Science.gov

Sample records for product monolith formation

  1. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    SciTech Connect

    Jantzen, C

    2006-09-13

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability

  2. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  3. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  4. Formation of bimodal porous silica-titania monoliths by sol-gel route

    NASA Astrophysics Data System (ADS)

    Ruzimuradov, O. N.

    2011-10-01

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N2 adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  5. Production of aligned microfibers and nanofibers and derived functional monoliths

    DOEpatents

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; Omatete, Ogbemi

    2007-08-14

    The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.

  6. The formation of NGC 3603 young starburst cluster: `prompt' hierarchical assembly or monolithic starburst?

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2015-02-01

    The formation of very young massive clusters or `starburst' clusters is currently one of the most widely debated topic in astronomy. The classical notion dictates that a star cluster is formed in situ in a dense molecular gas clump. The stellar radiative and mechanical feedback to the residual gas energizes the latter until it escapes the system. The newly born gas-free young cluster eventually readjusts with the corresponding mass-loss. Based on the observed substructured morphologies of many young stellar associations, it is alternatively suggested that even the smooth-profiled massive clusters are also assembled from migrating less massive subclusters. A very young (age ≈ 1 Myr), massive (>104 M⊙) star cluster like the Galactic NGC 3603 young cluster (HD 97950) is an appropriate testbed for distinguishing between the above `monolithic' and `hierarchical' formation scenarios. A recent study by Banerjee & Kroupa demonstrates that the monolithic scenario remarkably reproduces the HD 97950 cluster. In particular, its shape, internal motion and the mass distribution of stars are found to follow naturally and consistently from a single model calculation undergoing ≈70 per cent by mass gas dispersal. In this work, we explore the possibility of the formation of the above cluster via hierarchical assembly of subclusters. These subclusters are initially distributed over a wide range of spatial volumes and have various modes of subclustering in both absence and presence of a background gas potential. Unlike the above monolithic initial system that reproduces HD 97950 very well, the same is found to be prohibitive with hierarchical assembly alone (with/without a gas potential). Only those systems which assemble promptly into a single cluster (in ≲1 Myr) from a close separation (all within ≲2 pc) could match the observed density profile of HD 97950 after a similar gas removal. These results therefore suggest that the NGC 3603 young cluster has formed essentially

  7. Bioethanol production by reusable Saccharomyces cerevisiae immobilized in a macroporous monolithic hydrogel matrices.

    PubMed

    Mulko, Lucinda; Rivarola, Claudia R; Barbero, Cesar A; Acevedo, Diego F

    2016-09-10

    Performance of yeasts on industrial processes can be dramatically improved by immobilization of the biocatalyst. The immobilization of Saccharomyces cerevisiae inside monolithic macroporous hydrogels were produced by in-situ polymerization of acrylamide around a live yeast suspension under cryogelation conditions. Preculture of the yeasts was not necessary and this innovative and simple procedure is amenable to scaling-up to industrial production. The yeasts were efficiently retained in monolithic hydrogels, presenting excellent mechanical properties and high cell viability. Macroporous hydrogels showed a fast mass transport allowing the hydrogel-yeast complexes achieved similar ethanol yield and productivity than free yeasts, which is larger than those reached with yeasts immobilized in compact hydrogels. Moreover, the same yeasts were able to maintain its activity by up to five reaction cycles with a cell single batch during fermentation reactions.

  8. Bioethanol production by reusable Saccharomyces cerevisiae immobilized in a macroporous monolithic hydrogel matrices.

    PubMed

    Mulko, Lucinda; Rivarola, Claudia R; Barbero, Cesar A; Acevedo, Diego F

    2016-09-10

    Performance of yeasts on industrial processes can be dramatically improved by immobilization of the biocatalyst. The immobilization of Saccharomyces cerevisiae inside monolithic macroporous hydrogels were produced by in-situ polymerization of acrylamide around a live yeast suspension under cryogelation conditions. Preculture of the yeasts was not necessary and this innovative and simple procedure is amenable to scaling-up to industrial production. The yeasts were efficiently retained in monolithic hydrogels, presenting excellent mechanical properties and high cell viability. Macroporous hydrogels showed a fast mass transport allowing the hydrogel-yeast complexes achieved similar ethanol yield and productivity than free yeasts, which is larger than those reached with yeasts immobilized in compact hydrogels. Moreover, the same yeasts were able to maintain its activity by up to five reaction cycles with a cell single batch during fermentation reactions. PMID:27396938

  9. [Preparation of a strong cation-exchange polymer monolith and its application in determination of melamine in milk products].

    PubMed

    Ma, Qiao; Hu, Xizhou; Huang, Jincui; Feng, Yuqi

    2009-09-01

    A poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-ethylene dimethacrylate) (AMPS-co-EDMA) monolith was prepared in a fused-silica capillary (530 microm i.d.) and applied for polymer monolith microextraction (PMME). With the optimal ratio of N, N-dimethyl-formamide (DMF, porogen) and polyethylene glycol (PEG, co-porogen), the resulting monolith exhibited satisfactory permeability, high mechanical strength and good stability in aqueous buffer. The effects of several parameters to PMME were investigated, such as pH value, inorganic salt and organic phase concentration of the sample matrix. It demonstrated that the melamine was captured on the poly (AMPS-co-EDMA) monolith mainly through strong cation-exchange and hydrophobic interactions. A novel approach is presented for the determination of melamine in milk products by coupling PMME to high performance liquid chromatography with ultraviolet detection. Because of the high extraction capacity of the monolith towards melamine, low detection limits (S/N = 3, 0.9 mg/kg) and quantification limits (S/N = 10, 0.3 mg/kg) were obtained. The method showed good linearity ranging from 0.5 to 80 mg/kg. Excellent reproducibility of the method was exhibited by intraday and interday precisions, yielding the relative standard deviations not larger than 7.5%. The proposed method is simple, rapid, sensitive, and low cost.

  10. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  11. Formate Formation and Formate Conversion in Biological Fuels Production

    PubMed Central

    Crable, Bryan R.; Plugge, Caroline M.; McInerney, Michael J.; Stams, Alfons J. M.

    2011-01-01

    Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production. PMID:21687599

  12. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith.

    PubMed

    Shiraishi, F; Kawakami, K; Kono, S; Tamura, A; Tsuruta, S; Kusunoki, K

    1989-05-01

    Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith and continuous production of free gluconic acid from glucose was performed in an aerated reactor. The effects of reactor residence time, aeration rate, and glucose concentration were investigated on the gluconic acid yield. Observation of SEM photographs revealed that the cells were adsorbed with a high density not only on the outer surface of the support but also on the inner surface of large pores. From measurement of the number of the adsorbed cells, it was elucidated that the biofilm comprised a monolayer or bilayer of the cells. Maximum specific rate of growth was estimated for the free and adsorbed cells, and the adsorbed cells were found to grow at a fast rate compared with the free cells. In the continuous fermentation performed for one month at the glucose concentration of 100 kg/m(3), reactor residence time of 3.5 h and aeration rate of 900 cm(3)/min, the activity of the adsorbed cells was appreciably stable. The high productivity of 26.3 kg/(m(3)-reactor . h) was attained with the gluconic acid yield of 84.6% and glucose conversion of 94%.

  13. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  14. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  15. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  16. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  17. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    NASA Astrophysics Data System (ADS)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  18. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  19. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  20. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths.

    PubMed

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-10-30

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can be explained from the general theory of surface-directed phase separation in confined spaces. The formed structures are to a large extent nearly exclusively determined by the ratio between the bulk domain size of the monolith on the one hand and the distance between the micro-pillars on the other hand. When this ratio is small, the presence of the pillars has nearly no effect on the morphology of the produced monoliths. However, when the ratio approaches unity and ascends above it, some new types of monolith morphologies are induced, two of which appear to have interesting properties for use as novel chromatographic supports. One of these structures (obtained when the domain size/inter-pillar distance ratio is around unity) is a 3D network of linear interconnections between the pillars, organized such that all skeleton branches are oriented perpendicular to the micro-pillar surface. A second interesting structure is obtained at even higher values of the domain size/inter-pillar distance ratio. In this case, each individual micro-pillar is uniformly coated with a mesoporous shell.

  1. Catalyst assisted synthesis of initiator attached silica monolith particles via isocyanate-hydroxyl reaction for production of polystyrene bound chromatographic stationary phase of excellent separation efficiency.

    PubMed

    Ali, Faiz; Kim, Yune Sung; Lee, Jin Wook; Cheong, Won Jo

    2014-01-10

    Dibutyltin dichloride (DBTDC) was used as a catalyst to chemically bind 4-chloromehtylphenylisocynate (4-CPI) to porous monolithic silica particles via isocyanate-hydroxyl reaction, and the reaction product was reacted with sodium diethyldithiocarbamate (SDDC) to yield initiator attached silica monolith particles. Reversible addition-fragmentation transfer (RAFT) polymerization was taken place on them to result in polystyrene attached silica particles that showed excellent separation efficiency when packed in a chromatographic column (1.0 mm × 300 mm). The numbers of theoretical plates (N) of 56,500 is better than those of any commercially available HPLC or UHPLC column yet.

  2. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  3. Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts

    SciTech Connect

    Wang, Yong; Liu, Wei

    2009-04-19

    This paper reports recent research results about impact of different catalyst bed configurations on FT reaction product distribution. A CoRe/γ-alumina catalyst is prepared in bulk particle form and tested in the packed bed reactor at a size of 60 to 100 mesh. The same catalyst is ball milled and coated on a ceramic monolith support structure of channel size about 1mm. The monolith catalyst module is tested in two different ways, as a whole piece and as well-defined channels. Steady-state reaction conversion is measured at various temperatures under constant H2/CO feed ratio of 2 and reactor pressure of 25 bar. Detailed product analysis is performed. Significant formation of wax is evident with the packed particle bed and with the monolith catalyst that is improperly packed. By contrast, the wax formation is not detected in the liquid product by confining the reactions inside the monolith channel. This study presents an important finding about the structured catalyst/reactor system that the product distribution highly depends on the way how the structured reactor is set up. Even if the same catalyst and same reaction conditions (T, P, H2/oil ratio) are used, hydrodynamics (or flow conditions) inside a structured channel can have a significant impact on the product distribution.

  4. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow

  5. Monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  6. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  7. Elimination of formate production in Clostridium thermocellum

    DOE PAGESBeta

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth ratemore » of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.« less

  8. Integrated product formation and recovery in fermentation.

    PubMed

    van der Wielen, L A; Luyben, K C

    1992-04-01

    Fermentation processes are hampered by a variety of problems originating from the accumulation of products in the fermenter. Integration of fermentation and a primary product separation step can accelerate the product formation, improve the product yield, and facilitate downstream processing. The advantages of integrated bioprocesses, however, are counteracted by the incompatibility of the subprocesses. Over the past few years, research in this field has been directed towards the development of engineering tools to reduce integration problems, to select a suitable approach, and to predict the feasibility of the integrated process. More fundamental knowledge about metabolic pathways, control mechanisms, and process dynamics is needed in order to optimally design integrated systems. PMID:1368288

  9. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  10. Synthesis and applications of monolithic HPLC columns

    NASA Astrophysics Data System (ADS)

    Liang, Chengdu

    Silica and carbon monolithic columns were synthesized and modified for liquid chromatography applications. Column configurations and cladding techniques were investigated in detail. Three novel approaches have been developed for the synthesis of bimodal porous rods. Out of these three methods, gel-casting was adopted for the synthesis of silica monoliths with ordered mesopores and uniform macropores; the use of colloidal templates and dual phase separation has been successfully implemented for the synthesis of carbon monoliths with well-controlled meso- and macro- porosities. The formation of mesopores in carbon materials has been further studied in the microphase separation of block copolymers. Electrochemical modification of carbon monoliths was discovered to be an efficient method for converting covalently bonded functionalities to carbon monoliths. N,N'-diethylaminobenzene has been attached to carbon surface for the separation of proteins and protein digests. The performances of carbon-based monolithic columns were studied intensely through frontal analysis and Van Deemter plot. Temperature and pressure effects were also investigated in carbon-based columns. The density of bonding on the modified carbon monoliths was characterized by thermogravimetric analysis.

  11. Monolithic freeform element

    NASA Astrophysics Data System (ADS)

    Kiontke, Sven R.

    2015-09-01

    For 10 years there has been the asphere as one of the new products to be accepted by the market. All parts of the chain design, production and measurement needed to learn how to treat the asphere and what it is helpful for. The aspheric optical element now is established and accepted as an equal optical element between other as a fast growing part of all the optical elements. Now we are focusing onto the next new element with a lot of potential, the optical freeform surface. Manufacturing results will be shown for fully tolerance optic including manufacturing, setup and optics configurations including measurement setup. The element itself is a monolith consisting of several optical surfaces that have to be aligned properly to each other. The freeform surface is measured for surface form tolerance (irregularity, slope, Zernike, PV).

  12. Non-particulate (continuous bed or monolithic) restricted-access reversed-phase media for sample clean-up and separation by capillary-format liquid chromatography.

    PubMed

    Jarmalaviciene, Reda; Kornysova, Olga; Westerlund, Douglas; Maruska, Audrius

    2003-11-01

    Restricted-access reversed-phase non-particulate (continuous bed or monolithic) stationary phases of different hydrophobicity synthesized in 100 microm i.d. fused silica capillaries have been evaluated. A specific property of restricted-access media (RAM) is that they interact with small analytes and exclude big molecules, e.g. proteins, from access to the active sites and adsorption on the surface. This dual property facilitates direct injection of biological fluids for drug or drug-metabolite analysis. Different RAM and RAM-precursor capillary columns were tested to assess the influence of chromatographic bed morphology on loadability. Inverse size-exclusion chromatography was used for investigation of pore structural properties of the capillary-format continuous beds. The data obtained were used to discuss the mechanism of separation of the biological samples using capillary columns and to propose a model for the topochemical architecture of the RAM investigated. Different morphology of the non-particulate reversed-phase precursors resulted in two types of RAM material shielded with hydrophilic polymer, classified as homogeneous or heterogeneous topochemistry stationary phases. Capillary columns were applied for chromatography of biological fluids. High resolution was obtained, without the need for column switching, when capillary columns operated in gradient conditions. Extensive evaluation of the chromatographic properties (hydrophobicity, efficiency, separation impedance, and loadability) of the non-particulate reversed-phase materials was performed before and after shielding with hydrophilic polymer to generate restricted-access properties. Minor changes of hydrophobicity, efficiency, or separation impedance were observed after the shielding. PMID:14513200

  13. Methods of increasing hydrocarbon production from subterranean formations

    SciTech Connect

    Penny, G.S.; Briscoe, J.E.

    1982-01-10

    Methods of increasing hydrocarbon production from subterranean hydrocarbon-containing formations are provided. The formations are contacted with cationic perfluoro compounds. The formula for these compounds is given.

  14. Amadori products formation in emulsified systems.

    PubMed

    Troise, Antonio Dario; Berton-Carabin, Claire C; Fogliano, Vincenzo

    2016-05-15

    The formation of Amadori products (APs) is the key step determining the development of the Maillard reaction (MR). The information on the chemical behaviour of the reaction between amino acids and reducing sugars in emulsions during thermal treatments is scanty and mainly focused on volatile compounds. The aim of this work was to investigate the formation of APs from glucose and two amino acids with different partition coefficients (phenylalanine and leucine) in emulsions. Two submicron oil-in-water (O/W) emulsions consisting of water, tricaprylin and Tween 20 were prepared, thermally treated and the formation of fructose-phenylalanine (Fru-Phe) and fructose-leucine (Fru-Leu) was monitored by mass spectrometry. The concentration of Fru-Phe in submicron emulsions was similar to that in water, while Fru-Leu was reduced up to 47% in the emulsions. These data indicated that partition coefficient of amino acids, determining the reactants location, can substantially influence the MR and the final quality of foods. PMID:26775943

  15. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  16. New Monolithic Dome Schools.

    ERIC Educational Resources Information Center

    Parker, Freda

    2000-01-01

    Discusses how the Grand Meadow (Minnesota) school district got more than twice the grant money asked for from the state's legislature as well as voter approval for five new $8 million monolithic domes for their K-12 facility. Three additional school district successes in developing monolithic domes for their schools are examined. (GR)

  17. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  18. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    SciTech Connect

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  19. Macroporous silver monoliths using a simple surfactant

    NASA Astrophysics Data System (ADS)

    Khan, Farid; Eswaramoorthy, Muthusamy; Rao, C. N. R.

    2007-01-01

    An elegant method to synthesize porous silver monoliths using a simple surfactant cum reductant, Triton X-114, as the sacrificial template is described. The gel forming property of the surfactant with silver nitrate is utilized to make the porous framework. The monoliths obtained with a mixture of Triton X-114 and dextran have also been examined. A significant improvement in the pore structure was observed when Triton X-114 was used along with Ludox silica sol, followed by calcination and HF treatment. The presence of interparticle pores in the 20-25 nm range on the macroporous silver framework suggests the role of silica spheres in the nanopore formation.

  20. Making Online Products More Tangible: The Effect of Product Presentation Formats on Product Evaluations.

    PubMed

    Verhagen, Tibert; Vonkeman, Charlotte; van Dolen, Willemijn

    2016-07-01

    Although several studies have looked at the effects of online product presentations on consumer decision making, no study thus far has considered a potential key factor in online product evaluations: tangibility. The present study aims at filling this gap by developing and testing a model that relates different online product presentation formats to the three-dimensional concept of product tangibility. We test how the three tangibility dimensions influence perceived diagnosticity and, eventually, online purchase intentions. A between-subjects lab experiment (n = 366) was used to test the hypothesized effects of three common online product presentation formats (pictures vs. 360 spin rotation vs. virtual mirror). The results showed that out of these formats, virtual mirrors were superior in providing a sense of product tangibility, followed by the 360-spin rotation format and static pictures. Furthermore, in terms of predictive validity, two of the three tangibility dimensions significantly increased perceived diagnosticity, which, in turn, positively and strongly affected purchase intentions. Overall, our results add to previous works studying the relationships between online product presentation formats and consumer decision making. Also, they hold value for online practitioners by highlighting the potential benefits of applying technologically advanced product presentation formats such as the virtual mirror. PMID:27326724

  1. Making Online Products More Tangible: The Effect of Product Presentation Formats on Product Evaluations.

    PubMed

    Verhagen, Tibert; Vonkeman, Charlotte; van Dolen, Willemijn

    2016-07-01

    Although several studies have looked at the effects of online product presentations on consumer decision making, no study thus far has considered a potential key factor in online product evaluations: tangibility. The present study aims at filling this gap by developing and testing a model that relates different online product presentation formats to the three-dimensional concept of product tangibility. We test how the three tangibility dimensions influence perceived diagnosticity and, eventually, online purchase intentions. A between-subjects lab experiment (n = 366) was used to test the hypothesized effects of three common online product presentation formats (pictures vs. 360 spin rotation vs. virtual mirror). The results showed that out of these formats, virtual mirrors were superior in providing a sense of product tangibility, followed by the 360-spin rotation format and static pictures. Furthermore, in terms of predictive validity, two of the three tangibility dimensions significantly increased perceived diagnosticity, which, in turn, positively and strongly affected purchase intentions. Overall, our results add to previous works studying the relationships between online product presentation formats and consumer decision making. Also, they hold value for online practitioners by highlighting the potential benefits of applying technologically advanced product presentation formats such as the virtual mirror.

  2. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  3. Method of increasing hydrocarbon production from subterranean formations

    SciTech Connect

    Penny, G.S.

    1987-10-27

    A method is described of increasing the production of hydrocarbons from a hydrocarbon-containing subterranean carbonate-containing formation comprising contacting the formation with an anionic compound whereby the compound is absorbed onto surfaces of the formation to reduce wetting of the surfaces by either hydrocarbons or water. The anionic compound is selected from individual compounds and mixtures.

  4. Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia.

    PubMed

    Hung, Chang-Mao

    2010-08-15

    This work considers the oxidation of ammonia (NH(3)) by selective catalytic oxidation (SCO) over a Pt-Pd-Rh cordierite monolith catalyst in a tubular fixed-bed flow quartz reactor (TFBR) at temperatures between 423 and 623K. A Pt-Pd-Rh cordierite monolith catalyst was prepared by incipient wetness impregnation with aqueous solutions of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3) that were coated on cordierite substances. The catalysts were characterized using XRD, PSA and SEM. The experimental results show that around 99.0% NH(3) removal was achieved during catalytic oxidation over the Pt-Pd-Rh cordierite monolith catalyst at 623K with oxygen content of 4%. N(2) was the main product in the NH(3)-SCO process over the Pt-Pd-Rh cordierite monolith catalyst. These results also verify that the Pt-Pd-Rh metals on cordierite monolith surfaces, resulting in the formation of catalytically active sites at the metal-support interface in the reduction of NH(3) in the process. PMID:20451319

  5. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  6. Production from multiple zones of a tar sands formation

    DOEpatents

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  7. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  8. Hypernuclear Formation Through Kaon Electromagnetic Production.

    NASA Astrophysics Data System (ADS)

    Hsiao, Shian-Shyong

    The formation and excitation of hyperon systems through kaon (K('+) meson) photo and electroproduction, ((gamma),K('+)) and (e,e'K('+)) reactions, is theoretically investigated. The elementary kaon electroproduction process ep (--->) e'K('+)(LAMDA) is described using the first order, one-photon exchange approximation and related to kaon virtual -photoproduction through the polarization density matrix formalism. The fundamental current operator is expressed in terms of six invariant amplitudes obtained from evaluating five diagrams representing the exchange of baryons (p,(LAMDA),(SIGMA)('0)) in the s and u channel and mesons (K('+),(' )K*) in the t channel. Electromagnetic form factors are needed for each photon vertex and the hadronic coupling constants are obtained from a previous phenomenological photoproduction analysis. An improved description of the limited p(e,e'K('+))(LAMDA) experimental data is obtained when the kaon form factor is governed by the (phi) meson (vector dominance model) which provides further constraints for the size of the kaon. The reaction d(e,e'K('+))(LAMDA)n is treated in the relativistic impulse approximation by combining the deuteron vertex function with a covariant description of the elementary process ep (--->) e'K('+)(LAMDA). A covariant factorization method is employed to reduce the formula to the nonrelativistic limit. The off-shell and relativistic effects are found to be small. The sensitivity of the differential cross section (corresponding to double coincidence measurements) to the kaon form factor is comparable to the sensitivity to the deuteron wave function (Reid-soft core and Hamada-Johnston potentials are adopted) and for zero degree kaons the two effects cancel. The ingredients for describing the hypernuclear formation reactions A(e,e'K('+))(,(LAMDA))B and A((gamma), K('+))(,(LAMDA))B are the elementary one- body current operator and the nuclear shell model wave functions. The particle (lambda)-hole (proton) formalism is

  9. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  10. Methods of increasing hydrocarbon production from subterranean formations

    SciTech Connect

    Penny, G.S.; Gardner, T.R.

    1986-04-29

    A method is described of increasing the production of hydrocarbons from a hydrocarbon-containing subterranean carbonate-containing formation comprising introducing into the subterranean formation an anionic perfluoro substituted compound in a liquid carrier fluid whereby the compound is absorbed onto surfaces of the formation to reduce wetting of the surfaces by either hydrocarbons or water, the anionic perfluoro substituted compound being selected from individual compounds and mixtures thereof.

  11. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  12. Monolithic MACS micro resonators

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  13. Monolithic MACS micro resonators.

    PubMed

    Lehmann-Horn, J A; Jacquinot, J-F; Ginefri, J C; Bonhomme, C; Sakellariou, D

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1/P is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4mm rotor at 500MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials. PMID:27544845

  14. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  15. Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography.

    PubMed

    Laschober, Stefan; Sulyok, Michael; Rosenberg, Erwin

    2007-03-01

    The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol-gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 microm, diameters of the xerogel network vary from 0.4 to 12 microm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks. PMID:17241639

  16. Development of oxide fibrous monolith systems.

    SciTech Connect

    Goretta, K. C.

    1999-03-02

    Fibrous monolithic ceramics generally have a cellular structure that consists of a strong cell surrounded by a weaker boundary phase [1-5]. Fibrous monoliths (FMs) are produced from powders by conventional ceramic fabrication techniques, such as extrusion [1,2]. When properly engineered, they exhibit fail gracefully [3-5]. Several compositions of ceramics and cermets have been processed successfully in fibrous monolithic form [4]. The most thoroughly investigated fibrous monolith consists of Si{sub 3}N{sub 4} cells and a BN cell-boundary phase [3-5]. Through appropriate selection of initial powders and extrusion and hot-pressing parameters, very tough final products have been produced. The resultant high toughness is due primarily to delamination during fracture along textured platelike BN grains. The primary objectives of our program are to develop: (1) Oxide-based FMs, including new systems with improved properties; (2) FMs that can be pressureless sintered rather than hot-pressed; (3) Techniques for continuous extrusion of FM filaments, including solid freeform fabrication (SFF) for net-shape fabrication of FMs; (4) Predictive micromechanical models for FM design and performance; and (5) Ties with industrial producers and users of FMs.

  17. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  18. Biomimetic superelastic graphene-based cellular monoliths.

    PubMed

    Qiu, Ling; Liu, Jeffery Z; Chang, Shery L Y; Wu, Yanzhe; Li, Dan

    2012-01-01

    Many applications proposed for graphene require multiple sheets be assembled into a monolithic structure. The ability to maintain structural integrity upon large deformation is essential to ensure a macroscopic material which functions reliably. However, it has remained a great challenge to achieve high elasticity in three-dimensional graphene networks. Here we report that the marriage of graphene chemistry with ice physics can lead to the formation of ultralight and superelastic graphene-based cellular monoliths. Mimicking the hierarchical structure of natural cork, the resulting materials can sustain their structural integrity under a load of >50,000 times their own weight and can rapidly recover from >80% compression. The unique biomimetic hierarchical structure also provides this new class of elastomers with exceptionally high energy absorption capability and good electrical conductivity. The successful synthesis of such fascinating materials paves the way to explore the application of graphene in a self-supporting, structurally adaptive and 3D macroscopic form. PMID:23212370

  19. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  20. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  1. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  2. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  3. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  4. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  5. Subsetting and Formatting Landsat-7 LOR ETM+ and Data Products

    NASA Technical Reports Server (NTRS)

    Reid, Michael R.

    2000-01-01

    The Landsat-7 Processing System (LPS) processes Landsat-7 Enhanced Thematic Mapper (ETM+) instrument data into large, contiguous segments called "subintervals" and stores them in Level OR (LOR) data files. The LPS processed subinterval products must be subsetted and reformatted before the Level I processing systems can ingest them. The initial full subintervals produced by the LPS are stored mainly in HDF Earth Observing System (HDF-EOS) format which is an extension to the Hierarchical Data Format (HDF). The final LOR products are stored in native HDF format. Primarily the EOS Core System (ECS) and alternately the DAAC Emergency System (DES) subset the subinterval data for the operational Landsat-7 data processing systems. The HDF and HDF-EOS application programming interfaces (APIs) can be used for extensive data subsetting and data reorganization. A stand-alone subsetter tool has been developed which is based on some of the DES code. This tool makes use of the HDF and HDFEOS APIs to perform Landsat-7 LOR product subsetting and demonstrates how HDF and HDFEOS can be used for creating various configurations of full LOR products. How these APIs can be used to efficiently subset, format, and organize Landsat-7 LOR data as demonstrated by the subsetter tool and the DES is discussed.

  6. Primordial black holes formation from particle production during inflation

    NASA Astrophysics Data System (ADS)

    Erfani, Encieh

    2016-04-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations.

  7. Applications of horizontal well completions to gas-productive formations

    SciTech Connect

    Hill, R.E.; Peterson, R.E.; Middlebrook, M.I. ); Aslakson, J.K. )

    1993-08-01

    The Gas Research Institute (GRI) has initiated a project to determine the reservoir characteristics and appropriate horizontal well designs in various gas-productive formations. The goal of the project is to evaluate horizontal completions as a means of reducing unit production costs in comparison to vertical well-completion methods. Three gas-productive formations were evaluated in the initial phase of the project: the Mancos B on the Douglas Creek arch in northwestern Colorado; the Davis Sand in the Fort Worth basin; and the Barnett Shale, also in the Fort Worth basin. Geologic and engineering data from vertical wells were collected for each formation and used to strategically plan offset horizontal wells. Specifically, information was gathered to characterize the natural and induced fractures, model the reservoirs, and establish a production baseline for each reservoir. The next phase involved GRI participation in the drilling of the three offset horizontal wells with three independent producers. A 1500-ft horizontal section was air drilled across the Mancos B; a 2000-ft horizontal well was air drilled in the Davis sandstone; and a 2000-ft horizontal section was fluid drilled across the 300-ft-thick Barnett Shale. Each of the horizontal wells exhibit varying reservoir characteristics and associated gas production.

  8. Formative Assessment Probes: Talk Moves. A Formative Assessment Strategy for Fostering Productive Probe Discussions

    ERIC Educational Resources Information Center

    Keeley, Page

    2016-01-01

    Formative assessment probes can be used to foster productive science discussions in which students make their thinking visible to themselves, their peers, and the teacher. During these discussions, there is an exchange between the teacher and students that encourages exploratory thinking, supports careful listening to others' ideas, asks for…

  9. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  10. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  11. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  12. Modelling of growth and product formation of Porphyridium purpureum.

    PubMed

    Fleck-Schneider, Pascale; Lehr, Florian; Posten, Clemens

    2007-10-31

    In this contribution experimental data and simulations of growth and product formation of the unicellular microalgae Porphyridium purpureum are presented. A mathematical model has been developed for a better understanding of growth and product formation in production plants. The model has been refined with the results of several cultivations in a new photobioreactor designed especially for the study of microalgal kinetics under highly defined illumination conditions. In this photobioreactor light is generated by an external light source and then distributed by means of optical fibres into an internal draft tube which also serves as irradiation element. All cultivations were performed in turbidostate mode. The influence of different light intensity changes, including stepwise change and light-dark cycles in the range from millisecond to second, has been investigated and the results were integrated into the mathematical model. The structured mathematical model consists of three levels: metabolic flux, control of macromolecules and the reactor level. A new linear optimization approach has been realized, enabling the model to describe even very different cultivation conditions. Output variables are among others the commercially interesting macromolecules of the microalgae, e.g. polysaccharides, pigments and polyunsaturated fatty acids. Thus, reliable predictions of the specific production rates of these products are possible for the production in a larger scale.

  13. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  14. Formation and Stability of Radiation Products in Europa's Icy Shell

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Carlson, R. W.; Ferrante, R. F.

    2004-01-01

    Spectra of Europa reveal a surface dominated by water-ice along with hydrated materials and minor amounts of SO2, CO2, and H2O2. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons produce significant chemical modifications of the surface on time scales of a few years at micrometer depths. Our laboratory studies examine the formation and stability of radiation products in H2O-rich ices relevant to Europa. Infrared (IR) spectra of ices before and after irradiation reveal the radiation destruction of molecules and the formation of products at 86 - 132 K. In addition, spectra of ices during warming track thermal evolution due to chemical changes and sublimation processes. IR-identified radiation products in 86 - 132 K irradiated H2O + SO2 ices are the bisulfate ion, HSO4(-), sulfate ion, SO4(2-) and the hydronium ion, H3O(+). Warming results in the formation of a residual spectrum similar to liquid sulfuric acid, H2SO4, for H2O:SO2 ratios of 30:1, whereas hydrated sulfuric acid, H2SO4 4 H2O, forms for ratios of 30:1. Radiation products identified for irradiated H2O + H2S ices at 86 K are H2S2 and SO2. When irradiated at 110 and 132 K, ices with H2O:H2S ratios if either 3:1 or 30:1 show the formation of H2SO4 4 H2O on warming to 175 K. We have also examined the radiation stability of H2SO4. Addition of CO2 to H2O + SO2 ices results in the formation of CO3 at 2046 cm (sup -1) (4.89 m). This is the strongest band from a carbon-containing product in the mid-IR spectral region, and it is also seen when either pure CO2 or H2O + CO2 ice is irradiated. Experiments with CH4 added to H2O + SO2 + CO2 ices addressed the question of methane's use as a marker of methanogens in an irradiated ice environment. New results on the near-IR spectrum of pure H2O2 will be included in this presentation. Interpretations of near-IR water bands, with H2O2 present, will be discussed. Irradiations of H2O2 and H2O + H2O2 mixtures, to examine the possibility of O2 and O3

  15. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  16. Reducing the potential for processing contaminant formation in cereal products

    PubMed Central

    Curtis, Tanya Y.; Postles, Jennifer; Halford, Nigel G.

    2014-01-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  17. LANDSAT-D data format control book. Volume 6: (Products)

    NASA Technical Reports Server (NTRS)

    Kabat, F.

    1981-01-01

    Four basic product types are generated from the raw thematic mapper (TM) and multispectral scanner (MSS) payload data by the NASA GSFC LANDSAT 4 data management system: (1) unprocessed data (raw sensor data); (2) partially processed data, which consists of radiometrically corrected sensor data with geometric correction information appended; (3) fully processed data, which consists of radiometrically and geometrically corrected sensor data; and (4) inventory data which consists of summary information about product types 2 and 3. High density digital recorder formatting and the radiometric correction process are described. Geometric correction information is included.

  18. Enhanced product formation in continuous fermentations with microbial cell recycle

    SciTech Connect

    Bull, D.N.; Young, M.D.

    1981-02-01

    The effect of partial recycle of microbial cells on the operation of a chemostat has been investigated for two fermentations. Stable steady states with and without partial cell recycle were obtained for the conversion of d-sorbitol to L-sorbose by Gluconobacter oxydans subsp. suboxydans 1916B and for the conversion of glucose to 2-ketogluconic acid by Serratia marcescens NRRl B-486. The employment of partial cell recycle dramatically increased product formation rates for both fermentations.

  19. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, Joseph W.

    1992-01-01

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  20. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, Joseph W.

    1994-01-01

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  1. Improved methods of forming monolithic integrated circuits having complementary bipolar transistors

    NASA Technical Reports Server (NTRS)

    Bohannon, R. O., Jr.; Cashion, W. F.; Stehlin, R. A.

    1971-01-01

    Two new processes form complementary transistors in monolithic semiconductor circuits, require fewer steps /infusions/ than previous methods, and eliminate such problems as nonuniform h sub FE distribution, low yield, and large device formation.

  2. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  3. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  4. Factorizing monolithic applications

    SciTech Connect

    Hall, J.H.; Ankeny, L.A.; Clancy, S.P.

    1998-12-31

    The Blanca project is part of the US Department of Energy`s (DOE) Accelerated Strategic Computing Initiative (ASCI), which focuses on Science-Based Stockpile Stewardship through the large-scale simulation of multi-physics, multi-dimensional problems. Blanca is the only Los Alamos National Laboratory (LANL)-based ASCI project that is written entirely in C++. Tecolote, a new framework used in developing Blanca physics codes, provides an infrastructure for gluing together any number of components; this framework is then used to create applications that encompass a wide variety of physics models, numerical solution options, and underlying data storage schemes. The advantage of this approach is that only the essential components for the given model need be activated at runtime. Tecolote has been designed for code re-use and to isolate the computer science mechanics from the physics aspects as much as possible -- allowing physics model developers to write algorithms in a style quite similar to the underlying physics equations that govern the computational physics. This paper describes the advantages of component architectures and contrasts the Tecolote framework with Microsoft`s OLE and Apple`s OpenDoc. An actual factorization of a traditional monolithic application into its basic components is also described.

  5. Hyperosmotic Stress Reduces Melanin Production by Altering Melanosome Formation

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure. PMID:25170965

  6. Theoretical aspects of product formation from the NCO + NO reaction

    SciTech Connect

    Lin, M.C.; He, Y. ); Melius, C.F. )

    1993-09-09

    The reaction of NCO with NO, an important elementary process involved in the reduction of NO[sub x] by HNCO, has been studied theoretically using the BAC-MP4 technique in conjunction with RRKM calculations. The computed molecular structures and thermochemical data for various intermediates and transition states suggest that the reaction takes place primarily via the singlet, ground electronic state OCNNO molecule according to the following mechanism; (step a) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] N[sub 2]O + CO; (step b) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] c-OCNNO[minus] N[sub 2] + CO[sub 2]. The formation of N[sub 2]O + CO occurs by the fragmentation of the singlet OCNNO intermediate step (a), whereas the production of N[sub 2] + CO[sub 2] by cyclization-fragmentation occurs via step b. The tight transition states leading to the formation of these products, coupled with the loose entrance channel, give rise to the experimentally observed strong negative temperature dependence which can be quantitatively accounted for by the results of RRKM calculations based on the BAC-MP4 data. The experimentally measured product branching ratio for channels a and b could be accounted for theoretically by lowering the calculated energy barrier for step a by 3.6 kcal/mol, corresponding to about 15% of the barrier height. 22 refs., 3 figs., 5 tabs.

  7. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water.

  8. Disinfection by-product formation during seawater desalination: A review.

    PubMed

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water. PMID:26099832

  9. Formation of organochlorine by-products in bleached laundry.

    PubMed

    Leri, Alessandra C; Anthony, Laura N

    2013-02-01

    Laundering fabrics with chlorine bleach plays a role in health and hygiene as well as aesthetics. However, laundry bleaching may create chlorinated by-products with potentially adverse human health effects. Studies have shown that toxic chlorinated gases are produced in the headspace of washing machines when hypochlorite-containing bleach is used. Laundry bleaching has also been implicated in contributing dissolved organochlorine to municipal wastewater. However, there have been no reports of organochlorines produced and retained in fabric as a result of laundry bleaching. We have used a chlorine-specific X-ray spectroscopic analysis to demonstrate the formation of organochlorine by-products in cotton fabrics laundered with chlorine bleach under typical household conditions. Organochlorine formation increases at higher wash temperature. At least two pools of organochlorine are produced in bleached fabric: a labile fraction that diminishes over several months of storage time as well as a more stable fraction that persists after more than 1 year. Our results also suggest that residual hypochlorite remains in fabric after laundering with bleach, presenting the possibility of direct and sustained dermal contact with reactive chlorine. This study provides a first step toward identifying a new risk factor for elevated organochlorine body burdens in humans.

  10. Nursing Doctorates in Brazil: research formation and theses production

    PubMed Central

    Scochi, Carmen Gracinda Silvan; Gelbcke, Francine Lima; Ferreira, Márcia de Assunção; Lima, Maria Alice Dias da Silva; Padilha, Katia Grillo; Padovani, Nátali Artal; Munari, Denize Bouttelet

    2015-01-01

    OBJECTIVE: to analyze the formation of nursing doctorates in Brazil, from theses production, disciplines and other strategies focusing on research offered by courses. METHOD: a descriptive and analytical study of the performance of 18 doctoral courses in nursing, running from 1982 to 2010, and defended their theses between 2010-2012. RESULTS: 502 theses were defended in this period, most linked to the online research process of health and nursing care. There are gaps in the knowledge of theoretical and philosophical foundations of care, nursing history and ethics. There are also weaknesses in the methodological design of the theses, with a predominance of descriptive and/or exploratory studies. This was consistent with international standards set with regards to the proposition of research of disciplines and complementary strategies in forming the doctorate. CONCLUSION: despite the efforts and advances in research formation, it is essential to expand to more robust research designs with a greater impact on production knowledge that is incorporated into practice. PMID:26312630

  11. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.; Matthias, Sabrina

    2014-10-01

    Beam expanding is a common task, where Galileo telescopes are preferred. However researches and customers have found limitations when using these systems. A new monolithical solution which is based on the usage of only one aspherical component will be presented. It will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Insights will be given how aspherical beam expanding systems will help using larger incoming beams and reducing the overall length of such a system. Additionally an add-on element for divergence and wavelength adaption will be presented.

  12. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  13. Rationally Engineered Synthetic Coculture for Improved Biomass and Product Formation

    PubMed Central

    Santala, Suvi; Karp, Matti; Santala, Ville

    2014-01-01

    In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications. PMID:25470793

  14. Rationally engineered synthetic coculture for improved biomass and product formation.

    PubMed

    Santala, Suvi; Karp, Matti; Santala, Ville

    2014-01-01

    In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications. PMID:25470793

  15. Fabrication of large-sized silica monolith exceeding 1000 mL with high structural homogeneity.

    PubMed

    Miyamoto, Riichi; Ando, Yukiko; Kurusu, Chie; Bai, Hong-zhi; Nakanishi, Kazuki; Ippommatsu, Masamichi

    2013-06-01

    Reproducible fabrication of the hierarchically porous monolithic silica in a large volume exceeding 1000 mL has been established. By the hydrothermal enlargement of the fully accessible small pores to exceed 50 nm in diameter, the capillary force emerged on solvent evaporation was dramatically reduced, which allowed the preparation of crack-free monoliths with evaporative solvent removal under an ambient pressure. The local temperature inhomogeneity within a reaction vessel in a large volume was precisely controlled to cancel the heat evolved by the hydrolysis reaction of tetramethoxysilane and that consumed to melt ice cubes dispersed in the solution, resulting in large monolithic silica pieces with improved structural homogeneity. Homogeneity of the pore structure was confirmed, both on macro- and mesoscales, using SEM, mercury intrusion, and nitrogen adsorption/desorption measurements. Furthermore, the deviations in chromatographic performance were examined by evaluating multiple smaller monolithic columns prepared from the monolithic silica pieces cut from different parts of a large monolith. All the daughter columns thus prepared exhibited comparable performances to each other to prove the overall homogeneity of the mother monolith. Preliminary results on high-speed separation of peptides and proteins by the octadecylsilylated silica monolith of the above production have also been demonstrated. PMID:23568889

  16. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  17. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  18. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  19. Palaeoenvironmental Indications of Enhanced Primary Productivity During Pliocene Sapropel Formation

    NASA Astrophysics Data System (ADS)

    Menzel, D.; Hopmans, E. C.; Schouten, S.; van Bergen, P. F.; Sinninghe Damste, J. S.

    2001-12-01

    Cores taken during the Ocean Drilling Program (ODP) Leg 160 in the eastern Mediterranean basin revealed periodic, laminated intervals with high organic contents, i.e. sapropels (Emeis et al., 1996). These include Pliocene sediments showing cyclic variations in organic matter deposition strongly correlated to the precession cyclicity of the Earth's orbit (e.g. Rossignol-Strick, 1985; Lourens et al., 1996a). The two main causes for sapropel formation are either climate-related enhanced organic matter productivity and/or increased preservation due to oxygen depletion of the bottom waters (e.g. Calvert et al., 1992; Canfield, 1994). Increased productivity is suggested to be the driving force in generating euxinic conditions leading to sapropel deposition (e.g. Passier et al., 1999). Photic zone euxinia was most probably triggered by large-scale input of nutrients from the Nile and other rivers leading to enhanced primary productivity and consequently high organic matter fluxes. This was based on concentrations of isorenieratene, a biomarker of photic zone euxinia, studied in three lateral time-equivalent Pliocene sapropels (subm. Menzel et al., 2001). Photic zone euxinia was more pronounced at the central and western part of the eastern Mediterranean basin, when compared with the most eastern part, where a deepening of the chemocline resulted from the increased delivery of fresh water. Using additional biomarkers will provide detailed insights in palaeoenvironmental changes that caused high organic matter deposition. The quantitative analysis of compounds specific for phytoplankton classes, e.g. isololiolides and loliolides reflecting Bacillariophyta, C37 - C39 alkenones indicative of Prymnesiophyta etc., will result in reconstruction of compositions of the standing crop and changes thereof at the time of deposition. The quantitative analysis of long-chain n-alkanes, indicating higher land plants, could reveal river input into the basin. Carbon isotope compositions of

  20. Monolithic-integrated microlaser encoder.

    PubMed

    Sawada, R; Higurashi, E; Ito, T; Ohguchi, O; Tsubamoto, M

    1999-11-20

    We have developed an extremely small integrated microencoder whose sides are less than 1 mm long. It is 1/100 the size of conventional encoders. This microencoder consists of a laser diode, monolithic photodiodes, and fluorinated polyimide waveguides with total internal reflection mirrors. The instrument can measure the relative displacement between a grating scale and the encoder with a resolution of the order of 0.01 microm; it can also determine the direction in which the scale is moving. By using the two beams that were emitted from the two etched mirrors of the laser diode, by monolithic integration of the waveguide and photodiodes, and by fabrication of a step at the edge of the waveguide, we were able to eliminate conventional bulky optical components such as the beam splitter, the quarter-wavelength plate, bulky mirrors, and bulky photodetectors. PMID:18324228

  1. Formative Evaluation of Instructional Products: Is It Worth It?

    ERIC Educational Resources Information Center

    Schoen, Frederick, E.; Childs, John W.

    Formative evaluation of instructional materials may not be time efficient or cost effective. Scriven's definition of formative evaluation, used in this paper, applies to the assessment and refinement of instructional materials still under development. Implementation of formative evaluation techniques does not seem to yield significant improvement…

  2. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  3. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography.

    PubMed

    Vonk, Rudy J; Vaast, Axel; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2014-09-12

    Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%). The kinetic-performance of (50-mm long) titanium-scaffolded monoliths was compared to that of similar monolith created in 1-mm i.d. glass-lined tubing at pressures up to 50MPa. The peak capacities obtained with the titanium-scaffolded column was about 30% lower. An increased Eddy-diffusion, due to the pillar-structure, and a decreased permeability are thought to be the main reasons for this reduced kinetic-performance. No decrease in performance was observed when the titanium-scaffolded columns were operated at pressures of 80MPa for up to 12h. The column-to-column repeatability (n=5) was acceptable in terms of observed peak widths at half heights (RSD ca. 10%) The run-to-run repeatability (n=135) in terms of retention times and peak widths at half height were found to be good. Titanium-scaffolded columns coupled in series up to a combined length of (200mm) were used for the analyses of a complex Escherichia coli protein sample. Our experiments demonstrate that columns based on titanium-scaffolded organic-polymer monolith can be operated under strenuous conditions without loss in performance. The titanium-scaffolded approach makes it feasible to create organic-polymer monoliths in wide-bore columns with accurate temperature control.

  4. Monolithic electronics for the WA98 leadglass calorimeter

    SciTech Connect

    Young, G.R.; Awes, T.C.; Alley, C.L.

    1995-04-01

    A set of electronics have been constructed, installed and operated for the 10,800 element leadglass photon calorimeter that is part of CERN experiment WA98 studying photon production in relativistic heavy-ion collisions of 160.A GeV{sup 208}Pb with targets of Ni, Nb and Pb. Two custom monolithic CMOS circuits were developed for this project. One chip includes 8 channels each of integrator, dual gain amplifier, fast amplifier, and CFD, as well as calibration circuits for amplitude and timing, threshold DACs, and current-mode trigger sum and discriminator. The second includes 16 channels of analog memory, 8 channels of TAC, a 24-channel Wilkinson 10 bit ADC, and buffers. The system is implemented as 72 144-channel circuit boards. Custom interface boards were also developed. A set of 26 model TMS320C40 digital signal processors is used to collect, zero-suppress and format the output data. Experience with data-taking using the {sup 208}Pb beam will be reported.

  5. Minimization of the formation of disinfection by-products.

    PubMed

    Badawy, Mohamed I; Gad-Allah, Tarek A; Ali, Mohamed E M; Yoon, Yeoman

    2012-09-01

    The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA(254)), specific UV absorbance at 254 nm (SUVA(254)), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.

  6. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions.

  7. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions. PMID:15354560

  8. Engineering a Hyperthermophilic Archaeon for Temperature-Dependent Product Formation

    SciTech Connect

    Basen, M; Sun, JS; Adams, MWW

    2012-02-24

    Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100 degrees C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [T-opt] of 78 degrees C) controlled by a "cold shock" promoter that is upregulated when cells are transferred from 98 degrees C to 72 degrees C. At 98 degrees C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72 degrees C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100 degrees C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100 degrees C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter

  9. Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution

    NASA Astrophysics Data System (ADS)

    Utton, C. A.; Hand, R. J.; Hyatt, N. C.; Swanton, S. W.; Williams, S. J.

    2013-11-01

    To simulate the possible disposition of a vitrified intermediate-level waste (ILW) in a cementitious environment within a geological disposal facility (GDF), the durability of a laboratory simulant ILW vitrified in a borosilicate glass in a saturated Ca(OH)2 solution (pH ˜12.5) was measured. Both a low surface area to volume (SA/V) ratio (˜10 m-1) Materials Characterisation Center test 1 (MCC-1) and a high SA/V ratio (˜10,000 m-1) product consistency test type B (PCT-B) were used at 50 °C for up to 170 days. The formation of alteration layers and products was followed. The surfaces of the monoliths were analysed using SEM/EDX and showed the formation of magnesium-rich precipitates and distinct calcium silicate hydrate (CSH) precipitates. Cross sections showed the development of a calcium-rich alteration layer, which was observed from 14 days. The altered layer was up to 5 μm thick after 170 days and showed accumulation of zirconium, iron and magnesium and to a lesser extent aluminium, along with calcium and silicon. Based on comparison of the rate data, it is suggested that the presence of this layer may offer some protection to the underlying glass. However, the high SA/V ratio experiments showed resumed alteration after 56 days, indicating that the altered layer may not be protective in the long term (under accelerated conditions). The formation of a magnesium-containing smectite clay (likely saponite) in addition to CSH(II), a jennite-like CSH phase, were identified in the high SA/V experiment by X-ray diffraction after 170 days. These results suggest that calcium and magnesium have important roles in both the long and shorter-term durability of vitrified wastes exposed to high pH. This is higher than the value of 63 kJ mol-1 reported by Abraitis [21]. This appears to originate from a mathematical error in calculating the activation energy, given the underlying data reported, reproduced here in Table 3.

  10. Development of monolithically integrated silicon-film modules

    NASA Astrophysics Data System (ADS)

    Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Lampros, T. H.; Ruffins, T. R.; Hall, R. B.; Barnett, A. M.

    1992-12-01

    Silicon-Film Product III is being developed into a low cost, stable device for large scale terrestrial power applications. The Product III structure is a thin (<100 μm) polycrystalline silicon layer on a non-conductive supporting ceramic substrate as illustrated in Figure 1. The presence of the substrate allows cells to be isolated and interconnected monolithically. The long term goal for the product is over 18% conversion efficiency on areas greater than 1200 cm2. The high efficiency will be based on polycrystalline thin silicon incorporated into a light trapping structure with a passivated back surface. Short term goals are focused on the development of large area ceramics, a monolithic interconnection process, and fabricating 100 cm2 solar cells.

  11. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    PubMed

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  12. Counterflow isotachophoresis in a monolithic column.

    PubMed

    Liu, Bingwen; Cong, Yongzheng; Ivory, Cornelius F

    2014-09-01

    This study describes stationary counterflow isotachophoresis (ITP) in a poly(acrylamide-co-N,N'-methylenebisacrylamide) monolithic column as a means for improving ITP processing capacity and reducing dispersion. The flow profile in the monolith was predicted using COMSOL's Brinkman Equation application mode, which revealed that the flow profile was mainly determined by monolith permeability. As monolith permeability decreases, the flow profile changes from a parabolic shape to a plug shape. An experimental monolithic column was prepared in a fused-silica capillary using an ultraviolet-initiated polymerization method. A monolithic column made from 8% (wt.) monomer was chosen for the stationary counterflow ITP experiments. Counterflow ITP in the monolithic column showed undistorted analyte zones with significantly reduced dispersion compared to the severe dispersion observed in an open capillary. Particularly, for r-phycoerythrin focused by counterflow ITP, its zone width in the monolithic column was only one-third that observed in an open capillary. These experiments demonstrate that stationary counterflow ITP in monoliths can be a robust and practical electrofocusing method.

  13. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  14. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  15. Seizure-induced formation of isofurans: novel products of lipid peroxidation whose formation is positively modulated by oxygen tension.

    PubMed

    Patel, Manisha; Liang, Li-Ping; Hou, Huagang; Williams, Benjamin B; Kmiec, Maciej; Swartz, Harold M; Fessel, Joshua P; Roberts, L Jackson

    2008-01-01

    We have previously shown that seizures induce the formation of F(2)-isoprostanes (F(2)-IsoPs), one of the most reliable indices of oxidative stress in vivo. Isofurans (IsoFs) are novel products of lipid peroxidation whose formation is favored by high oxygen tensions. In contrast, high oxygen tensions suppress the formation of F(2)-IsoPs. The present study determined seizure-induced formation of IsoFs and its relationship with cellular oxygen levels (pO2). Status epilepticus (SE) resulted in F(2)-IsoP and IsoF formation, with overlapping but distinct time courses in hippocampal subregions. IsoF, but not F(2)-IsoP formation coincided with mitochondrial oxidative stress. SE resulted in a transient decrease in hippocampal pO2 measured by in vivo electron paramagnetic resonance oximetry suggesting an early phase of seizure-induced hypoxia. Seizure-induced F(2)-IsoP formation coincided with the peak hypoxia phase, whereas IsoF formation coincided with the 'reoxygenation' phase. These results demonstrate seizure-induced increase in IsoF formation and its correlation with changes in hippocampal pO2 and mitochondrial dysfunction. PMID:17953661

  16. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  17. Improved monolithic tandem solar cell

    SciTech Connect

    Wanlass, M.W.

    1991-04-23

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  18. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  19. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  20. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  1. Nitrate photochemistry in NaY zeolite: product formation and product stability under different environmental conditions.

    PubMed

    Gankanda, Aruni; Grassian, Vicki H

    2013-03-14

    In the atmosphere, mineral dust particles are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides (N2O5, HNO3, NO3, and NO2). Nitrate ions associated with mineral dust particles can undergo further reactions including those initiated by solar radiation. Although nitrate photochemistry in aqueous media is fairly well studied, much less is known about the photochemistry of nitrate adsorbed on mineral dust particles. In this study, the photochemistry of nitrate from HNO3 adsorption in NaY zeolite under different environmental conditions has been investigated using transmission FTIR spectroscopy. NaY zeolite is used as a model zeolite for studying reactions that can occur in confined space such as those found in porous materials including naturally occurring zeolites and clays. Upon nitrate photolysis under dry conditions (relative humidity, RH, < 1%), surface nitrite is formed as the major adsorbed product. Although nitrite has been proposed as a product in the photochemistry of nitrate adsorbed on metal oxide particle surfaces, such as on alumina, it has not been previously detected. The stability of adsorbed nitrite in NaY is attributed to the confined three-dimensional structure of the porous zeolite, which contains a charge compensating cation that can stabilize the nitrite ion product. Besides adsorbed nitrite, small amounts of gas phase nitrogen-containing products are observed as well including NO2, NO, and N2O at long irradiation times. The amount of nitrite formed via nitrate photochemistry decreases with increasing relative humidity, whereas gas phase NO and N2O become the only detectable products. Gas-phase NO2 does not observe at RH > 1%. In the presence of gas phase ammonia, ammonium nitrate is formed in NaY zeolite. Photochemistry of ammonium nitrate yields gas phase N2O as the sole gas phase product. Evidence for an NH2 intermediate in the formation of N2O is identified with FTIR spectroscopy for HNO3 adsorption and

  2. Formation and Occurrence of Disinfection By-Products

    EPA Science Inventory

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  3. Adsorption over polyacrylonitrile based carbon monoliths

    NASA Astrophysics Data System (ADS)

    Nandi, Mahasweta; Dutta, Arghya; Patra, Astam Kumar; Bhaumik, Asim; Uyama, Hiroshi

    2013-02-01

    Highly porous activated carbon monoliths have been prepared from mesoporous polyacrylonitrile (PAN) monolith as the carbon precursor. The mesoporous PAN monoliths are fabricated by a unique and facile template-free method which on carbonization gives N-doped activated carbon monoliths. The carbonization is achieved via two step thermal process which includes pretreatment in air leading to cyclization and subsequent aromatization of the PAN moieties followed by carbonization in a mixture of argon and carbon dioxide to give a layered carbon framework. Nitrogen sorption experiments carried over these carbon monoliths revealed high surface area (ca. 2500 m2g-1) for these materials with precise micropore size distribution. The activated carbons show extraordinarily high CO2 capture capacity and the uptake up to 3 bar has been found to be as high as 22.5 and 10.6 mmol/g at 273 K and 298 K, respectively.

  4. "Smart" molecularly imprinted monoliths for the selective capture and easy release of proteins.

    PubMed

    Wen, Liyin; Tan, Xinyi; Sun, Qi; Svec, Frantisek; Lv, Yongqin

    2016-08-01

    A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2-bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein-imprinted poly(N-isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy of the cross-sections of imprinted monoliths confirmed the formation of dense poly(N-isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this "smart" imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH. PMID:27352958

  5. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, J.W.

    1995-01-17

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  6. Method and apparatus for production of subsea hydrocarbon formations

    DOEpatents

    Blandford, Joseph W.

    1995-01-01

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  7. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  8. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  9. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  10. Acrylamide: formation, occurrence in food products, detection methods, and legislation.

    PubMed

    Arvanitoyannis, Ioannis S; Dionisopoulou, Niki

    2014-01-01

    This review aims at summarizing the most recent updates in the field of acrylamide (AA) formation (mechanism, conditions) and the determination of AA in a number of foods (fried or baked potatoes, chips, coffee, bread, etc). The methods applied for AA detection [Capillary Electrophoresis-Mass Spectrometry (CE-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), Non-Aqueous Capillary Electrophoresis (NACE), High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS), Pressurized Fluid Extraction (PFE), Matrix Solid-Phase Dispersion (MSPD), Gas Chromatography-Mass Spectrometry (GC-MS), Solid-Phase MicroExtraction-Gas Chromatography (SPME-GC), Enzyme Linked Immunosorbent Assay (ELISA), and MicroEmulsion ElectroKinetic Chromatography (MEEKC) are presented and commented. Several informative figures and tables are included to show the effect of conditions (temperature, time) on the AA formation. A section is also included related to AA legislation in EU and US. PMID:24345045

  11. Gravitationally induced particle production and its impact on structure formation

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2016-08-01

    In this paper we investigate the influence of a continuous particles creation processes on the linear and nonlinear matter clustering, and its consequences on the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole l, showing that the scale where the nonlinear growth overcomes the linear effect depends strongly of particles creation rate.

  12. Anisotropically structured magnetic aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  13. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-01

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  14. Investigation of Contact Formation during Silicon Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  15. Overview of Devonian Duperow formation production, Billings anticline, North Dakota

    USGS Publications Warehouse

    Burke, Randolph B.

    1989-01-01

    Oil exploration on the Billings anticline began in earnest in 1978, which is a north-plunging structure in the north central part of southwestern North Dakota. Forty-two fields are included in the Billings anticline area. This paper discusses the following features of the Billings anticline: structure, lithology, Duperow production, and some conservative economic scenarios.

  16. PREDICTING THE FORMATION OF CHLORINATED AND BROMINATED BY-PRODUCTS.

    EPA Science Inventory

    Although disinfection has been and continues to be one of the major public health advances in the 20th century, the disinfectants themselves may react with naturally-occurring materials in treated water to form unintended by-products which may themselves pose risks. This is of p...

  17. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  18. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  19. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations.

    PubMed

    Cabooter, Deirdre; Broeckhoven, Ken; Sterken, Roman; Vanmessen, Alison; Vandendael, Isabelle; Nakanishi, Kazuki; Deridder, Sander; Desmet, Gert

    2014-01-17

    The kinetic performance of commercially available first generation and prototype second generation silica monoliths has been investigated for 2.0mm and 3.0-3.2mm inner diameter columns. It is demonstrated that the altered sol-gel process employed for the production of second generation monoliths results in structures with a smaller characteristic size leading to an improved peak shape and higher efficiencies. The permeability of the columns however, decreases significantly due to the smaller throughpore and skeleton sizes. Scanning electron microscopy pictures suggest the first generation monoliths have cylindrical skeleton branches, whereas the second generation monoliths rather have skeleton branches that resemble a single chain of spherical globules. Using recently established correlations for the flow resistance of cylindrical and globule chain type monolithic structures, it is demonstrated that the higher flow resistance of the second generation monoliths can be entirely attributed to their smaller skeleton sizes, which is also evident from the external porosity that is largely the same for both monolith generations (ɛe∼0.65). The recorded van Deemter plots show a clear improvement in efficiency for the second generation monoliths (minimal plate heights of 13.6-14.1μm for the first and 6.5-8.2μm for the second generation, when assessing the plate count using the Foley-Dorsey method). The corresponding kinetic plots, however, indicate that the much reduced permeability of the second generation monoliths results in kinetic performances (time needed to achieve a given efficiency) which are only better than those of the first generation for plate counts up to N∼45,000. For more complex samples (N≥50,000), the first generation monoliths can intrinsically still provide faster analysis due to their high permeability. It is also demonstrated that - despite the improved efficiency of the second generation monoliths in the practical range of separations (N=10

  20. Formation and control of non-trihalomethane by-products

    SciTech Connect

    Stevens, A.A.; Moore, L.A.; Miltner, R.J.

    1989-01-01

    Hundreds of organic byproducts of chlorination are now known to occur in drinking water along with the trihalomethanes. About twenty of these appear to be found with sufficient frequency and in sufficient concentration to attract consideration for regulations. These include chloral hydrate, chloropicrin, a trichloropropanone, haloacetonitriles, and haloacetic acids. Trihalomethane concentrations do not serve as good predictors of concentrations of these other byproducts because their conditions of formation vary widely. This is especially true when pH is changed. Treatment strategies for control of these byproducts including the trihalomethanes are: Remove the compounds after they are formed; Remove precursors; and Use other disinfectants. Current evidence supports the idea that precursor removal processes effective for trihalomethane control may be effective for the other byproducts as well.

  1. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  2. Enzymic Pathways for Formation of Carotenoid Cleavage Products

    NASA Astrophysics Data System (ADS)

    Fleischmann, Peter; Zorn, Holger

    Degraded carotenoids (apocarotenoids, norisoprenoids) have been a subject of intensive research for several decades. From the perspective of human physiology and nutrition, the retinoids, acting as vitamins, signalling molecules, and visual pigments, attracted the greatest attention (Chapters 15 and 16). Plant scientists, however, detected a wealth of different apocarotenoids, presumably derived by the excentric cleavage of carotenoids in various species, the plant hormone abscisic acid (1, Scheme 6) being the best-investigated example. With the onset of fruit ripening, flower opening or senescence of green tissues, carotenoids are degraded oxidatively to smaller, volatile compounds. The natural biological functions of the reaction products are outlined in Chapter 15. As many of these apocarotenoids act as potent flavour compounds, food chemists and flavourists worldwide have investigated meticulously their structural and sensory properties. Many aspects of carotenoid metabolites and breakdown products as aroma compounds are presented in a comprehensive book [1].

  3. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  4. [Formation of fluorescent products in mitochondria exposed to UV-light].

    PubMed

    Popov, G A; Konev, V V

    1979-01-01

    UV-irradiation of mitochondrial membranes causes formation and accumulation of fluorescing products in the course of incubation, like it takes place during the initiation of peroxide oxidation by the iron--ascorbate system. The rate of the change of mitochondria fluorescence and the level of TBA-products in them do not correlate, which points to the difference in the formation mechanisms of these products in the course of incubation. However, a correlation is observed between the initial fluorescence intensity and the number of TBA-active products in mitochondria, which increases with the increase of the time of UV-irradiation.

  5. Automation of the Technological Process to Produce Building Frame-Monolithic Modules Based on Fluoranhydrite

    NASA Astrophysics Data System (ADS)

    Fedorchuk, J.; Sadenova, M.; Rusina, O.

    2016-01-01

    The paper first proposes the automation of the technological process to produce building frame-monolithic modules from production wastes, namely technogenic anhydrite and fluoranhydrite. A functional diagram of the process automation is developed, the devices to perform control and maintenance with account of the production characteristics are chosen.

  6. Advances in the development of organic polymer monolithic columns and their applications in food analysis--a review.

    PubMed

    Jandera, Pavel

    2013-10-25

    Monolithic continuous separation media are gradually finding their way to sample pre-treatment, isolation, enrichment and final analytical separations of a plethora of compounds, occurring as food components, additives or contaminants, including pharmaceuticals, pesticides and toxins, which have traditionally been the domain of particulate chromatographic materials. In the present review, recent advances in the technology of monolithic columns and the applications in food analysis are addressed. Silica-based monoliths are excellent substitutes to conventional particle-packed columns, improving the speed of analysis for low-molecular weight compounds, due to their excellent efficiency and high permeability. These properties have been recently appreciated in two-dimensional HPLC, where the performance in the second dimension is of crucial importance. Organic-polymer monoliths in various formats provide excellent separations of biopolymers. Thin monolithic disks or rod columns are widely employed in isolation, purification and pre-treatment of sample containing proteins, peptides or nucleic acid fragments. Monolithic capillaries were originally intended for use in electrochromatography, but are becoming more frequently used for capillary and micro-HPLC. Monoliths are ideal highly porous support media for immobilization or imprinting template molecules, to provide sorbents for shape-selective isolation of target molecules from various matrices occurring in food analysis. The separation efficiency of organic polymer monoliths for small molecules can be significantly improved by optimization of polymerization approach, or by post-polymerization modification. This will enable full utilization of a large variety of available monomers to prepare monoliths with chemistry matching the needs of selectivity of separations of various food samples containing even very polar or ionized compounds.

  7. Monolithic integrated-optic TDLAS sensors

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Scherer, David R.; Wainner, Richard T.; Allen, Mark G.; Shankar, Raji; Loncar, Marko

    2012-06-01

    We are developing prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on infrared Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals with high sensitivity and selectivity. Using semiconductor fabrication and assembly techniques, the low-cost integrated optic TDLAS technology will permit mass production of sensors that have wide ranging industrial, medical, environmental, and consumer applications. Novel gas sensing elements using low-loss resonant photonic crystal cavities or waveguides will permit monolithic integration of a laser source, sampling elements, and detector on a semiconductor materials system substrate. Practical challenges to fabricating these devices include: a) selecting and designing the high-Q micro-resonator sensing element appropriate for the selected analyte; and b) device thermal management, especially stabilizing laser temperature with the precision needed for sensitive spectroscopic detection. In this paper, we analyze the expected sensitivity of micro-resonator-based structures for chemical sensing, and demonstrate a novel approach for exploiting laser waste heat to stabilize the laser temperature.

  8. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  9. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays.

    PubMed

    Bunch, Dustin R; Wang, Sihe

    2013-04-01

    Complex matrices, for example urine, serum, plasma, and whole blood, which are common in clinical chemistry testing, contain many non-analyte compounds that can interfere with either detection or in-source ionization in chromatography-based assays. To overcome this problem, analytes are extracted by protein precipitation, solid-phase extraction (SPE), and liquid-liquid extraction. With correct chemistry and well controlled material SPE may furnish clean specimens with consistent performance. Traditionally, SPE has been performed with particle-based adsorbents, but monolithic SPE is attracting increasing interest of clinical laboratories. Monoliths, solid pieces of stationary phase, have bimodal structures consisting of macropores, which enable passage of solvent, and mesopores, in which analytes are separated. This structure results in low back-pressure with separation capabilities similar to those of particle-based adsorbents. Monoliths also enable increased sample throughput, reduced solvent use, varied support formats, and/or automation. However, many of these monoliths are not commercially available. In this review, application of monoliths to purification of samples from humans before chromatography-based assays will be critically reviewed.

  10. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  11. Production data in media systems and press front ends: capture, formats and database methods

    NASA Astrophysics Data System (ADS)

    Karttunen, Simo

    1997-02-01

    The nature, purpose and data presentation features of media jobs are analyzed in relation to the content, document, process and resource management in media production. Formats are the natural way of presenting, collecting and storing information, contents, document components and final documents. The state of the art and the trends in the media formats and production data are reviewed. The types and the amount of production data are listed, e.g. events, schedules, product descriptions, reports, visual support, quality, process states and color data. The data exchange must be vendor-neutral. Adequate infrastructure and system architecture are defined for production and media data. The roles of open servers and intranets are evaluated and their potential roles as future solutions are anticipated. The press frontend is the part of print media production where large files dominate. The new output alternatives, i.e. film recorders, direct plate output (CTP and CTP-on-press) and digital, plateless printing lines need new workflow tools and very efficient file and format management. The paper analyzes the capture, formatting and storing of job files and respective production data, such as the event logs of the processes. Intranet, browsers, Java applets and open web severs will be used to capture production data, especially where intranets are used anyhow, or where several companies are networked to plan, design and use documents and printed products. The user aspects of installing intranets is stressed since there are numerous more traditional and more dedicated networking solutions on the market.

  12. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.

    PubMed

    Maya, Fernando; Svec, Frantisek

    2013-11-22

    A new approach to the preparation of porous polymer monoliths possessing both large surface area and functional groups has been developed. The chloromethyl groups of poly(styrene-co-4-acetoxystyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolith enable post-polymerization hypercrosslinking catalyzed by ferric chloride in dichloroethane leading to a multitude of small pores thus enhancing the surface area. The acetoxy functionalities are easily deprotected using hydrazine to produce polar phenolic hydroxyl groups, which would be difficult to obtain by direct copolymerization of hydroxyl-containing monomers. The hypercrosslinking and deprotection reactions as well as their sequence were studied in detail with bulk polymer monoliths containing up to 50% 4-acetoxystyrene and its progress monitored by infrared spectrometry and nitrogen adsorption/desorption measurements. No significant difference was found for both possible successions. All monoliths were also prepared in a capillary column format, then deprotected and hypercrosslinked. Capillary columns were tested for the separation of small molecules using reversed phase and normal phase chromatographic modes. For polymer monoliths containing 50% deprotected 4-acetoxystyrene, column efficiencies of 40,000 plates/m for benzene in reversed phase mode and 31,800 plates/m for nitrobenzene in normal phase mode, were obtained. The percentage of hydroxyl groups in the monoliths enables modulation of polarity of the stationary phase. They also represent functionalities that are potentially suitable for further modifications and formation of new types of stationary phases for liquid chromatography.

  13. Preventing plugging by insoluble salts in a hydrocarbon-bearing formation and associated production wells

    SciTech Connect

    Plummer, M.A.

    1988-02-09

    A process for recovering hydrocarbons from a subterranean hydrocarbon-bearing formation having fluid passageways therein is described comprising the steps of: (a) feeding to a reserve osmosis means an untreated injection water containing precipitate precursor ions in a concentration which would be sufficient to form insoluble salt precipitates in an amount to substantially plug fluid passageways if the untreated injection water contacted resident ions in the formation; (b) driving a portion of the untreated injection water feed across a membrane in the reverse osmosis means at a pressure above the osmotic pressure of the feed while excluding at least a portion of the precursor ions from crossing the membrane to produce a treated injection water product having a precursor ion concentration less than the concentration of precursor ions in the untreated injection water feed such that the precursor ion concentration in the product is insufficient to form the precipitates in an amount to substantially plug the fluid passageways when the treated injection water product contacts the resident ions in the formation; (c) injecting the treated injection water product into the hydrocarbon-bearing formation via an injection well; (d) displacing the hydrocarbons with the treated injection water product toward an associated production well; and (e) recovering the hydrocarbons from the formation via the production well.

  14. Large format ink-jet poster production: a case report.

    PubMed

    Harris, R

    1998-03-01

    To complement the services offered by the Medical Illustration Department of Frenchay Hospital, Bristol, we decided to look at the possibility of producing posters using the ink-jet process. Our designers wanted to use the full scope of their computers and software to expand their design talents. The method of cutting and pasting sheets of paper onto card seemed old fashioned and denied clients the benefit of the exciting techniques that have become available. After seeking sponsorship, a drug company gave 8000 Pounds towards setting up the department's poster printing service. A Kodak DS1000 printer was installed together with Posterjet and Posterworks software and we went into production, servicing not only our hospital but others in the area who gave their support for the service. High quality photographic reproduction was achieved and clients and consultants were very pleased with the results. The designers were happy that their skills were being used and interest in this and other services in the department have increased. The resulting increased income has helped finance other projects. The printer has enabled us also to see output proofs before sending work off to be offset printed--a very useful tool and a cost-saving process.

  15. The Influence of Surface Topography and Surface Chemistry on the Anti-Adhesive Performance of Nanoporous Monoliths.

    PubMed

    Eichler-Volf, Anna; Xue, Longjian; Dornberg, Gregor; Chen, He; Kovalev, Alexander; Enke, Dirk; Wang, Yong; Gorb, Elena V; Gorb, Stanislav N; Steinhart, Martin

    2016-08-31

    We designed spongy monoliths allowing liquid delivery to their surfaces through continuous nanopore systems (mean pore diameter ∼40 nm). These nanoporous monoliths were flat or patterned with microspherical structures a few tens of microns in diameter, and their surfaces consisted of aprotic polymer or of TiO2 coatings. Liquid may reduce adhesion forces FAd; possible reasons include screening of solid-solid interactions and poroelastic effects. Softening-induced deformation of flat polymeric monoliths upon contact formation in the presence of liquids enhanced the work of separation WSe. On flat TiO2-coated monoliths, WSe was smaller under wet conditions than under dry conditions, possibly because of liquid-induced screening of solid-solid interactions. Under dry conditions, WSe is larger on flat TiO2-coated monoliths than on flat monoliths with a polymeric surface. However, under wet conditions, liquid-induced softening results in larger WSe on flat monoliths with a polymeric surface than on flat monoliths with an oxidic surface. Monolithic microsphere arrays show antiadhesive properties; FAd and WSe are reduced by at least 1 order of magnitude as compared to flat nanoporous counterparts. On nanoporous monolithic microsphere arrays, capillarity (WSe is larger under wet than under dry conditions) and solid-solid interactions (WSe is larger on oxide than on polymer) dominate contact mechanics. Thus, the microsphere topography reduces the impact of softening-induced surface deformation and screening of solid-solid interactions associated with liquid supply. Overall, simple modifications of surface topography and chemistry combined with delivery of liquid to the contact interface allow adjusting WSe and FAd over at least 1 order of magnitude. Adhesion management with spongy monoliths exploiting deployment (or drainage) of interfacial liquids as well as induction or prevention of liquid-induced softening of the monoliths may pave the way for the design of artificial

  16. Electron transfer pathways of formate-driven H2 production in Desulfovibrio.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Morais-Silva, Fabio O; Rodrigues-Pousada, Claudina; Voordouw, Gerrit; Wall, Judy D; Pereira, Inês A C

    2016-09-01

    The potential of sulfate-reducing bacteria (SRB) as biocatalysts for H2 production from formate was recently demonstrated, but the electron transfer pathways involved were not described. In the present work, we analyzed the H2 production capacity of five Desulfovibrio strains: Desulfovibrio vulgaris, Desulfovibrio desulfuricans, Desulfovibrio alaskensis, Desulfovibrio fructosivorans, and Desulfovibrio gigas. D. vulgaris showed the highest H2 productivity (865 mL Lmedium (-1)), and D. gigas the lowest one (374 mL Lmedium (-1) of H2). The electron transfer pathways involved in formate-driven H2 production by these two organisms were further investigated through the study of deletion mutants of hydrogenases (Hases) and formate dehydrogenases (Fdhs). In D. vulgaris, the periplasmic FdhAB is the key enzyme for formate oxidation and two pathways are apparently involved in the production of H2 from formate: a direct one only involving periplasmic enzymes and a second one that involves transmembrane electron transfer and may allow energy conservation. In the presence of selenium, the Hys [NiFeSe] Hase is the main periplasmic enzyme responsible for H2 production, and the cytoplasmic Coo Hase is apparently involved in the ability of D. vulgaris to grow by converting formate to H2, in sparging conditions. Contrary to D. vulgaris, H2 production in D. gigas occurs exclusively by the direct periplasmic route and does not involve the single cytoplasmic Hase, Ech. This is the first report of the metabolic pathways involved in formate metabolism in the absence of sulfate in SRB, revealing that the electron transfer pathways are species-specific. PMID:27270746

  17. A monolithically integrated torsional CMOS-MEMS relay

    NASA Astrophysics Data System (ADS)

    Riverola, M.; Sobreviela, G.; Torres, F.; Uranga, A.; Barniol, N.

    2016-11-01

    We report experimental demonstrations of a torsional microelectromechanical (MEM) relay fabricated using the CMOS-MEMS approach (or intra-CMOS) which exploits the full foundry inherent characteristics enabling drastic reduction of the fabrication costs and batch production. In particular, the relay is monolithically integrated in the back end of line of a commercial standard CMOS technology (AMS 0.35 μm) and released by means of a simple one-step mask-less wet etching. The fabricated torsional relay exhibits an extremely steep switching behaviour symmetrical about both contact sides with an on-state contact resistance in the k Ω -range throughout the on-off cycling test.

  18. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  19. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2006-09-30

    syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40

  20. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  1. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  2. Elimination of formate production in Clostridium thermocellum

    SciTech Connect

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.

  3. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  4. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  5. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  6. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  7. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  8. Combining monolithic zirconia crowns, digital impressioning, and regenerative cement for a predictable restorative alternative to PFM.

    PubMed

    Griffin, Jack D

    2013-03-01

    Advances in indirect esthetic materials in recent years have provided the dental profession higher levels of strength and esthetics than ever before with products like lithium disilicate and zirconium oxide. Providing excellent fit and versatile performance, and because there is no porcelain to delaminate, chip, or fracture, monolithic zirconia crowns have the potential to outperform other layered restorations such as porcelain-fused-to-metal (PFM). This review of monolithic zirconia highlights a clinical case in which all-zirconia restorations were combined with CAD/CAM technology for a successful esthetic restorative outcome.

  9. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography.

    PubMed

    Dong, Jing; Ou, Junjie; Dong, Xiaoli; Wu, Renan; Ye, Mingliang; Zou, Hanfa

    2007-11-01

    A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products.

  10. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography.

    PubMed

    Dong, Jing; Ou, Junjie; Dong, Xiaoli; Wu, Renan; Ye, Mingliang; Zou, Hanfa

    2007-11-01

    A CEC monolithic column with strong cation-exchange (SCX) stationary phase based on hydrophilic monomers was prepared by in situ polymerization of acrylamide, methylenebisacrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a complete organic binary porogenic solvent consisting of DMSO and dodecanol. The sulfonic groups provided by the monomer AMPS on the surface of the stationary phase generate an EOF from anode to cathode, and serve as an SCX stationary phase at the same time. The monolithic stationary phase exhibited normal-phase chromatographic behavior for neutral analytes. For charged analytes, electrostatic interaction/repulsion with the monolith was observed. The strong SCX monolithic column has been successfully employed in the electrochromatographic separation of basic drugs, peptides, and alkaloids extracted from natural products. PMID:17924588

  11. A regression-based approach to tolerance values forecasting in micro/meso-scale for micro non-monolithic components

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Wei, Xingping; Li, Jun; Zhao, Shiping

    2013-10-01

    Compared to the function-oriented tolerancing rules for micro monolithic components, the lack of specific tolerancing rules for micro non-monolithic ones results in difficulties in bulk production and quality assurance. In order to regulate micro non-monolithic components in micro/meso-scale, a mathematical model of power function is adopted to forecast the tolerance values of nominal sizes in 10~10,000 microns by the linearized regression analysis. The goodness-of-fit qualifies the regression with the power function model and the forecasting results are reasonable in the view of relative accuracy. It is hoped that the improved numerical value table of tolerance can provide some beneficial proposals for the establishment of new tolerancing rules for micro non-monolithic components in micro/meso-scale.

  12. Formation of distinct soluble microbial products by activated sludge: kinetic analysis and quantitative determination.

    PubMed

    Ni, Bing-Jie; Fang, Fang; Xie, Wen-Ming; Xu, Juan; Yu, Han-Qing

    2012-02-01

    Soluble microbial products (SMP) released by microorganisms in bioreactors are classified into two distinct groups according to their different chemical and degradation kinetics: utilization-associated products (UAP) and biomass-associated products (BAP). SMP are responsible for effluent chemical oxygen demand or for membrane fouling of membrane bioreactor. Here an effective and convenient approach, other than the complicated chemical methods or complex models, is developed to quantify the formation of UAP and BAP together with their kinetics in activated sludge process. In this approach, an integrated substrate utilization equation is developed and used to determine UAP and their production kinetics. On the basis of total SMP measurements, BAP formation is determined with an integrated BAP formation equation. The fraction of substrate electrons diverted to UAP, and the content of BAP derived from biomass can then be calculated. Dynamic quantification data are obtained for UAP and BAP separately and conveniently. The obtained kinetic parameters are found to be reasonable as they are generally bounded and comparable to the literature values. The validity of this approach is confirmed by independent SMP production tests in six different activated sludge systems, which demonstrates its applicability in a wide range of engineered system regarding SMP production. This work provides a widely applied approach to determine the formation of UAP and BAP conveniently, which may offer engineers with basis to optimize bioreactor operation to avoid a high effluent soluble organics from SMP or SMP-based membrane fouling in membrane bioreactors. PMID:22185635

  13. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  14. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  15. Cytotoxical products formation on the nanoparticles heated by the pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Kogan, Boris Ya.; Titov, Andrey A.; Rakitin, Victor Yu.; Kvacheva, Larisa D.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2006-02-01

    Cytotoxical effect of a pulsed laser irradiation in presence of nanoparticles of carbon black, sulphuretted carbon and fullerene-60 on death of human uterus nick cancer HeLa and mice lymphoma P 388 cells was studied in vitro. Bubbles formation as result of "microexplosions" of nanoparticles is one of possible mechanisms of this effect. Other possible mechanism is cytotoxical products formation in result of pyrolysis of nanoparticles and biomaterial which is adjoining. The cytotoxical effect of addition of a supernatant from the carbon nanoparticles suspensions irradiated by the pulsed laser was studied to test this assumption. Analysis using gas chromatograph determined that carbon monoxide is principal gaseous product of such laser pyrolysis. This is known as cytotoxical product. Efficiency of its formation is estimated.

  16. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography.

    PubMed

    Moravcová, Dana; Planeta, Josef; Wiedmer, Susanne K

    2013-11-22

    This study introduces a silica-based monolith in a capillary format (0.1 mm × 100 mm) as a support for immobilization of liposomes and its characterization in immobilized liposome chromatography. Silica-based monolithic capillary columns prepared by acidic hydrolysis of tetramethoxysilane in the presence of polyethylene glycol and urea were modified by (3-aminopropyl)trimethoxysilane, whereby amino groups were introduced to the monolithic surface. These groups undergo reaction with glutaraldehyde to form an iminoaldehyde, allowing covalent binding of pre-formed liposomes containing primary amino groups. Two types of phospholipid vesicles were used for column modification; these were 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidyl choline with and without 1,2-diacyl-sn-glycero-3-phospho-L-serine. The prepared columns were evaluated under isocratic separation conditions employing 20mM phosphate buffer at pH 7.4 as a mobile phase and a set of unrelated drugs as model analytes. The liposome layer on the synthesized columns significantly changed the column selectivity compared to the aminopropylsilylated monolithic stationary phase. Monolithic columns modified by liposomes were stable under the separation conditions, which proved the applicability of the suggested preparation procedure for the synthesis of capillary columns dedicated to study analyte-liposome interactions. The column efficiency originating from the silica monolith was preserved and reached, e.g., more than 120,000 theoretical plates/m for caffeine as a solute. PMID:23978749

  17. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli.

    PubMed Central

    Strandberg, L; Enfors, S O

    1991-01-01

    Different parameters that influenced the formation of inclusion bodies in Escherichia coli during production of a fused protein consisting of protein A from Staphylococcus aureus and beta-galactosidase from E. coli were examined. The intracellular expression of the fused protein was controlled by the pR promoter and its temperature-sensitive repressor. The induction temperature, the pH of the cultivation medium, and changes in the amino acid sequence in the linker region between protein A and beta-galactosidase had a profound effect on the formation of inclusion bodies. At 42 degrees C, inclusion bodies were formed only during the first hours after induction, and thereafter all the recombinant protein that was further produced appeared in a soluble and active state. Production at 39 and 44 degrees C resulted in inclusion body formation throughout the production period with 15 to 20% of the produced recombinant protein appearing as inclusion bodies. Cultivating cells without control of pH caused inclusion body formation throughout the induction period, and inclusion body formation increased with decreasing pH, and at least part of the insoluble protein was formed from the pool of soluble fusion protein within the cell. Changes in the amino acid sequence in the linker region between the two parts of the fusion protein abolished inclusion body formation. PMID:1908208

  18. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  19. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  20. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect

    Grimmer, D.P. )

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  1. DOE data exchange format specification, mechanical products/drafting: Version 1. 3, CADCAM-045

    SciTech Connect

    Not Available

    1988-01-01

    The Data Exchange Format (DEF) has been developed as part of a Department of Energy (DOE) effort to integrate the Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) activities throughout the Nuclear Weapons Complex (NWC). A primary objective of this effort is to provide a capability for the exchange of digital data between dissimilar CAD/CAM systems within the NWC. This specification is the result of a collective effort of the DOE Data Exchange Format Group charged with the task of defining a subset of the Initial Graphics Exchange Specification (IGES) to be used as the data exchange format for the mechanical products/drafting application.

  2. DOE data exchange format specification, mechanical products/drafting: Version 1. 2. 2: CADCAM-045

    SciTech Connect

    Not Available

    1987-09-01

    The Data Exchange Format (DEF) has been developed as part of a Department of Energy (DOE) effort to integrate the Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) activities throughout the Nuclear Weapons Complex (NWC). A primary objective of this effort is to provide a capability for the exchange of digital data between dissimilar CAD/CAM systems within the NWC. This specification is the result of a collective effort of the DOE Data Exchange Format Group charged with the task of defining a subset of the Initial Graphics Exchange Specification (IGES) to be used as the data exchange format for the mechanical products/drafting application.

  3. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA.

  4. Sensitivty of ozone production to organic nitrate formation in Sacramento and Los Angeles

    NASA Astrophysics Data System (ADS)

    Browne, E. C.; Cohen, R. C.

    2010-12-01

    Total alkyl and multifunctional nitrates (ΣANs) are formed by a minor channel of the NO + RO2 reaction and thus represent a termination step of ozone production. ΣANs formation becomes most significant in the cross-over regime between NOx saturated (VOC limited) and NOx limited ozone production. In models that fail to account for changing rates of ΣANs formation, the NOx and VOC levels are considered independent parameters: to lower ozone production all that is needed is to decrease the limiting parameter. It has been recently shown that this view on ozone production may lead to counterproductive air quality control strategies (Farmer et al., 2010 submitted). Using both an analytical model and measurements from Mexico City, Farmer et al. demonstrated that ΣANs formation effectively couples VOCs and NOx. Analytical models show that VOC reduction strategies that result in a decrease in ΣANs yield will result in increased ozone production for NOx less than 3 ppb. We expand upon the work of Farmer et al. by investigating the sensitivity of ozone production to ΣANs formation using a regional three dimensional chemical transport model, WRF-CHEM. The standard chemistry treats all ΣANs species as a single model species with a given lifetime and NOx recycling efficiency. We implement a revised ΣANs representation that treats monofunctional, multifunctional saturated, multifunctional unsaturated, aromatic, isoprene, and monoterpene nitrates as unique model species with appropriate lifetimes and NOx recycling efficiencies. We investigate how this improved ΣANs representation affects ozone, and we compare these results to ground and airborne measurements in the Sacramento and Los Angeles areas. Additionally, we investigate the sensitivity of ozone formation to ΣANs formation rate, lifetime, and NOx recycling efficiency.

  5. Effects of nutrition label format and product assortment on the healthfulness of food choice.

    PubMed

    Aschemann-Witzel, Jessica; Grunert, Klaus G; van Trijp, Hans C M; Bialkova, Svetlana; Raats, Monique M; Hodgkins, Charo; Wasowicz-Kirylo, Grazyna; Koenigstorfer, Joerg

    2013-12-01

    This study aims to find out whether front-of-pack nutrition label formats influence the healthfulness of consumers' food choices and important predictors of healthful choices, depending on the size of the choice set that is made available to consumers. The predictors explored were health motivation and perceived capability of making healthful choices. One thousand German and Polish consumers participated in the study that manipulated the format of nutrition labels. All labels referred to the content of calories and four negative nutrients and were presented on savoury and sweet snacks. The different formats included the percentage of guideline daily amount, colour coding schemes, and text describing low, medium and high content of each nutrient. Participants first chose from a set of 10 products and then from a set of 20 products, which was, on average, more healthful than the first choice set. The results showed that food choices were more healthful in the extended 20-product (vs. 10-product) choice set and that this effect is stronger than a random choice would produce. The formats colour coding and texts, particularly colour coding in Germany, increased the healthfulness of product choices when consumers were asked to choose a healthful product, but not when they were asked to choose according to their preferences. The formats did not influence consumers' motivation to choose healthful foods. Colour coding, however, increased consumers' perceived capability of making healthful choices. While the results revealed no consistent differences in the effects between the formats, they indicate that manipulating choice sets by including healthier options is an effective strategy to increase the healthfulness of food choices. PMID:23891558

  6. Effects of nutrition label format and product assortment on the healthfulness of food choice.

    PubMed

    Aschemann-Witzel, Jessica; Grunert, Klaus G; van Trijp, Hans C M; Bialkova, Svetlana; Raats, Monique M; Hodgkins, Charo; Wasowicz-Kirylo, Grazyna; Koenigstorfer, Joerg

    2013-12-01

    This study aims to find out whether front-of-pack nutrition label formats influence the healthfulness of consumers' food choices and important predictors of healthful choices, depending on the size of the choice set that is made available to consumers. The predictors explored were health motivation and perceived capability of making healthful choices. One thousand German and Polish consumers participated in the study that manipulated the format of nutrition labels. All labels referred to the content of calories and four negative nutrients and were presented on savoury and sweet snacks. The different formats included the percentage of guideline daily amount, colour coding schemes, and text describing low, medium and high content of each nutrient. Participants first chose from a set of 10 products and then from a set of 20 products, which was, on average, more healthful than the first choice set. The results showed that food choices were more healthful in the extended 20-product (vs. 10-product) choice set and that this effect is stronger than a random choice would produce. The formats colour coding and texts, particularly colour coding in Germany, increased the healthfulness of product choices when consumers were asked to choose a healthful product, but not when they were asked to choose according to their preferences. The formats did not influence consumers' motivation to choose healthful foods. Colour coding, however, increased consumers' perceived capability of making healthful choices. While the results revealed no consistent differences in the effects between the formats, they indicate that manipulating choice sets by including healthier options is an effective strategy to increase the healthfulness of food choices.

  7. Development of large-area monolithically integrated silicon-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Rand, J. A.; Bacon, C.; Cotter, J. E.; Lampros, T. H.; Ingram, A. E.; Ruffins, T. R.; Hall, R. B.; Barnett, A. M.

    1992-07-01

    This report describes work to develop Silicon-Film Product 3 into a low-cost, stable device for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18 percent on areas greater than 1200 cm(exp 2). The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm(exp 2) solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V(sub oc)) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6percent by impurities. Improved processing and feedstock materials are under investigation.

  8. Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation.

    PubMed

    King, G M; Klug, M J

    1982-12-01

    The uptake of glucose and the formation of end products from glucose catabolism have been measured for sediments of eutrophic Wintergreen Lake with a combination of tritiated and C-labeled tracers. Time course analyses of the loss of [H]glucose from sediments were used to establish rate constants for glucose uptake at natural substrate concentrations. Turnover times from these analyses were about 1 min for littoral and profundal sediments. No seasonal or site differences were noted in turnover times. Time course analyses of [U-C]glucose uptake and C-labeled end product formation indicated that glucose mass flow could not be calculated from end product formation since the specific activity of added [C]glucose was significantly diluted by pools of intracellular glucose and glucose metabolites. Mass flow could only be accurately estimated by use of rates of uptake from tracer studies. Intermediate fermentation end products included acetate (71%), propionate (15%), lactate (9%), and only minor amounts of butyrates or valerates. Addition of H(2) to sediments resulted in greater production of lactate (28%) and decreased formation of acetate (50%), but did not affect glucose turnover. Depth profiles of glucose uptake indicated that rates of uptake decreased with depth over the 0- to 18-cm interval and that glucose uptake accounted for 30 to 40% of methanogenesis in profundal sediments.

  9. Desulfovibrio vulgaris Growth Coupled to Formate-Driven H2 Production.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Pereira, Inês A C

    2015-12-15

    Formate is recognized as a superior substrate for biological H2 production by several bacteria. However, the growth of a single organism coupled to this energetic pathway has not been shown in mesophilic conditions. In the present study, a bioreactor with gas sparging was used, where we observed for the first time that H2 production from formate can be coupled with growth of the model sulfate-reducing bacterium Desulfovibrio vulgaris in the absence of sulfate or a syntrophic partner. In these conditions, D. vulgaris had a maximum growth rate of 0.078 h(-1) and a doubling time of 9 h, and the ΔG of the reaction ranged between -21 and -18 kJ mol(-1). This is the first report of a single mesophilic organism that can grow while catalyzing the oxidation of formate to H2 and bicarbonate. Furthermore, high volumetric and specific H2 production rates (125 mL L(-1) h(-1) and 2500 mL gdcw(-1) h(-1)) were achieved in a new bioreactor designed and optimized for H2 production. This high H2 production demonstrates that the nonconventional H2-producing organism D. vulgaris is a good biocatalyst for converting formate to H2. PMID:26579558

  10. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    PubMed

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential.

  11. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    PubMed

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential. PMID:25601614

  12. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  13. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  14. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization. PMID:22750091

  15. Polymer monoliths synthesized by radiation co-polymerization in solution

    NASA Astrophysics Data System (ADS)

    Beiler, Barbara; Sáfrány, Ágnes

    2007-08-01

    Hydrophilic co-polymer monoliths were prepared by irradiating alcoholic solutions containing diethyleneglycol dimethacrylate (DEGDMA) and 2-hydroxyethylacrylate (HEA) monomers. The effect of monomer ratio, solvent properties and radiation dose on the porous properties of the monoliths was studied in detail and compared to the monolith prepared from DEGDMA. Increase of the HEA content in the co-monomer mixture (up to 18 vol%) resulted in monoliths with increased pore size and hydrophilic character. The biggest pores were obtained when methanol was used as solvent. The use of the monoliths as chromatographic columns for separation of proteins, amino and nucleic acids is also reported.

  16. Production effects of fluid loss in fracturing high-permeability formations

    SciTech Connect

    Elbel, J.L.; Navarrete, R.C.; Poe, B.D. Jr.

    1995-12-31

    When fracturing zones having high permeability there is concern of damage to the matrix due to deeply penetrating fluid leakoff along the fracture and/or due to materials in the fluid that minimize the amount of leakoff. Materials used to minimize leakoff also have the potential to damage the proppant pack conductivity. Previous tests have shown that high shear rates at the tip of the fracture may prevent the formation of external filter cakes, increasing the magnitude of spurt losses in highly permeable formations. This paper provides laboratory data on materials used to control spurt loss of linear gels [HEC],viscoelastic surfactant fluid and crosslinked borate-guars in formations having up to 500 md permeability. The depth of penetration into the matrix and magnitude of the permeability reduction to the matrix and proppant conductivity is shown. This data is then used in a finite fracture conductivity production simulator that includes simulation of fracture face damage. Simulations are made for various fluid-loss additives controlling leakoff with different fracturing fluids over a range of formation permeabilities as well as other reservoir conditions and production modes. The simulations show the production effects of limiting the fluid loss penetration at the expense of permeability reduction in the formation and the propped fracture.

  17. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    PubMed

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton.

  18. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    PubMed

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. PMID:27348195

  19. The role of acetoacetate in Amadori product formation of human serum albumin.

    PubMed

    Bohlooli, Mousa; Ghaffari-Moghaddam, Mansour; Khajeh, Mostafa; Shahraki-Fallah, Gholamreza; Haghighi-Kekhaiye, Batool; Sheibani, Nader

    2016-10-01

    Amadori product is an important and stable intermediate, which is produced during glycation process. It is a marker of hyperglycemia in diabetes mellitus, and its accumulation in the body contributes to microvascular complication of diabetes including diabetic nephropathy and retinopathy. In this study, the effect of acetoacetate on the formation of Amadori products and biophysical properties of human serum albumin (HSA), after incubation with glucose, was investigated using various methods. These included circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, and UV-visible and fluorescence spectroscopy. Our results indicated that the production of Amadori products in HSA incubated with glucose (GHSA) was increased in the presence of acetoacetate. We also detected alterations in the secondary and tertiary structure of GHSA, which was increased in the presence of acetoacetate. These changes were attributed to the formation of covalent bonds between the carbonyl group of acetoacetate and the nucleophilic groups (lysine residues) of HSA. Thus, acetoacetate can enhance the production of Amadori products through formation of covalent bonds with biomaterials. PMID:27614245

  20. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  1. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  2. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  3. Purification of infective baculoviruses by monoliths.

    PubMed

    Gerster, Petra; Kopecky, Eva-Maria; Hammerschmidt, Nikolaus; Klausberger, Miriam; Krammer, Florian; Grabherr, Reingard; Mersich, Christa; Urbas, Lidija; Kramberger, Petra; Paril, Tina; Schreiner, Matthias; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Jungbauer, Alois

    2013-05-17

    A chromatographic process based on monoliths for purification of infective baculovirus without prior concentration step has been established. Baculovirus produced in Spodoptera frugiperda cells (Sf-9) were harvested by centrifugation, filtered through 0.8 μm filters and directly loaded onto radial 1 mL anion exchange monoliths with a channel size of 1.5-2.0 μm operated at a volumetric flow rate of one bed volume per minute. Optional an epoxy monolith was used as pre-column to reduce interfering compounds and substances influencing the capacity of anion exchange monoliths for baculovirus infectious virus could be eluted with a step gradient at salt concentrations of 440 mM NaCl. Recovery of infectious virus was highly influenced by composition and age of supernatant and ranged from 20 to >99% active baculovirus. Total protein content could be reduced to 1-8% and DNA content to 38-48% in main virus fraction. Infective virus could be 52-fold concentrated within 20.5h and simultaneously an 82-fold volume reduction was possible when loading 1150 mL (2.1×10(8) pfu/mL) onto 1 mL scale support.

  4. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960

  5. Stereodefined Acyclic Polysubstituted Silyl Ketene Aminals: Asymmetric Formation of Aldol Products with Quaternary Carbon Stereocenters.

    PubMed

    Nairoukh, Zackaria; Marek, Ilan

    2015-11-23

    The regio- and stereoselective formation of stereodefined polysubstituted silyl ketene aminals is easily achieved through selective combined carbometalation-oxidation-silylation reactions. These substrates are ideal candidates for Mukaiyama aldol reactions with aliphatic aldehydes as they give the aldol products with a quaternary carbon stereocenter α to the carbonyl groups in outstanding diastereoselectivities. PMID:26448575

  6. THE EFFECTS OF COMBINED OZONATION AND FILTRATION ON DISINFECTION BY-PRODUCT FORMATION. (R830908)

    EPA Science Inventory

    The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) ...

  7. Evidence for oligomer formation in clouds: reactions of isoprene oxidation products.

    PubMed

    Altieri, Katye E; Carlton, Annmarie G; Lim, Ho-Jin; Turpin, Barbara J; Seitzinger, Sybil P

    2006-08-15

    Electrospray ionization mass spectrometry (ESI-MS) was used to investigate product formation in laboratory experiments designed to study secondary organic aerosol (SOA) formation in clouds. It has been proposed that water soluble aldehydes derived from aromatics and alkenes, including isoprene, oxidize further in cloud droplets forming organic acids and, upon droplet evaporation, SOA. Pyruvic acid is an important aqueous-phase intermediate. Time series samples from photochemical batch aqueous phase reactions of pyruvic acid and hydrogen peroxide were analyzed for product formation. In addition to the monomers predicted by the reaction scheme, products consistent with an oligomer system were found when pyruvic acid and OH radical were both present. No evidence of oligomer formation was found in a standard mix composed of pyruvic, glyoxylic, and oxalic acids prepared in the same matrix as the samples analyzed using the same instrument conditions. The distribution of high molecular weight products is consistent with oligomers composed of the mono-, oxo-, and di-carboxylic acids expected from the proposed reaction scheme.

  8. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  9. Standard enthalpies of formation for glycyl-tyrosine and products of its dissociation in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Badelin, V. G.; Krutova, O. N.; Volkov, A. V.; Damrina, K. V.

    2015-07-01

    The enthalpies of solution of crystalline glycyl-tyrosine in water and potassium hydroxide aqueous solutions are determined at 298.15 K by means of direct calorimetry. Standard enthalpies of formation for dipeptide and its products of dissociation in an aqueous solution are calculated.

  10. [Formation of Halogenated By-products in Co²⁺ Activated Peroxymonosulfate Oxidation Process].

    PubMed

    Liu, Kuo; Jin, Hao; Dong, Wei; Ji, Yue-fei; Lu, Jun-he

    2016-05-15

    Sulfate radicals (SO₄·⁻) generated by Co²⁺ catalyzed activation of peroxymonosulfate (PMS) are highly oxidative and can be applied to degrade various organic pollutants. It was revealed in this research that bromide could be transformed in this process to reactive bromine species which reacted with phenol subsequently, leading to the formation of bromophenols and brominated by-products such as bromoform and dibromoacetic acid. The formation of the brominated by-products first increased and then decreased. The maximum yields of bromoform (10.3 µmol · L⁻¹) and dibromoacetic acid (14.6 µmol · L⁻¹) occurred at approximately 8 h with initial phenol, PMS, Br⁻, Co²⁺, concentrations of 0.05, 1.0, 0.2, and 5 µmol · L⁻¹, respectively. Formation of the brominated by-products decreased with increasing pH. With constant total halides, increasing Cl⁻/Br⁻ ratio decreased the total formation of halogenated by- products but generated more chlorinated byproducts. The findings of this research can provide valuable information in assessing the feasibility of SO₄·⁻ based oxidation technologies in real practice. PMID:27506036

  11. Stereodefined Acyclic Polysubstituted Silyl Ketene Aminals: Asymmetric Formation of Aldol Products with Quaternary Carbon Stereocenters.

    PubMed

    Nairoukh, Zackaria; Marek, Ilan

    2015-11-23

    The regio- and stereoselective formation of stereodefined polysubstituted silyl ketene aminals is easily achieved through selective combined carbometalation-oxidation-silylation reactions. These substrates are ideal candidates for Mukaiyama aldol reactions with aliphatic aldehydes as they give the aldol products with a quaternary carbon stereocenter α to the carbonyl groups in outstanding diastereoselectivities.

  12. Monoliths: special issue in a new package.

    PubMed

    Svec, Frantisek

    2013-08-01

    Regular special issues concerning monoliths have always been a stronghold of the Journal of Separation Science. Typically, we issued a call for papers, collected and processed the submitted manuscripts, and all of them were then printed in a single issue of the journal. This approach worked to a certain limit quite acceptably but there was always a longer waiting time between the early submissions and publication. This is why we decided to do it this year differently. I claimed in my 2013 New Years Editorial: "We are living in the electronic era! Why not to make an advantage of that?" And we do. As a result, all manuscript submitted for publication in the special issue Monoliths have already been published in regular issues as soon as they were accepted. The first page of these papers includes a footnote: "This paper is included in the virtual special issue Monoliths available at the Journal of Separation Science website." All papers published with this footnote were collected in a virtual special issue accessible through the internet. This concept ruled out possible delays in publication of contributions submitted early. Since we did not have any real "special issue", there was no need for any hard deadline for submission. We just collected manuscripts submitted for the special issue Monoliths published from January to July 2013 and included them in the virtual special issue. This new approach worked very well and we published 22 excellent papers that are included in the issue available now at this website: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1615-9314/homepage/virtual_special_issue__monoliths.htm. PMID:23939823

  13. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  14. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.

    PubMed

    Yang, Xin; Guo, Wanhong; Zhang, Xing; Chen, Feng; Ye, Tingjin; Liu, Wei

    2013-10-01

    The effect of pre-oxidation with chlorine dioxide (ClO2) or ferrate (Fe(VI)) on the formation of disinfection by-products (DBPs) during chlorination or chloramination was tested with natural waters from 12 sources (9 surface waters, 1 groundwater, and 2 wastewater effluents). DBPs investigated included trihalomethanes (THM), chloral hydrate (CH), haloketones (HK), haloacetonitriles (HAN) and trichloronitromethane (TCNM), chlorite and chlorate. Chlorite and chlorate were found in the ClO2-treated waters. Application of 1 mg/L ClO2 ahead of chlorination reduced the formation potential for THM by up to 45% and the formation of HK, HAN and TCNM in most of the samples. The CH formation results were mixed. The formation of CH and HK was enhanced with low doses of Fe(VI) (1 mg/L as Fe), but was greatly reduced at higher doses (20 mg/L Fe). Fe(VI) reduced the formation of THM, HAN and TCNM in most of the samples. Reduced potential for the formation of NDMA was observed in most of the samples after both ClO2 and Fe(VI) pre-oxidation.

  15. [Effect of UV-light on formation of fluorescent products of lipid peroxidation].

    PubMed

    Konev, V V; Popov, G A

    1978-01-01

    The rate of fluorescent product formation during the peroxidation of polyunsaturated linolenic acid or egg phosphatidylethanolamine and also during the oxidation of linolenic acid together with a phenylalanine and synthetic phosphatidylethanolamine 1,5--3 times more intensive after previous UV-irradiation of the unsaturated fatty acid. Schiff bases are fluorescent products in amine containing systems which are produced in the reaction of the malonaldehyde with amines. It is possible that fluorochromes produced during the only unsaturated acid oxidation are the result of the radical recombination. Accumulation of the oxidated products determined by TBA-reactive substances does not inevitably correlate with the fluorescent intensity in explored systems.

  16. Tight gas sand production from the Almond Formation, Washakie Basin, Wyoming

    SciTech Connect

    Iverson, W.P.; Surdam, R.C.

    1995-12-31

    Gas production from the Almond Formation in the Standard Draw trend can only be accounted for by draining numerous layers of tight gas sands via the permeable upper bar sand. Discovery of this field originally focused upon production from this bar sand. But continued development cannot be explained simply by considering depletion of a 30 foot sand. Gas volumetrics verify the need to include lower sands in reservoir analysis. Core obtained from the Almond bar sand confirm petrophysical constants used in the authors` models. Their results imply that economic levels of gas production should be possible wherever a similar horizontal conduit can be tied into gas saturated layers through massive hydraulic fracturing.

  17. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    PubMed

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size <0.425mm). From the observations, a conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed. PMID:27079853

  18. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages.

    PubMed

    De Maere, Hannelore; Fraeye, Ilse; De Mey, Eveline; Dewulf, Lore; Michiels, Chris; Paelinck, Hubert; Chollet, Sylvie

    2016-04-01

    This study investigates the potential of producing red coloured dry fermented sausages without the addition of nitrite and/or nitrate. Therefore, the formation of zinc protoporphyrin IX (Zn(II)PPIX) as naturally occurring pigment, and the interrelated protoporphyrin IX (PPIX) and heme content were evaluated during nitrite-free dry fermented sausage production at different pH conditions. Zn(II)PPIX was only able to form in dry fermented sausages at pH conditions higher than approximately 4.9. Additionally, the presence of Zn(II)PPIX increased drastically at the later phase of the production process (up to day 177), confirming that in addition to pH, time is also a crucial factor for its formation. Similarly, PPIX also accumulated in the meat products at increased pH conditions and production times. In contrast, a breakdown of heme was observed. This breakdown was more gradual and independent of pH and showed no clear relationship with the formed amounts of Zn(II)PPIX and PPIX. A statistically significant relationship between Zn(II)PPIX formation and product redness was established.

  19. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  20. Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Mihalopoulos, N.; Stephanou, E. G.

    By using adequate sampling techniques we studied the chemical pathways, the gas-to-particle partition and the conversion processes leading to the formation of organic aerosols via the photo-oxidation of biogenic hydrocarbons in the atmosphere over a conifer forest. Photo-oxidation products of monoterpenes such as pinonic acid, nor-pinonic acid, pinic acid, pinonaldehyde and nopinone were detected in the gas and particulate phases of all forest aerosol samples. Considering the diurnal concentration pattern of the photo-oxidation products of α- and β-pinene and Aitken nuclei concentration measured during the same periods, we observed that the acidic photo-oxidation products of monoterpenes play a more important role in the formation of new particles than the corresponding carbonyl compounds.

  1. Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers

    NASA Astrophysics Data System (ADS)

    Park, Chiyoung; La, Yunju; An, Tae Hyun; Jeong, Hu Young; Kang, Sebyung; Joo, Sang Hoon; Ahn, Hyungju; Shin, Tae Joo; Kim, Kyoung Taek

    2015-03-01

    Solution self-assembly of block copolymers into inverse bicontinuous cubic mesophases is a promising new approach for creating porous polymer films and monoliths with highly organized bicontinuous mesoporous networks. Here we report the direct self-assembly of block copolymers with branched hydrophilic blocks into large monoliths consisting of the inverse bicontinuous cubic structures of the block copolymer bilayer. We suggest a facile and scalable method of solution self-assembly by diffusion of water to the block copolymer solution, which results in the unperturbed formation of mesoporous monoliths with large-pore (>25 nm diameter) networks weaved in crystalline lattices. The surface functional groups of the internal large-pore networks are freely accessible for large guest molecules such as protein complexes of which the molecular weight exceeded 100 kDa. The internal double-diamond (Pn3m) networks of large pores within the mesoporous monoliths could be replicated to self-supporting three-dimensional skeletal structures of crystalline titania and mesoporous silica.

  2. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-01

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.

  3. Development of stable monolithic wide-field Michelson interferometers.

    PubMed

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. PMID:21772398

  4. Assessment, modeling and optimization of parameters affecting the formation of disinfection by-products in water.

    PubMed

    Gougoutsa, Chrysa; Christophoridis, Christophoros; Zacharis, Constantinos K; Fytianos, Konstantinos

    2016-08-01

    This study focused on (a) the development of a screening methodology, in order to determine the main experimental variables affecting chlorinated and brominated disinfection by-product (DBP) formation in water during chlorination experiments and (b) the application of a central composite design (CCD) using response surface methodology (RSM) for the mathematical description and optimization of DBP formation. Chlorine dose and total organic carbon (TOC) were proven to be the main factors affecting the formation of total chlorinated DBPs, while chlorine dose and bromide concentration were the main parameters affecting the total brominated THMs. Longer contact time promoted a rise in chlorinated DBPs' concentration even in the presence of a minimal amount of organic matter. A maximum production of chlorinated DBPs was observed under a medium TOC value and it reduced at high TOC concentrations, possibly due to the competitive production of brominated THMs. The highest concentrations of chlorinated THMs were observed at chlorine dose 10 mg L(-1) and TOC 5.5 mg L(-1). The formation of brominated DBPs is possible even with a minimum amount of NaOCl in the presence of high concentration of bromide ions. Brominated DBPs were observed in maximum concentrations using 8 mg L(-1) of chlorine in the presence of 300 μg L(-1) bromides. PMID:27178297

  5. The Importance of Ammonia for Winter Haze Formation in Two Oil and Gas Production Regions

    NASA Astrophysics Data System (ADS)

    Collett, J. L., Jr.; Li, Y.; Evanoski-Cole, A. R.; Sullivan, A.; Day, D.; Archuleta, C.; Tigges, M.; Sewell, H. J.; Prenni, A. J.; Schichtel, B. A.

    2014-12-01

    Fine particle ammonium nitrate formation results from the atmospheric reaction of gaseous ammonia and nitric acid. This reaction is most important in winter when low temperatures thermodynamically enhance particle formation. Nitrogen oxides emissions from oil and gas operations partially react in the atmosphere to form nitric acid. The availability of atmospheric ammonia plays an important role in determining whether the nitric acid formed results in wintertime ammonium nitrate formation. Here we contrast situations in two important U.S. oil and gas production regions. Measurements of ammonia, nitric acid, ammonium nitrate and other species were made from 2007 to present near Boulder, Wyoming and in winters 2013 and 2014 in western North Dakota. The Boulder, Wyoming site is close to the large Jonah and Pinedale Anticline gas fields. Field sites at the north unit of Theodore Roosevelt National Park and Fort Union are situated in the large Bakken Formation oil and gas production region. Wintertime formation of nitric acid and ammonium nitrate, together comprising nitrogen in the +5 oxidation state (N(V)), was observed in both locations. Concentrations of N(V), however, are generally much lower at Boulder, WY than in the Bakken. An even bigger difference is seen in fine particle ammonium nitrate concentrations; limited regional ammonia is available in western Wyoming to react with nitric acid, leaving a portion of the nitric acid trapped in the gas phase. Higher concentrations of ammonia are observed in the Bakken where they support formation of much higher concentrations of ammonium nitrate. Comparison of these two regions clearly indicates the importance of understanding both local NOx emissions and regional concentrations of ammonia in predicting source impacts on formation of fine particles and haze.

  6. Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

    NASA Astrophysics Data System (ADS)

    Bergmann, M. E. Henry

    This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.

  7. CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Fant, A.; Gasiorek, P.; Esbrand, C.; Griffiths, J. A.; Metaxas, M. G.; Royle, G. J.; Speller, R.; Venanzi, C.; van der Stelt, P. F.; Verheij, H.; Li, G.; Theodoridis, S.; Georgiou, H.; Cavouras, D.; Hall, G.; Noy, M.; Jones, J.; Leaver, J.; Machin, D.; Greenwood, S.; Khaleeq, M.; Schulerud, H.; Østby, J. M.; Triantis, F.; Asimidis, A.; Bolanakis, D.; Manthos, N.; Longo, R.; Bergamaschi, A.

    2007-12-01

    Re-invented in the early 1990s, on both sides of the Atlantic, Monolithic Active Pixel Sensors (MAPS) in a CMOS technology are today the most sold solid-state imaging devices, overtaking the traditional technology of Charge-Coupled Devices (CCD). The slow uptake of CMOS MAPS started with low-end applications, for example web-cams, and is slowly pervading the high-end applications, for example in prosumer digital cameras. Higher specifications are required for scientific applications: very low noise, high speed, high dynamic range, large format and radiation hardness are some of these requirements. This paper will present a brief overview of the CMOS Image Sensor technology and of the requirements for scientific applications. As an example, a sensor for X-ray imaging will be presented. This sensor was developed within a European FP6 Consortium, intelligent imaging sensors (I-ImaS).

  8. Minicircle DNA purification using a CIM® DEAE-1 monolithic support.

    PubMed

    Diamantino, Tatiana; Pereira, Patrícia; Queiroz, João A; Sousa, Ângela; Sousa, Fani

    2016-09-01

    Minicircle DNA is a new biotechnological product with beneficial therapeutic perspectives for gene therapy because it is constituted only by the eukaryotic transcription unit. These features improve minicircle DNA safety and increase its therapeutic effect. However, being a recently developed product, there is a need to establish efficient purification methodologies, enabling the recovery of the supercoiled minicircle DNA isoform. Thus, this work describes the minicircle DNA purification using an anion exchange monolithic support. The results show that with this column it is possible to achieve a good selectivity, which allows the isolation of the supercoiled minicircle DNA isoform from impurities. Overall, this study shows a promising approach to obtain the minicircle DNA sample with adequate quality for future therapeutic applications. PMID:27600622

  9. Thermodynamics of Formate-Oxidizing Metabolism and Implications for H2 Production

    PubMed Central

    Lim, Jae Kyu; Bae, Seung Seob; Kim, Tae Wan; Lee, Jung-Hyun

    2012-01-01

    Formate-dependent proton reduction to H2 (HCOO− + H2O → HCO3− + H2) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H2 accumulation to a partial pressure of 1 × 105 to 7 × 105 Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (−1 to −3 kJ mol−1). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as −5 kJ mol−1, which are less than the biological minimum energy quantum, −20 kJ mol−1, as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H2 storage material, the H2 production potential of the strain was assessed. The volumetric H2 production rate increased linearly with increasing cell density, leading to 2,820 mmol liter−1 h−1 at an optical density at 600 nm (OD600) of 18.6, and resulted in the high specific H2 production rates of 404 ± 6 mmol g−1 h−1. The H2 productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H2-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems. PMID:22885755

  10. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media.

    PubMed

    Willrodt, Christian; David, Christian; Cornelissen, Sjef; Bühler, Bruno; Julsing, Mattijs K; Schmid, Andreas

    2014-08-01

    The efficiency and productivity of cellular biocatalysts play a key role in the industrial synthesis of fine and bulk chemicals. This study focuses on optimizing the synthesis of (S)-limonene from glycerol and glucose as carbon sources using recombinant Escherichia coli. The cyclic monoterpene limonene is extensively used in the fragrance, food, and cosmetic industries. Recently, limonene also gained interest as alternative jet fuel of biological origin. Key parameters that limit the (S)-limonene yield, related to genetics, physiology, and reaction engineering, were identified. The growth-dependent production of (S)-limonene was shown for the first time in minimal media. E. coli BL21 (DE3) was chosen as the preferred host strain, as it showed low acetate formation, fast growth, and high productivity. A two-liquid phase fed-batch fermentation with glucose as the sole carbon and energy source resulted in the formation of 700 mg L(org) (-1) (S)-limonene. Specific activities of 75 mU g(cdw) (-1) were reached, but decreased relatively quickly. The use of glycerol as a carbon source resulted in a prolonged growth and production phase (specific activities of ≥50 mU g(cdw) (-1) ) leading to a final (S)-limonene concentration of 2,700 mg L(org) (-1) . Although geranyl diphosphate (GPP) synthase had a low solubility, its availability appeared not to limit (S)-limonene formation in vivo under the conditions investigated. GPP rerouting towards endogenous farnesyl diphosphate (FPP) formation also did not limit (S)-limonene production. The two-liquid phase fed-batch setup led to the highest monoterpene concentration obtained with a recombinant microbial biocatalyst to date.

  11. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K.C. Kwon

    2009-09-30

    of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in

  12. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2007-09-30

    of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained

  13. Comparison of soil-monolith extraction techniques

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Rupp, H.; Weller, U.; Vogel, H.-J.

    2009-04-01

    In the international literature the term „lysimeter" is used for different objectives, e.g. suction cups, fluxmeters, etc. According to our understanding it belongs to the direct methods to measure water and solute fluxes in soil. Depending on the scientific task the shape and dimensions of the lysimeter as well as the type of filling (disturbed or undisturbed) and the specific instrumentation can be different. In any case where water dynamics or solute transport in natural soil is considered, lysimeters should be filled with 'undisturbed' monoliths which are large enough to contain the small scale heterogeneity of a site since flow and transport is highly sensitive to soil structure. Furthermore, lysimeters with vegetation should represent the natural crop inventory and the maximum root penetration depth should be taken into account. The aim of this contribution is to give an overview about different methods for obtaining undisturbed soil monoliths, in particular about i) techniques for the vertical and ii) for the horizontal extraction and iii) to evaluate the most frequently used procedures based on X-ray tomography images. Minimal disturbance of the soil monolith during extraction and subsequence filling of the lysimeter vessel is of critical importance for establishing flow and transport conditions corresponding approximately to natural field conditions. In the past, several methods were used to extract and fill lysimeter vessels vertically - including hand digging, employing sets of trihedral scaffold with lifting blocks and ballast, or using heavy duty excavators, which could shear and cut large blocks of soil. More recently, technologies have been developed to extract cylindrical soil monoliths by using ramming equipment or screw presses. One of the great disadvantages of the mentioned methods is the compaction or settling of soil that occurs during the "hammering" or "pressing". For this reason a new technology was developed, which cuts the outline of

  14. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  15. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  16. Monolithic Optical-To-Electronic Receiver

    NASA Technical Reports Server (NTRS)

    Kunath, Richard; Mactaggert, Ross

    1994-01-01

    Monolithic optoelectronic integrated circuit converts multiplexed digital optical signals into electrical signals, separates, and distributes them to intended destinations. Developed to deliver phase and amplitude commands to monolithic microwave integrated circuits (MMIC's) at elements of millimeter-wave phased-array antenna from single optical fiber driven by external array controller. Also used in distribution of high-data-rate optical communications in local-area networks (LAN's). Notable features include options for optical or electrical clock inputs; outputs for raw data, addresses, and instructions for diagnosis; and optical-signal-detection circuit used to reduce power consumption by 80 percent between data-transmission times. Chip fabricated by processes available at many major semiconductor foundries. Distribution of digital signals in aircraft, automobiles, and ships potential application.

  17. Modelling disinfection by-products formation in bromide-containing waters.

    PubMed

    Fabbricino, M; Korshin, G V

    2009-09-15

    A kinetic model capable of simulating by-products formation in bromide-containing waters during disinfection processes is presented in this paper. The model is based on two parallel sequences of incorporation and oxidation reactions induced by bromine or chlorine reacting with natural organic matter (NOM). Each sequence starts from a different type of NOM functionality that has its own set of specific reaction rate. Decay reactions of NOM and halogenated intermediates are assumed to follow a first order kinetic, while disinfection by-product (DBP) generation reactions are simulated introducing so-called splitting coefficients. This approach allows obtaining explicit expressions for DBP species. Model's results are compared with experimental data obtained for seawater samples. Comparison of the data confirms the model's ability to predict DBPs formation with high precision. PMID:19299084

  18. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  19. Monolithic microextraction tips by emulsion photopolymerization.

    PubMed

    Liang, Shih-Shin; Chen, Shu-Hui

    2009-03-20

    Monoliths formed by photopolymerization are excellent means for fabricating functional elements in miniaturized microdevices such as microextraction tips which are becoming important for sample preparation. Various silica-based and polymer-based materials have been used to fabricate monoliths with through pores of several nm to 4 microm. However, the back pressure created by such methods is still considered to be high for microtips that use suction forces to deliver the liquid. In this study, we demonstrated that emulsion techniques such as oil-in-water can be used to form monoliths with large through pores (>20 microm), and with rigid structures on small (10 microL) and large (200 microL) pipette tips by photopolymerization. We further showed that, with minor modifications, various functionalized particles (5-20 microm) can be added to form stable emulsions and successfully encapsulated into the monoliths for qualitative and quantitative solid-phase microextractions for a diverse application. Due to high permeability and large surface area, quick equilibration can be achieved by pipetting to yield high recovery rates. Using tryptic digests of ovalbumin as the standard, we obtained a recovery yield of 90-109% (RSD: 10-16%) with a loading capacity of 3 mug for desalting tips immobilized with C18 beads. Using tryptic digests of beta-casein and alpha-casein as standards, we showed that phosphopeptides were substantially enriched by tips immobilized with immobilized metal affinity chromatography or TiO(2) materials. Using estrogenic compounds as standards, we obtained a recovery yield of 95-108% (RSD: 10-12%) and linear calibration curves ranging from 5 to 100 ng (R(2)>0.99) for Waters Oasis HLB tips immobilized with hydrophilic beads. PMID:19203757

  20. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  1. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-01

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. PMID:26833783

  2. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  3. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths. PMID:27398592

  4. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  5. Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes.

    PubMed

    Kanwal, Harpreet Kaur; Reddy, M Sudhakara

    2014-07-01

    Morels are wild edible ascomycetous mushrooms that are highly prized because of their medicinal and nutritional qualities. Ligninolytic enzymes are considered as one of the most important enzymes in fungi due to their involvement in fruiting body formation during artificial cultivation on different substrates. In the life cycle of morels, sclerotia are the intermediate stage to form a fruiting body from mycelia. We have studied the production of ligninolytic enzymes by Morchella crassipes MR8 growing on different substrates and during sclerotia formation. This fungus is able to produce ligninolytic enzymes such as laccase (Lac), lignin peroxidase (LiP), and manganese-dependent peroxidase (MnP) when grown on different substrates. Maximum Lac activity was observed when grown in wheat grains whereas maximum activities of MnP and LiP were observed when grown in rice straw. Laccase enzyme was produced in high titers during sclerotia formation and maturation when grown in combinations of soil and substrates. A large number of sclerotia was observed in soil and wheat grains, along with high titers of laccase. Cellulase activity was observed to be constant during sclerotia formation and maturation. The present study results suggest that laccase enzyme might play an important role in sclerotia formation in morels. PMID:23712903

  6. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation.

    PubMed

    Aizawa, Ken; Takahari, Youko; Higashijima, Naoko; Serizawa, Kenichi; Yogo, Kenji; Ishizuka, Nobuhiko; Endo, Koichi; Fukuyama, Naoto; Hirano, Katsuya; Ishida, Hideyuki

    2015-03-01

    Sirolimus (SRL) is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS) play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC), an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs), SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22(phox) mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  7. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  8. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    PubMed

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  9. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  10. PEGylated protein separation using different hydrophobic interaction supports: Conventional and monolithic supports.

    PubMed

    Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2016-05-01

    Protein hydrophobicity can be modified after a PEGylation process. However, hydrophobic interaction chromatography (HIC) has been used to separate PEGylation reaction products less frequently than other techniques. In this context, chromatographic monoliths represent a good alternative to continue exploring the separation of PEGylated proteins with HIC. In this work, the separation of PEGylated proteins using C4 A monolith as well as Toyopearl Butyl 650C and Butyl Sepharose was analyzed. Three proteins were used as models: RNase A, β-lactoglobulin, and lysozyme. All proteins were PEGylated in the N-terminal amino groups with 20 kDa methoxy poly(ethylene glycol) propionaldehyde. The concentration of ammonium sulfate (1 M) used was the same for all stationary phases. The results obtained demonstrated that the C4 A monolith could better resolve all protein PEGylation reaction mixtures, since the peaks of mono- and di-PEGylated proteins can be clearly distinguished in the chromatographic profiles. On the contrary, while using Butyl Sepharose media only the PEGylation reaction mixtures of RNase A could be partially separated at 35 and 45 CVs. PEGylated proteins of β-lactoglobulin and lysozyme could not be resolved when Toyopearl Butyl 650C and Butyl Sepharose were used. It is then clear that monoliths are an excellent choice to explore the purification process of PEGylated proteins exploiting the advantages of HIC. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:702-707, 2016. PMID:26918888

  11. Analyses of preservatives by capillary electrochromatography using methacrylate ester-based monolithic columns.

    PubMed

    Huang, Hsi-Ya; Chiu, Chen-Wen; Huang, I-Yun; Yeh, Jui-Ming

    2004-10-01

    Five common food preservatives were analyzed by capillary electrochromatography, utilizing a methacrylate ester-based monolithic capillary as separation column. In order to optimize the separation of these preservatives, the effects of the pore size of the polymeric stationary phase, the pH and composition of the mobile phase on separation were examined. For all analytes, it was found that an increase in pore size caused a reduction in retention time. However, separation performances were greatly improved in monolithic columns with smaller pore sizes. The pH of the mobile phase had little influence on separation resolution, but a dramatic effect on the amount of sample that was needed to be electrokinetically injected into the monolithic column. In addition, the retention behaviors of these analytes were strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the five preservatives was obtained within 7.0 min with a pH 3.0 mobile phase composed of phosphate buffer and acetonitrile 35:65 v/v. Finally, preservatives in real commercial products, including cold syrup, lotion, wine, and soy sauces, were successfully determined by the methacrylate ester-based polymeric monolithic column under this optimized condition.

  12. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  13. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds.

    PubMed

    Konishi, Junko; Fujita, Koji; Nakanishi, Kazuki; Hirao, Kazuyuki; Morisato, Kei; Miyazaki, Shota; Ohira, Masayoshi

    2009-10-30

    We have developed a method of independently tailoring the macro- and mesoporous structures in titania (TiO2) monoliths in order to achieve liquid chromatographic separations of phosphorous-containing compounds. Anatase TiO2 monolithic gels with well-defined bicontinuous macropores and microstructured skeletons are obtained via the sol-gel process in strongly acidic conditions using poly(ethylene oxide) as a phase separator and N-methylformamide as a proton scavenger. Aging treatment of the wet gels in the mother liquor at temperatures of 100-200 degrees C and subsequent heat treatment at 400 degrees C allow the formation and control of mesoporous structures with uniform pore size distributions in the gel skeletons, without disturbing the preformed macroporous morphology. The monolithic TiO2 rod columns with bimodal macro-mesoporous structures possess the phospho-sensitivity and exhibit excellent chromatographic separations of phosphorus-containing compounds.

  14. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation.

    PubMed Central

    Albers, E; Larsson, C; Lidén, G; Niklasson, C; Gustafsson, L

    1996-01-01

    To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential. PMID:8795209

  15. Monolithic fuel cell based power source for sprint power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.; Majumdar, S.

    A unique fuel cell (monolith) coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The high power, long duration bursts, appear achievable within a single shuttle launch limitation with appropriate development of the concept. The feasibility of the monolithic fuel cell concept has been demonstrated. Small arrays (stacks) of the monolithic design have been operated for hundreds of hours. The challenge is to improve the fabrication technology so that larger array of the monolithic design can be operated.

  16. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  17. Less common applications of monoliths: Preconcentration andsolid-phase extraction

    SciTech Connect

    Svec, Frantisek

    2006-03-27

    Monolithic materials are finding their place in a variety of fields. While liquid chromatography is the most emphasized use of this new category of porous media, some other just as important applications are eclipsed by the success of monolithic columns. This review article describes all current facets of use of monoliths in preconcentration and solid-phase extraction. In addition to the typical off line use that does not seem to be the main stream application for the monolithic materials, in-line connection of the preconcentration with HPLC, electrochromatography, electrophoresis, enzymatic digestion, as well as its applications in microfluidics are presented.

  18. Reactions of the OOH radical with guanine: Mechanisms of formation of 8-oxoguanine and other products

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Shukla, P. K.; Mishra, P. C.

    2010-09-01

    The mutagenic product 8-oxoguanine (8-oxoGua) is formed due to intermediacy of peroxyl (OOR) radicals in lipid peroxidation and protein oxidation-induced DNA damage. The mechanisms of these reactions are not yet understood properly. Therefore, in the present study, the mechanisms of formation of 8-oxoGua and other related products due to the reaction of the guanine base of DNA with the hydroperoxyl radical (OOH) were investigated theoretically employing the B3LYP and BHandHLYP hybrid functionals of density functional theory and the polarizable continuum model for solvation. It is found that the reaction of the OOH radical with guanine can occur following seven different mechanisms leading to the formation of various products including 8-oxoGua, its radicals, 5-hydroxy-8-oxoguanine and CO 2. The mechanism that yields 8-oxoGua as an intermediate and 5-hydroxy-8-oxoGua as the final product was found to be energetically most favorable.

  19. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  20. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  1. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.

    PubMed

    Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo

    2015-12-01

    Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration.

  2. [Formation of disinfection by-products: temperature effect and kinetic modeling].

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Fu, Jing; Xie, Yue-Feng

    2012-11-01

    Water temperature has significant effects on the disinfection by-product (DBP) formation and concentration in many water utilities and distribution systems. To study the temperature effect on the DBP concentration, the uniform formation condition (UFC) test was referred in testing the formation concentration of DBPs [including (trihalomethanes) THMs and (haloacetic acids) HAAs] at different temperatures during chlorination of the humic acid (HA) solution. A kinetic model was consequently proposed to predict DBP concentration during chlorination. Results show that for the three detected DBPs, including chloroform (CHCl3), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), increasing temperature could considerably enhance both the DBP formation rates and the maximum DBP concentrations, where the maximum concentrations increase exponentially with the water temperature (R2 > 0.90). By using the data-processing software Origin, the detected DBP values were fitted using the proposed first order kinetic model, and the result showed a strong correlation for each DBP at various temperatures (R > 0.94). The apparent reaction rate constant k was also derived for each DBP. In order to quantify the temperature effect on DBP formation, the Arrhenius Equation was employed to calculate the apparent reaction activation energy for each DBP-22.3, 25.5 and 40.8 kJ x mol(-1) for CHCl3, DCAA and TCAA, respectively. By comparing the model predicted and the detected DBP values at 20 and 30 degrees C, the model showed a strong performance in predicting DBP formation concentrations, which indicated the reliability and validity of this proposed kinetic model.

  3. 3D statistical failure analysis of monolithic dental ceramic crowns.

    PubMed

    Nasrin, Sadia; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I

    2016-07-01

    For adhesively retained ceramic crown of various types, it has been clinically observed that the most catastrophic failures initiate from the cement interface as a result of radial crack formation as opposed to Hertzian contact stresses originating on the occlusal surface. In this work, a 3D failure prognosis model is developed for interface initiated failures of monolithic ceramic crowns. The surface flaw distribution parameters determined by biaxial flexural tests on ceramic plates and point-to-point variations of multi-axial stress state at the intaglio surface are obtained by finite element stress analysis. They are combined on the basis of fracture mechanics based statistical failure probability model to predict failure probability of a monolithic crown subjected to single-cycle indentation load. The proposed method is verified by prior 2D axisymmetric model and experimental data. Under conditions where the crowns are completely bonded to the tooth substrate, both high flexural stress and high interfacial shear stress are shown to occur in the wall region where the crown thickness is relatively thin while high interfacial normal tensile stress distribution is observed at the margin region. Significant impact of reduced cement modulus on these stress states is shown. While the analyses are limited to single-cycle load-to-failure tests, high interfacial normal tensile stress or high interfacial shear stress may contribute to degradation of the cement bond between ceramic and dentin. In addition, the crown failure probability is shown to be controlled by high flexural stress concentrations over a small area, and the proposed method might be of some value to detect initial crown design errors. PMID:27215334

  4. 3D statistical failure analysis of monolithic dental ceramic crowns.

    PubMed

    Nasrin, Sadia; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I

    2016-07-01

    For adhesively retained ceramic crown of various types, it has been clinically observed that the most catastrophic failures initiate from the cement interface as a result of radial crack formation as opposed to Hertzian contact stresses originating on the occlusal surface. In this work, a 3D failure prognosis model is developed for interface initiated failures of monolithic ceramic crowns. The surface flaw distribution parameters determined by biaxial flexural tests on ceramic plates and point-to-point variations of multi-axial stress state at the intaglio surface are obtained by finite element stress analysis. They are combined on the basis of fracture mechanics based statistical failure probability model to predict failure probability of a monolithic crown subjected to single-cycle indentation load. The proposed method is verified by prior 2D axisymmetric model and experimental data. Under conditions where the crowns are completely bonded to the tooth substrate, both high flexural stress and high interfacial shear stress are shown to occur in the wall region where the crown thickness is relatively thin while high interfacial normal tensile stress distribution is observed at the margin region. Significant impact of reduced cement modulus on these stress states is shown. While the analyses are limited to single-cycle load-to-failure tests, high interfacial normal tensile stress or high interfacial shear stress may contribute to degradation of the cement bond between ceramic and dentin. In addition, the crown failure probability is shown to be controlled by high flexural stress concentrations over a small area, and the proposed method might be of some value to detect initial crown design errors.

  5. Cinnamon bark oil and its components inhibit biofilm formation and toxin production.

    PubMed

    Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Soon-Il; Baek, Kwang-Hyun; Lee, Jintae

    2015-02-16

    The long-term usage of antibiotics has resulted in the evolution of multidrug resistant bacteria, and pathogenic biofilms contribute to reduced susceptibility to antibiotics. In this study, 83 essential oils were initially screened for biofilm inhibition against Pseudomonas aeruginosa. Cinnamon bark oil and its main constituent cinnamaldehyde at 0.05% (v/v) markedly inhibited P. aeruginosa biofilm formation. Furthermore, cinnamon bark oil and eugenol decreased the production of pyocyanin and 2-heptyl-3-hydroxy-4(1H)-quinolone, the swarming motility, and the hemolytic activity of P. aeruginosa. Also, cinnamon bark oil, cinnamaldehyde, and eugenol at 0.01% (v/v) significantly decreased biofilm formation of enterohemorrhagic Escherichia coli O157:H7 (EHEC). Transcriptional analysis showed that cinnamon bark oil down-regulated curli genes and Shiga-like toxin gene stx2 in EHEC. In addition, biodegradable poly(lactic-co-glycolic acid) film incorporating biofilm inhibitors was fabricated and shown to provide efficient biofilm control on solid surfaces. This is the first report that cinnamon bark oil and its components, cinnamaldehyde and eugenol, reduce the production of pyocyanin and PQS, the swarming motility, and the hemolytic activity of P. aeruginosa, and inhibit EHEC biofilm formation.

  6. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination.

    PubMed

    Zamyadi, Arash; Ho, Lionel; Newcombe, Gayle; Bustamante, Heriberto; Prévost, Michèle

    2012-04-01

    Drinking water sources in many regions are subject to proliferation of toxic cyanobacteria (CB). Chlorination of source water containing toxic cyanobacterial cells for diverse treatment purposes might cause cell damage, toxin release and disinfection by-products (DBP) formation. There is limited information available on chlorination of different toxic CB cells and DBP formation potentials. This work: (1) determines the extent of lysis and toxins/taste and odor compound release in chlorinated natural water from CB cells (Anabaena circinalis, Microcystis aeruginosa, Cylindrospermopsis raciborskii, and Aphanizomenon issatsckenka) from laboratory cultures and natural blooms; (2) assesses the rates of oxidation of toxins by free chlorine under environmental conditions; (3) studies the DBP formation associated with the chlorination of CB cell suspensions. With chlorine exposure (CT) value of <4.0 mg min/L >60% cells lost viability causing toxin release. Cell membrane damage occurred faster than oxidation of released toxins. Kinetic analysis of the oxidation of toxins in natural water revealed significant differences in their susceptibility to chlorine, saxitoxins being the easiest to oxidize, followed by cylindrospermopsin and microcystin-LR. Furthermore, concentrations of trihalomethanes and haloacetic acids (<40 μg/L) and N-nitrosodimethylamine (<10 ng/L) as chlorination by-products were lower than the guideline values even at the highest CT value (220 mg min/L). However, the DBP concentrations in environmental bloom conditions with very high cell numbers were over the guideline values. PMID:21820143

  7. Immune thrombocytopenia: antiplatelet autoantibodies inhibit proplatelet formation by megakaryocytes and impair platelet production in vitro

    PubMed Central

    Iraqi, Muna; Perdomo, Jose; Yan, Feng; Choi, Philip Y-I; Chong, Beng H.

    2015-01-01

    Primary immune thrombocytopenia is an autoimmune disease mediated by antiplatelet autoantibodies that cause platelet destruction and suppression of platelet production. In vitro effects of autoantibodies on megakaryocyte production and maturation have been reported recently. However, the impact of these autoantibodies on crucial megakaryocyte functions, proplatelet formation and subsequent platelet release, has not been evaluated. We examined the effects of serum and IgG from 19 patients with immune thrombocytopenia using day 8 or 9 megakaryocytes (66.3 ± 10.6% CD41+), derived from cord blood hematopoietic stem cells (CD34+). The number of proplatelet-bearing megakaryocytes, the number of platelets released in the culture, total megakaryocyte numbers, ploidy pattern and caspase activation were measured at various times after treatment. After 5 days of treatment the number of proplatelet-bearing megakaryocytes was significantly decreased by 13 immune thrombocytopenia autoantibodies relative to the control group (P<0.0001) and this decrease was accompanied by a corresponding reduction of platelet release. Other features, including total megakaryocyte numbers, maturation and apoptosis, were not affected by immune thrombocytopenia antibodies. Treating the megakaryocytes with the thrombopoietin receptor agonists romiplostim and eltrombopag reversed the effect of the autoantibodies on megakaryocytes by restoring their capacity to form proplatelets. We conclude that antiplatelet antibodies in immune thrombocytopenia inhibit proplatelet formation by megakaryocytes and hence the ability of the megakaryocytes to release platelets. Treatment with either romiplostim or eltrombopag regenerates proplatelet formation from the megakaryocytes. PMID:25682608

  8. Formation and inhibition of cholesterol oxidation products during marinating of pig feet.

    PubMed

    Chen, Y C; Chien, J T; Inbaraj, B Stephen; Chen, Bing Huei

    2012-01-11

    Cholesterol oxidation products (COPs), formed during the heating of cholesterol-rich foods, have been shown to cause cancer and coronary heart disease. The objectives of this study were to develop a GC-MS method for the determination of COPs in pig feet meat, skin, and juice during marinating and to study the formation and inhibition of COPs as affected by the incorporation of soy sauce and sugar. Results showed that an HP-5MS column could provide an adequate separation of cholesterol, 5α-cholestane (internal standard), and seven COPs, including 7α-OH, 7β-OH, 5,6β-OH, 5,6α-OH, triol, 25-OH, and 7-keto, within 15 min with a temperature-programming method. Most COPs in pig feet meat were generated at a larger amount than in pig feet skin and marinating juice over a 24 h heating period at about 100 °C. The Maillard browning index rose with increasing heating time, whereas the pH showed a slight change in marinated juice. Both reducing sugar and free amino acid contributed to the formation of Maillard reaction products. The incorporation of soy sauce and crystal sugar into fresh juice was effective in inhibiting COPs formation in pig feet, skin, and juice over a 30 min preheating period.

  9. Precipitation of organic arsenic compounds and their degradation products during struvite formation.

    PubMed

    Lin, Jin-Biao; Yuan, Shoujun; Wang, Wei; Hu, Zhen-Hu; Yu, Han-Qing

    2016-11-01

    Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH4(+)-N) and phosphate (PO4(3-)-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO4(3-)-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation. PMID:27262276

  10. Formation of disinfection by-products in chlorinated swimming pool water.

    PubMed

    Kim, Hekap; Shim, Jaeho; Lee, Soohyung

    2002-01-01

    The formation of five volatile disinfection by-products (DBPs: chloroform, bromodichloromethane, chloral hydrate, dichloroacetonitrile, and 1,1,1-trichloropropanone) by the chlorination of the materials of human origin (MHOs: hair, lotion, saliva, skin, and urine) in a swimming pool model system was examined. Chlorination reactions took place with a sufficient supply of chlorine residuals (0.84 mg Cl2/l < total chlorine < 6.0 mg Cl2/l) in 300 ml glass bottles containing either ground water or surface water as a reaction medium at 30 degrees C and pH 7.0, for either 24 or 72 h. A longer reaction period of 72 h or a higher content of organic materials led to the increased formation of DBPs. Of the DBPs formed by the reaction, chloroform was a major compound found in both ground and surface waters. The formation of chloroform and bromodichloromethane per unit total organic carbon (TOC) concentration was suppressed when all types of MHOs were added to the surface water that already contained DBP precursors such as humic substances. However, the formation of dichloroacetonitrile was promoted, probably due to the increased degradation reactions of nitrogen-containing compounds such as urea and proteins of human origin. In conclusion, the materials of swimmers' origin including hair, lotion, saliva, skin, and urine add to the levels of DBPs in swimming pool water, and any mitigation measures such as periodic change of water are needed to protect swimmers from elevated exposures to these compounds.

  11. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.

    PubMed

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin; Liu, Houguang; Liu, Yuhong; Huang, Xu; Zhu, Gefu

    2016-10-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation. PMID:27423547

  12. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya

    NASA Astrophysics Data System (ADS)

    Ohshima, Kay I.; Fukamachi, Yasushi; Williams, Guy D.; Nihashi, Sohey; Roquet, Fabien; Kitade, Yujiro; Tamura, Takeshi; Hirano, Daisuke; Herraiz-Borreguero, Laura; Field, Iain; Hindell, Mark; Aoki, Shigeru; Wakatsuchi, Masaaki

    2013-03-01

    The formation of Antarctic Bottom Water--the cold, dense water that occupies the abyssal layer of the global ocean--is a key process in global ocean circulation. This water mass is formed as dense shelf water sinks to depth. Three regions around Antarctica where this process takes place have been previously documented. The presence of another source has been identified in hydrographic and tracer data, although the site of formation is not well constrained. Here we document the formation of dense shelf water in the Cape Darnley polynya (65°-69°E) and its subsequent transformation into bottom water using data from moorings and instrumented elephant seals (Mirounga leonina). Unlike the previously identified sources of Antarctic Bottom Water, which require the presence of an ice shelf or a large storage volume, bottom water production at the Cape Darnley polynya is driven primarily by the flux of salt released by sea-ice formation. We estimate that about 0.3-0.7×106m3s-1 of dense shelf water produced by the Cape Darnley polynya is transformed into Antarctic Bottom Water. The transformation of this water mass, which we term Cape Darnley Bottom Water, accounts for 6-13% of the circumpolar total.

  13. Sliding Motility, Biofilm Formation, and Glycopeptidolipid Production in Mycobacterium colombiense Strains

    PubMed Central

    Maya-Hoyos, Milena; Leguizamón, John; Mariño-Ramírez, Leonardo; Soto, Carlos Y.

    2015-01-01

    Mycobacterium colombiense is a novel member of the Mycobacterium avium complex, which produces respiratory and disseminated infections in immunosuppressed patients. Currently, the morphological and genetic bases underlying the phenotypic features of M. colombiense strains remain unknown. In the present study, we demonstrated that M. colombiense strains displaying smooth morphology show increased biofilm formation on hydrophobic surfaces and sliding on motility plates. Thin-layer chromatography experiments showed that M. colombiense strains displaying smooth colonies produce large amounts of glycolipids with a chromatographic behaviour similar to that of the glycopeptidolipids (GPLs) of M. avium. Conversely, we observed a natural rough variant of M. colombiense (57B strain) lacking pigmentation and exhibiting impaired sliding, biofilm formation, and GPL production. Bioinformatics analyses revealed a gene cluster that is likely involved in GPL biosynthesis in M. colombiense CECT 3035. RT-qPCR experiments showed that motile culture conditions activate the transcription of genes possibly involved in key enzymatic activities of GPL biosynthesis. PMID:26180799

  14. Reducing the formation of disinfection by-products by pre-ozonation.

    PubMed

    Chang, Cheng-Nan; Ma, Ying-Shih; Zing, Fang-Fong

    2002-01-01

    The objective of this study is to apply the pre-ozonation process to reduce the formation of disinfection by-products (DBPs). The raw water sample, collected from the Te-Chi Reservoir in central Taiwan, has been polluted by fertilizer. Three types of resins were used to isolate the natural organic matter into seven types of organic fractions. The pre-ozonation was used to oxidize each organic fraction to study the reduction of DBPs of each fraction. Experimental results indicated that the pre-ozonation could reduce the concentration of dissolved organic carbon resulting in the reduction of DBP formation. With the pre-ozonation, 9-54% of DOC and more than 40% of DBPs were reduced. With the analysis of UV adsorption and Fourier transform infrared spectrometer (FTIR), the reduction of A254 and unsaturated functional groups such as aromatic ring and C=C bond containing in the water sample is the major reaction mechanism.

  15. Simulation of production and injection performance of gas storage caverns in salt formations

    SciTech Connect

    Hagoort, J. )

    1994-11-01

    This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

  16. Increased efficiency of evolved group I intron spliceozymes by decreased side product formation

    PubMed Central

    Amini, Zhaleh N.; Müller, Ulrich F.

    2015-01-01

    The group I intron ribozyme from Tetrahymena was recently reengineered into a trans-splicing variant that is able to remove 100-nt introns from pre-mRNA, analogous to the spliceosome. These spliceozymes were improved in this study by 10 rounds of evolution in Escherichia coli cells. One clone with increased activity in E. coli cells was analyzed in detail. Three of its 10 necessary mutations extended the substrate binding duplexes, which led to increased product formation and reduced cleavage at the 5′-splice site. One mutation in the conserved core of the spliceozyme led to a further reduction of cleavage at the 5′-splice site but an increase in cleavage side products at the 3′-splice site. The latter was partially reduced by six additional mutations. Together, the mutations increased product formation while reducing activity at the 5′-splice site and increasing activity at the 3′-splice site. These results show the adaptation of a ribozyme that evolved in nature for cis-splicing to trans-splicing, and they highlight the interdependent function of nucleotides within group I intron ribozymes. Implications for the possible use of spliceozymes as tools in research and therapy, and as a model for the evolution of the spliceosome, are discussed. PMID:26106216

  17. Hydrogen transfer in the formation and destruction of retrograde products in coal conversion

    SciTech Connect

    McMillen, D.F.; Malhotra, R.

    2006-06-01

    The conversion of coals to volatiles or liquids during pyrolysis and liquefaction is notoriously limited by the formation of retrograde products. Analysis of literature data for coals with grafted structures and for polymeric coal models demonstrates that the formation of volatile products from these materials does not correlate primarily with the weakness of the original bonding but correlates with the facility for retrogressive reaction. This analysis suggests further that simple recombination of resonance-stabilized radicals does not tend to yield true retrograde products, except in the case of aryloxy radicals. For pure hydrocarbon structural elements, radical addition to aromatic systems appears to be a key class of retrograde reactions, where the key factor is the kinetics of radical or H-atom loss from a cyclohexadienyl intermediate. We have used a mechanistic numerical model with a detailed set of radical reactions and thermochemically based kinetic parameters operating on a limited set of hydrocarbon structures to delineate important factors in mitigating retrograde processes. This showed that, not only the cleavage of critical bonds in the original coal structures but also the net prevention of retrogression may be due to the H-transfer-induced cleavage of strong bonds.

  18. A kinetic model for product formation of microbial and mammalian cells

    SciTech Connect

    Zeng, A.P.

    1995-05-20

    Growth of microbial and mammalian cells can be classified into substrate-limited and substrate-sufficient growth according to the relative availability of the substrate (carbon and energy source) and other nutrients. It has been observed for a number of microbial and mammalian cells that the consumption rate of substrate and energy (ATP) is generally higher under substrate-sufficient conditions than under substrate limitation. Accordingly, the product formation under substrate excess often exhibits different patterns from those under substrate limitation. In this study, the Luedeking-Piret kinetic model is extended to include a term describing the effect of residual substrate concentration. The applicability of the extended model is demonstrated with three microbial cultures for the production of primary metabolites and three hybridoma cell cultures for the production of ammonia and lactic acid over a wide range of substrate concentration. Anaerobic fermentation of glycerol by Klebsiella pneumoniae is a multiproduct fermentation process. At a neutral pH value, acetic acid, ethanol, and 1,3-propanediol are the main fermentation products. Formation of acetic acid and/or ethanol is necessary for the generation by K. pneumoniae. The aerobic growth of bacillus strain TS1 on methanol has been studied in methanol-limited and methanol-sufficient hemostat cultures. Under methanol-limited conditions there is no extracellular product formed. However, under methanol-sufficient conditions, particularly with nitrogen limitation, metabolites such as acetic acid and 2-oxoglutaric acid are excreted into the culture medium above a certain level of residual methanol concentration.

  19. Formation of disinfection by-products: effect of temperature and kinetic modeling.

    PubMed

    Zhang, Xiao-lu; Yang, Hong-wei; Wang, Xiao-mao; Fu, Jing; Xie, Yuefeng F

    2013-01-01

    The temperature of drinking water fluctuates naturally in water distribution systems as well as often deliberately heated for household or public uses. In this study, the temperature effect on the formation of disinfection by-products (DBPs) was investigated by monitoring the temporal variations of twenty-one DBPs during the chlorination of a humic precursors-containing water at different temperatures. It was found that chloroform, DCAA, TCAA, DCAN and CH were detected at the considerable level of tens of μg L(-1). The three regulated DBPs (chloroform, DCAA and TCAA) were found increasing with both contact time and water temperature, while the five typical emerging DBPs (DCAN, CH, TCNM 1,1-DCPN and 1,1,1-TCPN) revealed the significant auto-decomposition in addition to the initial growth in the first few hours. Increasing water temperature could enhance the formation rates of all the eight detected DBPs and the decomposition rates of the five emerging DBPs. Further, a kinetic model was developed for the simulation of DBP formation. The validity and universality of the model were verified by its excellent correlation with the detected values of each DBP species at various temperatures. The formation rates of 1,1-DCPN and 1,1,1-TCPN, and the decomposition rate of 1,1,1-TCPN were faster as compared to the other DBPs. And the formation reaction activation energies of CH, DCAN and 1,1-DCPN were relatively large, indicating that their occurrence levels in the finished water were more susceptible to temperature variations.

  20. Ozonation of piperidine, piperazine and morpholine: Kinetics, stoichiometry, product formation and mechanistic considerations.

    PubMed

    Tekle-Röttering, Agnes; Jewell, Kevin S; Reisz, Erika; Lutze, Holger V; Ternes, Thomas A; Schmidt, Winfried; Schmidt, Torsten C

    2016-01-01

    Piperidine, piperazine and morpholine as archetypes for secondary heterocyclic amines, a structural unit that is often present in pharmaceuticals (e.g., ritalin, cetirizine, timolol, ciprofloxacin) were investigated in their reaction with ozone. In principle the investigated compounds can be degraded with ozone in a reasonable time, based on their high reaction rate constants with respect to ozone (1.9 × 10(4)-2.4 × 10(5) M(-1) s(-1)). However, transformation is insufficient (13-16%), most likely due to a chain reaction, which decomposes ozone. This conclusion is based on OH scavenging experiments, leading to increased compound transformation (18-27%). The investigated target compounds are similar in their kinetic and stoichiometric characteristics. However, the mechanistic considerations based on product formation indicate various reaction pathways. Piperidine reacts with ozone via a nonradical addition reaction to N-hydroxypiperidine (yield: 92% with and 94% without scavenging, with respect to compound transformation). However, piperazine degradation with ozone does not lead to N-hydroxypiperazine. In the morpholine/ozone reaction, N-hydroxymorpholine was identified. Additional oxidation pathways in all cases involved the formation of OH with high yields. One important pathway of piperazine and morpholine by ozonation could be the formation of C-centered radicals after ozone or OH radical attack. Subsequently, O2 addition forms unstable peroxyl radicals, which in one pathway loose superoxide radicals by generating a carbon-centered cation. Subsequent hydrolysis of the carbon-centered cation leads to formaldehyde, whereby ozonation of the N-hydroxy products can proceed in the same way and in addition give rise to hydroxylamine. A second pathway of the short-lived peroxyl radicals could be a dimerization to form short-lived tetraoxides, which cleave by forming hydrogen peroxide. All three products have been found. PMID:26624229

  1. Gas, Water, and Oil Production from the Wasatch Formation, Greater Natural Buttes Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, Philip H.; Hoffman, Eric L.

    2009-01-01

    Gas, oil, and water production data were compiled from 38 wells with production commencing during the 1980s from the Wasatch Formation in the Greater Natural Buttes field, Uinta Basin, Utah. This study is one of a series of reports examining fluid production from tight gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. The general ranges of production rates after 2 years are 100-1,000 mscf/day for gas, 0.35-3.4 barrel per day for oil, and less than 1 barrel per day for water. The water:gas ratio ranges from 0.1 to10 barrel per million standard cubic feet, indicating that free water is produced along with water dissolved in gas in the reservoir. The oil:gas ratios are typical of a wet gas system. Neither gas nor water rates show dependence upon the number of perforations, although for low gas-flow rates there is some dependence upon the number of sandstone intervals that were perforated. Over a 5-year time span, gas and water may either increase or decrease in a given well, but the changes in production rate do not exhibit any dependence upon well proximity or well location.

  2. Formation and fate of chlorination by-products in reverse osmosis desalination systems.

    PubMed

    Agus, Eva; Sedlak, David L

    2010-03-01

    Chlorination by-products may be formed during pretreatment or posttreatment disinfection in reverse osmosis (RO) desalination systems, potentially posing health, aesthetic and ecological risks. To assess the formation and fate of by-products under different conditions likely to be encountered in desalination systems, trihalomethanes, dihaloacetonitriles, haloacetic acids, and bromophenols were analyzed in water samples from a pilot-scale seawater desalination plant with a chlorine pretreatment system and in benchscale experiments designed to simulate other feed water conditions. In the pilot plant, RO rejection performance as low as 55% was observed for neutral, low-molecular-weight by-products such as chloroform or bromochloroacetonitrile. Benchscale chlorination experiments, conducted on seawater from various locations indicated significant temporal and spatial variability for all by-products, which could not be explained by measured concentrations of organic carbon or bulk parameters such as SUVA(254). When desalinated water was blended with freshwater, elevated concentrations of bromide in the blended water resulted in dihaloacetonitrile concentrations that were higher than those expected from dilution. In most situations, the concentration of chlorination by-products formed from continuous chlorination of seawater or blending of desalinated water and freshwater will not compromise water quality or pose significant risks to aquatic ecosystems.

  3. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  4. Well production system to prevent cave-in and sloughing in unconsolidated formations

    SciTech Connect

    Widmyer, R.H.

    1982-09-21

    A well production system is disclosed for controlling ingress and egress of high pressure fluid through the annuli formed between the well and a screen support tube internally thereof. The screen support tube and an internal high pressure wash pipe with valves maintain constant high fluid pressure against the overburden during work in the well, as during drilling of an enlarged cavity therein for preventing cave-in and sloughing of the unconsolidated formation well walls until a sand pack is formed and the well producing.

  5. Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions.

    PubMed

    Byström, Emil; Viklund, Camilla; Irgum, Knut

    2010-02-01

    Nitroxide-mediated polymerization was used as a model system for preparing styrenic monolithic materials with significant mesopore contents in different mold formats, with the aim of assessing the validity of pore characterization of capillary monoliths by analysis of parallel bulk polymerized precursor solution. Capillary monoliths were prepared in 250 microm id fused silica tubes (quadruplicate samples, in total 17 m), and the batch polymerizations were carried out in parallel in 100 microL microvials and regular 2 mL glass vials, both in quintuplicate. The monoliths recovered from the molds were characterized for their meso- and macroporous properties by nitrogen sorptiometry (three repeated runs on each sample), followed by a single analysis by mercury intrusion porosimetry. A total of 14 monolith samples were thus analyzed. A Grubbs' test identified one regular vial sample as an outlier in the sorptiometric surface area measurements, and data from this sample were consequently excluded from the pore size calculations, which are based on the same nitrogen sorption data, and also from the mercury intrusion data set. The remaining data were subjected to single factor analyses of variance analyses to test if the porous properties of the capillary monoliths were different from those of the bulk monoliths prepared in parallel. Significant differences were found between all three formats both in their meso- and macroporous properties. When the dimension was shrunk from conventional vial to capillary size, the specific surface area decreased from 52.2+/-4.7 to 34.6+/-1.7 m(2)/g. This decrease in specific surface area was accompanied by a significant shift in median diameter of the through-pores, from 310+/-3.9 to 544+/-13 nm. None of these differences were obvious from the scanning electron micrographs that were acquired for each sample type. The common practice of determining the mesopore characteristics from analysis of samples prepared by parallel bulk

  6. Monolithic aerogels with nanoporous crystalline phases

    NASA Astrophysics Data System (ADS)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  7. Monolithic LTCC seal frame and lid

    DOEpatents

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  8. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  9. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  10. [Applications of polymeric monoliths in separation of bio-macromolecules].

    PubMed

    Bai, Ligai; Niu, Wenjing; Yang, Gengliang

    2013-04-01

    In recent years, the applications of high performance liquid chromatographic polymeric monoliths in the separation of macromolecules have been developed. In the review, the characters and new developments of bio-macromolecules separation by using the polymeric monoliths, combining with the works in our laboratory are summarized. Moreover, related influential reports are referred.

  11. Creating deep soil core monoliths: Beyond the solum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  12. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  13. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.

    PubMed

    Balzer, Grant J; Thakker, Chandresh; Bennett, George N; San, Ka-Yiu

    2013-11-01

    Succinic acid is a specialty chemical having numerous applications in industrial, pharmaceutical and food uses. One of the major challenges in the succinate fermentation process is eliminating the formation of byproducts. In this study, we describe eliminating byproduct formate and improving succinate productivity by reengineering a high succinate producing E. coli strain SBS550MG-Cms243(pHL413Km). The NAD(+)-dependent formate dehydrogenase gene (fdh1) of Candida boidinii was coexpressed with Lactococcus lactis pyruvate carboxylase (pycA) under the control of Ptrc and PpycA promoters in plasmid pHL413KF1. The newly introduced fdh1 converts 1 mol of formate into 1 mol of NADH and CO2. The reengineered strain SBS550MG-Cms243(pHL413KF1) retains the reducing power of formate through an increase in NADH availability. In anaerobic shake flask fermentations, the parent strain SBS550MG-Cms243(pHL413Km) consumed 99.86 mM glucose and produced 172.38 mM succinate, 16.16 mM formate and 4.42 mM acetate. The FDH bearing strain, SBS550MG-Cms243(pHL413KF1) consumed 98.43 mM glucose and produced 171.80 mM succinate, 1mM formate and 5.78 mM acetate. Furthermore, external formate supplementation to SBS550MG(pHL413KF1) fermentations resulted in about 6% increase in succinate yields as compared to SBS550MG(pHL413Km). In an anaerobic fed-batch bioreactor process, the average glucose consumption rate, succinate productivity, and byproduct formate concentration of SBS550MG(pHL413Km) was 1.40 g/L/h, 1g/L/h, and 17 mM, respectively. Whereas, the average glucose consumption rate, succinate productivity and byproduct formate concentration of SBS550MG(pHL413KF1) was 2 g/L/h, 2 g/L/h, 0-3 mM respectively. A high cell density culture of SBS550MG(pHL413KF1) showed further improvement in succinate productivity with a higher glucose consumption rate. Reduced levels of byproduct formate in succinate fermentation broth would provide an opportunity for reducing the cost associated with downstream

  14. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    SciTech Connect

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated.

  15. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith.

  16. A format standard for efficient interchange of high-contrast direct imaging science products

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Vigan, Arthur; Soummer, Rémi; Chauvin, Gaël.; Pueyo, Laurent; Perrin, Marshall D.; Hines, Dean C.

    2014-07-01

    The present and next few years will see the arrival of several new coronagraphic instruments dedicated to the detection and characterization of planetary systems. These ground- and space-based instruments (Gemini/GPI, VLT/SPHERE, Subaru/ CHARIS, JWST NIRCam and MIRI coronagraphs among others), will provide a large number of new candidates, through multiple nearby-star surveys and will complete and extend those acquired with current generation instruments (Palomar P1640, VLT/NACO, Keck, HST). To optimize the use of the wealth of data, including non-detection results, the science products of these instruments will require to be shared among the community. In the long term such data exchange will significantly ease companion confirmations, planet characterization via different type of instruments (integral field spectrographs, polarimetric imagers, etc.), and Monte-Carlo population studies from detection and non-detection results. In this context, we initiated a collaborative effort between the teams developing the data reduction pipelines for SPHERE, GPI, and the JWST coronagraphs, and the ALICE (Archival Legacy Investigations of Circumstellar Environment) collaboration, which is currently reprocessing all the HST/NICMOS coronagraphic surveys. We are developing a standard format for the science products generated by high-contrast direct imaging instruments (reduced image, sensitivity limits, noise image, candidate list, etc.), that is directly usable for astrophysical investigations. In this paper, we present first results of this work and propose a preliminary format adopted for the science product. We call for discussions in the high-contrast direct imaging community to develop this effort, reach a consensus and finalize this standard. This action will be critical to enable data interchange and combination in a consistent way between several instruments and to stiffen the scientific production in the community.

  17. [Formation Mechanism of the Disinfection By-product 1, 1-Dichloroacetone in Drinking Water].

    PubMed

    Ding, Chun-sheng; Meng, Zhuang; Xu, Yang-yang; Miao, Jia

    2015-05-01

    A novel method using methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of the disinfection by-producs 1,1-dichloroacetone (DCAce) by gas chromatography mass spectrometry (GC-MS) was described. The formation process of DCAce and its influencing factors were discussed with L-leucine as the precursor during the chloramination process. The results indicated that the DCAce production increased with the increase of chloramine dosage when the chloramine addition was in the range of 5-30 mg · L(-1). The DCAce amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the DCAce amount reduced with the increase of pH value. Temperature was another important factor that affected the DCAce formation from methylamine especially in the range of 15-35°C , and the higher the temperature, the more the DCAce produced. The formation process of DCAce from L-leucine by chloramine consisted of a series of complicated reactions, including substitution, oxidation, bond breaking, amino diazotization, reduction and so on, and eventually DCAce was formed.

  18. Inhibitory effect of leonurine on the formation of advanced glycation end products.

    PubMed

    Huang, Lianqi; Yang, Xin; Peng, Anlin; Wang, Hui; Lei, Xiang; Zheng, Ling; Huang, Kun

    2015-02-01

    Long-term hyperglycemia is a typical symptom of diabetes mellitus (DM) which can cause a high level of protein glycation and lead to the formation of advanced glycation end products (AGEs). The accumulation of AGEs in turn deteriorates DM and its complications. Insulin, the only hormone that directly decreases blood sugar in vivo, is vulnerable to glycation which causes the loss of its biological activity. In this study, we used a porcine insulin (PI)-methylglyoxal (MGO) model to investigate the inhibitory effect of leonurine (LN), a natural alkaloid extracted from Herba leonuri, on AGE formation. Assays including AGE-specific fluorescence, and fructosamine level and carbonyl group content determination showed that LN can dose-dependently suppress PI glycation. A significantly decreased cross-linking level on the glycated PI was also proven by SDS-PAGE electrophoresis. A further liquid chromatography-mass spectrometry study suggested that LN may inhibit PI glycation through trapping MGO and keeping it from reacting with PI. Our results thus indicate that LN is a promising anti-glycation agent for the prevention of diabetes and its complications via inhibiting AGE formation.

  19. Impact of groundwater surface storage on chlorination and disinfection by-product formation.

    PubMed

    Padhi, R K; Satpathy, K K; Subramanian, S

    2015-09-01

    The change in water quality arising from the open storage of groundwater (GW) and its impact on chlorination and chlorination by-product formation were investigated. Water quality descriptors, such as temperature, pH, chlorophyll, and dissolved oxygen contents of GW undergo substantial alteration when stored in a reservoir. Dissolved organic content (DOC) measured in the two water sources studied, i.e., GW and open reservoir water (RW), varied from 0.41 mg/L to 0.95 mg/L and 0.93 mg/L to 2.53 mg/L, respectively. Although DOC demonstrated wide variation, UV absorbance at 254 nm (UVA254) values for GW (0.022-0.067) and RW (0.037-0.077) did not display reciprocal variations. The chlorine demand (CD) of RW was always higher than that of GW for the corresponding sampling period. Average trihalomethane (THM) formation for RW was 50-80% higher compared to GW and thus poses an enhanced health risk. Appreciable amounts of bromide present in these water sources (0.15-0.26 mg/L in GW and 0.17-0.65 mg/L in RW) have resulted in the non-selective distribution of the four THM species. The formation of more toxic brominated THM due to chlorination of these near-coast drinking water sources must be regarded as a decisive factor for the choice of water disinfection regime.

  20. Peptidylarginine Deiminase Inhibitor Suppresses Neutrophil Extracellular Trap Formation and MPO-ANCA Production

    PubMed Central

    Kusunoki, Yoshihiro; Nakazawa, Daigo; Shida, Haruki; Hattanda, Fumihiko; Miyoshi, Arina; Masuda, Sakiko; Nishio, Saori; Tomaru, Utano; Atsumi, Tatsuya; Ishizu, Akihiro

    2016-01-01

    Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis is a systemic small-vessel vasculitis, wherein, MPO-ANCA plays a critical role in the pathogenesis. Neutrophil extracellular traps (NETs) released from activated neutrophils are composed of extracellular web-like DNA and antimicrobial proteins, including MPO. Diverse stimuli, such as phorbol myristate acetate (PMA) and ligands of toll-like receptors (TLR), induce NETs. Although TLR-mediated NET formation can occur with preservation of living neutrophilic functions (called vital NETosis), PMA-stimulated neutrophils undergo cell death with NET formation (called suicidal NETosis). In the process of suicidal NETosis, histones are citrullinated by peptidylarginine deiminase 4 (PAD4). Since this step is necessary for decondensation of DNA, PAD4 plays a pivotal role in suicidal NETosis. Although NETs are essential for elimination of microorganisms, excessive formation of NETs has been suggested to be implicated in MPO-ANCA production. This study aimed to determine if pan-PAD inhibitors could suppress MPO-ANCA production in vivo. At first, NETs were induced in peripheral blood neutrophils derived from healthy donors (1 × 106/ml) by stimulation with 20 nM PMA with or without 20 μM propylthiouracil (PTU), an anti-thyroid drug. We then determined that the in vitro NET formation was inhibited completely by 200 μM Cl-amidine, a pan-PAD inhibitor. Next, we established mouse models with MPO-ANCA production. BALB/c mice were given intraperitoneal (i.p.) injection of PMA (50 ng at days 0 and 7) and oral PTU (2.5 mg/day) for 2 weeks. These mice were divided into two groups; the first group was given daily i.p. injection of PBS (200 μl/day) (n = 13) and the other group with daily i.p. injection of Cl-amidine (0.3 mg/200 μl PBS/day) (n = 7). Two weeks later, citrullination as an indicator of NET formation in the peritoneum and serum MPO-ANCA titer was compared

  1. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format

    NASA Astrophysics Data System (ADS)

    Böhm, Karl-Heinz; Auer, Alexander A.; Espig, Mike

    2016-06-01

    In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N5 scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ɛ = 10-4 and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N10 and future work has to be directed towards reduction-free algorithms.

  2. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Deng, Yang; Templeton, Michael R; Yin, Daqiang

    2011-12-01

    The formation of disinfection by-products (DBPs), including both nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs), was investigated by analyzing chlorinated water samples following the application of three pretreatment processes: (i) powdered activated carbon (PAC) adsorption; (ii) KMnO(4) oxidation and (iii) biological contact oxidation (BCO), coupled with conventional water treatment processes. PAC adsorption can remove effectively the precursors of chloroform (42.7%), dichloroacetonitrile (28.6%), dichloroacetamide (DCAcAm) (27.2%) and trichloronitromethane (35.7%), which were higher than that pretreated by KMnO(4) oxidation and/or BCO process. The removal efficiency of dissolved organic carbon by BCO process (76.5%)--was superior to that by PAC adsorption (69.9%) and KMnO(4) oxidation (61.4%). However, BCO increased the dissolved organic nitrogen (DON) concentration which caused more N-DBPs to be formed during subsequent chlorination. Soluble microbial products including numerous DON compounds were produced in the BCO process and were observed to play an essential role in the formation of DCAcAm in particular. PMID:22014706

  3. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format.

    PubMed

    Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike

    2016-06-28

    In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms. PMID:27369492

  4. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Lee, Jintae

    2014-12-01

    The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens. PMID:24958247

  5. Development of a far-infrared Ge:Ga monolithic array for a possible application to SPICA

    NASA Astrophysics Data System (ADS)

    Shirahata, Mai; Kamiya, Shuhei; Matsuura, Shuji; Kawada, Mitsunobu; Sawayama, Yoshihiro; Doi, Yasuo; Nakagawa, Takao; Wada, Takehiko; Kawada, Hidehiro; Creten, Ybe; Okcan, Burak; Raab, Walfried; Poglitsch, Albrecht

    2010-07-01

    We present the current status of the development of a far-infrared monolithic Ge:Ga photoconductor array proposed for the SAFARI instrument onboard SPICA, which is a future infrared space mission. SPICA has a large (3-m class) cooled (<6 K) telescope, which enables us to make astronomical observations with high spatial resolution and unprecedented sensitivity in the mid- and far-infrared wavelength. As a candidate detector to cover the 45-110 μm band of a far-infrared focal plan instrument of SAFARI, we are developing a large format monolithic Ge:Ga array. The monolithic Ge:Ga array is directly connected to cryogenic readout electronics (CRE) using the Au-Indium bumping technology. Our goal is to develop a 64×64 Ge:Ga array, on the basis of existing technologies and experience in making the 3×20 Ge:Ga monolithic arrays for the AKARI satellite. In order to realize a larger format array with better sensitivity than that of the AKARI array, we have been making some technical improvements; (1) development of the Au-In bumping technology to realize the large format array, (2) optimization of the structure of the transparent electrode to achieve the better sensitivity, (3) development of an anti-reflection coating to reduce interference fringe between the Ge substrate, and (4) Use of the low-noise cryogenic readout electronics with low power consumption. We fabricated the prototype 5×5 Ge:Ga arrays to demonstrate and evaluate the properties of monolithic array. We demonstrate experimentally the feasibility of these elemental technologies, and also show the results of performance measurements for the prototype Ge:Ga arrays.

  6. Shading of colours in production of ceramic wares - reasons of formation

    NASA Astrophysics Data System (ADS)

    Partyka, J.; Lis, J.; Szwendke, P.; Wójczyk, M.

    2011-10-01

    One of the most important problems we have to deal with in the ceramic whiteware production is maintaining the stable tonality of colour of the glazes and the decoration of the ceramic products. This difficulties are especially significant for the large batches of production like for example the ceramic titles. The manufacturing of the one assortment for a few days requires the multiple preparation of the glazes and decorative materials. Similar problems occur during the renewing of the production of the given assortment after a longer period of time. The presented paper shows the results of the research covering this topics carried on in The Department of The Ceramic Technology on the AGH Krakow Poland. It is presented the kinds of the factors that can influence the formation of the shadings of coloured glazes: way of mixing of the glaze with stains, time of the mixing and the firing curves. The obtained results of the colour differences ΔE00, calculated from the "Cie L a b" measurements shows that the most important factor that influences the arising of the colour shading is the change of the firing condition and the sequence of the homogenization as the second important.

  7. Effects of encapsulation of microorganisms on product formation during microbial fermentations.

    PubMed

    Westman, Johan O; Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J

    2012-12-01

    This paper reviews the latest developments in microbial products by encapsulated microorganisms in a liquid core surrounded by natural or synthetic membranes. Cells can be encapsulated in one or several steps using liquid droplet formation, pregel dissolving, coacervation, and interfacial polymerization. The use of encapsulated yeast and bacteria for fermentative production of ethanol, lactic acid, biogas, L-phenylacetylcarbinol, 1,3-propanediol, and riboflavin has been investigated. Encapsulated cells have furthermore been used for the biocatalytic conversion of chemicals. Fermentation, using encapsulated cells, offers various advantages compared to traditional cultivations, e.g., higher cell density, faster fermentation, improved tolerance of the cells to toxic media and high temperatures, and selective exclusion of toxic hydrophobic substances. However, mass transfer through the capsule membrane as well as the robustness of the capsules still challenge the utilization of encapsulated cells. The history and the current state of applying microbial encapsulation for production processes, along with the benefits and drawbacks concerning productivity and general physiology of the encapsulated cells, are discussed. PMID:23104646

  8. Formaldehyde Reactions with Amines and Ammonia: Particle Formation and Product Identification

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Millage, K. D.; Rodriguez, A.; Sedehi, N.; Powelson, M. H.; De Haan, D. O.

    2012-12-01

    Aqueous phase reactions between carbonyls and amines or ammonium salts have recently been implicated in secondary organic aerosol and brown carbon formation processes. Formaldehyde is ubiquitous in the atmosphere, and is present in both the gas and aqueous phases. However, the reactions of formaldehyde in the aqueous phase have not been completely characterized. This study aims to determine the interactions between formaldehyde and amines or ammonium salts present in atmospheric droplets. Bulk phase reactions of formaldehyde with these reactive nitrogen-containing compounds were monitored with ESI-MS and NMR to determine reaction kinetics and for product characterization, while UV-Vis spectroscopy was used to monitor changes in light absorption over time. Hexamethylenetetramine was found to be a major product of the formaldehyde/ammonium sulfate reaction, appearing within minutes of mixing. No products were formed that absorbed light beyond 225 nm. Mono-disperse particles containing mixtures of formaldehyde and ammonium sulfate or an amine were dried and analyzed via SMPS to determine the non-volatile fraction of the reaction products. Similarly, aqueous droplets were dried in a humid atmosphere to determine residual aerosol sizes over time as a function of formaldehyde concentration. This work indicates that formaldehyde plays a key role in aqueous-phase organic processing, as it has been observed to contribute to both an increase and reduction in the diameter and volume of residual aerosol particles.

  9. [Influence of slime production and adhesion of Candida sp. on biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Smolak, Przemysław; Wróblewska, Joanna; Gospodarek, Eugenia

    2011-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.

  10. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.

    PubMed Central

    Britigan, B E; Edeker, B L

    1991-01-01

    In vivo most extracellular iron is bound to transferrin or lactoferrin in such a way as to be unable to catalyze the formation of hydroxyl radical from superoxide (.O2-) and hydrogen peroxide (H2O2). At sites of Pseudomonas aeruginosa infection bacterial and neutrophil products could possibly modify transferrin and/or lactoferrin forming catalytic iron complexes. To examine this possibility, diferrictransferrin and diferriclactoferrin which had been incubated with pseudomonas elastase, pseudomonas alkaline protease, human neutrophil elastase, trypsin, or the myeloperoxidase product HOCl were added to a hypoxanthine/xanthine oxidase .O2-/H2O2 generating system. Hydroxyl radical formation was only detected with pseudomonas elastase treated diferrictransferrin and, to a much lesser extent, diferriclactoferrin. This effect was enhanced by the combination of pseudomonas elastase with other proteases, most prominently neutrophil elastase. Addition of pseudomonas elastase-treated diferrictransferrin to stimulated neutrophils also resulted in hydroxyl radical generation. Incubation of pseudomonas elastase with transferrin which had been selectively iron loaded at either the NH2- or COOH-terminal binding site yielded iron chelates with similar efficacy for hydroxyl radical catalysis. Pseudomonas elastase and HOCl treatment also decreased the ability of apotransferrin to inhibit hydroxyl radical formation by a Fe-NTA supplemented hypoxanthine/xanthine oxidase system. However, apotransferrin could be protected from the effects of HOCl if bicarbonate anion was present during the incubation. Apolactoferrin inhibition of hydroxyl radical generation was unaffected by any of the four proteases or HOCl. Alteration of transferrin by enzymes and oxidants present at sites of pseudomonas and other bacterial infections may increase the potential for local hydroxyl radical generation thereby contributing to tissue injury. Images PMID:1655825

  11. Catastrophic failure of a monolithic zirconia prosthesis.

    PubMed

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis.

  12. High surface area, high permeability carbon monoliths

    SciTech Connect

    Lagasse, R.R.; Schroeder, J.L.

    1994-12-31

    The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

  13. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  14. Monoterpene SOA - Contribution of first-generation oxidation products to formation and chemical composition

    NASA Astrophysics Data System (ADS)

    Mutzel, Anke; Rodigast, Maria; Iinuma, Yoshiteru; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    Investigation of the consecutive reactions of first-generation terpene oxidation products provides insight into the formation of secondary organic aerosol (SOA). To this end, OH radical reactions with α-pinene, β-pinene, and limonene were examined along with the OH-oxidation of nopinone as a β-pinene oxidation product and pinonaldehyde and myrtenal as α-pinene oxidation products. The SOA yield of β-pinene (0.50) was much higher than that of α-pinene (0.35) and the limonene/OH system (0.30). This is opposite to the ozonolysis SOA yields described in the literature. The growth curve of SOA from β-pinene shows the contribution of secondary reactions, such as further reaction of nopinone. This contribution (17%) and the high SOA yield of nopinone (0.24) might lead to the high SOA formation potential observed for β-pinene. The majority of the C9 oxidation products observed from β-pinene can be attributed to the consecutive reaction of nopinone, whereas in the case of pinonaldehyde, only a few α-pinene oxidation products were identified. Nopinone contributes significantly to the formation of pinic acid (51%), homoterpenylic acid (74%), and 3-methyl-1,2,3-butane-tricarboxylic acid (MBTCA, 88%) during β-pinene oxidation. The oxidation of pinonaldehyde was expected to produce important SOA markers, but only negligible amounts were identified. This indicates that their formation by oxidation of α-pinene must proceed via different pathways from the further oxidation of pinonaldehyde. Only pinonic acid and MBTCA were found in considerable amounts and were formed in α-pinene oxidation with 57% yield, while that for the pinonaldehyde/OH reaction was 33%. The lack of important SOA marker compounds might cause the low SOA yield (0.07) observed for pinonaldehyde. Based on the low SOA yield, pinonaldehyde contributes only 4.5% to α-pinene SOA. Myrtenal was identified among the gas-phase products of α-pinene oxidation. A majority of α-pinene SOA marker compounds was

  15. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G.

    PubMed

    de Lathouder, K M; Smeltink, M W; Straathof, A J J; Paasman, M A; van de Sandt, E J A X; Kapteijn, F; Moulijn, J A

    2008-08-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l(-1) PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml(-1) gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml(-1) gel. The observed volumetric reaction rate in the MLR was 0.79 mol s(-1) m(-3) (monolith). Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s(-1) m(-3) (catalyst)), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different reactor

  16. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    NASA Astrophysics Data System (ADS)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  17. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  18. The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry

    SciTech Connect

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon

    2002-03-01

    The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer to TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.

  19. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-07-14

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.

  20. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-01-01

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications. PMID:26273850

  1. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher

    PubMed Central

    Bellini, Nicola; Bragheri, Francesca; Cristiani, Ilaria; Guck, Jochen; Osellame, Roberto; Whyte, Graeme

    2012-01-01

    The combination of high power laser beams with microfluidic delivery of cells is at the heart of high-throughput, single-cell analysis and disease diagnosis with an optical stretcher. So far, the challenges arising from this combination have been addressed by externally aligning optical fibres with microfluidic glass capillaries, which has a limited potential for integration into lab-on-a-chip environments. Here we demonstrate the successful production and use of a monolithic glass chip for optical stretching of white blood cells, featuring microfluidic channels and optical waveguides directly written into bulk glass by femtosecond laser pulses. The performance of this novel chip is compared to the standard capillary configuration. The robustness, durability and potential for intricate flow patterns provided by this monolithic optical stretcher chip suggest its use for future diagnostic and biotechnological applications. PMID:23082304

  2. Thermal cycling effect in U-10Mo/Zry-4 monolithic nuclear fuel

    NASA Astrophysics Data System (ADS)

    Lopes, Denise A.; Zimmermann, Angelo J. O.; Silva, Selma L.; Piqueira, J. R. C.

    2016-05-01

    Uranium alloys in a monolithic form have been considered attractive candidates for high density nuclear fuel. However, this high-density fissile material configuration keeps the volume permitted for the retention of fission products at a minimum. Additionally, the monolithic nuclear fuel has a peculiar configuration, whereby the fuel is in direct contact with the cladding. How this fuel configuration will retain fission products and how this will affect its integrity under various physical conditions - such as thermal cycling - are some of the technological problems for this new fuel. In this paper, the effect of out-of-pile thermal cycling is studied for a monolithic fuel plate produced by a hot co-rolling method using U-10Mo (wt %) as the fuel alloy and Zircaloy-4 as the cladding material. After performing 10 thermal cycles from 25 to 400 °C at a rate of 1 °C/min (∼125 h), the fuel alloy presented several fractures that were observed to occur in the last three cycles. These cracks nucleated approximately in the center of the fuel alloy and crossed the interdiffusion zone initiating an internal crack in the cladding. The results suggest that the origin of these fractures is the thermal fatigue of the U-10Mo alloy caused due to the combination of two factors: (i) the high difference in the thermal expansion coefficient of the fuel and of the cladding material, and (ii) the bound condition of fuel/cladding materials in this fuel element configuration.

  3. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters.

    PubMed

    Novais, Rui M; Buruberri, L H; Seabra, M P; Labrincha, J A

    2016-11-15

    In this study novel porous biomass fly ash-containing geopolymer monoliths were produced using a simple and flexible procedure. Geopolymers exhibiting distinct total porosities (ranging from 41.0 to 78.4%) and low apparent density (between 1.21 and 0.44g/cm(3)) were fabricated. Afterwards, the possibility of using these innovative materials as lead adsorbents under distinct conditions was evaluated. Results demonstrate that the geopolymers' porosity and the pH of the ion solution strongly affect the lead adsorption capacity. Lead adsorption by the geopolymer monoliths ranged between 0.95 and 6.34mglead/ggeopolymer. More porous geopolymers presented better lead removal efficiency, while higher pH in the solution reduced their removal ability, since metal precipitation is enhanced. These novel geopolymeric monoliths can be used in packed beds that are easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Furthermore, their production encompasses the reuse of biomass fly-ash, mitigating the environmental impact associated with this waste disposal, while decreasing the adsorbents production costs. PMID:27475461

  4. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters.

    PubMed

    Novais, Rui M; Buruberri, L H; Seabra, M P; Labrincha, J A

    2016-11-15

    In this study novel porous biomass fly ash-containing geopolymer monoliths were produced using a simple and flexible procedure. Geopolymers exhibiting distinct total porosities (ranging from 41.0 to 78.4%) and low apparent density (between 1.21 and 0.44g/cm(3)) were fabricated. Afterwards, the possibility of using these innovative materials as lead adsorbents under distinct conditions was evaluated. Results demonstrate that the geopolymers' porosity and the pH of the ion solution strongly affect the lead adsorption capacity. Lead adsorption by the geopolymer monoliths ranged between 0.95 and 6.34mglead/ggeopolymer. More porous geopolymers presented better lead removal efficiency, while higher pH in the solution reduced their removal ability, since metal precipitation is enhanced. These novel geopolymeric monoliths can be used in packed beds that are easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Furthermore, their production encompasses the reuse of biomass fly-ash, mitigating the environmental impact associated with this waste disposal, while decreasing the adsorbents production costs.

  5. The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation.

    PubMed

    Meyer, Vera; Fiedler, Markus; Nitsche, Benjamin; King, Rudibert

    2015-01-01

    Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.

  6. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  7. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    PubMed

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  8. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.

    PubMed

    Ramió-Pujol, Sara; Ganigué, Ramon; Bañeras, Lluís; Colprim, Jesús

    2014-12-01

    The current energy model based on fossil fuels is coming to an end due to the increase in global energy demand. Biofuels such as ethanol and butanol can be produced through the syngas fermentation by acetogenic bacteria. The present work hypothesizes that formate addition would positively impact kinetic parameters for growth and alcohol production in Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 by diminishing the need for reducing equivalents. Fermentation experiments were conducted using completely anaerobic batch cultures at different pH values and formate concentrations. PETC cultures were more tolerant to formate concentrations than P7, specially at pH 5.0 and 6.0. Complete growth inhibition of PETC occurred at sodium formate concentrations of 30.0 mM; however, no differences in growth rates were observed at pH 7.0 for the two strains. Incubation at formate concentrations lower than 2.0 mM resulted in increased growth rates for both strains. The most recognizable effects of formate addition on the fermentation products were the increase in the total carbon fixed into acids and alcohols at pH 5.0 and pH 6.0, as well as, a higher ethanol to total products ratio at pH 7.0. Taken all together, these results show the ability of acetogens to use formate diminishing the energy demand for growth, and enhancing strain productivity. PMID:26421736

  9. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.

    PubMed

    Ramió-Pujol, Sara; Ganigué, Ramon; Bañeras, Lluís; Colprim, Jesús

    2014-12-01

    The current energy model based on fossil fuels is coming to an end due to the increase in global energy demand. Biofuels such as ethanol and butanol can be produced through the syngas fermentation by acetogenic bacteria. The present work hypothesizes that formate addition would positively impact kinetic parameters for growth and alcohol production in Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 by diminishing the need for reducing equivalents. Fermentation experiments were conducted using completely anaerobic batch cultures at different pH values and formate concentrations. PETC cultures were more tolerant to formate concentrations than P7, specially at pH 5.0 and 6.0. Complete growth inhibition of PETC occurred at sodium formate concentrations of 30.0 mM; however, no differences in growth rates were observed at pH 7.0 for the two strains. Incubation at formate concentrations lower than 2.0 mM resulted in increased growth rates for both strains. The most recognizable effects of formate addition on the fermentation products were the increase in the total carbon fixed into acids and alcohols at pH 5.0 and pH 6.0, as well as, a higher ethanol to total products ratio at pH 7.0. Taken all together, these results show the ability of acetogens to use formate diminishing the energy demand for growth, and enhancing strain productivity.

  10. Manganese Oxide Nanoarray-Based Monolithic Catalysts: Tunable Morphology and High Efficiency for CO Oxidation.

    PubMed

    Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; Wang, Sibo; Biswas, Sourav; Mollahosseini, Mehdi; Kuo, Chung-Hao; Gao, Pu-Xian; Suib, Steven L

    2016-03-01

    A generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K2Cr2O7, KClO3, and K2S2O8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn(2+)) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivity of carbon monoxide (CO) oxidation. K2Cr2O7 and KClO3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. The straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment.

  11. Roles of N287 in catalysis and product formation of amylomaltase from Corynebacterium glutamicum.

    PubMed

    Nimpiboon, Pitchanan; Krusong, Kuakarun; Kaulpiboon, Jarunee; Kidokoro, Shun-Ichi; Pongsawasdi, Piamsook

    2016-09-16

    Amylomaltase catalyzes intermolecular and intramolecular transglucosylation reactions to form linear and cyclic oligosaccharides, respectively. The aim of this work is to investigate the structure-function relationship of amylomaltase from a mesophilic Corynebacterium glutamicum (CgAM). Site-directed mutagenesis was performed to substitute Tyr for Asn287 (N287Y) to determine its role in controlling amylomaltase activity and product formation. Expression of the wild-type (WT) and N287Y was achieved by cultivating recombinant cells in the medium containing lactose at 16 °C for 14 h. The purified mutated enzyme showed a significant decrease in all transglucosylation activities while hydrolysis activity was not changed. Optimum temperature and pH for disproportionation reaction were slightly changed upon mutation while those for cyclization reaction were not changed. Interestingly, N287Y showed a change in large-ring cyclodextrin (LR-CD) product profile in which the larger size was observed together with an increase in thermostability and substrate preference for G5 in addition to G3. The secondary structure of the mutated enzyme was slightly changed in related to the WT as evidenced from circular dichroism analysis. This work thus demonstrates that N287 is required for transglucosylation activities of CgAM. Having an aromatic residue in this position increased thermostability, changed product profile and substrate preference but demolished most enzyme activities. PMID:27507216

  12. Atmospheric Oxidation Mechanisms for Diethyl Ether and its Oxidation Products, Ethyl Formate and Ethyl Acetate.

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2006-12-01

    Carbon-containing compounds are present in the earth's atmosphere as the result of emissions from natural and anthropogenic sources. Their oxidation in the atmosphere, initiated by such oxidants as OH, ozone, and nitrate radicals, leads to potentially harmful secondary pollutants such as ozone, carbonyl species, organic acids and aerosols. Ethers and esters are two classes of compounds that contribute to the complex array of organic compounds found in anthropogenically-influenced air. Additional ester is present as a result of the oxidation of the ethers. In this paper, the oxidation of diethyl ether and its two main oxidation products, ethyl formate and ethyl acetate, are studied over ranges of temperature, oxygen partial pressure, and NOx concentration, using an environmental chamber / FTIR absorption technique. Major end-products (the esters from diethyl ether; organic acids and anhydrides from the esters) are quantified, and these data are interpreted in terms of the chemistry of the various alkoxy and peroxy radicals generated. Emphasis is placed on the effects of chemical activation on the behavior of the alkoxy radicals, as well as on a novel peroxy radical rearrangement that may contribute to the observed products of ether oxidation under some conditions. Finally, the data are used, in conjunction with data on similar species, to provide a general representation of ether and ester oxidation in the atmosphere.

  13. Effect of licorice extract on cell viability, biofilm formation and exotoxin production by Staphylococcus aureus.

    PubMed

    Rohinishree, Yadahalli Shrihari; Negi, Pradeep Singh

    2016-02-01

    Staphylococcus aureus is one of the most significant clinical pathogen, as it causes infections to humans and animals. Even though several antibiotics and other treatments have been used to control S. aureus infections and intoxication, bacterium is able to adapt, survive and produces exotoxins. Licorice (Glycyrrhiza glabra L.) has been used traditionally in various medicinal (antimicrobial) preparations, and Glycyrrhizic acid (GA) is the major active constituents present in it. In the present investigation the effect of licorice extract on methicillin susceptible S. aureus (FRI 722) and methicillin resistant S. aureus (ATCC 43300) growth and toxin production was studied. The MIC of licorice extract was found to be 0.25 and 2.5 mg GA ml(-1) against S. aureus FRI 722 and S. aureus ATCC 43300, respectively. Inhibition of biofilm formation was observed even at very low concentration (25 μg GA ml(-1)). Gradual decrease in expression and production of exotoxins such as α and β hemolysins and enterotoxin B was observed with the increasing concentrations of licorice extract, however, suboptimal concentration induced the expression of some of the virulence genes. This study indicated efficacy of licorice extract in controlling growth and pathogenicity of both methicillin susceptible and methicillin resistant S. aureus, however, the mechanisms of survival and toxin production at suboptimal concentration needs further study. PMID:27162389

  14. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    PubMed

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.

  15. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    PubMed

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  16. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    PubMed

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. PMID:25662254

  17. Manipulating Respiratory Levels in Escherichia coli for Aerobic Formation of Reduced Chemical Products

    PubMed Central

    Zhu, Jiangfeng; Sanchez, Ailen; Bennett, George N.; San, Ka-Yiu

    2011-01-01

    Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approach based on genetic regulation may better serve this purpose. With excess oxygen supply to the culture, we efficiently manipulated Escherichia coli cell respiration by adding different amount of coenzyme Q1 to strains lacking the ubiCA genes, which encode two critical enzymes for ubiquinone synthesis. As a proof-of-concept, the metabolic effect of the ubiCA gene knockout and coenzyme Q1 supplementation were characterized, and the metabolic profiles of the experimental strains showed clear correlations with coenzyme Q1 concentrations. Further proof-of-principle experiments were performed to illustrate that the approach can be used to optimize cell respiration for the production of chemicals of interest such as ethanol. This study showed that controlled respiration through genetic manipulation can be exploited to allow much larger operating windows for reduced product formation even under fully aerobic conditions. PMID:22001430

  18. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2011-01-01

    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  19. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor.

    PubMed Central

    Horwood, N J; Udagawa, N; Elliott, J; Grail, D; Okamura, H; Kurimoto, M; Dunn, A R; Martin, T; Gillespie, M T

    1998-01-01

    IL-18 inhibits osteoclast (OCL) formation in vitro independent of IFN-gamma production, and this was abolished by the addition of neutralizing antibodies to GM-CSF. We now establish that IL-18 was unable to inhibit OCL formation in cocultures using GM-CSF-deficient mice (GM-CSF -/-). Reciprocal cocultures using either wild-type osteoblasts with GM-CSF -/- spleen cells or GM-CSF -/- osteoblasts with wild-type spleen cells were examined. Wild-type spleen cells were required to elicit a response to IL-18 indicating that cells of splenic origin were the IL-18 target. As T cells comprise a large proportion of the spleen cell population, the role of T cells in osteoclastogenesis was examined. Total T cells were removed and repleted in various combinations. Addition of wild-type T cells to a GM-CSF -/- coculture restored IL-18 inhibition of osteoclastogenesis. Major subsets of T cells, CD4+ and CD8+, were also individually depleted. Addition of either CD4+ or CD8+ wild-type T cells restored IL-18 action in a GM-CSF -/- background, while IL-18 was ineffective when either CD4+ or CD8+ GM-CSF -/- T cells were added to a wild-type coculture. These results highlight the involvement of T cells in IL-18-induced OCL inhibition and provide evidence for a new OCL inhibitory pathway whereby IL-18 inhibits OCL formation due to action upon T cells promoting the release of GM-CSF, which in turn acts upon OCL precursors. PMID:9449693

  20. Impact of antioxidants on the formation of volatile secondary lipid oxidation products in oil-in-water emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food emulsions are particularly susceptible to lipid oxidation, which leads to the formation of off-flavors and odors, and ultimately, shorter product shelf lives. Here we examine antioxidants for use in emulsions from a variety of different sources, including natural product extracts as well as rat...

  1. Production of unstable proteins through the formation of stable core complexes.

    PubMed

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  2. Production of unstable proteins through the formation of stable core complexes

    PubMed Central

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  3. Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms

    USGS Publications Warehouse

    Graham, W.H.; Graham, D.W.; DeNoyelles, F.; Smith, V.H.; Larive, C.K.; Thurman, E.M.

    1999-01-01

    The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methyl)ethyl)acetamide] and alachlor [2-chloro-N-(2,6- diethylphenyl)-N-methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a noherbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half- lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng (Pestic. Biochem. Physiol. 1991, 34, 136); however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethy

  4. Role of anaerobiosis in capsule production and biofilm formation in Vibrio vulnificus.

    PubMed

    Phippen, Britney L; Oliver, James D

    2015-02-01

    Vibrio vulnificus, a pervasive human pathogen, can cause potentially fatal septicemia after consumption of undercooked seafood. Biotype 1 strains of V. vulnificus are most commonly associated with human infection and are separated into two genotypes, clinical (C) and environmental (E), based on the virulence-correlated gene. For ingestion-based vibriosis to occur, this bacterium must be able to withstand multiple conditions as it traverses the gastrointestinal tract and ultimately gains entry into the bloodstream. One such condition, anoxia, has yet to be extensively researched in V. vulnificus. We investigated the effect of oxygen availability on capsular polysaccharide (CPS) production and biofilm formation in this bacterium, both of which are thought to be important for disease progression. We found that lack of oxygen elicits a reduction in both CPS and biofilm formation in both genotypes. This is further supported by the finding that pilA, pilD, and mshA genes, all of which encode type IV pilin proteins that aid in attachment to surfaces, were downregulated during anaerobiosis. Surprisingly, E-genotypes exhibited distinct differences in gene expression levels of capsule and attachment genes compared to C-genotypes, both aerobically and anaerobically. The importance of understanding these disparities may give insight into the observed differences in environmental occurrence and virulence potential between these two genotypes of V. vulnificus.

  5. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    PubMed

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  6. Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products

    PubMed Central

    2016-01-01

    Carbon–carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C–C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C–C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C–C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand. PMID:27398261

  7. Formation of nanostructure on hair surface: its characteristic optical properties and application to hair care products.

    PubMed

    Watanabe, Shunsuke; Sato, Hirayuki; Shibuichi, Satoshi; Okamoto, Masayuki; Inoue, Shigeto; Satoh, Naoki

    2007-01-01

    Uneven structures on hair fiber surface, such as lift up of cuticle or build up of hair spray ingredients, generally cause a diffuse reflection which results in a dull and unhealthy appearance. However, in the case of finer structure than wavelength of visible light, the optical properties change significantly. An application of the phenomenon to hair care products is reported in this paper. Formation of the fine structure on hair surface was achieved by only a shampoo and rinse-off conditioner system including amino-silicone. Chroma enhancement of hair and light introduction into hair fibers were observed simultaneously with formation of the fine structure on the hair surface. The light introduction phenomenon is understood in terms of "Effective Medium Approximation" (EMA). The simulation study based on EMA indicates that a very low refractive index surface is expected to be realized, which well explains the optical experimental results. When the shampoo and conditioner system developed to form the structure on fiber surface was applied to dyed hair, enhancement and long-lasting of vivid appearance was confirmed in spite of dye elution.

  8. Role of Anaerobiosis in Capsule Production and Biofilm Formation in Vibrio vulnificus

    PubMed Central

    Phippen, Britney L.

    2014-01-01

    Vibrio vulnificus, a pervasive human pathogen, can cause potentially fatal septicemia after consumption of undercooked seafood. Biotype 1 strains of V. vulnificus are most commonly associated with human infection and are separated into two genotypes, clinical (C) and environmental (E), based on the virulence-correlated gene. For ingestion-based vibriosis to occur, this bacterium must be able to withstand multiple conditions as it traverses the gastrointestinal tract and ultimately gains entry into the bloodstream. One such condition, anoxia, has yet to be extensively researched in V. vulnificus. We investigated the effect of oxygen availability on capsular polysaccharide (CPS) production and biofilm formation in this bacterium, both of which are thought to be important for disease progression. We found that lack of oxygen elicits a reduction in both CPS and biofilm formation in both genotypes. This is further supported by the finding that pilA, pilD, and mshA genes, all of which encode type IV pilin proteins that aid in attachment to surfaces, were downregulated during anaerobiosis. Surprisingly, E-genotypes exhibited distinct differences in gene expression levels of capsule and attachment genes compared to C-genotypes, both aerobically and anaerobically. The importance of understanding these disparities may give insight into the observed differences in environmental occurrence and virulence potential between these two genotypes of V. vulnificus. PMID:25404024

  9. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol.

    PubMed

    Liu, Kuo; Lu, Junhe; Ji, Yuefei

    2015-11-01

    Formation of halogenated disinfection by-products (DBPs) in sulfate radical [Formula: see text] based oxidation processes attracted considerable attention recently. However, the underlying reaction pathways have not been well explored. This study focused on the transformation of Br(-) in cobalt activated peroxymonosulfate (Co(2+)/PMS) oxidation process. Phenol was added as a model compound to mimic the reactivity of natural organic matter (NOM). It was revealed that Br(-) was efficiently transformed to reactive bromine species (RBS) including free bromine and bromine radicals (Br, [Formula: see text] , etc.) in Co(2+)/PMS system. [Formula: see text] played a principal role during this process. RBS thus generated resulted in the bromination of phenol and formation brominated DBPs (Br-DBPs) including bromoform and bromoacetic acids, during which brominated phenols were detected as the intermediates. Br-DBPs were further degraded by excessive [Formula: see text] and transformed to bromate ultimately. Free bromine was also formed in the absence of Co(2+), suggesting Br(-) could be oxidized by PMS per se. Free bromine was incorporated to phenol sequentially leading to Br-DBPs as well. However, Br-DBPs could not be further transformed in the absence of [Formula: see text] . This is the first study that elucidated the comprehensive transformation map of Br(-) in PMS oxidation systems, which should be taken into consideration when PMS was applied to eliminate contamination in real practice.

  10. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R.

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  11. A decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  12. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    PubMed

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 μg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  13. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    PubMed

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 μg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation. PMID:27523603

  14. Neutral, Charged and Stratified Polar Monoliths for Hydrophilic Interaction Capillary Electrochromatography

    PubMed Central

    Gunasena, Dilani N.; El Rassi, Ziad

    2013-01-01

    Novel polar monoliths were introduced for hydrophilic interaction capillary electrochromatography (HI-CEC). In one case, a neutral polar monolith resulted from the in situ polymerization of glyceryl methacrylate (GMM) and pentaerythritol triacrylate (PETA) in a ternary porogenic solvent. GMM and PETA possess hydroxyl functional groups, which impart the monolith with hydrophilic interaction sites. This monolith is designated as hydroxy monolith. Although the hydroxy monolith is neutral and void of fixed charges on the surface, a relatively strong cathodal EOF was observed due to the electric double layer formed by the adsorption of ions from the mobile phase, producing a bulk mobile phase flow. The second monolith is charged and referred to as AP-monolith that possesses amine/amide functionalities on its surface, and was prepared by the in situ polymerization of N-(3-aminopropyl) methacrylamide hydrochloride (NAPM) and ethylene dimethacrylate (EDMA) in the presence of cyclohexanol, dodecanol and methanol as porogens. Over the pH range studied a strong anodal EOF was observed. The AP-monolith was further exploited in HI-CEC by modifying its surface with neutral mono- and oligosaccharides to produce a series of the so called sugar modified AP-monoliths (SMAP-monolith), which are considered as stratified hydrophilic monoliths possessing a sub-layer of polar amine/amide groups and a top layer of sugar (a polyhydroxy top layer).The SMAP-monoliths can be viewed as a blend of both the hydroxy monolith and the AP-monolith. The polarity of the various monoliths seems to follow the order: hydroxy monolith < AP-monolith < SMAP-monolith. The novel monoliths were characterized over a wide range of elution conditions with a variety of polar solutes including phenols, substituted phenols, nucleic acid bases, nucleosides and nucleotides PMID:23972465

  15. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  16. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  17. The Advanced Virgo monolithic fused silica suspension

    NASA Astrophysics Data System (ADS)

    Aisa, D.; Aisa, S.; Campeggi, C.; Colombini, M.; Conte, A.; Farnesini, L.; Majorana, E.; Mezzani, F.; Montani, M.; Naticchioni, L.; Perciballi, M.; Piergiovanni, F.; Piluso, A.; Puppo, P.; Rapagnani, P.; Travasso, F.; Vicerè, A.; Vocca, H.

    2016-07-01

    The detection of gravitational waves is one of the most challenging prospects faced by experimental physicists. Suspension thermal noise is an important noise source at operating frequencies between approximately 10 and 30 Hz, and represents a limit to the sensitivity of the ground based interferometric gravitational wave detectors. Its effects can be reduced by minimizing the losses and by optimizing the geometry of the suspension fiber as well as its attachment system. In this proceeding we will describe the mirrors double stage monolithic suspension system to be used in the Advanced Virgo (AdV) detector. We also present the results of the thermal noise study, performed with the help of a finite elements model, taking into account the precise geometry of the fibers attachment systems on the suspension elements. We shall demonstrate the suitability of this suspension for installation in AdV.

  18. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  19. Monolithic fuel injector and related manufacturing method

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; York, William David; Stevenson, Christian Xavier

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  20. Monolithically Peltier-cooled laser diodes

    NASA Astrophysics Data System (ADS)

    Hava, S.; Hunsperger, R. G.; Sequeira, H. B.

    1984-04-01

    A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given.

  1. Monolithically Peltier-cooled laser diodes

    SciTech Connect

    Hava, S.; Hunsperger, R.G.; Sequeira, H.B.

    1984-04-01

    A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given. 21 references.

  2. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  3. Dynamics of the detonation products of lead azide. II. Formation of charged particles

    NASA Astrophysics Data System (ADS)

    Heflinger, D.; Bar, I.; Ben-Porat, T.; Erez, G.; Rosenwaks, S.

    1993-03-01

    The formation and temporal behavior of charged particles ensuing from the detonation of lead azide (LA) is studied. An ion probe tailored for measurements in the hostile environment produced following the detonation is described. The positive ions (most probably singly ionized lead atoms) and the electrons, which are simultaneously collected on separate electrodes, are embedded in the outer half of the expanding product cloud resulting from the detonation. They show similar temporal behavior and their maximum velocity is ˜4.5 km/s. The density of each of them at a distance of 2.5 cm from the LA sample is 4.3×1011-1.3×1012 cm-3 for detonation of 5-15 mg of LA, respectively. From the hydrodynamics of the expanding cloud and the density of the electrons, their temperature is estimated to be in the range 2600-3000 K. The results of the measurements are discussed in view of the mechanisms believed to govern the expansion of the product cloud following the detonation.

  4. Photodissociation studies of HNCO: heat of formation and product branching ratios

    SciTech Connect

    Spiglanin, T.A.; Perry, R.A.; Chandler, D.W.

    1986-11-06

    The heat of formation (..delta..H/sub f/(298 K)) of HNCO is determined to be -24.9/sub -2.8//sup +0.7/ kcal/mol (based on ..delta..H/sub f/(NH) = 85.2 kcal/mol). This value is obtained by measuring the threshold for the production of NH(a/sup 1/..delta..) and by determining the energy contents of the NH fragment and the CO cofragment produced by photolysis of HNCO at wavelengths near the threshold. Saturated laser-induced fluorescence is used to determine the internal state distribution of NH(a/sup 1/..delta..), and multiphoton ionization is used to measure the internal state distribution of CO. An upper limit for the branching ratio of NCO/NH production from photodissociation of HNCO at 193 nm is determined from an analysis of kinetic experiments to be 0.10. To clarify the mechanism of photodissociation, HNCO fluorescence-excitation and NH(a/sup 1/..delta..) action spectra are also measured. They imply that two excited states of HNCO are present where only one had previously been considered.

  5. Effects of AISI 316L corrosion products in in vitro bone formation.

    PubMed

    Morais, S; Sousa, J P; Fernandes, M H; Carvalho, G S; de Bruijn, J D; van Blitterswijk, C A

    1998-06-01

    Rat bone marrow cells were cultured in experimental conditions that favour the proliferation and differentiation of osteoblastic cells (i.e., 2.52 x 10(-4) mol l(-1) ascorbic acid, 10(-2) mol l(-1) beta-glycerophosphate and 10(-8) mol l(-1) dexamethasone) in the absence and in the presence of stainless-steel corrosion products, for a period of 18 days. An AISI 316L stainless-steel slurry (SS) was obtained by electrochemical means and the concentrations of the major metal ions, determined by atomic absorption spectrometry, were 8.78 x 10(-3) mol l(-1) of Fe, 4.31 x 10(-3) mol l(-1) of Cr and 2.56 x 10(-3) mol l(-1) of Ni. Bone marrow cells were exposed to 0.01, 0.1 and 1% of the SS and at the end of the incubation period, control and treated cultures were evaluated by histochemical assays for the identification of the presence of alkaline phosphatase and also calcium and phosphate deposition. Cultures were further observed by scanning electron microscopy. Levels of total and ionised calcium and phosphorus in the culture media collected from control and metal exposed cell cultures were also quantified. Histochemical staining showed that control cultures presented a strong reaction for the presence of alkaline phosphatase and exhibited formation of calcium and phosphates deposits. The presence of 0.01% SS caused no detectable biological effects in these cultures, 0.1% SS impaired osteoblastic behaviour and, 1% SS resulted in cell death. In the absence of bone cells, levels of total and ionised calcium and phosphorus in the control and metal added culture medium were similar throughout the incubation period. A significant decrease in the levels of ionised calcium and phosphorus were observed in the culture medium of control cultures and also in cultures exposed to 0.01% SS after two weeks of incubation, an event related with the formation of mineral calcium phosphate deposits in these cultures. In cultures grown in the presence of 0.1 and 1% SS corrosion products

  6. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    NASA Astrophysics Data System (ADS)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  7. The features of ceramic materials structure formation when using hard-melting wastes of thermal power stations in charge stock

    NASA Astrophysics Data System (ADS)

    Skripnikova, Nelli; Yuriev, Ivan; Lutsenko, Alexander; Litvinova, Viktoriya

    2016-01-01

    The paper presents the analysis of aluminum silicate waste generated by thermal power station of the city of Seversk, Tomsk region, Russia. The chemical compositions of aluminum silicate waste are detected and the efficient mixture compositions with the addition of aluminum silicate waste are suggested herein. Ceramic brick structure formation is studied in this paper using X-ray phase and SEM analyses. It is identified that the formed vitreous phase facilitates such strengthening structural modifications as sintering out of pores and shrinkage of unmelted aluminum silicate particles with the following formation of a monolithic product.

  8. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect

    Mark J. Rigali

    2001-10-01

    Published mechanical and thermal properties data on a variety of materials was gathered, with focus on materials that have potential with respect to developing wear resistant and damage tolerant composite for mining industry applications. Preliminary core materials of interest include but are not limited to: Diamond, Tungsten Carbide and Cemented Tungsten Carbides, Carbides of Boron, Silicon, Titanium and Aluminum, Diboride of Titanium and Aluminum, Nitrides of Aluminum, Silicon, Titanium, and Boron, Aluminum Oxide, Tungsten, Titanium, Iron, Cobalt and Metal Alloys. Preliminary boundary materials of interest include but are not limited to: W metal, WC-Co, W-Co, WFeNi, and Mo metal and alloys. Several FM test coupons were fabricated with various compositions using the above listed materials. These coupons were consolidated to varying degrees by uniaxial hot pressing, then cut and ground to expose the FM cell structure. One promising system, WC-Co core and WFeNi boundary, was consolidated to 97% of theoretical density, and demonstrates excellent hardness. Data on standard mechanical tests was gathered, and tests will begin on the consolidated test coupons during the upcoming reporting period. The program statements of work for ACR Inc. and its subcontractors, as well as the final contract negotiations, were finalized during the current reporting period. The program start date was February 22nd, 2001. In addition to the current subcontractors, Kennametal Inc., a major manufacturer of cutting tools and wear resistant tooling for the mining industry, expressed considerable interest in ACR's Fibrous Monolith composites for both machine and mining applications. At the request of Kennametal, ARC Inc fabricated and delivered several Fibrous Monolith coupons and components for testing and evaluation in the mining and machine tool applications. Additional samples of Diamond/Tungsten Carbide-6%Cobalt Fibrous Monolith were fabricated and delivered for testing Kennametal's Rapid

  9. Advances in monoliths and related porous materials for microfluidics.

    PubMed

    Knob, Radim; Sahore, Vishal; Sonker, Mukul; Woolley, Adam T

    2016-05-01

    In recent years, the use of monolithic porous polymers has seen significant growth. These materials present a highly useful support for various analytical and biochemical applications. Since their introduction, various approaches have been introduced to produce monoliths in a broad range of materials. Simple preparation has enabled their easy implementation in microchannels, extending the range of applications where microfluidics can be successfully utilized. This review summarizes progress regarding monoliths and related porous materials in the field of microfluidics between 2010 and 2015. Recent developments in monolith preparation, solid-phase extraction, separations, and catalysis are critically discussed. Finally, a brief overview of the use of these porous materials for analysis of subcellular and larger structures is given. PMID:27190564

  10. 62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 321, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 32-1, LOOKING WEST Photograph No. 8571. October 24, 1949 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  11. 10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING NORTH. August 1934 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 16, Upper Mississippi River, Muscatine, Muscatine County, IA

  12. 25. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM). NOTE GANTRY CRANES - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  13. 53. VIEW OF ROCK FOUNDATIONS AIR CLEANED FOR MONOLITHS 1722, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF ROCK FOUNDATIONS AIR CLEANED FOR MONOLITHS 17-22, INTERMEDIATE WALL, LOOKING NORTH Photograph No. 12840. September 10, 1948 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  14. 27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END OF WEST MAIN LOCK WALL, LOOKiNG SOUTHEAST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  15. 26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM) - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  16. Experimental and computational investigation of flow in catalytic monolith channels

    SciTech Connect

    Wilson, G.C.; Bardon, M.F.; Witton, J.J. Cranfield Inst. of Technology )

    1992-01-01

    Monolith optimization is necessary for maximum efficiency during catalytic combustion. This paper describes a study undertaken to investigate the flow in catalytic monolith channels. A super-scale model of a single passage in a ceramic catalyst monolith was constructed and studied using pure air as the working fluid. Combustion of a representative natural gas mixture at the catalyst surface was simulated by electrical heating of the channel walls. The flow-field was probed with hot wire anemometers and fine wire thermocouples to obtain velocity and temperature data. Concurrently, the PHOENICS CFD package was used to model the flow. Results confirmed the presence of secondary flows and illustrated the effects of channel shape. The results are discussed as to their relevance to the design of a monolithic combustor for gas turbine applications. 15 refs.

  17. 31. SPILLWAY CHANNEL WALLS REINF DETAILS; MONOLITHS E21 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SPILLWAY CHANNEL WALLS REINF - DETAILS; MONOLITHS E-21 AND W-21. Sheet S-45, May, 1940. File no. 342/58. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  18. The formation of Pliocene sapropels and carbonate cycles in the Mediterranean: Diagenesis, dilution, and productivity

    NASA Astrophysics Data System (ADS)

    van Os, B. J. H.; Lourens, L. J.; Hilgen, F. J.; de Lange, G. J.; Beaufort, L.

    1994-08-01

    High-resolution micropaleontological (planktonic foraminifera and calcareous nannofossils) and geochemical (stable isotopes, organic carbon, Fe, P, S, Ca, Ba, Mn, and Al) records are presented for the first sapropel-containing carbonate cycle in the Pliocene of Sicily. The carbonate cycle is characterized by a gray to white to beige to white color layering typical of the marls of the Trubi formation. A faintly laminated sapropel is intercalated in the gray-colored bed of the carbonate cycle. CaCO3 content varies from 40% in the beige to 45-50% in the white layers. Lowest CaCO3 content of 25-30% is found in the gray layer and sapropel. Variations in carbonate and organic matter percentages can best be explained by changes in paleoproductivity rather than by variations in dilution and dissolution. Total productivity was highest during deposition of the gray layer and sapropel, as indicated by high organic carbon and Ba contents and high abundance of Globorotalia puncticulata. Carbonate production reached its highest values, however, during deposition of the white layers, as evidenced by enhanced abundances of planktonic foraminifera and nannofossils. The low carbonate content in the gray layer and sapropel is explained in terms of a collapse in carbonate production caused by extreme changes in the physical and biochemical properties of the water column, which in turn resulted in siliceous plankton and opportunistic foraminifers such as Globorotalia puncticulata outcompeting most calcareous organisms. The beige layer represents a low-productivity environment similar to the present-day eastern Mediterranean basin. Several mechanisms have previously been proposed to explain variations in productivity in the eastern Mediterranean. Both sapropels and gray layers were deposited at times when perihelion occurred in northern hemisphere summer. We envisage that the increase in seasonal contrast resulting from this orbital configuration enhanced winter mixing and stabilization

  19. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  20. Impact of LIP formation on marine productivity during early Aptian and latest Cenomanian Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Erba, E.; Duncan, R.

    2003-04-01

    Of all the Cretaceous Oceanic Anoxic Events (OAEs), the Early Aptian OAE1a and latest Cenomanian OAE2 are truly global in nature and typically represented by carbonate crisis and Corg-rich black shales. They correlate with onset and climax of the mid-Cretaceous greenhouse, a time of exceptional warmth with accelerated burial of organic matter, carbon and strontium isotope excursions, and major biotic changes. Extraordinary rates of volcanism during the formation of Ontong Java and Caribbean Plateaus are proposed to have introduced excess CO_2 in the ocean/atmosphere system, turning the climate into a super-greenhouse state. High-resolution multidisciplinary investigations of well-dated sections indicate that marine ecosystems reacted to higher fertility and pCO2 by reducing biomineralization and increasing production of organic matter. In particular, rates of calcitization and evolutionary changes of micrite-forming calcareous nannoplankton (the biological and carbonate pump) affected the organic and inorganic carbon cycle as well as diffusion of atmospheric CO_2 in the Cretaceous ocean. Increasing geological evidence suggests that OAE1a and OAE2 were mainly oceanic productivity events, directly or indirectly controlled by submarine volcanic eruptions. High levels of volcanogenic CO_2 in the atmosphere accelerated continental weathering and increased nutrient content in oceanic surface waters via river run-off. However, only coastal eutrophication can be triggered by river input, and this mechanism cannot explain enhanced primary productivity in remote parts of large oceans like those recorded in wide-spread sediments of OAE1a and OAE2. Conversely, global productivity can be stimulated by hydrothermal megaplumes that introduce in the oceans high concentrations of dissolved and particulate metals that are biolimiting (and toxic) and, consequently, can trigger large blooms (and deaths) of primary producers. We speculate that during OAE1a and OAE2, higher productivity

  1. Estimating the CO2 sequestration potential of depleted and fractured shale formations using CH4 production rates

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Tao, Z.

    2013-12-01

    Oil and gas production from hydraulically fractured shale formations is an abundant new source of domestically available energy for the United States. It will also result in significant CO2 emissions with important climate implications. Several studies have suggested that fractured shale formations could be used to permanently store CO2 once they are depleted of hydrocarbons. Many of the largest shale formations being developed in the United States have temperature and pressure profiles that are similar to those of saline aquifers being widely studied for geologic carbon sequestration. Here a modeling framework was developed that can be used to estimate the sequestration capacity for a shale formation based on historical CH4 production. The model is applied to those portions of the Marcellus formation found in Pennsylvania because reliable data on well production is readily available for this state. Production data from over 300 wells was compiled and used to estimate historical production and to extrapolate projected production. In shales, much of the CO2 would be sorbed to the pore and fracture surface and so this model considers sorption kinetics as well as total sorption capacity. The results suggest that shale formations could represent a significant repository for geologic carbon sequestration. The Marcellus shale in Pennsylvania alone could store between 10.4 and 18.4 Gigatonnes of CO2 between now and 2030. This would be over 50% of total annual US CO2 emissions from stationary sources. The mass transfer and sorption kinetics results indicate that CO2 injection proceeds several times faster than CH4 production. Model estimates were most sensitive to the permeability of the formation and assumptions about the ultimate ratio of adsorbed CH4 to CO2. CH4 production is a useful basis for calculating sequestration capacity because gas mass transfer out of the formation will be impacted by the same factors (e.g., temperature, pressure, and moisture content

  2. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  3. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  4. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  5. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae.

    PubMed

    Laue, Heike; Schenk, Alexander; Li, Hongqiao; Lambertsen, Lotte; Neu, Thomas R; Molin, Søren; Ullrich, Matthias S

    2006-10-01

    Exopolysaccharides (EPSs) play important roles in the attachment of bacterial cells to a surface and/or in building and maintaining the three-dimensional, complex structure of bacterial biofilms. To elucidate the spatial distribution and function of the EPSs levan and alginate during biofilm formation, biofilms of Pseudomonas syringae strains with different EPS patterns were compared. The mucoid strain PG4180.muc, which produces levan and alginate, and its levan- and/or alginate-deficient derivatives all formed biofilms in the wells of microtitre plates and in flow chambers. Confocal laser scanning microscopy with fluorescently labelled lectins was applied to investigate the spatial distribution of levan and an additional as yet unknown EPS in flow-chamber biofilms. Concanavalin A (ConA) bound specifically to levan and accumulated in cell-depleted voids in the centres of microcolonies and in blebs. No binding of ConA was observed in biofilms of the levan-deficient mutants or in wild-type biofilms grown in the absence of sucrose as confirmed by an enzyme-linked lectin-sorbent assay using peroxidase-linked ConA. Time-course studies revealed that expression of the levan-forming enzyme, levansucrase, occurred mainly during early exponential growth of both planktonic and sessile cells. Thus, accumulation of levan in biofilm voids hints to a function as a nutrient storage source for later stages of biofilm development. The presence of a third EPS besides levan and alginate was indicated by binding of the lectin from Naja mossambica to a fibrous structure in biofilms of all P. syringae derivatives. Production of the as yet uncharacterized additional EPS might be more important for biofilm formation than the syntheses of levan and alginate.

  6. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors. PMID:25572361

  7. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.

    PubMed

    Litsanov, Boris; Brocker, Melanie; Bott, Michael

    2012-05-01

    Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pyc(P458S) into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD(+)-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).

  8. Phenylalanine functionalized zwitterionic monolith for hydrophobic interaction electrochromatography.

    PubMed

    Wang, Jiabin; Jia, Wenchao; Lin, Xucong; Wu, Xiaoping; Xie, Zenghong

    2013-12-01

    A novel phenylalanine (Phe) functionalized zwitterionic monolith for hydrophobic electrochromatography was prepared by a two-step procedure involving the synthesis of glycidyl methacrylate based polymer monolith and subsequent on-column chemical modification with Phe via ring-opening reaction of epoxides. Benefitting from the hydrophobicity of both methacrylate-based matrix and aromatic group of Phe, this monolith could exhibit good hydrophobic interaction for the separation. Typical RP chromatographic behavior was observed toward various solutes. The well-controlled cathodic or anodic EOF of the prepared column could be facilely switched by altering the pH values of running buffers. The separation mechanism of this Phe functionalized zwitterionic monolith is discussed in detail. Two mixed-mode mechanisms of RP/cation exchange and RP/anion exchange could be further realized on the same monolith in different pH condition of the mobile phase. Versatile separation capabilities of neutral, basic, and acidic analytes have been successfully achieved in this zwitterionic monolith by CEC method.

  9. Methacrylate monolith chromatography as a tool for waterborne virus removal.

    PubMed

    Rački, N; Kramberger, P; Steyer, A; Gašperšič, J; Štrancar, A; Ravnikar, M; Gutierrez-Aguirre, I

    2015-02-13

    Enteric viruses are commonly present in environmental waters and represent the major cause of waterborne infections and outbreaks. Since traditional wastewater treatments fail to remove enteric viruses in the water purification process, they are released daily into environmental waters. Monolithic supports have enabled chromatography to enter the field of virology. They have been successfully used in virus purification and concentration. In this work quaternary amine (QA) methacrylate monoliths were exploited to remove enteric viruses from wastewater treatment plant effluent. Expectedly, chromatographic processing of such a complex medium was troublesome, even for monoliths, characterized by extremely large pore dimensions. This problem was solved by introducing a pre-step chromatography using hydroxyl (OH) methacrylate monoliths. This way, molecules, that would hinder virus binding to the anion-exchanger monolith, were removed. As a result, the OH pre-column reduced backpressure increase on the subsequent anion-exchanger column, and increased both QA column binding capacity and life time. Wastewater effluent samples were successfully purified from five waterborne enteric viruses (rotavirus, norovirus genogroup I and II, astrovirus, sapovirus), below the detection limit of RT-qPCR. The breakthrough of the rotavirus binding capacity was not reached for concentrations that significantly exceeded those expected in effluent waters. The obtained results confirm that methacrylate monoliths can be a valuable tool for simultaneous removal of different waterborne viruses from contaminated water sources.

  10. Characterization of methacrylate chromatographic monoliths bearing affinity ligands.

    PubMed

    Černigoj, Urh; Vidic, Urška; Nemec, Blaž; Gašperšič, Jernej; Vidič, Jana; Lendero Krajnc, Nika; Štrancar, Aleš; Podgornik, Aleš

    2016-09-16

    We investigated effect of immobilization procedure and monolith structure on chromatographic performance of methacrylate monoliths bearing affinity ligands. Monoliths of different pore size and various affinity ligands were prepared and characterized using physical and chromatographic methods. When testing protein A monoliths with different protein A ligand densities, a significant nonlinear effect of ligand density on dynamic binding capacity (DBC) for IgG was obtained and accurately described by Langmuir isotherm curve enabling estimation of protein A utilization as a function of ligand density. Maximal IgG binding capacity was found to be at least 12mg/mL exceeding theoretical monolayer adsorption value of 7.8mg/mL assuming hexagonal packing and IgG hydrodynamic diameter of 11nm. Observed discrepancy was explained by shrinkage of IgG during adsorption on protein A experimentally determined through calculated adsorbed IgG layer thickness of 5.4nm from pressure drop data. For monoliths with different pore size maximal immobilized densities of protein A as well as IgG dynamic capacity linearly correlates with monolith surface area indicating constant ligand utilization. Finally, IgGs toward different plasma proteins were immobilized via the hydrazide coupling chemistry to provide oriented immobilization. DBC was found to be flow independent and was increasing with the size of bound protein. Despite DBC was lower than IgG capacity to immobilized protein A, ligand utilization was higher. PMID:27554023

  11. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2009-10-01

    An expression system for NAD(+)-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H(2) yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H(2) production.

  12. Subpopulations of neutrophils with increased oxidative product formation in blood of patients with infection.

    PubMed

    Bass, D A; Olbrantz, P; Szejda, P; Seeds, M C; McCall, C E

    1986-02-01

    Stimulated human polymorphonuclear leukocytes (PMNL) have a marked increase in oxidative metabolism, producing reduced oxygen species (e.g., H2O2) that mediate bacterial killing. Previously, quantitation of metabolic responses of PMNL from patients with acute infections employed assays that measure mean activity of the entire PMNL population; such studies reported a modest and highly variable increase in oxidative metabolic responses of such "toxic" PMNL compared with normal cells. To assess metabolic capability of PMNL from 51 patients with acute bacterial infection, we employed a quantitative flow cytometric assay of H2O2-dependent oxidative product formation, the intracellular oxidation of 2',7'-dichlorofluorescin (DCFH). After stimulation by phorbol myristate acetate, the PMNL of patients demonstrated an increase in mean DCFH oxidation (315 +/- 14 and 180 +/- 4.5 amol/cell, patients and controls). Hexose monophosphate shunt activation was similarly increased in stimulated PMNL from bacteremic patients. These data are comparable with previous studies of mean metabolic activities of toxic PMNL. However, these mean values underestimate the quantitative responses of the hyperresponsive ("primed") PMNL within a mixture of normal and primed PMNL in the patients' blood. The flow cytometric assay demonstrated that the PMNL of the patients were composed of two populations. One population of PMNL had normal oxidative responses; the other "primed" population had up to 4.6 times the oxidative product formation of normal cells. Similar priming of circulating PMNL was caused by infection with gram-positive or gram-negative staining bacteria or by Candida species. The proportion and oxidative ability of the primed PMNL occurred independently of the number of juvenile neutrophil forms and independently of "toxic" morphologic changes of Wright's-stained PMNL. On the average, 40% of the PMNL of patients were primed, but the size of the primed PMNL population varied widely

  13. TolC Promotes ExPEC Biofilm Formation and Curli Production in Response to Medium Osmolarity

    PubMed Central

    Hou, Bo; Meng, Xian-Rong; Zhang, Li-Yuan; Tan, Chen; Jin, Hui; Zhou, Rui; Gao, Jian-Feng; Wu, Bin; Li, Zi-Li; Chen, Huan-Chun; Bi, Ding-Ren; Li, Shao-Wen

    2014-01-01

    While a high osmolarity medium activates Cpx signaling and causes CpxR to repress csgD expression, and efflux protein TolC protein plays an important role in biofilm formation in Escherichia coli, whether TolC also responds to an osmolarity change to regulate biofilm formation in extraintestinal pathogenic E. coli (ExPEC) remains unknown. In this study, we constructed ΔtolC mutant and complement ExPEC strains to investigate the role of TolC in the retention of biofilm formation and curli production capability under different osmotic conditions. The ΔtolC mutant showed significantly decreased biofilm formation and lost the ability to produce curli fimbriae compared to its parent ExPEC strain PPECC42 when cultured in M9 medium or 1/2 M9 medium of increased osmolarity with NaCl or sucrose at 28°C. However, biofilm formation and curli production levels were restored to wild-type levels in the ΔtolC mutant in 1/2 M9 medium. We propose for the first time that TolC protein is able to form biofilm even under high osmotic stress. Our findings reveal an interplay between the role of TolC in ExPEC biofilm formation and the osmolarity of the surrounding environment, thus providing guidance for the development of a treatment for ExPEC biofilm formation. PMID:25243151

  14. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Kleist, E.; Junninen, H.; Petäjä, T.; Lönn, G.; Schobesberger, S.; Dal Maso, M.; Trimborn, A.; Kulmala, M.; Worsnop, D. R.; Wahner, A.; Wildt, J.; Mentel, Th. F.

    2012-06-01

    High molecular weight (300-650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16) oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO3-) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7-1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4- (Hyytiälä) and C3F5O2- (JPAC). The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4-5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1-1 ppt (~106-107 molec cm-3). This is in a similar range as the amount of gaseous H2SO4 in Hyytiälä during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and

  15. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Kleist, E.; Junninen, H.; Petäjä, T.; Lönn, G.; Schobesberger, S.; Dal Maso, M.; Trimborn, A.; Kulmala, M.; Worsnop, D. R.; Wahner, A.; Wildt, J.; Mentel, Th. F.

    2012-02-01

    High molecular weight (300-650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night during spring and summer in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16) oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO3-) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7-1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4- (Hyytiälä) and C3F5O2- (JPAC). The most abundant products in the ion spectra were identified as C105H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4-5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1-1 ppt (~106-107 molec cm-3). This is in a similar range as the amount of gaseous H2SO4 in Hyytiälä during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and

  16. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    PubMed

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

  17. Kinetics of oxygenated product formation during the heterogeneous oxidation of organic aerosol

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2014-12-01

    Oxidation of organic aerosols can lead to changes in their atmospheric lifetime, optical properties and health effects. Whereas much is known about the rates of reaction and subsequent branching ratios of gas-phase organic species, much less is known about their condensed phase counterparts. The determination of the kinetics and abundances of the oxidation products associated with condensed phase reactions is needed to understand the oxidation reaction pathways and their branching ratios. The Vacuum Ultraviolet Aerosol Mass Spectrometer (VUV-AMS) at the Chemical Dynamics Beamline at Lawrence Berkeley National Laboratory has been useful in determining the reaction rate constants for a number of condensed phase organic compounds with oxidants such as OH and O3. The relatively soft ionization in the VUV-AMS leads to substantially less fragmentation than other AMS instruments that use electron impact ionization, and therefore preserves a greater amount of molecular information about parent molecules. Previously, ketones formed from the heterogenous oxidation of model organic compounds have been identified and their formation kinetics quantified. However, other possible products, such as alcohols and organic peroxides, have not previously been identified in the VUV-AMS mass spectra or characterized as these are subject to greater fragmentation. Here, we present a method in which the fragmentation pattern is specified for each alcohol isomer formed from the oxidation of two model organic compounds, bis-2-ethylhexl sebacate and squalane. From this we are able to define unique m/z fragments for each isomer from which we derive information about alcohol and abundances. This study demonstrates additional methods for the analysis of mass spectra obtained with the VUV-AMS as well as provides insights into condensed phase oxidation kinetics.

  18. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI).

    PubMed

    Wang, Hongyu; Liu, Yibing; Jiang, Jia-Qian

    2016-07-01

    This paper investigates the degradation of acetaminophen (AAP) in aqueous solutions by ferrate (VI), aiming to propose the kinetics, pathways and the oxidation products' formation in the AAP degradation. A series of jar tests were undertaken over ferrate (VI) dosages (molar ratios of ferrate (VI):AAP, 5:1 to 25:1) and pH values (4-11). The effects of co-existing ions (0.2-5 mM) and humic acid (10-50 mg l(-1)) on the AAP removal were investigated. Ferrate (VI) can remove 99.6% AAP (from 1000 μg l(-1)) in 60 min under study conditions when majority of the AAP reduction occurred in the first 5 min. The treatment performance depended on the ferrate(VI) dosage, pH and the type and strength of co-existing ions and humic acid. Raising ferrate (VI) dosage with optimal pH 7 improved the AAP degradation. In the presence of humic acid, the AAP degradation by ferrate (VI) was promoted in a short period (<30 min) but then inhibited with increasing in humic acid contents. The presence of Al(3+), CO3(2-) and PO4(3-) ions declined but the existence of K(+), Na(+), Mg(2+) and Ca(2+) ions can improve the AAP removal. The catalytic function of Al(3+) on the decomposition of ferrate (VI) in aqueous solution was found. The kinetics of the reaction between ferrate (VI) and AAP was pseudo first-order for ferrete (VI) and pseudo second-order for AAP. The pseudo rate constant of ferrate (VI) with AAP was 1.4 × 10(-5) L(2) mg(-2) min(-1). Three oxidation products (OPs) were identified and the AAP degradation pathways were proposed.

  19. Predicting the formation and the dispersion of toxic combustion products from the fires of dangerous substances

    NASA Astrophysics Data System (ADS)

    Nevrlý, V.; Bitala, P.; Danihelka, P.; Dobeš, P.; Dlabka, J.; Hejzlar, T.; Baudišová, B.; Míček, D.; Zelinger, Z.

    2012-04-01

    Natural events, such as wildfires, lightning or earthquakes represent a frequent trigger of industrial fires involving dangerous substances. Dispersion of smoke plume from such fires and the effects of toxic combustion products are one of the reference scenarios expected in the framework of major accident prevention. Nowadays, tools for impact assessment of these events are rather missing. Detailed knowledge of burning material composition, atmospheric conditions, and other factors are required in order to describe quantitatively the source term of toxic fire products and to evaluate the parameters of smoke plume. Nevertheless, an assessment of toxic emissions from large scale fires involves a high degree of uncertainty, because of the complex character of physical and chemical processes in the harsh environment of uncontrolled flame. Among the others, soot particle formation can be mentioned as still being one of the unresolved problems in combustion chemistry, as well as decomposition pathways of chemical substances. Therefore, simplified approach for estimating the emission factors from outdoor fires of dangerous chemicals, utilizable for major accident prevention and preparedness, was developed and the case study illustrating the application of the proposed method was performed. ALOFT-FT software tool based on large eddy simulation of buoyant fire plumes was employed for predicting the local toxic contamination in the down-wind vicinity of the fire. The database of model input parameters can be effectively modified enabling the simulation of the smoke plume from pool fires or jet fires of arbitrary flammable (or combustible) gas, liquid or solid. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic via the project LD11012 (in the frame of the COST CM0901 Action) and the Ministry of Environment of the Czech Republic (project no. SPII 1a10 45/70).

  20. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    PubMed

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants. PMID:24705871

  1. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. PMID:23291561

  2. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts.

  3. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows

  4. Adaption of kinetics to solid electrolyte interphase layer formation and application to electrolyte-soluble reaction products

    NASA Astrophysics Data System (ADS)

    Gourdin, Gerald; Zheng, Dong; Qu, Deyang

    2015-12-01

    During the electrochemical lithiation of a carbon electrode, carbonate-based electrolytes react with the electrode surface and undergo reductive decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode. In addition, reduction of the electrolyte also results in the generation of electrolyte-soluble products. Structural similarities between the soluble and insoluble products provide an opportunity to examine the formation kinetics of the SEI layer through an analysis of the kinetic behavior of the soluble products. In this work, the electrolyte-soluble products generated by reductive decomposition of a baseline electrolyte were analyzed at different stages and at different hold times during the initial lithiation of an amorphous carbon electrode. A statistical regression analysis of that data was used to produce a representative lithiation experiment from which was calculated the potential-dependent formation rates for the soluble decomposition products. The predicted formation rate data was fitted using an adapted rate equation that accounts for the effect of the SEI layer to obtain estimated formation rate constants and redox potentials.

  5. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    SciTech Connect

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

  6. Study of Formation and Production of Carbon Nanohorns Using Continuous In-Situ Characterization Techniques

    SciTech Connect

    Cheng, Mengdawn; Lee, Doh-Won; Zhao, Bin; Hu, Hui; Styers-Barnett, David J; Puretzky, Alexander A; DePaoli, David W; Geohegan, David B; Ford, Emory; Angelini, Peter

    2007-01-01

    The formation of carbon nanohorns by laser ablation was investigated using a scanning differential mobility analyzer combined with an ultrafine condensation particle counter. The measurement technique provided time-resolved size distributions for the carbon nanoparticles every minute during the course of the production run. The instrument performance was reasonably stable most of the time; however, during laser ablation, shockwave oscillations leading to significant transient flow and pressure variations were shown to disrupt the DMAs ability to measure accurate distributions. On the basis of the general trend observed in the data taken during the laser-ablation experiments, we found that the geometric mean diameter of the produced population shifted to larger particle sizes with increases in pulse width. For a given laser peak power and repetition rate, carbon nanoparticles of mobility diameter close to 100 nm were produced in a large abundance using longer laser pulse lengths (e.g., 10 ms) as compared to the shorter pulse lengths (e.g., 1 ms). A quantitative assessment of the particle size dispersion (using statistics like the geometric standard deviation) in relation to the laser pulse width could not be done with certainty as the shockwave disturbances produced by the laser-ablation process caused significant disruption to SMPS measurements. When laser ablation was not in operation, it was found that carbon nanoparticles with mobility diameters centred at about 20 nm could be produced by thermally desorbing the previously deposited carbon nanoparticles from the reactor wall at temperatures greater than 1300 K.

  7. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  8. Removal of disinfection by-products formation potential by biologically intensified process.

    PubMed

    An, Dong; Li, Wei-guang; Cui, Fu-yi; He, Xin; Zhang, Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential (DBPFP) in artificially intensified biological activated carbon (IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon (GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with lactivated carbon adsorption of organic compounds. A clear linear correlation (R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time (EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 (R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on. PMID:16295913

  9. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production.

    PubMed

    Craft, Brian D; Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric

    2012-01-01

    Recently, organic and inorganic chlorinated compounds were detected in crude and commercially refined palm oils. Further, the predominant formation mechanism of monochloropropanediol (MCPD) diesters at high temperatures (>170-180°C) was revealed. The present study involved the development and comparison of solutions to mitigate MCPD diester levels in oils from various stages of palm oil production. Partially refined palm oil samples and oil extracted from fresh palm fruits were submitted to bench-top deodorisation experiments. Application of glycerol and ethanol as refining aids during the deodorisation of refined-bleached palm oil proved to be moderately effective; about 25%-35% reduction of MCPD diester levels was achieved. Washing crude palm oil with ethanol-water (1:1) prior to deodorisation was also an effective strategy yielding an ∼30% reduction of MCPD diester contents. Washing palm fruit pulp before oil extraction, however, was most impactful, resulting in a 95% reduction of MCPD diesters when compared to the deodorised control oil. This suggests that intervention upstream in the process chain is most efficient in reducing levels of these contaminants in refined oils. Following the study, a root-cause analysis was performed in order to map the parameters potentially responsible for the occurrence of MCPD diesters in refined palm oil and related fractions. PMID:22168150

  10. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production.

    PubMed

    Craft, Brian D; Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric

    2012-01-01

    Recently, organic and inorganic chlorinated compounds were detected in crude and commercially refined palm oils. Further, the predominant formation mechanism of monochloropropanediol (MCPD) diesters at high temperatures (>170-180°C) was revealed. The present study involved the development and comparison of solutions to mitigate MCPD diester levels in oils from various stages of palm oil production. Partially refined palm oil samples and oil extracted from fresh palm fruits were submitted to bench-top deodorisation experiments. Application of glycerol and ethanol as refining aids during the deodorisation of refined-bleached palm oil proved to be moderately effective; about 25%-35% reduction of MCPD diester levels was achieved. Washing crude palm oil with ethanol-water (1:1) prior to deodorisation was also an effective strategy yielding an ∼30% reduction of MCPD diester contents. Washing palm fruit pulp before oil extraction, however, was most impactful, resulting in a 95% reduction of MCPD diesters when compared to the deodorised control oil. This suggests that intervention upstream in the process chain is most efficient in reducing levels of these contaminants in refined oils. Following the study, a root-cause analysis was performed in order to map the parameters potentially responsible for the occurrence of MCPD diesters in refined palm oil and related fractions.

  11. Natural gas production from Ordovician Queenston Formation in West Auburn field, Cayuga County, New York

    SciTech Connect

    Ward, T.L.

    1988-08-01

    Gas has been produced from the Upper Ordovician Queenston Formation at West Auburn field, Cayuga County, New York, for over 20 years. This field indicates Queenston production to be long lived, with substantially economic reserves found at depths shallower than 2,000 ft. Locally, The Queenston is comprised of sand and silty shale with the primary reservoirs found in quartzose sandstones. The overall thickness of the Queenston clastic interval is over 700 ft with gas found in the upper 300 ft. Three primary gas sands are continuous across the field area and have high average porosities of as much as 13.0% and average permeabilities of 0.20 md. Extreme examples show peak porosities approaching 20% and permeabilities of over 5.0 md. The reservoir is composed of very fine to medium-grained, moderately sorted, red sandstone. Sand grains are predominantly quartz with minor amounts of feldspar. The main pore-filling constituent is abundant authigenic clay with iron oxides, thus contributing to reduced permeabilities. These sands vary in reservoir quality through the field and, hence, allow for stratigraphic trapping of the gas. Other factors involved include the updip accumulation of gas against the Silurian-Ordovician unconformity at the top of the Queenston. Some of the pay sands are absent due to this unconformity in the area farthest updip and, therefore, decrease the overall reserve potential of the individual well in that part of the field.

  12. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    PubMed

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  13. There's more than one way to skin a cat: A wide selection of techniques used for the preparation of porous polymer monoliths

    PubMed Central

    Svec, Frantisek

    2010-01-01

    The porous polymer monoliths went a long way since their invention two decades ago. While the first studies applied the traditional polymerization processes at that time well established for the preparation of polymer particles, creativity of scientists interested in the monolithic structures has later led to the use of numerous less common techniques. This review article presents vast variety of methods that have meanwhile emerged. The text first briefly describes the early approaches used for the preparation of monoliths comprising standard free radical polymerizations and includes their development up to present days. Specific attention is paid to the effects of process variables on the formation of both porous structure and pore surface chemistry. Specific attention is also devoted to the use of photopolymerization. Then, several less common free radical polymerization techniques are presented in more detail such as those initiated by γ-rays and electron beam, the preparation of monoliths from high internal phase emulsions, and cryogels. Living processes including stable free radicals, atom transfer radical polymerization, and ring opening metathesis polymerization are also discussed. The review ends with description of preparation methods based on polycondensation and polyaddition reactions as well as on precipitation of preformed polymers affording the monolithic materials. PMID:19828151

  14. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode.

    PubMed

    Svec, Frantisek

    2012-03-01

    The separations of small molecules using columns containing porous polymer monoliths invented two decades ago went a long way from the very modest beginnings to the current capillary columns with efficiencies approaching those featured by their silica-based counterparts. This review article presents a variety of techniques that have been used to form capillary formats of monolithic columns with enhanced separation performance in isocratic elutions. The following text first describes the traditional approaches used for the preparation of efficient monoliths comprising variations in polymerization conditions including temperature as well as composition of monomers and porogenic solvents. Encouraging results of these experiments fueled research of completely new preparation methods such as polymerization to an incomplete conversion, use of single crosslinker, hypercrosslinking, and incorporation of carbon nanotubes that are described in the second part of the text. PMID:21816401

  15. Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

    PubMed Central

    Zheng, Zhuang-li; Qiu, Xue-hong

    2015-01-01

    A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris. PMID:25892913

  16. Drugs of abuse that mediate advanced glycation end product formation: a chemical link to disease pathology.

    PubMed

    Treweek, Jennifer B; Dickerson, Tobin J; Janda, Kim D

    2009-05-19

    Nicotine and methamphetamine are frequently abused in modern society, despite the increasing evidence of their addictive, neuropharmacological, and toxic effects. Tobacco, the most widely abused substance, is the leading cause of preventable death in the United States, killing nearly half a million Americans annually. A methamphetamine epidemic has also spread during the past decade; severe neurotoxicity and addictiveness contribute to the drug's notoriety. Although the majority of research on these two drugs is of pharmacological and neurobiological motivation, further study of these molecules from a chemical perspective may provide novel mechanistic insight into either their addictive potential or their pathological effects. For example, nicotine and methamphetamine share a common structural feature, a secondary amine, suggesting that these molecules could possess similar (or analogous) in vivo reactivity. Discoveries concerning the synthetic requirements for aqueous aldol catalysis and the feasibility of the enamine mechanism under physiological conditions have given rise to the hypothesis that ingested molecules, such as abused drugs, could participate in reactions utilizing an enamine intermediate in vivo. The chemical reactivity of exogenous drugs with amine functionalities was initially examined in the context of the Maillard reaction, or nonenzymatic browning. The heating of reducing sugars with amino acids yields a brown solution; studies of this reaction were originally applied to food chemistry for the production of distinct flavors and aromas. Further research has since revealed numerous instances in which the in vivo production of advanced glycation end products (AGEs) through the Maillard reaction contribute to the pathology of disease states. Specifically, the modification of long-lived proteins by glycation and glycoxidation and the accumulation of these AGEs compromise the original function of such proteins and change the mechanical properties of

  17. Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with NO3 radicals.

    PubMed

    Gong, Huiming; Matsunaga, Aiko; Ziemann, Paul J

    2005-05-19

    Secondary organic aerosol (SOA) formation from reactions of linear alkenes with NO(3) radicals was investigated in an environmental chamber using a thermal desorption particle beam mass spectrometer for particle analysis. A general chemical mechanism was developed to explain the formation of the observed SOA products. The major first-generation SOA products were hydroxynitrates, carbonylnitrates, nitrooxy peroxynitrates, dihydroxynitrates, and dihydroxy peroxynitrates. The major second-generation SOA products were hydroxy and oxo dinitrooxytetrahydrofurans, which have not been observed previously. The latter compounds were formed by a series of reactions in which delta-hydroxycarbonyls isomerize to cyclic hemiacetals, which then dehydrate to form substituted dihydrofurans (unsaturated compounds) that rapidly react with NO(3) radicals to form very low volatility products. For the approximately 1 ppmv alkene concentrations used here, aerosol formed only for alkenes C(7) or larger. SOA formed from C(7)-C(9) alkenes consisted only of second-generation products, whereas for larger alkenes first-generation products were also present and contributions increased with increasing carbon number apparently due to the formation of lower volatility products. The estimated mass fractions of first- and second-generation products were approximately 50:50, 30:70, 10:90, and 0:100, for 1-tetradecene, 1-dodecene, 1-decene, and 1-octene SOA, respectively. This study shows that delta-hydroxycarbonyls play a key role in the formation of SOA in alkene-NO(3) reactions and are likely to be important in other systems because delta-hydroxycarbonyls can also be formed from reactions of OH radicals and O(3) with hydrocarbons.

  18. Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis.

    PubMed

    Jacques, Reece; Pal, Ritashree; Parker, Nicholas A; Sear, Claire E; Smith, Peter W; Ribaucourt, Aubert; Hodgson, David M

    2016-07-01

    In the past two decades, alkene metathesis has risen in prominence to become a significant synthetic strategy for alkene formation. Many total syntheses of natural products have used this transformation. We review the use, from 2003 to 2015, of ring-closing alkene metathesis (RCM) for the generation of dihydrofurans or -pyrans in natural product synthesis. The strategies used to assemble the RCM precursors and the subsequent use of the newly formed unsaturation will also be highlighted and placed in context. PMID:27108941

  19. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  20. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  1. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  2. Neutron spectrometry with a monolithic silicon telescope.

    PubMed

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found. PMID:17522037

  3. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  4. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  5. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols.

    PubMed

    Abdallah, Hossam M; El-Bassossy, Hany; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M

    2016-02-22

    Accumulation of Advanced Glycation Endproducts (AGEs) in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG) as a positive control. Including G. mangostana total methanol extract (GMT) in the reaction mixture of bovine serum albumin (BSA) and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1), aromadendrin-8-C-glucopyranoside (2), epicatechin (3), and 2,3',4,5',6-pentahydroxybenzophenone (4). All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin) was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2-4 inhibited fructosamine (Amadori product) and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3) to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1-4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol.

  6. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols.

    PubMed

    Abdallah, Hossam M; El-Bassossy, Hany; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M

    2016-01-01

    Accumulation of Advanced Glycation Endproducts (AGEs) in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG) as a positive control. Including G. mangostana total methanol extract (GMT) in the reaction mixture of bovine serum albumin (BSA) and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1), aromadendrin-8-C-glucopyranoside (2), epicatechin (3), and 2,3',4,5',6-pentahydroxybenzophenone (4). All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin) was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2-4 inhibited fructosamine (Amadori product) and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3) to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1-4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol. PMID:26907243

  7. Monolithic supports with unique geometries and enhanced mass transfer.

    SciTech Connect

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  8. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Kong, Fanxiang

    2013-07-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS productionin M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μmol/(m2 · s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  9. Formation of deoxidization products in iron ingot by the addition of Al, Si, and/or Mn (M-5)

    NASA Technical Reports Server (NTRS)

    Fukazawa, Akira

    1993-01-01

    The objective of this work is to examine the morphology, composition, and distribution of deoxidation products in iron and iron-10 percent Ni alloy ingots. The deoxidation agents Si, Mn, Al, and their mixtures are selected to investigate the formation mechanism of the deoxidation products and to compare the differences of oxide formation among these agents in microgravity. After the experiment in space, the tested specimens are going to be analyzed by the use of the latest physical and/or chemical analytical equipment, and the information obtained will be a great help for the comprehension of the formation of oxide inclusion in steel for practical purposes, and also for the study of the solidification mechanism theory in the theoretical field.

  10. Standard enthalpy of formation of L-glutamine and the products of its dissociation in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Lytkin, A. I.; Krutova, O. N.; Damrina, K. V.

    2014-03-01

    Heat effects of the dissolution of crystalline L-glutamine in water and lithium hydroxide solutions were determined by direct calorimetry at 298.15 K. Standard enthalpies of formation of L-glutamine and the products of its dissociation in aqueous solution were calculated.

  11. Standard enthalpies of formation of crystalline L-threonine and the products of its dissociation in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Damrina, K. V.; Skvortsov, I. A.

    2016-01-01

    Enthalpies of dissolution of crystalline L-threonine in water and in aqueous solutions of potassium hydroxide are measured at 298.15 K via direct calorimetric. The standard enthalpies of formation of L-threonine and the products of its dissociation in aqueous solutions are calculated.

  12. Standard enthalpies of formation for crystalline serine and isoserine and products of their dissociation in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Damrina, K. V.; Skvortsov, I. A.

    2016-02-01

    The heats of solution of crystalline serine and isoserine in water and potassium hydroxide solutions are measured via direct calorimetry at 298.15 K. The standard enthalpies of formations of amino acids and products of their dissociation in aqueous solution are calculated.

  13. THE GAS PHASE REACTION OF OZONE WITH 1,3-BUTADIENE: FORMATION YIELDS OF SOME TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separa...

  14. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2016-09-01

    Heat effects of the dissolution of crystalline γ-aminobutyric acid in water and potassium hydroxide solutions are determined by direct colorimetry at 298.15 K. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution are calculated.

  15. Standard enthalpies of formation of α-aminobutyric acid and products of its dissociation in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.

    2016-08-01

    Heats of solution of crystalline α-aminobutyric acid in water and in aqueous solutions of potassium hydroxide at 298.15 K are measured by means of direct calorimetry. Standard enthalpies of formation of the amino acid and products of its dissociation in an aqueous solution are calculated.

  16. Inhibition of platelet aggregation and reduced formation of thromboxane and lipoxygenase products in platelets by oil of cloves.

    PubMed

    Srivastava, K C; Justesen, U

    1987-09-01

    Oil of cloves (OC) was found to be a potent inhibitor of platelet aggregation induced by arachidonic acid (AA), collagen and epinephrine; in this respect it was most effective against AA-induced aggregation. Inhibition of aggregation by OC seems to be mediated through a reduced formation of thromboxane as indicated by the following experimental evidence. (i) OC inhibited TxB2 formation in intact as well as lysed platelet preparations from added arachidonate, and (ii) it inhibited the formation of TxB2 from AA-labelled platelets after activation with Ca2+-ionophore A23187. The formation of lipoxygenase derived products was dependent on the concentration of OC used; at its lower concentration their amounts increased but this was found to be reversed at higher concentrations. At all concentrations thromboxane was decreased with a concomitant increase in unused AA. PMID:3118394

  17. Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate.

    PubMed

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Xia, Sheng-Ji; Lin, Lin; Mwakagenda, Seleli Andrew; Gao, Nai-Yun

    2012-11-30

    This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.

  18. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    differences between gaseous and dissolved methane (Zimmer et al., 2011). Gas hydrate is formed using a confined pressure of 12-15 MPa and a fluid pressure of 8-11 MPa with a set temperature of 275 K. The duration of the formation process depends on the required hydrate saturation and is usually in a range of several weeks. The subsequent decomposition experiments aiming at testing innovative production scenarios such as the application of a borehole tool for thermal stimulation of hydrate via catalytic oxidation of methane within an autothermal catalytic reactor (Schicks et al. 2011). Furthermore, experiments on hydrate decomposition via pressure reduction are performed to mimic realistic scenarios such as found during the production test in Mallik (Yasuda and Dallimore, 2007). In the near future it is planned to scale up existing results on CH4-CO2 exchange efficiency (e.g. Strauch and Schicks, 2012) by feeding CO2 to the hydrate reservoir. All experiments are due to the gain of high-resolution spatial and temporal data predestined as a base for numerical modeling. References Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., Luzi, M., 2011. Energies, 4, 1, 151-172. Zimmer, M., Erzinger, J., Kujawa, C., 2011. Int. J. of Greenhouse Gas Control, 5, 4, 995-1001. Yasuda, M., Dallimore, S. J., 2007. Jpn. Assoc. Pet. Technol., 72, 603-607. Beeskow-Strauch, B., Schicks, J.M., 2012. Energies, 5, 420-437.

  19. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    NASA Astrophysics Data System (ADS)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  20. Released products of pathogenic bacteria stimulate biofilm formation by Escherichia coli K-12 strains.

    PubMed

    Vacheva, Anna; Ivanova, Radka; Paunova-Krasteva, Tsvetelina; Stoitsova, Stoyanka

    2012-06-01

    It has recently been shown that pathogens with a limited capacity for sessile growth (like some Escherichia coli O157 strains) can benefit from the presence of other bacteria and form mixed biofilms with companion strains. This study addresses the question whether pathogens may influence attached growth of E. coli non-pathogenic strains via secreted factors. We compared the biofilm-modulating effects of sterile stationary-phase culture media of a biofilm non-producing strain of E. coli O157:H, a laboratory biofilm-producing E. coli K-12 strain and a biofilm-forming strain of the pathogen Yersina enterocolitica O:3. Sessile growth was monitored as biomass (crystal violet assay), exopolysaccharide (ELLA) and morphology (scanning electron and confocal laser microscopy). With two of the E. coli K-12 strains stimulation of biofilm formation by all supernatants was achieved, but only the pathogens' secreted products induced biomass increase in some 'biofilm-deficient' K-12 strains. Lectin-peroxidase labeling indicated changes in colanic acid and poly-N-acetylglucosamine amounts in extracellular matrices. The contribution of indole, protein and polysaccharide to the biofilm-modulating activities of the supernatants was compared. Indole, in concentrations equal to those established in the supernatants, suppressed sessile growth in one K-12 strain. Proteinase K significantly reduced the stimulatory effects of all supernatants, indicating a prominent role of protein/peptide factor(s) in biofilm promotion. The amount of released polysaccharides (rPS) in the supernatants was quantitated then comparable quantities of isolated rPS were applied during biofilm growth. The three rPS had notable strain-specific effects with regard to both the strain-source of the rPS and the E. coli K-12 target strain.

  1. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens

    PubMed Central

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana

    2015-01-01

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography–mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes. PMID:25746999

  2. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens.

    PubMed

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana; Ramos-Vivas, José

    2015-05-15

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography-mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.

  3. Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria

    DOE PAGESBeta

    Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-06-20

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less

  4. Risk assessment of coal production: an information system user's manual. [SAS (Statistical Analysis System) format

    SciTech Connect

    Watson, A.P.; Birchfield, T.E.; Fore, C.S.

    1982-10-01

    A specialized information system comprising all US domestic coal mine and processing plant injuries as reported to the Mine Safety and Health Administration of the US Department of Labor for the years 1975 through 1980 has been developed at Oak Ridge National Laboratory (ORNL) for online and batch users. The data are stored in two principal datasets: (1) annual summaries of accidental injuries and fatalities in both surface and underground bituminous and anthracite mines, as well as information on injuries suffered by workers employed in coal-processing (blending, crushing, etc.) facilities; and (2) annual summaries of employment (person-hours, number of individuals) and production (tons) of each domestic mine or processing facility for which the US Department of Labor has granted an operating permit. There are currently more than 232 000 records available online to interested users. Data are recorded for the following variables: county, state, date of injury, sex of victim, age at time of accident, degree of injury, occupation title at time of injury, activity during injury, location of accident, type of coal, type of mine, type of mining machine, type of accident, source and nature of injury, part of body injured, total mine experience, experience at current mine and job title held at time of injury, and number of days away from work or number of days restricted or charged due to the injury. As these values are organized by FIPS (Federal Information Processing Standards) county code for each reporting facility, compilations may be made on a subregional or substate basis. The datasets have been established in SAS (Statistical Analysis System) format and are readily manipulated by SAS routines available at ORNL. Several appendices are included in the manual to provide the user with a detailed description of all the codes available for data retrieval. Sample retrieval sessions are also incorporated.

  5. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  6. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  7. Monolithic light guide optics enabling new user experience for see-through AR glasses

    NASA Astrophysics Data System (ADS)

    Sarayeddline, K.; Mirza, K.; Benoit, P.; Hugel, X.

    2014-09-01

    This paper describes the performances of mold light guide based see-through optics for the production of AR glasses for commercial and professional applications. A monolithic thin mold light guide with surface structure mirror array extracts and project bright and large virtual image into the user eye of sight. The light guide thin form factor allows a new user experience with two possible positions for the virtual image in front of the user eye. A wireless AR glasses based on this concept will be described and demonstrated. A comparison with others light guide based technologies in term of Safety, Brightness efficiency and form factor will be presented and discussed.

  8. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  9. Thermoresponsive ketoprofen-imprinted monolith prepared in ionic liquid.

    PubMed

    Sun, Xuan; Zhao, Chun-Yan; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2014-09-01

    A thermoresponsive imprinted monolith with the ability of molecular recognition for ketoprofen was prepared for the first time. The smart monolith was synthesized in a stainless steel column using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers, which can form interpolymer complexation to restrict access of the analyte to the imprinted networks at low temperatures. To avoid a high back pressure of the column derived from neat dimethyl sulfoxide (DMSO) as a porogenic solvent that is needed to solve polar AMPS, an ionic liquid, [BMIM]BF4, was introduced into the pre-polymerization mixture. The molecular recognition ability towards ketoprofen of the resulting thermoresponsive molecularly imprinted polymer (MIP) monolith displayed significant dependence on temperature compared with a non-imprinted column (NIP), and the greatest imprinting factor was achieved at the transition temperature of 35 °C (above 10). Furthermore, the number of binding sites of the smart MIP monolith at 35 °C was about 76 times as large as that at 25 °C. In addition, Freundlich analyses indicated that the thermoresponsive MIP monolith had homogeneous affinity sites at both 25 and 35 °C with heterogeneity index 0.9251 and 0.9851, respectively.

  10. Continuous vs. discrete models of nonadiabatic monolith catalysts

    SciTech Connect

    Groppi, G.; Tronconi, E.

    1996-08-01

    Monolith catalysts are widely applied for clean up of waste gases [catalytic mufflers, volatile organic compound (VOC) incinerators, reactors for selective catalytic reduction (SCR) of NO{sub x} by NH{sub 3}] in view of their unique combination of low-pressure drops and high gas-solid interfacial areas. The crucial point in continuous heat-transfer models is the evaluation of the effective thermal conductivity coefficients, which are functions both of the physical properties of the two phases and of the monolith geometry. In this work a novel expression for calculation of the radial effective conductivity is derived. The physical consistency of the steady-state continuous model implementing such an expression is then analyzed by comparison with a discrete monolith model. In spite of the just-mentioned limitations, discrete models have been partially validated in the literature against experimental temperature profiles in heated monoliths; thus, they can be regarded as a standard in evaluating the adequacy of the continuum approach. The reference problem of pure heat transfer with constant temperature of the external monolith wall is investigated for these purposes.

  11. V-band monolithic two stage HEMT amplifiers

    NASA Astrophysics Data System (ADS)

    Aust, M.; Yonaki, J.; Nakano, K.; Berenz, J.; Dow, G.

    Two different types of HEMT (high-electron-mobility transistor) monolithic low-noise amplifiers (LNAs) using AlGaAs/GaAs and pseudomorphic InGaAs/GaAs materials have been developed and have demonstrated excellent performance at 60 GHz. These monolithic LNAs have achieved noise figures of 5 dB, as well as associated gains of 11 dB. These two-stage circuits both utilize 0.2- x 60-micron HEMT devices for both bandpass and low-pass circuit topologies. Noise figures as low as 4.5 dB have been observed for single-stage MMIC- (monolithic-microwave-integrated-circuit) implemented LNAs, and gains in excess of 20 dB have been observed for three-stage versions of this amplifier with a 5-dB noise figure in the V band. This result represents the state-of-the art monolithic HEMT amplifier performance for AlGaAs and pseudomorphic InGaAs materials. This MMIC amplifier can occupy about less than one-third the size of existing MIC hybrid V-band LNAs. This represents a significant size reduction and cost saving due to repeatable circuit performance with monolithic technology. The chip sizes are both 1.6 x 2.7 mm for these two-stage amplifiers.

  12. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.

    PubMed

    Bi, Hui; Lin, Tianquan; Xu, Feng; Tang, Yufeng; Liu, Zhanqiang; Huang, Fuqiang

    2016-01-13

    Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare another new graphene monolith of mesoporous graphene-filled tubes instead of hollow tubes in the reported cellular structure. This graphene nanoporous monolith is also composed of covalently bonded carbon network possessing high specific surface area of ∼1590 m(2) g(-1) and electrical conductivity of ∼32 S cm(-1), superior to graphene aerogels and porous graphene forms self-assembled by graphene oxide. This 3D graphene monolith can support over 10 000 times its own weight, significantly superior to CNT and graphene cellular materials with a similar density. Furthermore, pseudocapacitance-active functional groups are introduced into the new nanoporous graphene monolith as an electrode material in electrochemical capacitors. Surprisingly, the electrode of 3D mesoporous graphene has a specific capacitance of 303 F g(-1) and maintains over 98% retention after 10 000 cycles, belonging to the list for the best carbon-based active materials. The macroscopic mesoporous graphene monolith suggests the great potential as an electrode for supercapacitors in energy storage areas.

  13. Parallel preconditioners for monolithic solution of shear bands

    NASA Astrophysics Data System (ADS)

    Berger-Vergiat, Luc; McAuliffe, Colin; Waisman, Haim

    2016-01-01

    Shear bands are one of the most fascinating instabilities in metals that occur under high strain rates. They describe narrow regions, on the order of micron scales, where plastic deformations and significant heating are localized which eventually leads to fracture nucleation and failure of the component. In this work shear bands are described by a set of four strongly coupled thermo-mechanical equations discretized by a mixed finite element formulation. A thermo-viscoplastic flow rule is used to model the inelastic constitutive law and finite thermal conductivity is prescribed which gives rise to an inherent physical length scale, governed by competition of shear heating and thermal diffusion. The residual equations are solved monolithically by a Newton type method at every time step and have been shown to yield mesh insensitive result. The Jacobian of the system is sparse and has a nonsymmetric block structure that varies with the different stages of shear bands formation. The aim of the current work is to develop robust parallel preconditioners to GMRES in order to solve the resulting Jacobian systems efficiently. The main idea is to design Schur complements tailored to the specific block structure of the system and that account for the varying stages of shear bands. We develop multipurpose preconditioners that apply to standard irreducible discretizations as well as our recent work on isogeometric discretizations of shear bands. The proposed preconditioners are tested on benchmark examples and compared to standard state of practice solvers such as GMRES/ILU and LU direct solvers. Nonlinear and linear iterations counts as well as CPU times and computational speedups are reported and it is shown that the proposed preconditioners are robust, efficient and outperform traditional state of the art solvers.

  14. A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation.

    PubMed

    Henares, Bernadette M; Xu, Yueming; Boon, Elizabeth M

    2013-01-01

    Cell signaling plays an important role in the survival of bacterial colonies. They use small molecules to coordinate gene expression in a cell density dependent manner. This process, known as quorum sensing, helps bacteria regulate diverse functions such as bioluminescence, biofilm formation and virulence. In Vibrio harveyi, a bioluminescent marine bacterium, four parallel quorum-sensing systems have been identified to regulate light production. We have previously reported that nitric oxide (NO), through the H-NOX/HqsK quorum sensing pathway contributes to light production in V. harveyi through the LuxU/LuxO/LuxR quorum sensing pathway. In this study, we show that nitric oxide (NO) also regulates flagellar production and enhances biofilm formation. Our data suggest that V. harveyi is capable of switching between lifestyles to be able to adapt to changes in the environment.

  15. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity.

    PubMed

    Małgorzata, Wronkowska; Konrad, Piskuła Mariusz; Zieliński, Henryk

    2016-04-01

    Changes in the formation of Maillard reaction products and antioxidant capacity of buckwheat, induced by roasting at 160 °C for 30, 40 and 50 min, were evaluated in the study. Furozine, was detected after roasting, in all buckwheat samples. Increase of FIC, the presence of significant amounts of CML and enhanced browning were observed, along with increasing times of roasting. The formation of acrylamide in the obtained buckwheat products was also significantly connected with the time of roasting. A significant degradation was observed in natural antioxidants, as affected by heat treatment time. The colour parameter changed significantly with the increasing of roasting time. Overall, 30min of roasting was beneficial from a nutritional point of view for the obtained buckwheat product.

  16. Nickel sulfide formation at low temperature: initial precipitates, solubility and transformation products

    EPA Science Inventory

    The formation of nickel sulfides has been examined experimentally over the temperature range from 25 to 60°C. At all conditions studied, hexagonal (α-NiS) was the initial precipitate from solution containing Ni2+ and dissolved sulfide. The formation of millerite (β- NiS, rhombo...

  17. Fabrication of the LSST monolithic primary-tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Ketelsen, Dean A.; Law, Kevin; Gressler, William J.; Zhao, Chunyu

    2012-09-01

    As previously reported (at the SPIE Astronomical Instrumentation conference of 2010 in San Diego1), the Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona’s Steward Observatory Mirror Lab. We will provide an update to the status of the mirrors and metrology systems, which have advanced from concepts to hardware in the past two years. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab, reducing the degrees of freedom needed to be controlled in the telescope. The surface specification is described as a structure function, related to seeing in excellent conditions. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper details the manufacturing process and metrology systems for each surface, including the alignment of the two surfaces. M1 is a hyperboloid and can utilize a standard Offner null corrector, whereas M3 is an oblate ellipsoid, so it has positive spherical aberration. The null corrector is a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature. Laser trackers are relied upon to measure the alignment and spacing as well as rough-surface metrology during looseabrasive grinding.

  18. GaAs monolithic R.F. modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  19. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  20. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    PubMed Central

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  1. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect

    Karen L. Shropshire

    2008-04-01

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  2. Structure formation of aerated concrete containing waste coal combustion products generated in the thermal vortex power units

    NASA Astrophysics Data System (ADS)

    Ivanov, A. I.; Stolboushkin, A. Yu; Temlyanstev, M. V.; Syromyasov, V. A.; Fomina, O. A.

    2016-10-01

    The results of fly ash research, generated in the process of waste coal combustion in the thermal vortex power units and used as an aggregate in aerated concrete, are provided. It is established that fly ash can be used in the production of cement or concrete with low loss on ignition (LOI). The permitted value of LOI in fly ash, affecting the structure formation and operational properties of aerated concrete, are defined. During non-autoclaved hardening of aerated concrete with fly ash aggregate and LOI not higher than 2%, the formation of acicular crystals of ettringite, reinforcing interporous partitions, takes place.

  3. Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Siu, D. P.; Cook, H. F.

    1991-01-01

    Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.

  4. Monolithic fuel cell based power source for burst power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  5. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  6. Cerec anterior crowns: restorative options with monolithic ceramic materials.

    PubMed

    Reich, Sven; Fiedlar, Kurt

    2013-01-01

    The aim of this article is to discuss the different types of monolithic ceramic crowns that can be placed on anterior teeth with existing shoulder preparations. Anterior crowns were indicated for the teeth 12 to 22 in the present case. The patient, a 65-year-old male, had received all-ceramic crowns 20 years earlier, which had started to develop cracks and palatal fractures over the last few years. The patient's teeth were prepared and four sets of crowns were fabricated using different monolithic ceramic materials: IPS e.max CAD, Cerec Blocs C In, VITABLOCS Real Life, and ENAMIC. Both shade characterization and crystallization firing were performed on the monolithic lithium disilicate glass ceramic crowns. The silicate ceramic crowns received glaze firing alone. The crowns made of hybrid ceramic (ENAMIC) were treated with a polymer sealant. PMID:24555406

  7. Tooth-colored CAD/CAM monolithic restorations.

    PubMed

    Reich, S

    2015-01-01

    A monolithic restoration (also known as a full contour restoration) is one that is manufactured from a single material for the fully anatomic replacement of lost tooth structure. Additional staining (followed by glaze firing if ceramic materials are used) may be performed to enhance the appearance of the restoration. For decades, monolithic restoration has been the standard for inlay and partial crown restorations manufactured by both pressing and computer-aided design and manufacturing (CAD/CAM) techniques. A limited selection of monolithic materials is now available for dental crown and bridge restorations. The IDS (2015) provided an opportunity to learn about and evaluate current trends in this field. In addition to new developments, established materials are also mentioned in this article to complete the picture. In line with the strategic focus of the IJCD, the focus here is naturally on CAD/CAM materials. PMID:26110926

  8. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    SciTech Connect

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-03-01

    Understanding fuel foil mechanical properties, and fuel / cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel – cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel / cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results.

  9. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  10. Tooth-colored CAD/CAM monolithic restorations.

    PubMed

    Reich, S

    2015-01-01

    A monolithic restoration (also known as a full contour restoration) is one that is manufactured from a single material for the fully anatomic replacement of lost tooth structure. Additional staining (followed by glaze firing if ceramic materials are used) may be performed to enhance the appearance of the restoration. For decades, monolithic restoration has been the standard for inlay and partial crown restorations manufactured by both pressing and computer-aided design and manufacturing (CAD/CAM) techniques. A limited selection of monolithic materials is now available for dental crown and bridge restorations. The IDS (2015) provided an opportunity to learn about and evaluate current trends in this field. In addition to new developments, established materials are also mentioned in this article to complete the picture. In line with the strategic focus of the IJCD, the focus here is naturally on CAD/CAM materials.

  11. A Possible Astronomically Aligned Monolith at Gardom's Edge

    NASA Astrophysics Data System (ADS)

    Brown, Daniel; Alder, Andy; Bemand, Elizabeth

    2015-05-01

    A unique triangular shaped monolith located within the Peak District National Park at Gardom's Edge could be intentionally astronomically aligned. It is set within a landscape rich in late Neolithic and Bronze Age remains. We show that the stone is most likely in its original orientation owing to its clear signs of erosion and associated to the time period of the late Neolithic. It is tilted towards south and its north side slopes at an angle equal to the maximum altitude of the Sun at mid-summer. This alignment emphasizes the changing declinations of the Sun during the seasons as well as giving an indication of mid-summers day. This functionality is achieved by an impressive display of light and shadow on the north facing side of the monolith. Together with other monuments in the close vicinity the monolith would have represented an ideal marker or social arena for seasonal gatherings for the otherwise dispersed small communities.

  12. Record Methane Storage in Monolithic and Powdered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Nordwald, E.; Hester, B.; Romanos, J.; Isaacson, B.; Stalla, D.; Moore, D.; Kraus, M.; Burress, J.; Dohnke, E.; Pfeifer, P.

    2010-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) has developed activated carbons from corn cob as adsorbent materials for methane gas storage by physisorption at low pressures. KOH activated carbons were compressed into carbon monolith using chemical binders. High pressure methane isotherms up to 250 bar at room temperature on monolithic and powdered activated carbons were measured gravimetrically and volumetrically. Record methane storage capacities of 250 g CH4/kg carbon and 130 g CH4/liter carbon at 35 bar and 293 K have been achieved. BET surface area, porosity, and pore size distributions were measured from sub-critical nitrogen isotherms. Pore entrances were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths, was tested in Kansas City.

  13. Differences in fracture characteristics and related production of natural gas in different zones of the Mesaverde Formation, northwestern Colorado

    SciTech Connect

    Lorenz, J.C.; Finley, S.J.

    1987-01-01

    Reservoirs in the Mesaverde Formation in the Piceance Creek basin, northwestern Colorado, consist of naturally fractured, low permeability sandstones. Permeability along the natural fractures is the primary mechanism of gas production. However, the characteristics of the natural fractures change within the formation at boundaries roughly coincident with changes in depositional environment, as seen in 4200 ft (1280 m) of core from the US Department of Energy's Multiwell Experiment wells. Depositional environment controlled the characteristics of the matrix rock and reservoir heterogenity as well as, commonly, the fracture permeability system. Therefore, rates of production of natural gas from the different zones in the formation can be correlated with the natural fracture characteristics from that zone. The fracture systems consist of unidirectional regional fractures that provide highly anisotropic reservoir permeability trends. Locally, secondary fractures were superimposed on the regional system, and higher production rates result. Elsewhere, production rates are low, and little well-to-well communication across the fracture trend occurs. Moreover, stimulations of these reservoirs have often been unsuccessful because the hydraulic fractures propagate parallel to the natural fracture trend. 13 refs., 8 figs., 1 tab.

  14. Sources of and technical approaches for the abatement of tobacco specific nitrosamine formation in moist smokeless tobacco products.

    PubMed

    Fisher, Michael T; Bennett, Cliff B; Hayes, Alec; Kargalioglu, Yahya; Knox, Brandy L; Xu, Dongmei; Muhammad-Kah, Raheema; Gaworski, Charles L

    2012-03-01

    The presence of TSNA has been suggested as a potentially important cancer risk factor for moist smokeless tobacco (MST) products. We describe studies of the impact of tobacco agronomic and production practices which influence TSNA formation. TSNA were measured at points in the MST production chain from the farm to the finished product at the end of shelf life. Analyses were conducted to define points at which TSNA may occur, the factors related to the magnitude of occurrence, and actions which may be taken to mitigate such occurrence. Weather conditions during the curing season can have a dramatic impact on TSNA levels in tobacco, with wet seasons markedly increasing TSNA levels in cured tobacco. TSNA levels in MST do not increase beyond levels in cured tobacco when production practices limit the presence of nitrate reducing bacteria. Therefore, TSNA in such products are a function of the agronomic practices and conditions under which tobacco is produced at the farm level. Regional and annual variation in TSNA levels results from the stochastic nature of agronomic factors related to TSNA formation during tobacco growing and curing.

  15. Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides.

    PubMed

    Xie, Weiping; Dong, Wei; Kong, Deyang; Ji, Yuefei; Lu, Junhe; Yin, Xiaoming

    2016-07-01

    Sulfate radicals (SO4(-)) generated by activation of peroxymonosulfate (PMS) and persulfate (PS) are highly oxidative and applied to degrade various organic pollutants. This research was designed to investigate formation of halogenated by-products in Co(2+) activated PMS process in the presence of halides and natural organic matter (NOM). It was revealed that no halogenated by-products were detected in the presence of Cl(-) while 189 μg/L bromoform and 100.7 μg/L dibromoacetic acid (DBAA) were found after 120 h when 2 mg/L NOM, 0.1 mM Br(-), 1.0 mM PMS, and 5 μL Co(2+) were present initially. These products are known as disinfection by-products (DBPs) since they are formed in water disinfection processes. Formation of DBPs was even more significant in the absence of Co(2+). The data indicate that both PMS and SO4(-) can transform Br(-) to reactive bromine species which react with NOM to form halogenated by-products. Less DBP formation in Co(2+)-PMS systems was due to the further destruction of DBPs by SO4(-). More DBPs species including chlorinated ones were detected in the presence of both Cl(-) and Br(-). However, more brominated species produced than chlorinate ones generally. The total DBP yield decreased with the increase of Cl(-) content when total halides kept constant. This is one of the few studies that demonstrate the formation of halogenated DBPs in Co(2+)/PMS reaction systems, which should be taken into consideration in the application of SO4(-) based oxidation technologies. PMID:27093695

  16. Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering.

    PubMed

    Park, Sung-Bin; Hasegawa, Urara; van der Vlies, André J; Sung, Moon-Hee; Uyama, Hiroshi

    2014-01-01

    A hybrid monolith of poly(γ-glutamic acid) and hydroxyapatite (PGA/HAp monolith) was prepared via biomineralization and used as a macroporous cell scaffold in bone tissue engineering. The PGA monolith having a bimodal pore size distribution was used as a substrate to induce biomineralization. The PGA/HAp monolith was obtained by immersing the PGA monolith in simulated body fluid. Pretreatment with CaCl2 enhanced the apatite-forming ability of the PGA monolith. Murine osteoblastic MC3T3-E1 cells efficiently attached and proliferated on the PGA/HAp monolith. MTT assay showed that both the PGA and PGA/HAp monolith did not have apparent cytotoxicity. Moreover, the PGA and PGA/HAp monoliths adsorbed bone morphogenetic protein-2 (BMP-2) by electrostatic interaction which was slowly released in the medium during cell culture. The PGA/HAp monolith enhanced BMP-2 induced alkaline phosphatase activity compared to the PGA monolith and a polystyrene culture plate. Thus, these PGA/HAp monoliths may have potential in bone tissue engineering.

  17. Biofilm formation and acyl homoserine lactone production in Hafnia alvei isolated from raw milk.

    PubMed

    Viana, Eliseth Souza; Campos, Maria Emilene Martino; Ponce, Adriana Reis; Mantovani, Hilário Cuquetto; Vanetti, Maria Cristina Dantas

    2009-01-01

    The objective of this study was to detect the presence of acyl homoserine lactones (AHLs), signal molecules of the quorum sensing system in biofilm formed by Hafnia alvei strains. It also evaluated the effect of synthetic quorum sensing inhibitors in biofilm formation. AHLs were assayed using well diffusion techniques, thin layer chromatography (TLC) and detection directly in biofilm with biomonitors. The extracts obtained from planktonic and sessile cell of H. alvei induced at least two of three monitor strains evaluated. The presence of AHLs with up to six carbon atoms was confirmed by TLC. Biofilm formation by H. alvei was inhibited by furanone, as demonstrated by 96-well assay of crystal violet in microtitre plates and by scanning electron microscopy. The H. alvei 071 hall mutant was deficient in biofilm formation. All these results showed that the quorum sensing system is probably involved in the regulation of biofilm formation by H. alvei. PMID:20140298

  18. A Community Format for Electro-Optical Space Situational Awareness (EOSSA) Data Products

    NASA Astrophysics Data System (ADS)

    Payne, T.; Mutschler, S.; Meiser, D.; Crespo, R.; Shine, N.

    2014-09-01

    In this paper, we present a flexible format for compiling radiometry/photometry data with pertinent information about the collections into a file for use by the Space Situational Awareness (SSA) community. With the increase in the number of Electro-Optical (EO) sensors collecting photometric, radiometric, and spectroscopic data on man-made Resident Space Objects (RSOs) for SSA purposes, the EO SSA community of interest and stakeholders in SSA require a file format protocol for reporting the extracted information used for SSA from these datasets. This EOSSA file format provides a foundation to enable data providers to format their processed data. The objective of this format is to handle a variety of photometric measurements from multiple sensors and provide fields for specific parameters containing crucial data about the object, the sensor, the collection, and the processing. The chosen formatting type for EOSSA is the Flexible Image Transport System (FITS). It is maintained by the International Astronomical Union and NASA/GSFC. FITS is the standard data format used in astronomy and has extensions and features that make it easy to transport and archive large scientific data sets. There are types of FITS files for multi-dimensional arrays, such as images, or hyperspectral image cubes, and headers and tables for data extracted from the images, and descriptive information about the data and sensor. The FITS binary table extension is the most efficient data structure to use for the purposes of SSA with respect to ease of programming, computational speed, and storage space. A hierarchical data format (HDF5) has many of these features; however, its biggest drawback to our purpose is that the files are large and require a lot of storage space. Secondly, no standardized HDF5 file structure has been developed and there is no high level application programming interface (API).

  19. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  20. Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production.

    PubMed

    Delatolla, R; Séguin, C; Springthorpe, S; Gorman, E; Campbell, A; Douglas, I

    2015-10-01

    The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential.

  1. Pre-Launch Algorithm and Data Format for the Level 1 Calibration Products for the EOS AM-1 Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce W.; Godden, Gerald D.; Xiong, Xiao-Xiong; Knight, Edward J.; Qiu, Shi-Yue; Montgomery, Harry; Hopkins, M. M.; Khayat, Mohammad G.; Hao, Zhi-Dong; Smith, David E. (Technical Monitor)

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) radiometric calibration product is described for the thermal emissive and the reflective solar bands. Specific sensor design characteristics are identified to assist in understanding how the calibration algorithm software product is designed. The reflected solar band software products of radiance and reflectance factor both are described. The product file format is summarized and the MODIS Characterization Support Team (MCST) Homepage location for the current file format is provided.

  2. Integrated analysis of production potential and profitability of a horizontal well in the Lower Glen Rose Formation, Maverick County, Texas

    SciTech Connect

    Ammer, J.R.; Mroz, T.H.; Zammerilli, A.M.; Yost, A.B. II; Muncey, J.G.; Hegeman, P.S.

    1995-03-01

    The U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) awarded a contract in 1991 to Prime Energy Corporation (PEC) to demonstrate the benefit of using horizontal wells to recover gas from low permeability formations. The project area was located in the Chittim field of Maverick County, Texas. The Lower Glen Rose Formation in the Chittim field was a promising horizontal well candidate based on the heterogenous nature of the reservoir (suggested by large well-to-well variances in reserves) and the low percentage of economical vertical wells. Since there was substantial evidence of reservoir heterogeneity, it was unknown whether the selected, wellsite would penetrate a reservoir with the desired properties for a horizontal well. Thus, an integrated team was formed to combine geologic analysis, seismic interpretation, reservoir engineering, reservoir simulation, and economic assessment to analyze the production potential and profitability of completing a horizontal well in the Lower Glen Rose formation.

  3. Development of large-area monolithically integrated Silicon-Film photovoltaic modules. Annual subcontract report, 16 November 1991--31 December 1992

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Ingram, A.E.; Ruffins, T.R.; Shreve, K.P.; Hall, R.B.; Barnett, A.M.

    1993-06-01

    This report describes work to develop Silicon-Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (< 100-{mu}m) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200-cm{sup 2}, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 cm{sup 2} monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R{sub s} effects. Test data for a nine-cell device (16 cm{sup 2}) indicated a V{sub oc} of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (< 0.1 mA/cm{sup 2}) due to limited conduction through the ceramic and no process-related metallization shunts.

  4. Manufacturing of Monolithic Electrodes from Low-Cost Renewable Resources

    SciTech Connect

    McNutt, Nichiolas William; Rios, Orlando; Johs, Alexander; Tenhaeff, Wyatt E; Chatterjee, Sabornie; Keffer, David

    2014-01-01

    Lignin, a low-cost, biomass derived precursor, was selected as an alternative for carbon based free standing anodes in Li-ion batteries. Industrially scalable melt-spinning and melt-blowing synthesis methods were developed at Oak Ridge National Laboratory that are compatible with industrially viable production. Engineering studies predict that LCFs can be manufactured at $3/lb using these technologies, which compares favorably to $12/lb for battery grade graphite. The physical properties of lignin carbon fibers, specifically the tunable electrochemical and thermal transport, are suitable for energy storage applications as both an active material and current collector. The elimination of inactive components in the slurry-coated electrodes was enabled by LCF processing parameters modifications to produce monolithic mats in which the fibers are electrically interconnected. These mats were several hundreds of micrometers thick, and the fibers functioned as both current collector and active material by virtue of their mixed ionic/electronic conductivities. The LCFs were coated onto copper current collectors with PVDF binder and conductive carbon additive through conventional slurry processing. Galvanostatic cycling of the LCFs against Li revealed reversible capacities greater than 300 mAh/g. The coulombic efficiencies were over 99.8%. The mats were galvanostatically cycled in half cells against Li. Specific capacities as high as 250 mAh/g were achieved approximately 17% lower than the capacities of the same fibers in slurries. However, there were no inactive materials reducing the practical specific capacity of the entire electrode construction. Lithiation and delithiation of the LCFs proceeded with coulombic efficiencies greater than 99.9%, and the capacity retention was greater than 99% over 100 cycles at a rate of 15 mA/g. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for

  5. Physical properties of monolithic U8 wt.%-Mo

    NASA Astrophysics Data System (ADS)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  6. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Allen, Phillip Grant

    2011-01-01

    High-power ultrasonic actuators are generally assembled with a horn, backing, stress bolt, piezoelectric rings, and electrodes. The manufacturing process is complex, expensive, difficult, and time-consuming. The internal stress bolt needs to be insulated and presents a potential internal discharge point, which can decrease actuator life. Also, the introduction of a center hole for the bolt causes many failures, reducing the throughput of the manufactured actuators. A new design has been developed for producing ultrasonic horn actuators. This design consists of using flexures rather than stress bolts, allowing one to apply pre-load to the piezoelectric material. It also allows one to manufacture them from a single material/plate, rapid prototype them, or make an array in a plate or 3D structure. The actuator is easily assembled, and application of pre-stress greater than 25 MPa was demonstrated. The horn consists of external flexures that eliminate the need for the conventional stress bolt internal to the piezoelectric, and reduces the related complexity. The stress bolts are required in existing horns to provide prestress on piezoelectric stacks when driven at high power levels. In addition, the manufacturing process benefits from the amenability to produce horn structures with internal cavities. The removal of the pre-stress bolt removes a potential internal electric discharge point in the actuator. In addition, it significantly reduces the chances of mechanical failure in the piezoelectric stacks that result from the hole surface in conventional piezoelectric actuators. The novel features of this disclosure are: 1. A design that can be manufactured from a single piece of metal using EDM, precision machining, or rapid prototyping. 2. Increased electromechanical coupling of the horn actuator. 3. Higher energy density. 4. A monolithic structure of a horn that consists of an external flexure or flexures that can be used to pre-stress a solid piezoelectric structure

  7. Polyurea-Based Aerogel Monoliths and Composites

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  8. Constitutive Theory Developed for Monolithic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  9. [Characteristics and chlorinated disinfection by-products formation potential of dissolved organic matter fractions in treated wastewater].

    PubMed

    Sun, Ying-xue; Wu, Qian-yuan; Tian, Jie; Wang, Li-sha; Hu, Hong-ying

    2009-08-15

    Dissolved organic matter (DOM) from a biological treated wastewater of municipal wastewater treated plant was isolated and fractionated using resin adsorption into four different fractions. These fractions are operationally categorized as hydrophilic substances (HIS), hydrophobic acids (HOA), hydrophobic neutrals (HON), and hydrophobic bases (HOB). The dissolved organic carbon (DOC) and specific UV absorbance, characteristics of three dimensional excitation emission matrix fluorescence spectroscopy (3DEEM) and disinfection byproducts formation potential of each fraction was investigated in this paper. The results showed that HIS and HOA were the main fractions and occupied 33% and 30% of DOC in the treated wastewater sample, respectively. The fraction of HIS contained more humus, which were predominately microbially derived, while the fraction of HOA contained more aromatic proteins and soluble microbial products by the analysis of 3DEEM. The chlorinated trihalomethane formation potential (THMFP) of HIS fraction was 630.4 microg x L(-1) and occupied 73.7% of that formed in wastewater sample. The chlorinated haloacetic acids formation potential (HAAFP) of HIS and HOA fractions were 644.6 microg x L(-1) and 123.2 microg x L(-1), which was found to be the most reactive precursor in the fractions of treated wastewater to the disinfection by-products formation.

  10. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.

    PubMed

    Lin, Tao; Wu, Shouke; Chen, Wei

    2014-12-01

    The ozonation involved in drinking water treatment raises issues of water quality security when the raw water contains bromide (Br(-)). Br(-) ions may be converted to bromate (BrO3 (-)) during ozonation and some brominated disinfection by-products (Br-DBPs) in the following chlorination. In this study, the effects of ozone (O3) dosage, contact time, pH, and Br(-) and ammonia (NH3-N) concentrations on the formation of BrO3 (-) and Br-DBPs have been investigated. The results show that decreasing the initial Br(-) concentration is an effective means of controlling the formation of BrO3 (-). When the concentration of Br(-) was lower than 100 μg/L, by keeping the ratio of O3 dosage to dissolved organic carbon (DOC) concentration at less than 1, BrO3 (-) production was effectively suppressed. The concentration of BrO3 (-) steadily increased with increasing O3 dosage at high Br(-) concentration (>900 μg/L). Additionally, a longer ozonation time increased the concentrations of BrO3 (-) and total organic bromine (TOBr), while it had less impact on the formation potentials of brominated trihalomethanes (Br-THMFP) and haloacetic acids (Br-HAAFP). Higher pH value and the presence of ammonia may lead to an increase in the formation potential of BrO3 (-) and Br-DBPs.

  11. Thermodynamics-based design of microbial cell factories for anaerobic product formation.

    PubMed

    Cueto-Rojas, Hugo F; van Maris, A J A; Wahl, S Aljoscha; Heijnen, J J

    2015-09-01

    The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates.

  12. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Lytle, Darren A; Bai, Yaohui; Wang, Dongsheng

    2014-03-01

    To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products.

  13. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Lytle, Darren A; Bai, Yaohui; Wang, Dongsheng

    2014-03-01

    To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products. PMID:24509822

  14. The C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels

    NASA Astrophysics Data System (ADS)

    Bourgalais, Jérémy; Capron, Michael; Abhinavam Kailasanathan, Ranjith Kumar; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Le Picard, Sébastien D.

    2015-10-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  15. The C(3P) + NH3 reaction in interstellar chemistry. I. Investigation of the product formation channels

    DOE PAGESBeta

    Bourgalais, Jeremy; Capron, Michael; Kailasanathan, Ranjith Kumar Abhinavam; Osborn, David L.; Hickson, Kevin M.; Loison, Jean -Christophe; Wakelam, Valentine; Goulay, Fabien; Picard, Sebastien D. Le

    2015-10-13

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzlemore » technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. As a result, kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.« less

  16. 40 CFR Table I-5 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing I Table I-5...) and By-Product Formation Rates (Bijk) for MEMS Manufacturing ER13NO13.021...

  17. 40 CFR Table I-15 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing for Use With...) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing for...

  18. Preparation and complex characterization of silica holmium sol-gel monoliths.

    PubMed

    Cacaina, D; Areva, S; Laaksonen, H; Simon, S; Ylänen, H

    2011-01-01

    Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.

  19. All-silicon monolithic optoelectronic platform for multi-analyte biochemical sensing

    NASA Astrophysics Data System (ADS)

    Misiakos, K.; Makarona, E.; Raptis, I.; Salapatas, A.; Psarouli, A.; Kakabakos, S.; Petrou, P.; Hoekman, M.; Heideman, R.; Stoffer, R.; Tukkiniemi, K.; Soppanen, M.; Jobst, G.; Nounessis, G.; Budkowski, A.; Rysz, J.

    2013-05-01

    Despite the advances in optical biosensors, the existing technological approaches still face two major challenges: the inherent inability of most sensors to integrate the optical source in the transducer chip, and the need to specifically design the optical transducer per application. In this work, the development of a radical optoelectronic platform is demonstrated based on a monolithic optocoupler array fabricated by standard Si-technology and suitable for multi-analyte detection. The platform has been specifically designed biochemical sensing. In the all-silicon array of transducers, each optocoupler has its own excitation source, while the entire array share a common detector. The light emitting devices (LEDs) are silicon avalanche diodes biased beyond their breakdown voltage and emit in the VIS-NIR part of the spectrum. The LEDs are coupled to individually functionalized optical transducers that converge to a single detector for multiplexed operation. The integrated nature of the basic biosensor scheme and the ability to functionalize each transducer independently allows for the development of miniaturized optical transducers tailored towards multi-analyte tests. The monolithic arrays can be used for a plethora of bio/chemical interactions becoming thus a versatile analytical tool. The platform has been successfully applied in bioassays and binding in a real-time and label-free format and is currently being applied to ultra-sensitive food safety applications.

  20. Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination.

    PubMed

    Chiang, Pen-Chi; Chang, E-E; Chuang, Chao-Chin; Liang, Chung-Huei; Huang, Chin-Pao

    2010-06-01

    The effects of pre-ozonation on the formation of haloacetonitriles (HANs), trichloronitromethane (TCNM), and haloketones (HKs) during chlorination were evaluated. Ozone dose used in this study was 8.0, 10.0 and 25.0 mg O(3)/min. Results showed high UV(254) reduction (>80%) and relatively low dissolved organic carbon removal (40-70%) after ozonation, indicating that ozone might change significantly the chemical properties of natural organic matter presented in the raw water. Undesired ozonation by-products such as aldehydes and ketones were also formed during ozonation. At high ozone dose of 25.0 mg O(3)/min, the formation of dichloroacetonitrile and bromochloroacetonitrile were reduced significantly. Chlorination of the ozonated water formed high concentration of TCNM and HKs were 8-10 and 31-48 microg/L, respectively. It was also found that continuous hydrolysis at longer reaction time rapidly decreased the formation of HKs. Ozonation prior to chlorination practice exhibited a negative effect on TCNM and HKs reduction. A model based on the dissolved organic carbon and chlorine decay was developed not only for determining the reaction rate constants, e.g. formation and hydrolysis of HANs, HKs and TCNM, but also for interpreting the mechanisms of formation and hydrolysis for HANs, HKs and TCNM during the chlorination of natural organic matter.