were transgenic and had integration sites consistent with those observed in the adult cell line.

  13. Transgenes for tea?

    PubMed

    Heritage, John

    2005-01-01

    So far, no compelling scientific evidence has been found to suggest that the consumption of transgenic or genetically modified (GM) plants by animals or humans is more likely to cause harm than is the consumption of their conventional counterparts. Despite this lack of scientific evidence, the economic prospects for GM plants are probably limited in the short term and there is public opposition to the technology. Now is a good time to address several issues concerning GM plants, including the potential for transgenes to migrate from GM plants to gut microbes or to animal or human tissues, the consequences of consuming GM crops, either as fresh plants or as silage, and the problems caused by current legislation on GM labelling and beyond.

  14. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  15. Transgenic plants with increased calcium stores

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  16. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  17. Hybridization of downregulated-COMT transgenic switchgrass lines with field selected switchgrass for improved biomass traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. Downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In the present study we sought to further...

  18. Design and Management of Field Trials of Transgenic Cereals

    NASA Astrophysics Data System (ADS)

    Bedő, Zoltán; Rakszegi, Mariann; Láng, László

    The development of gene transformation systems has allowed the introgression of alien genes into plant genomes, thus providing a mechanism for broadening the genetic resources available to plant breeders. The design and the management of field trials vary according to the purpose for which transgenic cereals are developed. Breeders study the phenotypic and genotypic stability of transgenic plants, monitor the increase in homozygosity of transgenic genotypes under field conditions, and develop backcross generations to transfer the introduced genes into secondary transgenic cereal genotypes. For practical purposes, they may also multiply seed of the transgenic lines to produce sufficient amounts of grain for the detailed analysis of trait(s) of interest, to determine the field performance of transgenic lines, and to compare them with the non-transformed parental genotypes. Prior to variety registration, the Distinctness, Uniformity and Stability (DUS) tests and Value for Cultivation and Use (VCU) experiments are carried out in field trials. Field testing includes specific requirements for transgenic cereals to assess potential environmental risks. The capacity of the pollen to survive, establish and disseminate in the field test environment, the potential for gene transfer, the effects of products expressed by the introduced sequences and phenotypic and genotypic instability that might cause deleterious effects must all be specifically monitored, as required by EU Directives 2003/701/EC (1) on the release of genetically modified higher plants in the environment.

  19. Production of transgenic miniature pigs by pronuclear microinjection.

    PubMed

    Uchida, M; Shimatsu, Y; Onoe, K; Matsuyama, N; Niki, R; Ikeda, J E; Imai, H

    2001-12-01

    Miniature pig is an attractive animal for a wide range of research fields, such as medicine and pharmacology, because of its small size, the possibility of breeding it under minimum environmental controls and the physiology that is potentially similar to that of human. Although transgenic technology is useful for the analysis of gene function and for the development of model animals for various diseases, there have not yet been any reports on producing transgenic miniature pig. This study is the first successful report concerning the production of transgenic miniature pig by pronuclear microinjection. The huntingtin gene cloned from miniature pig, which is a homologue of candidate gene for Huntington's disease, connected with rat neuron-specific enolase promoter region, was injected into a pronucleus of fertilized eggs with micromanipulator. The eggs were transferred into the oviduct of recipient miniature pigs, whose estrus cycles were previously synchronized with a progesterone analogue. A total of 402 injected eggs from 171 donors were transferred to 23 synchronized recipients. Sixteen of them maintained pregnancy and delivered 65 young, and one resulted in abortion. Five of the 68 offspring (three of which were aborted) were determined to have transgene by PCR and Southern analysis. The overall rate of transgenic production was 1.24% (transgenic/injected eggs). This study provides the first success and useful information regarding production of transgenic miniature pig for biomedical research.

  20. Transgenic algae engineered for higher performance

    SciTech Connect

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  1. Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system.

    PubMed

    Chong-Pérez, Borys; Kosky, Rafael G; Reyes, Maritza; Rojas, Luis; Ocaña, Bárbara; Tejeda, Marisol; Pérez, Blanca; Angenon, Geert

    2012-06-30

    Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained transgenic banana plants cv. Grande Naine (Musa AAA) devoid of the marker gene used for selection. We used T-DNA vectors with the cre recombinase gene under control of a heat shock promoter and selectable marker gene cassettes placed between two loxP sites in direct orientation, and a gene of interest inserted outside of the loxP sites. Heat shock promoters pGmHSP17.6-L and pHSP18.2, from soybean and Arabidopsis respectively, were tested. A transient heat shock treatment of primary transgenic embryos was sufficient for inducing cre and excising cre and the marker genes. Excision efficiency, as determined by PCR and Southern hybridization was 59.7 and 40.0% for the GmHSP17.6-L and HSP18.2 promoters, respectively. Spontaneous excision was not observed in 50 plants derived from untreated transgenic embryos. To our knowledge this is the first report describing an efficient marker gene removal system for banana. The method described is simple and might be generally applicable for the production of marker-free transgenic plants of many crop species.

  2. Use of Transgenic Animals in Biotechnology: Prospects and Problems

    PubMed Central

    Maksimenko, O. G.; Deykin, A.V.; Khodarovich, Yu. M.; Georgiev, P. G.

    2013-01-01

    During the past two decades, there have been numerous attempts at using animals in order to produce recombinant human proteins and monoclonal antibodies. However, it is only recently that the first two therapeutic agents isolated from the milk of transgenic animals, C1 inhibitor (Ruconest) and antithrombin (ATryn), appeared on the market. This inspires hope that a considerable number of new recombinant proteins created using such technology could become available for practical use in the near future. In this review, the methods applied to produce transgenic animals are described and the advantages and drawbacks related to their use for producing recombinant human proteins and monoclonal antibodies are discussed. PMID:23556129

  3. Cryopreservation of Xenopus transgenic lines.

    PubMed

    Buchholz, Daniel R; Fu, Liezhen; Shi, Yun-Bo

    2004-01-01

    Xenopus laevis has been widely used for molecular, cellular, and developmental studies. With the development of the sperm-mediated transgenic method, it is now possible to study gene function during vertebrate development by using this popular model. On the other hand, like other animal species, it is labor intensive, and the maintenance of transgenic lines is expensive. In this article, we investigated the possibility of using sperm-cryopreservation as a means to preserve transgenic frog lines. We demonstrated that cryopreserved sperms are viable but not fertile under our in vitro fertilization (IVF) conditions. However, by microinjecting cryopreserved sperm nuclei, we successfully regenerated a transgenic line carrying a double promoter transgene construct, where the marker gene encoding the green fluorescent protein (GFP) is driven by the gamma-crystallin gene promoter and a gene of interest, encoding a fusion protein of GFP with the matrix metalloproteinase stromelysin-3 (ST3-GFP), is driven by a heat shock-inducible promoter. We demonstrated the functional transmission of the ST3-GFP transgene by analyzing the phenotype of the F1 animals after heat-shock to induce its expression. Our method thus provides an inexpensive means to preserve transgenic frog lines and a convenient way for distribution of transgenic lines. Furthermore, the ease with which to microinject nuclei compared to the technically demanding transgenesis procedure with variable outcome should facilitate more laboratories to use transgenic Xenopus laevis for functional studies in vivo. Mol. Reprod. Dev. 67: 65-69, 2004.

  4. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    SciTech Connect

    Ahn, Kwang Sung; Won, Ji Young; Park, Jin-Ki; Sorrell, Alice M.; Heo, Soon Young; Kang, Jee Hyun; Woo, Jae-Seok; Choi, Bong-Hwan; Chang, Won-Kyong; Shim, Hosup

    2010-10-01

    Research highlights: {yields} Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. {yields} hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. {yields} hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.

  5. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    SciTech Connect

    Coruzzi, Gloria; Gutierrez, Rodrigo A.; Nero, Damion C.

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  6. Transgenic fish systems and their application in ecotoxicology.

    PubMed

    Lee, Okhyun; Green, Jon M; Tyler, Charles R

    2015-02-01

    The use of transgenics in fish is a relatively recent development for advancing understanding of genetic mechanisms and developmental processes, improving aquaculture, and for pharmaceutical discovery. Transgenic fish have also been applied in ecotoxicology where they have the potential to provide more advanced and integrated systems for assessing health impacts of chemicals. The zebrafish (Daniorerio) is the most popular fish for transgenic models, for reasons including their high fecundity, transparency of their embryos, rapid organogenesis and availability of extensive genetic resources. The most commonly used technique for producing transgenic zebrafish is via microinjection of transgenes into fertilized eggs. Transposon and meganuclease have become the most reliable methods for insertion of the genetic construct in the production of stable transgenic fish lines. The GAL4-UAS system, where GAL4 is placed under the control of a desired promoter and UAS is fused with a fluorescent marker, has greatly enhanced model development for studies in ecotoxicology. Transgenic fish have been developed to study for the effects of heavy metal toxicity (via heat-shock protein genes), oxidative stress (via an electrophile-responsive element), for various organic chemicals acting through the aryl hydrocarbon receptor, thyroid and glucocorticoid response pathways, and estrogenicity. These models vary in their sensitivity with only very few able to detect responses for environmentally relevant exposures. Nevertheless, the potential of these systems for analyses of chemical effects in real time and across multiple targets in intact organisms is considerable. Here we illustrate the techniques used for generating transgenic zebrafish and assess progress in the development and application of transgenic fish (principally zebrafish) for studies in environmental toxicology. We further provide a viewpoint on future development opportunities.

  7. Ethical issues in transgenics.

    PubMed

    Sherlock, R; Morrey, J D

    2000-01-01

    The arguments of critics and concerns of the public on generating transgenic cloned animals are analyzed for the absence or presence of logical structure. Critics' arguments are symbolically compared with "genetic trespassing," "genetic speeding," or "going the wrong way," and responses are provided to these arguments. Scientists will be empowered to participate in the public discussion and to engage the critics on these issues as they consider thoughtful, plausible responses to their concerns. Temporary moratoriums are recognized as a plausible approach to dealing with possible concerns of new scientific advancements.

  8. Efficient production of transgenic melon via Agrobacterium-mediated transformation.

    PubMed

    Bezirganoglu, I; Hwang, S Y; Shaw, J F; Fang, T J

    2014-04-25

    Oriental melon (Cucumis melo L. var. makuwa) is an important fruit for human consumption. However, this plant species is one of the most recalcitrant to genetic transformation. The lack of an efficient in vitro system limits the development of a reproducible genetic transformation protocol for Oriental melon. In this study, an efficient transgenic production method for Agrobacterium-mediated transformation using cotyledon explants of Oriental melon was developed. Cotyledon explants were pre-cultivated for two days in the dark, and the optimal conditions for transformation of melon were determined to be a bacteria concentration of OD600 0.6, inoculation for 30 min, and two days of co-cultivation. Transgenic melon plants were produced from kanamycin-resistant shoots. A total of 11 independent transgenic plants were regenerated with a transformation efficiency of 0.8% of the inoculated explants. The transgenic plants were phenotypically normal and fully fertile, which might be a consequence of the co-cultivation time.

  9. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  10. Transgenic horticultural crops in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  11. Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions.

    PubMed

    Halfhill, Matthew D; Zhu, Bin; Warwick, Suzanne I; Raymer, Paul L; Millwood, Reginald J; Weissinger, Arthur K; Stewart, C Neal

    2004-01-01

    Determining the frequency of crop-wild transgene flow under field conditions is a necessity for the development of regulatory strategies to manage transgenic hybrids. Gene flow of green fluorescent protein (GFP) and Bacillus thuringiensis (Bt) transgenes was quantified in three field experiments using eleven independent transformed Brassica napus L. lines and the wild relatives, B. rapa L. and Raphanus raphanistrum L. Under a high crop to wild relative ratio (600:1), hybridization frequency with B. rapa differed among the individual transformed B. napus lines (ranging from ca. 4% to 22%), however, this difference could be caused by the insertion events or other factors, e.g., differences in the hybridization frequencies among the B. rapa plants. The average hybridization frequency over all transformed lines was close to 10%. No hybridization with R. raphanistrum was detected. Under a lower crop to wild relative ratio (180:1), hybridization frequency with B. rapa was consistent among the transformed B. napus lines at ca. 2%. Interspecific hybridization was higher when B. rapa occurred within the B. napus plot (ca. 37.2%) compared with plot margins (ca. 5.2%). No significant differences were detected among marginal plants grown at 1, 2, and 3 m from the field plot. Transgene backcrossing frequency between B. rapa and transgenic hybrids was determined in two field experiments in which the wild relative to transgenic hybrid ratio was 5-15 plants of B. rapa to 1 transgenic hybrid. As expected, ca. 50% of the seeds produced were transgenic backcrosses when the transgenic hybrid plants served as the maternal parent. When B. rapa plants served as the maternal parent, transgene backcrossing frequencies were 0.088% and 0.060%. Results show that transgene flow from many independent transformed lines of B. napus to B. rapa can occur under a range of field conditions, and that transgenic hybrids have a high potential to produce transgenic seeds in backcrosses. PMID:15612504

  12. Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions.

    PubMed

    Halfhill, Matthew D; Zhu, Bin; Warwick, Suzanne I; Raymer, Paul L; Millwood, Reginald J; Weissinger, Arthur K; Stewart, C Neal

    2004-01-01

    Determining the frequency of crop-wild transgene flow under field conditions is a necessity for the development of regulatory strategies to manage transgenic hybrids. Gene flow of green fluorescent protein (GFP) and Bacillus thuringiensis (Bt) transgenes was quantified in three field experiments using eleven independent transformed Brassica napus L. lines and the wild relatives, B. rapa L. and Raphanus raphanistrum L. Under a high crop to wild relative ratio (600:1), hybridization frequency with B. rapa differed among the individual transformed B. napus lines (ranging from ca. 4% to 22%), however, this difference could be caused by the insertion events or other factors, e.g., differences in the hybridization frequencies among the B. rapa plants. The average hybridization frequency over all transformed lines was close to 10%. No hybridization with R. raphanistrum was detected. Under a lower crop to wild relative ratio (180:1), hybridization frequency with B. rapa was consistent among the transformed B. napus lines at ca. 2%. Interspecific hybridization was higher when B. rapa occurred within the B. napus plot (ca. 37.2%) compared with plot margins (ca. 5.2%). No significant differences were detected among marginal plants grown at 1, 2, and 3 m from the field plot. Transgene backcrossing frequency between B. rapa and transgenic hybrids was determined in two field experiments in which the wild relative to transgenic hybrid ratio was 5-15 plants of B. rapa to 1 transgenic hybrid. As expected, ca. 50% of the seeds produced were transgenic backcrosses when the transgenic hybrid plants served as the maternal parent. When B. rapa plants served as the maternal parent, transgene backcrossing frequencies were 0.088% and 0.060%. Results show that transgene flow from many independent transformed lines of B. napus to B. rapa can occur under a range of field conditions, and that transgenic hybrids have a high potential to produce transgenic seeds in backcrosses.

  13. Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus

    PubMed Central

    Li, Wenting; Wang, Kejun; Kang, Shimeng; Deng, Shoulong; Han, Hongbing; Lian, Ling; Lian, Zhengxing

    2015-01-01

    Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats’ cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV. PMID:26671568

  14. Transgenic rice endosperm as a bioreactor for molecular pharming.

    PubMed

    Ou, Jiquan; Guo, Zhibin; Shi, Jingni; Wang, Xianghong; Liu, Jingru; Shi, Bo; Guo, Fengli; Zhang, Chufu; Yang, Daichnag

    2014-04-01

    Plants provide a promising expression platform for producing recombinant proteins with several advantages in terms of high expression level, lower production cost, scalability, and safety and environment-friendly. Molecular pharming has been recognized as an emerging industry with strategic importance that could play an important role in economic development and healthcare in China. Here, this review represents the significant advances using transgenic rice endosperm as bioreactor to produce various therapeutic recombinant proteins in transgenic rice endosperm and large-scale production of OsrHSA, and discusses the challenges to develop molecular pharming as an emerging industry with strategic importance in China.

  15. Transgenic rice endosperm as a bioreactor for molecular pharming.

    PubMed

    Ou, Jiquan; Guo, Zhibin; Shi, Jingni; Wang, Xianghong; Liu, Jingru; Shi, Bo; Guo, Fengli; Zhang, Chufu; Yang, Daichnag

    2014-04-01

    Plants provide a promising expression platform for producing recombinant proteins with several advantages in terms of high expression level, lower production cost, scalability, and safety and environment-friendly. Molecular pharming has been recognized as an emerging industry with strategic importance that could play an important role in economic development and healthcare in China. Here, this review represents the significant advances using transgenic rice endosperm as bioreactor to produce various therapeutic recombinant proteins in transgenic rice endosperm and large-scale production of OsrHSA, and discusses the challenges to develop molecular pharming as an emerging industry with strategic importance in China. PMID:24413763

  16. [Transgenics without Manichaeism].

    PubMed

    Valle, S

    2000-01-01

    We live in an era characterized by the hegemony of science and technology, an era fraught with questions awaiting answers which would enable a safe and sustainable future for humankind. The development of agro-industrial processes - food products in particular - through recombinant DNA technology has enhanced the profit prospects of the few big biotechnology companies and of large-scale farmers who have access to the latest technological developments. We thus oppose a moratorium on recombinant DNA technology. Moreover, hasty statements about risk-free transgenics may be misleading in the absence of extensive safety tests. There is a pressing need for the establishment of biosafety policy in this country involving the organized civil society and every government agency responsible for monitoring such matters. There is also the need to put in place a bio-surveillance and a code of ethics regarding genetic manipulation.

  17. Arsenic biotransformation and volatilization in transgenic rice.

    PubMed

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P; Zhu, Yong-Guan

    2011-07-01

    • Biotransformation of arsenic includes oxidation, reduction, methylation, and conversion to more complex organic arsenicals. Members of the class of arsenite (As(III)) S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di-, and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. • Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa) cv Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). • Both monomethylarsenate (MAs(V)) and dimethylarsenate (DMAs(V)) were detected in the roots and shoots of transgenic rice. After 12 d exposure to As(III), the transgenic rice gave off 10-fold greater volatile arsenicals. • The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, theoretically providing a potential stratagem for phytoremediation. PMID:21517874

  18. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  19. Allelic exclusion in transgenic mice carrying mutant human IgM genes

    PubMed Central

    1988-01-01

    Expression of the membrane-bound version of the human mu chain in transgenic mice results in the allelic exclusion of endogenous mouse Ig heavy chain genes (6). The secreted version of the human Ig transgene has no such effect. F1 hybrid animals that carry transgenes for both secreted and membrane-bound human mu chains produce both forms of the human heavy chain while strongly suppressing endogenous mouse mu expression. The simultaneous expression of the two rearranged transgenes in primary B cells suggests that allelic exclusion operates before the formation of a second functionally rearranged heavy chain gene in vivo. PMID:3133444

  20. Transgenic Studies with a Keratin Promoter-Driven Growth Hormone Transgene: Prospects for Gene Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zinkel, Sandra; Polonsky, Kenneth; Fuchs, Elaine

    1997-01-01

    Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at ≈ 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.

  1. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts.

    PubMed

    Moon, Hye Yun; Lee, Dong Wook; Sim, Gyu Hun; Kim, Hong-Jin; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kang, Bo-Kyu; Kim, Jong Man; Kang, Hyun Ah

    2016-09-10

    The traditional yeast Saccharomyces cerevisiae has been widely used as a host system to produce recombinant proteins and metabolites of great commercial value. To engineer recombinant yeast that stably maintains expression cassettes without an antibiotic resistance gene, we developed new multiple integration cassettes by exploiting the non-transcribed spacer (NTS) of ribosomal DNA (rDNA) in combination with defective selection markers. The 5' and 3'-fragments of rDNA-NTS2 were used as flanking sequences for the expression cassettes carrying a set of URA3, LEU2, HIS3, and TRP1 selection markers with truncated promoters of different lengths. The integration numbers of NTS-based expression cassettes, ranging from one to ∼30 copies, showed a proportional increase with the extent of decreased expression of the auxotrophic markers. The NTS-based cassettes were used to construct yeast strains expressing the capsid protein of red-spotted grouper necrosis virus (RG-NNVCP) in a copy number-dependent manner. Oral administration of the recombinant yeast, harboring ∼30 copies of the integrated RG-NNVCP cassettes, provoked efficient immune responses in mice. In contrast, for the NTS cassettes expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, the integrant carrying only 4 copies was screened as the highest producer of squalene, showing a 150-fold increase compared to that of the wild-type strain. The multiple integrated cassettes were stably retained under prolonged nonselective conditions. Altogether, our results strongly support that rDNA-NTS integrative cassettes are useful tools to construct recombinant yeasts carrying optimal copies of a desired expression cassette without an antibiotic marker gene, which are suitable as oral vaccines or feed additives for animal and human consumption. PMID:27411901

  2. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts.

    PubMed

    Moon, Hye Yun; Lee, Dong Wook; Sim, Gyu Hun; Kim, Hong-Jin; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kang, Bo-Kyu; Kim, Jong Man; Kang, Hyun Ah

    2016-09-10

    The traditional yeast Saccharomyces cerevisiae has been widely used as a host system to produce recombinant proteins and metabolites of great commercial value. To engineer recombinant yeast that stably maintains expression cassettes without an antibiotic resistance gene, we developed new multiple integration cassettes by exploiting the non-transcribed spacer (NTS) of ribosomal DNA (rDNA) in combination with defective selection markers. The 5' and 3'-fragments of rDNA-NTS2 were used as flanking sequences for the expression cassettes carrying a set of URA3, LEU2, HIS3, and TRP1 selection markers with truncated promoters of different lengths. The integration numbers of NTS-based expression cassettes, ranging from one to ∼30 copies, showed a proportional increase with the extent of decreased expression of the auxotrophic markers. The NTS-based cassettes were used to construct yeast strains expressing the capsid protein of red-spotted grouper necrosis virus (RG-NNVCP) in a copy number-dependent manner. Oral administration of the recombinant yeast, harboring ∼30 copies of the integrated RG-NNVCP cassettes, provoked efficient immune responses in mice. In contrast, for the NTS cassettes expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, the integrant carrying only 4 copies was screened as the highest producer of squalene, showing a 150-fold increase compared to that of the wild-type strain. The multiple integrated cassettes were stably retained under prolonged nonselective conditions. Altogether, our results strongly support that rDNA-NTS integrative cassettes are useful tools to construct recombinant yeasts carrying optimal copies of a desired expression cassette without an antibiotic marker gene, which are suitable as oral vaccines or feed additives for animal and human consumption.

  3. Post-mortem re-cloning of a transgenic red fluorescent protein dog.

    PubMed

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo; Lee, Byeong-Chun

    2011-12-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.

  4. Handmade Cloned Transgenic Sheep Rich in Omega-3 Fatty Acids

    PubMed Central

    Dou, Hongwei; Chen, Lei; Chen, Longxin; Lin, Lin; Tan, Pingping; Vajta, Gabor; Gao, Jianfeng; Du, Yutao; Ma, Runlin Z.

    2013-01-01

    Technology of somatic cell nuclear transfer (SCNT) has been adapted worldwide to generate transgenic animals, although the traditional procedure relies largely on instrumental micromanipulation. In this study, we used the modified handmade cloning (HMC) established in cattle and pig to produce transgenic sheep with elevated levels of omega-3 (n−3) fatty acids. Codon-optimized nematode mfat-1 was inserted into a eukaryotic expression vector and was transferred into the genome of primary ovine fibroblast cells from a male Chinese merino sheep. Reverse transcriptase PCR, gas chromatography, and chromosome analyses were performed to select nuclear donor cells capable of converting omega-6 (n−6) into n−3 fatty acids. Blastocysts developed after 7 days of in vitro culture were surgically transplanted into the uterus of female ovine recipients of a local sheep breed in Xinjiang. For the HMC, approximately 8.9% (n  = 925) of reconstructed embryos developed to the blastocyst stage. Four recipients became pregnant after 53 blastocysts were transplanted into 29 naturally cycling females, and a total of 3 live transgenic lambs were produced. Detailed analyses on one of the transgenic lambs revealed a single integration of the modified nematode mfat-1 gene at sheep chromosome 5. The transgenic sheep expressed functional n−3 fatty acid desaturase, accompanied by more than 2-folds reduction of n−6/n−3 ratio in the muscle (p<0.01) and other major organs/tissues (p<0.05). To our knowledge, this is the first report of transgenic sheep produced by the HMC. Compared to the traditional SCNT method, HMC showed an equivalent efficiency but proved cheaper and easier in operation. PMID:23437077

  5. Transgenic hepatocarcinogenesis in the rat.

    PubMed Central

    Hully, J. R.; Su, Y.; Lohse, J. K.; Griep, A. E.; Sattler, C. A.; Haas, M. J.; Dragan, Y.; Peterson, J.; Neveu, M.; Pitot, H. C.

    1994-01-01

    Although transgenic hepatocarcinogenesis has been accomplished in the mouse with a number of genetic constructs targeting the oncogene to expression primarily in the liver, no example of this process has yet been developed in the rat. Because our understanding of the multistage nature of hepatocarcinogenesis is most advanced in the rat, we have developed a strain of transgenic rats carrying the promoter-enhancer sequences of the mouse albumin gene linked 5' to the simian virus-40 T antigen gene. A line of transgenic rats bearing this transgene has been developed from a single founder female. Five to six copies of the transgene, possibly in tandem, occur within the genome of the transgenic animals, which are maintained by heterozygous matings. Livers of transgenic animals are histologically normal after weaning; at 2 months of age, small foci of vacuolated cells appear in this organ. By 4 months of age, all animals exhibit focal lesions and nodules consisting primarily of small basophilic cells, many of which exhibit considerable cytoplasmic vacuolization. Mating of animals each bearing the transgene results in rats with a demyelinating condition that develops acutely in pregnant females and more chronically in males. Ultrastructural studies of these cells indicate that the vacuoles contain substantial amounts of glycogen, with the cells resembling hepatoblasts. Malignant neoplasms with both a glandular and a hepatoblastoma/hepatocellular carcinoma pattern arise from the nodules. Enzyme and immunohistochemical studies of all lesions reveal many similarities in gene expression to comparable lesions in rats subjected to chemically induced hepatocarcinogenesis, with certain exceptions. The placental form of glutathione-S-transferase is absent from all lesions in the transgenic animal, as is the expression of connexin 32. A significant number of lesions express serum albumin, and many, but not all, exhibit the T antigen. Lesions expressing the T antigen also contain

  6. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  7. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  8. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  9. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology. PMID:19722000

  10. THE POTENTIAL ROLE OF REMOTE SENSING IN TRANSGENIC CROP MONITORING PROGRAMS

    EPA Science Inventory

    Sustainable agriculture combines efficient production with wise stewardship of the earth's resources. Development of environmentally benign production techniques is one focus of sustainable agriculture. The new transgenic crops producing toxic proteins that target specific crop p...

  11. Recurrent Selection for Transgene Activity Levels in Maize Results in Proxy Selection for a Native Gene with the Same Promoter.

    PubMed

    Bodnar, Anastasia L; Schroder, Megan N; Scott, M Paul

    2016-01-01

    High activity levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High activity levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurrent selection for activity of a transgene will result in higher activity, and if selection for activity of a transgene controlled by a native promoter will also increase protein levels of the native gene with the same promoter. To accomplish this goal we used transgenic maize containing a construct encoding green fluorescent protein controlled by the promoter for the maize endosperm-specific 27 kDa gamma zein seed storage protein. We carried out recurrent selection for fluorescence intensity in two breeding populations. After three generations of selection, both selected populations were significantly more fluorescent and had significantly higher levels of 27 kDa gamma zein than the unselected control populations. These higher levels of the 27 kDa gamma zein occurred independently of the presence of the transgene. The results show that recurrent selection can be used to increase activity of a transgene and that selection for a transgene controlled by a native promoter can increase protein levels of the native gene with the same promoter via proxy selection. Moreover, the increase in native gene protein level is maintained in the absence of the transgene, demonstrating that proxy selection can be used to produce non-transgenic plants with desired changes in gene expression.

  12. Can transgenic mosquitoes afford the fitness cost?

    PubMed

    Lambrechts, Louis; Koella, Jacob C; Boëte, Christophe

    2008-01-01

    In a recent study, SM1-transgenic Anopheles stephensi, which are resistant partially to Plasmodium berghei, had higher fitness than non-transgenic mosquitoes when they were maintained on Plasmodium-infected blood. This result should be interpreted cautiously with respect to malaria control using transgenic mosquitoes because, despite the evolutionary advantage conferred by the transgene, a concomitant cost prevents it from invading the entire population. Indeed, for the spread of a resistance transgene in a natural situation, the transgene's fitness cost and the efficacy of the gene drive will be more crucial than any evolutionary advantage.

  13. Generation of transgenic marmosets expressing genetically encoded calcium indicators

    PubMed Central

    Park, Jung Eun; Zhang, Xian Feng; Choi, Sang-Ho; Okahara, Junko; Sasaki, Erika; Silva, Afonso C.

    2016-01-01

    Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to express the green fluorescent protein (GFP)-based family of GECIs, GCaMP, under control of either the CMV or the hSyn promoter. High titer lentiviral vectors were produced, and injected into embryos collected from donor females. The infected embryos were then transferred to recipient females. Eight transgenic animals were born and shown to have stable and functional GCaMP expression in several different tissues. Germline transmission of the transgene was confirmed in embryos generated from two of the founder transgenic marmosets that reached sexual maturity. These embryos were implanted into six recipient females, three of which became pregnant and are in advanced stages of gestation. We believe these transgenic marmosets will be invaluable non-human primate models in neuroscience, allowing chronic in vivo monitoring of neural activity with functional confocal and multi-photon optical microscopy imaging of intracellular calcium dynamics. PMID:27725685

  14. Targeting gene expression to the wool follicle in transgenic sheep.

    PubMed

    Damak, S; Jay, N P; Barrell, G K; Bullock, D W

    1996-02-01

    To establish the feasibility of overexpressing foreign genes in the wool follicle, transgenic sheep were produced by pronuclear microinjection of a DNA construct consisting of a mouse ultrahigh-sulfur keratin promoter linked to the bacterial chloramphenicol acetyl transferase (CAT) gene. Four of 31 lambs born were transgenic. The overall efficiency of transgenesis was 1.1% of zygotes injected and transferred. Two transgenic rams were mated to nontransgenic ewes, and both transmitted the gene to their offspring in Mendelian fashion. CAT expression was found in the skin of one G0 ram and in 9 out of 26 transgenic G1 progeny. Two G1 lambs were sacrificed to study tissue specificity. Both had high levels of expression in skin but One had high expression in spleen and kidney with lower levels of expression in lung; the other had low expression in spleen, lung, and muscle. In situ hybridization demonstrated that transgene expression in the skin was confined to the keratogenous zone of the wool follicle cortex. Expression of CAT activity in skin was correlated with diet-induced or seasonal changes in the rate of wool growth. This keratin promoter appears useful for overexpressing factors in the wool follicle that might influence wool production or properties.

  15. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes.

    PubMed

    Lin, Y S; Yang, C C; Hsu, C C; Hsu, J T; Wu, S C; Lin, C J; Cheng, W T K

    2015-02-01

    Competition between humans and livestock for cereal and legume grains makes it challenging to provide economical feeds to livestock animals. Recent increases in corn and soybean prices have had a significant impact on the cost of feed for pig producers. The utilization of byproducts and alternative ingredients in pig diets has the potential to reduce feed costs. Moreover, unlike ruminants, pigs have limited ability to utilize diets with high fiber content because they lack endogenous enzymes capable of breaking down nonstarch polysaccharides into simple sugars. Here, we investigated the feasibility of a transgenic strategy in which expression of the fungal cellulase transgene was driven by the porcine pancreatic amylase promoter in pigs. A 2,488 bp 5'-flanking region of the porcine pancreatic amylase gene was cloned by the genomic walking technique, and its structural features were characterized. Using GFP as a reporter, we found that this region contained promoter activity and had the potential to control heterologous gene expression. Transgenic pigs were generated by pronuclear microinjection. Founders and offspring were identified by PCR and Southern blot analyses. Cellulase mRNA and protein showed tissue-specific expression in the pancreas of F1 generation pigs. Cellulolytic enzyme activity was also identified in the pancreas of transgenic pigs. These results demonstrated the establishment of a tissue-specific promoter of the porcine pancreatic amylase gene. Transgenic pigs expressing exogenous cellulase may represent a way to increase the intake of low-cost, fiber-rich feeds.

  16. Osteogenic capacity of transgenic flax scaffolds.

    PubMed

    Gredes, Tomasz; Wróbel-Kwiatkowska, Magdalena; Dominiak, Marzena; Gedrange, Tomasz; Kunert-Keil, Christiane

    2012-02-01

    The modification of flax fibers to create biologically active dressings is of undoubted scientific and practical interest. Flax fibers, derived from transgenic flax expressing three bacterial genes for the synthesis of poly-3-hydroxybutyric acid (PHB), have better mechanical properties than unmodified flax fibers; do not show any inflammation response after subcutaneous insertion; and have a good in vitro and in vivo biocompatibility. The aim of this study was to examine the applicability of composites containing flax fibers of genetically modified (M50) or non-modified (wt-Nike) flax within a polylactide (PLA) matrix for bone regeneration. For this, the mRNA expression of genes coding for growth factors (insulin-like growth factor IGF1, IGF2, vascular endothelial growth factor), for osteogenic differentiation (alkaline phosphatase, osteocalcin, Runx2, Phex, type 1 and type 2 collagen), and for bone resorption markers [matrix metalloproteinase 8 (MMP8), acid phosphatase type 5] were analyzed using quantitative real-time polymerase chain reaction. We found a significant elevated mRNA expression of IGF1 with PLA and PLA-wt-Nike composites. The mRNA amount of MMP8 and osteocalcin was significantly decreased in all biocomposite-treated cranial tissue samples compared to controls, whereas the expression of all other tested transcripts did not show any differences. It is assumed that both flax composites are able to stimulate bone regeneration, but composites from transgenic flax plants producing PHB showed faster bone regeneration than composites of non-transgenic flax plants. The application of these linen membranes for bone tissue engineering should be proved in further studies. PMID:22718592

  17. Generation of transgenic energy cane plants with integration of minimal transgene expression cassette.

    PubMed

    Fouad, Walid M; Hao, Wu; Xiong, Yuan; Steeves, Cody; Sandhu, Surinder K; Altpeter, Fredy

    2015-01-01

    Lignocellulosic biomass has the potential to serve as feedstock and direct replacement for petrochemicals in the fuel, chemical, pharmaceutical and material industries. Energy cane has been identified by the U.S. Department of Energy (DOE) as prime lignocellulosic feedstock as it produces record biomass yields and is able to grow on low-value land with reduced inputs. Molecular improvement of energy cane is an essential step toward the development of a high-value crop and may contribute to improved biomass conversion to value added products. Such improvements require a development of an efficient regeneration and transformation system for the vegetatively propagated energy cane varieties. In this report, an efficient biolistic gene delivery protocol for energy canes (genotype L 79-1002 and Ho 00-961) has been established with immature leaf rolls as explants. Embryonic calli, developed approximately 6 weeks after culture initiation and was used as target for biolistic transfer of a minimum expression cassette of P-ubi::nptII::35S polyA derived from plasmid pJFNPTII. Putative transgenic clones of callus were obtained after selection on callus induction medium supplemented with 30 mg l(-1) geneticin. Regeneration was carried out on NB medium, which is modified from MS supplemented with 1.86 mg l(-1) naphthaleneacetic acid (NAA) and 0.1mg l(-1), 6- benzylaminopurine (BAP) and 20mg l(-1) paromomycin. Shoots growing on selection media were transferred to hormone free medium with 20 mg l(-1) paromomycin. Putative transgenic lines were first analyzed by PCR. Transgene integration was confirmed by Southern blot analysis. ELISA (Enzyme-Linked Immunosorbent Assay) and Immunochromathography assays confirmed transgene expression.

  18. Study of the immunogenicity of hepatitis B surface antigen synthesized in transgenic potato plants with increased biosafety.

    PubMed

    Rukavtsova, Elena B; Rudenko, Natalya V; Puchko, Elena N; Zakharchenko, Natalya S; Buryanov, Yaroslav I

    2015-06-10

    Oral immunogenicity of the hepatitis B surface antigen (HBsAg) synthesized in the tubers of marker-free potato plants has been demonstrated. Experiments were performed in the two groups of outbred NMRI mice. At the beginning of investigations, the mice of experimental group were fed the tubers of transgenic potato synthesizing the HBsAg three times. The mice of control group were fed nontransgenic potato. Intraperitoneal injection of the commercial vaccine against hepatitis B (0.5μg/mouse) was made on day 71 of the experiment. Enzyme-linked immunoassay (ELISA) of the serum of immunized animals showed an increase in the level of HBsAg antibodies significantly above the protective value, which was maintained for 1 year after the immunization. In 1 year, the experimental group of mice underwent additional oral immunization with HBsAg-containing potato tubers. As a result, the level of antibodies against the HBsAg increased and remained at a high protective level for several months. The findings show the possibility of using transgenic plants as a substance for obtaining a safe edible vaccine against hepatitis B. PMID:25840367

  19. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants.

    PubMed

    Rech, Elibio L; Vianna, Giovanni R; Aragão, Francisco J L

    2008-01-01

    This protocol describes a method for high-frequency recovery of transgenic soybean, bean and cotton plants, by combining resistance to the herbicide imazapyr as a selectable marker, multiple shoot induction from embryonic axes of mature seeds and biolistics techniques. This protocol involves the following stages: plasmid design, preparation of soybean, common bean and cotton apical meristems for bombardment, microparticle-coated DNA bombardment of apical meristems and in vitro culture and selection of transgenic plants. The average frequencies (the total number of fertile transgenic plants divided by the total number of bombarded embryonic axes) of producing germline transgenic soybean and bean and cotton plants using this protocol are 9, 2.7 and 0.55%, respectively. This protocol is suitable for studies of gene function as well as the production of transgenic cultivars carrying different traits for breeding programs. This protocol can be completed in 7-10 months.

  20. Consistent transcriptional silencing of 35S-driven transgenes in gentian.

    PubMed

    Mishiba, Kei-ichiro; Nishihara, Masahiro; Nakatsuka, Takashi; Abe, Yoshiko; Hirano, Hiroshi; Yokoi, Takahide; Kikuchi, Akiko; Yamamura, Saburo

    2005-11-01

    In this study, no transgenic gentian (Gentiana triflora x Gentiana scabra) plants produced via Agrobacterium-mediated transformation exhibited transgene (GtMADS, gentian-derived MADS-box genes or sGFP, green fluorescent protein) expression in their leaf tissues, despite the use of constitutive Cauliflower mosaic virus (CaMV) 35S promoter. Strikingly, no expression of the selectable marker gene (bar) used for bialaphos selection was observed. To investigate the possible cause of this drastic transgene silencing, methylation-specific sequences were analysed by bisulfite genomic sequencing using tobacco transformants as a control. Highly methylated cytosine residues of CpG and CpWpG (W contains A or T) sites were distinctively detected in the promoter and 5' coding regions of the transgenes 35S-bar and 35S-GtMADS in all gentian lines analysed. These lines also exhibited various degrees of cytosine methylation in asymmetrical sequences. The methylation frequencies in the other transgene, nopaline synthase (NOS) promoter-driven nptII, and the endogenous GtMADS gene coding region, were much lower and were variable compared with those in the 35S promoter regions. Transgene methylation was observed in the bialaphos-selected transgenic calluses expressing the transgenes, and methylation sequences were distributed preferentially around the as-1 element in the 35S promoter. Calluses derived from leaf tissues of silenced transgenic gentian also exhibited transgene suppression, but expression was recovered by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine (aza-dC). These results indicated that cytosine methylation occurs exclusively in the 35S promoter regions of the expressed transgenes during selection of gentian transformants, causing transcriptional gene silencing. PMID:16262705

  1. TRANSGENIC PLANT CONTAINMENT

    EPA Science Inventory

    The new technology using plant genetics to produce chemicals, pharmaceuticals, and therapeuitics in a wide array of new plant forms requires sufficient testing to ensure that these new plant introductions are benign in the environment. A recent effort to provide necessary guidan...

  2. Transgenic plants as factories for biopharmaceuticals.

    PubMed

    Giddings, G; Allison, G; Brooks, D; Carter, A

    2000-11-01

    Plants have considerable potential for the production of biopharmaceutical proteins and peptides because they are easily transformed and provide a cheap source of protein. Several biotechnology companies are now actively developing, field testing, and patenting plant expression systems, while clinical trials are proceeding on the first biopharmaceuticals derived from them. One transgenic plant-derived biopharmaceutical, hirudin, is now being commercially produced in Canada for the first time. Product purification is potentially an expensive process, and various methods are currently being developed to overcome this problem, including oleosin-fusion technology, which allows extraction with oil bodies. In some cases, delivery of a biopharmaceutical product by direct ingestion of the modified plant potentially removes the need for purification. Such biopharmaceuticals and edible vaccines can be stored and distributed as seeds, tubers, or fruits, making immunization programs in developing countries cheaper and potentially easier to administer. Some of the most expensive biopharmaceuticals of restricted availability, such as glucocerebrosidase, could become much cheaper and more plentiful through production in transgenic plants. PMID:11062432

  3. Human health and transgenic crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under the joint auspices of the Agrochemical and the Agricultural and Food Chemistry Divisions of the American Chemical Society, we organized a short symposium on “Human Health and Transgenic Crops” at the 244th ACS national meeting, held August 19-23, 2012 in Philadelphia, PA, to examine an array o...

  4. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa.

    PubMed

    Chandrashekran, Anil; Sarkar, Rupa; Thrasher, Adrian; Fraser, Scott E; Dibb, Nicholas; Casimir, Colin; Winston, Robert; Readhead, Carol

    2014-02-01

    Transgenic technologies conventionally rely on the oocyte as a substrate for genetic modification. Owing to their accessibility, however, male germ cells, including mature sperm, have material advantages for use in transgenesis. Here we have exploited lentiviruses to generate transgenic animals via the male germline. When pseudotyped lentiviral vectors encoding green fluorescent protein (GFP) were incubated with mouse spermatozoa, these sperm were highly successful in producing transgenics. Lentivirally transduced mouse spermatozoa were used in in vitro fertilization (IVF) studies, and when followed by embryo transfer, ≥ 42% of founders were found to be transgenic for GFP. Inverse PCR strategy for integration site analysis demonstrated integration of at least 1 or 2 copies of GFP in the transgenics, mapping to different chromosomes. GFP expression was detected in a wide range of murine tissues, including testis and the transgene was stably transmitted to a third generation of transgenic animals. This relatively simple, yet highly efficient, technique for generating transgenic animals by transducing spermatozoa with lentiviral vectors in vitro is a powerful tool for the study of fertilization/preimplantation development, vertical viral gene transmission, gene function and regulation, and epigenetic inheritance. PMID:24297703

  5. Improved antioxidant activity in transgenic Perilla frutescens plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene.

    PubMed

    Ghimire, Bimal Kumar; Seong, Eun Soo; Lee, Chan Ok; Lee, Jae Geun; Yu, Chang Yeon; Kim, Seung Hyun; Chung, Ill Min

    2015-09-01

    The main goal of this study was to generate transgenic Perilla frutescens with enhanced antioxidant properties by overexpressing the γ-tocopherol methyltransferase (γ-tmt) gene. In this study, the antioxidant activity of methanolic crude extracts of transgenic and non-transgenic control plants was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Free radical scavenging activity was evaluated using α-tocopherol and butylated hydroxyl toluene as standard antioxidants. In general, the ethyl acetate fraction of transgenic P. frutescens showed stronger DPPH radical scavenging activity than the ethyl acetate fraction from non-transgenic control plants (IC50 2.00 ± 0.10 and 5.53 ± 0.40 μg ∙ ml(-1), respectively). High-performance liquid chromatography analysis of phenolic acids in leaf extracts confirmed increased levels of 16 individual phenolic compounds in two transgenic lines (pf47-5 and pf47-8) compared with control plants. Changes in the phenolic compound profile and α-tocopherol content were correlated with the antioxidant properties of transgenic plants, indicating that the introduction of transgene γ-tmt influenced the metabolism of phenolic compounds and subsequently produced biochemical changes in the transformants. There were no significant differences in photosynthetic rate in the transgenic plants as compared to the non-transgenic control plants, suggesting that the alteration of phenolic compounds and tocopherol composition had little impact on photosynthesis. PMID:25604637

  6. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics.

    PubMed

    Ramessar, Koreen; Peremarti, Ariadna; Gómez-Galera, Sonia; Naqvi, Shaista; Moralejo, Marian; Muñoz, Pilar; Capell, Teresa; Christou, Paul

    2007-06-01

    Selectable marker gene systems are vital for the development of transgenic crops. Since the creation of the first transgenic plants in the early 1980s and their subsequent commercialization worldwide over almost an entire decade, antibiotic and herbicide resistance selectable marker gene systems have been an integral feature of plant genetic modification. Without them, creating transgenic crops is not feasible on purely economic and practical terms. These systems allow the relatively straightforward identification and selection of plants that have stably incorporated not only the marker genes but also genes of interest, for example herbicide tolerance and pest resistance. Bacterial antibiotic resistance genes are also crucial in molecular biology manipulations in the laboratory. An unprecedented debate has accompanied the development and commercialization of transgenic crops. Divergent policies and their implementation in the European Union on one hand and the rest of the world on the other (industrialized and developing countries alike), have resulted in disputes with serious consequences on agricultural policy, world trade and food security. A lot of research effort has been directed towards the development of marker-free transformation or systems to remove selectable markers. Such research has been in a large part motivated by perceived problems with antibiotic resistance selectable markers; however, it is not justified from a safety point of view. The aim of this review is to discuss in some detail the currently available scientific evidence that overwhelmingly argues for the safety of these marker gene systems. Our conclusion, supported by numerous studies, most of which are commissioned by some of the very parties that have taken a position against the use of antibiotic selectable marker gene systems, is that there is no scientific basis to argue against the use and presence of selectable marker genes as a class in transgenic plants.

  7. Rearrangement and expression of endogenous immunoglobulin genes occur in many murine B cells expressing transgenic membrane IgM.

    PubMed

    Stall, A M; Kroese, F G; Gadus, F T; Sieckmann, D G; Herzenberg, L A; Herzenberg, L A

    1988-05-01

    Transgenic mice carrying immunoglobulin genes coding for mu heavy chain and kappa light chain have been used to study the mechanisms involved in allelic and isotypic exclusion. We report here that individual cells from transgenic mice carrying a functionally rearranged mu heavy chain gene (capable of generating both membrane and secreted forms of IgM) can rearrange an endogenous mu heavy chain gene and simultaneously produce both transgenic and endogenous IgM. These "double-producing" cells express both endogenous and transgenic IgM in the cytoplasm (detected by immunohistology) and on the cell surface (detected by multiparameter fluorescence-activated cell sorter analysis). In addition, they secrete mixed IgM molecules containing both transgenic and endogenous mu heavy chains (detected in serum by radioimmune assay). The transgenic mice studied also have relatively large numbers of cells that produce endogenous immunoglobulin in the absence of detectable transgenic immunoglobulin ("endogenous-only cells"). The mechanisms that generate double-producing cells and endogenous-only cells appear to be under genetic control because the frequencies of these B-cell populations are characteristic for a given transgenic line. Thus, our findings indicate that more is involved in triggering allelic exclusion than the simple presence or absence of membrane mu heavy chains (as has been previously postulated).

  8. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population.

    PubMed

    Warwick, S I; Légère, A; Simard, M-J; James, T

    2008-03-01

    The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa, monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)]B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of approximately 200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F(1) and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced approximately 480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.

  9. [Transgenic cattle constitute a breakthrough in production of innovative medicine. From milk to medicine].

    PubMed

    Salaheddine, M; Thole, E; Brink, M

    2002-04-01

    The continuously increasing demand for biomolecules, e.g. human proteins, for applications in human health care, is one of the main driving forces for the development of safe, large-scale production systems. One very promising approach is the production of biomolecules in the milk of transgenic cattle. By using nuclear transfer technology, transgenic cattle can be generated in a very safe and efficient manner, thereby offering a significant time reduction when compared to conventional breeding methods. As a result, that the transgenic cattle platform offers an efficient, safe and cost-effective method for producing large amounts of biopharmaceuticals, which is essential to the development of innovative health care products.

  10. Germline transmission in transgenic Huntington’s disease monkeys

    PubMed Central

    Moran, Sean; Chi, Tim; Prucha, Melinda S.; Ahn, Kwang Sung; Connor-Stroud, Fawn; Jean, Sherrie; Gould, Kenneth; Chan, Anthony W. S.

    2015-01-01

    Transgenic nonhuman primate models are increasingly popular model for neurological and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans [1–6]. Transgenic Huntington’s disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for preclinical study of HD [6–12]. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited [1, 13, 14]. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells (ESCs) generated from three male HD monkey founders (F0), as well as in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination (IUI) technique. A total of five offspring were produced from fifteen females that were inseminated by IUI using semen collected from the three HD founders (5/15; 33%). Thus far, sperm collected from HD founder (rHD8) has led to two F1 transgenic HD moenkys with germline transmission rate at 100% (2/2). mHTT expression was confirmed by quantitative real-time PCR (qPCR) using skin fibroblasts from the F1 HD monkeys, as well as induced pluripotent stem cells (iPSCs) established from one of the F1 HD monkeys (rHD8-2). Here we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical researches. PMID:25917881

  11. Human antibody production in transgenic animals.

    PubMed

    Brüggemann, Marianne; Osborn, Michael J; Ma, Biao; Hayre, Jasvinder; Avis, Suzanne; Lundstrom, Brian; Buelow, Roland

    2015-04-01

    Fully human antibodies from transgenic animals account for an increasing number of new therapeutics. After immunization, diverse human monoclonal antibodies of high affinity can be obtained from transgenic rodents, while large animals, such as transchromosomic cattle, have produced respectable amounts of specific human immunoglobulin (Ig) in serum. Several strategies to derive animals expressing human antibody repertoires have been successful. In rodents, gene loci on bacterial artificial chromosomes or yeast artificial chromosomes were integrated by oocyte microinjection or transfection of embryonic stem (ES) cells, while ruminants were derived from manipulated fibroblasts with integrated human chromosome fragments or human artificial chromosomes. In all strains, the endogenous Ig loci have been silenced by gene targeting, either in ES or fibroblast cells, or by zinc finger technology via DNA microinjection; this was essential for optimal production. However, comparisons showed that fully human antibodies were not as efficiently produced as wild-type Ig. This suboptimal performance, with respect to immune response and antibody yield, was attributed to imperfect interaction of the human constant region with endogenous signaling components such as the Igα/β in mouse, rat or cattle. Significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or, separately, by site-specific integration, which could also silence the endogenous Ig locus by gene replacement or inversion. In animals with knocked-out endogenous Ig loci and integrated large IgH loci, containing many human Vs, all D and all J segments linked to endogenous C genes, highly diverse human antibody production similar to normal animals was obtained.

  12. Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Bao-Hong; Pan, Xiao-Ping; Guo, Teng-Long; Wang, Qing-Lian; Anderson, Todd A

    2005-09-01

    Transgenic Bt cotton NewCott 33B and transgenic tfd A cotton TFD were chosen to evaluate pollen dispersal frequency and distance of transgenic cotton (Gossypium hirsutum L.) in the Huanghe Valley Cotton-producing Zone, China. The objective was to evaluate the efficacy of biosafety procedures used to reduce pollen movement. A field test plot of transgenic cotton (6 x 6 m) was planted in the middle of a nontransgenic field measuring 210 x 210 m. The results indicated that the pollen of Bt cotton or tfd A cotton could be dispersed into the environment. Out-crossing was highest within the central test plot where progeny from nontransgenic plants, immediately adjacent to transgenic plants, had resistant plant progeny at frequencies up to 10.48%. Dispersal frequency decreased significantly and exponentially as dispersal distance increased. The flow frequency and distance of tfd A and Bt genes were similar, but the pollen-mediated gene flow of tfd A cotton was higher and further to the transgenic block than that of Bt cotton (chi2 = 11.712, 1 degree of freedom, p < 0.001). For the tfd A gene, out-crossing ranged from 10.13% at 1 m to 0.04% at 50 m from the transgenic plants. For the Bt gene, out-crossing ranged from 8.16% at 1 m to 0.08% at 20 m from the transgenic plants. These data were fit to a power curve model: y = 10.1321x-1.4133 with a correlation coefficient of 0.999, and y = 8.0031x-1.483 with a correlation coefficient of 0.998, respectively. In this experiment, the farthest distance of pollen dispersal from transgenic cotton was 50 m. These results indicate that a 60-m buffer zone would serve to limit dispersal of transgenic pollen from small-scale field tests. PMID:16118411

  13. Biolistic-mediated production of transgenic oil palm.

    PubMed

    Parveez, Ghulam Kadir Ahmad; Bahariah, Bohari

    2012-01-01

    The effectiveness of mannose (using phosphomannose isomerase [pmi] gene) as a positive selection agent to preferably allow the growth of transformed oil palm embryogenic calli was successfully evaluated. Using the above selection agent in combination with the previously optimized physical and biological parameters and the best constitutive promoter, oil palm embryogenic calli were transformed with pmi gene for producing transgenic plants. Bombarded embryogenic calli were exposed to embryogenic calli medium containing 30:0 g/L mannose to sucrose 3 weeks postbombardment. Selectively, proliferating embryogenic calli started to emerge around 6 months on the above selection medium. The proliferated embryogenic calli were individually isolated once they reached a specific size and regenerated to produce complete plantlets. The complete regenerated plantlets were evaluated for the presence of transgenes by PCR and Southern analyses. PMID:22351007

  14. Pollen viability and transgene expression following storage in honey.

    PubMed

    Eady, C; Twell, D; Lindsey, K

    1995-07-01

    Transgenic plants of tobacco and Arabidopsis that produce genetically marked pollen, expressing the reporter gene uidA (gusA), were generated to determine whether pollen proteins can be expressed and stable in honey, a potential route by which foreign proteins might enter the wider environment. Hydrated tobacco pollen was found to lose viability rapidly in honey, while pollen in the natural dehydrated form remained viable for at least several days and in some cases several weeks, as determined by FDA staining activity and germinability. Dehydrated pollen was found to be capable of transient foreign gene expression, following microprojectile bombardment, after incubation in honey for at least 120 h. PCR amplification of transgene sequences in pollen of transgenic plants revealed that pollen DNA can remain relatively intact after 7 weeks in honey. GUS enzyme activity analysis and SDS-PAGE of pollen proteins revealed that foreign and native pollen proteins are stable in pollen incubated in honey for at least 6 weeks. We conclude that pollen may represent an ecologically important vector for transgenic protein products. PMID:7655512

  15. Pollen viability and transgene expression following storage in honey.

    PubMed

    Eady, C; Twell, D; Lindsey, K

    1995-07-01

    Transgenic plants of tobacco and Arabidopsis that produce genetically marked pollen, expressing the reporter gene uidA (gusA), were generated to determine whether pollen proteins can be expressed and stable in honey, a potential route by which foreign proteins might enter the wider environment. Hydrated tobacco pollen was found to lose viability rapidly in honey, while pollen in the natural dehydrated form remained viable for at least several days and in some cases several weeks, as determined by FDA staining activity and germinability. Dehydrated pollen was found to be capable of transient foreign gene expression, following microprojectile bombardment, after incubation in honey for at least 120 h. PCR amplification of transgene sequences in pollen of transgenic plants revealed that pollen DNA can remain relatively intact after 7 weeks in honey. GUS enzyme activity analysis and SDS-PAGE of pollen proteins revealed that foreign and native pollen proteins are stable in pollen incubated in honey for at least 6 weeks. We conclude that pollen may represent an ecologically important vector for transgenic protein products.

  16. Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice

    NASA Astrophysics Data System (ADS)

    Brinster, Ralph L.; Ritchie, Kindred A.; Hammer, Robert E.; O'Brien, Rebecca L.; Arp, Benjamin; Storb, Ursula

    1983-11-01

    Transgenic mice were produced by microinjection of a rearranged, functional immunoglobulin κ gene into fertilized mouse eggs and implantation of the microinjected embryos into foster mothers. Mice that integrated the injected gene were mated and the DNA, RNA and serum κ chains of their offspring were analysed. The data from offspring of three different transgenic mice indicate that the microinjected gene is expressed in the spleen, but not the liver of mice which inherited the injected gene.

  17. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  18. Improved Nutritive Quality and Salt Resistance in Transgenic Maize by Simultaneously Overexpression of a Natural Lysine-Rich Protein Gene, SBgLR, and an ERF Transcription Factor Gene, TSRF1

    PubMed Central

    Wang, Meizhen; Liu, Chen; Li, Shixue; Zhu, Dengyun; Zhao, Qian; Yu, Jingjuan

    2013-01-01

    Maize (Zea mays L.), as one of the most important crops in the world, is deficient in lysine and tryptophan. Environmental conditions greatly impact plant growth, development and productivity. In this study, we used particle bombardment mediated co-transformation to obtain marker-free transgenic maize inbred X178 lines harboring a lysine-rich protein gene SBgLR from potato and an ethylene responsive factor (ERF) transcription factor gene, TSRF1, from tomato. Both of the target genes were successfully expressed and showed various expression levels in different transgenic lines. Analysis showed that the protein and lysine content in T1 transgenic maize seeds increased significantly. Compared to non-transformed maize, the protein and lysine content increased by 7.7% to 24.38% and 8.70% to 30.43%, respectively. Moreover, transgenic maize exhibited more tolerance to salt stress. When treated with 200 mM NaCl for 48 h, both non-transformed and transgenic plant leaves displayed wilting and losing green symptoms and dramatic increase of the free proline contents. However, the degree of control seedlings was much more serious than that of transgenic lines and much more increases of the free proline contents in the transgenic lines than that in the control seedlings were observed. Meanwhile, lower extent decreases of the chlorophyll contents were detected in the transgenic seedlings. Quantitative RT-PCR was performed to analyze the expression of ten stress-related genes, including stress responsive transcription factor genes, ZmMYB59 and ZmMYC1, proline synthesis related genes, ZmP5CS1 and ZmP5CS2, photosynthesis-related genes, ZmELIP, ZmPSI-N, ZmOEE, Zmrbcs and ZmPLAS, and one ABA biosynthesis related gene, ZmSDR. The results showed that with the exception of ZmP5CS1 and ZmP5CS2 in line 9–10 and 19–11, ZmMYC1 in line 19–11 and ZmSDR in line 19–11, the expression of other stress-related genes were inhibited in transgenic lines under normal conditions. After salt

  19. Transgenic rabbit that expresses a functional human lipoprotein (a)

    DOEpatents

    Rouy, Didier; Duverger, Nicolas; Emmanuel, Florence; Denefle, Patrice; Houdebine, Louis-Marie; Viglietta, Celine; Rubin, Edward M.; Hughes, Steven D.

    2003-01-01

    A transgenic rabbit which has in its genomic DNA sequences that encode apolipoprotein (a) and apolipoprotein B polypeptides which are capable of combining to produce lipoprotein (a), a process for creating such a rabbit, and the use of the rabbit to identify compounds which are effective in the treatment of human diseases which are associated with, induced and/or exacerbated by Lp(a) expression.

  20. Elevated PC responsive B cells and anti-PC antibody production in transgenic mice harboring anti-PC immunoglobulin genes.

    PubMed

    Pinkert, C A; Manz, J; Linton, P J; Klinman, N R; Storb, U

    1989-12-01

    The rearrangement of heavy and light chain immunoglobulin genes is necessary for the production of functional antibody molecules. The myeloma MOPC 167 produces specific antibodies to the antigen phosphorylcholine (PC), which is present on bacterial surfaces, fungi and other environmental contaminants. Rearranged heavy and light chain immunoglobulin genes cloned from MOPC 167 were microinjected into mouse eggs. Within the resulting transgenic mice, expression of the transgenes were limited to lymphoid tissues. Transgenic mice produced elevated levels of anti-PC antibodies constitutively, at 16 days of age, when normal non-transgenic mice were not fully immunocompetent. A triggering antigenic stimulus was not necessary to evoke anti-PC immunoglobulin production. Additionally, the frequency of PC-responsive B cells in these transgenic mice was further increased upon specific immunization.

  1. Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa.

    PubMed

    Ammitzbøll, Henriette; Mikkelsen, Teis Nørgaard; Jørgensen, Rikke Bagger

    2005-01-01

    Oilseed rape (Brassica napus) is sexually compatible with its wild and weedy relative B. rapa, and introgression of genes from B. napus has been found to occur over a few generations. We simulated the early stages of transgene escape by producing F1 hybrids and the first backcross generation between two lines of transgenic B. napus and two populations of weedy B. rapa. Transgene expression and the fitness of the hybrids were examined under different environmental conditions. Expression of the transgenes was analyzed at the mRNA level by quantitative PCR and found to be stable in the hybrids, regardless of the genetic background and the environment, and equal to the level of transcription in the parental B. napus lines. Vigor of the hybrids was measured as the photosynthetic capability; pollen viability and seed set per silique. Photosynthetic capability of first generation hybrids was found to be at the same level, or higher, than that of the parental species, whereas the reproductive fitness was significantly lower. The first backcross generation had a significantly lower photosynthetic capability and reproductive fitness compared to the parental species. This is the first study that examines transgene expression at the mRNA level in transgenic hybrids of B. napus of different genetic background exposed to different environmental conditions. The data presented clarify important details of the overall risk assessment of growing transgenic oilseed rape.

  2. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper.

    PubMed

    Rao, K V; Rathore, K S; Hodges, T K; Fu, X; Stoger, E; Sudhakar, D; Williams, S; Christou, P; Bharathi, M; Bown, D P; Powell, K S; Spence, J; Gatehouse, A M; Gatehouse, J A

    1998-08-01

    Snowdrop lectin (Galanthus nivalis agglutinin; GNA) has been shown previously to be toxic towards rice brown planthopper (Nilaparvata lugens; BPH) when administered in artificial diet. BPH feeds by phloem abstraction, and causes 'hopper burn', as well as being an important virus vector. To evaluate the potential of the gna gene to confer resistance towards BPH, transgenic rice (Oryza sativa L.) plants were produced, containing the gna gene in constructs where its expression was driven by a phloem-specific promoter (from the rice sucrose synthase RSs1 gene) and by a constitutive promoter (from the maize ubiquitin ubi1 gene). PCR and Southern analyses on DNA from these plants confirmed their transgenic status, and that the transgenes were transmitted to progeny after self-fertilization. Western blot analyses revealed expression of GNA at levels of up to 2.0% of total protein in some of the transgenic plants. GNA expression driven by the RSs1 promoter was tissue-specific, as shown by immunohistochemical localization of the protein in the non-lignified vascular tissue of transgenic plants. Insect bioassays and feeding studies showed that GNA expressed in the transgenic rice plants decreased survival and overall fecundity (production of offspring) of the insects, retarded insect development, and had a deterrent effect on BPH feeding. gna is the first transgene to exhibit insecticidal activity towards sap-sucking insects in an important cereal crop plant.

  3. Expression of human protamine P1 in sperm of transgenic mice

    SciTech Connect

    Wyrobek, A.J.; Keith, C.; Stilwell, J.; Lowe, X.; Anderson, G.

    1994-12-31

    Transgenic mice were produced by pronuclear injection with DNA constructs containing human protamine P1 cDNA recombined with a murine protamine P1 promoter, and were identified by PCR. Expression of human P1 was investigated using huplm, a monoclonal antibody specific for human P1, applied to murine testicular cells, smears of epididymal sperm, and smears of detergent-isolated sperm nuclei. Various antibodies and nontransgenic littermates were used as controls. Two male founders (T3 and T7) sired more than five generations of transgenic offspring each with continued expression of human P1 in their sperm. Transgenic animals appear of normal fertility with sperm of typical nuclear morphology. The human P1 transgene was expressed postmeioticly in both lines, as expected. Nearly 100% of sperm of T3 and T7 hemizygotes labeled with huplm, consistent with complete diffusion of human P1 protein through the intercellular bridge of spermatogenic cells. Human P1 labeling of sperm nuclei was not visibly affected by sonication or by treatment with the detergent MATAB or the reducing agent DTT. A third founder female (T5) showed a transmission pattern consistent with insertion of the transgene into an X chromosome; her transgenic offspring expressed human P1 in only a small fraction of sperm. Human P1 transgenes may serve as efficient targets for germinal mutations and transgenicmice may provide promising models for investigating the DNA complexes.

  4. Transgenic plants and biosafety: science, misconceptions and public perceptions.

    PubMed

    Stewart, C N; Richards, H A; Halfhill, M D

    2000-10-01

    One usually thinks of plant biology as a non-controversial topic, but the concerns raised over the biosafety of genetically modified (GM) plants have reached disproportionate levels relative to the actual risks. While the technology of changing the genome of plants has been gradually refined and increasingly implemented, the commercialization of GM crops has exploded. Today's commercialized transgenic plants have been produced using Agrobacterium tumefaciens-mediated transformation or gene gun-mediated transformation. Recently, incremental improvements of biotechnologies, such as the use of green fluorescent protein (GFP) as a selectable marker, have been developed. Non-transformation genetic modification technologies such as chimeraplasty will be increasingly used to more precisely modify germplasm. In spite of the increasing knowledge about genetic modification of plants, concerns over ecological and food biosafety have escalated beyond scientific rationality. While several risks associated with GM crops and foods have been identified, the popular press, spurred by colorful protest groups, has left the general public with a sense of imminent danger. Reviewed here are the risks that are currently under research. Ecological biosafety research has identified potential risks associated with certain crop/transgene combinations, such as intra- and interspecific transgene flow, persistence and the consequences of transgenes in unintended hosts. Resistance management strategies for insect resistance transgenes and non-target effects of these genes have also been studied. Food biosafety research has focused on transgenic product toxicity and allergenicity. However, an estimated 3.5 x 10(12) transgenic plants have been grown in the U.S. in the past 12 years, with over two trillion being grown in 1999 and 2000 alone. These large numbers and the absence of any negative reports of compromised biosafety indicate that genetic modification by biotechnology poses no immediate or

  5. Postmortem findings in cloned and transgenic piglets dead before weaning.

    PubMed

    Schmidt, M; Winther, K D; Secher, J O; Callesen, H

    2015-10-01

    Important factors contributing to the well-known high mortality of piglets produced by SCNT are gross malformations of vital organs. The aim of the present retrospective study was to describe malformations found in cloned piglets, transgenic or not, dying or culled before weaning on Day 28. Large White (LW) embryos were transferred to 78 LW recipients, while 72 recipients received Göttingen embryos (67 transgenic and five not transgenic) and 56 received Yucatan embryos (43 transgenic and 13 not transgenic). Overall pregnancy rate was 76%, and there were more abortions in recipients with minipig embryos than in those with LW embryos (26% and 24% vs. 6%). Piglets (n = 815) were born from 128 sows with 6.5 ± 0.4 full-born piglets per litter. The overall rate of stillborn piglets was 21% of all born with the number of stillborn piglets ranging from one to nine in a litter. The mortality of the surviving piglets during the first month was 48%. Thus, altogether 58% of the full-born piglets died before weaning. In 87 of the 128 litters (68%), one to 12 of the piglets showed major or minor malformations. Malformations were found in 232 piglets (29.5% of all born). A single malformation was registered in 152 piglets, but several piglets showed two (n = 58) or more (n = 23) malformations (7.4% and 2.8% of all born, respectively). A significantly higher malformation rate was found in transgenic Göttingen and Yucatan piglets (32% and 46% of all born, respectively) than in nontransgenic LW (17%). There was a gender difference in the transgenic minipigs because male piglets had a higher rate of malformations (49.1%) than females (29.7%). The most common defects in the cloned piglets were in the digestive (12.2%), circulatory (9.4%), reproductive (11.3%), and musculoskeletal (9.1%) systems. Malformations of the musculoskeletal system were most frequent in Göttingen (16.3% vs. approximately 5.5% in the two other breeds), whereas abnormal cardiopulmonary systems were most

  6. Transgenic plants and biosafety: science, misconceptions and public perceptions.

    PubMed

    Stewart, C N; Richards, H A; Halfhill, M D

    2000-10-01

    One usually thinks of plant biology as a non-controversial topic, but the concerns raised over the biosafety of genetically modified (GM) plants have reached disproportionate levels relative to the actual risks. While the technology of changing the genome of plants has been gradually refined and increasingly implemented, the commercialization of GM crops has exploded. Today's commercialized transgenic plants have been produced using Agrobacterium tumefaciens-mediated transformation or gene gun-mediated transformation. Recently, incremental improvements of biotechnologies, such as the use of green fluorescent protein (GFP) as a selectable marker, have been developed. Non-transformation genetic modification technologies such as chimeraplasty will be increasingly used to more precisely modify germplasm. In spite of the increasing knowledge about genetic modification of plants, concerns over ecological and food biosafety have escalated beyond scientific rationality. While several risks associated with GM crops and foods have been identified, the popular press, spurred by colorful protest groups, has left the general public with a sense of imminent danger. Reviewed here are the risks that are currently under research. Ecological biosafety research has identified potential risks associated with certain crop/transgene combinations, such as intra- and interspecific transgene flow, persistence and the consequences of transgenes in unintended hosts. Resistance management strategies for insect resistance transgenes and non-target effects of these genes have also been studied. Food biosafety research has focused on transgenic product toxicity and allergenicity. However, an estimated 3.5 x 10(12) transgenic plants have been grown in the U.S. in the past 12 years, with over two trillion being grown in 1999 and 2000 alone. These large numbers and the absence of any negative reports of compromised biosafety indicate that genetic modification by biotechnology poses no immediate or

  7. Transgene integration: use of matrix attachment regions.

    PubMed

    Allen, George C; Spiker, Steven; Thompson, William F

    2005-01-01

    Matrix attachment regions (MARs) are operationally defined as DNA elements that bind specifically to the nuclear matrix in vitro. When MARs are positioned at the 5'- and 3'-ends of a transgene higher more predictable expression of the transgene results. MARs are increasingly being applied to prevent unwanted transgene silencing, which is especially common when direct DNA transformation methods are used. This chapter describes methods for the isolation of MARs and the subsequent methods allowing the investigator to incorporate MARS into transformation strategies that can both improve transformation frequency and result in predictable, stable expression of the transgenic trait.

  8. Transgene integration: use of matrix attachment regions.

    PubMed

    Allen, George C; Spiker, Steven; Thompson, William F

    2005-01-01

    Matrix attachment regions (MARs) are operationally defined as DNA elements that bind specifically to the nuclear matrix in vitro. When MARs are positioned at the 5'- and 3'-ends of a transgene higher more predictable expression of the transgene results. MARs are increasingly being applied to prevent unwanted transgene silencing, which is especially common when direct DNA transformation methods are used. This chapter describes methods for the isolation of MARs and the subsequent methods allowing the investigator to incorporate MARS into transformation strategies that can both improve transformation frequency and result in predictable, stable expression of the transgenic trait. PMID:15310930

  9. Production of Transgenic Calves Expressing an shRNA Targeting Myostatin

    PubMed Central

    Tessanne, K; Golding, MC; Long, CR; Peoples, MD; Hannon, G; Westhusin, ME

    2012-01-01

    Myostatin (MSTN) is a well-known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspring with increased fetal muscle mass. The objective of the current research was to generate an attenuated MSTN-null phenotype in a large-animal model using RNA interference to enhance muscle development without the detrimental consequences of an inactivating mutation. To this end, we identified a series of short interfering RNAs that demonstrated effective suppression of MSTN mRNA and protein levels. To produce transgenic offspring capable of stable MSTN suppression in vivo, a recombinant lentiviral vector expressing a short hairpin RNA (shRNA) targeting MSTN for silencing was introduced into bovine fetal fibroblasts. These cells were used as nucleus donors for somatic cell nuclear transfer (SCNT). Twenty blastocysts were transferred into seven recipient cows resulting in five pregnancies. One transgenic calf developed to term, but died following delivery by Caesarean-section. As an alternative strategy, microinjection of recombinant lentiviral particles into the perivitelline space of in vitro-produced bovine zygotes was utilized to produce 40 transgenic blastocysts that were transferred into 14 recipient cows, resulting in 7 pregnancies. Five transgenic calves were produced, of which three expressed the transgene. This is the first report of transgenic livestock produced by direct injection of a recombinant lentivirus, and expressing transgenes encoding shRNAs targeting an endogenous gene (myostatin) for silencing. PMID:22139943

  10. A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice.

    PubMed

    Lin, Chaoyang; Fang, Jun; Xu, Xiaoli; Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  11. A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    PubMed Central

    Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  12. A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice.

    PubMed

    Lin, Chaoyang; Fang, Jun; Xu, Xiaoli; Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation.

  13. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    PubMed

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  14. Transgenic Spartina alterniflora for phytoremediation.

    PubMed

    Czakó, Mihály; Feng, Xianzhong; He, Yuke; Liang, Dali; Márton, László

    2006-01-01

    Perennial monoculture forming grasses are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is reported here. S. alterniflora plays an important role in the salt marsh by cycling of elements, both nutrients and pollutants, protects the coastline from erosion, is a keystone species in the salt marsh supporting a large food web, which in turn supports a significant segment of economy, including tourism, has an impact on cloud formation and consequently on global weather, and is thus an ecologically important species relevant for our life-support systems. Embryogenic callus of S. alterniflora was co-inoculated with a pair of Agrobacterium strains LBA4404 carrying the organomercurial lyase (merB) and mercuric reductase (merA) genes, respectively, in order to co-introduce both the merA and the merB genes. Seven stable geneticin resistant lines were recovered. The presence of merA and merB genes was verified by PCR and Southern blotting. All but one transgenic lines contained both the merA and the merB sequences proving that co-introduction into Spartina of two genes from separate Agrobacterium strains is feasible and frequent, although the overall frequency of transformation is low. Northern blotting showed differences in relative expression of the two transgenes among individual transformants. The steady-state RNA levels appeared to correlate with the phenotype. Line #7 showed the highest resistance to HgCl(2) (up to 500 microM), whereas line #3 was the most resistant to phenylmercuric acetate (PMA). Wild-type (WT) callus is sensitive to PMA at 50 microM and to HgCl(2) at 225 microM.

  15. Transgenic Models in Retinoblastoma Research.

    PubMed

    Nair, Rohini M; Vemuganti, Geeta K

    2015-04-01

    Understanding the mechanism of retinoblastoma (Rb) tumor initiation, development, progression and metastasis in vivo mandates the use of animal models that mimic this intraocular tumor in its genetic, anatomic, histologic and ultrastructural features. An early setback for developing mouse Rb models was that Rb mutations did not cause tumorigenesis in murine retinas. Subsequently, the discovery that the p107 protein takes over the role of pRb in mice led to the development of several animal models that phenotypically and histologically resemble the human form. This paper summarizes the transgenic models that have been developed over the last three decades. PMID:27171579

  16. [Deletion of marker gene in transgenic goat by Cre/LoxP system].

    PubMed

    Lan, Chong; Ren, Lina; Wu, Min; Liu, Siguo; Liu, Guohui; Xu, Xujun; Chen, Jianquan; Ma, Hengdong; Cheng, Guoxiang

    2013-12-01

    In producing transgenic livestock, selectable marker genes (SMGs) are usually used to screen transgenic cells from numerous normal cells. That results in SMGs integrating into the genome and transmitting to offspring. In fact, SMGs could dramatically affect gene regulation at integration sites and also make the safety evaluation of transgenic animals complicated. In order to determine the deletion time and methods in the process of producing transgenic goats, the feasibility of deleting SMGs was explored by Cre/LoxP before or after somatic cell cloning. In addition, we compared the efficiency of protein transduction with plasmids co-transduction. We could delete 43.9% SMGs after screening out the transgenic cell clones, but these cells could not be applied to somatic cells cloning because of serious aging after two gene modifications. The SMG-free cells suitable for nuclear transfer were accessible by using the cells of transgenic goats, but this approach was more time consuming. Finally, we found that the Cre plasmid could delete SMGs with an efficiency of 7.81%, but about 30% in SMG-free cells had sequences of Cre plasmid. Compared with Cre plasmid, the integration of new exogenous gene could be avoided by TAT-CRE protein transduction, and the deletion rate of TAT-CRE transduction was between 43.9 and 72.8%. Therefore, TAT-Cre transduction could be an effective method for deleting selectable marker genes.

  17. Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene.

    PubMed

    Djennane, Samia; Cesbron, Colette; Sourice, Sophie; Cournol, Raphael; Dupuis, Fabrice; Eychenne, Magali; Loridon, Karine; Chevreau, Elisabeth

    2011-05-01

    The bacterial pathogen Erwinia amylovora causes the devastating disease known as fire blight in some rosaceous plants including apple and pear. One of the pathogenicity factors affecting fire blight development is the production of a siderophore, desferrioxamine, which overcomes the limiting conditions in plant tissues and also protects bacteria against active oxygen species. In this paper we examine the effect of an iron chelator protein encoded by the pea ferritin gene on the fire blight susceptibility of pear (Pyrus communis). Transgenic pear clones expressing this gene controlled either by the constitutive promoter CaMV 35S or by the inducible promoter sgd24 promoter were produced. The transgenic clones produced were analysed by Q-RT-PCR to determine the level of expression of the pea transgene. A pathogen-inducible pattern of expression of the pea transgene was observed in sgd24-promoter transformants. Adaptation to iron deficiency in vitro was tested in some transgenic clones and different iron metabolism parameters were measured. No strong effect on iron and chlorophyll content, root reductase activity and fire blight susceptibility was detected in the transgenic lines tested. No transformants showed a significant reduction in susceptibility to fire blight in greenhouse conditions when inoculated with E. amylovora.

  18. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins.

    PubMed

    François, Isabelle E J A; De Bolle, Miguel F C; Dwyer, Geoff; Goderis, Inge J W M; Woutors, Piet F J; Verhaert, Peter D; Proost, Paul; Schaaper, Wim M M; Cammue, Bruno P A; Broekaert, Willem F

    2002-04-01

    We developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence ("linker peptide") originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space. Both AMPs were found to exert antifungal activity in vitro. It is surprising that the amount of AMPs produced in plants transformed with some of the polyprotein transgene constructs was significantly higher compared with the amount in plants transformed with a transgene encoding a single AMP, indicating that the polyprotein expression strategy may be a way to boost expression levels of small proteins. PMID:11950983

  19. Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization.

    PubMed

    Newhouse, Andrew E; Schrodt, Franziska; Liang, Haiying; Maynard, Charles A; Powell, William A

    2007-07-01

    The American elm (Ulmus americana L.) was once one of the most common urban trees in eastern North America until Dutch-elm disease (DED), caused by the fungus Ophiostoma novo-ulmi, eliminated most of the mature trees. To enhance DED resistance, Agrobacterium was used to transform American elm with a transgene encoding the synthetic antimicrobial peptide ESF39A, driven by a vascular promoter from American chestnut. Four unique, single-copy transgenic lines were produced and regenerated into whole plants. These lines showed less wilting and significantly less sapwood staining than non-transformed controls after O. novo-ulmi inoculation. Preliminary observations indicated that mycorrhizal colonization was not significantly different between transgenic and wild-type trees. Although the trees tested were too young to ensure stable resistance was achieved, these results indicate that transgenes encoding antimicrobial peptides reduce DED symptoms and therefore hold promise for enhancing pathogen resistance in American elm.

  20. Composition and safety analysis of Chinese traditional fermented soybean paste made by transgenic soybean.

    PubMed

    Yukui, Rui; Wenya, Wang; Hongxing, Zhang; Fusuo, Zhang; Yinhua, Jin; Jing, Guo

    2009-01-01

    The traditional Chinese soybean paste was produced by cooked transgenic soybean fermentation with the composition of moisture 53%, amino acid 0.84% (calculated by nitrogen), votive sugar 6.21% and total acid 1.66%. A number of microorganism species were isolated and identified, including fungi and bacteria, and the bacterium species Rhizopus oryzae Went and Prinsen Geerligs were dominant in transgenic soybean paste. The results showed that the transgenic soybean paste contain abundant amino acids and vitamins (vitamin A, 42.87 IU; vitamin B, 10.31 mg; vitamin B, 20.64 mg; nicotinamide, 2.54 mg; pantothenic acid, 0.63 mg; vitamin B, 6,847 microg; folic acid, 105 microg; vitamin B, 123.85 microg; and biotin, 56.34 microg). Pathogenic microorganisms were not be detected in the transgenic fermented soybean paste.

  1. Characterization of Transgenic Silkworm Yielded Biomaterials with Calcium-Binding Activity

    PubMed Central

    Wang, Shaohua; Zhang, Yuyu; Yang, Mingying; Ye, Lupeng; Gong, Lu; Qian, Qiujie; Shuai, Yajun; You, Zhengying; Chen, Yuyin; Zhong, Boxiong

    2016-01-01

    Silk fibers have many inherent properties that are suitable for their use in biomaterials. In this study, the silk fibroin was genetically modified by including a Ca-binding sequence, [(AGSGAG)6ASEYDYDDDSDDDDEWD]2 from shell nacreous matrix protein. It can be produced as fibers by transgenic silkworm. The Ca-binding activity and mineralization of the transgenic silk fibroin were examined in vitro. The results showed that this transgenic silk fibroin had relatively higher Ca-binding activity than unmodified silk fibroin. The increased Ca-binding activity could promote the usage of silk fibroin as a biomaterial in the pharmaceutical industry. This study shows the possibility of using silk fibroin as a mineralization accelerating medical material by generating genetically modified transgenic silkworm. PMID:27414647

  2. Characterization of Transgenic Silkworm Yielded Biomaterials with Calcium-Binding Activity.

    PubMed

    Wang, Shaohua; Zhang, Yuyu; Yang, Mingying; Ye, Lupeng; Gong, Lu; Qian, Qiujie; Shuai, Yajun; You, Zhengying; Chen, Yuyin; Zhong, Boxiong

    2016-01-01

    Silk fibers have many inherent properties that are suitable for their use in biomaterials. In this study, the silk fibroin was genetically modified by including a Ca-binding sequence, [(AGSGAG)6ASEYDYDDDSDDDDEWD]2 from shell nacreous matrix protein. It can be produced as fibers by transgenic silkworm. The Ca-binding activity and mineralization of the transgenic silk fibroin were examined in vitro. The results showed that this transgenic silk fibroin had relatively higher Ca-binding activity than unmodified silk fibroin. The increased Ca-binding activity could promote the usage of silk fibroin as a biomaterial in the pharmaceutical industry. This study shows the possibility of using silk fibroin as a mineralization accelerating medical material by generating genetically modified transgenic silkworm. PMID:27414647

  3. Two-year field analysis of reduced recalcitrance transgenic switchgrass.

    PubMed

    Baxter, Holly L; Mazarei, Mitra; Labbe, Nicole; Kline, Lindsey M; Cheng, Qunkang; Windham, Mark T; Mann, David G J; Fu, Chunxiang; Ziebell, Angela; Sykes, Robert W; Rodriguez, Miguel; Davis, Mark F; Mielenz, Jonathan R; Dixon, Richard A; Wang, Zeng-Yu; Stewart, C Neal

    2014-09-01

    Switchgrass (Panicum virgatum L.) is a leading candidate for a dedicated lignocellulosic biofuel feedstock owing to its high biomass production, wide adaptation and low agronomic input requirements. Lignin in cell walls of switchgrass, and other lignocellulosic feedstocks, severely limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars and subsequently biofuels. Low-lignin transgenic switchgrass plants produced by the down-regulation of caffeic acid O-methyltransferase (COMT), a lignin biosynthetic enzyme, were analysed in the field for two growing seasons. COMT transcript abundance, lignin content and the syringyl/guaiacyl lignin monomer ratio were consistently lower in the COMT-down-regulated plants throughout the duration of the field trial. In general, analyses with fully established plants harvested during the second growing season produced results that were similar to those observed in previous greenhouse studies with these plants. Sugar release was improved by up to 34% and ethanol yield by up to 28% in the transgenic lines relative to controls. Additionally, these results were obtained using senesced plant material harvested at the end of the growing season, compared with the young, green tissue that was used in the greenhouse experiments. Another important finding was that transgenic plants were not more susceptible to rust (Puccinia emaculata). The results of this study suggest that lignin down-regulation in switchgrass can confer real-world improvements in biofuel yield without negative consequences to biomass yield or disease susceptibility.

  4. Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures.

    PubMed

    Moyano, Elisabeth; Palazón, Javier; Bonfill, Mercedes; Osuna, Lidia; Cusidó, Rosa M; Oksman-Caldentey, Kirsi-Marja; Piñol, M Teresa

    2007-04-01

    Hyoscyamine-6beta-hydroxylase (H6H) catalyses the conversion of hyoscyamine into its epoxide scopolamine, a compound with a higher added value in the pharmaceutical market than hyoscyamine. We report the establishment of tobacco cell cultures carrying the Hyoscyamus muticus h6h gene under the control of the promoter CAMV 35S. The cell cultures were derived from hairy roots obtained via genetically modified Agrobacterium rhizogenes carrying the pRi and pLAL21 plasmids. The cultures were fed with hyoscyamine, and 4 weeks later the amount of scopolamine produced was quantified by HPLC. The transgenic cell suspension cultures showed a considerable capacity for the bioconversion of hyoscyamine into scopolamine, and released it to the culture medium. Although the scale-up from shake-flask to bioreactor culture usually results in reduced productivities, our transgenic cells grown in a 5-L turbine stirred tank reactor in a batch mode significantly increased the scopolamine accumulation.

  5. Generation of infectious virus particles from inducible transgenic genomes.

    PubMed

    Wernet, Mathias F; Klovstad, Martha; Clandinin, Thomas R

    2014-02-01

    Arboviruses like dengue virus, yellow fever virus, and West Nile virus are enveloped particles spread by mosquitoes, infecting millions of humans per year, with neither effective vaccines, nor specific antiviral therapies [1,2]. Previous studies of infection and virus replication utilize either purified virus particles or deficient genomes that do not complete the viral life cycle [1,2]. Here we describe transgenic Drosophila strains expressing trans-complementing genomes (referred to as 'replicons') from the arbovirus Sindbis [2]. We use this binary system to produce, for the first time in any metazoan, infectious virus particles through self-assembly from transgenes. Such cell-type specific particle 'launching' could serve as an attractive alternative for the development of virus-based tools and the study of virus biology in specific tissues.

  6. Construction and long term preservation of clonal transgenic silkworms using a parthenogenetic strain.

    PubMed

    Zabelina, Valeriya; Uchino, Keiro; Mochida, Yuji; Yonemura, Naoyuki; Klymenko, Vyacheslav; Sezutsu, Hideki; Tamura, Toshiki; Sehnal, František

    2015-10-01

    For the functional analysis of insect genes as well as for the production of recombinant proteins for biomedical use, clonal transgenic silkworms are very useful. We examined if they could be produced in the parthenogenetic strain that had been maintained for more than 40years as a female line in which embryogenesis is induced with nearly 100% efficiency by a heat shock treatment of unfertilized eggs. All individuals have identical female genotype. Silkworm transgenesis requires injection of the DNA constructs into the non-diapausing eggs at the preblastodermal stage of embryogenesis. Since our parthenogenetic silkworms produce diapausing eggs, diapause programing was eliminated by incubating ovaries of the parthenogenetic strain in standard male larvae. Chorionated eggs were dissected from the implants, activated by the heat shock treatment and injected with the transgene construct. Several transgenic individuals occurred in the daughter generation. Southern blotting analysis of two randomly chosen transgenic lines VTG1 and VTG14 revealed multiple transgene insertions. Insertions found in the parental females were transferred to the next generation without any changes in their sites and copy numbers, suggesting that transgenic silkworms can be maintained as clonal strains with homozygous transgenes. Cryopreservation was developed for the storage of precious genotypes. As shown for the VTG1 and VTG14 lines, larval ovaries can be stored in DMSO at the temperature of liquid nitrogen, transferred to Grace's medium during defrosting, and then implanted into larvae of either sex of the standard silkworm strains C146 and w1-pnd. Chorionated eggs, which developed in the implants, were dissected and activated by the heat shock to obtain females (nearly 100% efficiency) or by a cold shock to induce development to both sexes in 4% of the eggs. It was then possible to establish bisexual lines homozygous for the transgene. PMID:26112978

  7. [New advances in animal transgenic technology].

    PubMed

    Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang

    2010-06-01

    Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.

  8. Large-scale management of insect resistance to transgenic cotton in Arizona: can transgenic insecticidal crops be sustained?

    PubMed

    Carrière, Y; Dennehy, T J; Pedersen, B; Haller, S; Ellers-Kirk, C; Antilla, L; Liu, Y B; Willott, E; Tabashnik, B E

    2001-04-01

    A major challenge for agriculture is management of insect resistance to toxins from Bacillus thuringiensis (Bt) produced by transgenic crops. Here we describe how a large-scale program is being developed in Arizona for management of resistance to Bt cotton in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), and other insect pests of cotton. Financial support from growers makes this program possible. Collaboration between the Arizona Cotton Research and Protection Council, the University of Arizona, and government agencies has led to development of resistance management guidelines, a remedial action plan, and tools for monitoring compliance with the proposed guidelines. Direct participation in development of resistance management policies is a strong incentive for growers to invest in resistance management research. However, more research, regularly updated regulations, and increased collaboration between stakeholders are urgently needed to maintain efficacy of Bt toxins in transgenic crops.

  9. Novel cell lines derived from transgenic mice expressing recombinant human proteins. Transgenic hepatoma-derived cell lines.

    PubMed

    Perraud, F; Dalemans, W; Ali-Hadji, D; Pavirani, A

    1992-01-01

    We have used transgenic mouse technology to establish immortalized hepatoma cell lines stably secreting heterologous proteins, such as human alpha 1-antitrypsin and human factor IX. Hepatocyte-specific regulatory DNA sequences were used to target both the expression of an onc gene and the gene coding for the human protein to the liver of transgenic mice which eventually developed hepatocellular carcinomas. Tumour cells were subsequently established as permanent cell lines, which maintained a differentiated phenotype under specific culture conditions, being capable of producing biologically active and correctly processed human alpha 1-antitrypsin and factor IX. Moreover, a preliminary analysis has shown that certain cell lines express elevated total cytochrome P450 activity. These cells could therefore represent a useful alternative to the use of animals or primary cultures in drug safety testing. PMID:1369183

  10. Accumulation of nickel in transgenic tobacco

    NASA Astrophysics Data System (ADS)

    Sidik, Nik Marzuki; Othman, Noor Farhan

    2013-11-01

    The accumulation of heavy metal Ni in the roots and leaves of four T1 transgenic lines of tobacco (T(1)20E, T(1)24C, T(1)18B1 and T(1)20B) expressing eiMT1 from E.indica was assessed. The aim of the study was to investigate the level of Ni accumulation in the leaves and roots of each transgenic lines and to evaluate the eligibility of the plants to be classified as a phytoremediation agent. All of the transgenic lines showed different ability in accumulating different metals and has translocation factor (TF) less than 1 (TF<1) at all levels of metal treatment. Among the 4 transgenic lines, transgenic line T(1)24C showed the highest accumulation of Ni (251.9 ± 0.014 mg/kg) and the lowest TF value (TFT(1)24C=0.0875) at 60 ppm Ni.

  11. Transgenic mouse model of malignant skin melanoma.

    PubMed Central

    Mintz, B; Silvers, W K

    1993-01-01

    Tyr-SV40E transgenic mice are specifically susceptible to melanoma due to expression of the oncogene in pigment cells. Mice of the more susceptible lines die young of early-onset eye melanomas, when skin melanomas are still infrequent and benign. To surmount this obstacle, skin from donors of two high-susceptibility lines was grafted to Tyr-SV40E hosts of a low-susceptibility line of the same inbred strain, thereby enabling the skin to outlive the donors and continue to grow in immunocompetent but tolerant hosts. Unexpectedly, donor pigment cells in all the grafts soon selectively proliferated close to areas of greatest wound healing, forming a dense black tracery, especially at the outer rim of the grafts. These lesions slowly grew radially within the grafts, producing irregular greyish patches. Local vertical thickenings then appeared and developed into small melanomas, which soon ulcerated through the epidermis. The tumors rapidly enlarged and became deeply invasive. Discrete black nevi also arose, with many becoming larger and distinctly blue, but those not near areas of pronounced wound healing did not progress to malignancy. In this first series, malignant melanoma resulted in all the grafts from the more susceptible of two donor lines and in some grafts from the other line. Distant metastases occurred in some cases from each line. Most tumors were hypomelanotic and heterogeneous, with lobes or areas differing in melanization. The results strongly suggest that growth factors and cytokines--known to be produced in wound repair--are triggering the growth and malignant conversion of these genetically susceptible melanocytes and that in the graft situation we are merely witnessing a caricature--a usefully exaggerated manifestation of the true events underlying the genesis of melanomas. The striking resemblance to the human malignancy, the genetic uniformity and different susceptibilities of the transgenic lines, and the experimental possibilities in the grafted

  12. Recurrent Selection for Transgene Activity Levels in Maize Results in Proxy Selection for a Native Gene with the Same Promoter

    PubMed Central

    Bodnar, Anastasia L.; Schroder, Megan N.; Scott, M. Paul

    2016-01-01

    High activity levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High activity levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurrent selection for activity of a transgene will result in higher activity, and if selection for activity of a transgene controlled by a native promoter will also increase protein levels of the native gene with the same promoter. To accomplish this goal we used transgenic maize containing a construct encoding green fluorescent protein controlled by the promoter for the maize endosperm-specific 27kDa gamma zein seed storage protein. We carried out recurrent selection for fluorescence intensity in two breeding populations. After three generations of selection, both selected populations were significantly more fluorescent and had significantly higher levels of 27kDa gamma zein than the unselected control populations. These higher levels of the 27kDa gamma zein occurred independently of the presence of the transgene. The results show that recurrent selection can be used to increase activity of a transgene and that selection for a transgene controlled by a native promoter can increase protein levels of the native gene with the same promoter via proxy selection. Moreover, the increase in native gene protein level is maintained in the absence of the transgene, demonstrating that proxy selection can be used to produce non-transgenic plants with desired changes in gene expression. PMID:26895451

  13. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids.

    PubMed

    Li, Zicong; Zeng, Fang; Meng, Fanming; Xu, Zhiqian; Zhang, Xianwei; Huang, Xiaoling; Tang, Fei; Gao, Wenchao; Shi, Junsong; He, Xiaoyan; Liu, Dewu; Wang, Chong; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2014-05-01

    The process of transgenesis involves the introduction of a foreign gene, the transgene, into the genome of an animal. Gene transfer by pronuclear microinjection (PNI) is the predominant method used to produce transgenic animals. However, this technique does not always result in germline transgenic offspring and has a low success rate for livestock. Alternate approaches, such as somatic cell nuclear transfer using transgenic fibroblasts, do not show an increase in efficiency compared to PNI, while viral-based transgenesis is hampered by issues regarding transgene size and biosafety considerations. We have recently described highly successful transgenesis experiments with mice using a piggyBac transposase-based vector, pmhyGENIE-3. This construct, a single and self-inactivating plasmid, contains all the transpositional elements necessary for successful gene transfer. In this series of experiments, our laboratories have implemented cytoplasmic injection (CTI) of pmGENIE-3 for transgene delivery into in vivo-fertilized pig zygotes. More than 8.00% of the injected embryos developed into transgenic animals containing monogenic and often single transgenes in their genome. However, the CTI technique was unsuccessful during the injection of in vitro-fertilized pig zygotes. In summary, here we have described a method that is not only easy to implement, but also demonstrated the highest efficiency rate for nonviral livestock transgenesis.

  14. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  15. Extraembryonic expression of the human MHC class I gene HLA-G in transgenic mice

    SciTech Connect

    Schmidt, C.M.; Ehlenfeldt, R.G.; Athanasiou, M.C.; Duvick, L.A.; Orr, H.T. ); Hubert, H.

    1993-09-01

    Trophoblast, the only fetal tissue in direct contact with maternal cells, fails to express the polymorphic HLA class I molecules HLA-A and -B, but does express the nonpolymorphic class I molecule HLA-G. It is thought that HLA-G may provide some of the functions of a class I molecule without stimulating maternal immune rejection of the fetal semiallograft. As a first step in identifying the cis-acting DNA regulatory elements involved in the control of class I expression by extraembryonic tissue, several types of transgenic mice were produced. Two HLA-G genomic fragments were used, 5.7 and 6.0 kb in length. These include the entire HLA-G coding region, 1 kb of 3' flanking sequence, and 1.2 or 1.4 kb of 5' flanking sequence, respectively. A hybrid transgene, HLA-A2/G, was produced by replacing the 5' flanking sequence, first exon, and early first intron of HLA-G with the corresponding elements of HLA-A. Comparison of transgene mRNA expression patterns seen in HLA-A2/G and HLA-G transgenic mice suggests that 5' flanking sequences are largely responsible for the differing patterns of expression typical of the classical class I and HLA-G genes. Studies comparing the extraembryonic HLA-G expression levels of founder embryos transgenic for either the 5.7 - or 6.0-kb HLA-G transgene showed that the 6.0-kb transgene directed HLA-G expression far more efficiently than did the 5.7-kb HLA-G transgene, producing extraembryoinc HLA-G mRNA levels similar to those seen in human extraembryoinic tissues. The results of these studies suggest that the 250-bp fragment present at the extreme 5' end of the 6.0-kb HLA-G transgene and absent from the 5.7-kb HLA-G transgene contains an important positive regulatory element. This 250-bp fragment lies further upstream than any of the previously documented class I regulatory regions and may function as a locus control region.

  16. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy.

    PubMed

    Luna, Aderval S; da Silva, Arnaldo P; Pinho, Jéssica S A; Ferré, Joan; Boqué, Ricard

    2013-01-01

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  17. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  18. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep.

    PubMed

    Hu, Shengwei; Ni, Wei; Sai, Wujiafu; Zi, Ha; Qiao, Jun; Wang, Pengyang; Sheng, Jinliang; Chen, Chuangfu

    2013-01-01

    Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.

  19. Effects of transgenic Bacillus thuringiensis maize grain on B. thuringiensis-susceptible Plodia interpunctella (Lepidoptera: Pyralidae).

    PubMed

    Giles, K L; Hellmich, R L; Iverson, C T; Lewis, L C

    2000-06-01

    Percentage survivorship, developmental time, adult body length, and sex ratio of Plodia interpunctella (Hübner) reared on field-produced grain from sixteen cultivars of maize, Zea mays L., including several transgenic Bacillus thuringiensis (Bt) Berliner hybrids and selected non-Bt isolines, were evaluated under laboratory conditions. Compared with isolines, development was delayed and survivorship reduced for P. interpunctella reared on grain from transgenic hybrids with the CaMV/35s promoter that express Cry1Ab protein. Similarly, compared with non-Bt hybrids, a transgenic hybrid with the CaMV/35s promoter that expresses Cry9C protein delayed development, decreased survivorship, and caused reductions in adult body length of P. interpunctella. In contrast, no significant differences in P. interpunctella developmental times or survivorship were observed between transgenic hybrids with the PEPC promoter expressing Cry1Ab and their isolines. Additionally, developmental time, survivorship, and adult body length were similar between P. interpunctella reared on a transgenic hybrid with the CaMV/35s promoter expressing Cry1Ac and non-Bt hybrids. Our data demonstrate that transgenic Bt maize grain, especially grain from hybrids with the CaMV/35s promoter expressing Cry1Ab or Cry9C, can significantly affect B. thuringiensis-susceptible P. interpunctella populations up to 4 or 5 mo after harvest.

  20. Recent advances and safety issues of transgenic plant-derived vaccines.

    PubMed

    Guan, Zheng-jun; Guo, Bin; Huo, Yan-lin; Guan, Zheng-ping; Dai, Jia-kun; Wei, Ya-hui

    2013-04-01

    Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.

  1. Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse.

    PubMed Central

    Shimizu, A; Nussenzweig, M C; Mizuta, T R; Leder, P; Honjo, T

    1989-01-01

    We have studied immunoglobulin double-isotype expression in a transgenic mouse (TG.SA) in which expression of the endogenous immunoglobulin heavy chain locus is almost completely excluded by a nonallelic rearranged human mu transgene. By flow-cytometric analyses, we have shown that a small, but significant, portion (about 4%) of transgenic spleen cells expresses human mu (transgene) and mouse gamma (endogenous) chains when cultured in vitro with bacterial lipopolysaccharide and interleukin 4. By using amplification of cDNA by the polymerase chain reaction, followed by cloning and sequencing of the amplified cDNA fragment, we have demonstrated expression of trans-mRNA consisting of the transgenic variable and endogenous constant (gamma 1) region sequences. Such trans-mRNA could be produced by either switch recombination or trans-splicing between the transgene and endogenous sterile gamma 1-gene transcripts. These results indicate that trans-splicing might be a possible mechanism for the immunoglobulin double-isotype expression in normal B lymphocytes that have not rearranged the second expressed constant region gene. Images PMID:2510157

  2. Induction of antisporozoite antibodies by biting of transgenic Anopheles stephensi delivering malarial antigen via blood feeding.

    PubMed

    Yamamoto, D S; Sumitani, M; Nagumo, H; Yoshida, S; Matsuoka, H

    2012-01-01

    We produced a transgenic mosquito expressing a rodent malaria vaccine candidate antigen in the salivary gland. Three tandemly repeated amino acid units from the repeat region of circumsporozoite protein of Plasmodium berghei (PbCS3R) fused to red fluorescent protein (monomeric DsRed) was chosen as a vaccine candidate antigen. Immunoblot and fluorescence microscopic analyses showed the transgene expression in the female salivary gland. The transgene product was released from the proboscis as a component of saliva. The monomeric DsRed-fusion expression system could be suitable for transgene secretion in the saliva of female mosquitoes. Mice repeatedly bitten by transgenic mosquitoes raised antibodies against P. berghei sporozoites, and the sera had protective ability against sporozoite invasion of human hepatoma HepG2 cells. These results suggest that transgene products are immunogenically active in saliva, and induce the antibodies to malaria parasite. These findings indicate that this technology has the potential for production of a 'flying vaccinator' for rodent malaria parasites. PMID:22787718

  3. Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen.

    PubMed

    Joshi, Chandrashekhar P; Thammannagowda, Shivegowda; Fujino, Takeshi; Gou, Ji-Qing; Avci, Utku; Haigler, Candace H; McDonnell, Lisa M; Mansfield, Shawn D; Mengesha, Bemnet; Carpita, Nicholas C; Harris, Darby; Debolt, Seth; Peter, Gary F

    2011-03-01

    Genetic manipulation of cellulose biosynthesis in trees may provide novel insights into the growth and development of trees. To explore this possibility, the overexpression of an aspen secondary wall-associated cellulose synthase (PtdCesA8) gene was attempted in transgenic aspen (Populus tremuloides L.) and unexpectedly resulted in silencing of the transgene as well as its endogenous counterparts. The main axis of the transgenic aspen plants quickly stopped growing, and weak branches adopted a weeping growth habit. Furthermore, transgenic plants initially developed smaller leaves and a less extensive root system. Secondary xylem (wood) of transgenic aspen plants contained as little as 10% cellulose normalized to dry weight compared to 41% cellulose typically found in normal aspen wood. This massive reduction in cellulose was accompanied by proportional increases in lignin (35%) and non-cellulosic polysaccharides (55%) compared to the 22% lignin and 36% non-cellulosic polysaccharides in control plants. The transgenic stems produced typical collapsed or 'irregular' xylem vessels that had altered secondary wall morphology and contained greatly reduced amounts of crystalline cellulose. These results demonstrate the fundamental role of secondary wall cellulose within the secondary xylem in maintaining the strength and structural integrity required to establish the vertical growth habit in trees.

  4. Increased endogenous methyl jasmonate altered leaf and root development in transgenic soybean plants.

    PubMed

    Xue, Rengao; Zhang, Biao

    2007-04-01

    Methyl jasmonate (MeJA) is a plant-signaling molecule that regulates plant morphogenesis and expression of plant defense genes. To determine the role of the endogenous MeJA levels in the development of plants, transgenic soybean [Glycine max (L.) Merrill] plants harboring NTR1 gene encoding for jasmonic acid carboxyl methyltransferase (JMT) were produced. The activation of NTR1 gene expression resulted in the production of MeJA. Overexpression of the NTR1 cDNA under the regulation of cauliflower mosaic virus (CaMV) 35S promoter in the transgenic soybean plants was confirmed using Northern blot analysis. The significant differences in leaf and root growth patterns were observed between the transgenic plants and the wild-type plants. The leaves of the transgenic plants were slightly elongated in length but dramatically narrowed in width compared with the nontransformed wild-type plants. In addition, elongation of primary root was inhibited in the overexpressed transgenic soybean plantlets, whereas the development of lateral root was stimulated relative to the nontransformed plants. The leaves of the transgenic plants showed 2-2.5-fold higher levels of MeJA than the control plants. These results indicated that the increased endogenous levels of MeJA is involved in regulation of morphogenesis in soybean plants.

  5. Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated underground.

    PubMed

    Tackaberry, Eilleen S; Prior, Fiona; Bell, Margaret; Tocchi, Monika; Porter, Suzanne; Mehic, Jelica; Ganz, Peter R; Sardana, Ravinder; Altosaar, Illimar; Dudani, Anil

    2003-06-01

    The use of transgenic plants in the production of recombinant proteins for human therapy, including subunit vaccines, is being investigated to evaluate the efficacy and safety of these emerging biopharmaceutical products. We have previously shown that synthesis of recombinant glycoprotein B (gB) of human cytomegalovirus can be targeted to seeds of transgenic tobacco when directed by the rice glutelin 3 promoter, with gB retaining critical features of immunological reactivity (E.S. Tackaberry et al. 1999. Vaccine, 17: 3020-3029). Here, we report development of second generation transgenic plant lines (T1) homozygous for the transgene. Twenty progeny plants from two lines (A23T(1)-2 and A24T(1)-3) were grown underground in an environmentally contained mine shaft. Based on yields of gB in their seeds, the A23T(1)-2 line was then selected for scale-up in the same facility. Analyses of mature seeds by ELISA showedthat gB specific activity in A23T(1)-2 seeds was over 30-fold greater than the best T0 plants from the same transformation series, representing 1.07% total seed protein. These data demonstrate stable inheritance, an absence of transgene inactivation, and enhanced levels of gB expression in a homozygous second generation plant line. They also provide evidence for the suitability of using this environmentally secure facility to grow transgenic plants producing therapeutic biopharmaceuticals.

  6. Using inositol as a biocompatible ligand for efficient transgene expression

    PubMed Central

    Zhang, Lei; Bellis, Susan L; Fan, Yiwen; Wu, Yunkun

    2015-01-01

    Transgene transfection techniques using cationic polymers such as polyethylenimines (PEIs) and PEI derivatives as gene vectors have shown efficacy, although they also have shortcomings. PEIs have decent DNA-binding capability and good cell internalization performance, but they cannot deliver gene payloads very efficiently to cell nuclei. In this study, three hyperbranched polyglycerol-polyethylenimine (PG6-PEI) polymers conjugated with myo-inositol (INO) molecules were developed. The three resulting PG6-PEI-INO polymers have an increased number of INO ligands per molecule. PG6-PEI-INO 1 had only 14 carboxymethyl INO (CMINO) units per molecule. PG6-PEI-INO 2 had approximately 130 CMINO units per molecule. PG6-PEI-INO 3 had as high as 415 CMINO units approximately. Mixing PG6-PEI-INO polymers with DNA produced compact nanocomposites. We then performed localization studies using fluorescent microscopy. As the number of conjugated inositol ligands increased in PG6-PEI-INO polymers, there was a corresponding increase in accumulation of the polymers within 293T cell nuclei. Transfection performed with spherical 293T cells yielded 82% of EGFP-positive cells when using PG6-PEI-INO 3 as the vehicle. Studies further revealed that extracellular adenosine triphosphate (eATP) can inhibit the transgene efficiency of PG6-PEI-INO polymers, as compared with PEI and PG6-PEI that were not conjugated with inositol. Our work unveiled the possibility of using inositol as an effective ligand for transgene expression. PMID:25926732

  7. Isoprene synthesis in plants: lessons from a transgenic tobacco model.

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Laothawornkitkul, Jullada; Ryan, Annette C; Hewitt, C Nicholas; Mullineaux, Philip M

    2011-06-01

    Isoprene is a highly reactive gas, and is emitted in such large quantities from the biosphere that it substantially affects the oxidizing potential of the atmosphere. Relatively little is known about the control of isoprene emission at the molecular level. Using transgenic tobacco lines harbouring a poplar isoprene synthase gene, we examined control of isoprene emission. Isoprene synthase required chloroplastic localization for catalytic activity, and isoprene was produced via the methyl erythritol (MEP) pathway from recently assimilated carbon. Emission patterns in transgenic tobacco plants were remarkably similar to naturally emitting plants under a wide variety of conditions. Emissions correlated with photosynthetic rates in developing and mature leaves, and with the amount of isoprene synthase protein in mature leaves. Isoprene synthase protein levels did not change under short-term increase in heat/light, despite an increase in emissions under these conditions. A robust circadian pattern could be observed in emissions from long-day plants. The data support the idea that substrate supply and changes in enzyme kinetics (rather than changes in isoprene synthase levels or post-translational regulation of activity) are the primary controls on isoprene emission in mature transgenic tobacco leaves.

  8. Germline excision of transgenes in Aedes aegypti by homing endonucleases.

    PubMed

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.

  9. Transcriptional regulation using the Q system in transgenic zebrafish.

    PubMed

    Ghosh, A; Halpern, M E

    2016-01-01

    Methods to label cell populations selectively or to modify their gene expression are critical tools in the study of developmental or physiological processes in vivo. A variety of approaches have been applied to the zebrafish model, capitalizing on Tol2 transposition to generate transgenic lines with high efficiency. Here we describe the adoption of the Q system of Neurospora crassa, which includes the QF transcription factor and the upstream activating sequence (QUAS) to which it binds. These components function as a bipartite regulatory system similar to that of yeast Gal4/UAS, producing robust expression in transient assays of zebrafish embryos injected with plasmids and in stable transgenic lines. An important advantage, however, is that QUAS-regulated transgenes appear far less susceptible to transcriptional silencing even after seven generations. This chapter describes some of the Q system reagents that have been developed for zebrafish, as well as the use of the QF transcription factor for isolation of tissue-specific driver lines from gene/enhancer trap screens. Additional strategies successfully implemented in invertebrate models, such as a truncated QF transcription factor (QF2) or the reassembly of a split QF, are also discussed. The provided information, and available Gateway-based vectors, should enable those working with the zebrafish model to implement the Q system with minimal effort or to use it in combination with Gal4, Cre, or other regulatory systems for further refinement of transcriptional control. PMID:27443927

  10. Using inositol as a biocompatible ligand for efficient transgene expression.

    PubMed

    Zhang, Lei; Bellis, Susan L; Fan, Yiwen; Wu, Yunkun

    2015-01-01

    Transgene transfection techniques using cationic polymers such as polyethylenimines (PEIs) and PEI derivatives as gene vectors have shown efficacy, although they also have shortcomings. PEIs have decent DNA-binding capability and good cell internalization performance, but they cannot deliver gene payloads very efficiently to cell nuclei. In this study, three hyperbranched polyglycerol-polyethylenimine (PG6-PEI) polymers conjugated with myo-inositol (INO) molecules were developed. The three resulting PG6-PEI-INO polymers have an increased number of INO ligands per molecule. PG6-PEI-INO 1 had only 14 carboxymethyl INO (CMINO) units per molecule. PG6-PEI-INO 2 had approximately 130 CMINO units per molecule. PG6-PEI-INO 3 had as high as 415 CMINO units approximately. Mixing PG6-PEI-INO polymers with DNA produced compact nanocomposites. We then performed localization studies using fluorescent microscopy. As the number of conjugated inositol ligands increased in PG6-PEI-INO polymers, there was a corresponding increase in accumulation of the polymers within 293T cell nuclei. Transfection performed with spherical 293T cells yielded 82% of EGFP-positive cells when using PG6-PEI-INO 3 as the vehicle. Studies further revealed that extracellular adenosine triphosphate (eATP) can inhibit the transgene efficiency of PG6-PEI-INO polymers, as compared with PEI and PG6-PEI that were not conjugated with inositol. Our work unveiled the possibility of using inositol as an effective ligand for transgene expression.

  11. Recent advances in the development of transgenic papaya technology.

    PubMed

    Tecson Mendoza, Evelyn Mae; C Laurena, Antonio; Botella, José Ramón

    2008-01-01

    Papaya with resistance to papaya ringspot virus (PRSV) is the first genetically modified tree and fruit crop and also the first transgenic crop developed by a public institution that has been commercialized. This chapter reviews the different transformation systems used for papaya and recent advances in the use of transgenic technology to introduce important quality and horticultural traits in papaya. These include the development of the following traits in papaya: resistance to PRSV, mites and Phytophthora, delayed ripening trait or long shelf life by inhibiting ethylene production or reducing loss of firmness, and tolerance or resistance to herbicide and aluminum toxicity. The use of papaya to produce vaccine against tuberculosis and cysticercosis, an infectious animal disease, has also been explored. Because of the economic importance of papaya, there are several collaborative and independent efforts to develop PRSV transgenic papaya technology in 14 countries. This chapter further reviews the strategies and constraints in the adoption of the technology and biosafety to the environment and food safety. Constraints to adoption include public perception, strict and expensive regulatory procedures and intellectual property issues.

  12. Generation of transgenic Hydra by embryo microinjection.

    PubMed

    Juliano, Celina E; Lin, Haifan; Steele, Robert E

    2014-09-11

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.

  13. Generation of Transgenic Hydra by Embryo Microinjection

    PubMed Central

    Juliano, Celina E.; Lin, Haifan; Steele, Robert E.

    2014-01-01

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology1. Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost. PMID:25285460

  14. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161

    PubMed Central

    Honda, Jennifer R; Shang, Shaobin; Shanley, Crystal A; Caraway, Megan L; Henao-Tamayo, Marcela; Chan, Edward D; Basaraba, Randall J; Orme, Ian M; Ordway, Diane J; Flores, Sonia C

    2011-01-01

    Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis. PMID:22046211

  15. Transgenic swine for biomedicine and agriculture.

    PubMed

    Prather, R S; Hawley, R J; Carter, D B; Lai, L; Greenstein, J L

    2003-01-01

    Initial technologies for creating transgenic swine only permitted random integration of the construct. However, by combining the technology for homologous recombination in fetal somatic cells with that of nuclear transfer (NT), it is now possible to create specific modifications to the swine genome. The first such example is that of knocking out a gene that is responsible for hyperacute rejection (HAR) when organs from swine are transferred to primates. Because swine are widely used as models of human diseases, there are opportunities for genetic modification to alter these models or to create additional models of human disease. Unfortunately, some of the offspring resulting from NT have abnormal phenotypes. However, it appears that these abnormal phenotypes are a result of epigenetic modifications and, thus, are not transmitted to the offspring of the clones. Although the technique of producing animals with specific genetic modifications by NT has been achieved, improvements to the NT technique as well as improvements in the culture conditions for somatic cells and the techniques for genetic modification are still needed.

  16. AMPK: Lessons from transgenic and knockout animals

    PubMed Central

    Viollet, Benoit; Athea, Yoni; Mounier, Remi; Guigas, Bruno; Zarrinpashneh, Elham; Horman, Sandrine; Lantier, Louise; Hebrard, Sophie; Devin-Leclerc, Jocelyne; Beauloye, Christophe; Foretz, Marc; Andreelli, Fabrizio; Ventura-Clapier, Renee; Bertrand, Luc

    2009-01-01

    AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, has been proposed to function as a ‘fuel gauge’ to monitor cellular energy status in response to nutritional environmental variations. AMPK system is a regulator of energy balance that, once activated by low energy status, switches on ATP-producing catabolic pathways (such as fatty acid oxidation and glycolysis), and switches off ATP-consuming anabolic pathways (such as lipogenesis), both by short-term effect on phosphorylation of regulatory proteins and by long-term effect on gene expression. Numerous observations obtained with pharmacological activators and agents that deplete intracellular ATP have been supportive of AMPK playing a role in the control of energy metabolism but none of these studies have provided conclusive evidence. Relatively recent developments in our understanding of precisely how AMPK complexes might operate to control energy metabolism is due in part to the development of transgenic and knockout mouse models. Although there are inevitable caveats with genetic models, some important findings have emerged. In the present review, we discuss recent findings obtained from animal models with inhibition or activation of AMPK signaling pathway. PMID:19273052

  17. Transgenic crops coping with water scarcity.

    PubMed

    Cominelli, Eleonora; Tonelli, Chiara

    2010-11-30

    Water scarcity is a serious problem that will be exacerbated by global climate change. Massive quantities of water are used in agriculture, and abiotic stresses, especially drought and increased salinity, are primary causes of crop loss worldwide. Various approaches may be adopted to consume less water in agriculture, one of them being the development of plants that use less water yet maintain high yields in conditions of water scarcity. In recent years several molecular networks concerned with stress perception, signal transduction and stress responses in plants have been elucidated. Consequently, engineering some of the genes involved in these mechanisms promises to enhance plant tolerance to stresses and in particular increase their water use efficiency. Here we review the various approaches used so far to produce transgenic plants having improved tolerance to abiotic stresses, and discuss criteria for choosing which genes to work on (functional and regulatory genes) and which gene expression promoters (constitutive, inducible, and cell-specific) have been used to obtain successful results.

  18. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  19. A transgenic embryonic sexing system for Anastrepha suspensa (Diptera: Tephritidae).

    PubMed

    Schetelig, Marc F; Handler, Alfred M

    2012-10-01

    The Sterile Insect Technique (SIT) is a highly successful biologically-based strategy to control pest insect populations that relies on the large-scale release of sterilized males to render females in the field non-reproductive. For medfly, a mutant-based sexing system is available as well as a transgenic system where a tetracycline-suppressible (Tet-off) toxic molecule is female-specifically produced. However, the former classical genetic system took many years to refine, and the latter system results in female death by a poorly understood mechanism, primarily in the pupal stage after rearing costs have been incurred. Here we describe a Tet-off transgenic embryonic sexing system (TESS) for Anastrepha suspensa that uses a driver construct having the promoter from the embryo-specific A. suspensa serendipity α gene, linked to the Tet-transactivator. This was used to drive the expression of a phospho-mutated variant of the pro-apoptotic cell death gene, Alhid, from Anastrepha ludens. The system uses a sex-specific intron splicing cassette linked to a cell death gene lethal effector. Progeny from TESS strains heterozygous for the transgene combination were 80-100% males, whereas four double homozygous TESS strains had 100% male-only progeny, with female death limited primarily to embryogenesis. In a large-scale test, more than 30,000 eggs from two strains resulted in 100% male-only progeny. The transgenic sexing approach described here is highly effective and cost-efficient by eliminating most, if not all, female insects early in embryogenesis using a well-characterized apoptotic mechanism. PMID:22858603

  20. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    EPA Science Inventory

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  1. [Transgenic technology and soybean quality improvement].

    PubMed

    Cheng, Hao; Jin, Hang-Xia; Gai, Jun-Yi; Yu, De-Yue

    2011-05-01

    Soybean is an important source of edible oil, protein and protein diet. The breeding process of high quality soybean can be accelerated via employment of transgenic technology, by which the key genes for soybean quality traits could be directly manipulated. Thus, various soybean varieties could be bred to fulfill different needs for specific consumers. Here, we reviewed the contribution of transgenic technology to improvement of soybean qualities in recent years. We also introduce some newly developed safe transgenic technologies and hope this information could relieve some concerns on the GM food.

  2. Transgenic chickens expressing human urokinase-type plasminogen activator.

    PubMed

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P < 0.05). The expression of huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P < 0.05). Furthermore, adult transgenic rooster showed reduced (P < 0.05) fertility, as revealed by reduced volume of semen ejaculate, sperm concentration, and sperm viability. Taken together, our data suggest that huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  3. Transgenic chickens expressing human urokinase-type plasminogen activator.

    PubMed

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P < 0.05). The expression of huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P < 0.05). Furthermore, adult transgenic rooster showed reduced (P < 0.05) fertility, as revealed by reduced volume of semen ejaculate, sperm concentration, and sperm viability. Taken together, our data suggest that huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders. PMID:23960123

  4. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.

    PubMed

    Stefano, Biricolti; Patrizia, Bogani; Matteo, Cerboneschi; Massimo, Gori

    2016-06-01

    One of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial. After assessing the transgene copy number of a set of apple transgenic clones with Southern blotting, we describe two alternative methods: the first is based on inverse PCR (i-PCR) and the second on the quantitative PCR (q-PCR). The methods produced comparable results with the exception of the data regarding a high copy number clone, but while the q-PCR-based system is rapid and easily adaptable to high throughput systems, the i-PCR-based method can provide information regarding the transformation event and the characteristics of the sequences flanking the transgenic construct.

  5. Expression of a bacterial alpha-amylase gene in transgenic rice seeds.

    PubMed

    Xu, Xiaoli; Fang, Jun; Wang, Wei; Guo, Jianli; Chen, Pinnan; Cheng, Jiaan; Shen, Zhicheng

    2008-08-01

    An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.

  6. A comparative study of element concentrations and binding in transgenic and non-transgenic soybean seeds.

    PubMed

    Mataveli, Lidiane Raquel Verola; Pohl, Pawel; Mounicou, Sandra; Arruda, Marco Aurélio Zezzi; Szpunar, Joanna

    2010-12-01

    Transgenic and non-transgenic soybean seeds were compared in terms of total element concentrations, behavior of elements during sequential extraction fractionation and element bioaccessibility using an in vitro simulated gastrointestinal digestion. The analysis were carried out by ICP-sector field-MS or size-exclusion ICP-MS (25 elements in concentrations varying from ng g⁻¹ to the % level). It seems that transgenic and non-transgenic soybean seeds exhibit statistically significant differences in concentrations of Cu, Fe and Sr, which are also reflected by element contents in water extracts and residues. Additionally, contributions of bioaccessible fractions of Cu, Fe and other elements (Mn, S, Zn) for transgenic soybean seeds appear to be larger than those found in non-transgenic soybean seeds.

  7. Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment.

    PubMed

    Campbell, Raymond; Morris, Wayne L; Mortimer, Cara L; Misawa, Norihiko; Ducreux, Laurence J M; Morris, Jenny A; Hedley, Pete E; Fraser, Paul D; Taylor, Mark A

    2015-05-01

    Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.

  8. Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment.

    PubMed

    Campbell, Raymond; Morris, Wayne L; Mortimer, Cara L; Misawa, Norihiko; Ducreux, Laurence J M; Morris, Jenny A; Hedley, Pete E; Fraser, Paul D; Taylor, Mark A

    2015-05-01

    Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring. PMID:25804807

  9. Tiam1 Transgenic Mice Display Increased Tumor Invasive and Metastatic Potential of Colorectal Cancer after 1,2-Dimethylhydrazine Treatment

    PubMed Central

    Yu, Li-Na; Zhang, Qing-Ling; Li, Xin; Hua, Xing; Cui, Yan-Mei; Zhang, Nian-Jie; Liao, Wen-Ting; Ding, Yan-Qing

    2013-01-01

    Background T lymphoma invasion and metastasis 1 (Tiam1) is a potential modifier of tumor development and progression. Our previous study in vitro and in nude mice suggested a promotion role of Tiam1 on invasion and metastasis of colorectal cancer (CRC). In the present study, we generated Tiam1/C1199-CopGFP transgenic mice to investigate the tumorigenetic, invasive and metastatic alterations in the colon and rectum of wild-type and Tiam1 transgenic mice under 1,2-dimethylhydrazine (DMH) treatment. Methods Transgenic mice were produced by the method of pronuclear microinlectlon. Whole-body fluorescence imaging (Lighttools, Edmonton, Alberta, Canada), PCR, and immunohistochemical techniques (IHC) were applied sequentially to identify the transgenic mice. The carcinogen DMH (20 mg/kg) was used to induce colorectal tumors though intraperitoneal (i.p.) injections once a week for 24 weeks from the age of 4 weeks on Tiam1 transgenic or non-transgenic mice. Results We successfully generated Tiam1/C1199-CopGFP transgenic mice and induced primary tumors in the intestine of both wild type and Tiam1 transgenic mice by DMH treatment. In addition, Tiam1 transgenic mice developed larger and more aggressive neoplasm than wild-type mice. Moreover, immunohistochemical staining revealed that upregulation of Tiam1 was correlated with increased expression of β-Catenin and Vimentin, and downregulation of E-Cadherin in these mice. Conclusions Our study has provided in vivo evidence supporting that Tiam1 promotes invasion and metastasis of CRC, most probably through activation of Wnt/β-catenin signaling pathway, in a Tiam1 transgenic mouse model. PMID:24069171

  10. Molecular farming of industrial proteins from transgenic maize.

    PubMed

    Hood, E E; Kusnadi, A; Nikolov, Z; Howard, J A

    1999-01-01

    Recombinant egg white avidin and bacterial B-glucuronidase (GUS) from transgenic maize have been commercially produced. High levels of expression were obtained in seed by employing the ubiquitin promoter from maize. The recombinant proteins had activities that were indistinguishable from their native counterparts. We have illustrated that down-stream activities in the production of these recombinant proteins, such as stabilizing the germplasm and processing for purification, were accomplished without any major obstacles. Avidin (A8706) and GUS (G2035) are currently marketed by Sigma Chemical Co. PMID:10335391

  11. [Review of transgenic crop breeding in China].

    PubMed

    Huang, Dafang

    2015-06-01

    The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made. PMID:26672365

  12. AN APPROACH TO TRANSGENIC CROP MONITORING

    EPA Science Inventory

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  13. Transgenic plants with enhanced growth characteristics

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  14. Phenotyping transgenic wheat for drought resistance.

    PubMed

    Saint Pierre, Carolina; Crossa, José L; Bonnett, David; Yamaguchi-Shinozaki, Kazuko; Reynolds, Matthew P

    2012-03-01

    Realistic experimental protocols to screen for drought adaptation in controlled conditions are crucial if high throughput phenotyping is to be used for the identification of high performance lines, and is especially important in the evaluation of transgenes where stringent biosecurity measures restrict the frequency of open field trials. Transgenic DREB1A-wheat events were selected under greenhouse conditions by evaluating survival and recovery under severe drought (SURV) as well as for water use efficiency (WUE). Greenhouse experiments confirmed the advantages of transgenic events in recovery after severe water stress. Under field conditions, the group of transgenic lines did not generally outperform the controls in terms of grain yield under water deficit. However, the events selected for WUE were identified as lines that combine an acceptable yield-even higher yield (WUE-11) under well irrigated conditions-and stable performance across the different environments generated by the experimental treatments.

  15. Autoimmune diabetes can be induced in transgenic major histocompatibility complex class II-deficient mice

    PubMed Central

    1993-01-01

    Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease marked by hyperglycemia and mononuclear cell infiltration of insulin- producing beta islet cells. Predisposition to IDDM in humans has been linked to the class II major histocompatibility complex (MHC), and islet cells often become aberrantly class II positive during the course of the disease. We have used two recently described transgenic lines to investigate the role of class II molecules and CD4+ T cells in the onset of autoimmune insulitis. Mice that are class II deficient secondary to a targeted disruption of the A beta b gene were bred to mice carrying a transgene for the lymphocytic choriomenigitis virus (LCMV) glycoprotein (GP) targeted to the endocrine pancreas. Our results indicate that class II-deficient animals with and without the GP transgene produce a normal cytotoxic T lymphocyte response to whole LCMV. After infection with LCMV, GP-transgenic class II-deficient animals develop hyperglycemia as rapidly as their class II-positive littermates. Histologic examination of tissue sections from GP- transgenic class II-deficient animals reveals lymphocytic infiltrates of the pancreatic islets that are distinguishable from those of their class II-positive littermates only by the absence of infiltrating CD4+ T cells. These results suggest that in this model of autoimmune diabetes, CD4+ T cells and MHC class II molecules are not required for the development of disease. PMID:8101862

  16. Transgenic mice expressing human glucocerebrosidase variants: utility for the study of Gaucher disease.

    PubMed

    Sanders, Angela; Hemmelgarn, Harmony; Melrose, Heather L; Hein, Leanne; Fuller, Maria; Clarke, Lorne A

    2013-08-01

    Gaucher disease is an autosomal recessively inherited storage disorder caused by deficiency of the lysosomal hydrolase, acid β-glucosidase. The disease manifestations seen in Gaucher patients are highly heterogeneous as is the responsiveness to therapy. The elucidation of the precise factors responsible for this heterogeneity has been challenging as the development of clinically relevant animal models of Gaucher disease has been problematic. Although numerous murine models for Gaucher disease have been described each has limitations in their specific utility. We describe here, transgenic murine models of Gaucher disease that will be particularly useful for the study of pharmacological chaperones. We have produced stable transgenic mouse strains that individually express wild type, N370S and L444P containing human acid β-glucosidase and show that each of these transgenic lines rescues the lethal phenotype characteristic of acid β-glucosidase null mice. Both the N370S and L444P transgenic models show early and progressive elevations of tissue sphingolipids with L444P mice developing progressive splenic Gaucher cell infiltration. We demonstrate the potential utility of these new transgenic models for the study of Gaucher disease pathogenesis. In addition, since these mice produce only human enzyme, they are particularly relevant for the study of pharmacological chaperones that are specifically targeted to human acid β-glucosidase and the common mutations underlying Gaucher disease. PMID:23642305

  17. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  18. [Detection of transgenic crop with gene chip].

    PubMed

    Huang, Ying-Chun; Sun, Chun-Yun; Feng, Hong; Hu, Xiao-Dong; Yin, Hai-Bin

    2003-05-01

    Some selected available sequences of reporter genes,resistant genes, promoters and terminators are amplified by PCR for the probes of transgenic crop detection gene chip. These probes are arrayed at definite density and printed on the surface of amino-slides by bioRobot MicroGrid II. Results showed that gene chip worked quickly and correctly, when transgenic rice, pawpaw,maize and soybean were applied. PMID:15639876

  19. Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis.

    PubMed

    Song, Xiaoling; Wang, Zhou; Zuo, Jiao; Huangfu, Chaohe; Qiang, Sheng

    2010-05-01

    Four successive reciprocal backcrosses between F(1) (obtained from wild Brassica juncea as maternal plants and transgenic glyphosate- or glufosinate-tolerant oilseed rape, B. napus, as paternal plants) or subsequent herbicide-tolerant backcross progenies and wild B. juncea were achieved by hand pollination to assess potential transgene flow. The third and forth reciprocal backcrosses produced a number of seeds per silique similar to that of self-pollinated wild B. juncea, except in plants with glufosinate-tolerant backcross progeny used as maternal plants and wild B. juncea as paternal plants, which produced fewer seeds per silique than did self-pollinated wild B. juncea. Germination percentages of reciprocal backcross progenies were high and equivalent to those of wild B. juncea. The herbicide-tolerant first reciprocal backcross progenies produced fewer siliques per plant than did wild B. juncea, but the herbicide-tolerant second or third reciprocal backcross progenies did not differ from the wild B. juncea in siliques per plant. The herbicide-tolerant second and third reciprocal backcross progenies produced an amount of seeds per silique similar to that of wild B. juncea except for with the glufosinate-tolerant first and second backcross progeny used as maternal plants and wild B. juncea as paternal plants. In the presence of herbicide selection pressure, inheritance of the glyphosate-tolerant transgene was stable across the second and third backcross generation, whereas the glufosinate-tolerant transgene was maintained, despite a lack of stabilized introgression. The occurrence of fertile, transgenic weed-like plants after only three crosses (F(1), first backcross, second backcross) suggests a potential rapid spread of transgenes from oilseed rape into its wild relative wild B. juncea. Transgene flow from glyphosate-tolerant oilseed rape might be easier than that from glufosinate-tolerant oilseed rape to wild B. juncea. The original insertion site of the

  20. Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis.

    PubMed

    Song, Xiaoling; Wang, Zhou; Zuo, Jiao; Huangfu, Chaohe; Qiang, Sheng

    2010-05-01

    Four successive reciprocal backcrosses between F(1) (obtained from wild Brassica juncea as maternal plants and transgenic glyphosate- or glufosinate-tolerant oilseed rape, B. napus, as paternal plants) or subsequent herbicide-tolerant backcross progenies and wild B. juncea were achieved by hand pollination to assess potential transgene flow. The third and forth reciprocal backcrosses produced a number of seeds per silique similar to that of self-pollinated wild B. juncea, except in plants with glufosinate-tolerant backcross progeny used as maternal plants and wild B. juncea as paternal plants, which produced fewer seeds per silique than did self-pollinated wild B. juncea. Germination percentages of reciprocal backcross progenies were high and equivalent to those of wild B. juncea. The herbicide-tolerant first reciprocal backcross progenies produced fewer siliques per plant than did wild B. juncea, but the herbicide-tolerant second or third reciprocal backcross progenies did not differ from the wild B. juncea in siliques per plant. The herbicide-tolerant second and third reciprocal backcross progenies produced an amount of seeds per silique similar to that of wild B. juncea except for with the glufosinate-tolerant first and second backcross progeny used as maternal plants and wild B. juncea as paternal plants. In the presence of herbicide selection pressure, inheritance of the glyphosate-tolerant transgene was stable across the second and third backcross generation, whereas the glufosinate-tolerant transgene was maintained, despite a lack of stabilized introgression. The occurrence of fertile, transgenic weed-like plants after only three crosses (F(1), first backcross, second backcross) suggests a potential rapid spread of transgenes from oilseed rape into its wild relative wild B. juncea. Transgene flow from glyphosate-tolerant oilseed rape might be easier than that from glufosinate-tolerant oilseed rape to wild B. juncea. The original insertion site of the

  1. Transgene flow: Facts, speculations and possible countermeasures

    PubMed Central

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  2. Transgene flow: facts, speculations and possible countermeasures.

    PubMed

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  3. Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera.

    PubMed

    Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie

    2015-01-01

    Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests. PMID:25552931

  4. [Production of transgenic sugarbeet plants (Beta vulgaris L.) using Agrobacterium rhizogenes].

    PubMed

    Kishchenko, E M; Komarnitskiĭ, I K; Kuchuk, N V

    2005-01-01

    Normal phenotype sugarbeet plants transformed with Agrobacterium rhizogenes were produced using direct regeneration from explants without hairy root phase. Kanamycin resistant plants and Ri-roots carrying the genes of neomycin phosphotransferase II and b-glucuronidase have been obtained. Integration of transgenes into sugarbeet genome was confirmed with GUS-assay and PCR using primers for the introduced genes. PMID:16018172

  5. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  6. Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk.

    PubMed

    Baldassarre, Hernan; Hockley, Duncan K; Doré, Monique; Brochu, Eric; Hakier, Bernard; Zhao, Xin; Bordignon, Vilceu

    2008-02-01

    The production of recombinant proteins in the milk of transgenic animals has attracted significant interest in the last decade, as a valuable alternative for the production of recombinant proteins that cannot be or are inefficiently produced using conventional systems based on microorganisms or animal cells. Several recombinant proteins of pharmaceutical and biomedical interest have been successfully expressed in high quantities (g/l) in the milk of transgenic animals. However, this productivity may be associated with a compromised mammary physiology resulting, among other things, from the extraordinary demand placed on the mammary secretory cells. In this study we evaluated the lactation performance of a herd of 50 transgenic goats expressing recombinant human butyryl-cholinesterase (rBChE) in the milk. Our findings indicate that high expression levels of rBChE (range 1-5 g/l) are produced in these animals at the expense of an impaired lactation performance. The key features characterizing these transgenic performances were the decreased milk production, the reduced milk fat content which was associated with an apparent disruption in the lipid secretory mechanism at the mammary epithelium level, and a highly increased presence of leukocytes in milk which is not associated with mammary infection. Despite of having a compromised lactation performance, the amount of rBChE produced per transgenic goat represents several orders of magnitude more than the amount of rBChE present in the blood of hundreds of human donors, the only other available source of rBChE for pharmaceutical and biodefense applications. As a result, this development constitutes another successful example in the application of transgenic animal technology.

  7. A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea.

    PubMed

    Liu, Yongbo; Zhang, Ying-Xue; Song, Song-Quan; Li, Junsheng; Neal Stewart, C; Wei, Wei; Zhao, Yujie; Wang, Wei-Qing

    2015-01-01

    Transgene insertions might have unintended side effects on the transgenic host, both crop and hybrids with wild relatives that harbor transgenes. We employed proteomic approaches to assess protein abundance changes in seeds from Bt-transgenic oilseed rape (Brassica napus) and its hybrids with wild mustard (B. juncea). A total of 24, 15 and 34 protein spots matching to 23, 13 and 31 unique genes were identified that changed at least 1.5 fold (p < 0.05, Student's t-test) in abundance between transgenic (tBN) and non-transgenic (BN) oilseed rape, between hybrids of B. juncea (BJ) × tBN (BJtBN) and BJ × BN (BJBN) and between BJBN and BJ, respectively. Eight proteins had higher abundance in tBN than in BN. None of these proteins was toxic or nutritionally harmful to human health, which is not surprising since the seeds are not known to produce toxic proteins. Protein spots varying in abundance between BJtBN and BJBN seeds were the same or homologous to those in the respective parents. None of the differentially-accumulated proteins between BJtBN and BJBN were identical to those between tBN and BN. Results indicated that unintended effects resulted from transgene flow fell within the range of natural variability of hybridization and those found in the native host proteomes. PMID:26486652

  8. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants.

    PubMed

    Wei, Aiying; He, Chunmei; Li, Bei; Li, Ning; Zhang, Juren

    2011-02-01

    Stress resistance has repeatedly been enhanced in plants by the transfer of a single gene using genetic engineering. However, further enhancement of resistance to abiotic stress is still necessary. In our research, maize plants that were transgenic for both betA (encoding choline dehydrogenase from Escherichia coli) and TsVP (encoding V-H+ -PPase from Thellungiella halophila) were produced by cross-pollination. The existence of the transgenes in the pyramided plants was demonstrated by PCR and Southern blotting. The stable expression of transgenes was confirmed by real-time RT-PCR (reverse transcription polymerase chain reaction) analysis. An examination of the drought resistance characteristics demonstrated that the pyramided transgenic plants had higher glycinebetaine contents and H+ -PPase activity compared with the parental lines, which had either betA or TsVP, and contained higher relative water content (RWC), greater solute accumulation and lower cell damage under drought stress treatment. The pyramided plants grew more vigorously with less growth retardation, shorter anthesis-silking interval and higher yields than their parental lines and the wild-type. We concluded that co-expression of the two genes involved in different metabolism pathways in pyramided transgenic maize helped to improve the drought resistance over their parental lines that contained either single transgene. Our study suggests that the co-expression of multiple, effective genes in transgenic plants could effectively enhance the resistance to abiotic stress and provide a feasible approach for obtaining maize plants with improved drought resistance.

  9. A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea.

    PubMed

    Liu, Yongbo; Zhang, Ying-Xue; Song, Song-Quan; Li, Junsheng; Neal Stewart, C; Wei, Wei; Zhao, Yujie; Wang, Wei-Qing

    2015-01-01

    Transgene insertions might have unintended side effects on the transgenic host, both crop and hybrids with wild relatives that harbor transgenes. We employed proteomic approaches to assess protein abundance changes in seeds from Bt-transgenic oilseed rape (Brassica napus) and its hybrids with wild mustard (B. juncea). A total of 24, 15 and 34 protein spots matching to 23, 13 and 31 unique genes were identified that changed at least 1.5 fold (p < 0.05, Student's t-test) in abundance between transgenic (tBN) and non-transgenic (BN) oilseed rape, between hybrids of B. juncea (BJ) × tBN (BJtBN) and BJ × BN (BJBN) and between BJBN and BJ, respectively. Eight proteins had higher abundance in tBN than in BN. None of these proteins was toxic or nutritionally harmful to human health, which is not surprising since the seeds are not known to produce toxic proteins. Protein spots varying in abundance between BJtBN and BJBN seeds were the same or homologous to those in the respective parents. None of the differentially-accumulated proteins between BJtBN and BJBN were identical to those between tBN and BN. Results indicated that unintended effects resulted from transgene flow fell within the range of natural variability of hybridization and those found in the native host proteomes.

  10. Phenotypic features of first-generation transgenic goats for human granulocyte-colony stimulation factor production in milk.

    PubMed

    Batista, Ribrio I T P; Melo, Carlos H S; Souza-Fabjan, Joanna M G; Teixeira, Dárcio I A; Melo, Luciana M; Freitas, Vicente J F

    2014-11-01

    Human granulocyte-colony stimulating factor (hG-CSF) is a hematopoietic growth factor used in neutropenic patients. It is produced in transgenic bacteria or cultured mammalian cells. As an alternative, we now show that hG-CSF can be expressed in the mammary gland of first-generation (F1) transgenic goats during induced lactation. Despite lower milk production, transgenic females presented a similar milk composition (fat, protein and lactose) when compared to non-transgenic (p > 0.05) ones. The mean concentration (±SD) of recombinant hG-CSF in milk during lactation was 360 ± 178 µg ml(-1). All clinical parameters, as well as kidney and liver function, indicated that F1 transgenic goats were healthy. Additionally, no ectopic hG-CSF expression was detected in studied tissues of F1 transgenic males. Thus, F1 hG-CSF-transgenic goats can express the recombinant protein in milk at quantities compatible with their use as bioreactors in a commercial-scale protein-production program.

  11. [Transgenic tobacco plants with ribosome inactivating protein gene cassin from Cassia occidentalis and their resistance to tobacco mosaic virus].

    PubMed

    Ruan, Xiao-Lei; Liu, Li-Fang; Li, Hua-Ping

    2007-12-01

    Cassin, the new gene of ribosome-inactivating protein (RIP) isolated from Cassia occidentalis, was inserted into expression vector pBI121 to produce plant expression vector pBI121-cassin (Figs.1, 2). pBI121-cassin was introduced into tobacco cultivar 'K326' by the Agrobacteriurm tumefaciens transformation method and more than 100 independent transformants were obtained. Southern blot hybridization analysis showed that a single gene locus was inserted into the chromosome of the transgenic tobacco lines (Fig.5) and PCR analysis of segregation population of progeny indicated that the inheritance of transgene was dominant in transgenic lines (Fig.4, Table 1). Results of RT-PCR and Northern blot hybridization analysis showed that transgene could be transcribed correctly (Figs.5, 6) . Three self-pollination lines of transgenic T(1) and T(2) were challenged with TMV at different concentration titers by mechanical inoculation. The transgenic lines exhibited different levels of resistance to TMV with the nontransgenic plants. After both titers of TMV concentration were inoculated, transgenic lines were considered as the highly resistant type with a delay of 4-13 d in development of symptoms and 10%-25% of test plants were infected, while nontransgenic control plants were susceptible typical symptoms on the newly emerged leaves (Table 2). One T(2) line, T(2)-8-2-1, was regarded as an immune type because it did not show any symptoms during 70 d and all plants were shown to be virus free by ELISA tests.

  12. Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus.

    PubMed

    Li, Jingyi; Brunner, Amy M; Meilan, Richard; Strauss, Steven H

    2008-12-01

    Matrix attachment regions (MARs) are thought to buffer transgenes from the influence of surrounding chromosomal sequences, and therefore to reduce transgene silencing and variation in expression. The statistical properties of more than 400 independent transgenic events produced in Populus, with and without flanking MAR elements from the tobacco root gene RB7, were analysed. The expression of two reporter genes in two poplar clones during three phases of vegetative growth, and the association of T-DNA characteristics with expression, was examined. It was found that MARs did not show a consistent effect on transgene expression levels; they had no effect on the green fluorescent protein (GFP) reporter gene, but reduced expression in the Basta resistance (BAR) reporter gene by 23%. The presence of MARs reduced expression variability within transformant populations, apparently by reducing the number of silenced or weakly expressing events. Transgene expression was highly stable over vegetative growth cycles that spanned 3 years of growth in the glasshouse and field, but MARs showed no association with the strength of correlations in expression over the years. Nonetheless, MARs increased the correlation in expression between a p35S::GFP and prbcS::BAR transgene linked on the same vector, but the effect was small and varied between the years. The presence of MARs had no effect on the transgene copy number, but was positively associated with T-DNA truncations, as well as with the formation of direct over inverted repeats at the same chromosomal locus. PMID:19548343

  13. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.

    PubMed

    Halfhill, Matthew D; Sutherland, Jamie P; Moon, Hong Seok; Poppy, Guy M; Warwick, Suzanne I; Weissinger, Arthur K; Rufty, Thomas W; Raymer, Paul L; Stewart, C Neal

    2005-09-01

    Concerns exist that transgenic crop x weed hybrid populations will be more vigorous and competitive with crops compared with the parental weed species. Hydroponic, glasshouse, and field experiments were performed to evaluate the effects of introgression of Bacillus thuringiensis (Bt) cry1Ac and green fluorescent protein (GFP) transgenes on hybrid productivity and competitiveness in four experimental Brassica rapa x transgenic Brassica napus hybrid generations (F1, BC1F1, BC2F1 and BC2F2). The average vegetative growth and nitrogen (N) use efficiency of transgenic hybrid generations grown under high N hydroponic conditions were lower than that of the weed parent (Brassica rapa, AA, 2n = 20), but similar to the transgenic crop parent, oilseed rape (Brassica napus, AACC, 2n = 38). No generational differences were detected under low N conditions. In two noncompetitive glasshouse experiments, both transgenic and nontransgenic BC2F2 hybrids had on average less vegetative growth and seed production than B. rapa. In two high intraspecific competition field experiments with varied herbivore pressure, BC2F2 hybrids produced less vegetative dry weight than B. rapa. The competitive ability of transgenic and nontransgenic BC2F2 hybrids against a neighbouring crop species were quantified in competition experiments that assayed wheat (Triticum aestivum) yield reductions under agronomic field conditions. The hybrids were the least competitive with wheat compared with parental Brassica competitors, although differences between transgenic and nontransgenic hybrids varied with location. Hybridization, with or without transgene introgression, resulted in less productive and competitive populations.

  14. Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA.

    PubMed

    García-Vázquez, Francisco A; Ruiz, Salvador; Matás, Carmen; Izquierdo-Rico, M José; Grullón, Luis A; De Ondiz, Aitor; Vieira, Luis; Avilés-López, Karen; Gutiérrez-Adán, Alfonso; Gadea, Joaquín

    2010-08-01

    Sperm-mediated gene transfer (SMGT) is a method for the production of transgenic animals based on the intrinsic ability of sperm cells to bind and internalize exogenous DNA molecules and to transfer them into the oocyte at fertilization. Recombinase-A (RecA) protein-coated exogenous DNA has been used previously in pronuclear injection systems increasing integration into goat and pig genomes. However, there are no data regarding transgene expression after ICSI. Here, we set out to investigate whether the expression of transgenic DNA in porcine embryos is improved by recombinase-mediated DNA transfer and if it is possible to generate transgenic animals using this methodology. Different factors which could affect the performance of this transgenic methodology were analyzed by studying 1) the effect of the presence of exogenous DNA and RecA protein on boar sperm functionality; 2) the effect of recombinase RecA on in vitro enhanced green fluorescent protein (EGFP)-expressing embryos produced by ICSI or IVF; and 3) the efficiency of generation of transgenic piglets by RecA-mediated ICSI. Our results suggested that 1) the presence of exogenous DNA and RecA-DNA complexes at 5 microg/ml did not affect sperm functionality in terms of motility, viability, membrane lipid disorder, or reactive oxygen species generation; 2) EGFP-expressing embryos were obtained with a high efficiency using the SMGT-ICSI technique in combination with recombinase; however, the use of IVF system did not result in any fluorescent embryos; and 3) transgenic piglets were produced by this methodology. To our knowledge, this is the first time that transgenic pigs have been produced by ICSI-SGMT and a recombinase.

  15. A Primer for Using Transgenic Insecticidal Cotton in Developing Countries

    PubMed Central

    Showalter, Ann M.; Heuberger, Shannon; Tabashnik, Bruce E.; Carrière, Yves

    2009-01-01

    Many developing countries face the decision of whether to approve the testing and commercial use of insecticidal transgenic cotton and the task of developing adequate regulations for its use. In this review, we outline concepts and provide information to assist farmers, regulators and scientists in making decisions concerning this technology. We address seven critical topics: 1) molecular and breeding techniques used for the development of transgenic cotton cultivars, 2) properties of transgenic cotton cultivars and their efficacy against major insect pests, 3) agronomic performance of transgenic cotton in developing countries, 4) factors affecting transgene expression, 5) impact of gene flow between transgenic and non-transgenic cotton, 6) non-target effects of transgenic cotton, and 7) management of pest resistance to transgenic cotton. PMID:19613464

  16. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    PubMed Central

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  17. Efficient modification of floral traits by heavy-ion beam irradiation on transgenic Torenia.

    PubMed

    Ohtsubo, Norihiro; Sasaki, Katsutomo; Aida, Ryutaro; Ryuto, Hiromichi; Ichida, Hiroyuki; Hayashi, Yoriko; Abe, Tomoko

    2012-01-01

    While heavy-ion beam irradiation is becoming popular technology for mutation breeding in Japan, the combination with genetic manipulation makes it more convenient to create greater variation in plant phenotypes. We have succeeded in producing over 200 varieties of transgenic torenia (Torenia fournieri Lind.) from over 2,400 regenerated plants by this procedure in only 2 years. Mutant phenotypes were observed mainly in flowers and showed wide variation in colour and shape. Higher mutation rates in the transgenics compared to those in wild type indicate the synergistic effect of genetic manipulation and heavy-ion beam irradiation, which might be advantageous to create greater variation in floral traits. PMID:22351017

  18. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).

    PubMed

    Sun, Xin-E; Feng, Xin-Xin; Li, Cui; Zhang, Zhi-Ping; Wang, Liang-Ju

    2015-06-01

    5-Aminolevulinic acid (5-ALA) has been suggested for improving plant salt tolerance via exogenous application. In this study, we used a transgenic canola (Brassica napus), which contained a constituted gene YHem1 and biosynthesized more 5-ALA, to study salt stress responses. In a long-term pot experiment, the transgenic plants produced higher yield under 200 mmol L(-1) NaCl treatment than the wild type (WT). In a short-term experiment, the YHem1 transformation accelerated endogenous 5-ALA metabolism, leading to more chlorophyll accumulation, higher diurnal photosynthetic rates and upregulated expression of the gene encoding Rubisco small subunit. Furthermore, the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, were significantly higher in the transgenic plants than the WT, while the levels of O2 ·(-) and malondialdehyde were lower than the latter. Additionally, the Na(+) content was higher in the transgenic leaves than that in the WT under salinity, but K(+) and Cl(-) were significantly lower. The levels of N, P, Cu, and S in the transgenic plants were also significantly lower than those in the WT, but the Fe content was significantly improved. As the leaf Fe content was decreased by salinity, it was suggested that the stronger salt tolerance of the transgenic plants was related to the higher Fe acquisition. Lastly, YHem1 transformation improved the leaf proline content, but salinity decreased rather than increased it. The content of free amino acids and soluble sugars was similarly decreased as salinity increased, but it was higher in the transgenic plants than that in the WT.

  19. Restoration of spermatogenesis and male fertility using an androgen receptor transgene.

    PubMed

    Walker, William H; Easton, Evan; Moreci, Rebecca S; Toocheck, Corey; Anamthathmakula, Prashanth; Jeyasuria, Pancharatnam

    2015-01-01

    Androgens signal through the androgen receptor (AR) to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC) was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence. Insertion of an internal ribosome entry site and the EGFP gene 3' to AR allowed co-expression of AR and EGFP. Pronuclear injection of the BAC resulted in six founder mice that displayed EGFP production in appropriate AR expressing tissues. The six founder mice were mated into a Sertoli cell specific AR knockout (SCARKO) background in which spermatogenesis is blocked at the meiosis stage of germ cell development. The AR-EGFP transgene was expressed in a cyclical manner similar to that of endogenous AR in Sertoli cells and fertility was restored as offspring were produced in the absence of Sertoli cell AR. Thus, the AR-EGFP transgene under the control of AR regulatory elements is capable of rescuing AR function in a cell selective, AR-null background. These initial studies provide proof of principle that a strategy employing the AR-EGFP transgene can be used to understand AR functions. Transgenic mice expressing selective modifications of the AR-EGFP transgene may provide crucial information needed to elicit the molecular mechanisms by which AR acts in the testis and other androgen responsive tissues. PMID:25803277

  20. Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland.

    PubMed

    Baldassarre, Hernan; Hockley, Duncan K; Olaniyan, Benjamen; Brochu, Eric; Zhao, Xin; Mustafa, Arif; Bordignon, Vilceu

    2008-10-01

    The use of the mammary gland of transgenic goats as a bioreactor is a well established platform for the efficient production of recombinant proteins, especially for molecules that cannot be adequately produced in traditional systems using genetically engineered microorganisms and cells. However, the extraordinary demand placed on the secretory epithelium by the expression of large amounts of the recombinant protein, may result in a compromised mammary physiology. In this study, milk composition was compared between control and transgenic goats expressing high levels (1-5 g/l) of recombinant human butyrylcholinesterase in the milk. Casein concentration, as evaluated by acid precipitation, was significantly reduced in the transgenic compared with the control goats throughout lactation (P < 0.01). Milk fatty acid composition for transgenic goats, as determined by gas chromatography, was found to have significantly fewer short chain fatty acids (P < 0.01) and more saturated fatty acids (P < 0.05) compared to controls, suggesting an overall metabolic stress and/or decreased expression of key enzymes (e.g. fatty acid synthase, stearoyl-CoA desaturase). The concentration of Na(+), K(+), assessed by atomic absorption spectrophotometry, and serum albumin, determined by bromocresol green dye and scanning densitometry, were similar in transgenic and control goats during the first several weeks of lactation. However, as lactation progressed, a significant increase in Na and serum albumin concentrations and a decrease in K(+) concentration were found in the milk of transgenic goats, while control animals remained unchanged (P < 0.01). These findings suggest that: (a) high expression of recombinant proteins may be associated with a slow-down in other synthetic activities at the mammary epithelium, as evidenced by a reduced casein expression and a decreased de-novo synthesis of fatty acids; (b) the development of permeable tight junctions may be the main mechanism involved in the

  1. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning.

    PubMed

    Skrzyszowska, M; Smorag, Z; Słomski, R; Katska-Ksiazkiewicz, L; Kalak, R; Michalak, E; Wielgus, K; Lehmann, J; Lipiński, D; Szalata, M; Pławski, A; Samiec, M; Jura, J; Gajda, B; Ryńska, B; Pieńkowski, M

    2006-06-01

    A novel technique of chimeric somatic cell cloning was applied to produce a transgenic rabbit (NT20). Karyoplasts of transgenic adult skin fibroblasts with Tg(Wap-GH1) gene construct as a marker were microsurgically transferred into one, previously enucleated, blastomere of 2-cell non-transgenic embryos, while the second one remained intact. The reconstructed embryos either were cultured in vitro up to the blastocyst stage (Experiment I) or were transferred into recipient-females immediately after the cloning procedure (Experiment II). In Experiment I, 25/102 (24.5%) embryos formed blastocysts from whole embryos and 46/102 (44.12%) embryos developed to the blastocyst stage from single non-operated blastomeres, while the reconstructed blastomeres were damaged and degenerated. Thirteen (12.7%) embryos did not exceed 3- to 4-cell stages and 18 (17.7%) embryos were inhibited at the initial 2-cell stage. Out of 14 blastocysts which were subjected to molecular analysis, the transgene was detected in the cells of 4 blastocysts. In Experiment II, 163/217 (75.0%) embryos were transferred into 9 pseudopregnant recipient-rabbits (an average of 18 embryos per recipient). Four recipient-females (44.4%) became pregnant and delivered a total of 24 (14.7%) pups. Molecular analysis confirmed that two pups (1.2%), one live and one stillborn, showed a positive transgene signal. Live transgenic rabbit NT20 appeared healthy and anatomically as well as physiologically normal. The results of our experiments showed that transgenic adult skin fibroblast cell nuclei, which have been introduced into the cytoplasmic microenvironment of single enucleated blastomeres from 2-cell stage rabbit embryos, are able to direct the development of chimeric embryos not only to the blastocyst stage but also up to term.

  2. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).

    PubMed

    Sun, Xin-E; Feng, Xin-Xin; Li, Cui; Zhang, Zhi-Ping; Wang, Liang-Ju

    2015-06-01

    5-Aminolevulinic acid (5-ALA) has been suggested for improving plant salt tolerance via exogenous application. In this study, we used a transgenic canola (Brassica napus), which contained a constituted gene YHem1 and biosynthesized more 5-ALA, to study salt stress responses. In a long-term pot experiment, the transgenic plants produced higher yield under 200 mmol L(-1) NaCl treatment than the wild type (WT). In a short-term experiment, the YHem1 transformation accelerated endogenous 5-ALA metabolism, leading to more chlorophyll accumulation, higher diurnal photosynthetic rates and upregulated expression of the gene encoding Rubisco small subunit. Furthermore, the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, were significantly higher in the transgenic plants than the WT, while the levels of O2 ·(-) and malondialdehyde were lower than the latter. Additionally, the Na(+) content was higher in the transgenic leaves than that in the WT under salinity, but K(+) and Cl(-) were significantly lower. The levels of N, P, Cu, and S in the transgenic plants were also significantly lower than those in the WT, but the Fe content was significantly improved. As the leaf Fe content was decreased by salinity, it was suggested that the stronger salt tolerance of the transgenic plants was related to the higher Fe acquisition. Lastly, YHem1 transformation improved the leaf proline content, but salinity decreased rather than increased it. The content of free amino acids and soluble sugars was similarly decreased as salinity increased, but it was higher in the transgenic plants than that in the WT. PMID:25220348

  3. Production of transgenic Xenopus laevis by restriction enzyme mediated integration and nuclear transplantation.

    PubMed

    Amaya, Enrique; Kroll, Kristen

    2010-01-01

    Stable integration of cloned gene products into the Xenopus genome is necessary to control the time and place of expression, to express genes at later stages of embryonic development, and to define how enhancers and promoters regulate gene expression within the embryo. The protocol demonstrated here can be used to efficiently produce transgenic Xenopus laevis embryos. This transgenesis approach involves three parts: 1. Sperm nuclei are isolated from adult X. laevis testis by treatment with lysolecithin, which permeabilizes the sperm plasma membrane. 2. Egg extract is prepared by low speed centrifugation, addition of calcium to cause the extract to progress to interphase of the cell cycle, and a high-speed centrifugation to isolate interphase cytosol. 3. Nuclear transplantation: the nuclei and extract are combined with the linearized plasmid DNA to be introduced as the transgene and a small amount of restriction enzyme. During a short reaction, egg extract partially decondenses the sperm chromatin and the restriction enzyme generates chromosomal breaks that promote recombination of the transgene into the genome. The treated sperm nuclei are then transplanted into unfertilized eggs. Integration of the transgene usually occurs prior to the first embryonic cleavage such that the resulting embryos are not chimeric. These embryos can be analyzed without any need to breed to the next generation, allowing for efficient and rapid generation of transgenic embryos for analyses of promoter and gene function. Adult X. laevis resulting from this procedure also propagate the transgene through the germline and can be used to generate lines of transgenic animals for multiple purposes. PMID:20811326

  4. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla).

    PubMed

    Zeng, Fansuo; Qian, Jingjing; Luo, Wei; Zhan, Yaguang; Xin, Ying; Yang, Chuanping

    2010-01-01

    The stability of integration and expression level of transgenes in long-term micropropagation clones of transgenic birch (Betula platyphylla Suk.) was examined. Multiplexed PCR and reverse primer PCR demonstrated stable integration of transgenes into regenerated plants. Expression levels of the bgt and gus genes among shoot plantlets, subcultured 4, 7, 9 and 15 times, were significantly different. The transcriptional expression level of extraneous genes in regenerated plants decreased with increasing subculture number. Transcriptional gene silencing (TGS) occured in regenerated transgenic lines. The silencing rate of GUS in the 5th subculture plants was 22-65%. TGS in regenerated plants could be reactivated with 5-azacytidine (Azac) at 50-200 microM. GUS and BGT protein expression was reactivated in the micropropagated transgenic birch plants when treated with Azac. A decrease in expression level with increasing number of subcultures is thus associated with DNA methylation.

  5. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  6. Induction of a protective antibody response to FMDV in mice following oral immunization with transgenic Stylosanthes spp. as a feedstuff additive.

    PubMed

    Wang, Dong Mei; Zhu, Jian Bo; Peng, Ming; Zhou, Peng

    2008-12-01

    The expression of antigens in transgenic plants has increasingly been used as an alternative to the classical methodologies for the development of experimental vaccines, and it remains one of the real challenges in this field to use transgenic plant-based vaccines effectively as feedstuff additives. We report herein the development of a new oral immunization system for foot and mouth disease with the structural protein VP1 of the foot and mouth disease virus (FMDV) produced in transgenic Stylosanthes guianensis cv. Reyan II. The transgenic plantlets were identified by polymerase chain reaction (PCR), Southern blotting, and northern blotting; and the production of VP1 protein in transgenic plants was confirmed and quantified by western blotting and enzyme-linked immunosorbent assays (ELISA). Six transformed lines were obtained, and the level of the expressed protein was 0.1-0.5% total soluble protein (TSP). Mice that were orally immunized using studded feedstuff mixed with desiccated powder of the transgenic plants developed a virus-specific immune response to the structural VP1 and intact FMDV particles. To our knowledge, this is the first report of transgenic plants expressing the antigen protein of FMDV as feedstuff additives that has demonstrated the induction of a protective systemic antibody response in animals. These results support the feasibility of producing edible vaccines from transgenic forage plants, and provide proof of the possibility of using plant-based vaccines as feedstuff additives. PMID:18651235

  7. A foreign dihydrofolate reductase gene in transgenic mice acts as a dominant mutation.

    PubMed Central

    Gordon, J W

    1986-01-01

    We have produced 17 lines of transgenic mice by microinjecting a full-length cDNA clone of an altered dihydrofolate reductase (dhfr) gene. The protein specified by this gene carries a point mutation which triples its Km for dihydrofolate and reduces substrate turnover 20-fold relative to the wild-type enzyme. Transgenic mice from different pedigrees, several of which carry a single copy of this gene in different integration sites, manifest an array of similar developmental abnormalities including growth stunting, reduced fertility, pigmentation changes, and skeletal defects. These defects appear in animals heterozygous for the foreign gene. RNA analyses demonstrate significant expression of the cDNA in newborn mice and adult tissues. These findings show that the additional dhfr gene exerts its mutational effects in a dominant fashion, and therefore the data indicate that transgenic mice can serve as models for elucidating mechanisms of dominant mutagenesis. Images PMID:3785192

  8. Transgenic chimera quail production by microinjecting lentiviral vector into the blood vessel of the early embryo.

    PubMed

    Sun, Peng; Zhang, Zifu; Wu, Guojin; Yan, Li; Yuan, Fang; Zhang, Wenxin; Gao, Junshuang; Jin, Wenjing; Li, Zandong

    2012-04-01

    In the past, several strategies have been used to generate transgenic birds. The most successful method has proven to be injection of lentiviral vector into the subgerminal cavity of the newly laid egg. In this study, we directly injected lentiviral vector into the blood vessel of HH13-15 quail embryos to produce transgenic chimeras. In the manipulated, hatched birds, the green fluorescent protein (GFP) gene driven by a cytomegalovirus (CMV) promoter was extensively expressed. All tissues analyzed were GFP-positive, and gonad cells from some of the manipulated embryos expressed GFP. The semen genome of 21.4% of mature male birds was determined to be GFP-positive by PCR, indicating these male birds were transgenic chimeras.

  9. [Transgenic cattle constitute a breakthrough in production of innovative medicine. From milk to medicine].

    PubMed

    Salaheddine, M; Thole, E; Brink, M

    2002-04-01

    The continuously increasing demand for biomolecules, e.g. human proteins, for applications in human health care, is one of the main driving forces for the development of safe, large-scale production systems. One very promising approach is the production of biomolecules in the milk of transgenic cattle. By using nuclear transfer technology, transgenic cattle can be generated in a very safe and efficient manner, thereby offering a significant time reduction when compared to conventional breeding methods. As a result, that the transgenic cattle platform offers an efficient, safe and cost-effective method for producing large amounts of biopharmaceuticals, which is essential to the development of innovative health care products. PMID:11962124

  10. Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system.

    PubMed

    Hirai, Tadayoshi; Fukukawa, Go; Kakuta, Hideo; Fukuda, Naoya; Ezura, Hiroshi

    2010-05-26

    We constructed a cultivation system with a controlled light period, light intensity, temperature, and CO(2) concentration for mass production of the taste-modifying protein miraculin from transgenic tomatoes. The tomato plants exhibited normal growth and produced over 270 g of fresh weight (FW) fruit per plant, with the recombinant miraculin concentration reaching up to 90 microg per g FW of tomatoes. The recombinant miraculin content of transgenic tomatoes was compared to that of plants grown in a netted greenhouse. The recombinant miraculin content of transgenic tomatoes grown in a closed cultivation system was more stable than that of tomatoes grown in a netted greenhouse, suggesting that the closed cultivation system is suitable for the production of recombinant miraculin. We estimate that 45 tFW of tomatoes and 4 kg of recombinant miraculin per 1,000 m(2) of cultivation area can be harvested per year. PMID:20426470

  11. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  12. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality.

    PubMed

    Bhattacharya, Amita; Saini, Uksha; Joshi, Robin; Kaur, Devinder; Pal, Awadhesh Kumar; Kumar, Nitish; Gulati, Ashu; Mohanpuria, Prashant; Yadav, Sudesh Kumar; Kumar, Sanjay; Ahuja, Paramvir Singh

    2014-04-01

    Drought is a major stress that affects the yield and quality of tea, a widely consumed beverage crop grown in more than 20 countries of the world. Therefore, osmotin gene-expressing transgenic tea plants produced using earlier optimized conditions were evaluated for their tolerance of drought stress and their quality. Improved tolerance of polyethylene glycol-induced water stress and faster recovery from stress were evident in transgenic lines compared with the normal phenotype. Significant improvements in growth under in-vitro conditions were also observed. Besides enhanced reactive oxygen species-scavenging enzyme activity, the transgenic lines contained significantly higher levels of flavan-3-ols and caffeine, key compounds that govern quality and commercial yield of the beverage. The selected transgenic lines have the potential to meet the demands of the tea industry for stress-tolerant plants with higher yield and quality. These traits of the transgenic lines can be effectively maintained for generations because tea is commercially cultivated through vegetative propagation only.

  13. Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration.

    PubMed

    Cervera, Magdalena; Navarro, Antonio; Navarro, Luis; Peña, Leandro

    2008-01-01

    Genetic transformation of mature trees is difficult because adult tissues are recalcitrant to Agrobacterium tumefaciens infection and transformation and because transgenic mature events are less competent for regeneration. We have shown that reinvigoration allows manipulation of the vegetative phase to increase the potential for transformation and regeneration without loss of competence for flowering and fruiting. To produce transgenic plants from clementine mandarin (Citrus clementina hort. ex Tanaka), we optimized the conditions of the source material both ex vitro and in vitro. Grafting of mature buds on juvenile rootstocks in the spring and preventing multiple bud sprouting by removing all but one bud permitted selection of vigorous first flushes for in vitro culture. Use of additional virulence genes from A. tumefaciens to increase transformation frequency and optimization of culture media and conditions to enhance explant cell competence for T-DNA integration and organogenesis resulted in efficient and reliable transgenic plant production. Transformed regenerants from explants, cultured in media without antibiotics, were identified by a screenable marker (either beta-glucuronidase or green fluorescent protein (GFP)), creating the possibility of generating transgenic clementine plants without antibiotic resistance marker genes. Stable integration of foreign genes was demonstrated by Southern blot analysis, and expression of these foreign genes was confirmed by detection of GFP fluorescence in leaves, floral organs and fruits of the transgenic plants.

  14. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    PubMed

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity. PMID:27437143

  15. Efficient Production of Fluorescent Transgenic Rats using the piggyBac Transposon

    PubMed Central

    Li, Tianda; Shuai, Ling; Mao, Junjie; Wang, Xuepeng; Wang, Mei; Zhang, Xinxin; Wang, Leyun; Li, Yanni; Li, Wei; Zhou, Qi

    2016-01-01

    Rats with fluorescent markers are of great value for studies that trace lineage-specific development, particularly those assessing the differentiation potential of embryonic stem cells (ESCs). The piggyBac (PB) transposon is widely used for the efficient introduction of genetic modifications into genomes, and has already been successfully used to produce transgenic mice and rats. Here, we generated transgenic rats carrying either the desRed fluorescent protein (RFP) gene or the enhanced green fluorescent protein (eGFP) gene by injecting pronuclei with PB plasmids. We showed that the transgenic rats expressed the RFP or eGFP gene in many organs and had the capability to transmit the marker gene to the next generation through germline integration. In addition, rat embryonic stem cells (ESCs) carrying an RFP reporter gene can be derived from the blastocysts of the transgenic rats. Moreover, the RFP gene can be detected in chimeras derived from RFP ESCs via blastocyst injection. This work suggests that PB-mediated transgenesis is a powerful tool to generate transgenic rats expressing fluorescent proteins with high efficiency, and this technique can be used to derive rat ESCs expressing a reporter protein. PMID:27624004

  16. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    PubMed

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  17. Synthesis and secretion of the mouse whey acidic protein in transgenic sheep.

    PubMed

    Wall, R J; Rexroad, C E; Powell, A; Shamay, A; McKnight, R; Hennighausen, L

    1996-01-01

    The synthesis of foreign proteins can be targeted to the mammary gland of transgenic animals, thus permitting commercial purification of otherwise unavailable proteins from milk. Genetic regulatory elements from the mouse whey acidic protein (WAP) gene have been used successfully to direct expression of transgenes to the mammary gland of mice, goats and pigs. To extend the practical usefulness of WAP promoter-driven fusion genes and further characterize WAP expression in heterologous species, we introduced a 6.8 kb DNA fragment containing the genomic form of the mouse WAP gene into sheep zygotes. Two lines of transgenic sheep were produced. The transgene was expressed in mammary tissue of both lines and intact WAP was secreted into milk at concentrations estimated to range from 100 to 500 mg/litre. Ectopic WAP gene expression was found in salivary gland, spleen, liver, lung, heart muscle, kidney and bone marrow of one founder ewe. WAP RNA was not detected in skeletal muscle and intestine. These data suggest that unlike pigs, sheep may possess nuclear factors in a variety of tissues that interact with WAP regulatory sequences. Though the data presented are based on only two lines, these findings suggest WAP regulatory sequences may not be suitable as control elements for transgenes in sheep bioreactors. PMID:8589741

  18. Expression of the whey acidic protein in transgenic pigs impairs mammary development.

    PubMed

    Shamay, A; Pursel, V G; Wilkinson, E; Wall, R J; Hennighausen, L

    1992-05-01

    The whey acidic protein has been found in milk of mice, rats, rabbits and camels, and its gene is expressed specifically in mammary tissue at late pregnancy and throughout lactation. A characteristic of whey acidic protein is the 'four-disulfide-core' signature which is also present in proteins involved in organ development. We have generated six lines of transgenic pigs which carry a mouse whey acidic protein transgene and express it at high levels in their mammary glands. Transgenic sows from three lines could not produce sufficient quantities of milk to support normal development of healthy offspring. This phenotype appears to be similar, if not identical, to the milchlos phenotype exhibited by mice expressing whey acidic protein transgenes. Mammary tissue from post-partum milchlos sows had an immature histological appearance, which was distinct from that observed during normal development or involution. Expression of the whey acidic protein transgene was found in mammary tissue from sexually immature pigs from milchlos lines, but not in sows from lines that appeared to lactate normally. We suggest that precocious synthesis of whey acidic protein impairs mammary development and function. Impaired mammary development due to inappropriate timing of whey acidic protein expression is consistent with the notion that proteins with the 'four-disulfide-core' signature participate in tissue formation. PMID:1284481

  19. Efficient Production of Fluorescent Transgenic Rats using the piggyBac Transposon.

    PubMed

    Li, Tianda; Shuai, Ling; Mao, Junjie; Wang, Xuepeng; Wang, Mei; Zhang, Xinxin; Wang, Leyun; Li, Yanni; Li, Wei; Zhou, Qi

    2016-01-01

    Rats with fluorescent markers are of great value for studies that trace lineage-specific development, particularly those assessing the differentiation potential of embryonic stem cells (ESCs). The piggyBac (PB) transposon is widely used for the efficient introduction of genetic modifications into genomes, and has already been successfully used to produce transgenic mice and rats. Here, we generated transgenic rats carrying either the desRed fluorescent protein (RFP) gene or the enhanced green fluorescent protein (eGFP) gene by injecting pronuclei with PB plasmids. We showed that the transgenic rats expressed the RFP or eGFP gene in many organs and had the capability to transmit the marker gene to the next generation through germline integration. In addition, rat embryonic stem cells (ESCs) carrying an RFP reporter gene can be derived from the blastocysts of the transgenic rats. Moreover, the RFP gene can be detected in chimeras derived from RFP ESCs via blastocyst injection. This work suggests that PB-mediated transgenesis is a powerful tool to generate transgenic rats expressing fluorescent proteins with high efficiency, and this technique can be used to derive rat ESCs expressing a reporter protein. PMID:27624004

  20. Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase.

    PubMed Central

    Ohashi, Y; Kawashima, S; Hirata, K i; Yamashita, T; Ishida, T; Inoue, N; Sakoda, T; Kurihara, H; Yazaki, Y; Yokoyama, M

    1998-01-01

    Nitric oxide (NO), constitutively produced by endothelial nitric oxide synthase (eNOS), plays a major role in the regulation of blood pressure and vascular tone. We generated transgenic mice overexpressing bovine eNOS in the vascular wall using murine preproendothelin-1 promoter. In transgenic lineages with three to eight transgene copies, bovine eNOS-specific mRNA, protein expression in the particulate fractions, and calcium-dependent NOS activity were confirmed by RNase protection assay, immunoblotting, and L-arginine/citrulline conversion. Immunohistochemical studies revealed that eNOS protein was predominantly localized in the endothelial cells of aorta, heart, and lung. Blood pressure was significantly lower in eNOS-overexpressing mice than in control littermates. In the transgenic aorta, basal NO release (estimated by Nomega-nitro-L-arginine-induced facilitation of the contraction by prostaglandin F2alpha) and basal cGMP levels (measured by enzyme immunoassay) were significantly increased. In contrast, relaxations of transgenic aorta in response to acetylcholine and sodium nitroprusside were significantly attenuated, and the reduced vascular reactivity was associated with reduced response of cGMP elevation to these agents as compared with control aortas. Thus, our novel mouse model of chronic eNOS overexpression demonstrates that, in addition to the essential role of eNOS in blood pressure regulation, tonic NO release by eNOS in the endothelium induces the reduced vascular reactivity to NO-mediated vasodilators, providing several insights into the pathogenesis of nitrate tolerance. PMID:9854041

  1. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions

    PubMed Central

    Lebedev, V. G.; Faskhiev, V. N.; Kovalenko, N. P.; Shestibratov, K. A.; Miroshnikov, A. I.

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014–2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity. PMID:27437143

  2. Transgenic inhibitors identify two roles for protein kinase A in Drosophila development.

    PubMed Central

    Kiger, J A; Eklund, J L; Younger, S H; O'Kane, C J

    1999-01-01

    We have initiated an analysis of protein kinase A (PKA) in Drosophila using transgenic techniques to modulate PKA activity in specific tissues during development. We have constructed GAL4/UAS-regulated transgenes in active and mutant forms that encode PKAc, the catalytic subunit of PKA, and PKI(1-31), a competitive inhibitor of PKAc. We present evidence that the wild-type transgenes are active and summarize the phenotypes produced by a number of GAL4 enhancer-detector strains. We compare the effects of transgenes encoding PKI(1-31) with those encoding PKAr*, a mutant regulatory subunit that constitutively inhibits PKAc because of its inability to bind cyclic AMP. Both inhibitors block larval growth, but only PKAr* alters pattern formation by activating the Hedgehog signaling pathway. Therefore, transgenic PKI(1-31) should provide a tool to investigate the role of PKAc in larval growth regulation without concomitant changes in pattern formation. The different effects of PKI(1-31) and PKAr* suggest two distinct roles, cytoplasmic and nuclear, for PKAc in Hedgehog signal transduction. Alternatively, PKAr* may target proteins other than PKAc, suggesting a role for free PKAr in signal transduction, a role inhibited by PKAc in reversal of the classical relationship of these subunits. PMID:10224260

  3. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair.

  4. Subchronic toxicity study of GH transgenic carp.

    PubMed

    Yong, Ling; Liu, Yu-Mei; Jia, Xu-Dong; Li, Ning; Zhang, Wen-Zhong

    2012-11-01

    A subchronic toxicity study of GH (growth hormone) transgenic carp was carried out with 60 SD rats aged 4 weeks, weight 115∼125 g. Ten male and 10 female rats were allotted into each group. Animals of the three groups (transgenic carp group (GH-TC), parental carp group (PC) and control group) were fed soy- and alfalfa-free diet (SAFD) with 10% GH transgenic carp powder, 10% parental carp powder or 10% common carp powder for 90 consecutive days, respectively. In the end of study, animals were killed by exsanguination via the carotid artery under diethyl ether anesthesia, then weights of heart, liver, kidneys, spleen, thymus, brain, ovaries and uterus/testis were measured. Pathological examination of organs was determined. Endocrine hormones of triiodothyronine (T3), thyroid hormone (T4), follicle-stimulating hormone (FSH), 17β-estradiol (E2), progesterone (P) and testosterone (T) levels were detected by specific ELISA kit. Parameters of blood routine and blood biochemical were measured. The weights of the body and organs of the rats, food intake, blood routine, blood biochemical test and serum hormones showed no significant differences among the GH transgenic carp-treated, parental carp-treated and control groups (P>0.05). Thus, it was concluded that at the dose level of this study, GH transgenic carp showed no subchronic toxicity and endocrine disruption to SD rats.

  5. Manipulation of glutathione metabolism in transgenic plants.

    PubMed

    Creissen, G; Broadbent, P; Stevens, R; Wellburn, A R; Mullineaux, P

    1996-05-01

    There is clear potential for the genetic manipulation of key enzymes involved in stress metabolism in transgenic plants. However, the data emerging so far from such experiments are equivocal. The detailed analysis of stress responses in progeny of primary transgenics, coupled with comparisons with control transgenic plants that do not contain the GR transgene, allows us to take into account the possible variation in response to stress associated with regeneration of plants from tissue culture. The picture that is now beginning to emerge with respect to the role of GR in stress protection is that, although there are clearly benefits to be had from overexpression of the enzymes, there is no direct correlation between enzyme levels and stress tolerance. It may be that overexpression of the cytosolic isoform (gor2) will prove to be of greater benefit. Furthermore, the types of stresses to which transgenic plants have been exposed in order to assess the consequences of oxidative stress tolerance cannot reproduce those that will experienced in field conditions. Only when plants with higher GR levels and increased glutathione synthesis capacity are grown in field trials will it be possible to make a full assessment of the benefits of engineering plants with altered glutathione metabolism. PMID:8736785

  6. The transgenic animal platform for biopharmaceutical production.

    PubMed

    Bertolini, L R; Meade, H; Lazzarotto, C R; Martins, L T; Tavares, K C; Bertolini, M; Murray, J D

    2016-06-01

    The recombinant production of therapeutic proteins for human diseases is currently the largest source of innovation in the pharmaceutical industry. The market growth has been the driving force on efforts for the development of new therapeutic proteins, in which transgenesis emerges as key component. The use of the transgenic animal platform offers attractive possibilities, residing on the low production costs allied to high productivity and quality of the recombinant proteins. Although many strategies have evolved over the past decades for the generation of transgenic founders, transgenesis in livestock animals generally faces some challenges, mainly due to random transgene integration and control over transgene copy number. But new developments in gene editing with CRISPR/Cas system promises to revolutionize the field for its simplicity and high efficiency. In addition, for the final approval of any given recombinant protein for animal or human use, the production and characterization of bioreactor founders and expression patterns and functionality of the proteins are technical part of the process, which also requires regulatory and administrative decisions, with a large emphasis on biosafety. The approval of two mammary gland-derived recombinant proteins for commercial and clinical use has boosted the interest for more efficient, safer and economic ways to generate transgenic founders to meet the increasing demand for biomedical proteins worldwide. PMID:26820414

  7. Compositional analysis of dairy products derived from clones and cloned transgenic cattle.

    PubMed

    Laible, Götz; Brophy, Brigid; Knighton, Derek; Wells, David N

    2007-01-01

    Cloning technology is an emerging biotechnological tool that could provide commercial opportunities for livestock agriculture. However, the process is very inefficient and the molecular events underlying the technology are poorly understood. The resulting uncertainties are causing concerns regarding the safety of food products derived from cloned livestock. There are similar concerns for livestock produced by biotechnologies which enable the purposeful introduction of genetic modifications. To increase the knowledge about food products from animals generated by these modern biotechnologies, we assessed compositional differences associated with milk and cheese derived from cloned and transgenic cows. Based on gross composition, fatty acid and amino acid profiles and mineral and vitamin contents, milk produced by clones and conventional cattle were essentially similar and consistent with reference values from dairy cows farmed in the same region under similar conditions. Whereas colostrum produced by transgenic cows with additional casein genes had similar IgG secretion levels and kinetics to control cows, milk from the transgenic cows had a distinct yellow appearance, in contrast to the white color of milk from control cows. Processing of milk into cheese resulted in differences in the gross composition and amino acid profiles; 'transgenic' cheese had lower fat and higher salt contents and small but characteristic differences in the amino acid profile compared to control cheese.

  8. Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation.

    PubMed

    Andrade, Gisele M; Nairn, Campbell J; Le, Huong T; Merkle, Scott A

    2009-09-01

    The availability of a system for direct transfer of anti-fungal candidate genes into American chestnut (Castanea dentata), devastated by a fungal blight in the last century, would offer an alternative or supplemental approach to conventional breeding for production of chestnut trees resistant to the blight fungus and other pathogens. By taking advantage of the strong ability of embryogenic American chestnut cultures to proliferate in suspension, a high-throughput Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into the tree was established. Proembryogenic masses (PEMs) were co-cultivated with A. tumefaciens strain AGL1 harboring the plasmid pCAMBIA 2301, followed by stringent selection with 50 or 100 mg/l Geneticin. A protocol employing size-fractionation to enrich for small PEMs to use as target material and selection in suspension culture was applied to rapidly produce transgenic events with an average efficiency of four independent transformation events per 50 mg of target tissue and minimal escapes. Mature somatic embryos, representing 18 transgenic events and derived from multiple American chestnut target genotypes, were germinated and over 100 transgenic somatic seedlings were produced and acclimatized to greenhouse conditions. Multiple vigorous transgenic somatic seedlings produced functional staminate flowers within 3 years following regeneration.

  9. Generation and phenotypic analysis of a transgenic line of rabbits secreting active recombinant human erythropoietin in the milk.

    PubMed

    Mikus, Tomás; Poplstein, Martin; Sedláková, Jirina; Landa, Vladimír; Jeníkova, Gabriela; Trefil, Pavel; Lidický, Jan; Malý, Petr

    2004-10-01

    Production of recombinant human erythropoietin (rhEPO) for therapeutic purposes relies on its expression in selected clones of transfected mammalian cells. Alternatively, this glycoprotein can be produced by targeted secretion into the body fluid of transgenic mammals. Here, we report on the generation of a transgenic rabbits producing rhEPO in the lactating mammary gland. Transgenic individuals are viable, fertile and transmit the rhEPO gene to the offspring. Northern blot data indicated that the expression of the transgene in the mammary gland is controlled by whey acidic protien (WAP) regulatory sequences during the period of lactation. While the hybridization with total RNA revealed the expression only in the lactating mammary gland, the highly sensitive combinatory approach using RT-PCR/hybridization technique detected a minor ectopic expression. The level of rhEPO secretion in the founder female, measured in the period of lactation, varied in the range of 60-178 and 60-162 mIU/ml in the milk and blood plasma, respectively. Biological activity of the milk rhEPO was confirmed by a standard [3H]-thymidine incorporation test. Thus, we describe the model of a rhEPO-transgenic rabbit, valuable for studies of rhEPO glycosylation and function, which can be useful for the development of transgenic approaches designed for the preparation of recombinant proteins by alternative biopharmaceutical production.

  10. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    PubMed

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail. PMID:26614293

  11. [Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1].

    PubMed

    Zakharchenko, N S; Rukavtsova, E B; Gudkov, A T; Bur'ianov, Ia I

    2005-11-01

    Plasmids with a synthetic gene of the mammalian antimicrobial peptide cecropin P1 (cecP1) controlled by the constitutive promoter 35S RNA of cauliflower mosaic virus were constructed. Agrobacterial transformation of tobacco plants was conducted using the obtained recombinant binary vector. The presence of gene cecP1 in the plant genome was confirmed by PCR. The expression of gene cecP1 in transgenic plants was shown by Northern blot analysis. The obtained transgenic plants exhibit enhanced resistance to phytopathogenic bacteria Pseudomonas syringae, P. marginata, and Erwinia carotovora. The ability of transgenic plants to express cecropin P1 was transmitted to the progeny. F1 and F2 plants had the normal phenotype (except for a changed coloration of flowers) and retained the ability to produce normal viable seeds upon self-pollination. Lines of F1 plants with Mendelian segregation of transgenic traits were selected.

  12. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment.

    PubMed

    Gao, Caixia; Long, Danfeng; Lenk, Ingo; Nielsen, Klaus Kristian

    2008-10-01

    Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.

  13. Toxins for transgenic resistance to hemipteran pests.

    PubMed

    Chougule, Nanasaheb P; Bonning, Bryony C

    2012-06-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  14. Toxins for Transgenic Resistance to Hemipteran Pests

    PubMed Central

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  15. Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa).

    PubMed

    Vacher, Corinne; Weis, Arthur E; Hermann, Donald; Kossler, Tanya; Young, Chad; Hochberg, Michael E

    2004-08-01

    The inevitable escape of transgenic pollen from cultivated fields will lead to the emergence of transgenic crop-wild plant hybrids in natural patches of wild plants. The fate of these hybrids and that of the transgene depend on their ability to compete with their wild relatives. Here we study ecological factors that may enhance the fitness of genetically modified hybrids relative to wild plants for a Bacillus thuringiensis ( Bt) transgene conferring resistance to insects. Mixed stands of wild plants and first-generation hybrids were grown under different conditions of herbivore pressure and density, with Bt oilseed rape ( Brassica napus) as the crop and B. rapa as the wild recipient. Biomass and fitness components were measured from plant germination to the germination of their offspring. The frequency of transgenic seedlings in the offspring generation was estimated using the green fluorescent protein marker. The biomass of F(1) Bt-transgenic hybrids relative to that of wild-type plants was found to be sensitive to both plant density and herbivore pressure, but herbivore pressure appeared as the major factor enhancing their relative fitnesses. In the absence of herbivore pressure, Bt hybrids produced 6.2-fold fewer seeds than their wild neighbors, and Bt plant frequency fell from 50% to 16% within a single generation. Under high herbivore pressure, Bt hybrids produced 1.4-fold more seeds, and Bt plant frequency was 42% in the offspring generation. We conclude that high-density patches of highly damaged wild plants are the most vulnerable to Bt-transgene invasion. They should be monitored early to detect potential transgene spread.

  16. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection.

    PubMed

    Jia, Hongge; Orbovic, Vladimir; Jones, Jeffrey B; Wang, Nian

    2016-05-01

    Citrus canker caused by Xanthomonas citri subspecies citri (Xcc) is a severe disease for most commercial citrus cultivars and responsible for significant economic losses worldwide. Generating canker-resistant citrus varieties will provide an efficient and sustainable solution to control citrus canker. Here, we report our progress in generating canker-resistant grapefruit by modifying the PthA4 effector binding elements (EBEs) in the CsLOB1 Promoter (EBEPthA4 -CsLOBP) of the CsLOB1 (Citrus sinensis Lateral Organ Boundaries) gene. CsLOB1 is a susceptibility gene for citrus canker and is induced by the pathogenicity factor PthA4, which binds to the EBEPthA4 -CsLOBP to induce CsLOB1 gene expression. There are two alleles, Type I and Type II, of CsLOB1 in Duncan grapefruit. Here, a binary vector was designed to disrupt the PthA4 EBEs in Type I CsLOB1 Promoter (TI CsLOBP) via epicotyl transformation of Duncan grapefruit. Four transgenic Duncan plants with targeted modification of EBEPthA4 -T1 CsLOBP were successfully created. As for Type I CsLOB1 promoter, the mutation rate was 15.63% (#D13), 14.29% (#D17), 54.54% (#D18) and 81.25% (#D22). In the presence of wild-type Xcc, transgenic Duncan grapefruit developed canker symptoms similarly as wild type. An artificially designed dTALE dCsLOB1.3, which specifically recognizes Type I CsLOBP, but not the mutated Type I CsLOBP or Type II CsLOBP, was developed to infect Duncan transformants. Consequently, #D18 had weakened canker symptoms and #D22 had no visible canker symptoms in the presence of XccΔpthA4:dCsLOB1.3. Our data suggest that activation of a single allele of susceptibility gene CsLOB1 by PthA4 is sufficient to induce citrus canker disease, and mutation in the promoters of both alleles of CsLOB1 is probably required to generate citrus canker-resistant plants. This work lays the groundwork to generate canker-resistant citrus varieties via Cas9/sgRNA in the future. PMID:27071672

  17. Lysozyme transgenic goats' milk influences gastrointestinal morphology in young pigs.

    PubMed

    Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D

    2008-05-01

    Transgenesis provides a method of expressing novel proteins in milk to increase the functional benefits of milk consumption. Transgenic goats expressing human lysozyme (hLZ) at 67% of the concentration in human breast milk were produced, thereby enhancing the antimicrobial properties of goats' milk. The objective of this study was to investigate the impact of pasteurized milk containing hLZ on growth, the intestinal epithelium, and an enteropathogenic Escherichia coli (EPEC) infection in young weaned pigs. Pigs were placed into 4 groups and fed a diet of solid food and either control (nontransgenic) goats' milk or milk from hLZ-transgenic goats. Growth was assessed by weight gain. Nonchallenged pigs were necropsied after 6 wk, whereas the remaining pigs were necropsied at 7 wk following bacterial challenge. We determined the numbers of total coliforms and E. coli and examined small intestinal histology for all pigs. Complete blood counts were also determined pre- and postchallenge. Challenged pigs receiving hLZ milk had fewer total coliforms (P = 0.029) and E. coli (P = 0.030) in the ileum than controls. hLZ-fed pigs also had a greater duodenal villi width (P = 0.029) than controls. Additionally, nonchallenged hLZ-fed pigs had fewer intraepithelial lymphocytes per micron of villi height (P = 0.020) than nonchallenged controls. These results indicate that the consumption of pasteurized hLZ goats' milk has the potential to improve gastrointestinal health and is protective against an EPEC in young weaned pigs. These same benefits may occur in young children if they were to consume milk from hLZ-transgenic goats.

  18. Impact of transgenic technologies on functional genomics.

    PubMed

    Shashikant, Cooduvalli S; Ruddle, Frank H

    2003-07-01

    Gene transfer technologies in mammals are the focus of renewed interest owing to the recent emphasis on analyzing gene function in the postgenomic era. Three important developments in this area include transgenics, gene targeting and nuclear transfer or animal cloning. These technological innovations have enhanced our ability to analyze gene function at the level of the whole organism and have provided the means to modify gene expression. This review discusses the origins and current status of transgenic technologies. Various applications and technologies including chromosome engineering, stem cells, gene traps and modification of livestock are presented. The impact of mouse technologies and genomics on functional analyses is also discussed.

  19. Lectin cDNA and transgenic plants derived therefrom

    SciTech Connect

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  20. Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes.

    PubMed

    Li, Guiying; Xu, Xinping; Xing, Hengtai; Zhu, Huachen; Fan, Qin

    2005-04-01

    Molecular genetic analysis and insect bioassay of transgenic indica rice 'Zhuxian B' plants carrying snowdrop lectin gene (gna) and soybean trypsin inhibitor gene (sbti) were investigated in detail. PCR, 'dot' blot and PCR-Southern blot analysis showed that both transgenes had been incorporated into the rice genome and transmitted up to R3 progeny in most lines tested. Some transgenic lines exhibited Mendelian segregation, but the other showed either 1:1 (positive: negative for the transgenes) or other aberrant segregation patterns. The segregation patterns of gna gene crossed between R2 and R3 progeny. In half of transgenic R3 lines, gna and sbti transgenes co-segregated. Two independent homozygous lines expressing double transgenes were identified in R3 progeny. Southern blot analysis demonstrated that the copy numbers of integrated gna and sbti transgenes varied from one to ten in different lines. Insect bioassay data showed that most transgenic plants had better resistance to both Nilaparvata lugens (Stahl) and Cnaphalocrocis medinalis (Guenee) than wild-type plants. The insect resistance of transgenic lines increased with the increase in transgene positive ratio in most of the transgenic lines. In all, we obtained nine lines of R3 transgenic plants, including one pure line, which had better resistance to both N lugens and C medinalis than wild-type plants.

  1. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-09-22

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals.

  2. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-01-01

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals. PMID:26400340

  3. Benefits of transgenic insect resistance in Brassica hybrids under selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials of transgenic crops have occasionally resulted in unintentional transgene flow to closely related species. Hybridization between transgenic cultivars and close relatives may create novel forms with potential negative outcomes for wild and weedy plant populations. We report here the outc...

  4. Maize transgenes containing zein promoters are regulated by opaque2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenes have great potential in crop improvement, but relatively little is known about the epistatic interaction of transgenes with the native genes in the genome. Understanding these interactions is critical for predicting the response of transgenes to different genetic backgrounds and environm...

  5. IDENTIFICATION OF ESCAPED TRANSGENIC CREEPING BENTGRASS IN OREGON

    EPA Science Inventory

    When transgenic plants are cultivated near wild species that are sexually compatible with the crop, gene flow between the crop and wild plants is possible. A resultant concern is that transgene flow and transgene introgression within wild populations could have unintended ecologi...

  6. Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain

    SciTech Connect

    Yee, Kelsey L; Rodriguez Jr, Miguel; Thompson, Olivia A; Fu, Chunxiang; Wang, Zeng-Yu; Davison, Brian H; Mielenz, Jonathan R

    2014-01-01

    Background: Switchgrass is an abundant and dedicated bioenergy feedstock however its inherent recalcitrance is one of the economic hurdles for producing biofuels. The down-regulation of the caffeic acid O-methyl transferase (COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines showed improved fermentation yield with S. cerevisiae and C. thermocellum (ATCC 27405) in comparison to the wild-type switchgrass. Results: Here we examine the fermentation potential of the COMT transgenic switchgrass and its wild-type line, with an engineered and evolved Clostridium thermocellum (M1570) strain. The fermentation of the transgenic switchgrass had superior conversion relative to the control line with an increase of 20% and ethanol was the primary metabolite accounting for 90% of the total metabolites measured by HPLC. Conclusions: The down-regulation of the COMT gene in switchgrass reduced recalcitrance and improved microbial bioconversion yield. Moreover, these results showed ethanol as the main fermentation metabolite produced by an engineered and evolved C. thermocellum strain grown on a transgenic switchgrass.

  7. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGESBeta

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  8. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-01

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  9. The food safety of transgenic animals: implications from traditional breeding.

    PubMed

    Berkowitz, D B

    1993-01-01

    The genetic events associated with traditional selection have implications for the food safety of transgenic animals. Selection has been empirical, relying on the use of the best animals for breeding. Molecular techniques are now being used to identify the genes selected and to describe the differences between alleles that are important in selection to improve quantitative traits. The results of such analyses provide background details of the genetic and physiological effects of the traditional selection of animal lines. Examples of the kinds of genes that may be subject to selection are those coding for peptide hormones, steroid metabolic enzymes, the calcium-channel gating protein, and genes of the major histocompatibility complex. Unselected genes, sometimes with undesirable alleles, may be carried along as "hitchhikers" if they are closely linked to the selected gene. In spite of this potential for physiologically dangerous genetic changes in selected animals, hereditary food toxicity has never been associated with a selected line of the common food animals. This is probably because the allowable physiological range of results of selection is limited by the requirement for healthy, productive animals. Based on these limitations, foods from healthy transgenic animals produced for the purpose of herd improvement are likely to be as safe as the foods from the untransformed parental line. Animals are important indicators of their own food safety.

  10. Apomixis and ploidy barrier suppress pollen-mediated gene flow in field grown transgenic turf and forage grass (Paspalum notatum Flüggé).

    PubMed

    Sandhu, Sukhpreet; Blount, Ann R; Quesenberry, Kenneth H; Altpeter, Fredy

    2010-09-01

    Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar 'Argentine' is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5-3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.

  11. The substantive equivalence of transgenic (Bt and Chi) and non-transgenic cotton based on metabolite profiles.

    PubMed

    Modirroosta, Bentol Hoda; Tohidfar, Masoud; Saba, Jalal; Moradi, Foad

    2014-03-01

    Compositional studies comparing transgenic with non-transgenic counterpart plants are almost universally required by governmental regulatory bodies. In the present study, two T(2) transgenic cotton lines containing chitinase (Line 11/57) and Bt lines (Line 61) were compared with non-transgenic counterpart. To do this, biochemical characteristics of leaves and seeds, including amino acids, fatty acids, carbohydrates, anions, and cations contents of the studied lines were analyzed using GC/MS, high-performance liquid chromatography (HPLC), and ion chromatography (IC) analyzers, respectively. polymerase chain reaction (PCR) and Western blot analyses confirmed the presence and expression of Chi and Bt genes in the studied transgenic lines. Although, compositional analysis of leaves contents confirmed no significant differences between transgenic and non-transgenic counterpart lines, but it was shown that glucose content of chitinase lines, fructose content of transgenic lines (Bt and chitinase) and asparagine and glutamine of chitinase lines were significantly higher than the non-transgenic counterpart plants. Both the transgenic lines (Bt and chitinase) showed significant decrease in the amounts of sodium in comparison to the non-transgenic counterpart plants. The experiments on the seeds showed that histidine, isoleucine, leucine, and phenylalanine contents of all transgenic and non-transgenic lines were the same, whereas other amino acids were significantly increased in the transgenic lines. Surprisingly, it was observed that the concentrations of stearic acid, myristic acid, oleic acid, and linoleic acid in the chitinase line were significantly different than those of non-transgenic counterpart plants, but these components were the same in both Bt line and its non-transgenic counterpart. It seems that more changes observed in the seed contents than leaves is via this point that seeds are known as metabolites storage organs, so they show greater changes in the

  12. Assessing the value of transgenic crops.

    PubMed

    Lacey, Hugh

    2002-10-01

    In the current controversy about the value of transgenic crops, matters open to empirical inquiry are centrally at issue. One such matter is a key premise in a common argument (that I summarize) that transgenic crops should be considered to have universal value. The premise is that there are no alternative forms of agriculture available to enable the production of sufficient food to feed the world. The proponents of agroecology challenge it, claiming that agroecology provides an alternative, and they deny the claim that it is well founded on empirical evidence. It is, therefore, a matter of both social and scientific importance that this premise and the criticisms of it be investigated rigorously and empirically, so that the benefits and disadvantages of transgenic-intensive agriculture and agroecology can be compared in a reliable way. Conducting adequate investigation about the potential contribution of agroecology requires that the cultural conditions of its practice (and, thus, of the practices and movements of small-scale farmers in the "third world") be strengthened--and this puts the interests of investigation into tension with the socio-economic interests driving the development of transgenics. General issues about relationship between ethical argument and empirical (scientific) investigation are raised throughout the article.

  13. Monitoring transgenic plants using in vivo markers

    SciTech Connect

    Stewart, C.N. Jr.

    1996-06-01

    The gene coding for green fluorecent protein (GFP), isolated and cloned from the jellyfish Aequorea victoria, is an ideal transgene for the monitoring of any plant species. It has the ability to fluoresce without added substrate, enzyme, or cofactor; it does not introduce morphological or sexual aberrations when expressed. 7 refs., 1 fig.

  14. Inducible gene expression in transgenic Xenopus embryos.

    PubMed

    Wheeler, G N; Hamilton, F S; Hoppler, S

    2000-07-13

    The amphibian Xenopus laevis has been successfully used for many years as a model system for studying vertebrate development. Because of technical limitations, however, molecular investigations have mainly concentrated on early stages. We have developed a straightforward method for stage-specific induction of gene expression in transgenic Xenopus embryos [1] [2]. This method is based on the Xenopus heat shock protein 70 (Xhsp70 [3]) promoter driving the expression of desired gene products. We found that ubiquitous expression of the transgene is induced upon relatively mild heat treatment. Green fluorescent protein (GFP) was used as a marker to monitor successful induction of gene expression in transgenic embryos. We used this method to study the stage specificity of Wnt signalling function. Transient ectopic Wnt-8 expression during early neurulation was sufficient to repress anterior head development and this capacity was restricted to early stages of neurulation. By transient over-expression at different stages of development, we show that frizzled-7 disrupted morphogenesis sequentially from anterior to posterior along the dorsal axis as development proceeds. These results demonstrate that this method for inducible gene expression in transgenic Xenopus embryos will be a very powerful tool for temporal analysis of gene function and for studying molecular mechanisms of vertebrate organogenesis.

  15. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  16. Construction of a Der p2-transgenic plant for the alleviation of airway inflammation.

    PubMed

    Lee, C C; Ho, H; Lee, K T; Jeng, S T; Chiang, B L

    2011-09-01

    In clinical therapy, the amount of antigen administered to achieve oral tolerance for allergic diseases is large, and the cost is a major consideration. In this study, we used tobacco plants to develop a large-scale protein production system for allergen-specific immunotherapy, and we investigated the mechanisms of oral tolerance induced by a transgenic plant-derived antigen. We used plants (tobacco leaves) transgenic for the Dermatophagoides pteronyssinus 2 (Der p2) antigen to produce Der p2. Mice received total protein extract from Der p2 orally once per day over 6 days (days 0-2 and days 6-8). Mice were also sensitized and challenged with yeast-derived recombinant Der p2 (rDer p2), after which the mice were examined for airway hyper-responsiveness and airway inflammation. After sensitization and challenge with rDer p2, mice that were fed with total protein extracted from transgenic plants showed decreases in serum Der p2-specific IgE and IgG1 titers, decreased IL-5 and eotaxin levels in bronchial alveolar lavage fluid, and eosinophil infiltration in the airway. In addition, hyper-responsiveness was also decreased in mice that were fed with total protein extracted from transgenic plants, and CD4(+)CD25(+)Foxp3(+) regulatory T cells were significantly increased in mediastinal and mesenteric lymph nodes. Furthermore, splenocytes isolated from transgenic plant protein-fed mice exhibited decreased proliferation and increased IL-10 secretion after stimulation with rDer p2. The data here suggest that allergen-expressing transgenic plants could be used for therapeutic purposes for allergic diseases.

  17. Generation and Characterization of a Transgenic Pig Carrying a DsRed-Monomer Reporter Gene

    PubMed Central

    Wu, Mei-Han; Yang, Cho-Chen; Lin, Yu-Sheng; Cheng, Winston Teng-Kui; Wu, Shinn-Chih; Lin, Yao-Ping

    2014-01-01

    Background Pigs are an optimal animal for conducting biomedical research because of their anatomical and physiological resemblance to humans. In contrast to the abundant resources available in the study of mice, few fluorescent protein-harboring porcine models are available for preclinical studies. In this paper, we report the successful generation and characterization of a transgenic DsRed-Monomer porcine model. Methods The transgene comprised a CMV enhancer/chicken-beta actin promoter and DsRed monomeric cDNA. Transgenic pigs were produced by using pronuclear microinjection. PCR and Southern blot analyses were applied for identification of the transgene. Histology, blood examinations and computed tomography were performed to study the health conditions. The pig amniotic fluid progenitor/stem cells were also isolated to examine the existence of red fluorescence and differentiation ability. Results Transgenic pigs were successfully generated and transmitted to offspring at a germ-line transmission rate of 43.59% (17/39). Ubiquitous expression of red fluorescence was detected in the brain, eye, tongue, heart, lung, liver, pancreas, spleen, stomach, small intestine, large intestine, kidney, testis, and muscle; this was confirmed by histology and western blot analyses. In addition, we confirmed the differentiation potential of amniotic fluid progenitor stem cells isolated from the transgenic pig. Conclusions This red fluorescent pig can serve as a host for other fluorescent-labeled cells in order to study cell-microenvironment interactions, and can provide optimal red-fluorescent-labeled cells and tissues for research in developmental biology, regenerative medicine, and xenotransplantation. PMID:25187950

  18. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    PubMed

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken

  19. Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation.

    PubMed

    Baan, Mieke; Kibbe, Carly R; Bushkofsky, Justin R; Harris, Ted W; Sherman, Dawn S; Davis, Dawn Belt

    2015-10-01

    Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.

  20. Improved production of genetically modified fetuses with homogeneous transgene expression after transgene integration site analysis and recloning in cattle.

    PubMed

    Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira

    2011-02-01

    Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.

  1. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    PubMed

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  2. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  3. [Animal welfare problems concerning the use of transgenic animals

    PubMed

    Mani, Peter

    1998-01-01

    Using transgenic animals as clinical models pose certain problems since they can suffer. Yet in single cases transgenic animals can reduce the suffering of (other) animals. The permission to generate transgenic animals is not yet clearly regulated in Switzerland. The term "dignity of creature", as formulated in the Swiss Constitution, has to be defined for the Swiss animal protection law. We present the recommendations of the commission for ethical questions concerning transgenic animals appointed by the Federal Council. Partly, these recommendations shall also be applied to the traditional breeding methods. We support the nomination of a national ethics committee for transgenic animals.

  4. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE PAGESBeta

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N.; Wuddineh, Wegi A.; Rudis, Mary; Tschaplinski, Timothy J.; Pantalone, Vincent R.; Arelli, Prakash R.; Hewezi, Tarek; et al

    2016-05-23

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance.more » In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  5. Evaluation of the agronomic performance of atrazine-tolerant transgenic japonica rice parental lines for utilization in hybrid seed production.

    PubMed

    Zhang, Luhua; Chen, Haiwei; Li, Yanlan; Li, Yanan; Wang, Shengjun; Su, Jinping; Liu, Xuejun; Chen, Defu; Chen, Xiwen

    2014-01-01

    Currently, the purity of hybrid seed is a crucial limiting factor when developing hybrid japonica rice (Oryza sativa L.). To chemically control hybrid seed purity, we transferred an improved atrazine chlorohydrolase gene (atzA) from Pseudomonas ADP into hybrid japonica parental lines (two maintainers, one restorer), and Nipponbare, by using Agrobacterium-mediated transformation. We subsequently selected several transgenic lines from each genotype by using PCR, RT-PCR, and germination analysis. In the presence of the investigated atrazine concentrations, particularly 150 µM atrazine, almost all of the transgenic lines produced significantly larger seedlings, with similar or higher germination percentages, than did the respective controls. Although the seedlings of transgenic lines were taller and gained more root biomass compared to the respective control plants, their growth was nevertheless inhibited by atrazine treatment compared to that without treatment. When grown in soil containing 2 mg/kg or 5 mg/kg atrazine, the transgenic lines were taller, and had higher total chlorophyll contents than did the respective controls; moreover, three of the strongest transgenic lines completely recovered after 45 days of growth. After treatment with 2 mg/kg or 5 mg/kg of atrazine, the atrazine residue remaining in the soil was 2.9-7.0% or 0.8-8.7% respectively, for transgenic lines, and 44.0-59.2% or 28.1-30.8%, respectively, for control plants. Spraying plants at the vegetative growth stage with 0.15% atrazine effectively killed control plants, but not transgenic lines. Our results indicate that transgenic atzA rice plants show tolerance to atrazine, and may be used as parental lines in future hybrid seed production.

  6. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  7. Impact of the ahas transgene and of herbicides associated with the soybean crop on soil microbial communities.

    PubMed

    Souza, Rosinei Aparecida; Babujia, Letícia Carlos; Silva, Adriana Pereira; de Fátima Guimarães, Maria; Arias, Carlos Arrabal; Hungria, Mariangela

    2013-10-01

    Although Brazil has recently reached the position as the second largest producer of genetically modified soybean [Glycine max (L.) Merr.], there are few reports on the effects of transgenic crops and the associated use of specific herbicides on soil microbial communities, both under the edaphoclimatic conditions in Brazil, and in other producer regions in the southern hemisphere. The aim of this study was to evaluate the effects of transgenic soybean containing the ahas gene conferring resistance to herbicides of the imidazolinone group, and of the herbicides associated with transgenic soybeans on the soil microbial community. Twenty field experiments were carried out during three growing seasons (summer of 2006/2007, short-season of 2007 and summer of 2007/2008), in nine municipalities located in six Brazilian states and in the Federal District. The experiments were conducted using a completely randomized block design with four replicates and three treatments: (1) conventional (non-transgenic) soybean cultivar Conquista with conventional herbicides (bentazone + acifluorfen-sodium and other herbicides, depending on the level of infestation in each region); (2) near-isogenic transgenic Cultivance (CV127) containing the ahas gene, with conventional herbicides; (3) transgenic Cultivance with specific herbicide of the imidazolinone group (imazapyr). As the objective of the study was to verify impacts of the transgene and herbicides on the soil microbial community of the whole area and not only a punctual rhizospheric effects, samples were taken at the 0-10 cm layer prior to cropping and at R2 soybean growth stage, between plant rows. Quantitative (microbial biomass C and N, MB-C and MB-N) and qualitative (DGGE of the 16S rDNA region) parameters of soil microbial community were evaluated. No qualitative or quantitative differences were found that could be attributed to the transgene ahas. A comparison of Cultivance soybean with conventional and imidazolinone

  8. Expression profile of IGF paralog genes in liver and muscle of a GH-transgenic zebrafish.

    PubMed

    Nornberg, Bruna Felix; Figueiredo, Marcio Azevedo; Marins, Luis Fernando

    2016-01-15

    The objective of this study was to investigate the relationship between IGFs produced in the liver and skeletal muscle with muscle hypertrophy previously observed in a line of GH-transgenic zebrafish. In this sense, we evaluated the expression of genes related to the IGF system in liver and muscle of transgenics, as well as the main intracellular signaling pathways used by GH/IGF axis. Our results showed an increase in expression of igf1a, igf2a, and igf2b genes in the liver. Moreover, there was a decrease in the expression of igf1ra and an increase in muscle igf2r of transgenics, indicating a negative response of muscle tissue with respect to excess circulating IGFs. Muscle IGFs expression analyses revealed a significant increase only for igf2b, accompanied by a parallel induction of igfbp5a gene. The presence of IGFBP5a may potentiate the IGF2 action in muscle cells differentiation. Regarding JAK/STAT-related genes, we observed an alteration in the expression profile of both stat3 and stat5a in transgenic fish liver. No changes were observed in the muscle, suggesting that both tissues respond differently to GH-transgenesis. Western blotting analyses indicated an imbalance between the phosphorylation levels of the proliferative (MEK/ERK) and hypertrophic (PI3K/Akt) pathways, in favor of the latter. In summary, the results of this study suggest that the hypertrophy caused by GH-transgenesis in zebrafish may be due to circulating IGFs produced by the liver, with an important participation of muscle IGF2b. This group of IGFs appears to be favoring the hypertrophic intracellular pathway in muscle tissue of transgenic zebrafish.

  9. Expression profile of IGF paralog genes in liver and muscle of a GH-transgenic zebrafish.

    PubMed

    Nornberg, Bruna Felix; Figueiredo, Marcio Azevedo; Marins, Luis Fernando

    2016-01-15

    The objective of this study was to investigate the relationship between IGFs produced in the liver and skeletal muscle with muscle hypertrophy previously observed in a line of GH-transgenic zebrafish. In this sense, we evaluated the expression of genes related to the IGF system in liver and muscle of transgenics, as well as the main intracellular signaling pathways used by GH/IGF axis. Our results showed an increase in expression of igf1a, igf2a, and igf2b genes in the liver. Moreover, there was a decrease in the expression of igf1ra and an increase in muscle igf2r of transgenics, indicating a negative response of muscle tissue with respect to excess circulating IGFs. Muscle IGFs expression analyses revealed a significant increase only for igf2b, accompanied by a parallel induction of igfbp5a gene. The presence of IGFBP5a may potentiate the IGF2 action in muscle cells differentiation. Regarding JAK/STAT-related genes, we observed an alteration in the expression profile of both stat3 and stat5a in transgenic fish liver. No changes were observed in the muscle, suggesting that both tissues respond differently to GH-transgenesis. Western blotting analyses indicated an imbalance between the phosphorylation levels of the proliferative (MEK/ERK) and hypertrophic (PI3K/Akt) pathways, in favor of the latter. In summary, the results of this study suggest that the hypertrophy caused by GH-transgenesis in zebrafish may be due to circulating IGFs produced by the liver, with an important participation of muscle IGF2b. This group of IGFs appears to be favoring the hypertrophic intracellular pathway in muscle tissue of transgenic zebrafish. PMID:26718079

  10. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  11. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF).

    PubMed

    He, Yonghua; Schmidt, Monica A; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W; Herman, Eliot M

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  12. Sterilising embryos for transgenic chimaeras.

    PubMed

    Aige-Gil, V; Simkiss, K

    1991-07-01

    1. Experiments were undertaken to attempt to sterilise fowl embryos with ultraviolet light. Such sterilised embryos would be useful as recipients of genetically manipulated germ cells. 2. The germinal crescents of embryos were exposed to a calibrated UV source at stages 4 and 8 to 10 of incubation for 30 s, 3 min and 10 min. Teratological and sterility effects were studied at periods up to 6 d of incubation. 3. Simply exposing embryos by opening the shell produced a number of abnormalities and mortalities. These decreased with the age of the embryo but increased with the dosage of irradiation. 4. Although there was abundant evidence for UV-induced cell damage, the sterility of the embryos was usually less than 75%. PMID:1893258

  13. Constitutive expression of McCHIT1-PAT enhances resistance to rice blast and herbicide, but does not affect grain yield in transgenic glutinous rice.

    PubMed

    Zeng, Xiao-Fang; Li, Lei; Li, Jian-Rong; Zhao, De-Gang

    2016-01-01

    To produce new rice blast- and herbicide-resistant transgenic rice lines, the McCHIT1 gene encoding the class I chitinase from Momordica charantia and the herbicide resistance gene PAT were introduced into Lailong (Oryza sativa L. ssp. Japonica), a glutinous local rice variety from Guizhou Province, People's Republic of China. Transgenic lines were identified by ß-glucuronidase (GUS) histochemical staining, PCR, and Southern blot analyses. Agronomic traits, resistance to rice blast and herbicide, chitinase activities, and transcript levels of McCHIT1 were assessed in the T2 progeny of three transgenic lines (L1, L8, and L10). The results showed that the introduction of McCHIT1-PAT into Lailong significantly enhanced herbicide and blast resistance. After infection with the blast fungus Magnaporthe oryzae, all of the T2 progeny exhibited less severe lesion symptoms than those of wild type. The disease indices were 100% for wild type, 65.66% for T2 transgenic line L1, 59.69% for T2 transgenic line L8, and 79.80% for T2 transgenic line L10. Transgenic lines expressing McCHIT1-PAT did not show a significant difference from wild type in terms of malondialdehyde (MDA) content, polyphenol oxidase (PPO) activity, and superoxide dismutase (SOD) activity in the leaves. However, after inoculation with M. oryzae, transgenic plants showed significantly higher SOD and PPO activities and lower MDA contents in leaves, compared with those in wild-type leaves. The transgenic and the wild-type plants did not show significant differences in grain yield parameters including plant height, panicles per plant, seeds per panicle, and 1000-grain weight. Therefore, the transgenic plants showed increased herbicide and blast resistance, with no yield penalty.

  14. Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

    PubMed Central

    Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun

    2016-01-01

    In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. c

  15. Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy.

    PubMed

    Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun

    2016-07-01

    In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. c

  16. High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos.

    PubMed

    Abdollahi, M R; Moieni, A; Mousavi, A; Salmanian, A H

    2011-02-01

    Transgenic doubled haploid rapeseed (Brassica napus L. cvs. Global and PF(704)) plants were obtained from microspore-derived embryo (MDE) hypocotyls using the microprojectile bombardment. The binary vector pCAMBIA3301 containing the gus and bar genes under control of CaMV 35S promoter was used for bombardment experiments. Transformed plantlets were selected and continuously maintained on selective medium containing 10 mg l(-1) phosphinothricin (PPT) and transgenic plants were obtained by selecting transformed secondary embryos. The presence, copy numbers and expression of the transgenes were confirmed by PCR, Southern blot, RT-PCR and histochemical GUS analyses. In progeny test, three out of four primary transformants for bar gene produced homozygous lines. The ploidy level of transformed plants was confirmed by flow cytometery analysis before colchicine treatment. All of the regenerated plants were haploid except one that was spontaneous diploid. High frequency of transgenic doubled haploid rapeseeds (about 15.55% for bar gene and 11.11% for gus gene) were considerably produced after colchicines treatment of the haploid plantlets. This result show a remarkable increase in production of transgenic doubled haploid rapeseed plants compared to previous studies.

  17. Expression of metallothionein-human growth hormone fusion genes in transgenic mice results in disproportionate skeletal gigantism.

    PubMed

    Wolf, E; Rapp, K; Brem, G

    1991-01-01

    Transgenic mice harbouring mouse metallothionein I-human growth hormone (MT-hGH) fusion genes were produced using the microinjection technique. The bones of adult MT-hGH transgenic mice, which continuously expressed high levels of hGH in their serum, and age-matched controls lacking detectable concentrations of hGH were measured microscopically. In addition to analyzing absolute skeletal dimensions, measurements were related to the cube root of the maximum body weight of the same animal. Absolute values obtained from transgenic mice were significantly higher than those obtained from controls for most of the defined measurements. However, the increase in skeletal dimensions was mostly not as pronounced as the increase in body weight and all bones were not affected to the same extent. There was no significant correlation between the serum GH concentration in individual mice and their degree of bony overgrowth. A disproportionate skeletal gigantism in MT-hGH transgenic mice may result from time differences in epiphyseal union of various bones of both sexes as well as differences in mechanical bone loading due to a drastically increased body weight. Individual concentrations of locally produced tissue insulin-like growth factor I (IGF I) might also play a role. Possible effects of these factors are discussed. The results presented in this study show that MT-hGH transgenic mice provide a powerful tool for the investigation of hormonal regulation of bone growth. PMID:1938045

  18. High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos.

    PubMed

    Abdollahi, M R; Moieni, A; Mousavi, A; Salmanian, A H

    2011-02-01

    Transgenic doubled haploid rapeseed (Brassica napus L. cvs. Global and PF(704)) plants were obtained from microspore-derived embryo (MDE) hypocotyls using the microprojectile bombardment. The binary vector pCAMBIA3301 containing the gus and bar genes under control of CaMV 35S promoter was used for bombardment experiments. Transformed plantlets were selected and continuously maintained on selective medium containing 10 mg l(-1) phosphinothricin (PPT) and transgenic plants were obtained by selecting transformed secondary embryos. The presence, copy numbers and expression of the transgenes were confirmed by PCR, Southern blot, RT-PCR and histochemical GUS analyses. In progeny test, three out of four primary transformants for bar gene produced homozygous lines. The ploidy level of transformed plants was confirmed by flow cytometery analysis before colchicine treatment. All of the regenerated plants were haploid except one that was spontaneous diploid. High frequency of transgenic doubled haploid rapeseeds (about 15.55% for bar gene and 11.11% for gus gene) were considerably produced after colchicines treatment of the haploid plantlets. This result show a remarkable increase in production of transgenic doubled haploid rapeseed plants compared to previous studies. PMID:20419350

  19. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana.

    PubMed

    Janni, Michela; Sella, Luca; Favaron, Francesco; Blechl, Ann E; De Lorenzo, Giulia; D'Ovidio, Renato

    2008-02-01

    A possible strategy to control plant pathogens is the improvement of natural plant defense mechanisms against the tools that pathogens commonly use to penetrate and colonize the host tissue. One of these mechanisms is represented by the host plant's ability to inhibit the pathogen's capacity to degrade plant cell wall polysaccharides. Polygalacturonase-inhibiting proteins (PGIP) are plant defense cell wall glycoproteins that inhibit the activity of fungal endopolygalacturonases (endo-PGs). To assess the effectiveness of these proteins in protecting wheat from fungal pathogens, we produced a number of transgenic wheat lines expressing a bean PGIP (PvPGIP2) having a wide spectrum of specificities against fungal PGs. Three independent transgenic lines were characterized in detail, including determination of the levels of PvPGIP2 accumulation and its subcellular localization and inhibitory activity. Results show that the transgene-encoded protein is correctly secreted into the apoplast, maintains its characteristic recognition specificities, and endows the transgenic wheat with new PG recognition capabilities. As a consequence, transgenic wheat tissue showed increased resistance to digestion by the PG of Fusarium moniliforme. These new properties also were confirmed at the plant level during interactions with the fungal pathogen Bipolaris sorokiniana. All three lines showed significant reductions in symptom progression (46 to 50%) through the leaves following infection with this pathogen. Our results illustrate the feasibility of improving wheat's defenses against pathogens by expression of proteins with new capabilities to counteract those produced by the pathogens.

  20. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene.

    PubMed

    Montero, Maria; Coll, Anna; Nadal, Anna; Messeguer, Joaquima; Pla, Maria

    2011-08-01

    Besides the intended effects that give a genetically modified (GM) plant the desired trait, unintended differences between GM and non-GM comparable plants may also occur. Profiling technologies allow their identification, and a number of examples demonstrating that unintended effects are limited and diverse have recently been reported. Both from the food safety aspect and for research purposes, it is important to discern unintended changes produced by the transgene and its expression from those that may be attributed to other factors. Here, we show differential expression of around 0.40% transcriptome between conventional rice var. Senia and Senia-afp constitutively expressing the AFP antifungal protein. Analysis of one-fifth of the regulated sequences showed that around 35% of the unintended effects could be attributed to the process used to produce GM plants, based on in vitro tissue culture techniques. A further ∼15% were event specific, and their regulation was attributed to host gene disruption and genome rearrangements at the insertion site, and effects on proximal sequences. Thus, only around half the transcriptional unintended effects could be associated to the transgene itself. A significant number of changes in Senia-afp and Senia are part of the plant response to stress conditions, and around half the sequences for which up-regulation was attributed to the transgene were induced in conventional (but not transgenic) plants after wounding. Unintended effects might, as such, putatively result in widening the self-resistance characteristics because of the transgene in GM plants.

  1. Transgenic inhibitors of RNA interference in Drosophila.

    PubMed

    Chou, Yu-ting; Tam, Bergin; Linay, Fabien; Lai, Eric C

    2007-01-01

    RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.

  2. Transgenic zebrafish for ratiometric imaging of cytosolic and mitochondrial Ca2+ response in teleost embryo.

    PubMed

    Mizuno, Hideaki; Sassa, Takayuki; Higashijima, Shin-Ichi; Okamoto, Hitoshi; Miyawaki, Atsushi

    2013-09-01

    Intracellular Ca2+ imaging has widely been used to visualize intracellular signals, but the application in an intact animal is still limited due to difficulty of the indicator loading. In addition, the motion of the living animal produces artifacts. To investigate Ca2+ signaling at early embryonic stage, we established transgenic zebrafish line expressing a genetically encoded Ca2+ indicator, cameleon YC2.60, driven by a constitutively active promoter, hspa8. Although the embryo dynamically changes its morphology, the motion artifact could be canceled out by taking the advantage of YC2.60 as a ratiometric indicator. The transgenic zebrafish was used to visualize the propagation of cytosolic Ca2+ during the early embryonic stage upon fertilization and along cleavage furrow, and the rise in Ca2+ in the myocytes contracting spontaneously in the embryo. We also established a transgenic zebrafish line expressing YC2.60 targeted to the mitochondria. The rise in mitochondrial Ca2+ was rather sustained (≈2 min), which is consistent with the requirement of ATP refilling since the mitochondrial Ca2+ upregulates rate-limiting enzymes of Krebs cycle. This is in contrast with the transient rise in the cytosol Ca2+ that directly evokes the muscle contraction. These transgenic zebrafish lines are expected to serve as useful tools further Ca2+ imaging in vivo.

  3. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.

    PubMed

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-03-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering. PMID:18303117

  4. Production of recombinant human proinsulin in the milk of transgenic mice

    PubMed Central

    Qian, Xi; Kraft, Jana; Ni, Yingdong; Zhao, Feng-Qi

    2014-01-01

    There is a steady increasing demand for insulin worldwide. Current insulin manufacturing capacities can barely meet this increasing demand. The purpose of this study was to test the feasibility of producing human proinsulin in the milk of transgenic animals. Four lines of transgenic mice harboring a human insulin cDNA with expression driven by the goat β-casein gene promoter were generated. The expression level of human proinsulin in milk was as high as 8.1 g/L. The expression of the transgene was only detected in the mammary gland during lactation, with higher levels at mid-lactation and lower levels at early and late lactation. The blood glucose and insulin levels and the major milk compositions were unchanged, and the transgenic animals had no apparent health defects. The mature insulin derived from the milk proinsulin retained its biological activity. In conclusion, our study provides supporting evidence to explore the production of high levels of human proinsulin in the milk of dairy animals. PMID:25267062

  5. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells

    PubMed Central

    Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-01-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  6. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland.

    PubMed

    Maga, E A; Shoemaker, C F; Rowe, J D; Bondurant, R H; Anderson, G B; Murray, J D

    2006-02-01

    The potential for applying biotechnology to benefit animal agriculture and food production has long been speculated. The addition of human milk components with intrinsic antimicrobial activity and positive charge to livestock milk by genetic engineering has the potential to benefit animal health, as well as food safety and production. We generated one line of transgenic goats as a model for the dairy cow designed to express human lysozyme in the mammary gland. Here we report the characterization of the milk from 5 transgenic females of this line expressing human lysozyme in their milk at 270 microg/mL or 68% of the level found in human milk. Milk from transgenic animals had a lower somatic cell count, but the overall component composition of the milk and milk production were not different from controls. Milk from transgenic animals had a shorter rennet clotting time and increased curd strength. Milk of such nature may be of benefit to the producer by influencing udder health and milk processing.

  7. Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production.

    PubMed

    Menassa, Rima; Zhu, Hong; Karatzas, Costas N; Lazaris, Anthoula; Richman, Alex; Brandle, Jim

    2004-09-01

    Spider dragline silk is a unique biomaterial and represents nature's strongest known fibre. As it is almost as strong as many commercial synthetic fibres, it is suitable for use in many industrial and medical applications. The prerequisite for such a widespread use is the cost-effective production in sufficient quantities for commercial fibre manufacturing. Agricultural biotechnology and the production of recombinant dragline silk proteins in transgenic plants offer the potential for low-cost, large-scale production. The purpose of this work was to examine the feasibility of producing the two protein components of dragline silk (MaSp1 and MaSp2) from Nephila clavipes in transgenic tobacco. Two different promoters, the enhanced CaMV 35S promoter (Kay et al., 1987) and a new tobacco cryptic constitutive promoter, tCUP (Foster et al., 1999) were used, in conjunction with a plant secretory signal (PR1b), a translational enhancer (alfalfa mosaic virus, AMV) and an endoplasmic reticulum (ER) retention signal (KDEL), to express the MaSp1 and MaSp2 genes in the leaves of transgenic plants. Both genes expressed successfully and recombinant protein accumulated in transgenic plants grown in both greenhouse and field trials.

  8. Tissue kallikrein-binding protein reduces blood pressure in transgenic mice.

    PubMed

    Chen, L M; Ma, J x; Liang, Y M; Chao, L; Chao, J

    1996-11-01

    The kallikrein-kinin system participates in blood pressure regulation. One of the kallikrein-kinin system components, kallikrein-binding protein, binds to tissue kallikrein and inhibits its activity in vitro. To investigate potential roles of rat kallikrein-binding protein (RKBP) in vivo, we have developed transgenic mice that express an RKBP gene under the control of the mouse metallothionein metal-responsive promoter. Expression of the transgene, RKBP, was detected in the liver, kidney, lung, heart, pancreas, salivary glands, spleen, brain, testis, and adrenal gland at the mRNA and protein levels. Systolic blood pressures of homozygous transgenic mice were 88.5 +/- 0.8 mm Hg (mean +/- S.E., n = 19, P < 0.001) for one line and 88.8 +/- 1.6 mm Hg (mean +/- S.E., n = 19, P < 0.001) for another, as compared with 100.5 +/- 0.8 mm Hg (mean +/- S.E., n = 18) for control mice. Direct blood pressure measurements of these transgenic mice through an arterial cannula showed similar reductions of blood pressure. Intravenous injection of purified RKBP into mice via a catheter produced a dose-dependent reduction of the mean arterial blood pressure. Our findings suggest that RKBP may function as a vasodilator in vivo, independent of regulating the activity of tissue kallikrein. PMID:8910346

  9. Breast cancer protein PS2 synthesis in mammary gland of transgenic mice and secretion into milk.

    PubMed

    Tomasetto, C; Wolf, C; Rio, M C; Mehtali, M; LeMeur, M; Gerlinger, P; Chambon, P; Lathe, R

    1989-10-01

    PS2, a small estrogen-inducible secretory polypeptide with structural analogies to a growth factor, is produced by approximately 50% of human breast tumors. The function of PS2 is, however, unknown. To determine whether PS2 may play an autocrine role in the development of mammary tumors we constructed transgenic mice bearing fusion constructs designed to direct the expression of human PS2 in the lactating mammary gland under the control of the whey acidic protein (WAP) promoter. Mouse lines bearing the genomic PS2 gene under the control of the WAP promoter region (WAP-PS2-2) failed to express the transgene. However, mice harboring the fusion construct WAP-PS2-1, in which the PS2 coding sequence is inserted into the 5' untranslated region of the complete WAP gene, were observed to express the transgene. Expression was restricted to the secretory epithelium of the mammary gland during lactation, and PS2 protein was secreted into the milk. Nevertheless, no mammary gland dysplasia was observed, and PS2 expression had no discernable effect upon the physiology and/or development of the suckling young or the transgenic mother. PMID:2481815

  10. Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies.

    PubMed

    Green, Larry L

    2014-03-01

    Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity. A broad range of mAb drug targets are addressable in these mice, comprising both secreted and transmembrane targets, including membrane multi-spanning targets, as well as human target antigens that share high sequence identity with their mouse orthologue. Transgenic mice can routinely yield antibodies with sub-nanomolar binding affinity for their antigen, with lead candidate mAbs frequently possessing affinities for binding to their target of less than 100 picomolar, without requiring any ex vivo affinity optimization. While the originator transgenic mice platforms are no longer broadly available, a new generation of transgenic platforms is in development for discovery of the next wave of human therapeutic antibodies.

  11. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    PubMed

    Yamamoto, Daisuke S; Sumitani, Megumi; Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-09-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  12. Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production.

    PubMed

    Menassa, Rima; Zhu, Hong; Karatzas, Costas N; Lazaris, Anthoula; Richman, Alex; Brandle, Jim

    2004-09-01

    Spider dragline silk is a unique biomaterial and represents nature's strongest known fibre. As it is almost as strong as many commercial synthetic fibres, it is suitable for use in many industrial and medical applications. The prerequisite for such a widespread use is the cost-effective production in sufficient quantities for commercial fibre manufacturing. Agricultural biotechnology and the production of recombinant dragline silk proteins in transgenic plants offer the potential for low-cost, large-scale production. The purpose of this work was to examine the feasibility of producing the two protein components of dragline silk (MaSp1 and MaSp2) from Nephila clavipes in transgenic tobacco. Two different promoters, the enhanced CaMV 35S promoter (Kay et al., 1987) and a new tobacco cryptic constitutive promoter, tCUP (Foster et al., 1999) were used, in conjunction with a plant secretory signal (PR1b), a translational enhancer (alfalfa mosaic virus, AMV) and an endoplasmic reticulum (ER) retention signal (KDEL), to express the MaSp1 and MaSp2 genes in the leaves of transgenic plants. Both genes expressed successfully and recombinant protein accumulated in transgenic plants grown in both greenhouse and field trials. PMID:17168889

  13. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    NASA Astrophysics Data System (ADS)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  14. Expansion of Viral Host Range through Complementation and Recombination in Transgenic Plants.

    PubMed Central

    Schoelz, JE; Wintermantel, WM

    1993-01-01

    We have shown previously that gene VI of cauliflower mosaic virus (CaMV) strain D4 governs systemic infection of Nicotiana bigelovii and that transgenic N. bigelovii expressing the D4 gene VI product can complement at least one CaMV isolate for long-distance transport. We have now found that DNA of two other isolates of CaMV recombine with the gene VI coding sequence present in the transgenic plants. The formation of recombinant viruses occurs as a consequence of CaMV replication, involving two template switches during reverse transcription of the CaMV RNA to DNA. The first template switch occurs at the 5[prime] end of the 35S RNA to the gene VI mRNA produced by the transgenic plants. A second switch occurs at the 5[prime] end of the gene VI mRNA back to the 35S RNA. We also demonstrate that CaMV can acquire sequences from transgenic plants that alter the symptomatology and host range of the virus, an observation that may have important risk assessment implications for strategies using pathogen-derived resistance to protect plants against virus diseases. PMID:12271051

  15. Prototypic chromatin insulator cHS4 protects retroviral transgene from silencing in Schistosoma mansoni

    PubMed Central

    Suttiprapa, Sutas; Rinaldi, Gabriel; Brindley, Paul J.

    2011-01-01

    Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) virions can transduce schistosomes, leading to chromosomal integration of reporter transgenes. To develop VSVG-MLV for functional genomics in schistosomes, the influence of the chicken β-globin cHS4 element, a prototypic chromatin insulator, on transgene expression was examined. Plasmid pLNHX encoding the MLV 5′- and 3′-Long Terminal Repeats (LTRs) flanking the neomycin phosphotransferase gene (neo) was modified to include, within the U3 region of the 3′-LTR, active components of cHS4 insulator, the 250 bp core fused to the 400 bp 3′-region. Cultured larvae of Schistosoma mansoni were transduced with virions from producer cells transfected with control or cHS4-bearing plasmids. Schistosomules transduced with cHS4 virions expressed two to 20 times higher levels of neo than controls, while carrying comparable numbers of integrated proviral transgenes. The findings not only demonstrated that cHS4 was active in schistosomes but also they represent the first report of activity of cHS4 in any Lophotrochozoan species, which has significant implications for evolutionary conservation of heterochromatin regulation. The findings advance prospects for transgenesis in functional genomics of the schistosome genome to discover intervention targets because they provide the means to enhance and extend transgene activity including for vector based RNA interference. PMID:21918820

  16. Development of Transgenic Minipigs with Expression of Antimorphic Human Cryptochrome 1

    PubMed Central

    Liu, Chunxin; Bolund, Lars; Vajta, Gábor; Dou, Hongwei; Yang, Wenxian; Xu, Ying; Luan, Jing; Wang, Jun; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2013-01-01

    Minipigs have become important biomedical models for human ailments due to similarities in organ anatomy, physiology, and circadian rhythms relative to humans. The homeostasis of circadian rhythms in both central and peripheral tissues is pivotal for numerous biological processes. Hence, biological rhythm disorders may contribute to the onset of cancers and metabolic disorders including obesity and type II diabetes, amongst others. A tight regulation of circadian clock effectors ensures a rhythmic expression profile of output genes which, depending on cell type, constitute about 3–20% of the transcribed mammalian genome. Central to this system is the negative regulator protein Cryptochrome 1 (CRY1) of which the dysfunction or absence has been linked to the pathogenesis of rhythm disorders. In this study, we generated transgenic Bama-minipigs featuring expression of the Cys414-Ala antimorphic human Cryptochrome 1 mutant (hCRY1AP). Using transgenic donor fibroblasts as nuclear donors, the method of handmade cloning (HMC) was used to produce reconstructed embryos, subsequently transferred to surrogate sows. A total of 23 viable piglets were delivered. All were transgenic and seemingly healthy. However, two pigs with high transgene expression succumbed during the first two months. Molecular analyzes in epidermal fibroblasts demonstrated disturbances to the expression profile of core circadian clock genes and elevated expression of the proinflammatory cytokines IL-6 and TNF-α, known to be risk factors in cancer and metabolic disorders. PMID:24146819

  17. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants.

    PubMed

    Sandhu, Ajay Pal S; Abdelnoor, Ricardo V; Mackenzie, Sally A

    2007-02-01

    Stability of the mitochondrial genome is controlled by nuclear loci. In plants, nuclear genes suppress mitochondrial DNA rearrangements during development. One nuclear gene involved in this process is Msh1. Msh1 appears to be involved in the suppression of illegitimate recombination in plant mitochondria. To test the hypothesis that Msh1 disruption leads to the type of mitochondrial DNA rearrangements associated with naturally occurring cytoplasmic male sterility in plants, a transgenic approach for RNAi was used to modulate expression of Msh1 in tobacco and tomato. In both species, these experiments resulted in reproducible mitochondrial DNA rearrangements and a condition of male (pollen) sterility. The male sterility was, in each case, heritable, associated with normal female fertility, and apparently maternal in its inheritance. Segregation of the transgene did not reverse the male sterile phenotype, producing stable, nontransgenic male sterility. The reproducible transgenic induction of mitochondrial rearrangements in plants is unprecedented, providing a means to develop novel cytoplasmic male sterile lines for release as non-GMO or transgenic materials.

  18. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.

    PubMed

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-03-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering.

  19. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks.

    PubMed

    Haroldsen, Victor M; Chi-Ham, Cecilia L; Bennett, Alan B

    2012-10-31

    Genetically engineered (GE) rootstocks may offer some advantages for biotechnology applications especially in woody perennial crops such as grape or walnut. Transgrafting combines horticultural grafting practices with modern GE methods for crop improvement. Here, a non-GE conventional scion (upper stem portion) is grafted onto a transgenic GE rootstock. Thus, the scion does not contain the genetic modification present in the rootstock genome. We examined transgene presence in walnut and tomato GE rootstocks and non-GE fruit-bearing scions. Mobilization of transgene DNA, protein, and mRNA across the graft was not detected. Though transgenic siRNA mobilization was not observed in grafted tomatoes or walnut scions, transgenic siRNA signal was detected in walnut kernels. Prospective benefits from transgrafted plants include minimized risk of GE pollen flow (Lev-Yadun and Sederoff, 2001), possible use of more than one scion per approved GE rootstock which could help curb the estimated US$136 million (CropLife International, 2011) cost to bring a GE crop to international markets, as well as potential for improved consumer and market acceptance since the consumable product is not itself GE. Thus, transgrafting provides an alternative option for agricultural industries wishing to expand their biotechnology portfolio. PMID:22749907

  20. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks.

    PubMed

    Haroldsen, Victor M; Chi-Ham, Cecilia L; Bennett, Alan B

    2012-10-31

    Genetically engineered (GE) rootstocks may offer some advantages for biotechnology applications especially in woody perennial crops such as grape or walnut. Transgrafting combines horticultural grafting practices with modern GE methods for crop improvement. Here, a non-GE conventional scion (upper stem portion) is grafted onto a transgenic GE rootstock. Thus, the scion does not contain the genetic modification present in the rootstock genome. We examined transgene presence in walnut and tomato GE rootstocks and non-GE fruit-bearing scions. Mobilization of transgene DNA, protein, and mRNA across the graft was not detected. Though transgenic siRNA mobilization was not observed in grafted tomatoes or walnut scions, transgenic siRNA signal was detected in walnut kernels. Prospective benefits from transgrafted plants include minimized risk of GE pollen flow (Lev-Yadun and Sederoff, 2001), possible use of more than one scion per approved GE rootstock which could help curb the estimated US$136 million (CropLife International, 2011) cost to bring a GE crop to international markets, as well as potential for improved consumer and market acceptance since the consumable product is not itself GE. Thus, transgrafting provides an alternative option for agricultural industries wishing to expand their biotechnology portfolio.

  1. Studies of an expanded trinucleotide repeat in transgenic mice

    SciTech Connect

    Bingham, P.; Wang, S.; Merry, D.

    1994-09-01

    Spinal and bulbar muscular atrophy (SBMA) is a progressive motor neuron disease caused by expansion of a trinucleotide repeat in the androgen receptor gene (AR{sup exp}). AR{sup exp} repeats expand further or contract in approximately 25% of transmissions. Analogous {open_quotes}dynamic mutations{close_quotes} have been reported in other expanded trinucleotide repeat disorders. We have been developing a mouse model of this disease using a transgenic approach. Expression of the SBMA AR was documented in transgenic mice with an inducible promoter. No phenotypic effects of transgene expression were observed. We have extended our previous results on stability of the expanded trinucleotide repeat in transgenic mice in two lines carrying AR{sup exp}. Tail DNA was amplified by PCR using primers spanning the repeat on 60 AR{sup exp} transgenic mice from four different transgenic lines. Migration of the PCR product through an acrylamide gel showed no change of the 45 CAG repeat length in any progeny. Similarly, PCR products from 23 normal repeat transgenics showed no change from the repeat length of the original construct. Unlike the disease allele in humans, the expanded repeat AR cDNA in transgenic mice showed no change in repeat length with transmission. The relative stability of CAG repeats seen in the transgenic mice may indicate either differences in the fidelity of replicative enzymes, or differences in error identification and repair between mice and humans. Integration site or structural properties of the transgene itself might also play a role.

  2. Generation of cloned transgenic pigs rich in omega-3 fatty acids.

    PubMed

    Lai, Liangxue; Kang, Jing X; Li, Rongfeng; Wang, Jingdong; Witt, William T; Yong, Hwan Yul; Hao, Yanhong; Wax, David M; Murphy, Clifton N; Rieke, August; Samuel, Melissa; Linville, Michael L; Korte, Scott W; Evans, Rhobert W; Starzl, Thomas E; Prather, Randall S; Dai, Yifan

    2006-04-01

    Meat products are generally low in omega-3 (n-3) fatty acids, which are beneficial to human health. We describe the generation of cloned pigs that express a humanized Caenorhabditis elegans gene, fat-1, encoding an n-3 fatty acid desaturase. The hfat-1 transgenic pigs produce high levels of n-3 fatty acids from n-6 analogs, and their tissues have a significantly reduced ratio of n-6/n-3 fatty acids (P < 0.001).

  3. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani.

    PubMed

    Brogue, K; Chet, I; Holliday, M; Cressman, R; Biddle, P; Knowlton, S; Mauvais, C J; Broglie, R

    1991-11-22

    The production of enzymes capable of degrading the cell walls of invading phytopathogenic fungi is an important component of the defense response of plants. The timing of this natural host defense mechanism was modified to produce fungal-resistant plants. Transgenic tobacco seedlings constitutively expressing a bean chitinase gene under control of the cauliflower mosaic virus 35S promoter showed an increased ability to survive in soil infested with the fungal pathogen Rhizoctonia solani and delayed development of disease symptoms.

  4. Potential transgenic routes to increase tree biomass.

    PubMed

    Dubouzet, Joseph G; Strabala, Timothy J; Wagner, Armin

    2013-11-01

    Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials. PMID:24094056

  5. Transgenic approaches to western corn rootworm control.

    PubMed

    Narva, Kenneth E; Siegfried, Blair D; Storer, Nicholas P

    2013-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.

  6. Using empirical data to model transgene dispersal.

    PubMed Central

    Meagher, T R; Belanger, F C; Day, P R

    2003-01-01

    One element of the current public debate about genetically modified crops is that gene flow from transgenic cultivars into surrounding weed populations will lead to more problematic weeds, particularly for traits such as herbicide resistance. Evolutionary biologists can inform this debate by providing accurate estimates of gene flow potential and subsequent ecological performance of resulting hybrids. We develop a model for gene flow incorporating exponential distance and directional effects to be applied to windpollinated species. This model is applied to previously published data on gene flow in experimental plots of Agrostis stolonifera L. (creeping bentgrass), which assessed gene flow from transgenic plants resistant to the herbicide glufosinate to surrounding non-transgenic plants. Our results show that although pollen dispersal can be limited in some sites, it may be extensive in others, depending on local conditions such as exposure to wind. Thus, hybridization under field conditions is likely to occur. Given the nature of the herbicide resistance trait, we regard this trait as unlikely to persist in the absence of herbicide, and suggest that the ecological consequences of such gene flow are likely to be minimal. PMID:12831482

  7. Transgenic mouse model of cutaneous adnexal tumors

    PubMed Central

    Kito, Yusuke; Saigo, Chiemi; Atsushi, Kurabayashi; Mutsuo, Furihata; Tamotsu, Takeuchi

    2014-01-01

    TMEM207 was first characterized as being an important molecule for the invasion activity of gastric signet-ring cell carcinoma cells. In order to unravel the pathological properties of TMEM207, we generated several transgenic mouse lines, designated C57BL/6-Tg (ITF-TMEM207), in which murine TMEM207 was ectopically expressed under a truncated (by ~200 bp) proximal promoter of the murine intestinal trefoil factor (ITF) gene (also known as Tff3). Unexpectedly, a C57BL/6-Tg (ITF-TMEM207) mouse line exhibited a high incidence of spontaneous intradermal tumors with histopathological features that resembled those of various human cutaneous adnexal tumors. These tumors were found in ~14% female and 13% of male 6- to 12-month-old mice. TMEM207 immunoreactivity was found in hair follicle bulge cells in non-tumorous skin, as well as in cutaneous adnexal tumors of the transgenic mouse. The ITF-TMEM207 construct in this line appeared to be inserted to a major satellite repeat sequence at chromosome 2, in which no definite coding molecule was found. In addition, we also observed cutaneous adnexal tumors in three other C57BL/6-Tg (ITF-TMEM207) transgenic mouse lines. We believe that the C57BL/6-Tg (ITF-TMEM207) mouse might be a useful model to understand human cutaneous adnexal tumors. PMID:25305140

  8. APP transgenic mice: their use and limitations.

    PubMed

    Balducci, Claudia; Forloni, Gianluigi

    2011-06-01

    Alzheimer's disease is the most widespread form of dementia. Its histopathological hallmarks include vascular and extracellular β-amyloid (Aβ) deposition and intraneuronal neurofibrillary tangles (NFTs). Gradual decline of cognitive functions linked to progressive synaptic loss makes patients unable to store new information in the earlier stages of the pathology, later becoming completely dependent because they are unable to do even elementary daily life actions. Although more than a hundred years have passed since Alois Alzheimer described the first case of AD, and despite many years of intense research, there are still many crucial points to be discovered in the neuropathological pathway. The development of transgenic mouse models engineered with overexpression of the amyloid precursor protein carrying familial AD mutations has been extremely useful. Transgenic mice present the hallmarks of the pathology, and histological and behavioural examination supports the amyloid hypothesis. As in human AD, extracellular Aβ deposits surrounded by activated astrocytes and microglia are typical features, together with synaptic and cognitive defects. Although animal models have been widely used, they are still being continuously developed in order to recapitulate some missing aspects of the disease. For instance, AD therapeutic agents tested in transgenic mice gave encouraging results which, however, were very disappointing in clinical trials. Neuronal cell death and NFTs typical of AD are much harder to replicate in these mice, which thus offer a fundamental but still imperfect tool for understanding and solving dementia pathology.

  9. Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree.

    PubMed

    Hily, Jean-Michel; Scorza, Ralph; Webb, Kevin; Ravelonandro, Michel

    2005-08-01

    We investigated the hallmarks of posttranscription gene silencing (PTGS) in mature plants, embryos, and seedlings of the transgenic plum trees (Prunus sp.) that are resistant to Plum pox virus (PPV). We previously demonstrated that the transgene insert and resistance to PPV were mutually inherited in progeny of line C5. We show here that C5 constitutively produces a short (22 nt) and a long (25 to 26 nt) species of short interfering (si)RNA from embryo to mature plant in the absence of PPV inoculation. Unlike siRNA, methylation and transcription of the PPV-coat protein transgene were 're-set' following seed germination. Uninoculated transgenic susceptible clones did not display DNA methylation, nor did they produce detectable levels of siRNA. Upon infection, susceptible clones, transgenic or untransformed, did produce siRNA but only the short 22-nt species. These findings show that plum trees respond to virus infection by initiating PTGS-like mechanisms that involve the production of siRNA. We further suggest that high-level virus resistance in transgenic Prunus species requires the production of the long-size class of siRNA. The research adds new insights into PTGS silencing in woody perennial plant species.

  10. Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny.

    PubMed

    Newhouse, Andrew E; Polin-McGuigan, Linda D; Baier, Kathleen A; Valletta, Kristia E R; Rottmann, William H; Tschaplinski, Timothy J; Maynard, Charles A; Powell, William A

    2014-11-01

    American chestnut (Castanea dentata) is a classic example of a native keystone species that was nearly eradicated by an introduced fungal pathogen. This report describes progress made toward producing a fully American chestnut tree with enhanced resistance to the blight fungus (Cryphonectria parasitica). The transgenic American chestnut 'Darling4,' produced through an Agrobacterium co-transformation procedure to express a wheat oxalate oxidase gene driven by the VspB vascular promoter, shows enhanced blight resistance at a level intermediate between susceptible American chestnut and resistant Chinese chestnut (Castanea mollissima). Enhanced resistance was identified first with a leaf-inoculation assay using young chestnuts grown indoors, and confirmed with traditional stem inoculations on 3- and 4-year-old field-grown trees. Pollen from 'Darling4' and other events was used to produce transgenic T1 seedlings, which also expressed the enhanced resistance trait in leaf assays. Outcrossed transgenic seedlings have several advantages over tissue-cultured plantlets, including increased genetic diversity and faster initial growth. This represents a major step toward the restoration of the majestic American chestnut.

  11. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system

    SciTech Connect

    Kurihara, H. . E-mail: Hiroyuki_Kurihara@nts.toray.co.jp; Sezutsu, H.; Tamura, T.; Yamada, K.

    2007-04-20

    We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although the native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.

  12. Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases.

    PubMed

    Sugiyama, Akifumi; Linley, Philip J; Sasaki, Kanako; Kumano, Takuto; Yamamoto, Hideaki; Shitan, Nobukazu; Ohara, Kazuaki; Takanashi, Kojiro; Harada, Emiko; Hasegawa, Hisakazu; Terakawa, Teruhiko; Kuzuyama, Tomohisa; Yazaki, Kazufumi

    2011-11-01

    Prenylated polyphenols are secondary metabolites beneficial for human health because of their various biological activities. Metabolic engineering was performed using Streptomyces and Sophora flavescens prenyltransferase genes to produce prenylated polyphenols in transgenic legume plants. Three Streptomyces genes, NphB, SCO7190, and NovQ, whose gene products have broad substrate specificity, were overexpressed in a model legume, Lotus japonicus, in the cytosol, plastids or mitochondria with modification to induce the protein localization. Two plant genes, N8DT and G6DT, from Sophora flavescens whose gene products show narrow substrate specificity were also overexpressed in Lotus japonicus. Prenylated polyphenols were undetectable in these plants; however, supplementation of a flavonoid substrate resulted in the production of prenylated polyphenols such as 7-O-geranylgenistein, 6-dimethylallylnaringenin, 6-dimethylallylgenistein, 8-dimethylallynaringenin, and 6-dimethylallylgenistein in transgenic plants. Although transformants with the native NovQ did not produce prenylated polyphenols, modification of its codon usage led to the production of 6-dimethylallylnaringenin and 6-dimethylallylgenistein in transformants following naringenin supplementation. Prenylated polyphenols were not produced in mitochondrial-targeted transformants even under substrate feeding. SCO7190 was also expressed in soybean, and dimethylallylapigenin and dimethylallyldaidzein were produced by supplementing naringenin. This study demonstrated the potential for the production of novel prenylated polyphenols in transgenic plants. In particular, the enzymatic properties of prenyltransferases seemed to be altered in transgenic plants in a host species-dependent manner.

  13. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research

    PubMed Central

    Santos, Ana Paula; Wegel, Eva; Allen, George C; Thompson, William F; Stoger, Eva; Shaw, Peter; Abranches, Rita

    2006-01-01

    Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin. PMID:17081287

  14. [Effect of transgenic plants on biodiversity of agroecosystem].

    PubMed

    Nie, Chengrong; Wang, Jianwu; Luo, Shiming

    2003-08-01

    The effect of transgenic plants on the biodiversity of agroecosystem is an important environmental issue. There are many researches in this field at home and abroad recently. This paper reviewed the advances of the researches based on three levels of biodiversity as genetic diversity, species diversity and ecosystem diversity. They included following aspects: the effect of insect-resistant transgenic crops on target pest; the effect of herbicide-resistant transgenic crops on crops and wild weedy relatives; the effect of virus-resistant transgenic crops on virus; and the effect of transgenic crops on non-target organisms. This paper also discussed the effect of transgenic crops on soil ecosystem and crop genetic diversity. Their potential risks included uncontrolled flows of genes to wild relatives; development of herbicide, insect, and virus resistance in wild relatives; reduced crop genetic diversity; and adverse effects on organisms that were not pests, such as beneficial insects.

  15. Transgenic plants as vital components of integrated pest management.

    PubMed

    Kos, Martine; van Loon, Joop J A; Dicke, Marcel; Vet, Louise E M

    2009-11-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars. Commercially available insect-resistant transgenic crops show clear benefits for agriculture and there are many exciting new developments such as transgenic plants that enhance biological control. Effective evaluation tools are needed to ascertain that transgenic plants do not result in undesired non-target effects. If these conditions are met, there will be ample opportunities for transgenic plants to become key components of environmentally benign and durable pest management systems. Here we discuss the potential and challenges for incorporating transgenic plants in IPM.

  16. Expression of complete metabolic pathways in transgenic plants.

    PubMed

    Krichevsky, Alexander; Zaltsman, Adi; King, Lisa; Citovsky, Vitaly

    2012-01-01

    Plant genetic engineering emerged as a methodology to introduce only few transgenes into the plant genome. Following fast-paced developments of the past few decades, engineering of much larger numbers of transgenes became a reality, allowing to introduce full metabolic pathways from other organisms into plants and generate transgenics with startling new traits. From the advent of the classical plant genetic engineering, the transgenes were introduced into the nuclear genome of the plant cell, and this strategy still is quite successful when applied to few transgenes. However, for introducing large number of transgenes, we advocate that the chloroplast genome is a superior choice, especially for engineering of new complete metabolic pathways into plants. The ability to genetically engineer plants with complex and fully functional metabolic pathways from other organisms bears a substantial promise in generation of pharmaceuticals, i.e., biopharming, and new agricultural crops with that traits never existed before, leading to enhancement in quality of human life. PMID:22616478

  17. The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato.

    PubMed

    Hong, Ya-Fang; Liu, Chang-Yeu; Cheng, Kuo-Joan; Hour, Ai-Ling; Chan, Min-Tsair; Tseng, Tung-Hai; Chen, Kai-Yi; Shaw, Jei-Fu; Yu, Su-May

    2008-07-01

    The sweet potato sporamin promoter was used to control the expression in transgenic potato of the E. coli appA gene, which encodes a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The sporamin promoter was highly active in leaves, stems and different size tubers of transgenic potato, with levels of phytase expression ranging from 3.8 to 7.4% of total soluble proteins. Phytase expression levels in transgenic potato tubers were stable over several cycles of propagation. Field tests showed that tuber size, number and yield increased in transgenic potato. Improved phosphorus (P) acquisition when phytate was provided as a sole P source and enhanced microtuber formation in cultured transgenic potato seedlings when phytate was provided as an additional P source were observed, which may account for the increase in leaf chloroplast accumulation (important for photosynthesis) and tuber yield of field-grown transgenic potato supplemented with organic fertilizers. Animal feeding tests indicated that the potato-produced phytase supplement was as effective as a commercially available microbial phytase in increasing the availability of phytate-P to weanling pigs. This study demonstrates that the sporamin promoter can effectively direct high-level recombinant protein expression in potato tubers. Moreover, overexpression of phytase in transgenic potato not only offers an ideal feed additive for improving phytate-P digestibility in monogastric animals but also improves tuber yield, enhances P acquisition from organic fertilizers, and has a potential for phytoremediation.

  18. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis.

    PubMed

    Lucas, Stéphanie; Tavernier, Geneviève; Tiraby, Claire; Mairal, Aline; Langin, Dominique

    2003-01-01

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis. PMID:12518034

  19. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens.

    PubMed

    Ye, Xudong; Williams, Edward J; Shen, Junjiang; Johnson, Susan; Lowe, Brenda; Radke, Sharon; Strickland, Steve; Esser, James A; Petersen, Michael W; Gilbertson, Larry A

    2011-08-01

    Single transgene copy, vector backbone-free transgenic crop plants are highly desired for functional genomics and many biotechnological applications. We demonstrate that binary vectors that use a replication origin derived from the Ri plasmid of Agrobacterium rhizogenes (oriRi) increase the frequency of single copy, backbone-free transgenic plants in Agrobacterium tumefaciens mediated transformation of soybean, canola, and corn, compared to RK2-derived binary vectors (RK2 oriV). In large scale soybean transformation experiments, the frequency of single copy, backbone-free transgenic plants was nearly doubled in two versions of the oriRi vectors compared to the RK2 oriV control vector. In canola transformation experiments, the oriRi vector produced more single copy, backbone-free transgenic plants than did the RK2 oriV vector. In corn transformation experiments, the frequency of single copy backbone-free transgenic plants was also significantly increased when using the oriRi vector, although the transformation frequency dropped. These results, derived from transformation experiments using three crops, indicate the advantage of oriRi vectors over RK2 oriV binary vectors for the production of single copy, backbone-free transgenic plants using Agrobacterium-mediated transformation.

  20. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    PubMed

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  1. Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa.

    PubMed

    Halfhill, Matthew D; Millwood, Reginald J; Raymer, Paul L; Stewart, C Neal

    2002-10-01

    The movement of transgenes from crops to weeds and the resulting consequences are concerns of modern agriculture. The possible generation of "superweeds" from the escape of fitness-enhancing transgenes into wild populations is a risk that is often discussed, but rarely studied. Oilseed rape, Brassica napus (L.), is a crop with sexually compatible weedy relatives, such as birdseed rape (Brassica rapa (L.)). Hybridization of this crop with weedy relatives is an extant risk and an excellent interspecific gene flow model system. In laboratory crosses, T3 lines of seven independent transformation events of Bacillus thuringiensis (Bt) oilseed rape were hybridized with two weedy accessions of B. rapa. Transgenic hybrids were generated from six of these oilseed rape lines, and the hybrids exhibited an intermediate morphology between the parental species. The Bt transgene was present in the hybrids, and the protein was synthesized at similar levels to the corresponding independent oilseed rape lines. Insect bioassays were performed and confirmed that the hybrid material was insecticidal. The hybrids were backcrossed with the weedy parent, and only half the oilseed rape lines were able to produce transgenic backcrosses. After two backcrosses, the ploidy level and morphology of the resultant plants were indistinguishable from B. rapa. Hybridization was monitored under field conditions (Tifton, GA, USA) with four independent lines of Bt oilseed rape with a crop to wild relative ratio of 1200:1. When B. rapa was used as the female parent, hybridization frequency varied among oilseed rape lines and ranged from 16.9% to 0.7%.

  2. Fertile transgenic Brachiaria ruziziensis (ruzigrass) plants by particle bombardment of tetraploidized callus.

    PubMed

    Ishigaki, Genki; Gondo, Takahiro; Suenaga, Kazuhiro; Akashi, Ryo

    2012-03-15

    We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile. PMID:22236981

  3. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease.

    PubMed

    Ogwok, Emmanuel; Odipio, John; Halsey, Mark; Gaitán-Solís, Eliana; Bua, Anton; Taylor, Nigel J; Fauquet, Claude M; Alicai, Titus

    2012-12-01

    Cassava brown streak disease (CBSD), caused by the Ipomoviruses Cassava brown streak virus (CBSV) and Ugandan Cassava brown streak virus (UCBSV), is considered to be an imminent threat to food security in tropical Africa. Cassava plants were transgenically modified to generate small interfering RNAs (siRNAs) from truncated full-length (894-bp) and N-terminal (402-bp) portions of the UCBSV coat protein (ΔCP) sequence. Seven siRNA-producing lines from each gene construct were tested under confined field trials at Namulonge, Uganda. All nontransgenic control plants (n = 60) developed CBSD symptoms on aerial tissues by 6 months after planting, whereas plants transgenic for the full-length ΔCP sequence showed a 3-month delay in disease development, with 98% of clonal replicates within line 718-001 remaining symptom free over the 11-month trial. Reverse transcriptase-polymerase chain reaction (RT-PCR) diagnostics indicated the presence of UCBSV within the leaves of 57% of the nontransgenic controls, but in only two of 413 plants tested (0.5%) across the 14 transgenic lines. All transgenic plants showing CBSD were PCR positive for the presence of CBSV, except for line 781-001, in which 93% of plants were confirmed to be free of both pathogens. At harvest, 90% of storage roots from nontransgenic plants were severely affected by CBSD-induced necrosis. However, transgenic lines 718-005 and 718-001 showed significant suppression of disease, with 95% of roots from the latter line remaining free from necrosis and RT-PCR negative for the presence of both viral pathogens. Cross-protection against CBSV by siRNAs generated from the full-length UCBSV ΔCP confirms a previous report in tobacco. The information presented provides proof of principle for the control of CBSD by RNA interference-mediated technology, and progress towards the potential control of this damaging disease.

  4. Oestrogenic regulation of an egr-1 transgene in rat anterior pituitary.

    PubMed

    Man, P-S; Carter, D A

    2003-04-01

    The C(2)H(2) zinc-finger transcription factor Egr-1 has previously been shown to play an essential role within the endocrine system as a molecular determinant of LH beta-subunit synthesis in anterior pituitary gonadotrophs. The extent to which Egr-1 may be a dynamic mediator of changes in gonadotroph function during the oestrous cycle is currently unclear. We have recently produced a novel rat transgenic model of egr-1 gene function in which proximal regions of the rat egr-1 gene drive expression of a reporter gene. In the present study, we have investigated the expression and physiological regulation of our egr-1/d4 enhanced green fluorescent protein (EGFP) transgene in the female rat pituitary gland. In situ hybridization analysis has revealed anterior pituitary-specific expression that is limited to a sub-population of cells that includes immunohistochemically defined gonadotrophs. Expression of the transgene is up-regulated 5-fold following ovariectomy. The transgene also exhibits regulated expression during the oestrous cycle, mRNA levels being significantly raised on pro-oestrus. Using an explant culture system, we have also demonstrated a direct stimulatory effect of 17beta-oestradiol on anterior pituitary transgene and egr-1 expression. The acute response of egr-1 to an oestrogenic stimulus is attenuated by the MEK (MAPK kinase) inhibitor U0126, and is accompanied by increased levels of phospho-p44/42 MAPK protein, suggesting regulation of egr-1 through a MAPK-linked pathway in the pituitary. These findings provide further evidence of cyclical endocrine regulation of egr-1 in the rat, demonstrate that proximal sequences of the egr-1 gene mediate endocrine-regulated expression, and indicate a novel pathway through which pituitary transcriptional responses to oestrogen may be mediated.

  5. Characterization of transgenic mice containing adenovirus early region 3 genomic DNA.

    PubMed Central

    Fejer, G; Gyory, I; Tufariello, J; Horwitz, M S

    1994-01-01

    Human adenoviruses (Ad) contain a complex transcription region (E3) which codes for proteins that interact with several arms of the immune system. However, E3 genes are not essential for replication in tissue culture. An E3-encoded 19,000-molecular-weight (19K) glycoprotein (gp19K) binds to the class I major histocompatibility complex (MHC) in the endoplasmic reticulum and prevents MHC transport to the cell surface. Three other E3 proteins are involved in the inhibition of apoptosis by tumor necrosis factor alpha. The entire E3 genomic DNA was utilized to produce transgenic mice to study the effect of the E3 proteins on pathogenesis of various infectious agents and to investigate the in vivo synthesis and processing of the multiple E3 mRNAs and proteins. There was basal expression of the E3 promoter in the thymus, kidneys, uterus, and testes and at all levels of the gastrointestinal tract. In addition, the E3 promoter of the transgene could be activated in some other organs, including the liver, by infection of these animals with an E3-deficient Ad (Ad7001) which contains a functional E1A region. Transactivation in vivo could also be demonstrated by infusion of bacterial lipopolysaccharide. There appeared to be differential ratios of expression between several of the E3 mRNAs in transgenic lung fibroblasts and primary kidney cells cultured from the transgenic animals. This observation suggested that there was differential mRNA splicing that was organ specific. These transgenic animals should provide a useful model for studying the effects of the E3 proteins on the immune system and on diseases affected either by control of MHC or by selected functions of tumor necrosis factor that are inhibitable by Ad E3 proteins. Images PMID:8057467

  6. Tumor cell differentiation by marker free fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Weber, Petra; Wagner, Michael; Brantsch, Marco; Biller, Philipp; Kioschis, Petra; Kessler, Waltraud

    2011-02-01

    Autofluorescence and Raman spectra, images and decay kinetics of U251-MG glioblastoma cells prior and after activation of tumor suppressor genes are compared. While phase contrast images and fluorescence patterns of the tumor (control) cells and the less malignant cells are similar, differences can be deduced from autofluorescence spectra and decay times. In particular, upon excitation around 375nm, the fluorescence ratio of the protein bound and the free coenzyme NADH depends on the state of malignancy. Slight differences are also observed in Raman spectra of these cell lines, in particular at wave numbers around 970 cm-1. While larger numbers of fluorescence and Raman spectra are evaluated by the method of multivariate data analysis, additional information is obtained from spectral images and fluorescence lifetime images (FLIM).

  7. Estrogen regulation of the avian transferrin gene in transgenic mice.

    PubMed Central

    Hammer, R E; Idzerda, R L; Brinster, R L; McKnight, G S

    1986-01-01

    The intact chicken transferrin gene was microinjected into fertilized mouse eggs, and the resulting transgenic animals were used to produce lines of mice containing integrated copies of the chicken gene. The levels of expression of the chicken gene were quantitated in various tissues, and the response of the gene to estrogen stimulation was measured after chronic or acute estrogen exposure. Two of the three mouse lines studied maintained stable levels of expression in successive generations of offspring, and the third line had two- to threefold-higher levels in offspring than in the original parent. In the third line, the original transgenic parent was found to be a mosaic. The chicken transferrin gene was expressed at 10- to 20-fold-higher levels in liver than in any other tissue; however, the levels of chicken transferrin mRNA in kidney were higher than expected, indicating that the tissue specificity was only partial. In all three lines, the foreign gene was induced by estrogen administration. After 10 days of estrogen administration, there was a twofold increase in both transferrin mRNA and transcription of the chicken transferrin gene. A single injection of estradiol led to a fourfold increase in transferrin mRNA synthesis at 4h. As a control the levels of mouse albumin were measured, and both the level of albumin mRNA and its rate of transcription declined about twofold after estrogen administration. Our results indicate that the intact chicken gene with 2.2 kilobases of 5' flanking sequence contains signals for both tissue specificity and steroid regulation that can be recognized in mice. Images PMID:3785157

  8. Vitamin H-regulated transgene expression in mammalian cells

    PubMed Central

    Weber, Wilfried; Bacchus, William; Daoud-El Baba, Marie; Fussenegger, Martin

    2007-01-01

    Although adjustable transgene expression systems are considered essential for future therapeutic and biopharmaceutical manufacturing applications, the currently available transcription control modalities all require side-effect-prone inducers such as immunosupressants, hormones and antibiotics for fine-tuning. We have designed a novel mammalian transcription-control system, which is reversibly fine-tuned by non-toxic vitamin H (also referred to as biotin). Ligation of vitamin H, by engineered Escherichia coli biotin ligase (BirA), to a synthetic biotinylation signal fused to the tetracycline-dependent transactivator (tTA), enables heterodimerization of tTA to a streptavidin-linked transrepressor domain (KRAB), thereby abolishing tTA-mediated transactivation of specific target promoters. As heterodimerization of tTA to KRAB is ultimately conditional upon the presence of vitamin H, the system is vitamin H responsive. Transgenic Chinese hamster ovary cells, engineered for vitamin H-responsive gene expression, showed high-level, adjustable and reversible production of a human model glycoprotein in bench-scale culture systems, bioreactor-based biopharmaceutical manufacturing scenarios, and after implantation into mice. The vitamin H-responsive expression systems showed unique band pass filter-like regulation features characterized by high-level expression at low (0–2 nM biotin), maximum repression at intermediate (100–1000 nM biotin), and high-level expression at increased (>100 000 nM biotin) biotin concentrations. Sequential ON-to-OFF-to-ON, ON-to-OFF and OFF-to-ON expression profiles with graded expression transitions can all be achieved by simply increasing the level of a single inducer molecule without exchanging the culture medium. These novel expression characteristics mediated by an FDA-licensed inducer may foster advances in therapeutic cell engineering and manufacturing of difficult-to-produce protein therapeutics. PMID:17827215

  9. Pilot production of recombinant human clotting factor IX from transgenic sow milk.

    PubMed

    Sun, Yu-ling; Chang, Yuo-sheng; Lin, Yin-shen; Yen, Chon-ho

    2012-06-01

    Valuable pharmaceutical proteins produced from the mammary glands of transgenic livestock have potential use in the biomedical industry. In this study, recombinant human clotting factor IX (rhFIX) produced from transgenic sow milk for preclinical animal studies have been established. The transgenic sow milk was skimmed and treated with sodium phosphate buffer to remove abundant casein protein. Then, the γ-carboxylated rhFIX fraction was segregated through the Q Sepharose chromatography from uncarboxylated one. For safety issue, the process included virus inactivation by solvent/detergent (S/D) treatment. Subsequently, the S/D treated sample was loaded into the Heparin Sepharose column to recover the rhFIX fraction, which was then reapplied to the Heparin Sepharose column to enhance rhFIX purity and lower the ratio of activated form rhFIX (rhFIXa) easily. This was possible due to the higher affinity of the Heparin affinity sorbent for rhFIXa than for the rhFIX zymogen. Furthermore, an IgA removal column was used to eliminate porcine IgA in purified rhFIX. Finally, nanofiltration was performed for viral clearance. Consequently, a high-quality rhFIX product was produced (approximately 700 mg per batch). Other values for final rhFIX preparation were as follows: purity, >99%; average specific activity, 415.6±57.7 IU/mL and total milk impurity, <0.5 ng/mg. This is the first report that described the whole process and stable production of bioactive rhFIX from transgenic sow milk. The overall manufacturing process presented here has the potential for industrial production of rhFIX for treatment of hemophilia B patients.

  10. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference.

    PubMed

    Murray, James D; Maga, Elizabeth A

    2016-06-01

    At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of

  11. FluxTransgenics: a flexible LIMS-based tool for management of plant transformation experimental data

    PubMed Central

    2014-01-01

    Background The production and commercial release of Genetically Modified Organisms (GMOs) are currently the focus of important discussions. In order to guarantee the quality and reliability of their trials, companies and institutions working on this subject must adopt new approaches on management, organization and recording of laboratory conditions where field studies are performed. Computational systems for management and storage of laboratory data known as Laboratory Information Management Systems (LIMS) are essential tools to achieve this. Results In this work, we have used the SIGLa system – a workflow based LIMS as a framework to develop the FluxTransgenics system for a GMOs laboratory of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Maize and Sorghum (Sete Lagoas, MG - Brazil). A workflow representing all stages of the transgenic maize plants generation has been developed and uploaded in FluxTransgenics. This workflow models the activities involved in maize and sorghum transformation using the Agrobacterium tumefaciens method. By uploading this workflow in the SIGLa system we have created Fluxtransgenics, a complete LIMS for managing plant transformation data. Conclusions FluxTransgenics presents a solution for the management of the data produced by a laboratory of genetically modified plants that is efficient and supports different kinds of information. Its adoption will contribute to guarantee the quality of activities and products in the process of transgenic production and enforce the use of Good Laboratory Practices (GLP). The adoption of the transformation protocol associated to the use of FluxTransgenics has made it possible to increase productivity by at least 300%, increasing the efficiency of the experiments from between 0.5 and 1 percent to about 3%. This has been achieved by an increase in the number of experiments performed and a more accurate choice of parameters, all of which have been made possible because it became easier to

  12. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference.

    PubMed

    Murray, James D; Maga, Elizabeth A

    2016-06-01

    At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of

  13. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization.

    PubMed

    Devos, Yann; Reheul, Dirk; De Schrijver, Adinda

    2005-01-01

    The ongoing discussion on the co-existence between genetically modified (GM) and non-GM crops becomes more important in the European Union (EU). With the recent inscription of 17 GM maize varieties in the common EU catalogue of varieties of agricultural plant species, the acreage of transgenic maize for market purposes is expected to increase in some European countries. In the EU, specific tolerance thresholds have been established for the adventitious and technically unavoidable presence of GM material in non-GM produce, and member states are elaborating legal frames to cope with co-existence. As maize is a cross-pollinated crop relying on wind for the dispersal of its pollen, technical management measures will be imposed to reduce cross-fertilization between transgenic and non-transgenic maize. Various biological, physical and analytical parameters have been identified to play a role in the study of cross-fertilization in maize. This variability may hamper the comparison between research results and may complicate the definition of appropriate isolation distances and/or pollen barriers in order to limit out-crossing. The present review addresses these parameters and proposes containment measures in order to not exceed the legal labeling thresholds in maize. PMID:16402663

  14. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control.

  15. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA

    PubMed Central

    Zhang, Yi; Liang, Zhen; Zong, Yuan; Wang, Yanpeng; Liu, Jinxing; Chen, Kunling; Qiu, Jin-Long; Gao, Caixia

    2016-01-01

    Editing plant genomes is technically challenging in hard-to-transform plants and usually involves transgenic intermediates, which causes regulatory concerns. Here we report two simple and efficient genome-editing methods in which plants are regenerated from callus cells transiently expressing CRISPR/Cas9 introduced as DNA or RNA. This transient expression-based genome-editing system is highly efficient and specific for producing transgene-free and homozygous wheat mutants in the T0 generation. We demonstrate our protocol to edit genes in hexaploid bread wheat and tetraploid durum wheat, and show that we are able to generate mutants with no detectable transgenes. Our methods may be applicable to other plant species, thus offering the potential to accelerate basic and applied plant genome-engineering research. PMID:27558837

  16. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control. PMID:22324875

  17. Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)?

    PubMed

    Tiimonen, Heidi; Aronen, Tuija; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Ylioja, Tiina; Roininen, Heikki; Häggman, Hely

    2005-11-01

    Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1-PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.

  18. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1

    PubMed Central

    Anderson, Marilyn A.

    2014-01-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2–3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2–4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens. PMID:24502957

  19. Chronic exposure to aluminum and melatonin through the diet: neurobehavioral effects in a transgenic mouse model of Alzheimer disease.

    PubMed

    Di Paolo, Celeste; Reverte, Ingrid; Colomina, Maria Teresa; Domingo, José L; Gómez, Mercedes

    2014-07-01

    Aluminum (Al) is a known neurotoxic element involved in the etiology of some serious neurodegenerative disorders such as Alzheimer disease (AD). Antioxidants like melatonin might protect neurons against the damage produced in AD. The APPSWE (Tg2576) transgenic mouse is one of the most used animal models developed to mimic AD damage. In the present study, wild type and Tg2576 mice were orally exposed during 14 months to Al, melatonin, and citric acid, as well as to all possible combinations between them. At 17 months of age, mice were evaluated for behavior using the open-field test and the Morris water maze. Transgenic animals exposed to melatonin only and to Al plus citric acid plus melatonin showed a good acquisition. No effects on acquisition in the Morris water maze were observed in wild type mice. With respect to the retention of the task, only melatonin wild type animals, and Al plus citric acid plus melatonin transgenic mice showed retention during the acquisition. Control wild type animals and Al plus citric acid plus melatonin transgenic mice showed good long term retention. Melatonin improved learning and spatial memory in Al-exposed transgenic mice.

  20. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    PubMed

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging. PMID:14578285

  1. Use of the cryptogein gene to stimulate the accumulation of Bacopa saponins in transgenic Bacopa monnieri plants.

    PubMed

    Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita

    2012-10-01

    Genetic transformation of the Indian medicinal plant, Bacopa monnieri, using a gene encoding cryptogein, a proteinaceous elicitor, via Ri and Ti plasmids, were established and induced bioproduction of bacopa saponins in crypt-transgenic plants were obtained. Transformed roots obtained with A. rhizogenes strain LBA 9402 crypt on selection medium containing kanamycin (100 mg l(-1)) dedifferentiated forming callus and redifferentiated to roots which, spontaneously showed shoot bud induction. Ri crypt-transformed plants thus obtained showed integration and expression of rol genes as well as crypt gene. Ti crypt-transformed B. monnieri plants were established following transformation with disarmed A. tumefaciens strain harboring crypt. Transgenic plants showed significant enhancement in growth and bacopa saponin content. Bacopasaponin D (1.4-1.69 %) was maximally enhanced in transgenic plants containing crypt. In comparison to Ri-transformed plants, Ri crypt-transformed plants showed significantly (p ≤ 0.05) enhanced accumulation of bacoside A(3), bacopasaponin D, bacopaside II, bacopaside III and bacopaside V. Produced transgenic lines can be used for further research on elicitation in crypt-transgenic plants as well as for large scale production of saponins. Key message The cryptogein gene, which encodes a proteinaceous elicitor is associated with increase in secondary metabolite accumulation-either alone or in addition to the increases associated with transformation by A. rhizogenes.

  2. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1.

    PubMed

    Gaspar, Yolanda M; McKenna, James A; McGinness, Bruce S; Hinch, Jillian; Poon, Simon; Connelly, Angela A; Anderson, Marilyn A; Heath, Robyn L

    2014-04-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2-3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2-4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens.

  3. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.

    PubMed

    Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan

    2015-05-01

    Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.

  4. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    PubMed

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat. PMID:26214711

  5. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.

    PubMed

    Halfhill, Matthew D; Sutherland, Jamie P; Moon, Hong Seok; Poppy, Guy M; Warwick, Suzanne I; Weissinger, Arthur K; Rufty, Thomas W; Raymer, Paul L; Stewart, C Neal

    2005-09-01

    Concerns exist that transgenic crop x weed hybrid populations will be more vigorous and competitive with crops compared with the parental weed species. Hydroponic, glasshouse, and field experiments were performed to evaluate the effects of introgression of Bacillus thuringiensis (Bt) cry1Ac and green fluorescent protein (GFP) transgenes on hybrid productivity and competitiveness in four experimental Brassica rapa x transgenic Brassica napus hybrid generations (F1, BC1F1, BC2F1 and BC2F2). The average vegetative growth and nitrogen (N) use efficiency of transgenic hybrid generations grown under high N hydroponic conditions were lower than that of the weed parent (Brassica rapa, AA, 2n = 20), but similar to the transgenic crop parent, oilseed rape (Brassica napus, AACC, 2n = 38). No generational differences were detected under low N conditions. In two noncompetitive glasshouse experiments, both transgenic and nontransgenic BC2F2 hybrids had on average less vegetative growth and seed production than B. rapa. In two high intraspecific competition field experiments with varied herbivore pressure, BC2F2 hybrids produced less vegetative dry weight than B. rapa. The competitive ability of transgenic and nontransgenic BC2F2 hybrids against a neighbouring crop species were quantified in competition experiments that assayed wheat (Triticum aestivum) yield reductions under agronomic field conditions. The hybrids were the least competitive with wheat compared with parental Brassica competitors, although differences between transgenic and nontransgenic hybrids varied with location. Hybridization, with or without transgene introgression, resulted in less productive and competitive populations. PMID:16101783

  6. Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L.

    PubMed

    Londo, J P; Bollman, M A; Sagers, C L; Lee, E H; Watrud, L S

    2011-10-01

    Increasingly, genetically modified crops are being developed to express multiple 'stacked' traits for different types of transgenes, for example, herbicide resistance, insect resistance, crop quality and tolerance to environmental stresses. The release of crops that express multiple traits could result in ecological changes in weedy environments if feral crop plants or hybrids formed with compatible weeds results in more competitive plants outside of agriculture. To examine the effects of combining transgenes, we developed a stacked line of canola (Brassica napus L.) from a segregating F(2) population that expresses both transgenic glyphosate resistance (CP4 EPSPS) and lepidopteran insect resistance (Cry1Ac). Fitness-associated traits were evaluated between this stacked genotype and five other Brassica genotypes in constructed mesocosm plant communities exposed to insect herbivores (Plutella xylostella L.) or glyphosate-drift. Vegetative biomass, seed production and relative fecundity were all reduced in stacked trait plants when compared with non-transgenic plants in control treatments, indicating potential costs of expressing multiple transgenes without selection pressure. Although costs of the transgenes were offset by selective treatment, the stacked genotype continued to produce fewer seeds than either single transgenic line. However, the increase in fitness of the stacked genotype under selective pressure contributed to an increased number of seeds within the mesocosm community carrying unselected, hitchhiking transgenes. These results demonstrate that the stacking of these transgenes in canola results in fitness costs and benefits that are dependent on the type and strength of selection pressure, and could also contribute to changes in plant communities through hitchhiking of unselected traits.

  7. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety

    PubMed Central

    Tan, Yanhua; Yi, Xiaoping; Wang, Limin; Peng, Cunzhi; Sun, Yong; Wang, Dan; Zhang, Jiaming; Guo, Anping; Wang, Xuchu

    2016-01-01

    To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence. PMID:27582747

  8. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety.

    PubMed

    Tan, Yanhua; Yi, Xiaoping; Wang, Limin; Peng, Cunzhi; Sun, Yong; Wang, Dan; Zhang, Jiaming; Guo, Anping; Wang, Xuchu

    2016-01-01

    To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence. PMID:27582747

  9. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants have facilitated our understanding of the functional roles of genes and the metabolic processes affected in plants. Recently, we isolated the Or gene from an orange cauliflower mutant and showed that the Or gene could serve as a novel genetic tool to enrich carotenoid content in tr...

  10. Isolation and some effects of functional, low-phenylalanine kappa-casein expressed in the milk of transgenic rabbits.

    PubMed

    Baranyi, Mária; Hiripi, László; Szabó, László; Catunda, Ana Paula; Harsányi, Ibolya; Komáromy, Péter; Bosze, Zsuzsanna

    2007-02-01

    Patients suffering certain metabolic diseases (e.g. phenylketonuria) need a low-phenylalanine diet throughout their lives. Transgenic rabbits were created to express low-phenylalanine kappa-casein in their milk. The aim was to demonstrate for the first time the feasibility of producing a modified milk protein in addition to normal milk proteins. A gene construct containing the coding region of the rabbit kappa-casein gene was modified by site-specific oligonucleotide directed mutagenes