Science.gov

Sample records for product monolith formation

  1. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    SciTech Connect

    Jantzen, C

    2006-09-13

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability

  2. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  3. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  4. Online preconcentration using monoliths in electrochromatography capillary format and microchips.

    PubMed

    Augustin, Violaine; Proczek, Gaëlle; Dugay, José; Descroix, Stéphanie; Hennion, Marie-Claire

    2007-11-01

    Online preconcentration and separation of analytes using an in situ photopolymerized hexyl acrylate-based monolith stationary phase was evaluated using electrochromatography in capillary format and microchip. The band broadening occurring during the preconcentration process by frontal electrochromatography and during the desorption process by elution electrochromatography was studied. The hexyl acrylate-based monolith provides high retention for neutral analytes allowing the handling of large sample volumes and its structure allows rapid mass transfer, thus reducing the band broadening. For moderately polar analytes such as mono-chlorophenols that are slightly retained in water, it was shown that enrichment factors up to 3500 can be obtained by a hydrodynamic injection of several bed volumes for 120 min under 0.8 MPa with a decrease in efficiency of 50% and a decrease of 30% for the resolution between 2- and 3-chlorophenol. An 8 min preconcentration time allows enrichment factors above 100 for polyaromatic hydrocarbons. The interest of these monoliths when synthesized in microchip is also demonstrated. A 200-fold enrichment was easily obtained for PAHs with only 1 min as preconcentration time, without decrease in efficiency.

  5. High productivity chromatographic separations on monolithic capillary columns

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Shiryaeva, V. E.; Popova, T. P.; Kurganov, A. A.

    2013-03-01

    The productivity of monolithic capillary columns based on silica gel and polymers of different polarities (divinylbenzene and ethyleneglycol dimethacrylate) is investigated using a model mixture of light hydrocarbons. It is shown that the productivity of a column is noticeably affected by the type of gas carrier. The highest productivity is observed when using carbon dioxide or dinitrogen monoxide as the gas carrier. The lowest productivity is observed when uisng hydrogen or helium.

  6. Westerlund 1: monolithic formation of a starburst cluster

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Clark, J. Simon; Ritchie, Ben; Goodwin, Simon

    2015-08-01

    Westerlund 1 is in all likelihood the most massive young cluster in the Milky Way, with a mass on the order of 105 Msol. We have been observing its massive star population for ten years, measuring radial velocity changes for a substantial fraction of its OB stars and evolved supergiants. The properties of the evolved population are entirely consisting with a single burst of star formation, in excellent agreement with the results of studies based on the lower-mass population.Here we will present two new studies of the cluster: 1) A direct measurement of its average radial velocity and velocity dispersion based on individual measurements for several dozen stars with constant radial velocity and 2) A search for massive stars in its immediate neighbourhood using multi-object spectroscopy.The results of these two studies show that Westerlund 1 is decidedly subvirial and has a systemic radial velocity significantly different from that of nearby gas, which was assumed to provide a dynamical distance by previous authors. Moreover, the dynamical distance is inconsistent with the properties of the high-mass stellar population. In addition, we find that the cluster is completely isolated, with hardly any massive star in its vicinity that could be associated in terms of distance modulus or radial velocity. The cluster halo does not extend much further than five parsec away from the centre. All these properties are very unusual among starburst clusters in the Local Universe, which tend to form in the context of large star-forming regions.Westerlund 1 is thus the best example we have of a starburst cluster formed monolithically.

  7. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  8. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  9. Production of novel polymer monolithic columns, with stationary phase gradients, using cyclic olefin co-polymer (COC) optical filters.

    PubMed

    Currivan, Sinéad; Connolly, Damian; Paull, Brett

    2012-06-07

    Polymer monolithic columns with controlled surface ligand density, providing stationary phase gradients within monolithic capillary columns, have been developed using photo-grafting through optical filters. Utilising commercially available cyclic olefin co-polymer (COC) films, the production of an optical filter capable of attenuating UV irradiation, in a tailored manner, was investigated. This novel optical filter was successfully applied to the surface modification of poly(BuMA-co-EDMA) monolithic columns in a multi-step grafting procedure. Fabricated columns were subjected to scanning capacitively coupled contactless conductivity (sC(4)D), to determine the distribution of the grafted functional groups, axially along the column. Further modification to produce a chelating stationary phase gradient of iminodiacetic acid (IDA) was demonstrated. To demonstrate the distribution of the IDA sites, a metal cation (Cu(2+)) was complexed to the IDA forming a chelate. Upon the formation of a complex of IDA with Cu(2+), an overall drop in conductive response was observed. The COC optical filter was also used in the fabrication of a grafted gradient of strong cation exchanger (SCX), sulphopropyl methacrylate (SPM) upon a polymer monolith, demonstrating the broader applicability of such a filter.

  10. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification.

  11. Production of aligned microfibers and nanofibers and derived functional monoliths

    DOEpatents

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; Omatete, Ogbemi

    2007-08-14

    The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.

  12. The formation of NGC 3603 young starburst cluster: `prompt' hierarchical assembly or monolithic starburst?

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2015-02-01

    The formation of very young massive clusters or `starburst' clusters is currently one of the most widely debated topic in astronomy. The classical notion dictates that a star cluster is formed in situ in a dense molecular gas clump. The stellar radiative and mechanical feedback to the residual gas energizes the latter until it escapes the system. The newly born gas-free young cluster eventually readjusts with the corresponding mass-loss. Based on the observed substructured morphologies of many young stellar associations, it is alternatively suggested that even the smooth-profiled massive clusters are also assembled from migrating less massive subclusters. A very young (age ≈ 1 Myr), massive (>104 M⊙) star cluster like the Galactic NGC 3603 young cluster (HD 97950) is an appropriate testbed for distinguishing between the above `monolithic' and `hierarchical' formation scenarios. A recent study by Banerjee & Kroupa demonstrates that the monolithic scenario remarkably reproduces the HD 97950 cluster. In particular, its shape, internal motion and the mass distribution of stars are found to follow naturally and consistently from a single model calculation undergoing ≈70 per cent by mass gas dispersal. In this work, we explore the possibility of the formation of the above cluster via hierarchical assembly of subclusters. These subclusters are initially distributed over a wide range of spatial volumes and have various modes of subclustering in both absence and presence of a background gas potential. Unlike the above monolithic initial system that reproduces HD 97950 very well, the same is found to be prohibitive with hierarchical assembly alone (with/without a gas potential). Only those systems which assemble promptly into a single cluster (in ≲1 Myr) from a close separation (all within ≲2 pc) could match the observed density profile of HD 97950 after a similar gas removal. These results therefore suggest that the NGC 3603 young cluster has formed essentially

  13. Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths.

    PubMed

    Gillespie, Eoin; Connolly, Damian; Paull, Brett

    2009-07-01

    Capacitively coupled contactless conductivity detection (C4D) is utilised as a simple, rapid and non-invasive technique for the quantitative evaluation of the ion-exchange capacity of charged polymer monoliths in capillary format. A charged monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was photografted onto a 100 microm i.d. butyl methacrylate-co-ethylenedimethacrylate monolith in a number of discrete 10 mm zones. By varying the energy dose (J/cm2) during grafting of each zone, the grafting density and thus ion-exchange capacity could be precisely controlled. Ion-exchange capacity could be correlated with energy dose by measuring the conductive response of each grafted region using scanning C4D techniques. Repeatability of the scanning C4D method was excellent with % RSD values of 0.7% and 2.4% obtained for three replicate scans of the ungrafted and grafted regions of a single monolith, respectively. Repeatability of the photografting process on separate monoliths was also examined by comparison of C4D profiles. The spatial accuracy of photografting was probed using scanning C4D which could measure the conductive response of the monolith at measurement intervals as low as 1 mm along its entire length. Scanning C4D was also used for the real time visualisation of the equilibration of grafted zones to permit the optimisation of monolith washing procedures. Finally, scanning C4D was applied to the measurement of the ion-exchange capacity of butyl methacrylate-co-AMPS-co-ethylenedimethacrylate copolymers with a direct correlation between monolith conductive response and concentration of charged monomer in the polymerisation mixture. The longitudinal homogeneity of charge along the monolith was 0.3% RSD, demonstrating that the charged functional monomer was evenly dispersed throughout the bulk of the monolith. Ion-exchange capacity was cross validated chromatographically using breakthrough studies and found to closely correlate to within 1% of the

  14. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  15. Formate Formation and Formate Conversion in Biological Fuels Production

    PubMed Central

    Crable, Bryan R.; Plugge, Caroline M.; McInerney, Michael J.; Stams, Alfons J. M.

    2011-01-01

    Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production. PMID:21687599

  16. Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles.

    PubMed

    Zhang, Aizhu; Ye, Fanggui; Lu, Junyu; Zhao, Shulin

    2013-12-01

    A novel strategy for screening α-glucosidase inhibitors (AGIs) from natural products by capillary electrophoresis (CE) with an immobilised enzyme microreactor was developed. In this approach, gold nanoparticles (AuNPs) was first covalently attached to surface of the pores of the porous polymer capillary monolith via the formation of an Au-S bond, and α-glucosidase was then simply and stably immobilised onto AuNPs through the strong affinity of gold for amino groups of the enzyme. In order to profiling the activity of the immobilised α-glucosidase, the natural substrate was hydrolyzed by it and the yield of product was determined by CE. The amount of covalently attached α-glucosidase to the monolith was calculated to be about 30.0 μg/mg. The immobilised enzyme exhibited 80% activity after 25 runs, and only lost 7.6% of activity after 6 runs within 31 days. Screening of AGIs present in extracts of natural products by the proposed method was demonstrated.

  17. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Liu, Han-Din; Morse, Mike; Paniccia, Mario J.; Zadka, Moshe; Litski, Stas; Sarid, Gadi; Pauchard, Alexandre; Kuo, Ying-Hao; Chen, Hui-Wen; Zaoui, Wissem Sfar; Bowers, John E.; Beling, Andreas; McIntosh, Dion C.; Zheng, Xiaoguang; Campbell, Joe C.

    2009-01-01

    Significant progress has been made recently in demonstrating that silicon photonics is a promising technology for low-cost optical detectors, modulators and light sources. It has often been assumed, however, that their performance is inferior to InP-based devices. Although this is true in most cases, one of the exceptions is the area of avalanche photodetectors, where silicon's material properties allow for high gain with less excess noise than InP-based avalanche photodetectors and a theoretical sensitivity improvement of 3 dB or more. Here, we report a monolithically grown germanium/silicon avalanche photodetector with a gain-bandwidth product of 340 GHz, a keff of 0.09 and a sensitivity of -28 dB m at 10 Gb s-1. This is the highest reported gain-bandwidth product for any avalanche photodetector operating at 1,300 nm and a sensitivity that is equivalent to mature, commercially available III-V compound avalanche photodetectors. This work paves the way for the future development of low-cost, CMOS-based germanium/silicon avalanche photodetectors operating at data rates of 40 Gb s-1 or higher.

  18. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  19. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  20. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  1. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.

    PubMed

    Zaushitsyna, Oksana; Dishisha, Tarek; Hatti-Kaul, Rajni; Mattiasson, Bo

    2017-01-10

    Crosslinked, cryostructured monoliths prepared from Lactobacillus reuteri cells were evaluated as potential immobilized whole-cell biocatalyst for conversion of glycerol, to potentially important chemicals for the biobased industry, i.e. 3-hydroxypropionaldehyde (3HPA), 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO). Glutaraldehyde, oxidized dextran and activated polyethyleneimine/modified polyvinyl alcohol (PEI/PVA) were evaluated as crosslinkers; the latter gave highly stable preparations with maintained viability and biocatalytic activity. Scanning electron microscopy of the PEI/PVA monoliths showed high density of crosslinked cells with wide channels allowing liquid flow through. Flux analysis of the propanediol-utilization pathway, incorporating glycerol/diol dehydratase, propionaldehyde dehydrogenase, 1,3PDO oxidoreductase, phosphotransacylase, and propionate kinase, for conversion of glycerol to the three chemicals showed that the maximum specific reaction rates were -562.6, 281.4, 62.4 and 50.5mg/gCDWh for glycerol consumption, and 3HPA (extracellular), 3HP and 1,3PDO production, respectively. Under optimal conditions using monolith operated as continuous plug flow reactor, 19.7g/L 3HPA was produced as complex with carbohydrazide at a rate of 9.1g/Lh and a yield of 77mol%. Using fed-batch operation, 1,3PDO and 3HP were co-produced in equimolar amounts with a yield of 91mol%. The monoliths embedded in plastic carriers showed high mechanical stability under different modes in a miniaturized plug flow reactor.

  2. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  3. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    NASA Astrophysics Data System (ADS)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  4. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  5. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  6. Grafted macroporous polymer monolithic disks: a new format of scavengers for solution-phase combinatorial chemistry.

    PubMed

    Tripp, J A; Svec, F; Fréchet, J M

    2001-01-01

    Polyethylene encased porous poly(chloromethylstyrene-co-divinylbenzene) disks have been prepared by polymerization in a cylindrical glass mold and cut to a disk format. Following attachment of a free radical azo initiator 4,4'-azobis(4-cyanovaleric acid) to available functionalities at the surface of the pores, the polymerization of 2-vinyl-4,4-dimethylazlactone was initiated from the surface. To avoid an undesirable increase in flow resistance and to improve the yield of grafting, divinylbenzene was added to the polymerization mixture in order to form a layer of swellable reactive polymer gel within the pores. The use of these disks as scavenging filters to remove various amines from solutions in flow-through operations was demonstrated by effective removal of amines in a very short period of time from their solutions in a variety of solvents, even including alcohols and water.

  7. In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries.

    PubMed

    Zhang, Jianjun; Wen, Huijie; Yue, Liping; Chai, Jingchao; Ma, Jun; Hu, Pu; Ding, Guoliang; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2017-01-01

    Sodium ion battery is one of the promising rechargeable batteries due to the low-cost and abundant sodium sources. In this work, a monolithic sodium ion battery based on a Na3 V2 (PO4 )3 cathode, MoS2 layered anode, and polyether-based polymer electrolyte is reported. In addition, a new kind of polysulfonamide-supported poly(ethylene glycol) divinyl ether based polymer electrolyte is also demonstrated for monolithic sodium ion battery via in situ preparation. The resultant polymer electrolyte exhibits relatively high ionic conductivity (1.2 mS cm(-1) ) at ambient temperature, wide electrochemical window (4.7 V), and favorable mechanical strength (25 MPa). Moreover, such a monolithic Na3 V2 (PO4 )3 /MoS2 sodium ion battery using this polymer electrolyte delivers outstanding rate capability (up to 10 C) and superior cyclic stability (84%) after 1000 cycles at 0.5 C. What is more essential, such a polymer electrolyte based soft-package monolithic sodium ion cell can still power a red light emitting diode lamp and run finite times without suffering from any internal short-circuit failures, even in the case of a bended and wrinkled state. Considering these aspects, this work no doubt provides a new approach for the design of a high-performance polymer electrolyte toward monolithic sodium ion battery with exceptional rate capability and high safety. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths.

    PubMed

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-10-30

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can be explained from the general theory of surface-directed phase separation in confined spaces. The formed structures are to a large extent nearly exclusively determined by the ratio between the bulk domain size of the monolith on the one hand and the distance between the micro-pillars on the other hand. When this ratio is small, the presence of the pillars has nearly no effect on the morphology of the produced monoliths. However, when the ratio approaches unity and ascends above it, some new types of monolith morphologies are induced, two of which appear to have interesting properties for use as novel chromatographic supports. One of these structures (obtained when the domain size/inter-pillar distance ratio is around unity) is a 3D network of linear interconnections between the pillars, organized such that all skeleton branches are oriented perpendicular to the micro-pillar surface. A second interesting structure is obtained at even higher values of the domain size/inter-pillar distance ratio. In this case, each individual micro-pillar is uniformly coated with a mesoporous shell.

  9. Catalyst assisted synthesis of initiator attached silica monolith particles via isocyanate-hydroxyl reaction for production of polystyrene bound chromatographic stationary phase of excellent separation efficiency.

    PubMed

    Ali, Faiz; Kim, Yune Sung; Lee, Jin Wook; Cheong, Won Jo

    2014-01-10

    Dibutyltin dichloride (DBTDC) was used as a catalyst to chemically bind 4-chloromehtylphenylisocynate (4-CPI) to porous monolithic silica particles via isocyanate-hydroxyl reaction, and the reaction product was reacted with sodium diethyldithiocarbamate (SDDC) to yield initiator attached silica monolith particles. Reversible addition-fragmentation transfer (RAFT) polymerization was taken place on them to result in polystyrene attached silica particles that showed excellent separation efficiency when packed in a chromatographic column (1.0 mm × 300 mm). The numbers of theoretical plates (N) of 56,500 is better than those of any commercially available HPLC or UHPLC column yet.

  10. Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts

    SciTech Connect

    Wang, Yong; Liu, Wei

    2009-04-19

    This paper reports recent research results about impact of different catalyst bed configurations on FT reaction product distribution. A CoRe/γ-alumina catalyst is prepared in bulk particle form and tested in the packed bed reactor at a size of 60 to 100 mesh. The same catalyst is ball milled and coated on a ceramic monolith support structure of channel size about 1mm. The monolith catalyst module is tested in two different ways, as a whole piece and as well-defined channels. Steady-state reaction conversion is measured at various temperatures under constant H2/CO feed ratio of 2 and reactor pressure of 25 bar. Detailed product analysis is performed. Significant formation of wax is evident with the packed particle bed and with the monolith catalyst that is improperly packed. By contrast, the wax formation is not detected in the liquid product by confining the reactions inside the monolith channel. This study presents an important finding about the structured catalyst/reactor system that the product distribution highly depends on the way how the structured reactor is set up. Even if the same catalyst and same reaction conditions (T, P, H2/oil ratio) are used, hydrodynamics (or flow conditions) inside a structured channel can have a significant impact on the product distribution.

  11. Comparison of monolithic and microparticulate columns for reversed-phase liquid chromatography of tryptic digests of industrial enzymes in cleaning products.

    PubMed

    Beneito-Cambra, M; Herrero-Martínez, J M; Ramis-Ramos, G; Lindner, W; Lämmerhofer, M

    2011-10-14

    Enzymes of several classes used in the formulations of cleaning products were characterized by trypsin digestion followed by HPLC with UV detection. A polymeric monolithic column (ProSwift) was used to optimize the separation of both the intact enzymes and their tryptic digests. This column was adequate for the quality control of raw industrial enzyme concentrates. Then, monolithic and microparticulate columns were compared for peptide analysis. Under optimized conditions, the analysis of tryptic digests of enzymes of different classes commonly used in the formulation of cleaning products was carried out. Number of peaks, peak capacity and global resolution were obtained in order to evaluate the chromatographic performance of each column. Particulate shell-core C18 columns (Kinetex, 2.6 μm) showed the best performance, followed by a silica monolithic column (Chromolith RP-18e) and the conventional C18 packings (Gemini, 5 μm or 3 μm). A polymeric monolithic column (ProSwift) gave the worst performances. The proposed method was satisfactorily applied to the characterization of the enzymes present in spiked detergent bases and commercial cleaners.

  12. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  13. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  14. Elastic and optical anisotropy of the single-coal monolithic high-temperature (HT) carbonization products obtained on a laboratory scale

    SciTech Connect

    Marta Krzesinska; Slawomira Pusz; Andrzej Koszorek

    2005-10-01

    The aim of the present study was to investigate the directional dependences of the elastic and optical properties of monolithic single-coal high-temperature (HT) carbonization products obtained on a laboratory scale (with very slow heating rate) from coals of different caking propensity. Sixteen monolithic HT carbonization products, mainly cokes, were produced in the Jenkner retort furnace using 16 various types of coals of varying rank (from 83.1 wt % carbon to 98.3 wt % carbon) with a Roga index (RI) in the range of 0-76. Coals were carbonized in the form of monolithic blocks. The physical parameters such as true density, porosity, ultrasonic velocity, and dynamic elastic moduli, as well as optical reflectance parameters (R{sub max}, R{sub min}, R{sub am}), were determined for the resultant products. The elastic and optical properties of the HT carbonization products were related to their porosity and the rank of the parent coals. It was determined that the HT carbonization products exhibit the different directional properties of the studied parameters, and they can be divided into three groups, with respect to the observed differences. The properties of these groups were related to the parent coal rank and the caking propensity (i.e., to the RI value). Anisotropy of the coke matrix structure was determined to be important for discussion about the anisotropic properties of cokes. 50 refs., 9 figs., 4 tabs.

  15. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow

  16. Selection of column dimensions and gradient conditions to maximize the peak-production rate in comprehensive off-line two-dimensional liquid chromatography using monolithic columns.

    PubMed

    Eeltink, Sebastiaan; Dolman, Sebastiaan; Vivo-Truyols, Gabriel; Schoenmakers, Peter; Swart, Remco; Ursem, Mario; Desmet, Gert

    2010-08-15

    The peak-production rate (peak capacity per unit time) in comprehensive off-line two-dimensional liquid chromatography (LC/x/LC) was optimized for the separation of peptides using poly(styrene-co-divinylbenzene) monolithic columns in the reversed-phase (RP) mode. A first-dimension ((1)D) separation was performed on a monolithic column operating at a pH of 8, followed by sequential analysis of all the (1)D fractions on a monolithic column operating at a pH of 2. To obtain the highest peak-production rate, effects of column length, gradient duration, and sampling time were examined. RP/x/RP was performed at undersampling conditions using a short 10 min (1)D gradient. The peak-production rate was highest using a 50 mm long (2)D column applying an 8-10 min (2)D gradient time and was almost a factor of two higher than when a 250 mm monolithic column was used. The best way to obtain a higher peak-production rate in off-line LC/x/LC proved to be an increase in the number of (1)D fractions collected. Increasing the (2)D gradient time was less effective. The potential of the optimized RP/x/RP method is demonstrated by analyzing proteomics samples of various complexities. Finally, the trade-off between peak capacity and analysis time is discussed in quantitative terms for both one-dimensional RP gradient-elution chromatography and the off-line two-dimensional (RP/x/RP) approach. At the conditions applied, the RP/x/RP approach provided a higher peak-production rate than the (1)D-LC approach when collecting three (1)D fractions, which corresponds to a total analysis time of 60 min.

  17. Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant.

    PubMed

    Yu, Huan; Zhu, Yang; Yang, Hui; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Guo, Xingzhong

    2014-09-07

    A facile and "green" method was proposed to introduce Ag nanoparticles (Ag NPs) into the hierarchically monolithic silica uniformly in the presence of (3-aminopropyl)-triethoxysilane (APTES) and ethylene glycol. APTES is used to modify the monolith by incorporating amino groups onto the surface of meso-macroporous skeletons, while ethylene glycol is employed as the productive reductant. Ag NPs are homogeneously immobilized in hierarchically monolithic silica after reduction and drying at 40 °C for different duration times, and the embedded amount of Ag NPs can reach 15.44 wt% when treated once. The embedment of Ag NPs increases with the repeat treatment and the APTES amount, without uncontrollable crystalline growth. The surface areas of Ag NPs embedded in silica monoliths after heat treatment at 300 and 400 °C are higher than those before heat treatment. The modification via APTES and the embedment of Ag NPs does not spoil the morphology of monolithic silica, while changing the pore structures of the monolith. A tentative formation process and a reduction mechanism are proposed for the modification, reduction and embedment. Ag NPs embedded in monolithic silica is promising for wide applications such as catalysis and separation.

  18. Polystyrene-co-Divinylbenzene PolyHIPE Monoliths in 1.0 mm Column Formats for Liquid Chromatography.

    PubMed

    Choudhury, Sidratul; Fitzhenry, Laurence; White, Blánaid; Connolly, Damian

    2016-03-18

    The reversed phase liquid chromatographic (RP-HPLC) separation of small molecules using a polystyrene-co-divinylbenzene (PS-co-DVB) polyHIPE stationary phases housed within 1.0 mm i.d. silcosteel columns is presented within this study. A 90% PS-co-DVB polyHIPE was covalently attached to the walls of the column housing by prior wall modification with 3-(trimethoxysilyl) propyl methacrylate and could withstand operating backpressures in excess of 200 bar at a flow rate of 1.2 mL/min. Permeability studies revealed that the monolith swelled slightly in 100% acetonitrile relative to 100% water but could nevertheless be used to separate five alkylbenzenes using a flow rate of 40 µL/min (linear velocity: 0.57 mm/s). Remarkable column-to-column reproducibility is shown with retention factor variation between 2.6% and 6.1% for two separately prepared columns.

  19. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  20. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction.

    PubMed

    Yang, Hao; Mudrik, Jared M; Jebrail, Mais J; Wheeler, Aaron R

    2011-05-15

    We introduce the marriage of two technologies: digital microfluidics (DMF), a technique in which droplets are manipulated by application of electrostatic forces on an array of electrodes coated by an insulator, and porous polymer monoliths (PPMs), a class of materials that is popular for use for solid-phase extraction and chromatography. In this work, circular PPM discs were formed in situ by dispensing and manipulating droplets of monomer solutions to designated spots on a DMF device followed by UV-initiated polymerization. We used PPM discs formed in this manner to develop a digital microfluidic solid-phase extraction (DMF-SPE) method, in which PPM discs are activated and equilibrated, samples are loaded, PPM discs are washed, and the samples are eluted, all using microliter droplets of samples and reagents. The new method has extraction efficiency (93%) comparable to that of pipet-based ZipTips and is compatible with preparative sample extraction and recovery for on-chip desalting, removal of surfactants, and preconcentration. We anticipate that DMF-SPE may be useful for a wide range of applications requiring preparative sample cleanup and concentration.

  1. Elimination of formate production in Clostridium thermocellum

    DOE PAGES

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth ratemore » of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.« less

  2. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  3. Monolithic Transformation of Ceramic Materials from Metal-Organic Sols and Gels

    DTIC Science & Technology

    1979-07-20

    Peptization of the hydrolysis product requires: 9 Prevention of trihydroxide ( bayerite ) formation. e Addition of a critical amount of certain acids which...providing products with interesting and useful properties. For example, powders of molecular level homogeneity, important in phase studies, were...bodies via gel processes has been done in the silica system,3,4 where production of a monolithic piece is relatively straightforward because of the

  4. Enantioselective nano liquid chromatographic separation of racemic pharmaceuticals: a facile one-pot in situ preparation of lipase-based polymer monoliths in capillary format.

    PubMed

    Ahmed, Marwa; Ghanem, Ashraf

    2014-11-01

    New affinity monolithic capillary columns of 150 µm internal diameter were prepared in situ fused glass capillary via either immobilization or encapsulation of Candida antarctica lipase B (CALB) on or within polymer monoliths, respectively. The immobilized lipase-based monoliths were prepared via copolymerization of 19.1% monomers (8.9% MMA and 10.2% GMA), 19.8% EDMA, and 61.1% porogens (54.2% formamide and 6.9% 1-propanol) w/w or 20% GMA, 20% EDMA, and 60% porogens (51.6% cyclohexanol and 8.4% 1-dodecanol) in the presence of AIBN (1%) as a radical initiator. This was followed by pumping a solution of lipase through the capillaries and rinsing with potassium phosphate buffer. On the other hand, the encapsulated lipase-based monoliths were prepared via copolymerization of 20% monomers (GMA), 20% EDMA, and 60% porogens (48% 1-propanol, 6% 1,4-butanediol) or 16.4% monomers (16% BuMA, 0.4% SPMA), 23.6% EDMA, and 60% porogens (36% 1-propanol, 18% 1,4-butanediol along with 6% lipase aqueous solution in potassium phosphate buffer. The prepared capillary columns were investigated for the enantioselective nano liquid chromatographic separation of a set of different classes of racemic pharmaceuticals, namely, α- and β-blockers, antiinflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs, and antiarrhythmic drugs. Run-to-run repeatability was quite satisfactory. The encapsulated lipase-based capillary monolith showed better enantioselective separations of most of the investigated compounds. Baseline separation was achieved for alprenolol, atenolol, bromoglutithimide, carbuterol, chloropheneramine, cizolertine carbinol, 4-hydroxy-3-methoxymandelic acid, desmethylcizolertine, nomifensine, normetanephrine, and sulconazole under reversed phase chromatographic conditions. A speculation about the understanding of the chiral recognition mechanism of

  5. Methods of increasing hydrocarbon production from subterranean formations

    SciTech Connect

    Penny, G.S.; Briscoe, J.E.

    1982-01-10

    Methods of increasing hydrocarbon production from subterranean hydrocarbon-containing formations are provided. The formations are contacted with cationic perfluoro compounds. The formula for these compounds is given.

  6. In-situ functionalized monolithic polysiloxane-polymethacrylate composite materials from polythiol-ene double click reaction in capillary column format for enantioselective nano-high-performance liquid chromatography.

    PubMed

    Wolter, Marc; Lämmerhofer, Michael

    2017-05-12

    This work reports on the proof-of-principle of preparation of novel one step in-situ functionalized monolithic polysiloxane-polymethacrylate composite materials in capillary columns for enantioselective nano-HPLC using a thiol-ene click reaction. Quinine carbamate as functional monomer and ethylene dimethacrylate as crosslinker were both used as ene components in a thermally initiated double click-type polymerization reaction with poly(3-mercaptopropyl)methylsiloxane as thiol component in presence of 1-propanol as porogenic solvent. Elemental analysis and on-capillary fluorescence measurement proved the successful incorporation of the functional chiral monomer into the polymer. Scanning electron microscopy images revealed a macroporous polymer morphology which is typical for a nucleation and growth mechanism of pore formation. The individual microglobules appear relatively spherical and smooth indicating a non-porous nature. Nano-HPLC experiments of the chiral monolithic capillary column provided successful enantiomer separation of N-3,5-dinitrobenzoylleucine as test compound in polar organic elution mode clearly documenting the successful implementation of the proposed concept towards new functionalized monolithic composite materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  8. Scaling up of continuous-flow, microwave-assisted, organic reactions by varying the size of Pd-functionalized catalytic monoliths.

    PubMed

    He, Ping; Haswell, Stephen J; Fletcher, Paul D I; Kelly, Stephen M; Mansfield, Andrew

    2011-01-01

    A product-scalable, catalytically mediated flow system has been developed to perform Suzuki-Miyaura reactions under a microwave heating regime, in which the volumetric throughput of a Pd-supported silica monolith can be used to increase the quantity of the product without changing the optimal operating conditions. Two silica monoliths (both 3 cm long), with comparable pore diameters and surface areas, were fabricated with diameters of 3.2 and 6.4 mm to give volumetric capacities of 0.205 and 0.790 mL, respectively. The two monoliths were functionalized with a loading of 4.5 wt % Pd and then sealed in heat-shrinkable Teflon(®) tubing to form a monolithic flow reactor. The Pd-supported silica monolith flow reactor was then placed into the microwave cavity and connected to an HPLC pump and a backpressure regulator to minimize the formation of gas bubbles. The flow rate and microwave power were varied to optimize the reactant contact time and temperature, respectively. Under optimal reaction conditions the quantity of product could be increased from 31 mg per hour to 340 mg per hour simply by changing the volumetric capacity of the monolith.

  9. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    SciTech Connect

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  10. Making Online Products More Tangible: The Effect of Product Presentation Formats on Product Evaluations.

    PubMed

    Verhagen, Tibert; Vonkeman, Charlotte; van Dolen, Willemijn

    2016-07-01

    Although several studies have looked at the effects of online product presentations on consumer decision making, no study thus far has considered a potential key factor in online product evaluations: tangibility. The present study aims at filling this gap by developing and testing a model that relates different online product presentation formats to the three-dimensional concept of product tangibility. We test how the three tangibility dimensions influence perceived diagnosticity and, eventually, online purchase intentions. A between-subjects lab experiment (n = 366) was used to test the hypothesized effects of three common online product presentation formats (pictures vs. 360 spin rotation vs. virtual mirror). The results showed that out of these formats, virtual mirrors were superior in providing a sense of product tangibility, followed by the 360-spin rotation format and static pictures. Furthermore, in terms of predictive validity, two of the three tangibility dimensions significantly increased perceived diagnosticity, which, in turn, positively and strongly affected purchase intentions. Overall, our results add to previous works studying the relationships between online product presentation formats and consumer decision making. Also, they hold value for online practitioners by highlighting the potential benefits of applying technologically advanced product presentation formats such as the virtual mirror.

  11. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  12. Development of a silica monolith modified with Fe3O4 nano-particles in centrifugal spin column format for the extraction of phosphorylated compounds.

    PubMed

    Alwy, Ali; Clarke, Sarah P; Brougham, Dermot F; Twamley, Brendan; Paull, Brett; White, Blánaid; Connolly, Damian

    2015-01-01

    In this study, citrate-stabilised iron oxide nano-particles (∼16 nm) have been immobilised on commercial silica monolithic centrifugal spin columns (MonoSpin) for the extraction of phosphorylated compounds. Two alternative strategies were adopted involving either direct electrostatic attachment to an aminated MonoSpin (single-layer method) in the first instance, or the use of a layer-by-layer method with poly(diallyldimethylammonium) chloride. Field-emission scanning electron spectroscopy and energy-dispersive X-ray spectroscopy was used for confirming notably higher coverage of nano-particles using the layer-by-layer method (2.49 ± 0.53 wt%) compared with the single-layer method (0.43 ± 0.30 wt%). The modified monolith was used for the selective separation/extraction of adenosine monophosphate, adenosine diphosphate and adenosine triphosphate with elution using a phosphate buffer. A reversed-phase liquid chromatographic assay was used for confirming that adenosine, as a non-phosphorylated control was not retained on the modified MonoSpin devices, whereas recovery of 80% for adenosine monophosphate, 86% for adenosine diphosphate and 82% for adenosine triphosphate was achieved.

  13. Macroporous Monolithic Polymers: Preparation and Applications

    PubMed Central

    Arrua, Ruben Dario; Strumia, Miriam Cristina; Alvarez Igarzabal, Cecilia Inés

    2009-01-01

    In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  14. Method of increasing hydrocarbon production from subterranean formations

    SciTech Connect

    Penny, G.S.

    1987-10-27

    A method is described of increasing the production of hydrocarbons from a hydrocarbon-containing subterranean carbonate-containing formation comprising contacting the formation with an anionic compound whereby the compound is absorbed onto surfaces of the formation to reduce wetting of the surfaces by either hydrocarbons or water. The anionic compound is selected from individual compounds and mixtures.

  15. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  16. 7 CFR 735.201 - Agricultural product certificates; format.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Agricultural product certificates; format. 735.201 Section 735.201 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Inspectors, Samplers, Classifiers, and Weighers § 735.201 Agricultural product certificates; format. Each...

  17. 7 CFR 735.201 - Agricultural product certificates; format.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Agricultural product certificates; format. 735.201 Section 735.201 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Inspectors, Samplers, Classifiers, and Weighers § 735.201 Agricultural product certificates; format. Each...

  18. 7 CFR 735.201 - Agricultural product certificates; format.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Agricultural product certificates; format. 735.201 Section 735.201 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Inspectors, Samplers, Classifiers, and Weighers § 735.201 Agricultural product certificates; format. Each...

  19. 7 CFR 735.201 - Agricultural product certificates; format.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Agricultural product certificates; format. 735.201 Section 735.201 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Inspectors, Samplers, Classifiers, and Weighers § 735.201 Agricultural product certificates; format. Each...

  20. 7 CFR 735.201 - Agricultural product certificates; format.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Agricultural product certificates; format. 735.201 Section 735.201 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Inspectors, Samplers, Classifiers, and Weighers § 735.201 Agricultural product certificates; format. Each...

  1. Production from multiple zones of a tar sands formation

    DOEpatents

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  2. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  3. Drill-in fluid reduces formation damage, increases production rates

    SciTech Connect

    Hands, N.; Kowbel, K.; Nouris, R.

    1998-07-13

    A sodium formate drill-in fluid system reduced formation damage, resulting in better-than-expected production rates for an off-shore Dutch development well. Programmed to optimize production capacity and reservoir drainage from a Rotliegend sandstone gas discovery, the 5-7/8-in. subhorizontal production interval was drilled and completed barefoot with a unique, rheologically engineered sodium formate drill-in fluid system. The new system, consisting of a sodium formate (NaCOOH) brine as the base fluid and properly sized calcium carbonate as the formation-bridging agent, was selected on the basis of its well-documented record in reducing solids impairment and formation damage in similar sandstone structures in Germany. The system was engineered around the low-shear-rate viscosity (LSRV) concept, designed to provide exceptional rheological properties. After describing the drilling program, the paper gives results on the drilling and completion.

  4. A novel monolithic LEU foil target based on a PVD manufacturing process for (99)Mo production via fission.

    PubMed

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    (99)Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the (99)Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization.

  5. Preparation and evaluation of ionic liquid-gold nanoparticles functionalized silica monolithic column for capillary electrochromatography.

    PubMed

    Lu, Junyu; Ye, Fanggui; Zhang, Aizhu; Chen, Xia; Wei, Yu; Zhao, Shulin

    2012-12-21

    This paper describes the development of silica monolithic column modified with ionic liquids-gold nanoparticles (ILs-GNPs) for capillary electrochromatography (CEC). The novel ILs (1-methyl-2-mercapto-3-butylimidazolium bromide) were synthesized and used to modify GNPs functionalized silica monolithic column via the formation of a Au-S bond. The morphology of the GNPs and ILs-GNPs functionalized silica (ILs-GNPs-silica) monolithic column were characterized by transmission electron microscopy and scanning electron microscope, respectively. A cathodic electroosmotic flow was observed at pH above 6.4 on ILs-GNPs-silica monolithic column, which was reversed at acidic pH. The electrochromatographic performance of ILs-GNPs-silica monolithic column was evaluated by separation of different kinds of analytes such as hydrophobic, polar and basic compounds. The ILs-GNPs-silica monolithic column displayed enhanced hydrophobic retention characteristics in the separation of five hydrophobic n-alkylbenzenes when compared to the ILs bonded silica monolithic column. The column efficiencies for the n-alkylbenzenes were from 62,000 to 110,000 N m(-1). The ILs-GNPs-silica monolithic column exhibited reversed-phase electrochromatographic behavior toward neutral solutes. Separation of polar compounds was demonstrated on ILs-GNPs-silica monolithic column in reversed-phase CEC mode using high aqueous mobile phases. The relatively good peak shape and high separation efficiency on ILs-GNPs-silica monolithic column was obtained for basic solutes when compared to silica monolithic column modified GNPs.

  6. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  7. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  8. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  9. Methods of increasing hydrocarbon production from subterranean formations

    SciTech Connect

    Penny, G.S.; Gardner, T.R.

    1986-04-29

    A method is described of increasing the production of hydrocarbons from a hydrocarbon-containing subterranean carbonate-containing formation comprising introducing into the subterranean formation an anionic perfluoro substituted compound in a liquid carrier fluid whereby the compound is absorbed onto surfaces of the formation to reduce wetting of the surfaces by either hydrocarbons or water, the anionic perfluoro substituted compound being selected from individual compounds and mixtures thereof.

  10. Monolithic MACS micro resonators

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  11. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  12. Development of oxide fibrous monolith systems.

    SciTech Connect

    Goretta, K. C.

    1999-03-02

    Fibrous monolithic ceramics generally have a cellular structure that consists of a strong cell surrounded by a weaker boundary phase [1-5]. Fibrous monoliths (FMs) are produced from powders by conventional ceramic fabrication techniques, such as extrusion [1,2]. When properly engineered, they exhibit fail gracefully [3-5]. Several compositions of ceramics and cermets have been processed successfully in fibrous monolithic form [4]. The most thoroughly investigated fibrous monolith consists of Si{sub 3}N{sub 4} cells and a BN cell-boundary phase [3-5]. Through appropriate selection of initial powders and extrusion and hot-pressing parameters, very tough final products have been produced. The resultant high toughness is due primarily to delamination during fracture along textured platelike BN grains. The primary objectives of our program are to develop: (1) Oxide-based FMs, including new systems with improved properties; (2) FMs that can be pressureless sintered rather than hot-pressed; (3) Techniques for continuous extrusion of FM filaments, including solid freeform fabrication (SFF) for net-shape fabrication of FMs; (4) Predictive micromechanical models for FM design and performance; and (5) Ties with industrial producers and users of FMs.

  13. Effects of formate on fermentative hydrogen production by Enterobacter aerogenes.

    PubMed

    Kurokawa, Tatsuo; Tanisho, Shigeharu

    2005-01-01

    This paper describes the effects of formate on fermentative hydrogen production by Enterobacter aerogenes by way of batch culture. When 20 mM formate was added to pH 6.3 and pH 5.8 E. aerogenes glucose cultures (formate culture) at the beginning of cultivation, hydrogen evolution through both glucose consumption and decomposition of the extrinsic formate occurred together, while hydrogen evolution occurred only through glucose consumption in the control cultures. The hydrogen evolution rates in the formate cultures were faster than in the control cultures, although cell growth and glucose consumption rates in the formate cultures were slower than the control cultures'. The decomposition rate of the extrinsic formate in the pH 5.8 formate culture was faster than in the pH 6.3 formate culture. The hydrogen yield from glucose in the pH 6.3 formate culture increased due to the increasing amount of the nicotinamide adenine dinucleotide for hydrogen production.

  14. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  15. Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing.

    PubMed

    Iacono, Marcello; Connolly, Damian; Heise, Andreas

    2016-03-31

    Polymers are interesting housing materials for the fabrication of inexpensive monolithic chromatography and solid phase extraction (SPE) devices. Challenges arise when polymeric monoliths are formed in non-conical, cylindrical tubes of larger diameter due to potential monolith detachment from the housing wall resulting in loss of separation performance and mechanical stability. Here, a two-step protocol is applied to ensure formation of robust homogeneous methacrylate monolith in polypropylene (PP) tubing with a diameter of 2.0 mm. Detailed Fourier-transform infrared (FTIR) spectroscopic analysis and Scanning Electron Microscopy (SEM) imaging confirm the successful pre-modification of the tubing wall with an anchoring layer of cross-linked ethylene dimethacrylate (EDMA). Subsequent formation of an EDMA-glycidyl methacrylate (GMA) monolith in the PP tube resulted in a homogeneous monolithic polymer with enhanced mechanical stability as compared to non-anchored monoliths.

  16. Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing

    PubMed Central

    Iacono, Marcello; Connolly, Damian; Heise, Andreas

    2016-01-01

    Polymers are interesting housing materials for the fabrication of inexpensive monolithic chromatography and solid phase extraction (SPE) devices. Challenges arise when polymeric monoliths are formed in non-conical, cylindrical tubes of larger diameter due to potential monolith detachment from the housing wall resulting in loss of separation performance and mechanical stability. Here, a two-step protocol is applied to ensure formation of robust homogeneous methacrylate monolith in polypropylene (PP) tubing with a diameter of 2.0 mm. Detailed Fourier-transform infrared (FTIR) spectroscopic analysis and Scanning Electron Microscopy (SEM) imaging confirm the successful pre-modification of the tubing wall with an anchoring layer of cross-linked ethylene dimethacrylate (EDMA). Subsequent formation of an EDMA-glycidyl methacrylate (GMA) monolith in the PP tube resulted in a homogeneous monolithic polymer with enhanced mechanical stability as compared to non-anchored monoliths. PMID:28773385

  17. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  18. Riboflavin Deficiency in Rats Decreases de novo Formate Production but Does Not Affect Plasma Formate Concentration.

    PubMed

    MacMillan, Luke; Lamarre, Simon G; daSilva, Robin P; Jacobs, René L; Brosnan, Margaret E; Brosnan, John T

    2017-03-01

    Background: The one-carbon metabolism pathway is highly dependent on a number of B vitamins in order to provide one-carbon units for purine and thymidylate biosynthesis as well as homocysteine remethylation. Previous studies have examined folate and vitamin B-12 deficiency and their effects on formate metabolism; as of yet, to our knowledge, no studies on the effects of riboflavin deficiency on formate metabolism have been published.Objective: Our objective was to determine the effects of riboflavin deficiency on formate metabolism.Methods: Weanling male rats were randomly assigned either to control, riboflavin-replete (RR) or to experimental, riboflavin-deficient (RD) versions of the AIN-93G diet for 13 d, at which time a constant infusion of [(13)C]-formate was carried out to ascertain the effects of deficiency on formate production. Gas chromatography-mass spectrometry was used to measure plasma formate concentration and [(13)C]-formate enrichment. HPLC, LC-mass spectrometry (MS)/MS, and enzymatic assays were used for the measurement of one-carbon precursors and other metabolites.Results: RD rats had significantly lower rates of formate production (15%) as well as significantly reduced hepatic methylenetetrahydrofolate reductase activity (69%) and protein concentration (54%) compared with RR rats. There was no difference in plasma formate concentrations between the groups. Plasma serine, a potential one-carbon precursor, was significantly higher in RD rats (467 ± 73 μM) than in RR rats (368 ± 52 μM).Conclusions: Although deficiencies in folate and vitamin B-12 lead to major changes in plasma formate concentrations, riboflavin deficiency results in no significant difference; this disagrees with the prediction of a published mathematical model. Our observation of a lower rate of formate production is consistent with a role for flavoproteins in this process. © 2017 American Society for Nutrition.

  19. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  20. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  1. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  2. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb: KGW laser and generating a 25-GHz sub-picosecond vortex beam via gain competition.

    PubMed

    Chang, M T; Liang, H C; Su, K W; Chen, Y F

    2016-04-18

    Formation of transverse modes in a dual-polarization self-mode-locked monolithic Yb: KGW laser under high-power pumping is thoroughly explored. It is experimentally observed that the polarization-resolved transverse patterns are considerably affected by the pump location in the transverse plane of the gain medium. In contrast, the longitudinal self-mode-locking is nearly undisturbed by the pump position, even under the high-power pumping. Under central pumping, a vortex beam of the Laguerre-Gaussian LGp,l mode with p = 1 and l = 1 can be efficiently generated through the process of the gain competition with a sub-picosecond pulse train at 25.3 GHz and the output power can be up to 1.45 W at a pump power of 10.0 W. Under off-center pumping, the symmetry breaking causes the transverse patterns to be dominated by the high-order Hermite-Gaussian modes. Numerical analyses are further performed to manifest the symmetry breaking induced by the off-center pumping.

  3. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  4. Monolithic optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Breunig, Ingo; Beckmann, Tobias; Buse, Karsten

    2012-02-01

    Stability and footprint of optical parametric oscillators (OPOs) strongly depend on the cavity used. Monolithic OPOs tend to be most stable and compact since they do not require external mirrors that have to be aligned. The most straightforward way to get rid of the mirrors is to coat the end faces of the nonlinear crystal. Whispering gallery resonators (WGRs) are a more advanced solution since they provide ultra-high reflectivity over a wide spectral range without any coating. Furthermore, they can be fabricated out of nonlinear-optical materials like lithium niobate. Thus, they are ideally suited to serve as a monolithic OPO cavity. We present the experimental realization of optical parametric oscillators based on whispering gallery resonators. Pumped at 1 μm wavelength, they generate signal and idler fields tunable between 1.8 and 2.5 μm wavelength. We explore different schemes, how to phase match the nonlinear interaction in a WGR. In particular, we show improvements in the fabrication of quasi-phase-matching structures. They enable great flexibility for the tuning and for the choice of the pump laser.

  5. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  6. A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform.

    PubMed

    Xin, Yuanrong; Xiong, Qiancheng; Bai, Qiuhong; Miyamoto, Miwa; Li, Cong; Shen, Yehua; Uyama, Hiroshi

    2017-02-10

    Recently, monoliths with continuous porous structure have received much attention for high-performance separation/adsorption matrix in biomedical and environmental fields. This study proposes a novel route to prepare cellulose monoliths with hierarchically porous structure by selecting cellulose acetate (CA) as the starting material. Thermally induced phase separation of CA solution using a mixed solvent affords a CA monolith, which is converted into the cellulose monolith by alkaline hydrolysis. Scanning electron microscopy images of the CA and cellulose monoliths reveal a continuous macropore with rough surface, and nitrogen adsorption/desorption analysis indicates the formation of a mesoporous structure. The macroporous structure could be controlled by changing the fabrication parameters. A series of reactive groups are introduced by chemical modifications on the surface of the cellulose monolith. The facile and diverse modifiability combined with its hydrophilic property make the hierarchically porous cellulose monolith a potential platform for use in separation, purification and bio-related applications.

  7. Primordial black holes formation from particle production during inflation

    SciTech Connect

    Erfani, Encieh

    2016-04-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations.

  8. Subsetting and Formatting Landsat-7 LOR ETM+ and Data Products

    NASA Technical Reports Server (NTRS)

    Reid, Michael R.

    2000-01-01

    The Landsat-7 Processing System (LPS) processes Landsat-7 Enhanced Thematic Mapper (ETM+) instrument data into large, contiguous segments called "subintervals" and stores them in Level OR (LOR) data files. The LPS processed subinterval products must be subsetted and reformatted before the Level I processing systems can ingest them. The initial full subintervals produced by the LPS are stored mainly in HDF Earth Observing System (HDF-EOS) format which is an extension to the Hierarchical Data Format (HDF). The final LOR products are stored in native HDF format. Primarily the EOS Core System (ECS) and alternately the DAAC Emergency System (DES) subset the subinterval data for the operational Landsat-7 data processing systems. The HDF and HDF-EOS application programming interfaces (APIs) can be used for extensive data subsetting and data reorganization. A stand-alone subsetter tool has been developed which is based on some of the DES code. This tool makes use of the HDF and HDFEOS APIs to perform Landsat-7 LOR product subsetting and demonstrates how HDF and HDFEOS can be used for creating various configurations of full LOR products. How these APIs can be used to efficiently subset, format, and organize Landsat-7 LOR data as demonstrated by the subsetter tool and the DES is discussed.

  9. Coptis chinensis Polysaccharides Inhibit Advanced Glycation End Product Formation.

    PubMed

    Yang, Ye; Li, Yun; Yin, Dengke; Chen, Song; Gao, Xiangdong

    2016-06-01

    Coptis chinensis Franch (Huanglian) is commonly used to treat diabetes in China. In this study, the effects of the C. chinensis Franch polysaccharides (CCP) on advanced glycation end product (AGE) formation in vitro and in streptozotocin-induced diabetic mice were investigated. CCP significantly inhibited all the three periods of nonenzymatic protein glycation in vitro, including Amadori product, dicarbonyl compound, and AGE formation (P < .01). In diabetic mice, the administration of CCP not only improved both bodyweight and serum insulin and decreased fasting blood glucose and glycated serum protein concentrations but also decreased the AGE accumulations and morphological abnormalities in pancreas and liver. The inhibitory effects of CCP on AGE formation afford a potential therapeutic use in the prevention and treatment of diabetes.

  10. Biobased monoliths for adenovirus purification.

    PubMed

    Fernandes, Cláudia S M; Gonçalves, Bianca; Sousa, Margarida; Martins, Duarte L; Barroso, Telma; Pina, Ana Sofia; Peixoto, Cristina; Aguiar-Ricardo, Ana; Roque, A Cecília A

    2015-04-01

    Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.

  11. Siderophore production and biofilm formation as linked social traits.

    PubMed

    Harrison, Freya; Buckling, Angus

    2009-05-01

    The virulence of pathogenic microbes can depend on individual cells cooperating in the concerted production of molecules that facilitate host colonization or exploitation. However, cooperating groups can be exploited by social defectors or 'cheats'. Understanding the ecology and evolution of cooperation is therefore relevant to clinical microbiology. We studied two genetically linked cooperative traits involved in host exploitation by the opportunistic human pathogen Pseudomonas aeruginosa. Clones that defected from cooperative production of iron-scavenging siderophores were deficient in biofilm formation. The presence of such clones in mixed biofilms with a wild-type clone led to reduced biofilm mass. The fitness advantage of siderophore-deficient mutants in the presence of wild-type bacteria was no greater in biofilm than in planktonic culture, suggesting that these mutants did not gain an additional advantage by exploiting wild-type biofilm polymer. Reduced biofilm formation therefore represents a pleiotropic cost of defection from siderophore production.

  12. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  13. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  14. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  15. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  16. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  17. Uncooled monolithic ferroelectric IRFPA technology

    NASA Astrophysics Data System (ADS)

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  18. Formative Assessment Probes: Talk Moves. A Formative Assessment Strategy for Fostering Productive Probe Discussions

    ERIC Educational Resources Information Center

    Keeley, Page

    2016-01-01

    Formative assessment probes can be used to foster productive science discussions in which students make their thinking visible to themselves, their peers, and the teacher. During these discussions, there is an exchange between the teacher and students that encourages exploratory thinking, supports careful listening to others' ideas, asks for…

  19. Formative Assessment Probes: Talk Moves. A Formative Assessment Strategy for Fostering Productive Probe Discussions

    ERIC Educational Resources Information Center

    Keeley, Page

    2016-01-01

    Formative assessment probes can be used to foster productive science discussions in which students make their thinking visible to themselves, their peers, and the teacher. During these discussions, there is an exchange between the teacher and students that encourages exploratory thinking, supports careful listening to others' ideas, asks for…

  20. Radarsat Geophysical Processor System: Data Products, Formats, and Visualization

    NASA Astrophysics Data System (ADS)

    Kerin, B. L.; Gens, R.; Baker, E.

    2003-12-01

    Radarsat Geophysical Processor System (RGPS) is designed to generate products that provide estimates of sea ice motion, deformation and sea ice thickness. The system uses Radarsat-1 ScanSAR Wide B (SWB) imagery acquired over the last six years over the entire Arctic Ocean. At the beginning of each winter season a regular grid with a default spacing of 10 km is initialized that defines the freeze up ice condition. With changing ice condition this regular grid distorts in shape and location. The distorted Langrangian grid is stored as an RGPS data product that reflects the ice condition at a particular time. In the past, RGPS products have been used to study processes operating at the scale of the entire Arctic Ocean. We are looking into the use of the RGPS data in a more refined grid, so that the product could also be used for studying smaller regions of interest. We have converted the specific binary format of the RGPS product to the more popular ARC/INFO polygon coverage format used by a wider research community. Finally, we have developed a visualization tool that will allow the user to drape the RGPS product containing ice attribute information over the corresponding synthetic aperture radar images and view a series of images showing change in ice condition over time.

  1. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  2. Monolith Joint Repairs: Case Histories

    DTIC Science & Technology

    1989-08-01

    REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM TECHNICAL REPORT REMR-CS-22 MONOLITH JOINT REPAIRS: CASE HISTORVS.Z by James G ...Washington, DC 20314-1000 32307 S11. TITLE (Include Security Classification) Monolith Joint Repairs: Case Histories 12. PERSONAL AUTHOR(S) May. James G ...Research Work Unit 32307, "Tech- niques for Joint Repair and Rehabilitation," for which MAJ James G . May, CE, is the Principal Investigator. This work unit

  3. Formation and Stability of Radiation Products in Europa's Icy Shell

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Carlson, R. W.; Ferrante, R. F.

    2004-01-01

    Spectra of Europa reveal a surface dominated by water-ice along with hydrated materials and minor amounts of SO2, CO2, and H2O2. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons produce significant chemical modifications of the surface on time scales of a few years at micrometer depths. Our laboratory studies examine the formation and stability of radiation products in H2O-rich ices relevant to Europa. Infrared (IR) spectra of ices before and after irradiation reveal the radiation destruction of molecules and the formation of products at 86 - 132 K. In addition, spectra of ices during warming track thermal evolution due to chemical changes and sublimation processes. IR-identified radiation products in 86 - 132 K irradiated H2O + SO2 ices are the bisulfate ion, HSO4(-), sulfate ion, SO4(2-) and the hydronium ion, H3O(+). Warming results in the formation of a residual spectrum similar to liquid sulfuric acid, H2SO4, for H2O:SO2 ratios of 30:1, whereas hydrated sulfuric acid, H2SO4 4 H2O, forms for ratios of 30:1. Radiation products identified for irradiated H2O + H2S ices at 86 K are H2S2 and SO2. When irradiated at 110 and 132 K, ices with H2O:H2S ratios if either 3:1 or 30:1 show the formation of H2SO4 4 H2O on warming to 175 K. We have also examined the radiation stability of H2SO4. Addition of CO2 to H2O + SO2 ices results in the formation of CO3 at 2046 cm (sup -1) (4.89 m). This is the strongest band from a carbon-containing product in the mid-IR spectral region, and it is also seen when either pure CO2 or H2O + CO2 ice is irradiated. Experiments with CH4 added to H2O + SO2 + CO2 ices addressed the question of methane's use as a marker of methanogens in an irradiated ice environment. New results on the near-IR spectrum of pure H2O2 will be included in this presentation. Interpretations of near-IR water bands, with H2O2 present, will be discussed. Irradiations of H2O2 and H2O + H2O2 mixtures, to examine the possibility of O2 and O3

  4. Formation and Stability of Radiation Products in Europa's Icy Shell

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Carlson, R. W.; Ferrante, R. F.

    2004-01-01

    Spectra of Europa reveal a surface dominated by water-ice along with hydrated materials and minor amounts of SO2, CO2, and H2O2. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons produce significant chemical modifications of the surface on time scales of a few years at micrometer depths. Our laboratory studies examine the formation and stability of radiation products in H2O-rich ices relevant to Europa. Infrared (IR) spectra of ices before and after irradiation reveal the radiation destruction of molecules and the formation of products at 86 - 132 K. In addition, spectra of ices during warming track thermal evolution due to chemical changes and sublimation processes. IR-identified radiation products in 86 - 132 K irradiated H2O + SO2 ices are the bisulfate ion, HSO4(-), sulfate ion, SO4(2-) and the hydronium ion, H3O(+). Warming results in the formation of a residual spectrum similar to liquid sulfuric acid, H2SO4, for H2O:SO2 ratios of 30:1, whereas hydrated sulfuric acid, H2SO4 4 H2O, forms for ratios of 30:1. Radiation products identified for irradiated H2O + H2S ices at 86 K are H2S2 and SO2. When irradiated at 110 and 132 K, ices with H2O:H2S ratios if either 3:1 or 30:1 show the formation of H2SO4 4 H2O on warming to 175 K. We have also examined the radiation stability of H2SO4. Addition of CO2 to H2O + SO2 ices results in the formation of CO3 at 2046 cm (sup -1) (4.89 m). This is the strongest band from a carbon-containing product in the mid-IR spectral region, and it is also seen when either pure CO2 or H2O + CO2 ice is irradiated. Experiments with CH4 added to H2O + SO2 + CO2 ices addressed the question of methane's use as a marker of methanogens in an irradiated ice environment. New results on the near-IR spectrum of pure H2O2 will be included in this presentation. Interpretations of near-IR water bands, with H2O2 present, will be discussed. Irradiations of H2O2 and H2O + H2O2 mixtures, to examine the possibility of O2 and O3

  5. Nursing Doctorates in Brazil: research formation and theses production.

    PubMed

    Scochi, Carmen Gracinda Silvan; Gelbcke, Francine Lima; Ferreira, Márcia de Assunção; Lima, Maria Alice Dias da Silva; Padilha, Katia Grillo; Padovani, Nátali Artal; Munari, Denize Bouttelet

    2015-01-01

    to analyze the formation of nursing doctorates in Brazil, from theses production, disciplines and other strategies focusing on research offered by courses. a descriptive and analytical study of the performance of 18 doctoral courses in nursing, running from 1982 to 2010, and defended their theses between 2010-2012. 502 theses were defended in this period, most linked to the online research process of health and nursing care. There are gaps in the knowledge of theoretical and philosophical foundations of care, nursing history and ethics. There are also weaknesses in the methodological design of the theses, with a predominance of descriptive and/or exploratory studies. This was consistent with international standards set with regards to the proposition of research of disciplines and complementary strategies in forming the doctorate. despite the efforts and advances in research formation, it is essential to expand to more robust research designs with a greater impact on production knowledge that is incorporated into practice.

  6. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.

  7. Reducing the potential for processing contaminant formation in cereal products

    PubMed Central

    Curtis, Tanya Y.; Postles, Jennifer; Halford, Nigel G.

    2014-01-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  8. Production of hydrogen sulphide containing gas from underground formations

    SciTech Connect

    Delude, S.G.; Luinstra, E.A.

    1988-12-06

    This patent describes a process for the production of at least a gaseous product containing a substantial amount of hydrogen sulphide via a bore-hole from an underground formation containing besides the hydrogen sulphide at least elemental sulphur, comprising (a) injection of a liquid substantially consisting of hydrocarbons into the bore-hole or into the underground formation near to the end of the bore-hole; (b) producing a gaseous and a liquid fraction from the underground formation; (c) separating the gaseous fraction from the liquid fraction (d) if necessary, separating an aqueous fraction of the produced liquid fraction from the hydrocarbons-containing fraction; (e) heating the hydrocarbons-containing fraction in order to remove elemental sulphur by conversion to hydrogen sulphide in the presence of a catalyst comprising sulphides of one of more metals from Group VIB and/or Group VIII of the Periodic Table of Elements deposited on a support of alumina, silica or silica alumina; and (f) reinjection of at least a part of the thus treated hydrocarbons-containing fraction into the bore-hole or into the underground formation near to the end of the bore-hole as described hereinbefore.

  9. Enhanced product formation in continuous fermentations with microbial cell recycle

    SciTech Connect

    Bull, D.N.; Young, M.D.

    1981-02-01

    The effect of partial recycle of microbial cells on the operation of a chemostat has been investigated for two fermentations. Stable steady states with and without partial cell recycle were obtained for the conversion of d-sorbitol to L-sorbose by Gluconobacter oxydans subsp. suboxydans 1916B and for the conversion of glucose to 2-ketogluconic acid by Serratia marcescens NRRl B-486. The employment of partial cell recycle dramatically increased product formation rates for both fermentations.

  10. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, Joseph W.

    1994-01-01

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  11. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, Joseph W.

    1992-01-01

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  12. Monolithic Michelson Interferometer as ultra stable wavelength reference

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoke; Ge, Jian

    2010-07-01

    Ultra-stable Monolithic Michelson interferometer can be an ideal reference for highprecision applications such as RV measurement in planet searching and orbit study. The advantages include wide wavelength range, simple sinusoidal spectral format, and high optical efficiency. In this paper, we report that a monolithic Michelson interferometers has been in-house developed with minimized thermal sensitivity with compensation tuning. With a scanning white light interferometer, the thermal sensitivity is measured ~ 6x10-7/°C at 550 nm and it decreases to zero near 1000 nm. We expect the wideband wavelength reference source to be stabilized better than 0.3 m/s for RV experiments

  13. Improved methods of forming monolithic integrated circuits having complementary bipolar transistors

    NASA Technical Reports Server (NTRS)

    Bohannon, R. O., Jr.; Cashion, W. F.; Stehlin, R. A.

    1971-01-01

    Two new processes form complementary transistors in monolithic semiconductor circuits, require fewer steps /infusions/ than previous methods, and eliminate such problems as nonuniform h sub FE distribution, low yield, and large device formation.

  14. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Low nanopore connectivity limits gas production in Barnett formation

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Ewing, Robert P.; Rowe, Harold D.

    2015-12-01

    Gas-producing wells in the Barnett Formation show a steep decline from initial production rates, even within the first year, and only 12-30% of the estimated gas in place is recovered. The underlying causes of these production constraints are not well understood. The rate-limiting step in gas production is likely diffusive transport from matrix storage to the stimulated fracture network. Transport through a porous material such as shale is controlled by both geometry (e.g., pore size distribution) and topology (e.g., pore connectivity). Through an integrated experimental and theoretical approach, this work finds that the Barnett Formation has sparsely connected pores. Evidence of low pore connectivity includes the sparse and heterogeneous presence of trace levels of diffusing solutes beyond a few millimeters from a sample edge, the anomalous behavior of spontaneous water imbibition, the steep decline in edge-accessible porosity observed in tracer concentrations following vacuum saturation, the low (about 0.2-0.4% by volume) level presence of Wood's metal alloy when injected at 600 MPa pressure, and high tortuosity from mercury injection capillary pressure. Results are consistent with an interpretation of pore connectivity based on percolation theory. Low pore connectivity of shale matrix limits its mass transfer interaction with the stimulated fracture network from hydraulic fracturing and serves as an important underlying cause for steep declines in gas production rates and a low overall recovery rate.

  16. Factorizing monolithic applications

    SciTech Connect

    Hall, J.H.; Ankeny, L.A.; Clancy, S.P.

    1998-12-31

    The Blanca project is part of the US Department of Energy`s (DOE) Accelerated Strategic Computing Initiative (ASCI), which focuses on Science-Based Stockpile Stewardship through the large-scale simulation of multi-physics, multi-dimensional problems. Blanca is the only Los Alamos National Laboratory (LANL)-based ASCI project that is written entirely in C++. Tecolote, a new framework used in developing Blanca physics codes, provides an infrastructure for gluing together any number of components; this framework is then used to create applications that encompass a wide variety of physics models, numerical solution options, and underlying data storage schemes. The advantage of this approach is that only the essential components for the given model need be activated at runtime. Tecolote has been designed for code re-use and to isolate the computer science mechanics from the physics aspects as much as possible -- allowing physics model developers to write algorithms in a style quite similar to the underlying physics equations that govern the computational physics. This paper describes the advantages of component architectures and contrasts the Tecolote framework with Microsoft`s OLE and Apple`s OpenDoc. An actual factorization of a traditional monolithic application into its basic components is also described.

  17. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  18. Less common applications of monoliths: IV. Recent developments in immobilized enzyme reactors for proteomics and biotechnology.

    PubMed

    Krenkova, Jana; Svec, Frantisek

    2009-03-01

    Use of monolithic supports for enzyme immobilization has rapidly expanded since we published the preceding paper in the series of articles concerned with this topic almost three years ago. Many groups worldwide have realized the benefits of applying monoliths as support structures and used a variety of techniques to immobilize many different enzymes. Although some of these new developments are just refinements of the methods developed previously, some notable new approaches have also been reported. This review summarizes the literature published since 2006 and demonstrates the broad variability of reactive monoliths prepared from silica as well as from organic polymers in the form of disks, columns, and capillaries. All these monoliths were prepared by direct formation from reactive precursors or activation of preformed inactive structures. Interestingly, most of the applications of monolithic enzyme reactors target proteolytic digestion of proteins for proteomic analysis.

  19. Theoretical aspects of product formation from the NCO + NO reaction

    SciTech Connect

    Lin, M.C.; He, Y. ); Melius, C.F. )

    1993-09-09

    The reaction of NCO with NO, an important elementary process involved in the reduction of NO[sub x] by HNCO, has been studied theoretically using the BAC-MP4 technique in conjunction with RRKM calculations. The computed molecular structures and thermochemical data for various intermediates and transition states suggest that the reaction takes place primarily via the singlet, ground electronic state OCNNO molecule according to the following mechanism; (step a) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] N[sub 2]O + CO; (step b) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] c-OCNNO[minus] N[sub 2] + CO[sub 2]. The formation of N[sub 2]O + CO occurs by the fragmentation of the singlet OCNNO intermediate step (a), whereas the production of N[sub 2] + CO[sub 2] by cyclization-fragmentation occurs via step b. The tight transition states leading to the formation of these products, coupled with the loose entrance channel, give rise to the experimentally observed strong negative temperature dependence which can be quantitatively accounted for by the results of RRKM calculations based on the BAC-MP4 data. The experimentally measured product branching ratio for channels a and b could be accounted for theoretically by lowering the calculated energy barrier for step a by 3.6 kcal/mol, corresponding to about 15% of the barrier height. 22 refs., 3 figs., 5 tabs.

  20. Geochemical modeling of scale formation, and formation damage during production from sulfate and carbonate mineral-bearing reservoirs

    SciTech Connect

    Macgowan, D.B.; Dunn, T.L.; Surdam, R.C. )

    1991-03-01

    The physical and chemical processes that affect reservoir fluids during production can be modeled by methodologies similar to those used for modeling clastic diagenesis. That these processes may result in formation damage and scale formation make them of interest to production geologists and engineers. Pathway modeling, based upon a series of critical divides, predicts which reactions are likely to occur between formation, production tubing, and reservoir fluids. Thermodynamic equilibria modeling calculates direction and magnitude of possible reactions. Integration of these approaches with observations of patterns of scale formation, production line, and formation damage yield a model capable of predicting the magnitude and direction of reactions that may produce negative impacts on reservoir production. Critical divides characterizing these processes in carbonate and sulfate mineral-bearing reservoirs include: (1) presence or absence of sulfate-bearing minerals within the production volume; (2) presence of iron within production line or formation; (3) ratio of concentration of bicarbonate to hydrogen sulfide; (4) capacity of aqueous and solid phases to buffer formation fluid pH; and (5) magnitude of pressure and temperature drops during production. The model qualitatively predicts: (1) likelihood of sulfide, sulfate, or carbonate mineral precipitation during production; (2) souring of the reservoir; and (3) corrosion of production tubing. The model has been developed from production histories for Weber Sandstone reservoirs, Colorado and Wyoming, and has been applied to examples of reservoir production from Tensleep and Minnelusa reservoirs in Wyoming.

  1. Biogenic amine formation and bacterial contribution in Natto products.

    PubMed

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-07

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  3. Highly bioactive polysiloxane modified bioactive glass-poly(ethylene glycol) hybrids monoliths with controlled surface structure for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Que, Wenxiu; Xing, Yonglei; Lei, Bo

    2015-03-01

    Crack-free monoliths with controllable surface microstructure have high bioactivities and therefore potential applications in bone tissue regeneration. In this paper, crack-free polydimethylsiloxane-modified bioactive glass-poly (ethylene glycol) (PDMS-BG-PEG) hybrids monoliths were fabricated via using a modified sol-gel process. Results show that the addition of PEG plays an important part in the formation of crack-free and gelation of the monoliths, and surface microstructures of the as-prepared hybrid monoliths were significantly influenced by the concentration and molecular weight of PEG. The samples obtained from PEG 300 had porous surface result in higher bioactivity (apatite formation) in simulated body fluid (SBF), while the samples obtained from PEG 600 had the smooth surface and inhibited the formation of apatite layer in SBF. These as-prepared hybrid monoliths can be used as a good candidate of implant and scaffold for highly efficient bone tissue regeneration.

  4. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  5. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.; Matthias, Sabrina

    2014-10-01

    Beam expanding is a common task, where Galileo telescopes are preferred. However researches and customers have found limitations when using these systems. A new monolithical solution which is based on the usage of only one aspherical component will be presented. It will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Insights will be given how aspherical beam expanding systems will help using larger incoming beams and reducing the overall length of such a system. Additionally an add-on element for divergence and wavelength adaption will be presented.

  6. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Rationally engineered synthetic coculture for improved biomass and product formation.

    PubMed

    Santala, Suvi; Karp, Matti; Santala, Ville

    2014-01-01

    In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications.

  8. Nursing Doctorates in Brazil: research formation and theses production

    PubMed Central

    Scochi, Carmen Gracinda Silvan; Gelbcke, Francine Lima; Ferreira, Márcia de Assunção; Lima, Maria Alice Dias da Silva; Padilha, Katia Grillo; Padovani, Nátali Artal; Munari, Denize Bouttelet

    2015-01-01

    OBJECTIVE: to analyze the formation of nursing doctorates in Brazil, from theses production, disciplines and other strategies focusing on research offered by courses. METHOD: a descriptive and analytical study of the performance of 18 doctoral courses in nursing, running from 1982 to 2010, and defended their theses between 2010-2012. RESULTS: 502 theses were defended in this period, most linked to the online research process of health and nursing care. There are gaps in the knowledge of theoretical and philosophical foundations of care, nursing history and ethics. There are also weaknesses in the methodological design of the theses, with a predominance of descriptive and/or exploratory studies. This was consistent with international standards set with regards to the proposition of research of disciplines and complementary strategies in forming the doctorate. CONCLUSION: despite the efforts and advances in research formation, it is essential to expand to more robust research designs with a greater impact on production knowledge that is incorporated into practice. PMID:26312630

  9. Formation of organochlorine by-products in bleached laundry.

    PubMed

    Leri, Alessandra C; Anthony, Laura N

    2013-02-01

    Laundering fabrics with chlorine bleach plays a role in health and hygiene as well as aesthetics. However, laundry bleaching may create chlorinated by-products with potentially adverse human health effects. Studies have shown that toxic chlorinated gases are produced in the headspace of washing machines when hypochlorite-containing bleach is used. Laundry bleaching has also been implicated in contributing dissolved organochlorine to municipal wastewater. However, there have been no reports of organochlorines produced and retained in fabric as a result of laundry bleaching. We have used a chlorine-specific X-ray spectroscopic analysis to demonstrate the formation of organochlorine by-products in cotton fabrics laundered with chlorine bleach under typical household conditions. Organochlorine formation increases at higher wash temperature. At least two pools of organochlorine are produced in bleached fabric: a labile fraction that diminishes over several months of storage time as well as a more stable fraction that persists after more than 1 year. Our results also suggest that residual hypochlorite remains in fabric after laundering with bleach, presenting the possibility of direct and sustained dermal contact with reactive chlorine. This study provides a first step toward identifying a new risk factor for elevated organochlorine body burdens in humans.

  10. Allyl-silica Hybrid Monoliths For Chromatographic Application

    NASA Astrophysics Data System (ADS)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  11. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.

    PubMed

    Lv, Lishuang; Shao, Xi; Chen, Huadong; Ho, Chi-Tang; Sang, Shengmin

    2011-04-18

    Methylglyoxal (MGO) is a highly reactive endogenous metabolite derived from several nonenzymatic and enzymatic reactions, and identified as a well-known precursor of advanced glycation end products (AGEs). In the present study, genistein, a naturally occurring isoflavone derived from soy products, demonstrated significant trapping effects of MGO and consequently formed mono- and di-MGO adducts under physiological conditions (pH 7.4, 37 °C). More than 80.0% of MGO was trapped within 4 h, and the trapping efficiency could be up to 97.7% at 24 h. The reaction adducts formed from genistein and MGO under different ratios were analyzed using LC/MS. We also successfully purified and identified the major mono- and di-MGO conjugated adducts of genistein. The NMR data showed that positions 6 and 8 of the A ring of genistein were the major active sites for trapping MGO. We further demonstrated that genistein could effectively inhibit the formation of AGEs in the human serum albumin (HSA)-MGO assay. Two mono-MGO adducts and one di-MGO adduct of genistein were detected in this assay using LC/MS. The di-MGO adduct of genistein became the dominant reaction product during prolonged incubation. Results from this study, as well as our previous findings on (-)-epigallocatechin 3-gallate (EGCG), phloridzin and phloretin, indicate that dietary flavonoids that have the same A ring structure as genistein, EGCG, phloridzin, and phloretin may have the potential to inhibit the formation of AGEs by trapping reactive dicarbonyl species.

  12. Monolithic molecularly imprinted cryogel for lysozyme recognition.

    PubMed

    Rabieizadeh, Mohammadmahdi; Kashefimofrad, Seyed Mohammadreza; Naeimpoor, Fereshteh

    2014-10-01

    The application of molecularly imprinted polymers in the selective adsorption of macromolecules such as proteins by monolithic protein-imprinted columns requires a macroporous structure, which can be provided by cryogelation at low temperature in which the formation of ice crystals gives a porous structure to the molecularly imprinted polymer. In this study, we applied this technique to synthesize lysozyme-imprinted polyacrylamide cryogels containing 8% w/v of total monomers and 0.3% w/v of lysozyme. The synthesized cryogel was sponge-like and elastic with very fast swelling and reshaping properties, showing a swelling ratio of 24.5 ± 3 and gel fraction yield of about 72%. It showed an imprinting effect of 1.58 and a separation factor of 1.37 for cytochrome c as the competing protein. Adsorption studies on the cryogel revealed that it follows the Langmuir isotherm, with a maximum theoretical adsorption capacity of 36.3 mg lysozyme per gram of cryogel. Additionally, it was shown that a salt-free rebinding solution at low flow rate and pH = 7.0 is favorable for lysozyme rebinding. This kind of monolithic column promises a wide range of application in separation of various biomolecules due to its preparation simplicity, good rebinding characteristics, and macroporosity.

  13. Magnetic treatment of microalgae for enhanced product formation.

    PubMed

    Santos, Lucielen Oliveira; Deamici, Kricelle Mosquera; Menestrino, Bruno Costa; Garda-Buffon, Jaqueline; Costa, Jorge Alberto Vieira

    2017-08-22

    Static or modulated magnetic fields (MF) may interact with the biological system and affect the metabolism of microorganisms, such as their photosynthetic capacity or synthesis of carbohydrates. Their effects on microorganisms, which can be classified into inhibiting, stimulating and null, may be interpreted as the result of stress that cells undergo, thus, leading to responses through the same mechanisms. Biological effects of exposure to magnetic forces depend on magnetic intensity, frequency and exposure time. Modifications in these parameters may enhance product formation. Effects differ according to the form and application of MF characteristic parameters. Magnetic treatments have the advantages of being convenient and non-toxic, having low running cost, emitting no secondary pollution, enabling wide application and being easily shielded. MF application to the cultivation of microalgae, to improve the production of finished biomolecules, is a simple, inexpensive and powerful process. However, bioeffects of MF on microalgae need to be further investigated because there have currently been very few available reports in the literature. Thus, studies which aim at optimizing parameters involved in MF application must be developed in order to obtain the best conditions for the production of molecules with high economic potential.

  14. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  15. Monolithic blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Gaebler, Volker; Eichler, Hans J.

    2002-06-01

    We report a monolithic low threshold 482nm Tm:ZBLAN upconversion fiber laser. The laser cavity consists of a directly coated single-mode fluoride fiber. The vapor deposit coatings significantly reduce the coupling losses and are suitable to be pumped by laser diodes. The laser operation and threshold characteristics have been investigated. The output stability and beam quality was tested.

  16. In situ Fabrication of Monolithic Copper Azide

    NASA Astrophysics Data System (ADS)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  17. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii

    SciTech Connect

    Ben-Bassat, A.; Lamed, R.; Zeikus, J.G.

    1981-04-01

    Specific changes in the chemical and microbial composition fof Thermoanaerobium brockii fermentations were compared and related to alterations of process rates, end product yields, and growth parameters. Fermentation of starch as compared with glucose was associated with significant decreases in growth rate and intracellular fructose-1,6-bisphosphate concentration and with a dramatic increase in the ethanols/lactate product ratio. Glucose or pyruvate fermentation in the presence of acetone was correlated with increased substrate consumption, growth, acetate yield, and quantitative reduction of acetone to isopropanol in lieu of normal reduced fermentation products. Glucose fermentation in the presence of exogenous hydrogen was associated with inhibition of endogenous H/sub 2/ production. The effects of exogenous hydrogen on glucose fermentation were totally reversed by the addition of acetone. Glucose fermentation in coculture with Methanobacterium thermoautotrophicum correlated with increased growth, acetate yield, and the formation of methane in lieu of monoculture reduced products.

  18. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  19. Experimental disinfection by-product formation potential following rainfall events.

    PubMed

    Delpla, Ianis; Rodriguez, Manuel J

    2016-11-01

    Spring rainfall events can have deleterious impacts on raw and drinking water quality for water treatment plants that use surface waters. This study compares the influence of land use and climate on DBP precursors in two catchments supplying the region around the City of Québec, Canada, and assesses the variability of Disinfection By-Product (DBP) concentration and speciation following rainfall events. DBPs (trihalomethanes (THMs) and haloacetic acids (HAAs)) and their precursors in raw waters (pH, turbidity, specific ultraviolet absorbance (SUVA), total and dissolved organic carbon, bromides and chlorine dose) were monitored. Various experimental chlorination tests, DBP formation potential (DBPFP) and Simulated Distribution Systems (SDS), were also performed. Differences in pre-rainfall (baseflow) water quality were noted according to the different watershed land uses. Raw water quality patterns showed modifications between baseflow and rainfall periods, with a degradation of raw water quality according to turbidity and SUVA in both water sources. Rainfall events were also shown to alter organic matter reactivity with an increase in THM formation potential for both sites. A less noticeable impact on HAA formation potential was observed. However, no clear differences in DBPFP tests were observed between the sites. SDS tests showed that rainfall events lead to considerable rises in organic carbon reactivity of filtered waters, even after primary treatment, with a 2-fold increase in THM and HAA concentrations following rainfall for waters representing the end of one main distribution system (20 h contact time). These increases are linked mainly to a rise in non-brominated DBPs such as chloroform, trichloroacetic acid and dichloroacetic acid. This study confirms the importance of strictly controlling OM levels during drinking water treatment to ensure safe drinking water quality throughout the distribution system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Monolithic silica sorbents for the separation of diastereomers by means of simulated moving bed chromatography.

    PubMed

    Schulte, M; Dingenen, J

    2001-07-20

    Monolithic silica sorbents with a dual pore system can be used in preparative chromatography for the separation of diastereomers. They exhibit some special features, which allows them to be operated at high linear velocities due to their reduced pressure drop and fast diffusion kinetics. Especially in the continuous set-up of simulated moving bed chromatography monolithic sorbents show high productivities, which make them well suited in pharmaceutical drug development for the production of pure isomers.

  1. Polyvinyl alcohol-based hydrophilic monoliths from water-in-oil high internal phase emulsion template.

    PubMed

    Meng, Xiao; Zeng, Ni; Zhang, Jin; Jiang, Long; Dan, Yi

    2017-07-01

    Herein, we report a new approach to fabricate polyvinyl alcohol (PVA) based hydrophilic monoliths by alcoholysis of porous emulsion-templated polyvinyl acetate (PVAc). The precursory PVAc-based monolith is obtained by polymerization of a W/O high internal phase emulsion (HIPE) containing vinyl acetate as the external phase while water as the internal phase. As an alcoholysis-stable tri-functional commonomer, triallyl isocyanurate is chosen as the crosslinking agent to prevent possible collapse of the polymeric skeleton and the consequent losses in mechanical properties during the alcoholysis step. By alcoholysis of the resulting PVAc-based monolith, the PVA-based monoliths are successful prepared as confirmed by FTIR analysis. BET analysis and SEM observation confirm the formation of open-cell and highly interconnected porous structures of PVA-based monoliths with surface areas of around 16m(2)/g. Stemming from the intrinsic hydrophilicity of hydroxyl and morphology, PVA-based monoliths exhibit great enhancement in hydrophilicity with a much lower water contact angles than that of PVAc-based monoliths. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  3. Mineral formation during production of highly saline geothermal fluids

    NASA Astrophysics Data System (ADS)

    Regenspurg, S.; Naumann, R.; Feldbusch, E.; Wagner, S.; Saadat, A.

    2012-04-01

    Geothermal solutions produced from deep wells are often highly saline and of complex composition impeding exact predictions of fluid-mineral interactions. At constant (high) temperature and flow conditions during plant operation, only little precipitation would be expected. However, during the initial phase of the operation of a geothermal plant, the testing of equipment components such as pumps and valves prevents these constant fluid flow conditions. Moreover, fluid temperatures are still relatively low and vary strongly at this stage. These inhomogeneous conditions result in the precipitation of a wide range of minerals. The analysis of solutions composition as well as of the mineral precipitates during this initial testing phase represents a unique in-situ experiment allowing understanding the mineral formation from complex solutions under a wide range of temperatures. This experiment was possible at the geothermal in-situ laboratory in Groß Schönebeck (North German Basin). At this site, hot fluid (150 °C at 4400 m depth) is pumped out of a production well to the surface where it passes the above ground installation (e.g. 1 µm filter bags) before it would be re-injected into a second (injection) well. The temperature of the produced fluid varied between 10 and 100°C due to numerous turning on and shutdown phases. Fluid and filter residues have been analyzed during several cycles. In the solid phase, almost no minerals of the reservoir sandstone have been identified. Instead, several compunds have been found which precipitated directly from the solution. One group, dominated mainly by barite (BaSO4), formed as consequence of the cooling effect, which affects strongly the solubility product and results in mineral precipitation. The other group of minerals (such as magnetite or several lead minerals) form due to changes in redox conditions. These changes occur possibly in the region close to the production pump, where a strong magnetic field and highly

  4. Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products.

    PubMed

    Khan, Muhammad I; Min, Joong-Seok; Lee, Sang-Ok; Yim, Dong Gyun; Seol, Kuk-Hwan; Lee, Mooha; Jo, Cheorun

    2015-08-11

    Cholesterol is an important biological compound; however, its oxidation products have been proven to be harmful to human health. Cooking, storage, and reheating methods significantly affect the safety of meat products, as they contribute to the production of cholesterol oxidation products (COPs). Three cooking methods were used to cook sausages, loin ham, bacon, luncheon meat, and pressed ham, in order to investigate the effect of cooking, storage, and reheating on total cholesterol and on the formation of COPs. Cooked samples were stored at 4 °C and reheated after 3 and 6 storage days by the same cooking method or by microwaving. The samples were assessed for total lipids, cholesterol, and cholesterol oxides. The average cholesterol content in the processed meat varied from 76.0 mg/100 g to 201.70 mg/100 g. Microwaved ham showed the lowest cholesterol content compared to that of other processed meat products. Significant differences were found in cholesterol content and cholesterol oxidation products depending on cooking, storage, and reheating methods. Six cholesterol oxides were found in processed meat, of which 7β-hydroxycholesterol and α-epoxides were detected as the major oxidation products. Microwaving and oven grilling resulted in higher production of COPs in processed meat as compared with other cooking methods. Refrigerated storage tended to significantly increase the COPs content.

  5. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography.

    PubMed

    Vonk, Rudy J; Vaast, Axel; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2014-09-12

    Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%). The kinetic-performance of (50-mm long) titanium-scaffolded monoliths was compared to that of similar monolith created in 1-mm i.d. glass-lined tubing at pressures up to 50MPa. The peak capacities obtained with the titanium-scaffolded column was about 30% lower. An increased Eddy-diffusion, due to the pillar-structure, and a decreased permeability are thought to be the main reasons for this reduced kinetic-performance. No decrease in performance was observed when the titanium-scaffolded columns were operated at pressures of 80MPa for up to 12h. The column-to-column repeatability (n=5) was acceptable in terms of observed peak widths at half heights (RSD ca. 10%) The run-to-run repeatability (n=135) in terms of retention times and peak widths at half height were found to be good. Titanium-scaffolded columns coupled in series up to a combined length of (200mm) were used for the analyses of a complex Escherichia coli protein sample. Our experiments demonstrate that columns based on titanium-scaffolded organic-polymer monolith can be operated under strenuous conditions without loss in performance. The titanium-scaffolded approach makes it feasible to create organic-polymer monoliths in wide-bore columns with accurate temperature control.

  6. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  7. Monolithic Fuel Fabrication Process Development

    SciTech Connect

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  8. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    PubMed

    Li, An; Pfelzer, Nina; Zuijderwijk, Robbert; Brickwedde, Anja; van Zeijl, Cora; Punt, Peter

    2013-05-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid producer (Li et al., Fungal Genet Bio 48: 602-611, 2011). After some initial steps in production optimization in the previous research (Li et al., BMC biotechnol 12: 57, 2012), this research aims at modifying host strains and fermentation conditions to further improve itaconic acid production. Expression of two previously identified A. terreus genes encoding putative organic acid transporters (mttA, mfsA) increased itaconic acid production in an A. niger cis-aconitate decarboxylase expressing strain. Surprisingly, the production did not increase further when both transporters were expressed together. Meanwhile, oxalic acid was accumulated as a by-product in the culture of mfsA transformants. In order to further increase itaconic acid production and eliminate by-product formation, the non-acidifying strain D15#26 and the oxaloacetate acetylhydrolase (oahA) deletion strain AB 1.13 ∆oahA #76 have been analyzed for itaconic acid production. Whereas cadA expression in AB 1.13 ∆oahA #76 resulted in higher itaconic acid production than strain CAD 10.1, this was not the case in strain D15#26. As expected, oxalic acid production was eliminated in both strains. In a further attempt to increase itaconic acid levels, an improved basal citric acid-producing strain, N201, was used for cadA expression. A selected transformant (N201CAD) produced more itaconic acid than strain CAD 10.1, derived from A. niger strain AB1.13. Subsequently, we have focused on the influence of dissolved oxygen (D.O.) on itaconic acid production. Interestingly, reduced D.O. levels (10-25 %) increased itaconic acid production using strain N201 CAD. Similar results were obtained in strain AB 1.13 CAD + HBD2

  9. Minimization of the formation of disinfection by-products.

    PubMed

    Badawy, Mohamed I; Gad-Allah, Tarek A; Ali, Mohamed E M; Yoon, Yeoman

    2012-09-01

    The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA(254)), specific UV absorbance at 254 nm (SUVA(254)), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.

  10. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  11. Engineering a hyperthermophilic archaeon for temperature-dependent product formation.

    PubMed

    Basen, Mirko; Sun, Junsong; Adams, Michael W W

    2012-01-01

    Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100°C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [T(opt)] of 78°C) controlled by a "cold shock" promoter that is upregulated when cells are transferred from 98°C to 72°C. At 98°C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72°C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at

  12. Engineering a Hyperthermophilic Archaeon for Temperature-Dependent Product Formation

    SciTech Connect

    Basen, M; Sun, JS; Adams, MWW

    2012-02-24

    Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100 degrees C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [T-opt] of 78 degrees C) controlled by a "cold shock" promoter that is upregulated when cells are transferred from 98 degrees C to 72 degrees C. At 98 degrees C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72 degrees C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100 degrees C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100 degrees C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter

  13. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    PubMed

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution

    NASA Astrophysics Data System (ADS)

    Utton, C. A.; Hand, R. J.; Hyatt, N. C.; Swanton, S. W.; Williams, S. J.

    2013-11-01

    To simulate the possible disposition of a vitrified intermediate-level waste (ILW) in a cementitious environment within a geological disposal facility (GDF), the durability of a laboratory simulant ILW vitrified in a borosilicate glass in a saturated Ca(OH)2 solution (pH ˜12.5) was measured. Both a low surface area to volume (SA/V) ratio (˜10 m-1) Materials Characterisation Center test 1 (MCC-1) and a high SA/V ratio (˜10,000 m-1) product consistency test type B (PCT-B) were used at 50 °C for up to 170 days. The formation of alteration layers and products was followed. The surfaces of the monoliths were analysed using SEM/EDX and showed the formation of magnesium-rich precipitates and distinct calcium silicate hydrate (CSH) precipitates. Cross sections showed the development of a calcium-rich alteration layer, which was observed from 14 days. The altered layer was up to 5 μm thick after 170 days and showed accumulation of zirconium, iron and magnesium and to a lesser extent aluminium, along with calcium and silicon. Based on comparison of the rate data, it is suggested that the presence of this layer may offer some protection to the underlying glass. However, the high SA/V ratio experiments showed resumed alteration after 56 days, indicating that the altered layer may not be protective in the long term (under accelerated conditions). The formation of a magnesium-containing smectite clay (likely saponite) in addition to CSH(II), a jennite-like CSH phase, were identified in the high SA/V experiment by X-ray diffraction after 170 days. These results suggest that calcium and magnesium have important roles in both the long and shorter-term durability of vitrified wastes exposed to high pH. This is higher than the value of 63 kJ mol-1 reported by Abraitis [21]. This appears to originate from a mathematical error in calculating the activation energy, given the underlying data reported, reproduced here in Table 3.

  15. Synthesis of high porosity, monolithic alumina aerogels

    SciTech Connect

    Poco, J F; Satcher, J H; Hrubesh, L W

    2000-09-20

    Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

  16. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  17. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii.

    PubMed Central

    Ben-Bassat, A; Lamed, R; Zeikus, J G

    1981-01-01

    Specific changes in the chemical and microbial composition of Thermoanaerobium brockii fermentations were compared and related to alterations of process rates, end product yields, and growth parameters. Fermentation of starch as compared with glucose was associated with significant decreases in growth rate and intracellular fructose-1,6-bisphosphate concentration and with a dramatic increase in the ethanol/lactate product ratio. Glucose or pyruvate fermentation in the presence of acetone was correlated with increased substrate consumption, growth (both rate and yield), acetate yield, and quantitative reduction of acetone to isopropanol in lieu of normal reduced fermentation products (i.e., H2, ethanol, lactate). Acetone altered pyruvate phosphoroclastic activity of cell extracts in that H2, lactate, and ethanol levels decreased, whereas the acetate concentration increased. Glucose fermentation in the presence of exogenous hydrogen was associated with inhibition of endogenous H2 production and either increased ethanol/acetate product ratios and decreased growth at less than 0.5 atm (51 kPa) of H2 or total growth inhibition at 1.0 atm (102 kPA). The effects of exogenous hydrogen on glucose fermentation were totally reversed by the addition of acetone. Glucose fermentation in coculture with Methanobacterium thermoautotrophicum correlated with increased growth (both rate and yield), acetate yield, and the formation of methane in lieu of monoculture reduced products. In coculture, but not monoculture, T. brockii grew on ethanol as the energy source, and acetate and methane were the end products as a direct consequence of hydrogen consumption by the methanogen. PMID:7217000

  18. Particle Formation and Product Formulation Using Supercritical Fluids.

    PubMed

    Knez, Željko; Knez Hrnčič, Maša; Škerget, Mojca

    2015-01-01

    Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.

  19. Single step plasmid DNA purification using methacrylate monolith bearing combination of ion-exchange and hydrophobic groups.

    PubMed

    Smrekar, Vida; Smrekar, Franc; Strancar, Aleš; Podgornik, Aleš

    2013-02-08

    Purification of high quantities of human grade plasmid DNA is one of the most intensive production steps. Because of that several methods have been proposed, among them also chromatographic purification using methacrylate monoliths. Recently, a process comprising the combination of hydrophobic interaction (HIC) monolith and ion-exchange monolith was developed. In this work both chemistries were tried to be introduced on a single monolith. Methacrylate monoliths bearing octylamine groups, combination of butyl (C4) grafted methacrylate groups and diethylaminoethyl (DEAE) groups as well as grafted chains bearing both C4 and DEAE groups were prepared. All monoliths were investigated for their ionic and protein capacity and compared to conventional epoxy, C4, and DEAE methacrylate monoliths. Octylamine monolith and monolith bearing combination of C4 grafted methacrylate groups and DEAE groups were found to be the most promising candidates and were further tested for plasmid DNA (pDNA) dynamic binding capacity under ion-exchange (IEX) and HIC binding conditions and ability to separate open circular (OC) from supercoiled (SC) pDNA forms and RNA from pDNA. Since monolith bearing combination of grafted C4 methacrylate groups and DEAE groups was superior in all three tested features, exhibiting pDNA dynamic binding capacity of 4.7 mg/ml under IEX conditions and 2.1mg/ml under HIC conditions, it was used for the development of a single step purification method and tested with pure pDNA as well as with cell lysate. Developed method removed over 99% of RNA, host cell proteins (HCP) and genomic DNA (gDNA) demonstrating capacity to purify around 1.5mg of pDNA/ml of monolith from cell lysate.

  20. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  1. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  2. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  3. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  4. Nitrate photochemistry in NaY zeolite: product formation and product stability under different environmental conditions.

    PubMed

    Gankanda, Aruni; Grassian, Vicki H

    2013-03-14

    In the atmosphere, mineral dust particles are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides (N2O5, HNO3, NO3, and NO2). Nitrate ions associated with mineral dust particles can undergo further reactions including those initiated by solar radiation. Although nitrate photochemistry in aqueous media is fairly well studied, much less is known about the photochemistry of nitrate adsorbed on mineral dust particles. In this study, the photochemistry of nitrate from HNO3 adsorption in NaY zeolite under different environmental conditions has been investigated using transmission FTIR spectroscopy. NaY zeolite is used as a model zeolite for studying reactions that can occur in confined space such as those found in porous materials including naturally occurring zeolites and clays. Upon nitrate photolysis under dry conditions (relative humidity, RH, < 1%), surface nitrite is formed as the major adsorbed product. Although nitrite has been proposed as a product in the photochemistry of nitrate adsorbed on metal oxide particle surfaces, such as on alumina, it has not been previously detected. The stability of adsorbed nitrite in NaY is attributed to the confined three-dimensional structure of the porous zeolite, which contains a charge compensating cation that can stabilize the nitrite ion product. Besides adsorbed nitrite, small amounts of gas phase nitrogen-containing products are observed as well including NO2, NO, and N2O at long irradiation times. The amount of nitrite formed via nitrate photochemistry decreases with increasing relative humidity, whereas gas phase NO and N2O become the only detectable products. Gas-phase NO2 does not observe at RH > 1%. In the presence of gas phase ammonia, ammonium nitrate is formed in NaY zeolite. Photochemistry of ammonium nitrate yields gas phase N2O as the sole gas phase product. Evidence for an NH2 intermediate in the formation of N2O is identified with FTIR spectroscopy for HNO3 adsorption and

  5. CCN production by new particle formation in the free troposphere

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Sellegri, Karine; Moreno, Isabel; Velarde, Fernando; Ramonet, Michel; Weinhold, Kay; Krejci, Radovan; Andrade, Marcos; Wiedensohler, Alfred; Ginot, Patrick; Laj, Paolo

    2017-01-01

    Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ˜ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm-3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of

  6. Formation and Occurrence of Disinfection By-Products

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  7. Formation and Occurrence of Disinfection By-Products

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  8. Adsorption over polyacrylonitrile based carbon monoliths

    NASA Astrophysics Data System (ADS)

    Nandi, Mahasweta; Dutta, Arghya; Patra, Astam Kumar; Bhaumik, Asim; Uyama, Hiroshi

    2013-02-01

    Highly porous activated carbon monoliths have been prepared from mesoporous polyacrylonitrile (PAN) monolith as the carbon precursor. The mesoporous PAN monoliths are fabricated by a unique and facile template-free method which on carbonization gives N-doped activated carbon monoliths. The carbonization is achieved via two step thermal process which includes pretreatment in air leading to cyclization and subsequent aromatization of the PAN moieties followed by carbonization in a mixture of argon and carbon dioxide to give a layered carbon framework. Nitrogen sorption experiments carried over these carbon monoliths revealed high surface area (ca. 2500 m2g-1) for these materials with precise micropore size distribution. The activated carbons show extraordinarily high CO2 capture capacity and the uptake up to 3 bar has been found to be as high as 22.5 and 10.6 mmol/g at 273 K and 298 K, respectively.

  9. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-02-01

    In complex laser systems, such as those for material processing, and in basically all laboratory applications passive optical components are indispensable. Matching beam diameters is a common task, where Galileo type telescopes are preferred for beam expansion. Nevertheless researches and customers have found various limitations when using these systems. Some of them are the complicated adjustment, very small diameter for the incoming beam (1/e2), fixed and non-modifiable magnifications. Above that, diffraction-limitation is only assured within the optical design and not for the real world setup of the beam expanding system. Therefore, we will discuss limitations of currently used beam expanding systems to some extent. We will then present a new monolithical solution, which is based on the usage of only one aspherical component. It will be shown theoretically how the beam quality can be significantly improved by using aspherical lenses. As it is in the nature of things aspheres are working diffraction limited in the design, it will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Data of the culminated wavefront error will be presented. Last but not least insights will be given how beam expanding systems based on aspheres will help to use larger incoming beams and to reduce the overall length of such a system.

  10. Sea salt production and its role in warm clouds formation

    NASA Astrophysics Data System (ADS)

    Kallos, George; Patlakas, Platon; Koukoula, Marika; Stathopoulos, Christos; Rosenfeld, Daniel

    2017-04-01

    The Mediterranean Region is characterized by a mixture of aerosols of various origins and sources. Sea salt and desert dust comprise of the most important natural sources, while anthropogenic activities and biomass burning have also contribution. The composition of this mixture highly affects the nucleation processes as well as cloud formation and evolution. The main objective of this work is to better understand the nucleation processes and the role of sea salt and other aerosols on the marine boundary layer characteristics and orographic cloud formation. Sea salt particles, regardless their small quantities compared with dust amounts during episodes, constitute a very efficient CCN, playing a key role in cloud formation, especially during the initial stage. The study focuses on the eastern part of the Mediterranean Sea and particularly in Crete and East Mediterranean Coast. The fully-coupled modeling system RAMS/ICLAMS is used to perform this study. Cloud characteristics retrieved from satellite data and in situ data from the remote location station of Finokalia are used for comparison with the model simulations and a more comprehensive analysis. Among the results, there is the obvious important role of the Aegean islands along with the steep orography of Crete in the warm cloud formation. The atmospheric aerosol characteristics and the cloud formation mechanism affect the droplet size distribution and the cloud droplet concentration in various ways which are further analyzed.

  11. Development of stable monolithic wide-field Michelson interferometers

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-01

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10-6/° C near 550nm, which corresponds to ˜800m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations.

  12. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  13. Development of stable monolithic wide-field Michelson interferometers.

    PubMed

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations.

  14. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, J.W.

    1995-01-17

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  15. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, Joseph W.

    1995-01-01

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  16. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  17. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  18. Effect of Silica on High-Temperature Interfacial Phenomena of Monolithic Refractories with Al Alloy

    NASA Astrophysics Data System (ADS)

    Koshy, Pramod; Gupta, Sushil; Sahajwalla, Veena; Edwards, Phil

    2008-04-01

    An experimental study was conducted to study the interfacial phenomena between monolithic refractories and Al alloy at 1250 °C. Dynamic contact angles of monolithic substrates with varying silica levels were measured using the sessile drop technique, while phases present in the preheated monolithic samples and interfacial reaction products were characterized using X-ray diffraction (XRD) and an electron probe microanalyzer (EPMA). The contact angles in the Al alloy/silica system were found to change much more rapidly as compared to that of the alloy/alumina system, clearly demonstrating the high wetting tendency of silica. Under the tested conditions, the corundum phase forms at the interface while Mg was found to vaporize from the alloy and accumulate at the bottom of the monolithic substrate. Both these phenomena are shown to influence the intensity of contact angle variations with time and, thereby, the wetting behavior of monolithic substrates. Based on dynamic contact angles and equilibrium calculations, monolithic refractories are further classified into three groups, such that the wetting characteristics of those with compositions in the ranges of 0 to 25 pct, 25 to 45 pct, and >45 pct silica were shown to be dictated by the presence of corundum, mullite, and free silica, respectively, as the predominant phase.

  19. A fluorous porous polymer monolith photo-patterned chromatographic column for the separation of a flourous/fluorescently labeled peptide within a microchip.

    PubMed

    Xu, Zhenpo; Oleschuk, Richard D

    2014-02-01

    A fluorous porous polymer stationary phase is photo-patterned within a glass microfluidic chip to conduct CEC. During free radical-initiated polymerization, extraneous polymer forms and contributes to excessive microfluidic channel clogging. Nitrobenzene is explored as free radical quencher to limit clogging by minimizing extraneous polymer formation and a number of initiator to quencher ratios are explored with a 0.5:1 quencher (nitrobenzene): initiator (benzoin methyl ether) molar ratio shown to be optimal. The microchip patterned with a fluorous monolith was used to carry out the electrochromatographic analysis of a mixture containing fluorescent and fluorous labeling products. The fluorous monolithic column shows fluorous selectivity for compounds labeled with perfluoromethylene tags and a custom peptide is synthesized that possesses functional groups that can be both fluorescently and fluorously labeled. MALDI MS was used to identify the labeled fragments and microchip based electrochromatography was used to analyze the resulting labeling mixture. This is the first report to our knowledge that uses fluorous porous polymer monolith within a microchip to separate analytes using fluorous-fluorous interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gravitationally induced particle production and its impact on structure formation

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2016-08-01

    In this paper we investigate the influence of a continuous particles creation processes on the linear and nonlinear matter clustering, and its consequences on the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole l, showing that the scale where the nonlinear growth overcomes the linear effect depends strongly of particles creation rate.

  1. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  2. Anisotropically structured magnetic aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  3. Advances in monolithic ferroelectric uncooled IRFPA technology

    NASA Astrophysics Data System (ADS)

    Hanson, Charles M.; Beratan, Howard R.; Belcher, James F.; Udayakumar, K. R.; Soch, Kevin L.

    1998-07-01

    The success of uncooled IR imaging at Raytheon has awakened a new view of the potential of thermal imaging. Once relegated to only expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, thermal imaging is now affordable for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are as low as $8000, and swelling production volume will soon drive prices substantially lower. The impetus for further development is performance. The hybrid barium strontium titanate (BST) detectors currently in production have limited potential for improved sensitivity, and their MTF is suppressed at high frequencies. Microbolometer arrays in development at Raytheon have demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers, and arguably more. They are also compatible with numerous fielded and planned system implementations. Like a microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Initial imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  4. Oxidative product formation in irradiated neutrophils. A flow cytometric analysis

    SciTech Connect

    Wolber, R.A.; Duque, R.E.; Robinson, J.P.; Oberman, H.A.

    1987-03-01

    The effect of irradiation on neutrophil oxidative function was evaluated using a flow cytometric assay of intracellular hydrogen peroxide (H/sub 2/O/sub 2/) production. This assay quantitates the H/sub 2/O/sub 2/-dependent conversion of the nonfluorescent compound, 2'-7'-dichlorofluorescein (DCFH), into fluorescent 2'-7'-dichlorofluorescein (DCF) on a single-cell basis. Intracellular H/sub 2/O/sub 2/ production in response to stimulation with phorbol myristate acetate was not affected by neutrophil irradiation at doses up to 2500 rad. In addition, irradiation of intracellular DCFH and aqueous 2'-7'-dichlorofluorescein diacetate (DCFH-DA) resulted in DCF production, which suggested that oxidative molecules produced by aqueous radiolysis were detected by this assay. This study indicates that radiation doses of 1500 to 2500 rad, which are sufficient to prevent induction of graft-versus-host disease by transfused blood components, are not deleterious to neutrophil oxidative metabolism.

  5. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  6. Product Inhibition of the Fermentative Formation of Glutamic Acid

    PubMed Central

    Nunheimer, T. D.; Birnbaum, J.; Ihnen, E. D.; Demain, A. L.

    1970-01-01

    The addition of penicillin to cells of Corynebacterium glutamicum growing in 5-liter fermentors initiated the excretion of glutamic acid. The rate of glutamate production in fermentors declined continuously with time and reached 75% of the initial rate in 24 hr after penicillin had been added. The addition of glutamate to resting cell suspensions had only a slight effect on sugar utilization but caused a marked decrease in glutamate excretion. It is suggested that the high level of glutamate accumulating in the fermentation broth is responsible for inhibiting its own production. PMID:5480097

  7. Efficient Therapeutic Guideline Production Across Multiple Output Formats

    PubMed Central

    Lewis, Bryn

    2002-01-01

    This paper describes the demands on therapeutic guideline production and a production system (SISMO) designed to cope with these demands. Guidelines are intended for use within a range of clinical information systems and vary in their content, style, intended audience and structure. Complex medical information makes up the content of guidelines and is subsequently viewed in complex and varying environments, on a variety of devices. The functionality of SISMO allows guideline content providers to produce content in a way that is sympathetic to the traditional means of writing guidelines, while also allowing guideline structure to be developed.

  8. Investigation of Contact Formation during Silicon Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  9. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations.

    PubMed

    Cabooter, Deirdre; Broeckhoven, Ken; Sterken, Roman; Vanmessen, Alison; Vandendael, Isabelle; Nakanishi, Kazuki; Deridder, Sander; Desmet, Gert

    2014-01-17

    The kinetic performance of commercially available first generation and prototype second generation silica monoliths has been investigated for 2.0mm and 3.0-3.2mm inner diameter columns. It is demonstrated that the altered sol-gel process employed for the production of second generation monoliths results in structures with a smaller characteristic size leading to an improved peak shape and higher efficiencies. The permeability of the columns however, decreases significantly due to the smaller throughpore and skeleton sizes. Scanning electron microscopy pictures suggest the first generation monoliths have cylindrical skeleton branches, whereas the second generation monoliths rather have skeleton branches that resemble a single chain of spherical globules. Using recently established correlations for the flow resistance of cylindrical and globule chain type monolithic structures, it is demonstrated that the higher flow resistance of the second generation monoliths can be entirely attributed to their smaller skeleton sizes, which is also evident from the external porosity that is largely the same for both monolith generations (ɛe∼0.65). The recorded van Deemter plots show a clear improvement in efficiency for the second generation monoliths (minimal plate heights of 13.6-14.1μm for the first and 6.5-8.2μm for the second generation, when assessing the plate count using the Foley-Dorsey method). The corresponding kinetic plots, however, indicate that the much reduced permeability of the second generation monoliths results in kinetic performances (time needed to achieve a given efficiency) which are only better than those of the first generation for plate counts up to N∼45,000. For more complex samples (N≥50,000), the first generation monoliths can intrinsically still provide faster analysis due to their high permeability. It is also demonstrated that - despite the improved efficiency of the second generation monoliths in the practical range of separations (N=10

  10. PREDICTING THE FORMATION OF CHLORINATED AND BROMINATED BY-PRODUCTS.

    EPA Science Inventory

    Although disinfection has been and continues to be one of the major public health advances in the 20th century, the disinfectants themselves may react with naturally-occurring materials in treated water to form unintended by-products which may themselves pose risks. This is of p...

  11. PREDICTING THE FORMATION OF CHLORINATED AND BROMINATED BY-PRODUCTS.

    EPA Science Inventory

    Although disinfection has been and continues to be one of the major public health advances in the 20th century, the disinfectants themselves may react with naturally-occurring materials in treated water to form unintended by-products which may themselves pose risks. This is of p...

  12. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  13. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  14. Optimization of monolithic columns for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.

    2011-06-01

    Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.

  15. Hybrid and monolithic integration of planar lightwave circuits (PLCs)

    NASA Astrophysics Data System (ADS)

    Chen, Ray T.

    2008-02-01

    In this paper, we review the status of monolithic and hybrid integration of planar lightwave circuits (PLCs). Building blocks needed for system integration based on polymeric materials, III-V semiconductor materials, LiNbO 3 and SOI on Silicon are summarized with pros and cons. Due to the maturity of silicon CMOS technology, silicon becomes the platform of choice for optical application specific integrated circuits (OASICs). However, the indirect bandgap of silicon makes the formation of electrically pumped silicon laser a remote plausibility which requires hybrid integration of laser sources made out of III-V compound semicouductor.

  16. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  17. Enzymic Pathways for Formation of Carotenoid Cleavage Products

    NASA Astrophysics Data System (ADS)

    Fleischmann, Peter; Zorn, Holger

    Degraded carotenoids (apocarotenoids, norisoprenoids) have been a subject of intensive research for several decades. From the perspective of human physiology and nutrition, the retinoids, acting as vitamins, signalling molecules, and visual pigments, attracted the greatest attention (Chapters 15 and 16). Plant scientists, however, detected a wealth of different apocarotenoids, presumably derived by the excentric cleavage of carotenoids in various species, the plant hormone abscisic acid (1, Scheme 6) being the best-investigated example. With the onset of fruit ripening, flower opening or senescence of green tissues, carotenoids are degraded oxidatively to smaller, volatile compounds. The natural biological functions of the reaction products are outlined in Chapter 15. As many of these apocarotenoids act as potent flavour compounds, food chemists and flavourists worldwide have investigated meticulously their structural and sensory properties. Many aspects of carotenoid metabolites and breakdown products as aroma compounds are presented in a comprehensive book [1].

  18. Automation of the Technological Process to Produce Building Frame-Monolithic Modules Based on Fluoranhydrite

    NASA Astrophysics Data System (ADS)

    Fedorchuk, J.; Sadenova, M.; Rusina, O.

    2016-01-01

    The paper first proposes the automation of the technological process to produce building frame-monolithic modules from production wastes, namely technogenic anhydrite and fluoranhydrite. A functional diagram of the process automation is developed, the devices to perform control and maintenance with account of the production characteristics are chosen.

  19. Formation and control of non-trihalomethane by-products

    SciTech Connect

    Stevens, A.A.; Moore, L.A.; Miltner, R.J.

    1989-01-01

    Hundreds of organic byproducts of chlorination are now known to occur in drinking water along with the trihalomethanes. About twenty of these appear to be found with sufficient frequency and in sufficient concentration to attract consideration for regulations. These include chloral hydrate, chloropicrin, a trichloropropanone, haloacetonitriles, and haloacetic acids. Trihalomethane concentrations do not serve as good predictors of concentrations of these other byproducts because their conditions of formation vary widely. This is especially true when pH is changed. Treatment strategies for control of these byproducts including the trihalomethanes are: Remove the compounds after they are formed; Remove precursors; and Use other disinfectants. Current evidence supports the idea that precursor removal processes effective for trihalomethane control may be effective for the other byproducts as well.

  20. Methacrylate Polymer Monoliths for Separation Applications

    PubMed Central

    Groarke, Robert J.; Brabazon, Dermot

    2016-01-01

    This review summarizes the development of methacrylate-based polymer monoliths for separation science applications. An introduction to monoliths is presented, followed by the preparation methods and characteristics specific to methacrylate monoliths. Both traditional chemical based syntheses and emerging additive manufacturing methods are presented along with an analysis of the different types of functional groups, which have been utilized with methacrylate monoliths. The role of methacrylate based porous materials in separation science in industrially important chemical and biological separations are discussed, with particular attention given to the most recent developments and challenges associated with these materials. While these monoliths have been shown to be useful for a wide variety of applications, there is still scope for exerting better control over the porous architectures and chemistries obtained from the different fabrication routes. Conclusions regarding this previous work are drawn and an outlook towards future challenges and potential developments in this vibrant research area are presented. Discussed in particular are the potential of additive manufacturing for the preparation of monolithic structures with pre-defined multi-scale porous morphologies and for the optimization of surface reactive chemistries. PMID:28773570

  1. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  2. Advances in the development of organic polymer monolithic columns and their applications in food analysis--a review.

    PubMed

    Jandera, Pavel

    2013-10-25

    Monolithic continuous separation media are gradually finding their way to sample pre-treatment, isolation, enrichment and final analytical separations of a plethora of compounds, occurring as food components, additives or contaminants, including pharmaceuticals, pesticides and toxins, which have traditionally been the domain of particulate chromatographic materials. In the present review, recent advances in the technology of monolithic columns and the applications in food analysis are addressed. Silica-based monoliths are excellent substitutes to conventional particle-packed columns, improving the speed of analysis for low-molecular weight compounds, due to their excellent efficiency and high permeability. These properties have been recently appreciated in two-dimensional HPLC, where the performance in the second dimension is of crucial importance. Organic-polymer monoliths in various formats provide excellent separations of biopolymers. Thin monolithic disks or rod columns are widely employed in isolation, purification and pre-treatment of sample containing proteins, peptides or nucleic acid fragments. Monolithic capillaries were originally intended for use in electrochromatography, but are becoming more frequently used for capillary and micro-HPLC. Monoliths are ideal highly porous support media for immobilization or imprinting template molecules, to provide sorbents for shape-selective isolation of target molecules from various matrices occurring in food analysis. The separation efficiency of organic polymer monoliths for small molecules can be significantly improved by optimization of polymerization approach, or by post-polymerization modification. This will enable full utilization of a large variety of available monomers to prepare monoliths with chemistry matching the needs of selectivity of separations of various food samples containing even very polar or ionized compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Pion production via isobar giant resonance formation and decay

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Deutchman, P. A.; Madigan, R. L.; Norbury, J. W.

    1984-01-01

    A spin, isotopic-spin formalism for the production of pions due to decays of isobar giant resonances formed in peripheral heavy-ion collisions is presented. The projectile nucleus isobar giant resonance state is assumed to coherently form and then incoherently decay to produce the pions. Total spin and isotopic spin for the system are conserved through the concomitant excitation of the target nucleus to an isobaric analog giant resonance state. Comparisons of the predicted total pion cross sections, over a range of energies, are made with heavy-ion pion data.

  4. Monolithic integrated-optic TDLAS sensors

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Scherer, David R.; Wainner, Richard T.; Allen, Mark G.; Shankar, Raji; Loncar, Marko

    2012-06-01

    We are developing prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on infrared Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals with high sensitivity and selectivity. Using semiconductor fabrication and assembly techniques, the low-cost integrated optic TDLAS technology will permit mass production of sensors that have wide ranging industrial, medical, environmental, and consumer applications. Novel gas sensing elements using low-loss resonant photonic crystal cavities or waveguides will permit monolithic integration of a laser source, sampling elements, and detector on a semiconductor materials system substrate. Practical challenges to fabricating these devices include: a) selecting and designing the high-Q micro-resonator sensing element appropriate for the selected analyte; and b) device thermal management, especially stabilizing laser temperature with the precision needed for sensitive spectroscopic detection. In this paper, we analyze the expected sensitivity of micro-resonator-based structures for chemical sensing, and demonstrate a novel approach for exploiting laser waste heat to stabilize the laser temperature.

  5. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays.

    PubMed

    Bunch, Dustin R; Wang, Sihe

    2013-04-01

    Complex matrices, for example urine, serum, plasma, and whole blood, which are common in clinical chemistry testing, contain many non-analyte compounds that can interfere with either detection or in-source ionization in chromatography-based assays. To overcome this problem, analytes are extracted by protein precipitation, solid-phase extraction (SPE), and liquid-liquid extraction. With correct chemistry and well controlled material SPE may furnish clean specimens with consistent performance. Traditionally, SPE has been performed with particle-based adsorbents, but monolithic SPE is attracting increasing interest of clinical laboratories. Monoliths, solid pieces of stationary phase, have bimodal structures consisting of macropores, which enable passage of solvent, and mesopores, in which analytes are separated. This structure results in low back-pressure with separation capabilities similar to those of particle-based adsorbents. Monoliths also enable increased sample throughput, reduced solvent use, varied support formats, and/or automation. However, many of these monoliths are not commercially available. In this review, application of monoliths to purification of samples from humans before chromatography-based assays will be critically reviewed.

  6. Development of an epoxy-based monolith used for the affinity capturing of Escherichia coli bacteria.

    PubMed

    Peskoller, Caroline; Niessner, Reinhard; Seidel, Michael

    2009-05-01

    An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 microm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97+/-3% in 200 microL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4x10(9)cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 microL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.

  7. Extraction of genomic DNA using a new amino silica monolithic column.

    PubMed

    Liu, Lijia; Yu, Shengbing; Yang, Shuixian; Zhou, Ping; Hu, Jiming; Zhang, Yibing

    2009-08-01

    A new amino silica monolithic column was developed for DNA extraction in a miniaturized format. The monolithic column was prepared in situ by polymerization of tetraethoxysilane (TEOS) and N-(beta-aminoethyl)-gamma-aminopropylmethyldimethoxysilane (AEAPMDMS). DNA was loaded in 50 mM tris(hydroxylmethyl)aminomethane-EDTA buffer at pH 7.0 and eluted with 300 mM potassium phosphate solution at pH 10.0. Under optimal condition, a 6.0-cm monolithic column provided a capacity of 56 ng DNA with an extraction efficiency of 71 +/- 5.2% (X +/- RSD). When the amino silica monolithic column was applied to extract genomic DNA from the whole blood of crucian carp, an extraction efficiency of 52 +/- 5.6% (X +/- RSD) was obtained by three extractions. Since the chaotropic-based sample loading and organic solvent wash steps were avoided in this procedure, the purified DNA was suitable for downstream processes such as PCR. This amino silica monolithic column was demonstrated to allow rapid and efficient DNA purification in microscale.

  8. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  9. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  10. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  11. Monolithically integrated Ge CMOS laser

    NASA Astrophysics Data System (ADS)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  12. Structure for monolithic optical circuits

    NASA Technical Reports Server (NTRS)

    Evanchuk, Vincent L. (Inventor)

    1984-01-01

    A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation sensitive plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.

  13. A monolith purification process for virus-like particles from yeast homogenate.

    PubMed

    Burden, Claire S; Jin, Jing; Podgornik, Aleš; Bracewell, Daniel G

    2012-01-01

    Monoliths are an alternative stationary phase format to conventional particle based media for large biomolecules. Conventional resins suffer from limited capacities and flow rates when used for viruses, virus-like particles (VLP) and other nanoplex materials. The monolith structure provides a more open pore structure to improve accessibility for these materials and better mass transport from convective flow and reduced pressure drops. To examine the performance of this format for bioprocessing we selected the challenging capture of a VLP from clarified yeast homogenate. Using a recombinant Saccharomyces cerevisiae host it was found hydrophobic interaction based separation using a hydroxyl derivatised monolith had the best performance. The monolith was then compared to a known beaded resin method, where the dynamic binding capacity was shown to be three-fold superior for the monolith with equivalent 90% recovery of the VLP. To understand the impact of the crude feed material confocal microscopy was used to visualise lipid contaminants, deriving from the homogenised yeast. It was seen that the lipid formed a layer on top of the column, even after regeneration of the column with isopropanol, resulting in increasing pressure drops with the number of operational cycles. Removal of the lipid pre-column significantly reduces the amount and rate of this fouling process. Using Amberlite/XAD-4 beads around 70% of the lipid was removed, with a loss of VLP around 20%. Applying a reduced lipid feed versus an untreated feed further increased the dynamic binding capacity of the monolith from 0.11 mg/mL column to 0.25 mg/mL column.

  14. Large format ink-jet poster production: a case report.

    PubMed

    Harris, R

    1998-03-01

    To complement the services offered by the Medical Illustration Department of Frenchay Hospital, Bristol, we decided to look at the possibility of producing posters using the ink-jet process. Our designers wanted to use the full scope of their computers and software to expand their design talents. The method of cutting and pasting sheets of paper onto card seemed old fashioned and denied clients the benefit of the exciting techniques that have become available. After seeking sponsorship, a drug company gave 8000 Pounds towards setting up the department's poster printing service. A Kodak DS1000 printer was installed together with Posterjet and Posterworks software and we went into production, servicing not only our hospital but others in the area who gave their support for the service. High quality photographic reproduction was achieved and clients and consultants were very pleased with the results. The designers were happy that their skills were being used and interest in this and other services in the department have increased. The resulting increased income has helped finance other projects. The printer has enabled us also to see output proofs before sending work off to be offset printed--a very useful tool and a cost-saving process.

  15. Electron transfer pathways of formate-driven H2 production in Desulfovibrio.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Morais-Silva, Fabio O; Rodrigues-Pousada, Claudina; Voordouw, Gerrit; Wall, Judy D; Pereira, Inês A C

    2016-09-01

    The potential of sulfate-reducing bacteria (SRB) as biocatalysts for H2 production from formate was recently demonstrated, but the electron transfer pathways involved were not described. In the present work, we analyzed the H2 production capacity of five Desulfovibrio strains: Desulfovibrio vulgaris, Desulfovibrio desulfuricans, Desulfovibrio alaskensis, Desulfovibrio fructosivorans, and Desulfovibrio gigas. D. vulgaris showed the highest H2 productivity (865 mL Lmedium (-1)), and D. gigas the lowest one (374 mL Lmedium (-1) of H2). The electron transfer pathways involved in formate-driven H2 production by these two organisms were further investigated through the study of deletion mutants of hydrogenases (Hases) and formate dehydrogenases (Fdhs). In D. vulgaris, the periplasmic FdhAB is the key enzyme for formate oxidation and two pathways are apparently involved in the production of H2 from formate: a direct one only involving periplasmic enzymes and a second one that involves transmembrane electron transfer and may allow energy conservation. In the presence of selenium, the Hys [NiFeSe] Hase is the main periplasmic enzyme responsible for H2 production, and the cytoplasmic Coo Hase is apparently involved in the ability of D. vulgaris to grow by converting formate to H2, in sparging conditions. Contrary to D. vulgaris, H2 production in D. gigas occurs exclusively by the direct periplasmic route and does not involve the single cytoplasmic Hase, Ech. This is the first report of the metabolic pathways involved in formate metabolism in the absence of sulfate in SRB, revealing that the electron transfer pathways are species-specific.

  16. A monolithically integrated torsional CMOS-MEMS relay

    NASA Astrophysics Data System (ADS)

    Riverola, M.; Sobreviela, G.; Torres, F.; Uranga, A.; Barniol, N.

    2016-11-01

    We report experimental demonstrations of a torsional microelectromechanical (MEM) relay fabricated using the CMOS-MEMS approach (or intra-CMOS) which exploits the full foundry inherent characteristics enabling drastic reduction of the fabrication costs and batch production. In particular, the relay is monolithically integrated in the back end of line of a commercial standard CMOS technology (AMS 0.35 μm) and released by means of a simple one-step mask-less wet etching. The fabricated torsional relay exhibits an extremely steep switching behaviour symmetrical about both contact sides with an on-state contact resistance in the k Ω -range throughout the on-off cycling test.

  17. Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions.

    PubMed

    Liao, Qiang; Wang, Ye-Jun; Wang, Yong-Zhong; Zhu, Xun; Tian, Xin; Li, Jun

    2010-07-01

    The application of immobilized-cell technology in photobioreactor for hydrogen production could offer improvements in photo-hydrogen production rate and light utilization efficiency. Indigenous Rhodopseudomonas palustris CQK 01 was attached to the surface of a cover glass slide in a flat-panel photobioreactor, to form biofilm under illumination with a range of intensities and wavelengths. The morphology and structure of mature photosynthetic bacterial (PSB) biofilm were determined to elucidate the relationship between biofilm formation and hydrogen production performance. The effects of operation conditions on hydrogen production performance of the biofilms formed under various illumination conditions were experimentally investigated. The results showed that illumination wavelength and intensity substantially influenced the morphology and structure of the biofilm, and the hydrogen production performance of mature biofilm varied significantly with the illumination conditions that were used for biofilm formation. Biofilm formed under 590 nm and 5000 lx illumination showed the highest hydrogen production performance. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Fractionation, characterization and C-, N-disinfection byproduct formation of soluble microbial products in MBR processes.

    PubMed

    Ma, Defang; Meng, Yingjie; Xia, Chufan; Gao, Baoyu; Wang, Yan

    2015-12-01

    Soluble microbial products are heterogeneous organic materials generated during microbial growth and decay, which are the major soluble organic matters in MBR effluents and are the primary precursors forming disinfection by-products (DBPs). In this study, biomass associated products (BAP) and utilization associated products (UAP) were separately produced to investigate their physical chemical characteristics and disinfection byproduct (DBP) formation during chlorination in the presence of ammonia. BAP had higher formation reactivity of halogenated carbonaceous and nitrogenous DBPs including trihalomethanes, haloketones, haloacetonitriles and trichloronitromethane due to their higher percentage of large molecular weight (MW) materials and humic substances compared with UAP. However, the nonhalogenated species N-nitrosodimethylamine (NDMA) yield of UAP was twice higher than that of BAP because UAP contained more nitrogenous organic matters with MW<500Da including aromatic polypeptide/amino acid-like materials and secondary amines, which have been proved to have high NDMA formation potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  20. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Monolithic and mechanically stacked tandem solar cells have been fabricated with encouraging AM0 efficiencies summarized as: monolithic GaAs/Ge: 19.1 percent (28 C, 4 sq cm); monolithic InP/Ga0.47In0.53As: 22.2 percent (25 C, 0.296 sq cm); monolithic AlGaAs/GaAs/InGaAs: 27.6 percent (80 C, 0.2 sq cm, 100 X); mechanically stacked GaAs/GaSb: 30.8 percent (25 C, 0.049 sq cm, 100 X); and mechanically stacked GaAs/CuInSe2: 23.1 percent (25 C, 4 sq cm). Significant improvement in tandem cell efficiencies nearing to theoretical predictions has been projected with the improvement in cell material quality and processing. Thin-film cells offer improved specific power. It is pointed out that both the monolithic and mechanically stacked cells have their own problems as to size, processing, current-voltage matching, weight, etc. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full spectrum range simulators are required to measure efficiencies correctly.

  1. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2006-09-30

    syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40

  2. Hydrogen production from methane through catalytic partial oxidation reactions

    NASA Astrophysics Data System (ADS)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  3. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  4. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  5. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  6. The formation and control of emerging disinfection by-products of health concern.

    PubMed

    Krasner, Stuart W

    2009-10-13

    When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N-nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.

  7. Hydrogen production in anaerobic reactors during shock loads--influence of formate production and H2 kinetics.

    PubMed

    Voolapalli, R K; Stuckey, D C

    2001-05-01

    In this article the role of hydrogen as a process monitoring tool in methanogenic systems was studied by considering the influence of several key system parameters. Hydrogen production was found to be influenced mainly by the inocula's source pH, and varied only slightly with external pH and HCO3- levels. When an inoculum adapted to above neutral conditions (pH > 7) was shocked, reducing equivalents were selectively channelled through formate, while high hydrogen production was noticed with acidically (pH < 6.5) adapted inocula. The results also revealed that the production of hydrogen or formate during shock loads was not strongly associated with microbial morphology (granules or flocs) as high electron fluxes were possible through either during acidogenesis. Shock load experiments in continuous reactors revealed that neither hydrogen nor formate accumulated to any significant degree, nevertheless digester recovery took a long time due to the slow kinetics of volatile fatty acid degradation. Selective formate production under neutral pH environments, coupled with high hydrogenotrophic activity, was found to be responsible for the dampened hydrogen response during the early phases of gradually shocked systems (step change). Based on these results it appears that the role of hydrogen as a process monitoring tool has been overemphasised in the literature.

  8. The Pool of ADP and ATP Regulates Anaerobic Product Formation in Resting Cells of Lactococcus lactis

    PubMed Central

    Palmfeldt, Johan; Paese, Marco; Hahn-Hägerdal, Bärbel; van Niel, Ed W. J.

    2004-01-01

    Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed. PMID:15345435

  9. Elimination of formate production in Clostridium thermocellum

    SciTech Connect

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.

  10. Monolithically integrated HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, Silviu; Lee, Tae-Seok; Ashokan, Renganathan; Grein, Christoph H.; Boieriu, Paul; Chen, Y. P.; Dinan, John H.; Lianos, Dimitrios

    2003-12-01

    The cost and performance of hybrid HgCdTe infrared focal plane arrays are constrained by the necessity of fabricating the detector arrays on a CdZnTe substrate. These substrates are expensive, fragile, are available only in small rectangular formats, and are not a good thermal expansion match to the silicon readout integrated circuit. We discuss in this paper an infrared sensor technology based on monolithically integrated infrared focal plane arrays that could replace the conventional hybrid focal plane array technology. We have investigated the critical issues related to the growth of HgCdTe on Si read-out integrated circuits and the fabrication of monolithic focal plane arrays: (1) the design of Si read-out integrated circuits and focal plane array layouts, (2) the low temperature cleaning of Si(001) wafers, (3) growth of CdTe and HgCdTe layers on read-out integrated circuits, (4) array fabrication, interconnection between focal plane array and read-out integrated circuit input nodes and demonstration of the photovoltaic operation, and (5) maintenance of the read-out integrated circuit characteristics after substrate cleaning, molecular beam epitaxy growth and device fabrication. Crystallographic, optical and electrical properties of the grown layers are presented. Electrical properties for diodes fabricated on misoriented Si and read-out integrated circuit substrates are discussed. The fabrication of arrays with demonstrated I-V properties show that monolithic integration of HgCdTe-based infrared focal plane arrays on Si read-out integrated circuits is feasible and could be implemented in the 3rd generation of infrared systems.

  11. Combining monolithic zirconia crowns, digital impressioning, and regenerative cement for a predictable restorative alternative to PFM.

    PubMed

    Griffin, Jack D

    2013-03-01

    Advances in indirect esthetic materials in recent years have provided the dental profession higher levels of strength and esthetics than ever before with products like lithium disilicate and zirconium oxide. Providing excellent fit and versatile performance, and because there is no porcelain to delaminate, chip, or fracture, monolithic zirconia crowns have the potential to outperform other layered restorations such as porcelain-fused-to-metal (PFM). This review of monolithic zirconia highlights a clinical case in which all-zirconia restorations were combined with CAD/CAM technology for a successful esthetic restorative outcome.

  12. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography.

    PubMed

    Dong, Jing; Ou, Junjie; Dong, Xiaoli; Wu, Renan; Ye, Mingliang; Zou, Hanfa

    2007-11-01

    A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products.

  13. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  14. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  15. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  16. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  17. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  18. Monolithic and mechanical multijunction space solar cells

    SciTech Connect

    Jain, R.K.; Flood, D.J. )

    1993-05-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  19. Eigenpolarization theory of monolithic nonplanar ring oscillators

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.

    1989-01-01

    Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.

  20. Monolithic widely tunable quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Lascola, Kevin M.; Leavitt, Richard P.; Bruno, John D.; Bradshaw, John L.; Pham, John T.; Towner, Frederick J.

    2012-06-01

    Maxion Technologies has designed a monolithic, widely tunable Quantum Cascade (QC) laser for use in chemical sensing applications. This multi-section QC laser is a monolithically tunable device, similar to those demonstrated in the near IR for telecommunications. Wideband tuning is achieved through grating assisted coupling of the optical mode between lateral waveguides, allowing ~10 times the tuning range normally achieved by distributed feedback lasers without incorporation of external optical elements. Compared to implementations in the near IR, the use of lateral waveguides (rather than vertically stacked waveguides) allows the optical mode to maintain the high overlap with the active region necessary for room temperature lasing in the mid-IR. Due to its monolithic design, this laser is expected to be rapidly tunable and usable in field environments due to its insensitivity to shock and vibration, while the wide tuning range of the device will allow for an enhanced ability to discriminate against background chemicals.

  1. The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition.

    PubMed

    Khangholi, Shahpour; Majid, Fadzilah Adibah Abdul; Berwary, Najat Jabbar Ahmed; Ahmad, Farediah; Aziz, Ramlan Bin Abd

    2016-01-01

    Glycation, the non-enzymatic binding of glucose to free amino groups of an amino acid, yields irreversible heterogeneous compounds known as advanced glycation end products. Those products play a significant role in diabetic complications. In the present article we briefly discuss the contribution of advanced glycation end products to the pathogenesis of diabetic complications, such as atherosclerosis, diabetic retinopathy, nephropathy, neuropathy, and wound healing. Then we mention the various mechanisms by which polyphenols inhibit the formation of advanced glycation end products. Finally, recent supporting documents are presented to clarify the inhibitory effects of polyphenols on the formation of advanced glycation end products. Phytochemicals apply several antiglycation mechanisms, including glucose metabolism, amelioration of oxidative stress, scavenging of dicarbonyl species, and up/down-regulation of gene expression. To utilize polyphenols in order to remedy diabetic complications, we must explore, examine and clarify the action mechanisms of the components of polyphenols.

  2. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect

    Grimmer, D.P. )

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  3. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  4. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  5. Formation of distinct soluble microbial products by activated sludge: kinetic analysis and quantitative determination.

    PubMed

    Ni, Bing-Jie; Fang, Fang; Xie, Wen-Ming; Xu, Juan; Yu, Han-Qing

    2012-02-07

    Soluble microbial products (SMP) released by microorganisms in bioreactors are classified into two distinct groups according to their different chemical and degradation kinetics: utilization-associated products (UAP) and biomass-associated products (BAP). SMP are responsible for effluent chemical oxygen demand or for membrane fouling of membrane bioreactor. Here an effective and convenient approach, other than the complicated chemical methods or complex models, is developed to quantify the formation of UAP and BAP together with their kinetics in activated sludge process. In this approach, an integrated substrate utilization equation is developed and used to determine UAP and their production kinetics. On the basis of total SMP measurements, BAP formation is determined with an integrated BAP formation equation. The fraction of substrate electrons diverted to UAP, and the content of BAP derived from biomass can then be calculated. Dynamic quantification data are obtained for UAP and BAP separately and conveniently. The obtained kinetic parameters are found to be reasonable as they are generally bounded and comparable to the literature values. The validity of this approach is confirmed by independent SMP production tests in six different activated sludge systems, which demonstrates its applicability in a wide range of engineered system regarding SMP production. This work provides a widely applied approach to determine the formation of UAP and BAP conveniently, which may offer engineers with basis to optimize bioreactor operation to avoid a high effluent soluble organics from SMP or SMP-based membrane fouling in membrane bioreactors.

  6. Physical and chemical sensing using monolithic semiconductor optical transducers

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  7. Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design

    DTIC Science & Technology

    2012-10-01

    Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design by John E. Penn ARL-TR-6237 October 2012...Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design John E. Penn Sensors and Electron Devices Directorate, ARL...TITLE AND SUBTITLE Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  8. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)

    DTIC Science & Technology

    2013-07-01

    Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) by John E. Penn ARL-TN-0556 July 2013...Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) John E. Penn Sensors and Electron Devices...TITLE AND SUBTITLE Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  9. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers

    DTIC Science & Technology

    2012-12-01

    Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers by John E. Penn ARL-TR-6278 December 2012...Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers John E. Penn Sensors and Electron Devices Directorate, ARL...SUBTITLE Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography.

    PubMed

    Moravcová, Dana; Planeta, Josef; Wiedmer, Susanne K

    2013-11-22

    This study introduces a silica-based monolith in a capillary format (0.1 mm × 100 mm) as a support for immobilization of liposomes and its characterization in immobilized liposome chromatography. Silica-based monolithic capillary columns prepared by acidic hydrolysis of tetramethoxysilane in the presence of polyethylene glycol and urea were modified by (3-aminopropyl)trimethoxysilane, whereby amino groups were introduced to the monolithic surface. These groups undergo reaction with glutaraldehyde to form an iminoaldehyde, allowing covalent binding of pre-formed liposomes containing primary amino groups. Two types of phospholipid vesicles were used for column modification; these were 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidyl choline with and without 1,2-diacyl-sn-glycero-3-phospho-L-serine. The prepared columns were evaluated under isocratic separation conditions employing 20mM phosphate buffer at pH 7.4 as a mobile phase and a set of unrelated drugs as model analytes. The liposome layer on the synthesized columns significantly changed the column selectivity compared to the aminopropylsilylated monolithic stationary phase. Monolithic columns modified by liposomes were stable under the separation conditions, which proved the applicability of the suggested preparation procedure for the synthesis of capillary columns dedicated to study analyte-liposome interactions. The column efficiency originating from the silica monolith was preserved and reached, e.g., more than 120,000 theoretical plates/m for caffeine as a solute.

  11. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    PubMed

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.

  12. Development of large-area monolithically integrated silicon-film photovoltaic modules

    SciTech Connect

    Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. )

    1992-07-01

    This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

  13. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  14. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  15. Monolithically integrated optoelectronic down-converter (MIOD)

    NASA Astrophysics Data System (ADS)

    Portnoi, Efrim L.; Venus, G. B.; Khazan, A. A.; Gorfinkel, Vera B.; Kompa, Guenter; Avrutin, Evgenii A.; Thayne, Iain G.; Barrow, David A.; Marsh, John H.

    1995-06-01

    Optoelectronic down-conversion of very high-frequency amplitude-modulated signals using a semiconductor laser simultaneously as a local oscillator and a mixer is proposed. Three possible constructions of a monolithically integrated down-converter are considered theoretically: a four-terminal semiconductor laser with dual pumping current/modal gain control, and both a passively mode-locked and a passively Q-switched semiconductor laser monolithically integrated with an electroabsorption or pumping current modulator. Experimental verification of the feasibility of the concept of down conversion in a laser diode is presented.

  16. Cytotoxical products formation on the nanoparticles heated by the pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Kogan, Boris Ya.; Titov, Andrey A.; Rakitin, Victor Yu.; Kvacheva, Larisa D.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2006-02-01

    Cytotoxical effect of a pulsed laser irradiation in presence of nanoparticles of carbon black, sulphuretted carbon and fullerene-60 on death of human uterus nick cancer HeLa and mice lymphoma P 388 cells was studied in vitro. Bubbles formation as result of "microexplosions" of nanoparticles is one of possible mechanisms of this effect. Other possible mechanism is cytotoxical products formation in result of pyrolysis of nanoparticles and biomaterial which is adjoining. The cytotoxical effect of addition of a supernatant from the carbon nanoparticles suspensions irradiated by the pulsed laser was studied to test this assumption. Analysis using gas chromatograph determined that carbon monoxide is principal gaseous product of such laser pyrolysis. This is known as cytotoxical product. Efficiency of its formation is estimated.

  17. Chlorination and chloramination of tetracycline antibiotics: disinfection by-products formation and influential factors.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Zhu, Shumin; Ma, Yan; Deng, Jing

    2014-09-01

    Formation of disinfection by-products (DBPs) from chlorination and chloramination of tetracycline antibiotics (TCs) was comprehensively investigated. It was demonstrated that a connection existed between the transformation of TCs and the formation of chloroform (CHCl3), carbon tetrachloride (CCl4), dichloroacetonitrile (DCAN) and dichloroacetone (DCAce). Factors evaluated included chlorine (Cl2) and chloramine(NH2Cl) dosage, reaction time, solution pH and disinfection modes. Increased Cl2/NH2Cl dosage and reaction time improved the formation of CHCl3 and DCAce. Formation of DCAN followed an increasing and then decreasing pattern with increasing Cl2 dosage and prolonged reaction time. pH affected DBPs formation differently, with CHCl3 and DCAN decreasing in chlorination, and having maximum concentrations at pH 7 in chloramination. The total concentrations of DBPs obeyed the following order: chlorination>chloramination>pre-chlorination (0.5h)>pre-chlorination (1h)>pre-chlorination (2h).

  18. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli.

    PubMed Central

    Strandberg, L; Enfors, S O

    1991-01-01

    Different parameters that influenced the formation of inclusion bodies in Escherichia coli during production of a fused protein consisting of protein A from Staphylococcus aureus and beta-galactosidase from E. coli were examined. The intracellular expression of the fused protein was controlled by the pR promoter and its temperature-sensitive repressor. The induction temperature, the pH of the cultivation medium, and changes in the amino acid sequence in the linker region between protein A and beta-galactosidase had a profound effect on the formation of inclusion bodies. At 42 degrees C, inclusion bodies were formed only during the first hours after induction, and thereafter all the recombinant protein that was further produced appeared in a soluble and active state. Production at 39 and 44 degrees C resulted in inclusion body formation throughout the production period with 15 to 20% of the produced recombinant protein appearing as inclusion bodies. Cultivating cells without control of pH caused inclusion body formation throughout the induction period, and inclusion body formation increased with decreasing pH, and at least part of the insoluble protein was formed from the pool of soluble fusion protein within the cell. Changes in the amino acid sequence in the linker region between the two parts of the fusion protein abolished inclusion body formation. PMID:1908208

  19. Effects of nutrition label format and product assortment on the healthfulness of food choice.

    PubMed

    Aschemann-Witzel, Jessica; Grunert, Klaus G; van Trijp, Hans C M; Bialkova, Svetlana; Raats, Monique M; Hodgkins, Charo; Wasowicz-Kirylo, Grazyna; Koenigstorfer, Joerg

    2013-12-01

    This study aims to find out whether front-of-pack nutrition label formats influence the healthfulness of consumers' food choices and important predictors of healthful choices, depending on the size of the choice set that is made available to consumers. The predictors explored were health motivation and perceived capability of making healthful choices. One thousand German and Polish consumers participated in the study that manipulated the format of nutrition labels. All labels referred to the content of calories and four negative nutrients and were presented on savoury and sweet snacks. The different formats included the percentage of guideline daily amount, colour coding schemes, and text describing low, medium and high content of each nutrient. Participants first chose from a set of 10 products and then from a set of 20 products, which was, on average, more healthful than the first choice set. The results showed that food choices were more healthful in the extended 20-product (vs. 10-product) choice set and that this effect is stronger than a random choice would produce. The formats colour coding and texts, particularly colour coding in Germany, increased the healthfulness of product choices when consumers were asked to choose a healthful product, but not when they were asked to choose according to their preferences. The formats did not influence consumers' motivation to choose healthful foods. Colour coding, however, increased consumers' perceived capability of making healthful choices. While the results revealed no consistent differences in the effects between the formats, they indicate that manipulating choice sets by including healthier options is an effective strategy to increase the healthfulness of food choices.

  20. Sensitivty of ozone production to organic nitrate formation in Sacramento and Los Angeles

    NASA Astrophysics Data System (ADS)

    Browne, E. C.; Cohen, R. C.

    2010-12-01

    Total alkyl and multifunctional nitrates (ΣANs) are formed by a minor channel of the NO + RO2 reaction and thus represent a termination step of ozone production. ΣANs formation becomes most significant in the cross-over regime between NOx saturated (VOC limited) and NOx limited ozone production. In models that fail to account for changing rates of ΣANs formation, the NOx and VOC levels are considered independent parameters: to lower ozone production all that is needed is to decrease the limiting parameter. It has been recently shown that this view on ozone production may lead to counterproductive air quality control strategies (Farmer et al., 2010 submitted). Using both an analytical model and measurements from Mexico City, Farmer et al. demonstrated that ΣANs formation effectively couples VOCs and NOx. Analytical models show that VOC reduction strategies that result in a decrease in ΣANs yield will result in increased ozone production for NOx less than 3 ppb. We expand upon the work of Farmer et al. by investigating the sensitivity of ozone production to ΣANs formation using a regional three dimensional chemical transport model, WRF-CHEM. The standard chemistry treats all ΣANs species as a single model species with a given lifetime and NOx recycling efficiency. We implement a revised ΣANs representation that treats monofunctional, multifunctional saturated, multifunctional unsaturated, aromatic, isoprene, and monoterpene nitrates as unique model species with appropriate lifetimes and NOx recycling efficiencies. We investigate how this improved ΣANs representation affects ozone, and we compare these results to ground and airborne measurements in the Sacramento and Los Angeles areas. Additionally, we investigate the sensitivity of ozone formation to ΣANs formation rate, lifetime, and NOx recycling efficiency.

  1. DOE data exchange format specification, mechanical products/drafting: Version 1. 2. 2: CADCAM-045

    SciTech Connect

    Not Available

    1987-09-01

    The Data Exchange Format (DEF) has been developed as part of a Department of Energy (DOE) effort to integrate the Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) activities throughout the Nuclear Weapons Complex (NWC). A primary objective of this effort is to provide a capability for the exchange of digital data between dissimilar CAD/CAM systems within the NWC. This specification is the result of a collective effort of the DOE Data Exchange Format Group charged with the task of defining a subset of the Initial Graphics Exchange Specification (IGES) to be used as the data exchange format for the mechanical products/drafting application.

  2. DOE data exchange format specification, mechanical products/drafting: Version 1. 3, CADCAM-045

    SciTech Connect

    Not Available

    1988-01-01

    The Data Exchange Format (DEF) has been developed as part of a Department of Energy (DOE) effort to integrate the Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) activities throughout the Nuclear Weapons Complex (NWC). A primary objective of this effort is to provide a capability for the exchange of digital data between dissimilar CAD/CAM systems within the NWC. This specification is the result of a collective effort of the DOE Data Exchange Format Group charged with the task of defining a subset of the Initial Graphics Exchange Specification (IGES) to be used as the data exchange format for the mechanical products/drafting application.

  3. Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1

    PubMed Central

    Jang, In-Ae; Kim, Jisun; Park, Woojun

    2016-01-01

    In this study, we investigated differentially expressed proteins in Acinetobacter oleivorans cells during planktonic and biofilm growth by using 2-dimensional gel electrophoresis combined with matrix-assisted laser desorption time-of-flight mass spectrometry. We focused on the role of oxidative stress resistance during biofilm formation using mutants defective in alkyl hydroperoxide reductase (AhpC) because its production in aged biofilms was enhanced compared to that in planktonic cells. Results obtained using an ahpC promoter-gfp reporter vector showed that aged biofilms expressed higher ahpC levels than planktonic cells at 48 h. However, at 24 h, ahpC expression was higher in planktonic cells than in biofilms. Deletion of ahpC led to a severe growth defect in rich media that was not observed in minimal media and promoted early biofilm formation through increased production of exopolysaccharide (EPS) and EPS gene expression. Increased endogenous H2O2 production in the ahpC mutant in rich media enhanced biofilm formation, and this enhancement was not observed in the presence of antioxidants. Exogenous addition of H2O2 promoted biofilm formation in wild type cells, which suggested that biofilm development is linked to defense against H2O2. Collectively, our data showed that EPS production caused by H2O2 stress enhances biofilm formation in A. oleivorans. PMID:26884212

  4. An influence of hypothetical products of dimethylamine ozonation on N-nitrosodimethylamine formation.

    PubMed

    Andrzejewski, P; Fijolek, L; Nawrocki, J

    2012-08-30

    The paper concerns formation of N-nitrosodimethylamine (NDMA) upon ozonation of dimethylamine (DMA) aqueous solutions. According to current hypothesis ozonated DMA is oxidized to N-dimethylhydroxylamine (DMHA), then to N-methylhydroxylamine (MHA) and finally to hydroxylamine (HA). HA subsequently reacts with the remain part of DMA to form unsymmetrical dimethylhydrazine (UDMH). Finally UDMH undergoes oxidation with ozone to form NDMA. HA is thought to be an important by-product that increases the NDMA formation. We decided to verify the hypothesis by an ozonation of DMA aqueous solutions in the presence of DMHA, MHA and HA. We have clearly proved that ozonation of DMA in the presence of DMHA and/or MHA does not increase NDMA formation. These results do not exclude the possibility of HA formation during DMA ozonation, but unambiguously show that even if HA is formed during this reaction, it does not have any impact on NDMA formation. In authors opinion the formation of MHA and HA is however doubtful since both compounds seem to be rather products of reduction than oxidation. Therefore HA-DMA reaction cannot be responsible for the formation of NDMA when DMA aqueous solution is ozonized. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA.

  6. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    PubMed

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.

  7. Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications.

    PubMed

    Pélisson, Carl-Hugo; Nakanishi, Takahiro; Zhu, Yang; Morisato, Kei; Kamei, Toshiyuki; Maeno, Ayaka; Kaji, Hironori; Muroyama, Shunki; Tafu, Masamoto; Kanamori, Kazuyoshi; Shimada, Toyoshi; Nakanishi, Kazuki

    2017-01-11

    Polymethylhydrosiloxane has been grafted on the surface of a hierarchically porous silica monolith using a facile catalytic reaction between Si-H and silanol to anchor the polymer. This easy methodology leads to the functionalization of the surface of a silica monolith, where a large amount of free Si-H bonds remain available for reducing metal ions in solution. Palladium nanoparticles of 15 nm have been synthesized homogeneously inside the mesopores of the monolith without any stabilizers, using a flow of a solution containing Pd(2+). This monolith was used as column-type fixed bed catalyst for continuous flow hydrogenation of styrene and selective hydrogenation of 3-hexyn-1-ol, in each case without a significant decrease of the catalytic activity after several hours or days. Conversion, selectivity, and stereoselectivity of the alkyne hydrogenation can be tuned by flow rates of hydrogen and the substrate solution, leading to high productivity (1.57 mol g(Pd)(-1) h(-1)) of the corresponding cis-alkene.

  8. Glucose Metabolism in Sediments of a Eutrophic Lake: Tracer Analysis of Uptake and Product Formation

    PubMed Central

    King, Gary M.; Klug, M. J.

    1982-01-01

    The uptake of glucose and the formation of end products from glucose catabolism have been measured for sediments of eutrophic Wintergreen Lake with a combination of tritiated and 14C-labeled tracers. Time course analyses of the loss of [3H]glucose from sediments were used to establish rate constants for glucose uptake at natural substrate concentrations. Turnover times from these analyses were about 1 min for littoral and profundal sediments. No seasonal or site differences were noted in turnover times. Time course analyses of [U-14C]glucose uptake and 14C-labeled end product formation indicated that glucose mass flow could not be calculated from end product formation since the specific activity of added [14C]glucose was significantly diluted by pools of intracellular glucose and glucose metabolites. Mass flow could only be accurately estimated by use of rates of uptake from tracer studies. Intermediate fermentation end products included acetate (71%), propionate (15%), lactate (9%), and only minor amounts of butyrates or valerates. Addition of H2 to sediments resulted in greater production of lactate (28%) and decreased formation of acetate (50%), but did not affect glucose turnover. Depth profiles of glucose uptake indicated that rates of uptake decreased with depth over the 0- to 18-cm interval and that glucose uptake accounted for 30 to 40% of methanogenesis in profundal sediments. PMID:16346148

  9. Desulfovibrio vulgaris Growth Coupled to Formate-Driven H2 Production.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Pereira, Inês A C

    2015-12-15

    Formate is recognized as a superior substrate for biological H2 production by several bacteria. However, the growth of a single organism coupled to this energetic pathway has not been shown in mesophilic conditions. In the present study, a bioreactor with gas sparging was used, where we observed for the first time that H2 production from formate can be coupled with growth of the model sulfate-reducing bacterium Desulfovibrio vulgaris in the absence of sulfate or a syntrophic partner. In these conditions, D. vulgaris had a maximum growth rate of 0.078 h(-1) and a doubling time of 9 h, and the ΔG of the reaction ranged between -21 and -18 kJ mol(-1). This is the first report of a single mesophilic organism that can grow while catalyzing the oxidation of formate to H2 and bicarbonate. Furthermore, high volumetric and specific H2 production rates (125 mL L(-1) h(-1) and 2500 mL gdcw(-1) h(-1)) were achieved in a new bioreactor designed and optimized for H2 production. This high H2 production demonstrates that the nonconventional H2-producing organism D. vulgaris is a good biocatalyst for converting formate to H2.

  10. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    PubMed

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (P<0.05) in aerobiosis than in microaerobiosis and anaerobiosis. Cellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.

  11. Acetoacetate promotes the formation of fluorescent advanced glycation end products (AGEs).

    PubMed

    Bohlooli, Mousa; Ghaffari-Moghaddam, Mansour; Khajeh, Mostafa; Aghashiri, Zohre; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2016-12-01

    Acetoacetate (AA) is an important ketone body, which produces reactive oxygen species (ROS). Advanced glycation end products (AGEs) are defined as final products of glycation process whose production is influenced by the levels of ROS. The accumulation of AGEs in the body contributes to pathogenesis of many diseases including complications of diabetes, and Alzheimer's and Parkinson's disease. Here, we evaluated the impact of AA on production of AGEs upon incubation of human serum albumin (HSA) with glucose. The effect of AA on the AGEs formation of HSA was studied under physiological conditions after incubation with glucose for 35 days. The physical techniques including circular dichroism (CD) and fluorescence spectroscopy were used to assess the impact of AA on formation and structural changes of glycated HSA (GHSA). Our results indicated that the secondary and tertiary structural changes of GHSA were increased in the presence of AA. The fluorescence intensity measurements of AGEs also showed an increase in AGEs formation. Acetoacetate has an activator effect in formation of AGEs through ROS production. The presence of AA may result in enhanced glycation in the presence of glucose and severity of complications associated with accumulation of AGEs.

  12. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  13. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    PubMed

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential.

  14. Impact of chitosan and polyacrylamide on formation of carbonaceous and nitrogenous disinfection by-products.

    PubMed

    Li, Zhao; Chen, Ting; Cui, Fuyi; Xie, Yuefeng; Xu, Wenqing

    2017-07-01

    Coagulation is one of the most commonly used practices in water treatment to remove natural organic matter, which can serve as precursors for disinfection by-products (DBPs). Furthermore, some coagulant aids, particularly amine-based polymers, could foster the formation of both carbonaceous and nitrogenous DBPs (C-DBPs and N-DBPs, respectively). In this study, we evaluated the formation potentials of 11 C-DBPs and N-DBPs during chloramination when two coagulant aids, chitosan and polyacrylamide (PAM), were used under typical water treatment conditions. Our results suggest that both chitosan and PAM promote the formation of N-DBPs, while neither affects the formation of C-DBPs. We further investigated a potential method to mitigate the formation of N-DBPs. Methyl iodide (MeI), an alkylating agent, was effective at reducing the formation of N-DBPs by converting amine to quaternary ammonium groups in chitosan. (1)H-NMR results confirmed that the quaternarization reaction did take place. This study reports that chitosan, a natural coagulant, and PAM contribute to the formation of toxic DBPs. More importantly, it provides a preventative strategy for curbing the formation of DBPs through chemical structural modification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol.

    PubMed

    Jung, Hwi-Min; Kim, Yong Hwan; Oh, Min-Kyu

    2017-07-21

    Anaerobic bioprocessing is preferred because of its economic advantages. However, low productivity and decreased growth of the host strain have limited the use of the anaerobic process. Anaerobic respiration can be applied to anoxic processing using formate and nitrate metabolism to improve the productivity of value-added metabolites. A isobutanol-producing strains is constructed using Enterobacter aerogenes as a host strain by metabolic engineering approaches. The byproduct pathway (ldhA, budA, and pflB) is knocked out, and heterologous keto-acid decarboxylase (kivD) and alcohol dehydrogenase (adhA) are expressed along with the L-valine synthesis pathway (ilvCD and budB). The pyruvate formate-lyase mutant shows decreased growth rates when cultivated in semi-anaerobic conditions, which results in a decline in productivity. When formate and nitrate are supplied in the culture medium, the growth rates and amount of isobutanol production is restored (4.4 g L(-1) , 0.23 g g(-1) glucose, 0.18 g L(-1)  h(-1) ). To determine the function of the formate and nitrate coupling reaction system, the mutant strains that could not utilize formate or nitrate is contructed. Decreased growth and productivity are observed in the nitrate reductase (narG) mutant strain. This is the first report of engineering isobutanol-producing E. aerogenes to increase strain fitness via augmentation of formate and nitrate metabolism during anaerobic cultivation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Secondary Organic Aerosol Formation by Molecular-Weight Building Reactions of Biogenic Oxidation Products

    NASA Astrophysics Data System (ADS)

    Barsanti, K.; Guenther, A.; Matsunaga, S.; Smith, J.

    2006-12-01

    Understanding the chemical composition of atmospheric organic aerosols (OA) remains one of the significant challenges to accurately representing OA in air quality and climate models. Meeting this challenge will require further understanding of secondary organic aerosols (SOA), of which biogenic emissions are thought to be major precursors. Of recent interest is the significance of higher-molecular weight (MW) compounds (i.e., "oligomers"). Theoretical, laboratory, and field study results suggest that relatively volatile oxidation products may contribute to SOA formation through multi-phase MW- building reactions. The significance of such reactions for biogenic SOA formation, including for newly considered precursors such as isoprene, is explored in this work. Theoretical and field studies are employed to: 1) identify MW-building reactions that may contribute to SOA formation in the atmosphere, 2) identify MW-building reaction products in ambient samples, and 3) parameterize atmospheric SOA formation by MW-building reactions of biogenic oxidation products. Likely reactions of biogenic oxidation products include ester, amide, and peroxyhemiacetal formation. Each of the proposed reactions involves known oxidation productions of biogenic precursors (e.g., carboxylic acids and aldehydes) reacting with one another and/or other atmospheric constituents (e.g., sulfuric acid and ammonia) to form higher-MW/lower-volatility products that can condense to form SOA. It has been suggested that products of MW-building reactions can revert to the parent reactants during sampling and analysis. Thus, relatively volatile compounds detected in ambient particle samples in fact may be decomposition products of higher-MW products. The contribution of relatively volatile biogenic oxidation products to SOA via ester, amide, and peroxyhemiacetal formation, as determined by studies based on fundamental thermodynamics and gas/particle partitioning theory, will be discussed; in addition to

  17. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  18. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  19. Acetone oxidation in a photocatalytic monolith reactor

    SciTech Connect

    Sauer, M.L.; Ollis, D.F.

    1994-09-01

    Photocatalyzed oxidation of acetone (70-400 mg/m{sup 3}) in air was carried out using near-UV illuminated TiO{sub 2} (anatase) coated on the surface of a ceramic honeycomb monolith. Considerable adsorption of acetone and water was noted on the catalyst coated monolith; these uptakes were described with a Langmuir adsorption isotherm for acetone and a modified BET adsorption isotherm for water. The acetone photocatalyzed disappearance kinetics on the TiO{sub 2} were determined with initial rate differential conversion, recycle reactor data and were analyzed using a Langmuir-Hinshel-Wood rate form coupled with a reactant mass balance including appreciable acetone monolith adsorption. The model, with parameters evaluated from initial rate data, is then shown to satisfactorily predict reactor behavior at all conversions. These kinetics and design results, together with earlier literature for photocatalytic oxidation of alkanes, 1-butanol, toluene, trichloroethylene, and odor compounds, indicate a potential for use of the photocatalytic monolith configuration for removal of all major classes of air contaminants. 14 refs., 11 figs., 1 tab.

  20. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  1. Monolithic resonant optical reflector laser diodes

    NASA Astrophysics Data System (ADS)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  2. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  3. Biofilm formation and lipopeptide antibiotic iturin A production in different peptone media.

    PubMed

    Zohora, Umme Salma; Rahman, Mohammad Shahedur; Ano, Takashi

    2009-01-01

    Biofilm fermentation is a newly developed promising technique in fermentation technology. In this study no.3 and no.3S media have been used for the lipopeptide antibiotic iturin A production by Bacillus subtilis RB14. The main component of no.3 and no.3S media is Polypepton and Polypepton S, respectively. B. subtilis RB14 produces thick stable biofilm and high amount of iturin A in no.3S medium. Whereas, impaired biofilm formation and lower iturin A production was observed in no.3 medium. From the analytical information it was observed that the amounts of metal ions, such as K(+), Ca(2+) and Mn(2+), cysteine and cellulose are lower in Polypepton compared to the Polypepton S. To investigate their effect on biofilm formation and iturin A production cysteine, cellulose, K(+), Ca(2+) and Mn(2+) were added respectively into the no.3 medium at similar amount that Polypepton S contains. It was observed that individual addition of K(+), Ca(2+), cysteine and cellulose had no effect on biofilm formation, cellular growth induction or iturin A production. However, when Mn(2+) was supplemented in no.3 medium, biofilm development was restored with an improved production of iturin A. Finally, combined addition of investigated substances into the no.3 medium resulted with highly folded, thick biofilm with high cellular growth and iturin A production compared to the original no.3 medium.

  4. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  5. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    PubMed

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex.

    PubMed

    Lipscomb, Gina L; Schut, Gerrit J; Thorgersen, Michael P; Nixon, William J; Kelly, Robert M; Adams, Michael W W

    2014-01-31

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications.

  7. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960

  8. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    NASA Astrophysics Data System (ADS)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-04-01

    Terrestrial vegetation releases a great variety of volatile organic compounds (VOC) into the atmosphere. Monoterpenes, like myrcene, contribute significantly to this global biogenic VOC emission. In the atmosphere, monoterpenes rapidly undergo oxidation reactions by OH radicals (mainly during the daytime), NO3 radicals (mainly during the nighttime) and O3 to form multifunctional oxidation products. The products of these reactions are likely to be of low volatility and hence might lead to secondary organic aerosol (SOA) formation. In the present study, we report results from a series of chamber experiments performed in the LEAK chamber at TROPOS in which the gas-phase products and SOA yields obtained from myrcene O3 reactions with and without an OH radical scavenger as well as from the myrcene OH radical reaction in the presence of NOx have been measured. During the experiments the consumption of myrcene as well as the formation of gas-phase products was monitored using a proton transfer reaction mass spectrometer (PTR-MS). Ozone concentration was measured by an O3 monitor and the mixing ratios of nitrogen oxides were measured by a NOx monitor. Particle size distributions between 3-900 nm were monitored every 11 min using a differential mobility particle sizer (DMPS) system. In addition to the products observed by means of the PTR-MS by their m/z values, an identification of carbonylic compounds by their DNPH derivatives was performed. Beside low molecular mass products the formation of 4-vinyl-4-pentenal with a yield of 55 % in myrcene ozonolysis has been observed. The further oxidation of this major first generation product lead to the formation of two dicarbonylic products with m/z 113 and to SOA formation. The influence of the continuing oxidation of 4-vinyl-4-pentenal on SOA formation will be discussed in detail. The emergence of the gas-phase product hydroxyacetone as direct result of the myrcene ozone reaction will be mooted, because hydroxyacetone seems to

  9. Standard enthalpies of formation for glycyl-tyrosine and products of its dissociation in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Badelin, V. G.; Krutova, O. N.; Volkov, A. V.; Damrina, K. V.

    2015-07-01

    The enthalpies of solution of crystalline glycyl-tyrosine in water and potassium hydroxide aqueous solutions are determined at 298.15 K by means of direct calorimetry. Standard enthalpies of formation for dipeptide and its products of dissociation in an aqueous solution are calculated.

  10. Influence of radiation on formation of fission product aerosols during LWR degraded core accidents

    SciTech Connect

    Chuang, C.F.; Im, K.H.; Ahluwalia, R.K.

    1984-01-01

    Purpose of this paper is to construct a model for estimating the number density of ions produced by the high radiation levels in reactor core and upper plenum and to use this estimate to determine the effect of ions on the formation of fission product aerosols.

  11. Impact of Product Involvement, Message Format, and Receiver Sex on the Efficacy of Comparative Advertising Messages.

    ERIC Educational Resources Information Center

    Pfau, Michael

    1994-01-01

    Investigates the role and impact of receiver involvement in product class, comparative message format, and receiver sex on the relative effectiveness of comparative advertising messages. Indicates that females and males respond uniquely to comparative advertising, revealing consistent patterns regarding both circumstances and approaches. (SR)

  12. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  13. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  14. Formative ceramics from the Andes and their production: A Mössbauer study

    NASA Astrophysics Data System (ADS)

    Wagner, U.; Gebhard, R.; Murad, E.; Grosse, G.; Riederer, J.; Shimada, I.; Wagner, F. E.

    1997-09-01

    The potential of Mössbauer spectroscopy in the reconstruction of production techniques of early ceramics is demonstrated by the results of a study of a Formative kiln site at the Archaeological Park at Batán Grande, Perú, and of ceramics from the nearby settlement of Huaca Chólope.

  15. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  16. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  17. Impact of Product Involvement, Message Format, and Receiver Sex on the Efficacy of Comparative Advertising Messages.

    ERIC Educational Resources Information Center

    Pfau, Michael

    1994-01-01

    Investigates the role and impact of receiver involvement in product class, comparative message format, and receiver sex on the relative effectiveness of comparative advertising messages. Indicates that females and males respond uniquely to comparative advertising, revealing consistent patterns regarding both circumstances and approaches. (SR)

  18. Modeling of microbial substrate conversion, growth and product formation in a recycling fermentor.

    PubMed

    van Verseveld, H W; de Hollander, J A; Frankena, J; Braster, M; Leeuwerik, F J; Stouthamer, A H

    1986-01-01

    Paracoccus denitrificans and Bacillus licheniformis were grown in a carbon- and energy source-limited recycling fermentor with 100% biomass feedback. Experimental data for biomass accumulation and product formation as well as rates of carbon dioxide evolution and oxygen consumption were used in a parameter optimization procedure. This procedure was applied on a model which describes biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of the biomass growth rate. The fitting procedure yielded two growth domains for P. denitrificans. In the first domain the values for the maximal growth yield and the maintenance coefficient were identical to those found in a series of chemostat experiments. The second domain could be described best with linear biomass increase, which is equal to a constant growth yield. Experimental data of a protease producing B. licheniformis also yielded two growth domains via the fitting procedure. Again, in the first domain, maximal growth yield and maintenance requirements were not significantly different from those derived from a series of chemostat experiments. Domain 2 behaviour was different from that observed with P. denitrificans. Product formation halts and more glucose becomes available for biomass formation, and consequently the specific growth rate increases in the shift from domain 1 to 2. It is concluded that for many industrial production processes, it is important to select organisms on the basis of a low maintenance coefficient and a high basic production of the desired product. It seems less important that the maximal production becomes optimized, which is the basis of most selection procedures.

  19. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions.

    PubMed

    Bruhn, Jesper Bartholin; Gram, Lone; Belas, Robert

    2007-01-01

    Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and

  20. Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.

    PubMed

    Ibrahim, Mohammed E A; Lucy, Charles A

    2012-10-15

    Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Nanoparticle-Directed Metal-Organic Framework/Porous Organic Polymer Monolithic Supports for Flow-Based Applications.

    PubMed

    Darder, María Del Mar; Salehinia, Shima; Parra, José B; Herrero-Martinez, José M; Svec, Frantisek; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2017-01-18

    A two-step nanoparticle-directed route for the preparation of macroporous polymer monoliths for which the pore surface is covered with a metal-organic framework (MOF) coating has been developed to facilitate the use of MOFs in flow-based applications. The flow-through monolithic matrix was prepared in a column format from a polymerization mixture containing ZnO-nanoparticles. These nanoparticles embedded in the precursor monolith were converted to MOF coatings via the dissolution-precipitation equilibrium after filling the pores of the monolith with a solution of the organic linker. Pore surface coverage with the microporous zeolitic imidazolate framework ZIF-8 resulted in an increase in surface area from 72 to 273 m(2) g(-1). Monolithic polymer containing ZIF-8 coating was implemented as a microreactor catalyzing the Knoevenagel condensation reaction and also in extraction column format enabling the preconcentration of trace levels of toxic chlorophenols in environmental waters. Our approach can be readily adapted to other polymers and MOFs thus enabling development of systems for flow-based MOF applications.

  2. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  3. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.

    PubMed

    Yang, Xin; Guo, Wanhong; Zhang, Xing; Chen, Feng; Ye, Tingjin; Liu, Wei

    2013-10-01

    The effect of pre-oxidation with chlorine dioxide (ClO2) or ferrate (Fe(VI)) on the formation of disinfection by-products (DBPs) during chlorination or chloramination was tested with natural waters from 12 sources (9 surface waters, 1 groundwater, and 2 wastewater effluents). DBPs investigated included trihalomethanes (THM), chloral hydrate (CH), haloketones (HK), haloacetonitriles (HAN) and trichloronitromethane (TCNM), chlorite and chlorate. Chlorite and chlorate were found in the ClO2-treated waters. Application of 1 mg/L ClO2 ahead of chlorination reduced the formation potential for THM by up to 45% and the formation of HK, HAN and TCNM in most of the samples. The CH formation results were mixed. The formation of CH and HK was enhanced with low doses of Fe(VI) (1 mg/L as Fe), but was greatly reduced at higher doses (20 mg/L Fe). Fe(VI) reduced the formation of THM, HAN and TCNM in most of the samples. Reduced potential for the formation of NDMA was observed in most of the samples after both ClO2 and Fe(VI) pre-oxidation.

  4. Tight gas sand production from the Almond Formation, Washakie Basin, Wyoming

    SciTech Connect

    Iverson, W.P.; Surdam, R.C.

    1995-12-31

    Gas production from the Almond Formation in the Standard Draw trend can only be accounted for by draining numerous layers of tight gas sands via the permeable upper bar sand. Discovery of this field originally focused upon production from this bar sand. But continued development cannot be explained simply by considering depletion of a 30 foot sand. Gas volumetrics verify the need to include lower sands in reservoir analysis. Core obtained from the Almond bar sand confirm petrophysical constants used in the authors` models. Their results imply that economic levels of gas production should be possible wherever a similar horizontal conduit can be tied into gas saturated layers through massive hydraulic fracturing.

  5. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation.

    PubMed

    Albers, E; Larsson, C; Lidén, G; Niklasson, C; Gustafsson, L

    1996-09-01

    To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.

  6. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    PubMed

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size <0.425mm). From the observations, a conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Formation and evolution of molecular products in α-pinene secondary organic aerosol

    PubMed Central

    Zhang, Xuan; McVay, Renee C.; Huang, Dan D.; Dalleska, Nathan F.; Aumont, Bernard; Flagan, Richard C.; Seinfeld, John H.

    2015-01-01

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58–72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  8. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages.

    PubMed

    De Maere, Hannelore; Fraeye, Ilse; De Mey, Eveline; Dewulf, Lore; Michiels, Chris; Paelinck, Hubert; Chollet, Sylvie

    2016-04-01

    This study investigates the potential of producing red coloured dry fermented sausages without the addition of nitrite and/or nitrate. Therefore, the formation of zinc protoporphyrin IX (Zn(II)PPIX) as naturally occurring pigment, and the interrelated protoporphyrin IX (PPIX) and heme content were evaluated during nitrite-free dry fermented sausage production at different pH conditions. Zn(II)PPIX was only able to form in dry fermented sausages at pH conditions higher than approximately 4.9. Additionally, the presence of Zn(II)PPIX increased drastically at the later phase of the production process (up to day 177), confirming that in addition to pH, time is also a crucial factor for its formation. Similarly, PPIX also accumulated in the meat products at increased pH conditions and production times. In contrast, a breakdown of heme was observed. This breakdown was more gradual and independent of pH and showed no clear relationship with the formed amounts of Zn(II)PPIX and PPIX. A statistically significant relationship between Zn(II)PPIX formation and product redness was established.

  9. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  10. The market of huge monolithic mirror substrates for optical astronomy

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten

    2013-09-01

    Professional astronomical telescopes are complex optical systems at the limit of technical feasibility. Often monolithic primary mirrors and sometimes even secondary mirrors with huge dimensions are used. Prominent examples are the two reflectors of the Large Binocular Telescope and the giant mirrors of VLT, GEMINI, and SUBARU. The performance of such precision optical components significantly depends on the physical parameters and the quality of their substrate materials. Within this paper selection criteria for mirror substrates will be discussed, thereby considering the important technical parameters as well as commercial points and aspects of project management. Qualities and limitations of classical mirror substrate materials like Zerodur, ULE, Sitall, borosilicate glass and Cervit will be evaluated and compared to new substrate materials like silicon carbide and beryllium. The different suppliers and their production processes are presented. In addition large mirrors of existing observatories and of telescopes under construction will be listed, thereby concentrating on mirrors above three meter in diameter. An outlook on material trends and on future astronomical telescopes closes this overview on the market of huge monolithic mirror substrates for optical astronomy.

  11. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-07

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.

  12. Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

    NASA Astrophysics Data System (ADS)

    Bergmann, M. E. Henry

    This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.

  13. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa

    PubMed Central

    Heydari, Samira; Eftekhar, Fereshteh

    2015-01-01

    Background: Pseudomonas aeruginosa is an important nosocomial pathogen characterized by its innate resistance to multiple antimicrobial agents. Plasmid-mediated drug resistance also occurs by the production of extended-spectrum β-lactamases (ESBL), metallo β-lactamases (MBL), and AmpC β-lactamases. Another important factor for establishment of chronic infections by P. aeruginosa is biofilm formation mediated by the psl gene cluster. Objectives: The aim of this study was to evaluate biofilm formation and presence of the pslA gene in burn isolates of P. aeruginosa as well as the association of antibiotic resistance, MBL, ESBL and AmpC β-lactamase production with biofilm formation among the isolates. Materials and Methods: Sixty-two burn isolates of P. aeruginosa were obtained from Shahid Motahari Hospital in Tehran from August to October 2011. Antibiotic susceptibility was determined by the disc diffusion assay. MBL, AmpC and ESBL production were screened using the double disc synergy test, AmpC disc test and combined disc diffusion assay, respectively. The potential to form biofilm was measured using the microtiter plate assay and pslA gene was detected using specific primers and PCR. Results: Biofilm formation was observed in 43.5% of the isolates, of which 66.7% produced strong and 33.3% formed weak biofilms. All biofilm-positive and 14.2% of biofilm-negative isolates harbored the pslA gene. MBL, AmpC and ESBL production were significantly higher in the biofilm-positive isolates (70.3%, 62.9% and 33.3%, respectively) compared to the biofilm-negative strains (31.4%, 34.2% and 20%, respectively). Overall, 19 isolates (30.6%) co-produced MBL and AmpC, among which the majority were biofilm-positive (63.1%). Finally, four isolates (6.4%) had all three enzymes, of which 3 (75%) produced biofilm. Conclusions: Biofilm formation (both strong and weak) strongly correlated with pslA gene carriage. Biofilm formation also correlated with MBL and AmpC

  14. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-11-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h(-1) liter(-1) (300 liters h(-1) liter(-1) at 37 degrees C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application.

  15. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    PubMed

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.

  16. Thermodynamics of formate-oxidizing metabolism and implications for H2 production.

    PubMed

    Lim, Jae Kyu; Bae, Seung Seob; Kim, Tae Wan; Lee, Jung-Hyun; Lee, Hyun Sook; Kang, Sung Gyun

    2012-10-01

    Formate-dependent proton reduction to H(2) (HCOO(-) + H(2)O → HCO(3)(-) + H(2)) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H(2) accumulation to a partial pressure of 1 × 10(5) to 7 × 10(5) Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (-1 to -3 kJ mol(-1)). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as -5 kJ mol(-1), which are less than the biological minimum energy quantum, -20 kJ mol(-1), as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H(2) storage material, the H(2) production potential of the strain was assessed. The volumetric H(2) production rate increased linearly with increasing cell density, leading to 2,820 mmol liter(-1) h(-1) at an optical density at 600 nm (OD(600)) of 18.6, and resulted in the high specific H(2) production rates of 404 ± 6 mmol g(-1) h(-1). The H(2) productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H(2)-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems.

  17. Thermodynamics of Formate-Oxidizing Metabolism and Implications for H2 Production

    PubMed Central

    Lim, Jae Kyu; Bae, Seung Seob; Kim, Tae Wan; Lee, Jung-Hyun

    2012-01-01

    Formate-dependent proton reduction to H2 (HCOO− + H2O → HCO3− + H2) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H2 accumulation to a partial pressure of 1 × 105 to 7 × 105 Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (−1 to −3 kJ mol−1). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as −5 kJ mol−1, which are less than the biological minimum energy quantum, −20 kJ mol−1, as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H2 storage material, the H2 production potential of the strain was assessed. The volumetric H2 production rate increased linearly with increasing cell density, leading to 2,820 mmol liter−1 h−1 at an optical density at 600 nm (OD600) of 18.6, and resulted in the high specific H2 production rates of 404 ± 6 mmol g−1 h−1. The H2 productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H2-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems. PMID:22885755

  18. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K.C. Kwon

    2009-09-30

    of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in

  19. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2007-09-30

    of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained

  20. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media.

    PubMed

    Willrodt, Christian; David, Christian; Cornelissen, Sjef; Bühler, Bruno; Julsing, Mattijs K; Schmid, Andreas

    2014-08-01

    The efficiency and productivity of cellular biocatalysts play a key role in the industrial synthesis of fine and bulk chemicals. This study focuses on optimizing the synthesis of (S)-limonene from glycerol and glucose as carbon sources using recombinant Escherichia coli. The cyclic monoterpene limonene is extensively used in the fragrance, food, and cosmetic industries. Recently, limonene also gained interest as alternative jet fuel of biological origin. Key parameters that limit the (S)-limonene yield, related to genetics, physiology, and reaction engineering, were identified. The growth-dependent production of (S)-limonene was shown for the first time in minimal media. E. coli BL21 (DE3) was chosen as the preferred host strain, as it showed low acetate formation, fast growth, and high productivity. A two-liquid phase fed-batch fermentation with glucose as the sole carbon and energy source resulted in the formation of 700 mg L(org) (-1) (S)-limonene. Specific activities of 75 mU g(cdw) (-1) were reached, but decreased relatively quickly. The use of glycerol as a carbon source resulted in a prolonged growth and production phase (specific activities of ≥50 mU g(cdw) (-1) ) leading to a final (S)-limonene concentration of 2,700 mg L(org) (-1) . Although geranyl diphosphate (GPP) synthase had a low solubility, its availability appeared not to limit (S)-limonene formation in vivo under the conditions investigated. GPP rerouting towards endogenous farnesyl diphosphate (FPP) formation also did not limit (S)-limonene production. The two-liquid phase fed-batch setup led to the highest monoterpene concentration obtained with a recombinant microbial biocatalyst to date.

  1. Feasibility of Formation of AZS (Alumina-Zirconia-Silica) Refractory Products with Different Composition to the Commercial Product Through X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Guzmán, A. M.; Rodríguez, P.

    The AZS refractory materials with different composition to the commercial product were obtained, and the feasibility of formation of these products was studied taking like departure point the free energy of their formation. The AZS refractories were obtained by a traditional method of producing ceramic materials, the process of sintering.

  2. Molecularly imprinted monolith coupled on-line with high performance liquid chromatography for simultaneous quantitative determination of cyromazine and melamine.

    PubMed

    Wang, Shanshan; Li, Daomin; Hua, Zhendong; Zhao, Meiping

    2011-09-21

    We report a novel method for simultaneous determination of cyromazine and melamine based on a molecularly imprinted monolith on-line coupled with high performance liquid chromatography (HPLC). The imprinted monolith was prepared by in situ polymerization using 2,4-diamino-6-undecyl-1,3,5-triazine (DAUTA) as a mimic template. Due to the better solubility of DAUTA in chloroform, hydrogen bonds were effectively developed between the template and the functional monomer and resulted in the formation of highly specific cavities in the obtained imprinted monolith. With methanol as the loading solvent, cyromazine and melamine were both selectively retained by the obtained imprinted monolith, while the nonspecific adsorption on the non-imprinted monolith was negligible. The imprinted monolithic column was on-line coupled with HPLC for purification and concentration of the two analytes from milk samples. To minimize the peak broadening during the on-line transfer of the analytes from the imprinted monolith to the following analytical column, a successive desorption program was developed for the elution step, which enabled on-line stacking of the target compounds before being analyzed by HPLC. Low detection limits of 0.12 μg mL(-1) for melamine and 0.05 μg mL(-1) for cyromazine were achieved with only 0.3 mL of milk sample and a low sensitivity HPLC-UVD instrument. The method may be further extended to detect other analytes of interest in a large variety of samples.

  3. Monolithic pixel detectors for high energy physics

    NASA Astrophysics Data System (ADS)

    Snoeys, W.

    2013-12-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio (Q/C). It is shown that monolithic detectors can achieve Q/C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining sufficient Q/C, collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  4. A monolithic integrated photonic microwave filter

    NASA Astrophysics Data System (ADS)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2016-12-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  5. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  6. A monolithic integrated photonic microwave filter

    NASA Astrophysics Data System (ADS)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  7. Trends in monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Sterzer, F.

    1981-11-01

    Current trends in the fabrication of monolithic microwave integrated circuits (MMICs) are reviewed. The technologies developed predominantly make use of semi-insulating GaAs substrates, GaAs FET active elements, and lumped element circuits. An increasing number of MMIC designs incorporate innovative designs, including actively matched amplifiers and mixers, analog and digital functions, SAW circuits, and increased Q with lower resistance. A new generation of hybrid integrated circuits is also being developed which is expected to compete with conventional MMICs due to the potential for significant cost reduction. MMICs are considered to have the greatest potentials in applications requiring large quantities of similar circuits, circuits using large numbers of transistors or small areas for passive elements, and novel circuits such as SAWs monolithically combined with FETs.

  8. Monolithic mode-locked quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Penty, R. V.; Thompson, M. G.; White, I. H.

    2008-02-01

    Monolithic mode-locked laser diodes based on QD active regions are regarded as potentially suitable for a large range of photonic applications due to their compactness, mechanical stability and robustness, high potential repetition rates and low potential jitter. Their inherent properties, such as high differential gain, low chirp and fast saturable absorption have led to demonstration of improved performance over their QW equivalents. Low background loss and the relatively long lengths of quantum dot laser devices also have encouraged studies of mode-locking at repetition rates previously not explored in monolithic devices. Applications include biomedicine, high-speed data transmission, clock signal generation and electro-optic sampling. This paper reviews some of the work at Cambridge on the realization of such devices.

  9. Comparison of soil-monolith extraction techniques

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Rupp, H.; Weller, U.; Vogel, H.-J.

    2009-04-01

    In the international literature the term „lysimeter" is used for different objectives, e.g. suction cups, fluxmeters, etc. According to our understanding it belongs to the direct methods to measure water and solute fluxes in soil. Depending on the scientific task the shape and dimensions of the lysimeter as well as the type of filling (disturbed or undisturbed) and the specific instrumentation can be different. In any case where water dynamics or solute transport in natural soil is considered, lysimeters should be filled with 'undisturbed' monoliths which are large enough to contain the small scale heterogeneity of a site since flow and transport is highly sensitive to soil structure. Furthermore, lysimeters with vegetation should represent the natural crop inventory and the maximum root penetration depth should be taken into account. The aim of this contribution is to give an overview about different methods for obtaining undisturbed soil monoliths, in particular about i) techniques for the vertical and ii) for the horizontal extraction and iii) to evaluate the most frequently used procedures based on X-ray tomography images. Minimal disturbance of the soil monolith during extraction and subsequence filling of the lysimeter vessel is of critical importance for establishing flow and transport conditions corresponding approximately to natural field conditions. In the past, several methods were used to extract and fill lysimeter vessels vertically - including hand digging, employing sets of trihedral scaffold with lifting blocks and ballast, or using heavy duty excavators, which could shear and cut large blocks of soil. More recently, technologies have been developed to extract cylindrical soil monoliths by using ramming equipment or screw presses. One of the great disadvantages of the mentioned methods is the compaction or settling of soil that occurs during the "hammering" or "pressing". For this reason a new technology was developed, which cuts the outline of

  10. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  11. Polymethacrylate monoliths with immobilized poly-3-mercaptopropyl methylsiloxane film for high-coverage surface functionalization by thiol-ene click reaction.

    PubMed

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel; Lämmerhofer, Michael

    2014-11-07

    In this work, new polythiol-functionalized macroporous monolithic polymethacrylate-polysiloxane composite materials are presented which can be useful substrates for highly efficient immobilization of (chiral) catalysts, chromatographic ligands, and other functional moieties by thiol-ene click reaction. Poly(glycidyl methacrylate-co-ethylene dimethacrylate) (poly(GMA-co-EDMA)) monoliths were coated with a poly-3-mercaptopropyl methylsiloxane (PMPMS) film and subsequently the polymer was covalently immobilized by formation of crosslinks via nucleophilic substitution reaction with pendent 2,3-epoxypropyl groups on the monolith surface. This monolith, though, showed similar levels of surface coverage as a reference monolith obtained by opening of the epoxide groups with sodium hydrogen sulfide. However, a 3-step functionalization by amination of the epoxy monolith, followed by its vinylation with allylglycidyl ether and subsequent thiolation by coating of a thin polythiol (PMPMS) film and crosslinking by click reaction furnished a monolith with more than 2-fold elevated thiol coverage. Its further functionalization with a clickable chiral quinine carbamate selector clearly documented the benefit of highly dense thiol surfaces for such reactions and synthesis of functional materials with proper ligand loadings. The new monoliths were chromatographically tested in capillary electrochromatography mode using N-3,5-dinitrobenzoyl-leucine as chiral probe and the capillary column with the monolith having the highest selector coverage, produced from the precursor with the most thiols on the surface, showed the largest separation factor. By performic acid oxidation the surface characteristic could be tuned and strongly altered due to a delicate balance of enantioselective and non-specific interactions.

  12. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE PAGES

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; ...

    2016-07-15

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  13. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    SciTech Connect

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-07-15

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21

  14. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  15. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  16. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  17. Monolithically integrated interferometer for optical displacement measurement

    NASA Astrophysics Data System (ADS)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  18. Monolithic Integration of Semiconductor and Superconductor Components

    DTIC Science & Technology

    1992-03-31

    change the device performance at room temperature . The monolithic bipolar transistors will be fabricated by Honeywell’s MICRO SWITCH Division of...subsequent processing run funded by Honeywell which was completed in December, 1991. Task 2.5: Device Evaluation Room temperature resistance measurements were...dc bias current of only 1 pA was measured at a substrate temperature of 73 K in a microbolometer occupying a 125 pm x 125 pm area. In thermal imaging

  19. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  20. Colony formation and interleukin 2 production by leukaemic human T cells.

    PubMed Central

    Krajewski, A S; Dewar, A E; Seidelin, P H; Murray, R

    1983-01-01

    PHA-induced colony formation and interleukin 2 (IL-2) production were studied in four patients with T cell leukaemia (three cases OKT4+/T helper and one case OKT8+/T cytotoxic suppressor). Cases of T helper cell leukaemia showed colony formation that was comparable to normal purified blood T cells and was not dependent on the addition of conditioned medium, containing IL-2 activity, to cultures. In contrast the T suppressor cell leukaemia formed colonies only when cultures were supplemented with IL-2 containing medium. When IL-2 production by PHA stimulated cells was measured culture supernatants from the three T helper cell leukaemias all showed normal or high levels of activity, when compared to normal blood mononuclear cells, whereas the T suppressor cell leukaemia showed no activity. PMID:6604606

  1. Rules governing the formation of photolysis products in the lead azide-copper(I) oxide system

    NASA Astrophysics Data System (ADS)

    Surovoi, E. P.; Bugerko, L. N.; Rasmatova, S. V.; Bin, S. V.

    2011-03-01

    It was found that, along with a decrease in the rate of photolysis and photocurrent in the region of lead azide intrinsic absorption, the addition of copper(I) oxide broadened the range of spectral sensitivity, and preliminary treatment of the PbN6(Ab)-Cu2O system with light (λ = 365 nm) increased the rate of photolysis. The rate constants for photolysis were estimated. An analysis of the results of current-voltage characteristic, contact potential difference, and contact photo-electromotive force measurements was used to construct a diagram of energy zones and suggest a model of the photolysis of the PbN6(Ab)-Cu2O system including stages of the generation, recombination, and redistribution of nonequilibrium carriers in a contact field, formation of microheterogeneous PbN6(Ab)-Pb (photolysis product) systems, and formation of final photolysis products.

  2. PEGylated protein separation using different hydrophobic interaction supports: Conventional and monolithic supports.

    PubMed

    Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2016-05-01

    Protein hydrophobicity can be modified after a PEGylation process. However, hydrophobic interaction chromatography (HIC) has been used to separate PEGylation reaction products less frequently than other techniques. In this context, chromatographic monoliths represent a good alternative to continue exploring the separation of PEGylated proteins with HIC. In this work, the separation of PEGylated proteins using C4 A monolith as well as Toyopearl Butyl 650C and Butyl Sepharose was analyzed. Three proteins were used as models: RNase A, β-lactoglobulin, and lysozyme. All proteins were PEGylated in the N-terminal amino groups with 20 kDa methoxy poly(ethylene glycol) propionaldehyde. The concentration of ammonium sulfate (1 M) used was the same for all stationary phases. The results obtained demonstrated that the C4 A monolith could better resolve all protein PEGylation reaction mixtures, since the peaks of mono- and di-PEGylated proteins can be clearly distinguished in the chromatographic profiles. On the contrary, while using Butyl Sepharose media only the PEGylation reaction mixtures of RNase A could be partially separated at 35 and 45 CVs. PEGylated proteins of β-lactoglobulin and lysozyme could not be resolved when Toyopearl Butyl 650C and Butyl Sepharose were used. It is then clear that monoliths are an excellent choice to explore the purification process of PEGylated proteins exploiting the advantages of HIC. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:702-707, 2016. © 2016 American Institute of Chemical Engineers.

  3. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis.

    PubMed

    Fong, Jiunn C N; Syed, Khalid A; Klose, Karl E; Yildiz, Fitnat H

    2010-09-01

    Biofilm formation enhances the survival and persistence of the facultative human pathogen Vibrio cholerae in natural ecosystems and its transmission during seasonal cholera outbreaks. A major component of the V. cholerae biofilm matrix is the Vibrio polysaccharide (VPS), which is essential for development of three-dimensional biofilm structures. The vps genes are clustered in two regions, the vps-I cluster (vpsU, vpsA-K, VC0916-27) and the vps-II cluster (vpsL-Q, VC0934-39), separated by an intergenic region containing the rbm gene cluster that encodes biofilm matrix proteins. In-frame deletions of the vps clusters and genes encoding matrix proteins drastically altered biofilm formation phenotypes. To determine which genes within the vps gene clusters are required for biofilm formation and VPS synthesis, we generated in-frame deletion mutants for all the vps genes. Many of these mutants exhibited reduced capacity to produce VPS and biofilms. Infant mouse colonization assays revealed that mutants lacking either vps clusters or rbmA (encoding secreted matrix protein RbmA) exhibited a defect in intestinal colonization compared to the wild-type. Understanding the roles of the various vps gene products will aid in the biochemical characterization of the VPS biosynthetic pathway and elucidate how vps gene products contribute to VPS biosynthesis, biofilm formation and virulence in V. cholerae.

  4. [Simplified production of multimedia based radiological learning objects using the flash format].

    PubMed

    Jedrusik, P; Preisack, M; Dammann, F

    2005-07-01

    Evaluation of the applicability of the Flash Format for the production of radiological learning objects used in an e-learning environment. Five exemplary learning objects with different didactic purposes referring to radiological diagnostics are presented. They have been intended for the use within the multimedia, internet-based e-learning environment LaMedica. Interactive learning objects were composed using the Flash 5.0 software (Macromedia, San Francisco, USA) on the basis of digital CT and MR images, digitized conventional radiographs and different graphical elements prepared as TIFF files or in a vector graphics format. After a short phase of initial skill adaptation training, a radiologist author was soon able to create independently all learning objects. The import of different types of images and graphical elements was carried out without complications. Despite manifold design options, handling of the program is easy due to clear arrangement and structure, thus enabling the creation of simple as well as complex learning objects that provided a high degree of attractiveness and interaction. Data volume and bandwidth demand for online use was significantly reduced by the Flash Format compression without a substantial loss of visual quality. The universally compatible Flash Format offers an opportunity for the simple production of radiological learning objects that fulfill all relevant needs of modern internet based e-learning environments, such as interactivity, employment of multimedia and convertibility.

  5. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.

    PubMed

    Fordyce, A M; Crow, V L; Thomas, T D

    1984-08-01

    Nongrowing cells of Streptococcus lactis in a pH-stat were dosed with sugar to allow fermentation at the maximum rate or were fed a continuous supply of sugar at rates less than the maximum. Under anaerobic conditions, rapid fermentation of either glucose or lactose was essentially homolactic. However, with strain ML3, limiting the fermentation rate diverted approximately half of the pyruvate to formate, acetate, and ethanol. At limiting glucose fermentation rates, cells contained lower concentrations of lactate dehydrogenase activator (fructose 1,6-diphosphate) and pyruvate formate-lyase inhibitors (triose phosphates). As a result, pyruvate formate-lyase and pyruvate dehydrogenase play a greater role in pyruvate metabolism. In contrast to strain ML3, strain ML8 did not give the same diversion of products under anaerobic conditions, and cells retained higher concentrations of the above effector compounds. Lactose metabolism under aerobic conditions resulted in pyruvate excretion by both S. lactis ML3 and ML8. At 7% of the maximum utilization rate, pyruvate accounted for 69 and 35% of the lactose metabolized by ML3 and ML8, respectively. Acetate was also a major product, especially with ML8. The data suggest that NADH oxidase is involved in coenzyme recycling in the presence of oxygen and that pyruvate formate-lyase is inactivated, but the pyruvate dehydrogenase complex still functions.

  6. Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process.

    PubMed

    Wang, Lu; Kong, Deyang; Ji, Yuefei; Lu, Junhe; Yin, Xiaoming; Zhou, Quansuo

    2017-08-01

    Formation of halogenated disinfection by-products (DBPs) in sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable concerns recently. Previous studies have focused on the formation of chlorinated and brominated DBPs. This research examined the transformation of I(-) in heat activated PS oxidation process. Phenol was employed as a model compound to mimic the reactivity of dissolved natural organic matter (NOM) toward halogenation. It was found that I(-) was transformed to free iodine which attacked phenol subsequently leading to iodinated DBPs such as iodoform and iodoacetic acids. Iodophenols were detected as the intermediates during the formation of the iodoform and triiodoacetic acid (TIAA). However, diiodoacetic acid (DIAA) was formed almost concomitantly with iodophenols. In addition, the yield of DIAA was significantly higher than that of TIAA, which is distinct from conventional halogenation process. Both the facts suggest that different pathway might be involved during DIAA formation in SR-AOPs. Temperature and persulfate dose were the key factors governing the transformation process. The iodinated by-products can be further degraded by excessive SO4(-) and transformed to iodate. This study elucidated the transformation pathway of I(-) in SR-AOPs, which should be taken into consideration when persulfate was applied in environmental matrices containing iodine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  8. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review.

    PubMed

    Carter, Rhys A A; Joll, Cynthia A

    2017-08-01

    Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed. Copyright © 2017. Published by Elsevier B.V.

  9. Photooxidative degradation of beer bittering principles: product analysis with respect to lightstruck flavour formation.

    PubMed

    Huvaere, Kevin; Sinnaeve, Bart; Van Bocxlaer, Jan; De Keukeleire, Denis

    2004-09-01

    Isohumulones, the main bittering agents in beer, are decomposed by light-induced reactions, thereby leading to radical precursors on the pathway to lightstruck flavour formation. Excited flavins, formed on visible-light irradiation, readily interact with isohumulones, as well as with reduced and oxidized derivatives thereof. From identification of both volatile and non-volatile reaction products thus formed, feasible degradation mechanisms are proposed.

  10. FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS

    PubMed Central

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-01-01

    Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623

  11. Monolithic zirconia and digital impression: case report.

    PubMed

    De Angelis, F; Brauner, E; Pignatiello, G; Mencio, F; Rosella, D; Papi, P; Di Carlo, T; Giovannetti, A; Pompa, G; Di Carlo, S

    2017-01-01

    The aim of this study is to present a clinical case of a full arch prosthetic rehabilitation on natural teeth, combining both digital work-flow and monolithic zirconia. Digital impression was taken with an intraoral optical scanner (CS3500, Carestream Dental, Atlanta, GA, USA). A prosthetic rehabilitation was realized on natural teeth using monolithic zirconia from 1.6 to 1.4 and from 2.7 to 2.4 frameworks, while in the aesthetic area (from 2.3 to 1.3), technicians left on the structure a 0.8 mm vestibular space for ceramic layering. The combination of digital impression technology and the use of the monolithic zirconia had demonstrated the delivery of the final prosthetic device in a quick time without the need to remodel functional or aesthetic areas. The digital work-flow combines intraoral optical impression techniques and CAD/CAM technology, in order to achieve a fully digital and successful way to deliver prosthetic restorations to patients, providing aesthetics and function in shorter intervals of time. The clinical outcome of this study was satisfactory but a long-term evaluation is needed.

  12. Monolithic catalyst beds for hydrazine reactors

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.

  13. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    PubMed

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  14. Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product.

    PubMed

    Nagai, R; Ikeda, K; Higashi, T; Sano, H; Jinnouchi, Y; Araki, T; Horiuchi, S

    1997-05-08

    Recent studies demonstrated N epsilon-(carboxymethyl)lysine (CML) in several tissue proteins. Incubation of proteins with glucose leads through a Schiff base to Amadori products. Oxidative cleavage of Amadori products is considered as a major route to CML formation in vivo, whereas it is not known which reactive oxygen species (ROS) is involved. The present study is undertaken to identify such a ROS. We prepared heavily glycated human serum albumin (HSA) which contained a high level of Amadori products, but an undetectable level of CML. Incubation of glycated HSA with FeCl2, but not with H2O2, led to CML formation which was enhanced by H2O2, but inhibited by catalase or mannitol, whereas superoxide dismutase had no effect. Similar data were obtained by experiments using Boc-fructose-lysine as a model Amadori compound. These data indicate that hydroxyl radical generated by the reaction of Fe2+ with H2O2 mediates CML formation from Amadori compounds.

  15. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites

    PubMed Central

    Eng, Felipe; Haroth, Sven; Feussner, Kirstin; Meldau, Dorothea; Rekhter, Dmitrij; Ischebeck, Till; Brodhun, Florian

    2016-01-01

    Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl)-cyclopentane-1-butanoic acid (OPC-4) and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite. PMID:27907207

  16. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    PubMed

    Eng, Felipe; Haroth, Sven; Feussner, Kirstin; Meldau, Dorothea; Rekhter, Dmitrij; Ischebeck, Till; Brodhun, Florian; Feussner, Ivo

    2016-01-01

    Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl)-cyclopentane-1-butanoic acid (OPC-4) and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  17. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  18. Strength and toughness of monolithic and composite silicon nitrides

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    1990-01-01

    The strength and toughness of two composite and two monolithic silicon nitrides were measured from 25 to 1400 C. The monolithic and composite materials were made from similar starting powders. Both of the composite materials contained 30 vol percent silicon carbide whiskers. All measurements were made by four point flexure in surrounding air and humidity. The composite and monolithic materials exhibited similar fast fracture properties as a function of temperature.

  19. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  20. Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes.

    PubMed

    Kanwal, Harpreet Kaur; Reddy, M Sudhakara

    2014-07-01

    Morels are wild edible ascomycetous mushrooms that are highly prized because of their medicinal and nutritional qualities. Ligninolytic enzymes are considered as one of the most important enzymes in fungi due to their involvement in fruiting body formation during artificial cultivation on different substrates. In the life cycle of morels, sclerotia are the intermediate stage to form a fruiting body from mycelia. We have studied the production of ligninolytic enzymes by Morchella crassipes MR8 growing on different substrates and during sclerotia formation. This fungus is able to produce ligninolytic enzymes such as laccase (Lac), lignin peroxidase (LiP), and manganese-dependent peroxidase (MnP) when grown on different substrates. Maximum Lac activity was observed when grown in wheat grains whereas maximum activities of MnP and LiP were observed when grown in rice straw. Laccase enzyme was produced in high titers during sclerotia formation and maturation when grown in combinations of soil and substrates. A large number of sclerotia was observed in soil and wheat grains, along with high titers of laccase. Cellulase activity was observed to be constant during sclerotia formation and maturation. The present study results suggest that laccase enzyme might play an important role in sclerotia formation in morels.

  1. The formate channel FocA exports the products of mixed-acid fermentation.

    PubMed

    Lü, Wei; Du, Juan; Schwarzer, Nikola J; Gerbig-Smentek, Elke; Einsle, Oliver; Andrade, Susana L A

    2012-08-14

    Formate is a major metabolite in the anaerobic fermentation of glucose by many enterobacteria. It is translocated across cellular membranes by the pentameric ion channel/transporter FocA that, together with the nitrite channel NirC, forms the formate/nitrite transporter (FNT) family of membrane transport proteins. Here we have carried out an electrophysiological analysis of FocA from Salmonella typhimurium to characterize the channel properties and assess its specificity toward formate and other possible permeating ions. Single-channel currents for formate, hypophosphite and nitrite revealed two mechanistically distinct modes of gating that reflect different types of structural rearrangements in the transport channel of each FocA protomer. Moreover, FocA did not conduct cations or divalent anions, but the chloride anion was identified as further transported species, along with acetate, lactate and pyruvate. Formate, acetate and lactate are major end products of anaerobic mixed-acid fermentation, the pathway where FocA is predominantly required, so that this channel is ideally adapted to act as a multifunctional export protein to prevent their intracellular accumulation. Because of the high degree of conservation in the residues forming the transport channel among FNT family members, the flexibility in conducting multiple molecules is most likely a general feature of these proteins.

  2. Role of the membrane in the formation of heme degradation products in red blood cells

    PubMed Central

    Nagababu, Enika; Mohanty, Joy G.; Bhamidipaty, Surya; Ostera, Graciela R.; Rifkind, Joseph M.

    2010-01-01

    Aims Red blood cells (RBCs) have an extensive antioxidant system designed to eliminate the formation of reactive oxygen species (ROS). Nevertheless, RBC oxidant stress has been demonstrated by the formation of a fluorescent heme degradation product (ex.321 nm, em 465 nm) both in vitro and in vivo. We investigated the possibility that the observed heme degradation results from ROS generated on the membrane surface that are relatively inaccessible to the cellular antioxidants. Main Methods Membrane and cytosol were separated by centrifugation and the fluorescence intensity and emission maximum was measured. The effect on the maximum emission of adding oxidized and reduced hemoglobin to the fluorescent product formed when hemin is degraded by H2O2 was studied. Key findings 90% of the fluorescent heme degradation products in hemolysates are found on the membrane. Furthermore, these products are not transferred from the cytosol to the membrane and must, therefore, be formed on the membrane. We also showed that the elevated level of heme degradation in HbCC cells that is attributed to increased oxidative stress was found on the membrane. Significance These results suggest that, although ROS generated in the cytosol are neutralized by antioxidant enzymes, H2O2 generated by the membrane bound hemoglobin is not accessible to the cytostolic antioxidants and reacts to generate fluorescent heme degradation products. The formation of H2O2 on the membrane surface can explain the release of ROS from the RBC to other tissues and ROS damage to the membrane that can alter red cell function and lead to the removal of RBCs from circulation by macrophages. PMID:19958781

  3. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  4. Less common applications of monoliths: Preconcentration andsolid-phase extraction

    SciTech Connect

    Svec, Frantisek

    2006-03-27

    Monolithic materials are finding their place in a variety of fields. While liquid chromatography is the most emphasized use of this new category of porous media, some other just as important applications are eclipsed by the success of monolithic columns. This review article describes all current facets of use of monoliths in preconcentration and solid-phase extraction. In addition to the typical off line use that does not seem to be the main stream application for the monolithic materials, in-line connection of the preconcentration with HPLC, electrochromatography, electrophoresis, enzymatic digestion, as well as its applications in microfluidics are presented.

  5. Monolithic Lumped Element Integrated Circuit (M2LEIC) Transistors.

    DTIC Science & Technology

    INTEGRATED CIRCUITS, *MONOLITHIC STRUCTURES(ELECTRONICS), *TRANSISTORS, CHIPS(ELECTRONICS), FABRICATION, EPITAXIAL GROWTH, ULTRAHIGH FREQUENCY, POLYSILICONS, PHOTOLITHOGRAPHY, RADIOFREQUENCY POWER, IMPEDANCE MATCHING .

  6. Oil production from Niobrara formation, Silo Field, Wyoming: Fracturing associated with a possible wrench fault system( )

    SciTech Connect

    Sonnenberg, S.A.; Weimer, R.J.

    1993-04-01

    Silo field is located in the northern part of the Denver basin. Production is from the fractured Niobrara Formation at depths ranging from 7,600 to 8,500 ft. Cumulative production from 40 vertical wells at Silo is in excess of 1.3 million BO. Two wells combined have produced 466,000 BO. Recent drilling success with horizontal wells suggests much greater future production. Initial potentials from the new horizontal wells range from 216 to 2,026 BOPD. Ultimate production for horizontal completions is difficult to define by decline curves because many of the wells are produced at low rates (choked back) to prevent formation damage. Cumulative production from vertical and horizontal wells through June 1992 is 2,008,146 BO and 1,366,975 MCFG and 221,589 BW. The dominant lithologies of the Niobrara are limestones (chalks) and interbedded calcareous and organic-rich shales. Niobrara thickness ranges from 280 to 300 ft. Four limestone intervals, averaging 30 ft, and three intervening shale intervals averaging 47 ft occur regionally and are easily recognized on geophysical logs. The lower limestone is named the Fort Hays and the overlying units are grouped together as the Smoky Hill Member. The fractures are concentrated in the more brittle limestones. The main production is from the middle limestones of the Smoky Hill. The intervening shales have high organic matter content and serve as source beds. Factors present at Silo will serve as a model for future Niobrara production in the Rocky Mountain region.

  7. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation.

    PubMed Central

    Albers, E; Larsson, C; Lidén, G; Niklasson, C; Gustafsson, L

    1996-01-01

    To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential. PMID:8795209

  8. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    PubMed

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

  9. Alumina composites for oxide/oxide fibrous monoliths

    SciTech Connect

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-03-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si{sub 3}N{sub 4}/BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented.

  10. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  11. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  12. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.

    PubMed

    Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo

    2015-12-01

    Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration.

  13. Reactions of the OOH radical with guanine: Mechanisms of formation of 8-oxoguanine and other products

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Shukla, P. K.; Mishra, P. C.

    2010-09-01

    The mutagenic product 8-oxoguanine (8-oxoGua) is formed due to intermediacy of peroxyl (OOR) radicals in lipid peroxidation and protein oxidation-induced DNA damage. The mechanisms of these reactions are not yet understood properly. Therefore, in the present study, the mechanisms of formation of 8-oxoGua and other related products due to the reaction of the guanine base of DNA with the hydroperoxyl radical (OOH) were investigated theoretically employing the B3LYP and BHandHLYP hybrid functionals of density functional theory and the polarizable continuum model for solvation. It is found that the reaction of the OOH radical with guanine can occur following seven different mechanisms leading to the formation of various products including 8-oxoGua, its radicals, 5-hydroxy-8-oxoguanine and CO 2. The mechanism that yields 8-oxoGua as an intermediate and 5-hydroxy-8-oxoGua as the final product was found to be energetically most favorable.

  14. 3D statistical failure analysis of monolithic dental ceramic crowns.

    PubMed

    Nasrin, Sadia; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I

    2016-07-05

    For adhesively retained ceramic crown of various types, it has been clinically observed that the most catastrophic failures initiate from the cement interface as a result of radial crack formation as opposed to Hertzian contact stresses originating on the occlusal surface. In this work, a 3D failure prognosis model is developed for interface initiated failures of monolithic ceramic crowns. The surface flaw distribution parameters determined by biaxial flexural tests on ceramic plates and point-to-point variations of multi-axial stress state at the intaglio surface are obtained by finite element stress analysis. They are combined on the basis of fracture mechanics based statistical failure probability model to predict failure probability of a monolithic crown subjected to single-cycle indentation load. The proposed method is verified by prior 2D axisymmetric model and experimental data. Under conditions where the crowns are completely bonded to the tooth substrate, both high flexural stress and high interfacial shear stress are shown to occur in the wall region where the crown thickness is relatively thin while high interfacial normal tensile stress distribution is observed at the margin region. Significant impact of reduced cement modulus on these stress states is shown. While the analyses are limited to single-cycle load-to-failure tests, high interfacial normal tensile stress or high interfacial shear stress may contribute to degradation of the cement bond between ceramic and dentin. In addition, the crown failure probability is shown to be controlled by high flexural stress concentrations over a small area, and the proposed method might be of some value to detect initial crown design errors.

  15. Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by-product formation.

    PubMed

    Oh, Baek-Rock; Seo, Jeong-Woo; Heo, Sun-Yeon; Hong, Won-Kyung; Luo, Lian Hua; Son, Jun Ho; Park, Don-Hee; Kim, Chul-Ho

    2012-01-01

    We generated a genetically engineered Klebsiella pneumoniae strain (AK-VOT) to eliminate by-product formation during production of 1,3-propanediol (1,3-PD) from glycerol. In the present study, the glycerol-metabolizing properties of the recombinant strain were examined during fermentation in a 5 L bioreactor. As expected, by-product formation was completely absent (except for acetate) when the AK-VOT strain fermented glycerol. However, 1,3-PD productivity was severely reduced owing to a delay in cell growth attributable to a low rate of glycerol consumption. This problem was solved by establishing a two-stage process separating cell growth from 1,3-PD production. In addition, nutrient co-supplementation, especially with starch, significantly increased 1,3-PD production from glycerol during fed-batch fermentation by AK-VOT in the absence of by-product formation.

  16. Formation and modeling of disinfection by-products in drinking water of six cities in China.

    PubMed

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2011-05-01

    Water quality parameters including TOC, UV(254), pH, chlorine dosage, bromide concentration and disinfection by-products were measured in water samples from 41 water treatment plants of six selected cities in China. Chloroform, bromodichloromethane, dibromochloromethane, dichloroacetic acid and trichloroacetic acid were the major disinfection by-products in the drinking water of China. Bromoform and dibromoacetic acid were also detected in many water samples. Higher concentrations of trihalomethanes and haloacetic acids were measured in summer compared to winter. The geographical variations in DBPs showed that TTHM levels were higher in Zhengzhou and Tianjin than other selected cities. And the HAA5 levels were highest in Changsha and Tianjin. The modeling procedure that predicts disinfection by-products formation was studied and developed using artificial neural networks. The performance of the artificial neural networks model was excellent (r > 0.84).

  17. Formation and identification of trimethylimidazole during tetramethylpyrazine production from glucose by Bacillus strains.

    PubMed

    Xiao, Zijun; Lu, Jian R; Ma, Cuiqing; Xu, Ping

    2009-09-01

    During 2,3,5,6-tetramethylpyrazine production from glucose by Bacillus strains, a novel product was detected and identified as 2,4,5-trimethylimidazole (TMI) by GC/MS. TMI appeared in the culture medium only after glucose had been depleted and then increased to 0.25-0.31 g l(-1) in 90-120 h. When the ammonium source was changed from (NH(4))(2)SO(4) to (NH(4))(2)HPO(4), only about one tenth of TMI was detected. Although the mechanistic events largely remain unclear, both microbial strains tested demonstrated similar dynamic processes of TMI production, suggesting that TMI formation is a genuine feature of Bacillus species.

  18. Product formation controlled by substrate dynamics in leukotriene A4 hydrolase.

    PubMed

    Stsiapanava, Alena; Tholander, Fredrik; Kumar, Ramakrishnan B; Qureshi, Abdul Aziz; Niegowski, Damian; Hasan, Mahmudul; Thunnissen, Marjolein; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2014-02-01

    Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ(6)-trans-Δ(8)-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ(6)-trans-Δ(8)-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers.

  19. [Formation of disinfection by-products: temperature effect and kinetic modeling].

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Fu, Jing; Xie, Yue-Feng

    2012-11-01

    Water temperature has significant effects on the disinfection by-product (DBP) formation and concentration in many water utilities and distribution systems. To study the temperature effect on the DBP concentration, the uniform formation condition (UFC) test was referred in testing the formation concentration of DBPs [including (trihalomethanes) THMs and (haloacetic acids) HAAs] at different temperatures during chlorination of the humic acid (HA) solution. A kinetic model was consequently proposed to predict DBP concentration during chlorination. Results show that for the three detected DBPs, including chloroform (CHCl3), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), increasing temperature could considerably enhance both the DBP formation rates and the maximum DBP concentrations, where the maximum concentrations increase exponentially with the water temperature (R2 > 0.90). By using the data-processing software Origin, the detected DBP values were fitted using the proposed first order kinetic model, and the result showed a strong correlation for each DBP at various temperatures (R > 0.94). The apparent reaction rate constant k was also derived for each DBP. In order to quantify the temperature effect on DBP formation, the Arrhenius Equation was employed to calculate the apparent reaction activation energy for each DBP-22.3, 25.5 and 40.8 kJ x mol(-1) for CHCl3, DCAA and TCAA, respectively. By comparing the model predicted and the detected DBP values at 20 and 30 degrees C, the model showed a strong performance in predicting DBP formation concentrations, which indicated the reliability and validity of this proposed kinetic model.

  20. Percolation transport theory and relevance to soil formation, vegetation growth, and productivity

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Ghanbarian, B.

    2016-12-01

    Scaling laws of percolation theory have been applied to generate the time dependence of vegetation growth rates (both intensively managed and natural) and soil formation rates. The soil depth is thus equal to the solute vertical transport distance, the soil production function, chemical weathering rates, and C and N storage rates are all given by the time derivative of the soil depth. Approximate numerical coefficients based on the maximum flow rates in soils have been proposed, leading to a broad understanding of such processes. What is now required is an accurate understanding of the variability of the coefficients in the scaling relationships. The present abstract focuses on the scaling relationship for solute transport and soil formation. A soil formation rate relates length, x, and time, t, scales, meaning that the missing coefficient must include information about fundamental space and time scales, x0 and t0. x0 is proposed to be a fundamental mineral heterogeneity scale, i.e. a median particle diameter. to is then found from the ratio of x0 and a fundamental flow rate, v0, which is identified with the net infiltration rate. The net infiltration rate is equal to precipitation P less evapotranspiration, ET, plus run-on less run-off. Using this hypothesis, it is possible to predict soil depths and formation rates as functions of time and P - ET, and the formation rate as a function of depth, soil calcic and gypsic horizon depths as functions of P-ET. It is also possible to determine when soils are in equilibrium, and predict relationships of erosion rates and soil formation rates.

  1. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation.

    PubMed

    Aizawa, Ken; Takahari, Youko; Higashijima, Naoko; Serizawa, Kenichi; Yogo, Kenji; Ishizuka, Nobuhiko; Endo, Koichi; Fukuyama, Naoto; Hirano, Katsuya; Ishida, Hideyuki

    2015-03-01

    Sirolimus (SRL) is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS) play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC), an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs), SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22(phox) mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Formation of highly oxygenated low-volatility products from cresol oxidation

    NASA Astrophysics Data System (ADS)

    Schwantes, Rebecca H.; Schilling, Katherine A.; McVay, Renee C.; Lignell, Hanna; Coggon, Matthew M.; Zhang, Xuan; Wennberg, Paul O.; Seinfeld, John H.

    2017-03-01

    Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ˜ 3.5 × 104 - 7.7 × 10-3 µg m-3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ˜ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ˜ 20 % of the oxidation products of toluene, it is the source of a significant fraction (˜ 20-40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.

  3. Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies

    PubMed Central

    Pearce, F. Grant

    2006-01-01

    During catalysis, all Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes produce traces of several by-products. Some of these by-products are released slowly from the active site of Rubisco from higher plants, thus progressively inhibiting turnover. Prompted by observations that Form I Rubisco enzymes from cyanobacteria and red algae, and the Form II Rubisco enzyme from bacteria, do not show inhibition over time, the production and binding of catalytic by-products was measured to ascertain the underlying differences. In the present study we show that the Form IB Rubisco from the cyanobacterium Synechococcus PCC6301, the Form ID enzyme from the red alga Galdieria sulfuraria and the low-specificity Form II type from the bacterium Rhodospirillum rubrum all catalyse formation of by-products to varying degrees; however, the by-products are not inhibitory under substrate-saturated conditions. Study of the binding and release of phosphorylated analogues of the substrate or reaction intermediates revealed diverse strategies for avoiding inhibition. Rubisco from Synechococcus and R. rubrum have an increased rate of inhibitor release. G. sulfuraria Rubisco releases inhibitors very slowly, but has an increased binding constant and maintains the enzyme in an activated state. These strategies may provide information about enzyme dynamics, and the degree of enzyme flexibility. Our observations also illustrate the phylogenetic diversity of mechanisms for regulating Rubisco and raise questions about whether an activase-like mechanism should be expected outside the green-algal/higher-plant lineage. PMID:16822231

  4. Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies.

    PubMed

    Pearce, F Grant

    2006-11-01

    During catalysis, all Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes produce traces of several by-products. Some of these by-products are released slowly from the active site of Rubisco from higher plants, thus progressively inhibiting turnover. Prompted by observations that Form I Rubisco enzymes from cyanobacteria and red algae, and the Form II Rubisco enzyme from bacteria, do not show inhibition over time, the production and binding of catalytic by-products was measured to ascertain the underlying differences. In the present study we show that the Form IB Rubisco from the cyanobacterium Synechococcus PCC6301, the Form ID enzyme from the red alga Galdieria sulfuraria and the low-specificity Form II type from the bacterium Rhodospirillum rubrum all catalyse formation of by-products to varying degrees; however, the by-products are not inhibitory under substrate-saturated conditions. Study of the binding and release of phosphorylated analogues of the substrate or reaction intermediates revealed diverse strategies for avoiding inhibition. Rubisco from Synechococcus and R. rubrum have an increased rate of inhibitor release. G. sulfuraria Rubisco releases inhibitors very slowly, but has an increased binding constant and maintains the enzyme in an activated state. These strategies may provide information about enzyme dynamics, and the degree of enzyme flexibility. Our observations also illustrate the phylogenetic diversity of mechanisms for regulating Rubisco and raise questions about whether an activase-like mechanism should be expected outside the green-algal/higher-plant lineage.

  5. Cinnamon bark oil and its components inhibit biofilm formation and toxin production.

    PubMed

    Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Soon-Il; Baek, Kwang-Hyun; Lee, Jintae

    2015-02-16

    The long-term usage of antibiotics has resulted in the evolution of multidrug resistant bacteria, and pathogenic biofilms contribute to reduced susceptibility to antibiotics. In this study, 83 essential oils were initially screened for biofilm inhibition against Pseudomonas aeruginosa. Cinnamon bark oil and its main constituent cinnamaldehyde at 0.05% (v/v) markedly inhibited P. aeruginosa biofilm formation. Furthermore, cinnamon bark oil and eugenol decreased the production of pyocyanin and 2-heptyl-3-hydroxy-4(1H)-quinolone, the swarming motility, and the hemolytic activity of P. aeruginosa. Also, cinnamon bark oil, cinnamaldehyde, and eugenol at 0.01% (v/v) significantly decreased biofilm formation of enterohemorrhagic Escherichia coli O157:H7 (EHEC). Transcriptional analysis showed that cinnamon bark oil down-regulated curli genes and Shiga-like toxin gene stx2 in EHEC. In addition, biodegradable poly(lactic-co-glycolic acid) film incorporating biofilm inhibitors was fabricated and shown to provide efficient biofilm control on solid surfaces. This is the first report that cinnamon bark oil and its components, cinnamaldehyde and eugenol, reduce the production of pyocyanin and PQS, the swarming motility, and the hemolytic activity of P. aeruginosa, and inhibit EHEC biofilm formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Growth and final product formation by Bifidobacterium infantis in aerated fermentations.

    PubMed

    González, R; Blancas, A; Santillana, R; Azaola, A; Wacher, C

    2004-10-01

    Fermentation conditions were developed to allow Bifidobacterium infantis to grow in the presence of air. Batch fermentations in TPYG medium, starting from anoxic conditions followed by the application of low airflow rates [0.02-0.1 air volume, per liquid media volume, per minute (vvm)], were analyzed for growth, oxygen uptake, and product formation by the bacterium. Under all aerated fermentations, B. infantis showed high aerotolerance, with a maximum oxygen-specific consumption rate of 0.34 mmol oxygen per gram dry cell weight per hour in the presence of 0.06 vvm. Similar growth yields were obtained under oxic and anoxic conditions (0.11-0.13 and 0.11 g dry cell weight per mmol glucose, respectively). Oxygen also influenced metabolite formation since lactate production and its molar relation to acetate increased and formate decreased with aeration rate. Under anoxic conditions, a maximum concentration of 8.1 mM lactate and an acetate/lactate ratio of 3.5:1 were obtained, while under oxic conditions the lactate concentration increased more than two-fold and the acetate/lactate molar ratio decreased to 1.5:1. The possibility of balancing acetate/lactate molar ratios for organoleptic purposes as well as for obtaining good growth under microaerated conditions was demonstrated.

  7. Formation of Highly Oxidized Radicals and Multifunctional Products from the Atmospheric Oxidation of Alkylbenzenes.

    PubMed

    Wang, Sainan; Wu, Runrun; Berndt, Torsten; Ehn, Mikael; Wang, Liming

    2017-08-01

    Aromatic hydrocarbons contribute significantly to tropospheric ozone and secondary organic aerosols (SOA). Despite large efforts in elucidating the formation mechanism of aromatic-derived SOA, current models still substantially underestimate the SOA yields when comparing to field measurements. Here we present a new, up to now undiscovered pathway for the formation of highly oxidized products from the OH-initiated oxidation of alkyl benzenes based on theoretical and experimental investigations. We propose that unimolecular H-migration followed by O2-addition, a so-called autoxidation step, can take place in bicyclic peroxy radicals (BPRs), which are important intermediates of the OH-initiated oxidation of aromatic compounds. These autoxidation steps lead to the formation of highly oxidized multifunctional compounds (HOMs), which are able to form SOA. Our theoretical calculations suggest that the intramolecular H-migration in BPRs of substituted benzenes could be fast enough to compete with bimolecular reactions with HO2 radicals or NO under atmospheric conditions. The theoretical findings are experimentally supported by flow tube studies using chemical ionization mass spectrometry to detect the highly oxidized peroxy radical intermediates and closed-shell products. This new unimolecular BPR route to form HOMs in the gas phase enhances our understanding of the aromatic oxidation mechanism, and contributes significantly to a better understanding of aromatic-derived SOA in urban areas.

  8. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    PubMed

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics.

  9. Bioprocess intensification in flow-through monolithic microbioreactors with immobilized bacteria.

    PubMed

    Akay, G; Erhan, E; Keskinler, B

    2005-04-20

    Microporous polymers (with porosity up to 90%) with a well-prescribed internal microstructure were prepared in monolithic form to construct a flow-through microbioreactor in which phenol-degrading bacteria, Pseudomonas syringae, was immobilized. Initially, bacteria was forced seeded within the pores and subsequently allowed to proliferate followed by acclimatization and phenol degradation at various initial substrate concentrations and flow rates. Two types of microporous polymer were used as the monolithic support. These polymers differ with respect to their pore and interconnect sizes, macroscopic surface area for bacterial support, and phase volume. Polymer with a nominal pore size of 100 microm with phase volume of 90% (with highly open pore structure) yielded reduced bacterial proliferation, while the polymer with nominal pore size of 25 microm with phase volume of 85% (with small interconnect size and large pore area for bacterial adhesion) yielded monolayer bacterial proliferation. Bacteria within the 25 microm polymer support remained monolayered, without any apparent production of extracellular matrix during the 30-day continuous experimental period. The microbioreactor performance was characterized in terms of volumetric utilization rate and compared with the published data, including the case where the same bacteria was immobilized on the surface of microporous polymer beads and used in a packed bed during continuous degradation of phenol. It is shown that at similar initial substrate concentration, the volumetric utilization in the microreactor is at least 20-fold more efficient than the packed bed, depending on the flow rate of the substrate solution. The concentration of the bacteria within the pores of the microreactor decreases from 2.25 cells per microm2 on the top surface to about 0.4 cells per microm2 within 3 mm reactor depth. If the bacteria-depleted part of the microreactor is disregarded, the volumetric utilization increases by a factor of 30

  10. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.

    PubMed

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin; Liu, Houguang; Liu, Yuhong; Huang, Xu; Zhu, Gefu

    2016-10-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation.

  11. Group impressions as dynamic configurations: the tensor product model of group impression formation and change.

    PubMed

    Kashima, Y; Woolcock, J; Kashima, E S

    2000-10-01

    Group impressions are dynamic configurations. The tensor product model (TPM), a connectionist model of memory and learning, is used to describe the process of group impression formation and change, emphasizing the structured and contextualized nature of group impressions and the dynamic evolution of group impressions over time. TPM is first shown to be consistent with algebraic models of social judgment (the weighted averaging model; N. Anderson, 1981) and exemplar-based social category learning (the context model; E. R. Smith & M. A. Zárate, 1992), providing a theoretical reduction of the algebraic models to the present connectionist framework. TPM is then shown to describe a common process that underlies both formation and change of group impressions despite the often-made assumption that they constitute different psychological processes. In particular, various time-dependent properties of both group impression formation (e.g., time variability, response dependency, and order effects in impression judgments) and change (e.g., stereotype change and group accentuation) are explained, demonstrating a hidden unity beneath the diverse array of empirical findings. Implications of the model for conceptualizing stereotype formation and change are discussed.

  12. Inhibition of advanced glycation end-product formation on eye lens protein by rutin.

    PubMed

    Muthenna, P; Akileshwari, C; Saraswat, Megha; Bhanuprakash Reddy, G

    2012-04-01

    Formation of advanced glycation end products (AGE) plays a key role in the several pathophysiologies associated with ageing and diabetes, such as arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer's disease, nephropathy, neuropathy and cataract. This raises the possibility of inhibition of AGE formation as one of the approaches to prevent or arrest the progression of diabetic complications. Previously, we have reported that some common dietary sources such as fruits, vegetables, herbs and spices have the potential to inhibit AGE formation. Flavonoids are abundantly found in fruits, vegetables, herbs and spices, and rutin is one of the commonly found dietary flavonols. In the present study, we have demonstrated the antiglycating potential and mechanism of action of rutin using goat eye lens proteins as model proteins. Under in vitro conditions, rutin inhibited glycation as assessed by SDS-PAGE, AGE-fluorescence, boronate affinity chromatography and immunodetection of specific AGE. Further, we provided insight into the mechanism of inhibition of protein glycation that rutin not only scavenges free-radicals directly but also chelates the metal ions by forming complexes with them and thereby partly inhibiting post-Amadori formation. These findings indicate the potential of rutin to prevent and/or inhibit protein glycation and the prospects for controlling AGE-mediated diabetic pathological conditions in vivo.

  13. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya

    NASA Astrophysics Data System (ADS)

    Ohshima, Kay I.; Fukamachi, Yasushi; Williams, Guy D.; Nihashi, Sohey; Roquet, Fabien; Kitade, Yujiro; Tamura, Takeshi; Hirano, Daisuke; Herraiz-Borreguero, Laura; Field, Iain; Hindell, Mark; Aoki, Shigeru; Wakatsuchi, Masaaki

    2013-03-01

    The formation of Antarctic Bottom Water--the cold, dense water that occupies the abyssal layer of the global ocean--is a key process in global ocean circulation. This water mass is formed as dense shelf water sinks to depth. Three regions around Antarctica where this process takes place have been previously documented. The presence of another source has been identified in hydrographic and tracer data, although the site of formation is not well constrained. Here we document the formation of dense shelf water in the Cape Darnley polynya (65°-69°E) and its subsequent transformation into bottom water using data from moorings and instrumented elephant seals (Mirounga leonina). Unlike the previously identified sources of Antarctic Bottom Water, which require the presence of an ice shelf or a large storage volume, bottom water production at the Cape Darnley polynya is driven primarily by the flux of salt released by sea-ice formation. We estimate that about 0.3-0.7×106m3s-1 of dense shelf water produced by the Cape Darnley polynya is transformed into Antarctic Bottom Water. The transformation of this water mass, which we term Cape Darnley Bottom Water, accounts for 6-13% of the circumpolar total.

  14. Leaching of mercury-containing cement monoliths aged for one year.

    PubMed

    Svensson, Margareta; Allard, Bert

    2008-01-01

    A directive from the Swedish Government states that waste containing more than 1% of mercury shall be permanently deposited. The stabilization of mercury by conversion to a sparingly soluble compound like the sulphide is crucial to ensure long-term immobilization in a permanent storage. Immobilization by the solidification/stabilization (S/S) method and possible formation of HgS from mercury oxide or elemental mercury by reaction with a sulphur source (S or FeS) is investigated by a modified version of the NEN 7345 Dutch tank-leaching test. The diffusion of mercury during 11 months from 1-year-old mercury containing monoliths of Portland and slag cement is demonstrated. In a geologic repository under conditions representative of deep granitic bedrock (bicarbonate buffered to pH 8.6), a favourable monolith combination is slag cement with addition of the iron sulphide troilite. The apparent diffusion coefficient of mercury is estimated.

  15. Westerlund 1: monolithic formation of a starburst cluster

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Clark, J. Simon; Ritchie, Ben W.; Goodwin, Simon P.

    2017-03-01

    Westerlund 1 is in all likelihood the most massive young cluster in the Milky Way, with a mass on the order of 105 M ⊙. To determine its bulk properties we have made multi-epoch radial velocity measurements for a substantial fraction of its OB stars and evolved supergiants and obtained multi-object spectroscopy of candidate cluster members in its locale. The results of these two studies show that Westerlund 1 is apparently subvirial and appears completely isolated, with hardly any massive star in its vicinity that could be associated with it in terms of distance modulus or radial velocity. The cluster halo does not extend much further than five parsec away from the centre. All these properties are very unusual among starburst clusters in the Local Universe, which tend to form in the context of large star-forming regions.

  16. Constituents of the roots of Pueraria lobata inhibit formation of advanced glycation end products (AGEs).

    PubMed

    Kim, Jong Min; Lee, Yun Mi; Lee, Ga Young; Jang, Dae Sik; Bae, Ki Hwan; Kim, Jin Sook

    2006-10-01

    Two isoflavone C-glucosides, puerarin (1) and PG-3 (2), a but-2-enolide, (+/-)-puerol B (3), two isoflavone O-glucosides, daidzin (4) and genistin (5), and three pterocarpans, (-)-medicarpin (6), (-)-glycinol (7) and (-)-tuberosin (8), were isolated from a MeOH extract of the roots of Pueraria lobata, using an in vitro bioassay based on the inhibition of the formation of advanced glycation end products (AGEs) to monitor chromatographic fractionation. The structures of 1-8 were determined by spectroscopic data interpretation, particularly by 1D- and 2D-NMR studies, and by comparison of these data with values in the literature. All of the isolates (1-8) were evaluated for their inhibitory activity on AGEs formation in vitro. Of these, puerarin (1), PG-3 (2), and (+/-)-puerol B (3) exhibited more potent inhibitory activity than the positive control aminoguanidine.

  17. Residue formations of phosphorus hydride polymers and phosphorus oxyacids during phosphine gas fumigations of stored products.

    PubMed

    Flora, Jason W; Byers, Loran E; Plunkett, Susan E; Faustini, Daryl L

    2006-01-11

    With the extent of international usage and the critical role phosphine gas (PH3) plays in commercial pest control, identification of the residual components deposited during fumigation is mandatory. It has been postulated that these infrequent residues are primarily composed of phosphoric acid or reduced forms of phosphoric acid [hypophosphorous acid (H3PO2) and phosphorous acid (H3PO3)], due to the oxidative degradation of phosphine. Using environmental scanning electron microscopy, gas phase Fourier transform infrared spectroscopy, and X-ray fluorescence spectroscopy, the structural elucidation and formation mechanism of the yellow amorphous polyhydric phosphorus polymers (P(x)H(y)) that occur in addition to the lower oxyacids of phosphorus in residues deposited during PH3 fumigations of select tobacco commodities are explored. This research determined that nitric oxide gas (or nitrogen dioxide) initiates residue formation of phosphorus hydride polymers and phosphorus oxyacids during PH3 fumigations of stored products.

  18. Sliding Motility, Biofilm Formation, and Glycopeptidolipid Production in Mycobacterium colombiense Strains

    PubMed Central

    Maya-Hoyos, Milena; Leguizamón, John; Mariño-Ramírez, Leonardo; Soto, Carlos Y.

    2015-01-01

    Mycobacterium colombiense is a novel member of the Mycobacterium avium complex, which produces respiratory and disseminated infections in immunosuppressed patients. Currently, the morphological and genetic bases underlying the phenotypic features of M. colombiense strains remain unknown. In the present study, we demonstrated that M. colombiense strains displaying smooth morphology show increased biofilm formation on hydrophobic surfaces and sliding on motility plates. Thin-layer chromatography experiments showed that M. colombiense strains displaying smooth colonies produce large amounts of glycolipids with a chromatographic behaviour similar to that of the glycopeptidolipids (GPLs) of M. avium. Conversely, we observed a natural rough variant of M. colombiense (57B strain) lacking pigmentation and exhibiting impaired sliding, biofilm formation, and GPL production. Bioinformatics analyses revealed a gene cluster that is likely involved in GPL biosynthesis in M. colombiense CECT 3035. RT-qPCR experiments showed that motile culture conditions activate the transcription of genes possibly involved in key enzymatic activities of GPL biosynthesis. PMID:26180799

  19. Regulation of Product Formation in Bacteroides xylanolyticus X5-1 by Interspecies Electron Transfer

    PubMed Central

    Biesterveld, Steven; Zehnder, Alexander J. B.; Stams, Alfons J. M.

    1994-01-01

    Bacteroides xylanolyticus X5-1 was grown in pure culture and in mixed culture with Methanospirillum hungatei JF-1 under xylose limitation in the chemostat. In the pure culture, ethanol, acetate, CO2, and hydrogen were the products. In the mixed culture, acetate, CO2, and presumably hydrogen were the only products formed by B. xylanolyticus X5-1. The biomass yield of B. xylanolyticus X5-1 increased because of cocultivation. In cell extracts of the pure culture, both NAD- and NADP-dependent acetaldehyde dehydrogenase and ethanol dehydrogenase activities were found. In cell extracts of the mixed culture, activities of these enzymes were not detected. Inhibition of methanogenesis in the mixed culture by the addition of bromoethanosulfonic acid (BES) resulted in an accumulation of H2, ethanol, and formate. Immediately after the addition of BES, NAD-dependent acetaldehyde dehydrogenase and ethanol dehydrogenase activities were detected. After a short lag phase, a NADP-dependent ethanol dehydrogenase was also detectable. The induction of acetaldehyde dehydrogenase and ethanol dehydrogenase was inhibited by chloramphenicol, suggesting de novo synthesis of these enzymes. These results are consistent with a model in which the shift in product formation caused by interspecies electron transfer is regulated at the level of enzyme synthesis. PMID:16349240

  20. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.

    PubMed

    Li, Xiaoming; Zheng, Tiesong; Sang, Shengmin; Lv, Lishuang

    2014-12-17

    Methylglyoxal (MGO) and glyoxal (GO) not only are endogenous metabolites but also exist in exogenous resources, such as foods, beverages, urban atmosphere, and cigarette smoke. They have been identified as reactive dicarbonyl precursors of advanced glycation end products (AGEs), which have been associated with diabetes-related long-term complications. In this study, quercetin, a natural flavonol found in fruits, vegetables, leaves, and grains, could effectively inhibit the formation of AGEs in a dose-dependent manner via trapping reactive dicarbonyl compounds. More than 50.5% of GO and 80.1% of MGO were trapped at the same time by quercetin within 1 h under physiological conditions. Quercetin and MGO (or GO) were combined at different ratios, and the products generated from this reaction were analyzed with LC-MS. Both mono-MGO and di-MGO adducts of quercetin were detected in this assay using LC-MS, but only tiny amounts of mono-GO adducts of quercetin were found. Additionally, di-MGO adducts were observed as the dominant product with prolonged incubation time. In the bovine serum albumin (BSA)-MGO/GO system, quercetin traps MGO and GO directly and then significantly inhibits the formation of AGEs.

  1. Simulation of production and injection performance of gas storage caverns in salt formations

    SciTech Connect

    Hagoort, J. )

    1994-11-01

    This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

  2. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide.

    PubMed

    Chang, C Y; Hsieh, Y H; Lin, Y M; Hu, P Y; Liu, C C; Wang, K H

    2001-08-01

    The object of this research was to study the formation of disinfection by-products by using chlorine dioxide (ClO2) as a disinfectant reacting with different properties of organic substance in natural aquatic environment. The adsorbent resin (XAD-4, XAD-7) was used to divide the organic matters in raw water into three groups. The influence of the function groups on structure, reaction tendency, and formation of disinfection by-products generated by the reaction of these organic substances with chlorine dioxide was explored. The experimental results show that the three different organic groups formed using adsorbent resin were hydrophobic substance, hydrophilic acid, and non-acid hydrophilics in proportions of 43%, 41%, and 16%, respectively. Within the raw water in our study, the hydrophilic substance had a higher distribution proportion than that described in general articles and journals, which indicates that this water was contaminated with pollution from human beings. The exploration of the reactivity of the three different organic substances with chlorine dioxide shows that the unit consumption of disinfection agent per unit organic matters (represented by ClO2/DOC) is in the following sequence hydrophobic substance > hydrophilic substance > non-acid hydrophilics. It indicated that larger molecular organic precursors had larger consumption of disinfectant. We also discovered that after the reaction of the three different organic substances with chlorine dioxide, the largest amount of disinfection by-products were generated by the non-acid hydrophilics.

  3. Standardizing large format 5" GaSb and InSb substrate production

    NASA Astrophysics Data System (ADS)

    Martinez, Becky; Flint, J. Patrick; Dallas, G.; Smith, B.; Tybjerg, M.; Aravazhi, Shanmugam; Furlong, Mark J.

    2017-02-01

    In this paper we report on the maturation of large diameter GaSb and InSb substrate production and the key aspects of product quality and process control that have enabled a level of standardization to be achieved that is on par with mass produced compound semiconductor materials such as GaAs and InP. The evolution of commercial production processes for the crystal growth, wafering and epitaxy-ready polishing of antimonide substrates will be discussed together with specific reference to the process tool sets and production methodologies that have transformed a niche material in to one that has set new standards for wafer level product quality, conformity and control. Results will be presented on the production of single crystal >/=6" ingots grown by a modified version of the Czochralski (LEC) technique. Crystal defect mapping will demonstrate that industry standard InSb (211) growth processes have been refined to consistently deliver ultralow dislocation density substrates. Statistical process control data will be presented for large format 5" epitaxy ready finishing processes and compared alongside in-house data for GaAs and InP. Various surface analytical tools are used to characterize 5" InSb and GaSb substrates and our method of providing a unique characterization `finger print' with each substrate discussed. We conclude that improvements in InSb and GaSb product quality and consistency have been driven by the industry's persistent need to improve device performance and yield. Whilst substrate size requirements in antimonide wafer production may have peaked, we will discuss how to moving to the next step in substrate diameters, 6", is very attainable and within relatively short timescales too.

  4. A kinetic model for product formation of microbial and mammalian cells

    SciTech Connect

    Zeng, A.P.

    1995-05-20

    Growth of microbial and mammalian cells can be classified into substrate-limited and substrate-sufficient growth according to the relative availability of the substrate (carbon and energy source) and other nutrients. It has been observed for a number of microbial and mammalian cells that the consumption rate of substrate and energy (ATP) is generally higher under substrate-sufficient conditions than under substrate limitation. Accordingly, the product formation under substrate excess often exhibits different patterns from those under substrate limitation. In this study, the Luedeking-Piret kinetic model is extended to include a term describing the effect of residual substrate concentration. The applicability of the extended model is demonstrated with three microbial cultures for the production of primary metabolites and three hybridoma cell cultures for the production of ammonia and lactic acid over a wide range of substrate concentration. Anaerobic fermentation of glycerol by Klebsiella pneumoniae is a multiproduct fermentation process. At a neutral pH value, acetic acid, ethanol, and 1,3-propanediol are the main fermentation products. Formation of acetic acid and/or ethanol is necessary for the generation by K. pneumoniae. The aerobic growth of bacillus strain TS1 on methanol has been studied in methanol-limited and methanol-sufficient hemostat cultures. Under methanol-limited conditions there is no extracellular product formed. However, under methanol-sufficient conditions, particularly with nitrogen limitation, metabolites such as acetic acid and 2-oxoglutaric acid are excreted into the culture medium above a certain level of residual methanol concentration.

  5. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Lewis, A. C.; Carey, T. J.; Wenger, J. C.; Garcia, E. Borrás. I.; Muñoz, A.

    2009-02-01

    Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1-5 TgC yr-1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  6. Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights.

    PubMed

    Cadet, Jean; Ravanat, Jean-Luc; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2006-01-01

    This survey focuses on recent aspects of the singlet oxygen oxidation of the guanine moiety of nucleosides, oligonucleotides, isolated and cellular DNA that has been shown to be the exclusive DNA target for this biologically relevant photogenerated oxidant. A large body of mechanistic data is now available from studies performed on nucleosides in both aprotic solvents and aqueous solutions. A common process to both reaction conditions is the formation of 8-oxo-7,8-dihydroguanine by reduction of 8-hydroperoxyguanine that arises from the rearrangement of initially formed endoperoxide across the 4,8-bond of the purine moiety. However, in organic solvent the hydroperoxide is converted as a major degradation pathway into a dioxirane that subsequently decomposes into a complex pattern of oxidation products. A different reaction that involved the formation of a highly reactive quinonoid intermediate consecutively to the loss of a water molecule from the 8-hydroperoxide has been shown to occur in aqueous solution. Subsequent addition of a water molecule at C5 leads to the generation of a spiroiminodihy-dantoin compound via a rearrangement that involves an acyl shift. However, in both isolated and cellular DNA the latter decomposition pathway is at the best a minor process, because only 8-oxo-7,8-dihydroguanine has been found to be generated. It is interesting to point out that singlet oxygen has been shown to contribute predominantly to the formation of 8-oxo-7,8-dihydroguanine in the DNA of bacterial and human cells upon exposure to UVA radiation. It may be added that the formation of secondary singlet-oxygen oxidation products of 8-oxo-7,8-dihydroguanine, including spiroiminodihydantoin and oxaluric acid that were characterized in nucleosides and oligonucleotide, respectively, have not yet been found in cellular DNA.

  7. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Lewis, A. C.; Carey, T. J.; Wenger, J. C.; Garcia, E. Borrás. I.; Muñoz, A.

    2009-06-01

    Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1-5 TgC yr-1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  8. Experimental and theoretical study of the influence of water on hydrolyzed product formation during the feruloylation of vegetable oil

    USDA-ARS?s Scientific Manuscript database

    Feruloylated vegetable oil is a valuable green bioproduct that has several cosmeceutical applications associated with its inherent anti-oxidant and UV-absorption properties. Hydrolyzed vegetable oil by-products can influence product quality and consistency. The formation of by-products by residual w...

  9. Cross-formational flow of water into coalbed methane reservoirs: controls on relative permeability curve shape and production profile.

    PubMed

    Salmachi, Alireza; Karacan, C Özgen

    2017-03-01

    Coalbed methane (CBM) wells tend to produce large volumes of water, especially when there is hydraulic connectivity between coalbed and nearby formations. Cross-formational flow between producing coal and adjacent formations can have significant production and environmental implications, affecting economic viability of production from these shallow reservoirs. Such flows can also affect how much gas can be removed from a coalbed prior to mining and thus can have implications for methane control in mining as well. The aim of this paper is to investigate the impact of water flow from an external source into coalbed on production performance and also on reservoir variables including cleat porosity and relative permeability curves derived from production data analysis. A reservoir model is constructed to investigate the production performance of a CBM well when cross-formational flow is present between the coalbed and the overlying formation. Results show that cleat porosity calculated by analysis of production data can be more than one order of magnitude higher than actual cleat porosity. Due to hydraulic connectivity, water saturation within coalbed does not considerably change for a period of time, and hence, the peak of gas production is delayed. Upon depletion of the overlying formation, water saturation in coalbed quickly decreases. Rapid decline of water saturation in the coalbed corresponds to a sharp increase in gas production. As an important consequence, when cross-flow is present, gas and water relative permeability curves, derived from simulated production data, have distinctive features compared to the initial relative permeability curves. In the case of cross-flow, signatures of relative permeability curves are concave downward and low gas permeability for a range of water saturation, followed by rapid increase afterward for water and gas, respectively. The results and analyses presented in this work can help to assess the impact of cross-formational

  10. Cross-formational flow of water into coalbed methane reservoirs: controls on relative permeability curve shape and production profile

    PubMed Central

    Karacan, C. Özgen

    2017-01-01

    Coalbed methane (CBM) wells tend to produce large volumes of water, especially when there is hydraulic connectivity between coalbed and nearby formations. Cross-formational flow between producing coal and adjacent formations can have significant production and environmental implications, affecting economic viability of production from these shallow reservoirs. Such flows can also affect how much gas can be removed from a coalbed prior to mining and thus can have implications for methane control in mining as well. The aim of this paper is to investigate the impact of water flow from an external source into coalbed on production performance and also on reservoir variables including cleat porosity and relative permeability curves derived from production data analysis. A reservoir model is constructed to investigate the production performance of a CBM well when cross-formational flow is present between the coalbed and the overlying formation. Results show that cleat porosity calculated by analysis of production data can be more than one order of magnitude higher than actual cleat porosity. Due to hydraulic connectivity, water saturation within coalbed does not considerably change for a period of time, and hence, the peak of gas production is delayed. Upon depletion of the overlying formation, water saturation in coalbed quickly decreases. Rapid decline of water saturation in the coalbed corresponds to a sharp increase in gas production. As an important consequence, when cross-flow is present, gas and water relative permeability curves, derived from simulated production data, have distinctive features compared to the initial relative permeability curves. In the case of cross-flow, signatures of relative permeability curves are concave downward and low gas permeability for a range of water saturation, followed by rapid increase afterward for water and gas, respectively. The results and analyses presented in this work can help to assess the impact of cross-formational

  11. Ozonation of piperidine, piperazine and morpholine: Kinetics, stoichiometry, product formation and mechanistic considerations.

    PubMed

    Tekle-Röttering, Agnes; Jewell, Kevin S; Reisz, Erika; Lutze, Holger V; Ternes, Thomas A; Schmidt, Winfried; Schmidt, Torsten C

    2016-01-01

    Piperidine, piperazine and morpholine as archetypes for secondary heterocyclic amines, a structural unit that is often present in pharmaceuticals (e.g., ritalin, cetirizine, timolol, ciprofloxacin) were investigated in their reaction with ozone. In principle the investigated compounds can be degraded with ozone in a reasonable time, based on their high reaction rate constants with respect to ozone (1.9 × 10(4)-2.4 × 10(5) M(-1) s(-1)). However, transformation is insufficient (13-16%), most likely due to a chain reaction, which decomposes ozone. This conclusion is based on OH scavenging experiments, leading to increased compound transformation (18-27%). The investigated target compounds are similar in their kinetic and stoichiometric characteristics. However, the mechanistic considerations based on product formation indicate various reaction pathways. Piperidine reacts with ozone via a nonradical addition reaction to N-hydroxypiperidine (yield: 92% with and 94% without scavenging, with respect to compound transformation). However, piperazine degradation with ozone does not lead to N-hydroxypiperazine. In the morpholine/ozone reaction, N-hydroxymorpholine was identified. Additional oxidation pathways in all cases involved the formation of OH with high yields. One important pathway of piperazine and morpholine by ozonation could be the formation of C-centered radicals after ozone or OH radical attack. Subsequently, O2 addition forms unstable peroxyl radicals, which in one pathway loose superoxide radicals by generating a carbon-centered cation. Subsequent hydrolysis of the carbon-centered cation leads to formaldehyde, whereby ozonation of the N-hydroxy products can proceed in the same way and in addition give rise to hydroxylamine. A second pathway of the short-lived peroxyl radicals could be a dimerization to form short-lived tetraoxides, which cleave by forming hydrogen peroxide. All three products have been found.

  12. Formation and fate of chlorination by-products in reverse osmosis desalination systems.

    PubMed

    Agus, Eva; Sedlak, David L

    2010-03-01

    Chlorination by-products may be formed during pretreatment or posttreatment disinfection in reverse osmosis (RO) desalination systems, potentially posing health, aesthetic and ecological risks. To assess the formation and fate of by-products under different conditions likely to be encountered in desalination systems, trihalomethanes, dihaloacetonitriles, haloacetic acids, and bromophenols were analyzed in water samples from a pilot-scale seawater desalination plant with a chlorine pretreatment system and in benchscale experiments designed to simulate other feed water conditions. In the pilot plant, RO rejection performance as low as 55% was observed for neutral, low-molecular-weight by-products such as chloroform or bromochloroacetonitrile. Benchscale chlorination experiments, conducted on seawater from various locations indicated significant temporal and spatial variability for all by-products, which could not be explained by measured concentrations of organic carbon or bulk parameters such as SUVA(254). When desalinated water was blended with freshwater, elevated concentrations of bromide in the blended water resulted in dihaloacetonitrile concentrations that were higher than those expected from dilution. In most situations, the concentration of chlorination by-products formed from continuous chlorination of seawater or blending of desalinated water and freshwater will not compromise water quality or pose significant risks to aquatic ecosystems. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Gas, Water, and Oil Production from the Wasatch Formation, Greater Natural Buttes Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, Philip H.; Hoffman, Eric L.

    2009-01-01

    Gas, oil, and water production data were compiled from 38 wells with production commencing during the 1980s from the Wasatch Formation in the Greater Natural Buttes field, Uinta Basin, Utah. This study is one of a series of reports examining fluid production from tight gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. The general ranges of production rates after 2 years are 100-1,000 mscf/day for gas, 0.35-3.4 barrel per day for oil, and less than 1 barrel per day for water. The water:gas ratio ranges from 0.1 to10 barrel per million standard cubic feet, indicating that free water is produced along with water dissolved in gas in the reservoir. The oil:gas ratios are typical of a wet gas system. Neither gas nor water rates show dependence upon the number of perforations, although for low gas-flow rates there is some dependence upon the number of sandstone intervals that were perforated. Over a 5-year time span, gas and water may either increase or decrease in a given well, but the changes in production rate do not exhibit any dependence upon well proximity or well location.

  14. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.

    PubMed

    Gikanga, Benson; Roshan-Eisner, Devon; Ovadia, Robert; Day, Eric S; Stauch, Oliver Boris; Maa, Yuh-Fun

    2016-10-27

    Subvisible particle formation in monoclonal antibody (mAb) drug product resulting from mixing and filling operations represents a significant processing risk that can lead to filter fouling and thereby lead to process delays or failures. Several previous studies from our lab and others demonstrated the formation of subvisible particulates in mAb formulations resulting from mixing operations using some bottom-mounted mixers or stirrer bars. It was hypothesized that the stress (e.g. shear/cavitation) derived from tight clearance and/or close contact between the impeller and shaft was responsible for SvP generation. These studies, however, could not distinguish between the two surfaces without contact (tight clearance) or between two contacting surfaces (close contact). In the present study we expand on those findings and utilize small scale mixing models that are able to, for the first time, distinguish between tight clearances and tight contact. In this study we evaluated different mixer types including a top-mounted mixer, several impeller-based bottom-mounted mixers and a rotary piston pump. The impact of tight clearance/close contact on subvisible particle formation in at-scale mixing platforms was demonstrated in the gap between the impeller and drive unit as well as between the piston and the housing of the pump. Furthermore, small-scale mixing models based on different designs of magnetic stir bars which mimic the tight clearance/close contact of the manufacturing-scale mixers also induced subvisible particles in mAb formulations. Additional small-scale models which feature tight clearance but no close contact (grinding) suggested that it is the repeated grinding/contacting of the moving parts and not the presence of tight clearance in the processing equipment that is the root cause of SvP formation. When multiple mAbs, Fabs (fragment antigen binding) or non-antibody related proteins were mixed in the small-scale mixing model, for molecules investigated, it

  15. Formation of disinfection by-products: effect of temperature and kinetic modeling.

    PubMed

    Zhang, Xiao-lu; Yang, Hong-wei; Wang, Xiao-mao; Fu, Jing; Xie, Yuefeng F

    2013-01-01

    The temperature of drinking water fluctuates naturally in water distribution systems as well as often deliberately heated for household or public uses. In this study, the temperature effect on the formation of disinfection by-products (DBPs) was investigated by monitoring the temporal variations of twenty-one DBPs during the chlorination of a humic precursors-containing water at different temperatures. It was found that chloroform, DCAA, TCAA, DCAN and CH were detected at the considerable level of tens of μg L(-1). The three regulated DBPs (chloroform, DCAA and TCAA) were found increasing with both contact time and water temperature, while the five typical emerging DBPs (DCAN, CH, TCNM 1,1-DCPN and 1,1,1-TCPN) revealed the significant auto-decomposition in addition to the initial growth in the first few hours. Increasing water temperature could enhance the formation rates of all the eight detected DBPs and the decomposition rates of the five emerging DBPs. Further, a kinetic model was developed for the simulation of DBP formation. The validity and universality of the model were verified by its excellent correlation with the detected values of each DBP species at various temperatures. The formation rates of 1,1-DCPN and 1,1,1-TCPN, and the decomposition rate of 1,1,1-TCPN were faster as compared to the other DBPs. And the formation reaction activation energies of CH, DCAN and 1,1-DCPN were relatively large, indicating that their occurrence levels in the finished water were more susceptible to temperature variations.

  16. Creating deep soil core monoliths: Beyond the solum

    USDA-ARS?s Scientific Manuscript database

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  17. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  18. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  19. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  20. Electrochromic switching of monolithic Prussian blue thin film devices.

    PubMed

    Liu, Jianxi; Zhou, Wencai; Walheim, Stefan; Wang, Zhengbang; Lindemann, Peter; Heissler, Stefan; Liu, Jinxuan; Weidler, Peter G; Schimmel, Thomas; Wöll, Christof; Redel, Engelbert

    2015-06-01

    Monolithic, crystalline and highly oriented coordination network compound (CNC) Prussian blue (PB) thin films have been deposited though different routes on conductive substrates. Characterization of the monolithic thin films reveals a long-term stability, even after many redox cycles the crystallinity as well as the high orientation remain intact during the electrochromic switching process.

  1. Monolithic LTCC seal frame and lid

    SciTech Connect

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  2. Isolation of Bacterial Ribosomes with Monolith Chromatography

    PubMed Central

    Trauner, Andrej; Bennett, Mark H.; Williams, Huw D.

    2011-01-01

    We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology. PMID:21326610

  3. Effect of additives on mineral trioxide aggregate setting reaction product formation.

    PubMed

    Zapf, Angela M; Chedella, Sharath C V; Berzins, David W

    2015-01-01

    Mineral trioxide aggregate (MTA) sets via hydration of calcium silicates to yield calcium silicate hydrates and calcium hydroxide (Ca[OH]2). However, a drawback of MTA is its long setting time. Therefore, many additives have been suggested to reduce the setting time. The effect those additives have on setting reaction product formation has been ignored. The objective was to examine the effect additives have on MTA's setting time and setting reaction using differential scanning calorimetry (DSC). MTA powder was prepared with distilled water (control), phosphate buffered saline, 5% calcium chloride (CaCl2), 3% sodium hypochlorite (NaOCl), or lidocaine in a 3:1 mixture and placed in crucibles for DSC evaluation. The setting exothermic reactions were evaluated at 37°C for 8 hours to determine the setting time. Separate samples were stored and evaluated using dynamic DSC scans (37°C→640°C at10°C/min) at 1 day, 1 week, 1 month, and 3 months (n = 9/group/time). Dynamic DSC quantifies the reaction product formed from the amount of heat required to decompose it. Thermographic peaks were integrated to determine enthalpy, which was analyzed with analysis of variance/Tukey test (α = 0.05). Isothermal DSC identified 2 main exothermal peaks occurring at 44 ± 12 and 343 ± 57 minutes for the control. Only the CaCl2 additive was an accelerant, which was observed by a greater exothermic peak at 101 ± 11 minutes, indicating a decreased setting time. The dynamic DSC scans produced an endothermic peak around 450°C-550°C attributed to Ca(OH)2 decomposition. The use of a few additives (NaOCl and lidocaine) resulted in significantly less Ca(OH)2 product formation. DSC was used to discriminate calcium hydroxide formation in MTA mixed with various additives and showed NaOCl and lidocaine are detrimental to MTA reaction product formation, whereas CaCl2 accelerated the reaction. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  5. High density monolithic packaging technology for digital/microwave avionics

    NASA Astrophysics Data System (ADS)

    Fertig, Timothy; Walter, Theresa; Gaver, Eric; Leahy, Kevin

    1994-10-01

    There has been a need for generic technologies and common approaches in design, development, and manufacturing of military and commercial products. This need is more pronounced and pressing today than ever before. With the objective to dramatically enhance avionics reliability, maintainability and availability (RM&A), an integrated, generic technology for packaging, cooling, and interconnection of high density and high performance circuits was developed. It is named High Density Monolithic Packaging (HDMP). Under the sponsorship of Wright Laboratory, a two-part complementary program (1990-1994), named Advanced Radio-Frequency Packaging/ARFP was contracted to Westinghouse. Under the ARFP program, the HDMP technology is being applied and its promising capability is being assessed for its ability to reduce the low power RF avionics life-cycle cost. Being better than half way through the program, the results and projections have been extremely promising. The technology assessment is approximately 50 percent complete and initial results have been extremely successful. Although the focus of the development effort has been on RF subsystems, the basic elements of HDMP technology have applications beyond RF/microwave subsystems. As digital processing speeds increase, RF/microwave design techniques must be applied to maintain high speed digital signal integrity. The basic elements of the HDMP technology are: low temperature co-fired ceramic (LTCC), solderless interconnects, multichip modules (MCM's), and composite heatsink materials. The key technology element, in this avionics availability enabling technology, is LTCC. LTCC material technology is a monolithic multilayered ceramic and conductor/metallization structure used as a substrate to support dense co-habitation of high density electronic circuits, their interconnections, and the electromechanical integrity of the integrated constituents.

  6. Synthesis of Porous Carbon Monoliths Using Hard Templates

    PubMed Central

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-01-01

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m2·g−1. The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions. PMID:28773338

  7. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    SciTech Connect

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated.

  8. Isomer-specific product formation in the proton transfer reaction of HOCO+ with CO

    NASA Astrophysics Data System (ADS)

    Carrascosa, Eduardo; Stei, Martin; Kainz, Martin A.; Wester, Roland

    2015-12-01

    The proton transfer reaction HOCO++CO → HCO+/HOC+ has been studied using crossed-beam velocity map imaging. Angular and energy differential cross sections were obtained for collision energies from 0.3 to 2.3 eV. Scattering in forward direction together with a prominent scattering angle-dependent internal excitation is found at all collision energies. The exothermic HCO+ product appears to be very dominant even at energies above the energy threshold for the formation of metastable HOC+ ion. To determine the HOC+ contribution for different angular ranges, a model has been developed. We obtain an upper limit for the HOC+ product isomer fraction of <2%. In theoretical calculations, we find the CO2-catalysed isomerisation channel to be energetically accessible. However, it may not have a strong impact on the isomer ratio. Chemical dynamics simulations are needed to shed more light on this question.

  9. The formation of disinfection by-products in water treated with chlorine dioxide.

    PubMed

    Chang, C Y; Hsieh, Y H; Hsu, S S; Hu, P Y; Wang, K H

    2000-12-01

    In this study, chlorine dioxide (ClO(2)) was used as an alternative disinfection agent with humic acid as the organic precursor in a natural aquatic environment. The major topics in this investigation consisted of the disinfection efficiency of ClO(2), the formation of disinfection by-products (DBPs), and the operating conditions. The results indicated that the pH value (pH 5-9) did not affect the efficiency of disinfection while the concentration of organic precursors did. The primary DBPs formed were trihalomethanes (THMs) and haloacetic acids (HAAs). The distribution of the individual species was a function of the bromide content. The higher the ClO(2) dosage, the lower the amount of DBPs produced. The amount of DBPs increased with reaction time, with chlorite ions as the primary inorganic by-product.

  10. Rapid isolation of omega-3 long-chain polyunsaturated fatty acids using monolithic high performance liquid chromatography columns.

    PubMed

    Fagan, Peter; Wijesundera, Chakra

    2013-06-01

    Eicosapentaenoic and docosahexaenoic acids are important bio-active fatty acids in fish oils. Monolithic HPLC columns both in the polymeric cation exchange (silver-ion) and RP formats were compared with corresponding packed columns for the isolation of these acids from tuna oil ethyl esters. Monolithic columns in both formats enabled rapid (typically 5-10 min) separations compared with packed columns (30 min). Polymeric monolithic silver-ion disc column rapidly furnished mixtures of eicosapentaenoic and docosahexaenoic esters (90% purity) within 5-10 min, but was unable to resolve individual esters. A preparative version of the same column (80 mL bed volume) enabled isolation (>88% purity) of 100 mg quantities of eicosapentaenoic and docosahexaenoic esters from esterified tuna oil within 6 min. Baseline separation of eicosapentaenoic and docosahexaenoic esters was achieved on all RP columns. The results show that there is potential to use polymeric monolithic cation exchange columns for scaled-up preparation of eicosapentaenoic and docosahexaenoic ester concentrates from fish oils. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Liu, Yan; Chen, Shulin

    Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.

  12. [Formation Mechanism of the Disinfection By-product 1, 1-Dichloroacetone in Drinking Water].

    PubMed

    Ding, Chun-sheng; Meng, Zhuang; Xu, Yang-yang; Miao, Jia

    2015-05-01

    A novel method using methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of the disinfection by-producs 1,1-dichloroacetone (DCAce) by gas chromatography mass spectrometry (GC-MS) was described. The formation process of DCAce and its influencing factors were discussed with L-leucine as the precursor during the chloramination process. The results indicated that the DCAce production increased with the increase of chloramine dosage when the chloramine addition was in the range of 5-30 mg · L(-1). The DCAce amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the DCAce amount reduced with the increase of pH value. Temperature was another important factor that affected the DCAce formation from methylamine especially in the range of 15-35°C , and the higher the temperature, the more the DCAce produced. The formation process of DCAce from L-leucine by chloramine consisted of a series of complicated reactions, including substitution, oxidation, bond breaking, amino diazotization, reduction and so on, and eventually DCAce was formed.

  13. Impact of groundwater surface storage on chlorination and disinfection by-product formation.

    PubMed

    Padhi, R K; Satpathy, K K; Subramanian, S

    2015-09-01

    The change in water quality arising from the open storage of groundwater (GW) and its impact on chlorination and chlorination by-product formation were investigated. Water quality descriptors, such as temperature, pH, chlorophyll, and dissolved oxygen contents of GW undergo substantial alteration when stored in a reservoir. Dissolved organic content (DOC) measured in the two water sources studied, i.e., GW and open reservoir water (RW), varied from 0.41 mg/L to 0.95 mg/L and 0.93 mg/L to 2.53 mg/L, respectively. Although DOC demonstrated wide variation, UV absorbance at 254 nm (UVA254) values for GW (0.022-0.067) and RW (0.037-0.077) did not display reciprocal variations. The chlorine demand (CD) of RW was always higher than that of GW for the corresponding sampling period. Average trihalomethane (THM) formation for RW was 50-80% higher compared to GW and thus poses an enhanced health risk. Appreciable amounts of bromide present in these water sources (0.15-0.26 mg/L in GW and 0.17-0.65 mg/L in RW) have resulted in the non-selective distribution of the four THM species. The formation of more toxic brominated THM due to chlorination of these near-coast drinking water sources must be regarded as a decisive factor for the choice of water disinfection regime.

  14. Inhibitory effect of leonurine on the formation of advanced glycation end products.

    PubMed

    Huang, Lianqi; Yang, Xin; Peng, Anlin; Wang, Hui; Lei, Xiang; Zheng, Ling; Huang, Kun

    2015-02-01

    Long-term hyperglycemia is a typical symptom of diabetes mellitus (DM) which can cause a high level of protein glycation and lead to the formation of advanced glycation end products (AGEs). The accumulation of AGEs in turn deteriorates DM and its complications. Insulin, the only hormone that directly decreases blood sugar in vivo, is vulnerable to glycation which causes the loss of its biological activity. In this study, we used a porcine insulin (PI)-methylglyoxal (MGO) model to investigate the inhibitory effect of leonurine (LN), a natural alkaloid extracted from Herba leonuri, on AGE formation. Assays including AGE-specific fluorescence, and fructosamine level and carbonyl group content determination showed that LN can dose-dependently suppress PI glycation. A significantly decreased cross-linking level on the glycated PI was also proven by SDS-PAGE electrophoresis. A further liquid chromatography-mass spectrometry study suggested that LN may inhibit PI glycation through trapping MGO and keeping it from reacting with PI. Our results thus indicate that LN is a promising anti-glycation agent for the prevention of diabetes and its complications via inhibiting AGE formation.

  15. Inhibition of the formation of oral calcium phosphate precipitates: the possible effects of certain honeybee products.

    PubMed

    Hidaka, S; Okamoto, Y; Ishiyama, K; Hashimoto, K

    2008-08-01

    We studied the effects of honeybee products on the in vitro formation of calcium phosphate precipitates. Screening tests of the in vitro formation of calcium phosphate precipitates using 20 types of honey and four types of propolis were carried out using the pH drop method. The inhibitory effect on the rate of amorphous calcium phosphate transformation to hydroxyapatite and on the induction time varied greatly among the 20 types of honey and four types of propolis. We classified them according to their effects on decreasing the rate of amorphous calcium phosphate transformation to hydroxyapatite and/or increasing the induction time. Two of the 20 honeys showed little or no inhibition, either on the rate of amorphous calcium phosphate transformation to hydroxyapatite or on the induction time. Six of the honeys reduced the rate of amorphous calcium phosphate transformation to hydroxyapatite by 12-35% and with a 2.5- to 4.4-fold increase in the induction time. The remaining 12 honeys showed even greater activity. Because four of these 12 honeys had an inhibitory effect on the rate of amorphous calcium phosphate formation, they were excluded as candidates for anticalculus agents. Furthermore, three of the four types of propolis showed an inhibitory effect that was the same as or greater than 1-hydroxyethylidene- 1,1-bisphosphonate. These results suggest that eight honeys and three types of propolis may have potential as anticalculus agents in toothpastes and mouthwashes.

  16. Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs.

    PubMed

    Uyak, Vedat; Ozdemir, Kadir; Toroz, Ismail

    2007-06-01

    Oxidation of raw water with chlorine results in formation of trihalomethanes (THM) and haloacetic acids (HAA). Factors affecting their concentrations have been found to be organic matter type and concentration, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with water reservoirs from Terkos, Buyukcekmece and Omerli lakes, Istanbul, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, contact time, chlorine dose, and specific ultraviolet absorbance (SUVA). The determination of disinfection by-products (DBP) was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total THM and total HAA based on the use of pH, contact time, chlorine dose, and SUVA. The developed models provided satisfactory estimations of the concentrations of the DBP and the model regression coefficients of THM and HAA are 0.88 and 0.61, respectively. Further, the Durbin-Watson values confirm the reliability of the two models. The results indicate that under these experimental conditions which indicate the variations of pH, chlorine dosages, contact time, and SUVA values, the formation of THM and HAA in water can be described by the multiple linear regression technique.

  17. [Influence of slime production and adhesion of Candida sp. on biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Smolak, Przemysław; Wróblewska, Joanna; Gospodarek, Eugenia

    2011-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.

  18. Effects of encapsulation of microorganisms on product formation during microbial fermentations.

    PubMed

    Westman, Johan O; Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J

    2012-12-01

    This paper reviews the latest developments in microbial products by encapsulated microorganisms in a liquid core surrounded by natural or synthetic membranes. Cells can be encapsulated in one or several steps using liquid droplet formation, pregel dissolving, coacervation, and interfacial polymerization. The use of encapsulated yeast and bacteria for fermentative production of ethanol, lactic acid, biogas, L-phenylacetylcarbinol, 1,3-propanediol, and riboflavin has been investigated. Encapsulated cells have furthermore been used for the biocatalytic conversion of chemicals. Fermentation, using encapsulated cells, offers various advantages compared to traditional cultivations, e.g., higher cell density, faster fermentation, improved tolerance of the cells to toxic media and high temperatures, and selective exclusion of toxic hydrophobic substances. However, mass transfer through the capsule membrane as well as the robustness of the capsules still challenge the utilization of encapsulated cells. The history and the current state of applying microbial encapsulation for production processes, along with the benefits and drawbacks concerning productivity and general physiology of the encapsulated cells, are discussed.

  19. Shading of colours in production of ceramic wares - reasons of formation

    NASA Astrophysics Data System (ADS)

    Partyka, J.; Lis, J.; Szwendke, P.; Wójczyk, M.

    2011-10-01

    One of the most important problems we have to deal with in the ceramic whiteware production is maintaining the stable tonality of colour of the glazes and the decoration of the ceramic products. This difficulties are especially significant for the large batches of production like for example the ceramic titles. The manufacturing of the one assortment for a few days requires the multiple preparation of the glazes and decorative materials. Similar problems occur during the renewing of the production of the given assortment after a longer period of time. The presented paper shows the results of the research covering this topics carried on in The Department of The Ceramic Technology on the AGH Krakow Poland. It is presented the kinds of the factors that can influence the formation of the shadings of coloured glazes: way of mixing of the glaze with stains, time of the mixing and the firing curves. The obtained results of the colour differences ΔE00, calculated from the "Cie L a b" measurements shows that the most important factor that influences the arising of the colour shading is the change of the firing condition and the sequence of the homogenization as the second important.

  20. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products.

    PubMed

    Frankel, E N; Neff, W E; Brooks, D D; Fujimoto, K

    1987-06-23

    To clarify the mechanism of fluorescence formation between DNA and lipid degradation products in the presence of ferric chloride and ascorbic acid, a number of carbonyl compounds and decomposition products of pure methyl linolenate hydroperoxides were examined. Keto derivatives of methyl ricinoleate, linoleate, and oleate, alkanals and 2-alkenals produced little or no fluorescence with DNA in the presence of ferric chloride-ascorbic acid. 2,4-Alkadienals were more active and 2,4,7-decatrienal was the most active. Mixtures of volatile aldehydes prepared from linolenate hydroperoxide decomposed either thermally or with iron and ascorbate had the same activity as 2,4,7-decatrienal. Higher molecular-weight products from the decomposition of methyl linolenate hydroperoxides showed relatively low activity. beta-Carotene, alpha-tocopherol and other antioxidants effectively reduced the amount of fluorescence formed by linolenate hydroperoxides. The results suggest that, in addition to hydroperoxide decomposition products, singlet oxygen and/or free radical species contribute significantly to the fluorescence formed from the interaction of methyl linolenate hydroperoxides with DNA in the presence of ferric chloride and ascorbic acid.

  1. Triclosan removal from surface water by ozonation - Kinetics and by-products formation.

    PubMed

    Orhon, Kemal B; Orhon, Aybala Koc; Dilek, Filiz B; Yetis, Ulku

    2017-09-11

    Removal of triclosan from surface water by ozonation was investigated. The results showed that complete elimination of triclosan from a surface water bearing 1-5 mg/L triclosan via continuous ozonation at 5 mg/L, require an ozonation time of 20-30 min depending on pH. Triclosan oxidation followed pseudo-first order kinetics with an apparent reaction rate constant varying from 0.214 min(-1) to 0.964 min(-1) depending on pH, initial triclosan concentration and water composition. Although the effect of pH was complex due to possible existence of different moieties, higher TCS removal efficiencies were obvious at weak-base conditions. Experiments performed to identify degradation by-products showed the formation of four by-products, namely, 2,4-dichlorophenol, 4-chlorocatechol and two unidentified compounds. Additionally, 2,4-dichloroanisole was detected when a methyl moieties exist in water. By-products were found to be eliminated upon further ozonation. The required exposure time varied from 20 to 30 min depending on pH of water. The ozone demand exerted for the complete oxidation of triclosan and its by-products was calculated as 13.04 mg ozone per mg of triclosan. A triclosan degradation pathway, which was found to be highly pH dependent, was proposed. Copyright © 2017. Published by Elsevier Ltd.

  2. Formaldehyde Reactions with Amines and Ammonia: Particle Formation and Product Identification

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Millage, K. D.; Rodriguez, A.; Sedehi, N.; Powelson, M. H.; De Haan, D. O.

    2012-12-01

    Aqueous phase reactions between carbonyls and amines or ammonium salts have recently been implicated in secondary organic aerosol and brown carbon formation processes. Formaldehyde is ubiquitous in the atmosphere, and is present in both the gas and aqueous phases. However, the reactions of formaldehyde in the aqueous phase have not been completely characterized. This study aims to determine the interactions between formaldehyde and amines or ammonium salts present in atmospheric droplets. Bulk phase reactions of formaldehyde with these reactive nitrogen-containing compounds were monitored with ESI-MS and NMR to determine reaction kinetics and for product characterization, while UV-Vis spectroscopy was used to monitor changes in light absorption over time. Hexamethylenetetramine was found to be a major product of the formaldehyde/ammonium sulfate reaction, appearing within minutes of mixing. No products were formed that absorbed light beyond 225 nm. Mono-disperse particles containing mixtures of formaldehyde and ammonium sulfate or an amine were dried and analyzed via SMPS to determine the non-volatile fraction of the reaction products. Similarly, aqueous droplets were dried in a humid atmosphere to determine residual aerosol sizes over time as a function of formaldehyde concentration. This work indicates that formaldehyde plays a key role in aqueous-phase organic processing, as it has been observed to contribute to both an increase and reduction in the diameter and volume of residual aerosol particles.

  3. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Enggrob, K. L.; King, S. M.; Worton, D. R.; Platt, S. M.; Mortensen, R.; Rosenoern, T.; Surratt, J. D.; Bilde, M.; Goldstein, A. H.; Glasius, M.

    2013-04-01

    The formation of carboxylic acids and dimer esters from α-pinene oxidation was investigated in a smog chamber and in ambient aerosol samples collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). Chamber experiments of α-pinene ozonolysis in dry air and at low NOx concentrations demonstrated formation of two dimer esters, pinyl-diaterpenyl (MW 358) and pinonyl-pinyl dimer ester (MW 368), under both low- and high-temperature conditions. Concentration levels of the pinyl-diaterpenyl dimer ester were lower than the assumed first-generation oxidation products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural precursors. However, the sampling time resolution precluded conclusive evidence regarding formation from gas- or particle-phase processes. CCN activities of the particles formed in the smog chamber displayed a modest variation during the course of experiments, with κ values in the range 0.06-0.09 (derived at a supersaturation of 0.19%). The pinyl-diaterpenyl dimer ester was also observed in ambient aerosol samples collected above a ponderosa pine forest in the Sierra Nevada Mountains of California during two seasonally distinct field campaigns in September 2007 and July 2009. The pinonyl-pinyl ester was observed for the first time in ambient air during the 2009 campaign, and although present at much lower concentrations, it was correlated with the abundance of the pinyl-diaterpenyl ester, suggesting similarities in their formation. The maximum concentration of the pinyl-diaterpenyl ester was almost 10 times higher during the warmer 2009 campaign relative to 2007, while the concentration of cis-pinic acid was approximately the same during both periods, and lack of correlation with levels of

  4. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Zhu, Mingqiu; Zhu, Shumin

    2014-06-01

    Bench scale tests were conducted to study the effect of chlorine dioxide (ClO2) oxidation on cell integrity, toxin degradation and disinfection by-product formation of Microcystis aeruginosa. The simulated cyanobacterial suspension was prepared at a concentration of 1.0×10(6)cells/mL and the cell integrity was measured with flow cytometry. Results indicated that ClO2 can inhibit the photosynthetic capacity of M. aeruginosa cells and almost no integral cells were left after oxidation at a ClO2 dose of 1.0mg/L. The total toxin was degraded more rapidly with the ClO2 dosage increasing from 0.1mg/L to 1.0mg/L. Moreover, the damage on cell structure after oxidation resulted in released intracellular organic matter, which contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) as disinfection by-products. Therefore, the use of ClO2 as an oxidant for treating algal-rich water should be carefully considered.

  5. The enamel matrix derivative (Emdogain) enhances human tongue carcinoma cells gelatinase production, migration and metastasis formation.

    PubMed

    Laaksonen, Matti; Suojanen, Juho; Nurmenniemi, Sini; Läärä, Esa; Sorsa, Timo; Salo, Tuula

    2008-08-01

    Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment to regenerate lost connective tissue and to improve the attachment of the teeth. Gelatinases (MMP-2 and -9) have an essential role in the promotion and progression of oral cancer growth and metastasis formation. We studied the effects of EMD on human tongue squamous cell carcinoma (HSC-3) cells in vitro and in vivo. In vitro, EMD (100 microg/ml and 200 microg/ml) remarkably induced the MMP-2 and -9 production from HSC-3 cells analysed by zymography and enzyme-linked immunosorbent assay. EMD also slightly induced the MMP-2 and -9 production from benign human mucosal keratinocytes (HMK). Furthermore, EMD clearly induced the transmigration of HSC-3 cells but had no effect on the HMK migration in transwell assays. The in vitro wound closure of HSC-3 cells was notably accelerated by EMD, whereas it had only minor effect on the wound closure of HMKs. The migration of both cell lines was inhibited by a selective cyclic anti-gelatinolytic peptide CTT-2. EMD had no effect on HSC-3 cell proliferation or apoptosis and only a limited effect on cell attachment to various extracellular matrix components. The in vivo mice experiment revealed that EMD substantially induced HSC-3 xenograft metastasis formation. Our results suggest that the use of EMD for patients with oral mucosal carcinomas or premalignant lesions should be carefully considered, possibly avoided.

  6. Ionic liquid effects on a multistep process. Increased product formation due to enhancement of all steps.

    PubMed

    Keaveney, Sinead T; Haines, Ronald S; Harper, Jason B

    2015-09-07

    The reaction of a series of substituted benzaldehydes with hexylamine was examined in acetonitrile and an ionic liquid. In acetonitrile, as the electron withdrawing nature of the substituent increases, the overall addition-elimination process becomes faster as does the build-up of the aminol intermediate. Under equivalent conditions in an ionic liquid, less intermediate build up is observed, and the effect on the rate on varying the substituent is different to that in acetonitrile. Extensive kinetic analysis shows that the ionic liquid solvent increases the rate constant of all steps of the reaction, resulting in faster product formation relative to acetonitrile; these effects increase with the proportion of ionic liquid in the reaction mixture. Differences in the equilibrium position of the addition step in the ionic liquid were found to account for both the decrease in intermediate build up relative to acetonitrile, as well as the differing trend in the overall rate of product formation as the substituent was changed. The microscopic origins of these ionic liquid effects were probed through temperature dependent analyses, highlighting the subtle balance of interactions between the ionic liquid and species along the reaction coordinate, particularly the importance of charge development in the transition state.

  7. Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes established biofilm in Propionibacterium acnes.

    PubMed

    Wunnoo, Suttiwan; Saising, Jongkon; Voravuthikunchai, Supayang Piyawan

    2017-02-01

    Virulence enzymes and biofilm a play crucial role in the pathogenesis of Propionibacterium acnes, a major causative agent of acne vulgaris. In the present study, the effects of rhodomyrtone, a pure compound identified from Rhodomyrtus tomentosa (Aiton) Hassk. leaves extract against enzyme production and biofilm formation production by 5 clinical isolates and a reference strain were evaluated. The degree of hydrolysis by both lipase and protease enzymes significantly decreased upon treatment with the compound at 0.125-0.25 μg/mL (p < 0.05). Lipolytic zones significantly reduced in all isolates while decrease in proteolytic activities was found only in 50% of the isolates. Rhodomyrtone at 1/16MIC and 1/8MIC caused significant reduction in biofilm formation of the clinical isolates (p < 0.05). Percentage viability of P. acnes within mature biofilm upon treated with the compound at 4MIC and 8MIC ranged between 40% and 85%. Pronounced properties of rhodomyrtone suggest a path towards developing a novel anti-acne agent.

  8. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Deng, Yang; Templeton, Michael R; Yin, Daqiang

    2011-12-01

    The formation of disinfection by-products (DBPs), including both nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs), was investigated by analyzing chlorinated water samples following the application of three pretreatment processes: (i) powdered activated carbon (PAC) adsorption; (ii) KMnO(4) oxidation and (iii) biological contact oxidation (BCO), coupled with conventional water treatment processes. PAC adsorption can remove effectively the precursors of chloroform (42.7%), dichloroacetonitrile (28.6%), dichloroacetamide (DCAcAm) (27.2%) and trichloronitromethane (35.7%), which were higher than that pretreated by KMnO(4) oxidation and/or BCO process. The removal efficiency of dissolved organic carbon by BCO process (76.5%)--was superior to that by PAC adsorption (69.9%) and KMnO(4) oxidation (61.4%). However, BCO increased the dissolved organic nitrogen (DON) concentration which caused more N-DBPs to be formed during subsequent chlorination. Soluble microbial products including numerous DON compounds were produced in the BCO process and were observed to play an essential role in the formation of DCAcAm in particular.

  9. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.

    PubMed

    Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G

    2013-08-01

    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.

  10. Inhibitory effects of hydroxysafflor yellow A on the formation of advanced glycation end products in vitro.

    PubMed

    Ni, Zhenzhen; Zhuge, Zhengbing; Li, Wenlu; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin

    2012-01-01

    To investigate the inhibitory effects of hydroxysafflor yellow A (HSYA) on the protein glycation in vitro. Using bovine serum albumin (BSA)-glucose assay, BSA-methylglyoxal (MGO) assay, and N-acetylglycyl-lysine methyl ester (G.K.) peptide-ribose assay, inhibitory effects of HSYA were investigated. Advanced glycation end products (AGEs) production was assessed by AGEs-specific fluorescence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In BSA-glucose assay, HSYA concentration dependently decreased AGEs formation, with maximum inhibitory effects at 1 mM by 95%. Further more, HSYA also showed significant inhibitory effects on MGO-medicated protein modification and subsequent cross-linking of proteins. Finally, when co-incubated with G.K. peptide and ribose, HSYA exhibited its antiglycation effects, and the maximum inhibitory effects of HSYA at 1 mM were 84%. Overall, our present study provides the first evidence of the antiglycation effects of HSYA on AGEs formation in vitro.

  11. Peptidylarginine Deiminase Inhibitor Suppresses Neutrophil Extracellular Trap Formation and MPO-ANCA Production

    PubMed Central

    Kusunoki, Yoshihiro; Nakazawa, Daigo; Shida, Haruki; Hattanda, Fumihiko; Miyoshi, Arina; Masuda, Sakiko; Nishio, Saori; Tomaru, Utano; Atsumi, Tatsuya; Ishizu, Akihiro

    2016-01-01

    Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis is a systemic small-vessel vasculitis, wherein, MPO-ANCA plays a critical role in the pathogenesis. Neutrophil extracellular traps (NETs) released from activated neutrophils are composed of extracellular web-like DNA and antimicrobial proteins, including MPO. Diverse stimuli, such as phorbol myristate acetate (PMA) and ligands of toll-like receptors (TLR), induce NETs. Although TLR-mediated NET formation can occur with preservation of living neutrophilic functions (called vital NETosis), PMA-stimulated neutrophils undergo cell death with NET formation (called suicidal NETosis). In the process of suicidal NETosis, histones are citrullinated by peptidylarginine deiminase 4 (PAD4). Since this step is necessary for decondensation of DNA, PAD4 plays a pivotal role in suicidal NETosis. Although NETs are essential for elimination of microorganisms, excessive formation of NETs has been suggested to be implicated in MPO-ANCA production. This study aimed to determine if pan-PAD inhibitors could suppress MPO-ANCA production in vivo. At first, NETs were induced in peripheral blood neutrophils derived from healthy donors (1 × 106/ml) by stimulation with 20 nM PMA with or without 20 μM propylthiouracil (PTU), an anti-thyroid drug. We then determined that the in vitro NET formation was inhibited completely by 200 μM Cl-amidine, a pan-PAD inhibitor. Next, we established mouse models with MPO-ANCA production. BALB/c mice were given intraperitoneal (i.p.) injection of PMA (50 ng at days 0 and 7) and oral PTU (2.5 mg/day) for 2 weeks. These mice were divided into two groups; the first group was given daily i.p. injection of PBS (200 μl/day) (n = 13) and the other group with daily i.p. injection of Cl-amidine (0.3 mg/200 μl PBS/day) (n = 7). Two weeks later, citrullination as an indicator of NET formation in the peritoneum and serum MPO-ANCA titer was compared

  12. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  13. Large area monolithic organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Tao, Cheng; Hambsch, Mike; Pivrikas, Almantas; Velusamy, Marappan; Aljada, Muhsen; Zhang, Yuliang; Burn, Paul L.; Meredith, Paul

    2012-11-01

    Although efficiencies of > 10% have recently been achieved in laboratory-scale organic solar cells, these competitive performance figures are yet to be translated to large active areas and geometries relevant for viable manufacturing. One of the factors hindering scale-up is a lack of knowledge of device physics at the sub-module level, particularly cell architecture, electrode geometry and current collection pathways. A more in depth understanding of how photocurrent and photovoltage extraction can be optimised over large active areas is urgently needed. Another key factor suppressing conversion efficiencies in large area cells is the relatively high sheet resistance of the transparent conducting anode - typically indium tin oxide. Hence, to replace ITO with alternative transparent conducting anodes is also a high priority on the pathway to viable module-level organic solar cells. In our paper we will focus on large area devices relevant to sub-module scales - 5 cm × 5 cm monolithic geometry. We have applied a range of experimental techniques to create a more comprehensive understanding of the true device physics that could help make large area, monolithic organic solar cells more viable. By employing this knowledge, a novel transparent anode consisting of molybdenum oxide (MoOx) and silver (Ag) is developed to replace ITO and PEDOT-free large area solar cell sub-modules, acting as both a transparent window and hole-collecting electrode. The proposed architecture and anode materials are well suited to high throughput, low cost all-solution processing.

  14. Catastrophic failure of a monolithic zirconia prosthesis.

    PubMed

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis.

  15. Monolithic columns in plant proteomics and metabolomics.

    PubMed

    Rigobello-Masini, Marilda; Penteado, José Carlos Pires; Masini, Jorge Cesar

    2013-03-01

    Since "omics" techniques emerged, plant studies, from biochemistry to ecology, have become more comprehensive. Plant proteomics and metabolomics enable the construction of databases that, with the help of genomics and informatics, show the data obtained as a system. Thus, all the constituents of the system can be seen with their interactions in both space and time. For instance, perturbations in a plant ecosystem as a consequence of application of herbicides or exposure to pollutants can be predicted by using information gathered from these databases. Analytical chemistry has been involved in this scientific evolution. Proteomics and metabolomics are emerging fields that require separation, identification, and quantification of proteins, peptides, and small molecules of metabolites in complex biological samples. The success of this work relies on efficient chromatographic and electrophoretic techniques, and on mass spectrometric detection. This paper reviews recent developments in the use of monolithic columns, focusing on their applications in "top-down" and "bottom-up" approaches, including their use as supports for immobilization of proteolytic enzymes and their use in two-dimensional and multidimensional chromatography. Whereas polymeric columns have been predominantly used for separation of proteins and polypeptides, silica-based monoliths have been more extensively used for separation of small molecules of metabolites. Representative applications in proteomics and in analysis of plant metabolites are given and summarized in tables.

  16. Histamine Formation in a Dry Salted Twaite Shad ( Alosa fallax lacustris ) Product.

    PubMed

    Vasconi, Mauro; Bellagamba, Federica; Bernardi, Cristian; Martino, Piera Anna; Moretti, Vittorio Maria

    2017-01-01

    Landlocked shad is a freshwater clupeid fish ( Alosa fallax lacustris ) whose consumption is associated with the risk of scombrotoxin poisoning. Traditionally, fresh shad are subjected to an artisanal processing procedure, consisting of dry salting and maturation under pressure, to give a fish product named missoltino , which is stored in large metallic barrels and is sold to local consumers and restaurants. In recent years, the introduction of modern food packaging technologies has enabled this product to also be distributed in shops and supermarkets. Consequently, the determination of the safety of this product is an urgent issue. The aims of the present research were to measure histamine levels and histamine-forming bacteria in shad products collected at different phases of preparation and ripening, in order to minimize poison hazards, to provide technical information about risk, and to standardize the production process. One hundred twenty-six samples of shad (21 fresh fish and 105 dried) at different phases of preparation and ripening were collected from seven producers and were analyzed for chemical composition, histamine content, and microbiological properties. After 130 days of ripening, samples from three producers presented unacceptable amounts of histamine (>200 mg/kg), according to European Union legislation. A moderate negative correlation was found between histamine levels and salt content (r =-0.504, P < 0.01) and between histamine levels and water phase salt content (r =-0.415, P < 0.01). Several bacterial strains that were positive on Niven's medium were isolated during the early phases of production, whereas the extreme environment of salted shad at the end of ripening led to a drastic decrease of bacteria, but not of histamine. The most effective preventive measures for histamine formation and accumulation in salted shad were strictly related to fish handling and storage conditions during processing.

  17. Formation of halogenated by-products of parabens in chlorinated water.

    PubMed

    Canosa, P; Rodríguez, I; Rubí, E; Negreira, N; Cela, R

    2006-08-04

    Chemical transformations of four alkyl esters of p-hydroxybenzoic acid, parabens, in chlorinated water samples are investigated. Quantification of the parent species and identification of their reaction by-products were performed using gas chromatography in combination with mass spectrometry. Experiments were accomplished considering free chlorine and paraben concentrations at the mg L(-1) and microg L(-1) level, respectively. Concentration of water samples, using solid-phase extraction, and silylation of the target species were carried out in order to improve the detectability of parent species and their possible transformation products, achieving quantification limits at the low ng L(-1) level. Under employed experimental conditions, the decrease in the concentrations of parabens followed pseudo-first-order kinetics. Half-lives values obtained for model ultrapure water solutions were in good agreement with those observed in tap water samples. For the first type of sample, only two by-products were detected for each paraben. They corresponded to chlorination of the aromatic ring in one or two carbons situated in ortho-positions to the hydroxyl group. Both species were also generated after the addition of parabens to chlorinated tap water. Moreover, three new transformation products were noticed for each parent compound. They were identified as bromo- and bromochloro-parabens, formed due to the existence of traces of bromide in tap water sources. Experiments carried out by mixing paraben-containing personal care products with tap water, containing free chlorine, confirmed the formation of all above described halogenated by-products. In addition, the presence of the di-chlorinated forms of methyl and propyl paraben has been detected for first time in raw sewage water samples.

  18. Effect of magnetic ion exchange and ozonation on disinfection by-product formation.

    PubMed

    Kingsbury, Ryan S; Singer, Philip C

    2013-03-01

    The purpose of this research was to investigate the performance of treatment with magnetic ion exchange (MIEX) resin followed by ozonation in achieving disinfection goals while controlling bromate and chlorinated disinfection by-product (DBP) formation. Three water samples were collected from raw water supplies impacted by the San Francisco Bay Delta to represent the varying levels of bromide and total organic carbon (TOC) that occur throughout the year. A fourth water was prepared by spiking bromide into a portion of one of the samples. Samples of each water were pre-treated with alum or virgin MIEX resin, and the raw and treated waters were subsequently ozonated under semi-batch conditions to assess the impact of treatment on ozone demand, ozone exposure for disinfection ("CT"), and bromate formation. Finally, aliquots of raw, coagulated, resin-treated, and ozonated waters were chlorinated in order to measure trihalomethane formation potential (THMFP). In the waters studied, MIEX resin removed 41-68% of raw water TOC, compared to 12-44% for alum. MIEX resin also reduced the bromide concentration by 20-50%. The removal of TOC by alum and MIEX resin significantly reduced the ozone demand of all waters studied, resulting in higher dissolved ozone concentrations and CT values for a given amount of ozone transferred into solution. For a given level of disinfection (CT), the amount of bromate produced by ozonation of MIEX-treated waters was similar to or slightly less than that of raw water and significantly less than that of alum-treated water. MIEX resin removed 39-85% of THMFP compared to 16-56% removal by alum. Ozonation reduced THMFP by 35-45% in all cases. This work indicates that in bromide-rich waters in which ozone disinfection is used, MIEX resin is a more appropriate treatment than alum for the removal of organic carbon, as it achieves superior TOC and THM precursor removal and decreases the production of bromate from ozone.

  19. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    PubMed

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  20. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice

    PubMed Central

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G.; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I.

    2003-01-01

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 ± 21 versus 47 ± 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation. PMID:12805564

  1. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice.

    PubMed

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I

    2003-07-08

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.

  2. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    PubMed Central

    Smeltink, M. W.; Straathof, A. J. J.; Paasman, M. A.; van de Sandt, E. J. A. X.; Kapteijn, F.; Moulijn, J. A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l−1 PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml−1 gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml−1 gel. The observed volumetric reaction rate in the MLR was 0.79 mol s−1 m−3monolith. Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s−1 m−3catalyst), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different

  3. Association of translation factor eEF1A with defective ribosomal products generates a signal for aggresome formation.

    PubMed

    Meriin, Anatoli B; Zaarur, Nava; Sherman, Michael Y

    2012-06-01

    Aggresome formation is initiated upon proteasome failure, and facilitates autophagic clearance of protein aggregates to protect cells from proteotoxicity. Here we demonstrate that proteasome inhibition generates a signaling event to trigger aggresome formation. In aggresome signaling, the cell senses a build-up of aberrant newly synthesized proteins. The translation elongation factor eEF1A associated with these species, and knockdown of this factor suppressed aggresome formation. We used the Legionella toxin SidI to distinguish between the function of eEF1A in translation and its novel function in the aggresome formation. In fact, although it strongly inhibited translation, this toxin had only a marginal effect on aggresome formation. Furthermore, SidI reduced the threshold of the aberrant ribosomal products for triggering aggresome formation. Therefore, eEF1A binds defective polypeptides released from ribosomes, which generates a signal that triggers aggresome formation.

  4. Thermal cycling effect in U-10Mo/Zry-4 monolithic nuclear fuel

    NASA Astrophysics Data System (ADS)

    Lopes, Denise A.; Zimmermann, Angelo J. O.; Silva, Selma L.; Piqueira, J. R. C.

    2016-05-01

    Uranium alloys in a monolithic form have been considered attractive candidates for high density nuclear fuel. However, this high-density fissile material configuration keeps the volume permitted for the retention of fission products at a minimum. Additionally, the monolithic nuclear fuel has a peculiar configuration, whereby the fuel is in direct contact with the cladding. How this fuel configuration will retain fission products and how this will affect its integrity under various physical conditions - such as thermal cycling - are some of the technological problems for this new fuel. In this paper, the effect of out-of-pile thermal cycling is studied for a monolithic fuel plate produced by a hot co-rolling method using U-10Mo (wt %) as the fuel alloy and Zircaloy-4 as the cladding material. After performing 10 thermal cycles from 25 to 400 °C at a rate of 1 °C/min (∼125 h), the fuel alloy presented several fractures that were observed to occur in the last three cycles. These cracks nucleated approximately in the center of the fuel alloy and crossed the interdiffusion zone initiating an internal crack in the cladding. The results suggest that the origin of these fractures is the thermal fatigue of the U-10Mo alloy caused due to the combination of two factors: (i) the high difference in the thermal expansion coefficient of the fuel and of the cladding material, and (ii) the bound condition of fuel/cladding materials in this fuel element configuration.

  5. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters.

    PubMed

    Novais, Rui M; Buruberri, L H; Seabra, M P; Labrincha, J A

    2016-11-15

    In this study novel porous biomass fly ash-containing geopolymer monoliths were produced using a simple and flexible procedure. Geopolymers exhibiting distinct total porosities (ranging from 41.0 to 78.4%) and low apparent density (between 1.21 and 0.44g/cm(3)) were fabricated. Afterwards, the possibility of using these innovative materials as lead adsorbents under distinct conditions was evaluated. Results demonstrate that the geopolymers' porosity and the pH of the ion solution strongly affect the lead adsorption capacity. Lead adsorption by the geopolymer monoliths ranged between 0.95 and 6.34mglead/ggeopolymer. More porous geopolymers presented better lead removal efficiency, while higher pH in the solution reduced their removal ability, since metal precipitation is enhanced. These novel geopolymeric monoliths can be used in packed beds that are easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Furthermore, their production encompasses the reuse of biomass fly-ash, mitigating the environmental impact associated with this waste disposal, while decreasing the adsorbents production costs.

  6. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  7. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    NASA Astrophysics Data System (ADS)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  8. Monolithic 3D-ICs with single grain Si thin film transistors

    NASA Astrophysics Data System (ADS)

    Ishihara, R.; Derakhshandeh, J.; Tajari Mofrad, M. R.; Chen, T.; Golshani, N.; Beenakker, C. I. M.

    2012-05-01

    Monolithic 3D integration is the ultimate approach in 3D-ICs as it provides high-density and submicron vertical interconnects and hence transistor level integration. Here, high-quality Si layer formation at a low temperature is a key challenge. We review our recent achievements in monolithic 3D-ICs based on single-grain Si TFTs that are fabricated inside a single-grain with a low-temperature process. With the μ-Czochralski process based on a pulsed-laser crystallization, Si grains with a diameter of 6 μm are successfully formed on predetermined positions. Single-grain (SG) Si TFTs are fabricated inside the single-grain with mobility for electron and holes of 600 cm2/V s and 200 cm2/V s, respectively. Two layers of the SG Si TFT were vertically stacked and successfully implemented into CMOS inverter, 3D 6T-SRAM and single-grain lateral PIN photo-diode with in-pixel amplifier. Those results indicate that the SG TFTs are attractive for use in monolithic 3D-ICs on an arbitrary substrate including a glass and even a plastic for applications such as ultra-high-density memories, logic-to-logic integration, CPU integrated display, and high-definition image sensor for artificial retina.

  9. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides

    PubMed Central

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-01-01

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications. PMID:26273850

  10. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-07-14

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.

  11. Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture.

    PubMed

    Han, Xiaogang; Yang, Zhi; Zhao, Bin; Zhu, Shuze; Zhou, Lihui; Dai, Jiaqi; Kim, Jae-Woo; Liu, Boyang; Connell, John W; Li, Teng; Yang, Bao; Lin, Yi; Hu, Liangbing

    2017-03-10

    By creating holes in 2D nanosheets, tortuosity and porosity can be greatly tunable, which enables a fast manufacturing process (i.e., fast removal of gas and solvent) toward various nanostructures. We demonstrated outstanding compressibility of holey graphene nanosheets, which is impossible for pristine graphene. Holey graphene powder can be easily compressed into dense and strong monoliths with different shapes at room temperature without using any solvents or binders. The remarkable compressibility of holey graphene, which is in sharp contrast with pristine graphene, not only enables the fabrication of robust, dense graphene products that exhibit high density (1.4 g/cm(3)), excellent specific mechanical strength [18 MPa/(g/cm(3))], and good electrical (130 S/cm) and thermal (20 W/mK) conductivities, but also provides a binder-free dry process that overcomes the disadvantages of wet processes required for fabrication of three-dimensional graphene products. Fundamentally different from graphite, the holey graphene products are both dense and porous, which can enable possible broader applications such as energy storage and gas separation membranes.

  12. Effect of chlorination on the formation of odorous disinfection by-products.

    PubMed

    Freuze, Ingrid; Brosillon, Stéphan; Laplanche, Alain; Tozza, Dominique; Cavard, Jacques

    2005-07-01

    In order to explain some of the possible origins of an odor episode, which took place in a drinking water supply in the region of Paris (France), the chlorination reaction of some simple amino acids (valine, leucine and phenylalanine) was investigated. In addition to the commonly admitted intermediates and products of this reaction (monochloramines, aldehydes and nitriles), the formation of far less documented products was observed: N-chloroaldimines which proved to present particular properties. These products appeared to remain relatively stable in water, especially at low temperatures, and can be formed under disinfection conditions relevant to those of drinking water treatment (i.e. at high chlorination rates). N-chloroaldimines also present strong swimming pool odors with a floral background, with odor detection thresholds close to 1microgL(-1) and even less. These values were established with a laboratory-made protocol. These products appeared more odorous than the corresponding aldehydes, known for a long time as potent odor causing chemicals and which have previously been involved in some odor problems in the field of drinking water treatment. N-chloroaldimines are consequently products of interest for water treaters and are now suspected to be a source of off-flavor concerns among consumers. We have therefore developed an analytical method (gas chromatography coupled with mass spectrometry) to demonstrate the presence of some of these compounds in water at concentrations close to their odor detection thresholds. Considering the levels of amino acids that can be reached in water, this level of chloroaldimines concentration could be obtained under certain pollution conditions.

  13. The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation.

    PubMed

    Meyer, Vera; Fiedler, Markus; Nitsche, Benjamin; King, Rudibert

    2015-01-01

    Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.

  14. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2011-01-01

    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  15. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16

  16. On the underestimated impact of the gelation temperature on macro- and mesoporosity in monolithic silica.

    PubMed

    Meinusch, Rafael; Ellinghaus, Rüdiger; Hormann, Kristof; Tallarek, Ulrich; Smarsly, Bernd M

    2017-06-07

    The preparation of monolithic SiO2 with bimodal porosity using a special sol-gel procedure ("Nakanishi process") generally shows a pronounced sensitivity towards several physico-chemical parameters of the initial solution (concentrations, precursors, pH, temperature, etc.). Thus, temporal and spatial variations of these parameters during the sol-gel reactions can affect the final meso- and macropore space with respect to the pore size distributions and homogeneity. In this study we thoroughly examine the sol-gel reaction in terms of the impact of temperature accuracy and homogeneity during the gelation and their effect on meso- and macropore space. The in-depth characterization of the macroporosity in monolithic SiO2 rods, prepared by utilizing a highly homogeneous and accurate temperature profile, shows that a decrease of only 1.5 °C during the reaction doubles the mean size of the macropores in the analyzed temperature ranges (22.0-28.0 °C and 33.5-36.5 °C). Rheological measurements of the gelation points and the viscosity of the starting solutions prove that a higher reaction rate is the main reason for this marked temperature-sensitivity. Furthermore, the mesoporosity is affected to a surprising extent by the applied small temperature differences during the gelation reaction. This phenomenon is shown to be mainly caused by the temperature-dependent differences in macropore and skeleton dimensions and an inhomogeneous distribution of mesopore sizes within the skeleton. In essence, our study reveals that the impact of temperature on the formation of meso- and macroscale dimensions during the sol-gel process has been underestimated so far. The impact of a poor temperature homogeneity during monolith synthesis is exemplarily demonstrated by the application of monolithic silica capillary columns in HPLC.

  17. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  18. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2009-08-01

    A novel zwitterionic hydrophilic porous poly(SPV-co-MBA) monolithic column was prepared by thermal co-polymerisation of 1-(3-sulphopropyl)-4-vinylpyridinium-betaine (4-SPV) and N,N'-methylenebisacrylamide (MBA). An HILIC/RP dual separation mechanism was observed on this optimised poly(SPV-co-MBA) monolithic column and the composition of the mobile phase corresponding to the transition from the HILIC to the RP mode was around 30% ACN in water. Higher hydrophilicity was achieved on this novel monolithic column compared to the poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulphopropyl)ammonium betaine-co-ethylene dimethacrylate) monolithic column. Permeability studies showed slight swelling and/or shrinking with mobile phases of different polarity. As might be anticipated, a weak electrostatic interaction for charged analytes was also observed by studying the influence of mobile phase pH and salt concentration on their retention on the poly(SPV-co-MBA) monolithic column. The final optimised poly(SPV-co-MBA) monolith showed comparable selectivities to commercial ZIC-pHILIC phases for polar test analytes. Fast separation of five pyrimidines and purines was achieved in less than 1 min due to the high permeability of the monolithic column. Additionally, baseline separation of nine benzoic acid derivatives was also observed using either a pH or ACN gradient.

  19. Concentration and purification of enterovirus 71 using a weak anion-exchange monolithic column

    PubMed Central

    2014-01-01

    Background Enterovirus 71 (EV-71) is a neurotropic virus causing Hand, Foot and Mouth Disease (HFMD) in infants and children under the age of five. It is a major concern for public health issues across Asia-Pacific region. The most effective way to control the disease caused by EV-71 is by vaccination thus a novel vaccine is urgently needed. Inactivated EV-71 induces a strong, virus-neutralizing antibody response in animal models, protecting them against a lethal EV-71 challenge and it has been shown to elicit cross-neutralizing antibodies in human trials. Hence, the large-scale production of purified EV-71 is required for vaccine development, diagnosis and clinical trials. Methods CIM® Monolith columns are single-piece columns made up of poly(glycidyl methacrylate co-ethylene dimethacrylate) as support matrix. They are designed as porous channels rather than beads with different chemistries for different requirements. As monolithic columns have a high binding capacity, flow rate and resolution, a CIM® DEAE-8f tube monolithic column was selected for purification in this study. The EV-71 infected Rhabdomyosarcoma (RD) cell supernatant was concentrated using 8% PEG 8000 in the presence of 400 mM sodium chloride. The concentrated virus was purified by weak anion exchange column using 50 mM HEPES + 1 M sodium chloride as elution buffer. Results Highly pure viral particles were obtained at a concentration of 350 mM sodium chloride as confirmed by SDS-PAGE and electron microscopy. Presence of viral proteins VP1, VP2 and VP3 was validated by western blotting. The overall process achieved a recovery of 55%. Conclusions EV-71 viral particles of up to 95% purity can be recovered by a single step ion-exchange chromatography using CIM-DEAE monolithic columns and 1 M sodium chloride as elution buffer. Moreover, this method is scalable to purify several litres of virus-containing supernatant, using industrial monolithic columns with a capacity of up to 8 L such as

  20. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    PubMed

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  1. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    PubMed

    Zhu, Jiangfeng; Sánchez, Ailen; Bennett, George N; San, Ka-Yiu

    2011-11-01

    Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approach based on genetic regulation may better serve this purpose. With excess oxygen supply to the culture, we efficiently manipulated Escherichia coli cell respiration by adding different amount of coenzyme Q1 to strains lacking the ubiCA genes, which encode two critical enzymes for ubiquinone synthesis. As a proof-of-concept, the metabolic effect of the ubiCA gene knockout and coenzyme Q1 supplementation were characterized, and the metabolic profiles of the experimental strains showed clear correlations with coenzyme Q1 concentrations. Further proof-of-principle experiments were performed to illustrate that the approach can be used to optimize cell respiration for the production of chemicals of interest such as ethanol. This study showed that controlled respiration through genetic manipulation can be exploited to allow much larger operating windows for reduced product formation even under fully aerobic conditions.

  2. Atmospheric Oxidation Mechanisms for Diethyl Ether and its Oxidation Products, Ethyl Formate and Ethyl Acetate.

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2006-12-01

    Carbon-containing compounds are present in the earth's atmosphere as the result of emissions from natural and anthropogenic sources. Their oxidation in the atmosphere, initiated by such oxidants as OH, ozone, and nitrate radicals, leads to potentially harmful secondary pollutants such as ozone, carbonyl species, organic acids and aerosols. Ethers and esters are two classes of compounds that contribute to the complex array of organic compounds found in anthropogenically-influenced air. Additional ester is present as a result of the oxidation of the ethers. In this paper, the oxidation of diethyl ether and its two main oxidation products, ethyl formate and ethyl acetate, are studied over ranges of temperature, oxygen partial pressure, and NOx concentration, using an environmental chamber / FTIR absorption technique. Major end-products (the esters from diethyl ether; organic acids and anhydrides from the esters) are quantified, and these data are interpreted in terms of the chemistry of the various alkoxy and peroxy radicals generated. Emphasis is placed on the effects of chemical activation on the behavior of the alkoxy radicals, as well as on a novel peroxy radical rearrangement that may contribute to the observed products of ether oxidation under some conditions. Finally, the data are used, in conjunction with data on similar species, to provide a general representation of ether and ester oxidation in the atmosphere.

  3. Inhibition of the formation of advanced glycation end products by thymoquinone.

    PubMed

    Losso, Jack N; Bawadi, Hiba A; Chintalapati, Madhavi

    2011-09-01

    The inhibitory activity of thymoquinone, a major quinone from black seeds (Nigella sativa) against the formation of advanced glycation end products was studied using the hemoglobin-δ-gluconolactone, human serum albumin-glucose, and the N-acetyl-glycyl-lysine methyl ester-ribose assays. A comparison was made with the inhibitory activity of aminoguanidine. The cytotoxicity of thymoquinone was studied by the release of lactate dehydrogenase from platelets and the levels of plasma thiols. At 20μM, thymoquinone inhibited 39% of hemoglobin glycation, 82% of post-Amadori glycation products, reduced methyglyoxal-mediated human serum albumin glycation by 68%, inhibited 78% of late glycation end products. Aminoguanidine at 10mM was less effective than thymoquinone. The IC50 for thymoquinone and aminoguanidine were 7.2μM and 1.25mM, respectively. Thymoquinone at 20-50μM was not toxic to platelet lactate dehydrogenase and plasma thiols. The potential of thymoquinone in food applications is discussed.

  4. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    PubMed

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.

  5. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    PubMed

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  6. Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates.

    PubMed

    Pérez, G; Saiz, J; Ibañez, R; Urtiaga, A M; Ortiz, I

    2012-05-15

    This work investigates the formation of oxidation by-products during the electrochemical removal of ammonium using BDD electrodes from wastewaters containing chlorides. The influence of the initial chloride concentration has been experimentally analyzed first, working with model solutions with variable ammonium concentration and second, with municipal landfill leachates. Two different levels of chloride concentration were studied, i) low chloride concentrations ranging between 0 and 2000 mg/L and, ii) high chloride concentrations ranging between 5000 and 20,000 mg/L. Ammonium removal took place mainly via indirect oxidation leading to the formation of nitrogen gas and nitrate as the main oxidation products; at high chloride concentration the formation of nitrogen gas and the rate of ammonium removal were both favored. However, chloride was also oxidized during the electrochemical treatment leading to the formation of free chlorine responsible of the ammonium oxidation, together with undesirable products such as chloramines, chlorate and perchlorate. Chloramines appeared during the treatment but they reached a maximum and then started decreasing, being totally removed when high chloride concentrations were used. With regard to the formation of chlorate and perchlorate once again the concentration of chloride exerted a strong influence on the formation kinetics of the oxidation by-products and whereas at low chloride concentrations, chlorate appeared like an intermediate compound leading to the formation of perchlorate, at high chloride concentrations chlorate formation was delayed significantly and perchlorate was not detected during the experimental time. Thus this work contributes first to the knowledge of the potential hazards of applying the electro-oxidation technology as an environmental technology to deal with ammonium oxidation under the presence of chloride and second it reports efficient conditions that minimize or even avoid the formation of undesirable

  7. Impact of antioxidants on the formation of volatile secondary lipid oxidation products in oil-in-water emulsions

    USDA-ARS?s Scientific Manuscript database

    Food emulsions are particularly susceptible to lipid oxidation, which leads to the formation of off-flavors and odors, and ultimately, shorter product shelf lives. Here we examine antioxidants for use in emulsions from a variety of different sources, including natural product extracts as well as rat...

  8. 21 CFR 201.56 - Requirements on content and format of labeling for human prescription drug and biological products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Requirements on content and format of labeling for human prescription drug and biological products. 201.56 Section 201.56 Food and Drugs FOOD AND DRUG... human prescription drug and biological products. (a) General requirements. Prescription drug labeling...

  9. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R.

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  10. Lactobacilli isolated from sugary kefir grains capable of polysaccharide production and minicell formation.

    PubMed

    Pidoux, M; Marshall, V M; Zanoni, P; Brooker, B

    1990-09-01

    Homo- and heterofermentative species of Lactobacillus have been isolated from sugary kefir grains. Most of the homofermentative strains fermented tagatose and aldonitol and presented 48-54% of homology with Lactobacillus paracasei ssp. paracasei NCDO 151 (ex Lactobacillus casei). The two variants of a hetero-fermentative species, although fermenting arabinose, were related to Lactobacillus hilgardii NCDO 264 (type strain) with 88% of homology. One of them produced polysaccharide from sucrose at pH 4.8 and 30 degrees C; the best glucose conversion into polysaccharide was obtained from 3% of sucrose (81.8%), and the maximum production occurred about 35 hours after the end of the log phase of growth, in MRS sucrose broth. Polysaccharide formation did not occur above 40 degrees C, a temperature at which no growth was observed. The two variants were forming minicells by abnormal divisions.

  11. Formation of the Main Cores Present in Natural Products by Tandem Additions.

    PubMed

    Guérard, Kimiaka C; Hamel, Vincent; Guérinot, Amandine; Bouchard-Aubin, Cloé; Canesi, Sylvain

    2015-12-07

    A rapid route to 5,5- and 5,6- bicyclic systems is provided by an 1,3-alkyl-shift process mediated by a hypervalent iodine reagent on aromatics. The structures obtained contain several unsaturations with different behaviors and reactivities. Such diversity allows further elaborations for the rapid formation of compact systems present in a variety of natural products. The potential for further transformations has been demonstrated by performing a double Michael addition. This cyclization process is regio- and stereoselective due to the presence of a former benzylic substituent. Furthermore, an extension of this approach has been accomplished on indole derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Production of unstable proteins through the formation of stable core complexes

    PubMed Central

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  13. Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms

    USGS Publications Warehouse

    Graham, W.H.; Graham, D.W.; DeNoyelles, F.; Smith, V.H.; Larive, C.K.; Thurman, E.M.

    1999-01-01

    The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methyl)ethyl)acetamide] and alachlor [2-chloro-N-(2,6- diethylphenyl)-N-methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a noherbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half- lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng (Pestic. Biochem. Physiol. 1991, 34, 136); however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethy

  14. Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production.

    PubMed

    Wang, Peihong; Sun, Junyong; Li, Xiaomin; Wu, Dianhui; Li, Tong; Lu, Jian; Chen, Jian; Xie, Guangfa

    2014-04-01

    Ethyl carbamate is a well-known carcinogen and widely occurs in Chinese rice wine. To provide more clues to minimise ethyl carbamate accumulation, the levels of possible precursors of ethyl carbamate in Chinese rice wine were investigated by HPLC. Studies of the possible precursors of ethyl carbamate in Chinese raw rice wine with various additives and treatments indicated that significant amounts of urea can account for ethyl carbamate formation. It was also recognised that citrulline is another important precursor that significantly affects ethyl carbamate production during the boiling procedure used in the Chinese rice wine manufacturing process. Besides urea and citrulline, arginine was also found to be an indirect ethyl carbamate precursor due to its ability to form urea and citrulline by microorganism metabolism.

  15. Engineering and Design: Structural Analysis and Design of U-Frame Lock Monoliths

    DTIC Science & Technology

    1993-12-31

    upstream and downstream direction. Finally, any of the aforementioned monoliths can also act as bridge pier monoliths. When a bridge pier is located on a...monolith, it can have an effect on the design of the monolith due to the loads transmitted to the monolith from the bridge pier. This is particu- larly...ations: erodibility of foundation, potential for scour , factor of safety against flotation during dewatering of the lock, differential movements

  16. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor.

    PubMed Central

    Horwood, N J; Udagawa, N; Elliott, J; Grail, D; Okamura, H; Kurimoto, M; Dunn, A R; Martin, T; Gillespie, M T

    1998-01-01

    IL-18 inhibits osteoclast (OCL) formation in vitro independent of IFN-gamma production, and this was abolished by the addition of neutralizing antibodies to GM-CSF. We now establish that IL-18 was unable to inhibit OCL formation in cocultures using GM-CSF-deficient mice (GM-CSF -/-). Reciprocal cocultures using either wild-type osteoblasts with GM-CSF -/- spleen cells or GM-CSF -/- osteoblasts with wild-type spleen cells were examined. Wild-type spleen cells were required to elicit a response to IL-18 indicating that cells of splenic origin were the IL-18 target. As T cells comprise a large proportion of the spleen cell population, the role of T cells in osteoclastogenesis was examined. Total T cells were removed and repleted in various combinations. Addition of wild-type T cells to a GM-CSF -/- coculture restored IL-18 inhibition of osteoclastogenesis. Major subsets of T cells, CD4+ and CD8+, were also individually depleted. Addition of either CD4+ or CD8+ wild-type T cells restored IL-18 action in a GM-CSF -/- background, while IL-18 was ineffective when either CD4+ or CD8+ GM-CSF -/- T cells were added to a wild-type coculture. These results highlight the involvement of T cells in IL-18-induced OCL inhibition and provide evidence for a new OCL inhibitory pathway whereby IL-18 inhibits OCL formation due to action upon T cells promoting the release of GM-CSF, which in turn acts upon OCL precursors. PMID:9449693

  17. CTLA4-Ig Induced T-Cell Anergy Promotes Wnt10b Production and Bone Formation

    PubMed Central

    Roser-Page, Susanne; Vikulina, Tatyana; Zayzafoon, Majd; Weitzmann, M. Neale

    2014-01-01

    Objective Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by severe joint erosion and systemic osteoporosis. Chronic T-cell activation is a hallmark of RA and agents that target the CD28 receptor on T-cells, needed for T-cell activation, are being increasingly employed as therapeutic agents in RA and other inflammatory diseases. Lymphocytes play complex roles in the regulation of the skeleton and although activated T-cells and B-cells secrete cytokines that promote skeletal decline, under physiological conditions lymphocytes also play key protective roles in the stabilization of skeletal mass. Consequently, disruption of T-cell costimulation may have unforeseen consequences on physiological bone turnover. In this study we investigate the impact of pharmacological CD28 T-cell costimulation blockade on physiological bone turnover and structure. Methods C57BL6 mice were treated with Cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-Ig, a pharmacological CD28 antagonist, or irrelevant control antibody (Ig) and serum biochemical markers of bone turnover quantified by ELISA. Bone mineral density (BMD) and indices of bone structure were further quantified by dual energy X-ray absorptiometry (DEXA) and micro-computed tomography (μCT) respectively and static and dynamic indices of bone formation quantified using bone histomorphometry. Results Pharmacological disruption of CD28 T-cell costimulation in mice, significantly increased bone mass and enhanced indices of bone structure, a consequence of enhanced bone formation, concurrent with enhanced secretion of the bone anabolic factor Wnt10b by T-cells. Conclusion Inhibition of CD28 co-stimulation by CTLA4-Ig promotes T-cell Wnt10b production and bone formation and may represent a novel anabolic strategy for increasing bone mass in osteoporotic conditions. PMID:24757150

  18. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    PubMed

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  19. Dietary docosahexaenoic acid supplementation prevents the formation of cholesterol oxidation products in arteries from orchidectomized rats.

    PubMed

    Villalpando, Diva M; Rojas, Mibsam M; García, Hugo S; Ferrer, Mercedes

    2017-01-01

    Testosterone deficiency has been correlated with increased cardiovascular diseases, which in turn has been associated with increased oxidative stress. Several studies have considered cholesterol oxidation products (COPs) as oxidative stress biomarkers, since some of them play pro-oxidant and pro-inflammatory roles. We have previously described the cardioprotective effects of a dosahexaenoic acid (DHA) supplemented diet on the aortic and mesenteric artery function of orchidectomized rats. The aim of this study was to investigate whether impaired gonadal function alters the formation of COPs, as well as the potential preventive role of a DHA-supplemented diet on that effect. For this purpose, aortic and mesenteric artery segments obtained from control and orchidectomized rats, fed with a standard or supplemented with DHA, were used. The content of the following COPs: 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol and 25-hydroxycholesterol, were analyzed by gas chromatography. The results showed that orchidectomy increased the formation of COPs in arteries from orchidectomized rats, which may participate in the orchidectomy-induced structural and functional vascular alterations already reported. The fact that the DHA-supplemented diet prevented the orchidectomy-induced COPs increase confirms the cardiovascular protective actions of DHA, which could be of special relevance in mesenteric arterial bed, since it importantly controls the systemic vascular resistance.

  20. Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products

    PubMed Central

    2016-01-01

    Carbon–carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C–C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C–C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C–C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand. PMID:27398261