Sample records for product upgrading processes

  1. Towards automatic planning for manufacturing generative processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less

  2. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  3. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Zia; Chadwell, Brad; Taha, Rachid

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  4. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  5. Process for liquefying carbonaceous materials of high molecular weight and for separating liquefaction products

    DOEpatents

    Malek, John M.

    1977-01-01

    Process characterized by comprising successively a dissolution zone fed with carbonaceous solids and with a solvent, a high pressure hydrogenation zone provided with a source of hydrogen, and a hydrogenation products separation zone, wherein the improvement consists mainly in chemical upgrading of the liquidform products derived from the separation zone, and recycling a part of the upgraded products to the dissolution zone, this recycled part being of either positively acidic or positively basic properties for enhancing the dissolution - decomposition of base-acid structures present in the carbonaceous solid feed.

  6. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  7. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ionmore » conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.« less

  8. Bitumen and heavy oil upgrading in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.

    1988-06-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader,more » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less

  9. Biogas upgrading and utilization: Current status and perspectives.

    PubMed

    Angelidaki, Irini; Treu, Laura; Tsapekos, Panagiotis; Luo, Gang; Campanaro, Stefano; Wenzel, Henrik; Kougias, Panagiotis G

    Biogas production is an established sustainable process for simultaneous generation of renewable energy and treatment of organic wastes. The increasing interest of utilizing biogas as substitute to natural gas or its exploitation as transport fuel opened new avenues in the development of biogas upgrading techniques. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading and enhancement with particular attention to the emerging biological methanation processes. The review includes comprehensive description of the main principles of various biogas upgrading methodologies, scientific and technical outcomes related to their biomethanation efficiency, challenges that have to be addressed for further development and incentives and feasibility of the upgrading concepts. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Fuel quality processing study, volume 1

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-04-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  11. Fuel quality processing study, volume 1

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  12. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    DOE PAGES

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; ...

    2016-12-07

    The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less

  13. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui

    The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less

  14. Development of the Upgraded DC Brush Gear Motor for Spacebus Platforms

    NASA Technical Reports Server (NTRS)

    Berning, Robert H.; Viout, Olivier

    2010-01-01

    The obsolescence of materials and processes used in the manufacture of traditional DC brush gear motors has necessitated the development of an upgraded DC brush gear motor (UBGM). The current traditional DC brush gear motor (BGM) design was evaluated using Six-Sigma process to identify potential design and production process improvements. The development effort resulted in a qualified UBGM design which improved manufacturability and reduced production costs. Using Six-Sigma processes and incorporating lessons learned during the development process also improved motor performance for UBGM making it a more viable option for future use as a deployment mechanism in space flight applications.

  15. Production of biofuels via bio-oil upgrading & refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.

    2016-03-18

    This chapter provides cursory reviews of biomass liquefaction, relevant petroleum processing technology, and relevant model compound studies. More detail is provided for upgrading of biomass liquefaction products, including an overview of potential fractionation and catalytic processing methods, hydroprocessing as the primary means of interest, scale of operation, operating conditions and catalysts, and product properties. Batch results are included where needed to provide a more complete narrative, but continuous-flow operations are emphasized as being more informative. Liquid fuel products from biomass through direct liquefaction and hydroprocessing are discussed, such as fuel properties based on chemical analysis and comparison of petroleum fuelsmore » and biofuels.« less

  16. Upgrading and Refining of Crude Oils and Petroleum Products by Ionizing Irradiation.

    PubMed

    Zaikin, Yuriy A; Zaikina, Raissa F

    2016-06-01

    A general trend in the oil industry is a decrease in the proven reserves of light crude oils so that any increase in future oil exploration is associated with high-viscous sulfuric oils and bitumen. Although the world reserves of heavy oil are much greater than those of sweet light oils, their exploration at present is less than 12 % of the total oil recovery. One of the main constraints is very high expenses for the existing technologies of heavy oil recovery, upgrading, transportation, and refining. Heavy oil processing by conventional methods is difficult and requires high power inputs and capital investments. Effective and economic processing of high viscous oil and oil residues needs not only improvements of the existing methods, such as thermal, catalytic and hydro-cracking, but the development of new technological approaches for upgrading and refining of any type of problem oil feedstock. One of the perspective approaches to this problem is the application of ionizing irradiation for high-viscous oil processing. Radiation methods for upgrading and refining high-viscous crude oils and petroleum products in a wide temperature range, oil desulfurization, radiation technology for refining used oil products, and a perspective method for gasoline radiation isomerization are discussed in this paper. The advantages of radiation technology are simple configuration of radiation facilities, low capital and operational costs, processing at lowered temperatures and nearly atmospheric pressure without the use of any catalysts, high production rates, relatively low energy consumption, and flexibility to the type of oil feedstock.

  17. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    PubMed

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  19. Chemicals from low temperature liquid-phase cracking of coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Y.; Kodera, Y.; Kamo, T.

    1999-07-01

    Mild gasification and low temperature pyrolysis are considered to be the most promising process for high-moisture subbituminous and lignite coal to produce upgraded solid fuel with high heating value and low sulfur, and to produce a useful liquid product. However effective technology to prevent spontaneous combustion of solid product and to utilize oxygen-rich liquid product has not yet been reported to enhance commercial feasibility of these process. In this study, liquid-phase cracking of low rank coal at 350--450 C under 2 MPa of initial nitrogen atmosphere has been studied to produce upgraded coal and value added liquid product. Liquid-phase crackingmore » of Wyoming subbituminous Buckskin coal using iron oxide catalyst in the presence of t-decalin at 440C gave 10 wt% of liquid product, 12 wt% of gases and 74 wt% of upgraded coal with small amount of water. Gaseous product consisted of mainly carbon dioxide (62wt%) and methane. Therefore, cracking of carboxylic function took place effectively in these conditions. Liquid product contains BTX, phenols and alkylphenols. Concentrated chemicals of BTX, phenol and cresols from the liquid products by hydrocracking and hydrotreating will be discussed.« less

  20. Slum Upgrading and Health Equity.

    PubMed

    Corburn, Jason; Sverdlik, Alice

    2017-03-24

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits.

  1. Slum Upgrading and Health Equity

    PubMed Central

    Corburn, Jason; Sverdlik, Alice

    2017-01-01

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits. PMID:28338613

  2. Productivity enhancement planning using participative management concepts

    NASA Technical Reports Server (NTRS)

    White, M. E.; Kukla, J. C.

    1985-01-01

    A productivity enhancement project which used participative management for both planning and implementation is described. The process and results associated with using participative management to plan and implement a computer terminal upgrade project where the computer terminals are used by research and development (R&D) personnel are reported. The upgrade improved the productivity of R&D personnel substantially, and their commitment of the implementation is high. Successful utilization of participative management for this project has laid a foundation for continued style shift toward participation within the organization.

  3. A life cycle assessment of options for producing synthetic fuel via pyrolysis.

    PubMed

    Vienescu, D N; Wang, J; Le Gresley, A; Nixon, J D

    2018-02-01

    The aim of this study was to investigate the sustainability of producing synthetic fuels from biomass using thermochemical processing and different upgrading pathways. Life cycle assessment (LCA) models consisting of biomass collection, transportation, pre-treatment, pyrolysis and upgrading stages were developed. To reveal the environmental impacts associated with greater post-processing to achieve higher quality fuels, six different bio-oil upgrading scenarios were analysed and included esterification, ketonisation, hydrotreating and hydrocracking. Furthermore, to take into account the possible ranges in LCA inventory data, expected, optimistic and pessimistic values for producing and upgrading pyrolysis oils were evaluated. We found that the expected carbon dioxide equivalent emissions could be as high as 6000 gCO 2e /kg of upgraded fuel, which is greater than the emissions arising from the use of diesel fuel. Other environmental impacts occurring from the fuel production process are outlined, such as resource depletion, acidification and eutrophication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Waste valorization by biotechnological conversion into added value products.

    PubMed

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing ofmore » the phase separated bio-oil.« less

  6. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less

  7. One-Step Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1984-01-01

    Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.

  8. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.

    This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yieldmore » and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.« less

  9. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.

    PubMed

    Barta, Zsolt; Reczey, Kati; Zacchi, Guido

    2010-09-15

    Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  10. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    PubMed Central

    2010-01-01

    Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330

  11. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  12. Catalytic upgrading of butyric acid towards fine chemicals and biofuels.

    PubMed

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-04-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. © FEMS 2016.

  13. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures.

    PubMed

    Omar, Basma; Abou-Shanab, Reda; El-Gammal, Maie; Fotidis, Ioannis A; Kougias, Panagiotis G; Zhang, Yifeng; Angelidaki, Irini

    2018-05-29

    A novel biological process to upgrade biogas was developed and optimised during the current study. In this process, CO 2 in the biogas and externally provided H 2 were fermented under mesophilic conditions to volatile fatty acids (VFAs), which are building blocks of higher-value biofuels. Meanwhile, the biogas was upgraded to biomethane (CH 4 >95%), which can be used as a vehicle fuel or injected into the natural gas grid. To establish an efficient fermentative microbial platform, a thermal (at two different temperatures of 70 °C and 90 °C) and a chemical pretreatment method using 2-bromoethanesulfonate were investigated initially to inhibit methanogenesis and enrich the acetogenic bacterial inoculum. Subsequently, the effect of different H 2 :CO 2 ratios on the efficiency of biogas upgrading and production of VFAs were further explored. The composition of the microbial community under different treatment methods and gas ratios has also been unravelled using 16S rRNA analysis. The chemical treatment of the inoculum had successfully blocked the activity of methanogens and enhanced the VFAs production, especially acetate. The chemical treatment led to a significantly better acetate production (291 mg HAc/L) compared to the thermal treatment. Based upon 16S rRNA gene sequencing, it was found that H 2 -utilizing methanogens were the dominant species in the thermally treated inoculum, while a significantly lower abundance of methanogens was observed in the chemically treated inoculum. The highest biogas content (96% (v/v)) and acetate production were achieved for 2H 2 :1CO 2 ratio (v/v), with Acetoanaerobium noterae, as the dominant homoacetogenic hydrogen scavenger. Results from the present study can pave the way towards more development with respect to microorganisms and conditions for high efficient VFAs production and biogas upgrading. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    PubMed

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH 4 + -N L -1 ) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH 4 + -N L -1 ) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH 4 + -N L -1 ), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simulation models and designs for advanced Fischer-Tropsch technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for themore » products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.« less

  16. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximatelymore » 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.« less

  17. Bio-Oil Deployment in the Home Heating Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T. A.; Trojanowski, R.; Mante, O.

    Distillate fuel oil is used in many stationary heating applications, predominantly in the Northeastern part of the United States. Total estimated non-transportation distillate use in 2014 was estimated to be 10.9 billion gallons. This study has focused on potentially displacing part of this petroleum use with biofuel derived from woody biomass. The fuel production route considered is pyrolysis which creates a liquid fuel high in oxygen, organic acids, and water. While this fuel can be used in stationary applications without significant further processing, to do so would require significant upgrades in current heating equipment. Alternatively this raw pyrolysis oil canmore » be upgraded through catalytic hydrogenation to produce a bio-oil with near-negligible oxygen, water, and acidity. The focus of this work has been exploration of such upgraded fuels. The quality of upgraded fuels is affected by process conditions and there is a cost /quality tradeoff.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben, Haoxi; Jarvis, Mark W.; Nimlos, Mark R.

    In this study, a pyroprobe-deuterium (2H) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, p-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcyclopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and p-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the 2H NMR analysis for the deuterium-traced ringmore » opening of catechol on Ir/..gamma..-Al2O3 is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. Benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products.« less

  19. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.

    PubMed

    Moita Fidalgo, Rita; Ortigueira, Joana; Freches, André; Pelica, João; Gonçalves, Magarida; Mendes, Benilde; Lemos, Paulo C

    2014-06-25

    Recent research on polyhydroxyalkanoates (PHAs) has focused on developing cost-effective production processes using low-value or industrial waste/surplus as substrate. One of such substrates is the liquid fraction resulting from pyrolysis processes, bio-oil. In this study, valorisation of bio-oil through PHA production was investigated. The impact of the complex bio-oil matrix on PHA production by an enriched mixed culture was examined. The performance of the direct utilization of pure bio-oil was compared with the utilization of three defined substrates contained in this bio-oil: acetate, glucose and xylose. When compared with acetate, bio-oil revealed lower capacity for polymer production as a result of a lower polymer yield on substrate and a lower PHA cell content. Two strategies for bio-oil upgrade were performed, anaerobic fermentation and vacuum distillation, and the resulting liquid streams were tested for polymer production. The first one was enriched in volatile fatty acids and the second one mainly on phenolic and long-chain fatty acids. PHA accumulation assays using the upgraded bio-oils attained polymer yields on substrate similar or higher than the one achieved with acetate, although with a lower PHA content. The capacity to use the enriched fractions for polymer production has yet to be optimized. The anaerobic digestion of bio-oil could also open-up the possibility to use the fermented bio-oil directly in the enrichment process of the mixed culture. This would increase the selective pressure toward an optimized PHA accumulating culture selection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Analysis of oxidised heavy paraffininc products by high temperature comprehensive two-dimensional gas chromatography.

    PubMed

    Potgieter, H; Bekker, R; Beigley, J; Rohwer, E

    2017-08-04

    Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Robert S.; Holladay, Johnathan E.

    Here, we have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals. The overall process must be able to contend with a wide range of feedstocks, must be inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply. Our current approach is based on the upgrading of bio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks. HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing biomass. Wemore » are now investigating the use of electrochemical processes for the further conversions needed to transform the bio-oil from HTL into fuel or higher value chemicals. We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the necessary generality. In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side. Therefore, the two types of reactions could, in principle, be coupled to upgrade the bio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL. Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process.« less

  2. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks

    DOE PAGES

    Weber, Robert S.; Holladay, Johnathan E.

    2018-05-22

    Here, we have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals. The overall process must be able to contend with a wide range of feedstocks, must be inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply. Our current approach is based on the upgrading of bio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks. HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing biomass. Wemore » are now investigating the use of electrochemical processes for the further conversions needed to transform the bio-oil from HTL into fuel or higher value chemicals. We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the necessary generality. In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side. Therefore, the two types of reactions could, in principle, be coupled to upgrade the bio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL. Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process.« less

  3. The systems engineering upgrade intiative at NASA's Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2005-01-01

    JPL is implementing an initiative to significantly upgrade our systems engineering capabilities. This Systems Engineering Upgrade Initiative [SUI] has been authorized by the highest level technical management body of JPL and is sponsored with internal funds. The SUI objective is to upgrade system engineering at JPL to a level that is world class, professional and efficient compared to the FY04/05 baseline. JPL system engineering, along with the other engineering disciplines, is intended to support optimum designs; controlled and efficient implementations; and high quality, reliable, cost effective products. SUI technical activities are categorized into those dealing with people, process and tools. The purpose of this paper is to describe the rationale, objectives/plans and current status of the JPL SUI.

  4. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  5. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    PubMed

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  6. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  7. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGES

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  8. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOEpatents

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  9. Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  10. Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  11. Successful Strategies for Rapidly Upgrading PTC Windchill 9.1 to Windchill 10.1 on a Light Budget

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    2013-01-01

    Topics covered include: The Frugal Times Historical Upgrade Process; Planning for Possible Constraints; PTC Compatibility Matrix; In-Place Upgrade Process; Pre-Upgrade Activities; Upgrade Activities; Post Upgrade Activities; Results of the Upgrade; Tips for an Upgrade On a Shoestring Budget.

  12. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  13. Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations

    NASA Astrophysics Data System (ADS)

    Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna

    2014-10-01

    This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).

  14. Upgrading nickel content of limonite nickel ore through pelletization, selective reduction and magnetic separation

    NASA Astrophysics Data System (ADS)

    Mayangsari, W.; Prasetyo, A. B.; Prasetiyo, Puguh

    2018-04-01

    Limonite nickel ore has potency to utilize as raw material for ferronickel or nickel matte, since it has low grade nickel content, thus process development is needed to find the acceptable process for upgrading nickel. The aim of this research is to determine upgrading of Ni content as result of selective reduction of limonite nickel pellet continued by magnetic separation as effect of temperature and time reduction as well as coal and CaSO4 addition. There are four steps to perform this research, such as preparation including characterization of raw ore and pelletization, selective reduction, magnetic separation and characterization of products by using AAS, XRD and SEM. Based on the result study, pellet form can upgrade 77.78% higher than powder form. Upgrading of Ni and Fe content was up to 3fold and 1.5fold respectively from raw ore used when reduced at 1100°C for 60 minutes with composition of coal and CaSO4, both 10%. The excess of CaSO4 addition caused fayalite formation. Moreover, S2 from CaSO4 also support to reach low melting point and enlardge particle size of metal formed.

  15. 78 FR 17722 - Technological Upgrades to Registration and Recordation Functions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... 2000, the Copyright Office initiated a comprehensive business process reengineering initiative intended... outside consultants and business analysts, the Office identified opportunities for efficiency enhancements... business processes and the automated production of public copyright records. Funding available for the...

  16. Drug delivery system innovation and Health Technology Assessment: Upgrading from Clinical to Technological Assessment.

    PubMed

    Panzitta, Michele; Bruno, Giorgio; Giovagnoli, Stefano; Mendicino, Francesca R; Ricci, Maurizio

    2015-11-30

    Health Technology Assessment (HTA) is a multidisciplinary health political instrument that evaluates the consequences, mainly clinical and economical, of a health care technology; the HTA aim is to produce and spread information on scientific and technological innovation for health political decision making process. Drug delivery systems (DDS), such as nanocarriers, are technologically complex but they have pivotal relevance in therapeutic innovation. The HTA process, as commonly applied to conventional drug evaluation, should upgrade to a full pharmaceutical assessment, considering the DDS complexity. This is useful to study more in depth the clinical outcome and to broaden its critical assessment toward pharmaceutical issues affecting the patient and not measured by the current clinical evidence approach. We draw out the expertise necessary to perform the pharmaceutical assessment and we propose a format to evaluate the DDS technological topics such as formulation and mechanism of action, physicochemical characteristics, manufacturing process. We integrated the above-mentioned three points in the Evidence Based Medicine approach, which is data source for any HTA process. In this regard, the introduction of a Pharmaceutics Expert figure in the HTA could be fundamental to grant a more detailed evaluation of medicine product characteristics and performances and to help optimizing DDS features to overcome R&D drawbacks. Some aspects of product development, such as manufacturing processes, should be part of the HTA as innovative manufacturing processes allow new products to reach more effectively patient bedside. HTA so upgraded may encourage resource allocating payers to invest in innovative technologies and providers to focus on innovative material properties and manufacturing processes, thus contributing to bring more medicines in therapy in a sustainable manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    PubMed

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  18. Evaluation de l'eco-efficience des processus de mise a niveau d'helicopteres en tant qu'alternative a la fin de vie

    NASA Astrophysics Data System (ADS)

    Rancher, Alexandre

    Classic industrial production methods generate significant pressures on natural resources as well as environmental constraints related to product end-of-life management. Closed-loop supply chains are often seen as more eco-efficient alternatives, well known to provide substantial economic and environmental benefits at the scale of the product life cycle. This is notably achieved through important reductions in the overall cost of production, in the needs for new materials and energies, and in the proportion of end-of-life components going to landfill. Due to their modular designs and the particular dynamics of helicopter service life, light nonpressurized helicopters have proven to be highly receptive to partial or total remanufacture and upgrade, extending their service life, enhancing their performance and modernizing their equipment, often for only a fraction of the cost of a new aircraft. However, little environmental data is available in order to assess the overall eco-efficiency of helicopter upgrade processes. This study resulted in the creation of a method for the systemic characterization of the processes encountered during the helicopter service life. The arrangement of these processes over time has enabled the construction of helicopter operation cycles, representative of the helicopter service life. These operation cycles have then been characterized, following various criteria based on helicopter designs and usage profiles, in order to study and compare their respective eco-efficiency. A case study is provided to illustrate the application of the method, based on a currently operating industrial business model of helicopter upgrade. This case study intends to provide a first-level assessment of the potential economic, technical and environmental benefits from remanufacturing and upgrading a helicopter, as an alternative production channel. The study found that compared to its replacement, upgrading a former airframe to a more recent design is generally a more eco-efficient decision. Important reductions were found in most of the profiles assessed, notably, reductions of up to 51 % in terms of production costs, 77.5 % in waste going to landfill, and up to 54 % in energy consumption. The method developed can be seen as a decision-helping tool intended for both operators and manufacturers. The method takes into account Design-for-Environment (DfE) guidelines and Material Recovery Opportunities (MRO), providing better understanding of the adaptability of a given design to fulfill the requirements of optimized reverse supply chains.

  19. Recovery of useful chemicals from palm oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Ratanaporn, Yuangsawad; Duangkamol, Na-Ranong; Teruoki, Tago; Takao, Masuda

    2017-11-01

    A two-step process consisting of pyrolysis of dried sludge and catalytic upgrading of pyrolysed liquid was proposed. Wastewater from a palm oil mill was separated to solid cake and liquid by filtration. The solid cake was dried and pyrolysed at 773 K. Liquid product obtained from the pyrolysis had two immiscible aqueous and oil phases (PL-A and PL-O). Identification of chemicals in PL-A and PL-O indicated that both phases contained various chemicals with unsaturated bonds, such as carboxylic acids and alcohols, however, most of the chemicals could not be identified. Catalytic upgrading of PL-A and PL-O over ZrO2·FeOx were separately performed using a fixed bed reactor at various conditions, T = 513-723 K and mass of catalyst to feed rate = 0.25-10 h. The main components in the liquid products of PL-A upgrading were methanol and acetone whereas they were acetone and phenol in the case of PL-O upgrading. More than 15% of carbon in raw material was deposited on the catalyst. To reduce the carbon deposition, the used catalyst was treated with air at 823 K. This simple treatment could reasonably regenerate the catalyst only for the case of PL-A catalytic upgrading.

  20. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes.

    PubMed

    Serejo, Mayara L; Posadas, Esther; Boncz, Marc A; Blanco, Saúl; García-Encina, Pedro; Muñoz, Raúl

    2015-03-03

    The influence of biogas flow rate (0, 0.3, 0.6, and 1.2 m(3) m(-2) h(-1)) on the elemental and macromolecular composition of the algal-bacterial biomass produced from biogas upgrading in a 180 L photobioreactor interconnected to a 2.5 L external bubbled absorption column was investigated using diluted anaerobically digested vinasse as cultivation medium. The influence of the external liquid recirculation/biogas ratio (0.5 < L/G < 67) on the removal of CO2 and H2S, and on the concentrations of O2 and N2 in the upgraded biogas, was also evaluated. A L/G ratio of 10 was considered optimum to support CO2 and H2S removals of 80% and 100%, respectively, at all biogas flow rates tested. Biomass productivity increased at increasing biogas flow rate, with a maximum of 12 ± 1 g m(-2) d(-1) at 1.2 m(3) m(-2) h(-1), while the C, N, and P biomass content remained constant at 49 ± 2%, 9 ± 0%, and 1 ± 0%, respectively, over the 175 days of experimentation. The high carbohydrate contents (60-76%), inversely correlated to biogas flow rates, would allow the production of ≈100 L of ethanol per 1000 m(3) of biogas upgraded under a biorefinery process approach.

  1. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Smith, Ryan; Wright, Mark

    This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of amore » series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.« less

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Abhijit; Sahir, A. H.; Tan, Eric

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptionsmore » outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.« less

  3. Technical Update for Vocational Agriculture Teachers in Secondary Schools. Final Report.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    A project provided ongoing opportunities for teachers in Iowa to upgrade their expertise in agribusiness management using new technology; production, processing, and marketing agricultural products; biotechnology in agriculture; and conservation of natural resources. The project also modeled effective teaching methods and strategies. Project…

  4. Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry.

    PubMed

    Aspevik, Tone; Oterhals, Åge; Rønning, Sissel Beate; Altintzoglou, Themistoklis; Wubshet, Sileshi Gizachew; Gildberg, Asbjørn; Afseth, Nils Kristian; Whitaker, Ragnhild Dragøy; Lindberg, Diana

    2017-06-01

    Large volumes of protein-rich residual raw materials, such as heads, bones, carcasses, blood, skin, viscera, hooves and feathers, are created as a result of processing of animals from fisheries, aquaculture, livestock and poultry sectors. These residuals contain proteins and other essential nutrients with potentially bioactive properties, eligible for recycling and upgrading for higher-value products, e.g. for human, pet food and feed purposes. Here, we aim to cover all the important aspects of achieving optimal utilization of proteins in such residual raw materials, identifying those eligible for human consumption as co-products and for feed applications as by-products. Strict legislation regulates the utilization of various animal-based co- and by-products, representing a major hurdle if not addressed properly. Thorough understanding and optimization of all parts of the production chain, including conservation and processing, are important prerequisites for successful upgrading and industrial implementation of such products. This review includes industrially applied technologies such as freezing/cooling, acid preservation, salting, rendering and protein hydrolysis. In this regard, it is important to achieve stable production and quality through all the steps in the manufacturing chain, preferably supported by at- or online quality control points in the actual processing step. If aiming for the human market, knowledge of consumer trends and awareness are important for production and successful introduction of new products and ingredients.

  5. Low-btu gas in the US Midcontinent: A challenge for geologists and engineers

    USGS Publications Warehouse

    Newell, K. David; Bhattacharya, Saibal; Sears, M. Scott

    2009-01-01

    Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.

  6. Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.

    PubMed

    Makaruk, A; Miltner, M; Harasek, M

    2013-01-01

    Membrane gas permeation using glassy membranes proved to be a suitable method for biogas upgrading and natural gas substitute production on account of low energy consumption and high compactness. Glassy membranes are very effective in the separation of bulk carbon dioxide and water from a methane-containing stream. However, the content of hydrogen sulfide can be lowered only partially. This work employs process modeling based upon the finite difference method to evaluate a hybrid membrane system built of a combination of rubbery and glassy membranes. The former are responsible for the separation of hydrogen sulfide and the latter separate carbon dioxide to produce standard-conform natural gas substitute. The evaluation focuses on the most critical upgrading parameters like achievable gas purity, methane recovery and specific energy consumption. The obtained results indicate that the evaluated hybrid membrane configuration is a potentially efficient system for the biogas processing tasks that do not require high methane recoveries, and allows effective desulfurization for medium and high hydrogen sulfide concentrations without additional process steps.

  7. High temperature process steam application at the Southern Union Refining Company, Hobbs, New Mexico. Solar energy in the oil patch. Final report, Phase III: operation, maintenance, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.E.; McGuire, D.R.

    1984-05-01

    This final report summarizes the technical reports for Phase III of this project. The third phase included the operation, maintenance, upgrade and performance reporting of a 10,080 square foot Solar Industrial Process Heat System installed at the Famariss Energy Refinery of Southern Union Refining Company near Hobbs, New Mexico. This report contains a description of the upgraded system, and a summary of the overall operation, maintenance and performance of the installed system. The results of the upgrade activities can be seen in the last two months of operational data. Steam production was significantly greater in peak flow and monthly totalmore » than at any previous time. Also monthly total cost savings was greatly improved even though natural gas costs remain much lower than originally anticipated.« less

  8. The Telecommunications and Data Aquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Tracking and ground-based navigation techniques are discussed in relation to DSN advanced systems. Network data processing and productivity are studied to improve management planning methods. Project activities for upgrading DSN facilities are presented.

  9. The extraction of bitumen from western oil sands: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less

  10. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.

    PubMed

    Rittmann, Simon K-M R

    2015-01-01

    Microbiological biogas upgrading could become a promising technology for production of methane (CH(4)). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H(2)). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO(2)), H(2) and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH(4) production rates and low CH(4) fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H(2) gas liquid mass transfer limitation, which results in low volumetric CH(4) productivity compared to pure H(2)/CO(2) conversion to CH(4). If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH(4) productivity, as well as if the aim of a single stage conversion to a CH(4) fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO(2)-neutral biomethane production.

  11. Diesel production from Fischer-Tropsch: the past, the present, and new concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2009-05-15

    Fischer-Tropsch synthesis is technically classified into two categories, the high-temperature Fischer-Tropsch (HTFT) and the low-temperature Fischer-Tropsch (LTFT) processes. The criterion for this classification is the operating temperature of the synthesis, which ranges between 310-340{sup o}C for the HTFT process and 210-260{sup o}C for the LTFT process. A Fischer-Tropsch facility can be divided into roughly three sections, synthesis gas (syngas) generation, FT synthesis, and refining of the synthetic crude (syncrude). Fischer-Tropsch refineries differ regarding the product upgrading, and both transportation fuels and chemicals can be produced. Regarding the FT refinery history, the configuration of each refinery also reflects the requirements ofmore » the fuel specification at that time. This paper gives a condensed overview of how Fischer-Tropsch facilities changed during the last 70 years and focuses in particular on the diesel fuel produced. Some conceptual flow schemes are additionally presented with emphasis on the combined upgrading of the high boiling part of the FT product spectrum with liquids derived from coal pyrolysis. 52 refs., 14 figs., 12 tabs.« less

  12. 77 FR 27798 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... 4279-2) for the following: Applicant/Location: Tri Marine Samoa, Inc. Principal Product/Purpose: The..., which includes building renovations and improvements, repairs and upgrades, construction of a processing...

  13. Vitamin B1-catalyzed acetoin formation from acetaldehyde: a key step for upgrading bioethanol to bulk C₄ chemicals.

    PubMed

    Lu, Ting; Li, Xiukai; Gu, Liuqun; Zhang, Yugen

    2014-09-01

    The production of bulk chemicals and fuels from renewable biobased feedstocks is of significant importance for the sustainability of human society. The production of ethanol from biomass has dramatically increased and bioethanol also holds considerable potential as a versatile building block for the chemical industry. Herein, we report a highly selective process for the conversion of ethanol to C4 bulk chemicals, such as 2,3-butanediol and butene, via a vitamin B1 (thiamine)-derived N-heterocyclic carbene (NHC)-catalyzed acetoin condensation as the key step to assemble two C2 acetaldehydes into a C4 product. The environmentally benign and cheap natural catalyst vitamin B1 demonstrates high selectivity (99%), high efficiency (97% yield), and high tolerance toward ethanol and water impurities in the acetoin reaction. The results enable a novel and efficient process for ethanol upgrading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of the Write Process for Pipeline-Ready Heavy Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Brecher; Charles Mones; Frank Guffey

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establishmore » a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.« less

  15. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  16. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    NASA Astrophysics Data System (ADS)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  17. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Directmore » Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.« less

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Abhijit; Sahir, Asad; Tan, Eric

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptionsmore » outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.« less

  19. Life cycle assessment of biomethane use in Argentina.

    PubMed

    Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A

    2015-04-01

    Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Separation of catalyst from Fischer-Tropsch slurry

    DOEpatents

    White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  1. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Knoshaug, Eric

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for moremore » than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.« less

  2. Production of Titanium Metal by an Electrochemical Molten Salt Process

    NASA Astrophysics Data System (ADS)

    Fatollahi-Fard, Farzin

    Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.

  3. Analysis of Energy Industry Upgrading in Northeast China

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-jing; Ji, Yu-liang; Guan, Bai-feng; Jing, Xin

    2018-02-01

    Promoting regional economic growth and realizing the transformation of the mode of economic growth are in industrial upgrading essence The product is a carrier that represents a series of links of production, management and marketing behind the enterprise, and is a comprehensive reflection of the knowledge and ability of a country or region. Based on the industrial spatial structure, this paper visualizes the industrial space in Northeast China from 2005 to 2015, analyzes the comparative advantages of the energy industry in Northeast China, and examines the status quo of the upgrade of the energy industry according to the industrial upgrading status. Based on the industrial spatial structure, Industry intensity in the industrial space, put forward the future direction of the energy industry upgrade and upgrade path.

  4. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less

  5. Get a winning Oracle upgrade session using the quarterback approach

    NASA Technical Reports Server (NTRS)

    Anderson, G.

    2002-01-01

    Upgrades, upgrades... too much customer down time. Find out how we shrunk our production upgrade schedule 40% from our estimate of 10 days 12 hours to 6 days 2 hours using the quarterback approach. So your upgrade is not that complex, come anyway. This approach is scalable to any size project and will be extremely valuable.

  6. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.

    PubMed

    Xu, Yu-Ping; Duan, Pei-Gao; Wang, Feng; Guan, Qing-Qing

    2018-01-01

    In this study, a two-step processing method (hydrothermal liquefaction followed by catalytic upgrading) was used to produce upgraded bio-oil. A comprehensive screening analysis of algal species, including four microalgae and four macroalgae, was conducted to bridge the gap between previous accounts of microalgae and macroalgae hydrothermal liquefaction and the upgrading process of the resulting crude bio-oils. Hydrothermal liquefaction using eight algal biomasses was performed at 350 °C for 1 h. The microalgae always produced a higher crude bio-oil yield than the macroalgae due to their high lipid content, among which Schizochytrium limacinum provided the maximum crude bio-oil yield of 54.42 wt%. For microalgae, higher amounts of N in the biomass resulted in higher amounts of N in the crude bio-oil; however, contrary results were observed for the macroalgae. The crude bio-oils generated from both the microalgae and macroalgae were characterized as having a high viscosity, total acid number, and heteroatom content, and they were influenced by the biochemical compositions of the feedstocks. Next, all eight-crude bio-oils were treated at 400 °C for 2 h with 10 wt% Ru/C using tetralin as the hydrogen donor. The hydrogen source was provided after tetralin was transformed to naphthalene. All the upgraded bio-oils had higher energy densities and significantly lower N, O, and S contents and viscosities than their corresponding crude bio-oils. However, the H/C molar ratio of the upgraded bio-oils decreased due to the absence of external hydrogen relative to the crude bio-oils. The S content of the upgraded bio-oil produced from upgrading the Schizochytrium limacinum crude bio-oil was even close to the 50 ppm requirement of China IV diesel. Microalgae are better feedstocks than macroalgae for liquid fuel production. Biochemical components have a significant impact on the yield and composition of crude bio-oil. Tetralin does not perform as well as external hydrogen for controlling coke formation. The S content of the upgraded bio-oil can be reduced to 76 ppm for the crude bio-oil produced from Schizochytrium limacinum . Upgraded bio-oils have similar properties to those of naphtha and jet fuel.

  7. TAMU: A New Space Mission Operations Paradigm

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  8. Upgrade of Long-chain Hydrocarbons by Low Pressure Oxygen Plasmas

    NASA Astrophysics Data System (ADS)

    Patiño, Pedro; Méndez, Bernardo; Gambús, Gloria

    1998-10-01

    Huge known heavy oil deposits in many countries remain largely untapped. The API gravity of crude oils has been decreasing by about 0.17% per year, this meaning that there will be an urgent need for economically viable new technologies to upgrade the heavy oil for the refineries. The same applies to the residues of several refineries processes. This work will present the results of the application of a plasma process to upgrade long-chain hydrocarbons, namely, tridecane, tetradecane, and squalane (shark oil). They are high boiling point alkanes, the latter being a C_30H_62 with six methyl groups attached to various carbon positions on the chain. An oxygen plasma, created by a high voltage glow discharge, reached the low vapor pressure surface of each liquid hydrocarbon. This (2 mL) was cooled down to temperatures close to its freezing point in a glass reactor. Applied power was 24 W for times of reaction between 30 and 60 minutes and oxygen pressures from 0.1 to 0.4 mbar. Products were analyzed by IR and NMR spectroscopies. The ^1H and ^13C NMR spectra showed that the most important products were secondary alcohols and the corresponding ketones, for tridecane and tetradecane. For squalane, tertiary alcohols were first. Total conversions are tipically 90 to 100%

  9. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    PubMed

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  10. Fundamentals of Hydrocarbon Upgrading to Liquid Fuels and Commodity Chemicals over Catalytic Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Tao

    Promising new technologies for biomass conversion into fuels and chemical feedstocks rely on the production of bio-oils, which need to be upgraded in order to remove oxygen-containing hydrocarbons and water. A high oxygen concentration makes bio-oils acidic and corrosive, unstable during storage, and less energetically valuable per unit weight than petroleum-derived hydrocarbons. Although there are efficient processes for the production of bio-oils, there are no efficient technologies for their upgrading. Current technologies utilize traditional petroleum refining catalysts, which are not optimized for biomass processing. New upgrading technologies are, therefore, urgently needed for development of sustainable energy resources. Development of such new technologies, however, is severely hindered by a lack of fundamental understanding of how oxygen and oxygen-containing hydrocarbons derived from biomass interact with promising noble-metal catalysts. In this study, kinetic reaction measurements, catalyst characterization and quantum chemical calculations using density functional theory were combined for determining adsorption modes and reaction mechanisms of hydrocarbons in the presence of oxygen on surfaces of catalytic noble-metal nanoparticles. The results were used for developing improved catalyst formulations and optimization of reaction conditions. The addition of molybdenum to platinum catalysts was shown to improve catalytic activity, stability, and selectivity in hydrodeoxygenation of acetic acid, which served as a model biomass compound. The fundamental results that describe interactions of oxygen and hydrocarbons with noble-metal catalysts were extended to other reactions and fields of study: evaluation of the reaction mechanism for hydrogen peroxide decomposition, development of improved hydrogenation catalysts and determination of adsorption modes of a spectroscopic probe molecule.

  11. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Tao, L.; Tan, E. C. D.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  12. Alternative Fuels (Briefing Charts)

    DTIC Science & Technology

    2009-06-19

    Fuels Focus  Various conversion processes  Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm, etc...Products (Volume Anticipated / Required) World crude oil production reaches its peak Concerns about Global Warming dictates addressing worldwide carbon

  13. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    DOE PAGES

    Engtrakul, Dr. Chaiwat; Hu, Michael Z.; Bischoff, Brian L; ...

    2016-01-01

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach utilized high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over 1-ring upgraded biomass pyrolysis hydrocarbons was observed due to amore » surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations suggesting that water can be selectively removed from the CFP product vapors.« less

  14. Resource and energy management of synfuels production with hydrogen and oxygen requirements from electrolysis

    NASA Astrophysics Data System (ADS)

    Shannon, R. H.; Richardson, R. D.

    The Resource and Energy Management System (REM), which uses electrolytic H2 and O2 to produce synthetic crude and light oils from heavy hydrocarbons is described. The heavy hydrocarbon feedstocks include heavy oils, tar sand bitumens, heavy residual oils, oil shale kerogens, liquefied coal, and pyrolytically-extracted coal liquids. The system includes mini-upgraders, which can be implemented in modular form, to pump electrolytically-derived H2 into heavy oils to upgrade their energy content. Projected costs for the production of synthetic light oils using U.S. coal reserves with the REM process after liquefaction are $30-35/bbl, with the H2 costs being a controlling factor. The modular systems could be built in a much shorter time frame than much larger projects, and would be instrumental in establishing the electrolytic H2 production infrastructure needed for eventual full conversion to an H2-based economy.

  15. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a resultmore » of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.« less

  16. Refining and end use study of coal liquids II - linear programming analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for themore » petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.« less

  17. A Hybrid Catalytic Route to Fuels from Biomass Syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Laurel; Hallen, Richard; Lilga, Michael

    LanzaTech partnered with the Pacific Northwest National Laboratory (PNNL), Imperium Aviation Fuels, InEnTec, Orochem Technologies, the University of Delaware, Michigan Technological University, the National Renewable Energy Laboratory, and The Boeing Company, to develop a cost-effective hybrid conversion technology for catalytic upgrading of biomass-derived syngas to sustainable alternative jet fuel (SAJF) meeting the price, quality and environmental requirements of the aviation industry. Alternative “synthetic paraffinic kerosene” (SPK) blendstock produced from syngas via “Fischer-Tropsch” (F-T) or from lipids via “hydroprocessing of esters and fatty acids” (HEFA) are currently being used in commercial jet fuel blends containing at least 50% petroleum-based fuel. Thismore » project developed an alternative route to SAJF from ethanol, a type of “alcohol to jet” (ATJ) SPK. The project objective was to demonstrate a pathway that combines syngas fermentation to ethanol with catalytic upgrading of ethanol to sustainable alternative jet fuel and shows attractive overall system economics to drive down the price of biomass-derived jet fuel. The hybrid pathway was to be demonstrated on three biomass feedstocks: corn stover, woody biomass, and third biomass feedstock, cellulosic residues. The objective also included the co-production of chemicals, exemplified by 2,3-Butanediol (2,3-BDO), which can be converted to key chemical intermediates. The team successfully demonstrated that biomass syngas fermentation followed by catalytic conversion is a viable alternative to the Fischer-Tropsch process and produces a fuel with properties comparable to F-T and HEFA SPKs. Plasma gasification and gas fermentation were successfully integrated and demonstrated in continuous fermentations on waste wood, corn stover, and cellulosic bagasse. Gas fermentation was demonstrated to produce ethanol suitable for catalytic upgrading, isolating the upgrading from variations in biomass feed, syngas composition, and impurities. Ethanol feedstocks from all three types of biomass were demonstrated to be comparable to grain derived ethanol and suitable for the LT-PNNL ATJ process. The LT-PNNL ATJ catalytic upgrading process was demonstrated at lab scale for over 2000 hours of continuous operation on a single catalyst load. LanzaTech scaled up the ATJ process, producing 4000 gallons of jet and 600 gallons of diesel for testing and a future proving flight. The LT-PNNL ATJ process, at lab and pilot scale, using commercial grain-based ethanol and steel mill waste gas-based ethanol (“Lanzanol”), produces high-quality fuel-range distillates containing primarily normal paraffins and isoparaffins. The LT-PNNL ATJ fuel has equivalent properties to previously-approved SPKs such as F-T, HEFA, and ATJ from isobutanol, and conforms with critical properties needed to blend with conventional jet fuel. The project showed that the 2,3-BDO fermentation co-product can be separated economically utilizing Simulated Moving Bed (SMB) technology. 2,3-BDO can be catalytically converted to 1,3-butadiene (BD) in a two-step process with at least 70% yield, producing a chemical intermediate suitable for downstream applications. Technoeconomic and life cycle analyses of the biomass to jet process with and without 2,3-BDO production showed that capital costs are sensitive to the proportion of the 2,3-BDO co-product and biomass feedstock. The co-product 2,3-BDO, converted through to BD, significantly reduces the cash cost of production of the hydrocarbon fuels. Life cycle GHG emissions of ATJ SPK produced from biomass using a steam gasification system are projected to be significantly lower than those of conventional jet fuel. The project demonstrated that a high quality ATJ SPK, can be produced from biomass via a hybrid gas fermentation/catalytic route. Validation of the LT-PNNL ATJ process using a variety of ethanol feedstocks demonstrated the viability of a future model of distributed ATJ production, in which ethanol may be produced at multiple facilities from local feedstocks and shipped to a central facility for conversion. The project demonstrated that co-production of chemicals has the potential to reduce jet cost of production, thereby accelerating commercial production of SAJF from biomass.« less

  18. Instrumentation and control upgrade plan for Browns Ferry nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belew, M.R.; Langley, D.T.; Torok, R.C.

    1992-01-01

    A comprehensive upgrade of the instrumentation and control (I C) systems at a power plant represents a formidable project for any utility. For a nuclear plant, the extra safety and reliability requirements along with regulatory constraints add further complications and cost. The need for the upgrade must, therefore, be very compelling, and the process must be well planned from the start. This paper describes the steps taken to initiate the I C upgrade process for Tennessee Valley Authority's (TVA's) Browns Ferry 2 nuclear plant. It explains the impetus for the upgrade, the expected benefits, and the process by which systemmore » upgrades will be selected and implemented.« less

  19. In situ upgrading of whole biomass to biofuel precursors with low average molecular weight and acidity by the use of zeolite mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben, Haoxi; Huang, Fang; Li, Liwei

    2015-09-09

    The pyrolysis of whole biomass—pine wood and bark—with mordenite (M), beta (β) and Y zeolites has been examined at 600°C. The GPC results indicated that the pyrolysis oils upgraded by Y and β zeolites have a very low average molecular weight range (70–170 g mol –1). Several NMR methods have been employed to characterize the whole portion of pyrolysis products. After the use of these two zeolites (Y and β), the two main products from the pyrolysis of cellulose—levoglucosan and HMF—were eliminated; this indicates a significant deoxygenation process. When a mixture of zeolites (Y and M) was used, the upgradedmore » pyrolysis oil exhibited advantages provided by both zeolites; this pyrolysis oil represents a biofuel precursor that has a very low average molecular weight and a relatively low acidity. Finally, this study opens up a new way to upgrade pyrolysis oils by employing mixtures of different functional zeolites to produce biofuel/biochemical precursors from whole biomass.« less

  20. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cresap, D.A.; Halverson, D.S.

    In the Fluorinel Dissolution Process (FDP) upgrade, excess hydrofluoric acid in the dissolver product must be complexed with aluminum nitrate (ANN) to eliminate corrosion concerns, adjusted with nitrate to facilitate extraction, and diluted with water to ensure solution stability. This is currently accomplished via batch processing in large vessels. However, to accommodate increases in projected throughput and reduce water production in a cost-effective manner, a semi-continuous system (In-line Complexing (ILC)) has been developed. The major conclusions drawn from tests demonstrating the feasibility of this concept are given in this report.

  2. TECHNOLOGY FOR ENHANCED BIODIESEL ECONOMICS - PHASE II

    EPA Science Inventory

    The overall goal of this project is to complete the research and development of an innovative process technology to enhance the economics of biodiesel production, through upgrading the byproduct glycerol to a propane fuel (LPG), which (a) is widely used today, (b) has an exist...

  3. Separation of catalyst from Fischer-Tropsch slurry

    DOEpatents

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  4. Extending fiber resources : fiber loading recycled fiber and mechanical pulps for lightweight, high opacity paper

    Treesearch

    Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr

    1999-01-01

    Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...

  5. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  6. Effects of lignin structure on hydrodeoxygenation reactivity of pine wood lignin to valuable chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Ben, Haoxi; Southeast Univ., Nanjing

    Hydrodeoxygenation (HDO) of two dilute acid flow through pretreated softwood lignin samples, including residual lignin in pretreated solid residues (ReL) and recovered insoluble lignin in pretreated liquid (RISL), with apparent different physical and chemical structures, was comprehensively studied. A combination of catalysts (HY zeolite and Ru/Al 2O 3) was employed to investigate the effects of lignin structures, especially condensed structures, on the HDO upgrading process. Results indicated that the condensed structure and short side chains in lignin hindered its HDO conversion under different reaction conditions, including catalyst loading and composition, hydrogen pressure, and reaction time. In addition to lignin structure,more » HY zeolite was found crucial for lignin depolymerization, while Ru/Al 2O 3 and relatively high hydrogen pressure (4 MPa) were necessary for upgrading unstable oxy-compounds to cyclohexanes at high selectivity (>95 wt %). Since the lignin structure essentially affects its reactivity during HDO conversion, the yield and selectivity of HDO products can be predicted by detailed characterization of the lignin structure. Furthermore, the insights gained from this study in the fundamental reaction mechanisms based on the lignin structure will facilitate upgrading of lignin to high-value products for applications in the production of both fuels and chemicals.« less

  7. Effects of lignin structure on hydrodeoxygenation reactivity of pine wood lignin to valuable chemicals

    DOE PAGES

    Wang, Hongliang; Ben, Haoxi; Southeast Univ., Nanjing; ...

    2017-01-05

    Hydrodeoxygenation (HDO) of two dilute acid flow through pretreated softwood lignin samples, including residual lignin in pretreated solid residues (ReL) and recovered insoluble lignin in pretreated liquid (RISL), with apparent different physical and chemical structures, was comprehensively studied. A combination of catalysts (HY zeolite and Ru/Al 2O 3) was employed to investigate the effects of lignin structures, especially condensed structures, on the HDO upgrading process. Results indicated that the condensed structure and short side chains in lignin hindered its HDO conversion under different reaction conditions, including catalyst loading and composition, hydrogen pressure, and reaction time. In addition to lignin structure,more » HY zeolite was found crucial for lignin depolymerization, while Ru/Al 2O 3 and relatively high hydrogen pressure (4 MPa) were necessary for upgrading unstable oxy-compounds to cyclohexanes at high selectivity (>95 wt %). Since the lignin structure essentially affects its reactivity during HDO conversion, the yield and selectivity of HDO products can be predicted by detailed characterization of the lignin structure. Furthermore, the insights gained from this study in the fundamental reaction mechanisms based on the lignin structure will facilitate upgrading of lignin to high-value products for applications in the production of both fuels and chemicals.« less

  8. Production and energetic use of biogas from energy crops and wastes in Germany.

    PubMed

    Weiland, Peter

    2003-01-01

    The production of biogas for reducing fossil CO2 emissions is one of the key strategic issues of the German government and has resulted in the development of new process techniques and new technologies for the energetic use of biogas. Progress has been made in cultivating energy crops for biogas production, in using new reactor systems for anaerobic digestion, and in applying more efficient technologies for combined heat and power production. Recently, integration of fuel cells within the anaerobic digestion process was started, and new technologies for biogas upgrading and conversion to hydrogen were tested. This article describes the trends in Germany for achieving more efficient energy production.

  9. Titanium: Industrial Base, Price Trends, and Technology Initiatives

    DTIC Science & Technology

    2009-01-01

    respectively.3 All titanium metal production begins with rutile (titanium oxide, or TiO2). High-titania slag , produced by ilmen- ite smelting, is the first...Ilmenite ores are used in iron production. They leave a TiO2-rich slag , which is usually upgraded to be used in titanium production. 4 According to the...and least expensive process for producing titanium sponge, has four major steps. First, rutile con- centrate or synthetic rutile (titanium slag ) is

  10. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    NASA Astrophysics Data System (ADS)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas) molar ratio by varying CO to H2 ratio. It is also planned to use different catalysts promoters and compare them with the un-promoted Mo based catalysts to achieve the optimum reaction conditions for treating LGO. The results of this study showed that Ni and Co have a promoting effect over unpromoted Mo catalysts for both HDS and WGSR. Ni was found to be the best promoter for both reactions. Fe showed no significant effect for both WGSR and HDS. V and K have a good promoting effect in WGSR but they inhibited the HDS reaction. Potassium was found to be the strongest inhibitor for the HDS reaction since no sulfur was removed during the reaction. Keywords. LGO, HDS, in situ H2, WGSR, oil upgrading, syn-gas.

  11. Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor.

    PubMed

    Marín, David; Posadas, Esther; Cano, Patricia; Pérez, Victor; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2018-04-30

    The yearly variations of the quality of the upgraded biogas and the efficiency of digestate treatment were evaluated in an outdoors pilot scale high rate algal pond (HRAP) interconnected to an external absorption column (AC) via a conical settler. CO 2 concentrations in the upgraded biogas ranged from 0.7% in August to 11.9% in December, while a complete H 2 S removal was achieved regardless of the operational month. CH 4 concentrations ranged from 85.2% in December to 97.9% in June, with a limited O 2 and N 2 stripping in the upgraded biogas mediated by the low recycling liquid/biogas ratio in the AC. Biomass productivity ranged from 0.0 g m -2  d -1 in winter to 22.5 g m -2  d -1 in summer. Finally, microalgae diversity was severely reduced throughout the year likely due to the increasing salinity in the cultivation broth of the HRAP induced by process operation in the absence of effluent. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, F.N. Jr.

    The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in themore » product mix, product quality, and economics.« less

  13. Mechanism of dehydration of phenols on nobel metals using first-principles micokinetic modeling

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds constitute a sizable fraction of depolymerized biomass and are an ideal feedstock for the production of chemicals such as benzene and toluene. However, these compounds require catalytic upgrade via hydrodeoxygenation (HDO), a process whereby oxygen is removed as water by adding hy...

  14. OEM unveil new ideas for shovels and excavators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2006-08-15

    From upgrades to new loading arrangements, vendors are looking at new ways to optimize the production process. The paper describes P & M equipment's new C series electric shovels equipped with the centurion system, Hitachi's super-sized excavator to Canadian oil sands, and Bucyrus and Siemens' engineer shovels. 3 figs., 1 photo.

  15. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  16. Measuring bio-oil upgrade intermediates and corrosive species with polarity-matched analytical approaches

    DOE PAGES

    Connatser, Raynella M.; Lewis, Sr., Samuel Arthur; Keiser, James R.; ...

    2014-10-03

    Integrating biofuels with conventional petroleum products requires improvements in processing to increase blendability with existing fuels. This work demonstrates analysis techniques for more hydrophilic bio-oil liquids that give improved quantitative and qualitative description of the total acid content and organic acid profiles. To protect infrastructure from damage and reduce the cost associated with upgrading, accurate determination of acid content and representative chemical compound analysis are central imperatives to assessing both the corrosivity and the progress toward removing oxygen and acidity in processed biomass liquids. Established techniques form an ample basis for bio-liquids evaluation. However, early in the upgrading process, themore » unique physical phases and varied hydrophilicity of many pyrolysis liquids can render analytical methods originally designed for use in petroleum-derived oils inadequate. In this work, the water solubility of the organic acids present in bio-oils is exploited in a novel extraction and titration technique followed by analysis on the water-based capillary electrophoresis (CE) platform. The modification of ASTM D664, the standard for Total Acid Number (TAN), to include aqueous carrier solvents improves the utility of that approach for quantifying acid content in hydrophilic bio-oils. Termed AMTAN (modified Total Acid Number), this technique offers 1.2% relative standard deviation and dynamic range comparable to the conventional ASTM method. Furthermore, the results of corrosion product evaluations using several different sources of real bio-oil are discussed in the context of the unique AMTAN and CE analytical approaches developed to facilitate those measurements.« less

  17. The direct liquefaction proof of concept program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstratingmore » optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.« less

  18. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    NASA Technical Reports Server (NTRS)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  19. Physicochemical properties of hydrothermally treated peat fuel obtained from Mempawah-West Kalimantan: influence of hydrophilicity index on carbon aromaticity and combustibility

    NASA Astrophysics Data System (ADS)

    Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.

    2018-02-01

    Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.

  20. Upgrading Custom Simulink Library Components for Use in Newer Versions of Matlab

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    The Spaceport Command and Control System (SCCS) at Kennedy Space Center (KSC) is a control system for monitoring and launching manned launch vehicles. Simulations of ground support equipment (GSE) and the launch vehicle systems are required throughout the life cycle of SCCS to test software, hardware, and procedures to train the launch team. The simulations of the GSE at the launch site in conjunction with off-line processing locations are developed using Simulink, a piece of Commercial Off-The-Shelf (COTS) software. The simulations that are built are then converted into code and ran in a simulation engine called Trick, a Government off-the-shelf (GOTS) piece of software developed by NASA. In the world of hardware and software, it is not uncommon to see the products that are utilized be upgraded and patched or eventually fade away into an obsolete status. In the case of SCCS simulation software, Matlab, a MathWorks product, has released a number of stable versions of Simulink since the deployment of the software on the Development Work Stations in the Linux environment (DWLs). The upgraded versions of Simulink has introduced a number of new tools and resources that, if utilized fully and correctly, will save time and resources during the overall development of the GSE simulation and its correlating documentation. Unfortunately, simply importing the already built simulations into the new Matlab environment will not suffice as it will produce results that may not be expected as they were in the version that is currently being utilized. Thus, an upgrade execution plan was developed and executed to fully upgrade the simulation environment to one of the latest versions of Matlab.

  1. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  2. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  3. A Case Study in Flight Computer Software Redesign

    NASA Astrophysics Data System (ADS)

    Shimoni, R.; Ben-Zur, Y.

    2004-06-01

    Historically many real-time systems were developed using technologies that are now obsolete. There is a need for upgrading these systems. A good development process is essential to achieve a well-designed software product. We, at MLM, a subsidary of Israel Aircraft Industries, faced a similar situation in the Flight Mission Computer (Main Airborne Computer-MAC) of the SHAVIT launcher. It was necessary to upgrade the computer hardware and we decided to update the software as well. During the last two years, we have designed and implemented and new version of the MAC software, to be run on a new and stronger target platform. We undertook to create a new version of the MAC program using modern software development techniques. The process included Object-Oriented design using a CASE tool suitable for embedded real-time systems. We have partially implemented the ROPES development process. In this article we present the difficulties and challenges we faced in the software development process.

  4. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    PubMed

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, Jack R.

    Catalytic hydroprocessing of pyrolysis oils from biomass produces hydrocarbons that can be considered for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. A comprehensive understanding of product oils is useful to optimize cost versus degree of deoxygenation. Additionally, a better understanding of the chemical composition of the distillate fractions can open up other uses of upgraded oils for potentially higher-value chemical streams. We present in this paper the characterization data for five well-defined distillate fractions of two hydroprocessed oils withmore » different oxygen levels: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. Elemental analysis and 13C NMR results suggest that the distillate fractions become more aromatic/unsaturated as they become heavier. Our results also show that the use of sulfided catalysts directly affects the S content of the lightest distillate fraction. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. PIONA analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. These results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  6. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David; Sato, Suzanne; Garcia, Fernando

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and amore » basis for full-scale manufacturing processes and facility design.« less

  7. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with In Situ Extraction.

    PubMed

    Roume, Hugo; Arends, Jan B A; Ameril, Camar P; Patil, Sunil A; Rabaey, Korneel

    2016-01-01

    Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol 1,3-PDO mol -1 glycerol ) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams.

  8. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with In Situ Extraction

    PubMed Central

    Roume, Hugo; Arends, Jan B. A.; Ameril, Camar P.; Patil, Sunil A.; Rabaey, Korneel

    2016-01-01

    Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol−1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams. PMID:27725929

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    Catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels are described. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. Also described are process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  10. Process for upgrading wax from Fischer-Tropsch synthesis

    DOEpatents

    Derr, Jr., W. Rodman; Garwood, William E.; Kuo, James C.; Leib, Tiberiu M.; Nace, Donald M.; Tabak, Samuel A.

    1987-01-01

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.

  11. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE PAGES

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.; ...

    2017-11-24

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  12. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  13. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  14. System and process for upgrading hydrocarbons

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  15. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.

    PubMed

    Mulat, Daniel Girma; Mosbæk, Freya; Ward, Alastair James; Polag, Daniela; Greule, Markus; Keppler, Frank; Nielsen, Jeppe Lund; Feilberg, Anders

    2017-10-01

    Biological reduction of CO 2 into CH 4 by exogenous addition of H 2 is a promising technology for upgrading biogas into higher CH 4 content. The aim of this work was to study the feasibility of exogenous H 2 addition for an in situ biogas upgrading through biological conversion of the biogas CO 2 into CH 4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH 4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H 2 into the headspace resulted in a completely consumption of CO 2 and a concomitant increase in CH 4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH 4 content. Excess H 2 was also supplied to evaluate its effect on overall process performance. The results show that excess H 2 addition resulted in accumulation of H 2 , depletion of CO 2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H 2 supply led to an increase in dissolved H 2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO 2 and H 2 . The inhibition was a temporary effect and acetate degradation resumed when the excess H 2 was removed as well as in the presence of stoichiometric amount of H 2 and CO 2 . This inhibition mechanism underlines the importance of carefully regulating the H 2 addition rate and gas retention time to the CO 2 production rate, H 2 -uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH 4 content without the accumulation of acetate and other VFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading

    NASA Astrophysics Data System (ADS)

    Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.

    2018-05-01

    One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.

  17. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors

    DOE PAGES

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...

    2015-11-14

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less

  18. Conceptual Biorefinery Design and Research Targeted for 2022: Hydrothermal Liquefacation Processing of Wet Waste to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Bearden, Mark D.

    The Department of Energy Bioenergy Technologies Office (BETO) invests in research and development of new pathways for commercially viable conversion of biomass into drop-in ready transportation fuels, fuel blendstocks and products. The primary emphasis has been on terrestrial and algae feedstocks, but more recently BETO has begun to explore the potential of wet wastes for biofuel production, with focus on wastewater residuals, manure, food waste, and fats, oils and grease. A recent resource analysis estimates that 77 million dry tons per year of these wastes are generated annually, 65% of which are underutilized for any beneficial purpose. Approximately 14 millionmore » dry tons of the total resource is wastewater residuals (sludge and biosolids) generated at the nation’s wastewater treatment plants (WWTPs). Conversion of this resource into transportation fuels could significantly contribute to the creation of a new domestic bioenergy and bioproduct industry, while providing an economically and environmentally sustainable alternative for current waste disposal practices. Hydrothermal liquefaction (HTL) is a process that uses hot, pressurized water in the condensed phase to convert biomass to a thermally stable oil product, also known as “biocrude”, which can then be thermo-catalytically upgraded to hydrocarbon fuel blendstocks. HTL is conceptually simple, has a high carbon efficiency, and can be applied to a wide range of wet feedstocks at similar processing conditions. The purpose of this report is to document the conceptual design, economics and supporting data for a sludge-to-fuel pathway via HTL and biocrude upgrading. The configuration includes a HTL plant that is co-located with a WWTP and a larger scale biocrude upgrading plant for production of hydrocarbon fuel blendstocks. Experimental data from bench scale testing of a 1:1 mixture of primary:secondary sludges are used to establish the economic and technical assumptions for the analysis. The design represents a goal case for the pathway, targeting performance that is anticipated to be achievable by 2022 with further research and development. The year 2022 is BETO’s target year for verification of hydrocarbon biofuel pathways. As this analysis represents a goal case, assumed values of several design parameters represent improvements in the technology relative to what has currently been demonstrated in the laboratory. While HTL is fairly well developed and may therefore be ready for commercialization prior to 2022, there are specific advancements addressed in this analysis that are necessary to enhance performance compared to what has been demonstrated to date. In addition, an important aspect to the pathway is the upgrading of biocrude to fuel blendstock, an area that has received much less attention and requires significant research to validate the goal case performance parameters. The estimated plant gate minimum fuel selling price for fuel blendstock from sludge HTL and upgrading is $3.46/gasoline gallon equivalent (gge). This price is within the tolerance (+$0.49/gge) of BETO’s $3/gge programmatic cost target and illustrates that fuel blendstocks generated from HTL of sludge and centralized biocrude upgrading have the potential to be competitive with fossil fuels. This analysis illustrates the feasibility of HTL for point-of-generation conversion of waste feedstock at a scale 1/20th that of the standard lignocellulosic biorefinery scale typically used in BETO design cases. The relevance of this work reaches beyond wastewater treatment sludge to lay the groundwork for application to other distributed wet wastes and blends that together represent a significant resource of underutilized biomass.« less

  19. Processing of metallurgical residues by flotation - bench-scale studies on two industrial products.

    PubMed

    Rao, S R; Finch, J A

    2006-01-01

    Resource recovery from two metallurgical residues by flotation was investigated applying an electrostatic model to select initial conditions. The first, a sulphation roast/water leach residue, was processed to float lead sulphate, comparing dodecylamine and xanthate collectors. From the second, a neutralization residue, gypsum, was recovered by reverse flotation of ferric hydroxide, comparing oleate and sulphonate collectors. In both cases, further upgrading by acid leaching was considered.

  20. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger

    2017-02-01

    Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Process for upgrading wax from Fischer-Tropsch synthesis

    DOEpatents

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.

  2. Global Ensemble Upgrade - 20060530

    Science.gov Websites

    products available on both the NCEP ftp server (ftpprd.ncep.noaa.gov/pub/data/) and the NWS ftp server processing routines so that they can continue to receive and use these data. The nature of these changes are of global ensemble data will be drastically changed to allow for better system performance on the

  3. Ex-situ biogas upgrading and enhancement in different reactor systems.

    PubMed

    Kougias, Panagiotis G; Treu, Laura; Benavente, Daniela Peñailillo; Boe, Kanokwan; Campanaro, Stefano; Angelidaki, Irini

    2017-02-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Timing of Technology Upgrades: A Case of Enterprise Systems

    ERIC Educational Resources Information Center

    Claybaugh, Craig C.

    2010-01-01

    Technology upgrades are an inevitable part of dealing with any man-made invention utilized for productive gain. One key technology used for productive gain within a firm is enterprise software, specifically a firm's Enterprise Resource Planning (ERP) system. After the adoption of an ERP system, an organization is perpetually faced with the…

  5. Accelerating the Delivery of Home Performance Upgrades through a Synergistic Business Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirber, Tom; Ojczyk, Cindy

    Achieving Building America energy savings goals (40% by 2030) will require many existing homes to install energy upgrades. Engaging large numbers of homeowners in building science-guided upgrades during a single remodeling event has been difficult for a number of reasons. Performance upgrades in existing homes tend to occur over multiple years and usually result from component failures (furnace failure) and weather damage (ice dams, roofing, siding). This research attempted to: A) understand the homeowner's motivations regarding investing in building science based performance upgrades; B) determining a rapidly scalable approach to engage large numbers of homeowners directly through existing customer networks;more » and C) access a business model that will manage all aspects of the contractor-homeowner-performance professional interface to ensure good upgrade decisions over time. The solution results from a synergistic approach utilizing networks of suppliers merging with networks of homeowner customers. Companies in the $400 to $800 billion home services industry have proven direct marketing and sales proficiencies that have led to the development of vast customer networks. Companies such as pest control, lawn care, and security have nurtured these networks by successfully addressing the ongoing needs of homes. This long-term access to customers and trust established with consistent delivery has also provided opportunities for home service providers to grow by successfully introducing new products and services like attic insulation and air sealing. The most important component for success is a business model that will facilitate and manage the process. The team analyzes a group that developed a working model.« less

  6. Building America Case Study: Accelerating the Delivery of Home-Performance Upgrades Using a Synergistic Business Model, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achieving Building America energy savings goals (40 percent by 2030) will require many existing homes to install energy upgrades. Engaging large numbers of homeowners in building science-guided upgrades during a single remodeling event has been difficult for a number of reasons. Performance upgrades in existing homes tend to occur over multiple years and usually result from component failures (furnace failure) and weather damage (ice dams, roofing, siding). This research attempted to: A) Understand the homeowner's motivations regarding investing in building science based performance upgrades. B) Determining a rapidly scalable approach to engage large numbers of homeowners directly through existing customermore » networks. C) Access a business model that will manage all aspects of the contractor-homeowner-performance professional interface to ensure good upgrade decisions over time. The solution results from a synergistic approach utilizing networks of suppliers merging with networks of homeowner customers. Companies in the $400 to $800 billion home services industry have proven direct marketing and sales proficiencies that have led to the development of vast customer networks. Companies such as pest control, lawn care, and security have nurtured these networks by successfully addressing the ongoing needs of homes. This long-term access to customers and trust established with consistent delivery has also provided opportunities for home service providers to grow by successfully introducing new products and services like attic insulation and air sealing. The most important component for success is a business model that will facilitate and manage the process. The team analyzes a group that developed a working model.« less

  7. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment.

    PubMed

    Xu, Jie; Zhao, Yongjun; Zhao, Guohua; Zhang, Hui

    2015-08-01

    An integrated approach that combined freshwater microalgae Scenedesmus obliquus (FACHB-31) cultivation with piggery anaerobic digestate liquid treatment was investigated in this study. The characteristics of algal growth, biogas production, and nutrient removal were examined using photobioreactor bags (PBRbs) to cultivate S. obliquus (FACHB-31) in digestate with various digestate dilutions (the concentration levels of 3200, 2200, 1600, 1200, 800, and 400 mg L(-1) chemical oxygen demand (COD)) during 7-day period. The effects of the level of pollutants on nutrient removal efficiency and CO2 removal process were investigated to select the optimum system for effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. The treatment performance displayed that average removal rates of COD, total nitrogen (TN), total phosphorous (TP), and CO2 were 61.58-75.29, 58.39-74.63, 70.09-88.79, and 54.26-73.81 %, respectively. All the strains grew well under any the dilution treatments. With increased initial nutrient concentration to a certain range, the CO4 content (v/v) of raw biogas increased. Differences in the biogas enrichment of S. obliquus (FACHB-31) in all treatments mainly resulted from variations in biomass productivity and CO2 uptake. Notably, the diluted digestate sample of 1600 mg L(-1) COD provided an optimal nutrient concentration for S. obliquus (FACHB-31) cultivation, where the advantageous nutrient and CO2 removals, as well as the highest productivities of biomass and biogas upgrading, were revealed. Results showed that microalgal biomass production offered real opportunities to address issues such as CO2 sequestration, wastewater treatment, and biogas production.

  8. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.

    PubMed

    Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger

    2017-10-01

    Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Solvent recyclability in a multistep direct liquefaction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetland, M.D.; Rindt, J.R.

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken tomore » produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.« less

  10. Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Zacher, Alan H.; Padmaperuma, Asanga B.

    The use of fast pyrolysis as a potential renewable liquid transportation fuel alternative to crude oil depends on successful catalytic upgrading to produce a refinery-ready product with oxygen content and qualities (i.e. specific functional group or compound content) that is compatible with the product’s proposed insertion point. Catalytic upgrading of bio-oil requires high temperature and pressure, while similar to crude oil hydrotreating, is not as straightforward for the thermally unstable pyrolysis oil. For years, a two-temperature zone, downflow trickle bed reactor was the state-of-the art for continuous operation. However, pressure excursion due to plug formation still occurred, typically at themore » high temperature transition zone, leading to a process shutdown within 140 h. Recently, a bio-oil pre-treatment process, together with a robust commercial catalyst, was found to be enabling the continuous operation of the two-zone hydroprocessing system. Here, we report the results on pre-treating bio-oil at 413 K and 8.4 MPa of flowing H2 (500 L H2/L bio-oil, 0.5 L bio-oil/L catalyst bed) and the attempts to characterize this oil product to understand the chemistry which enabled the long-term processing of bio-oil.« less

  11. Multimission image processing and science data visualization

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1993-01-01

    The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.

  12. Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips

    NASA Astrophysics Data System (ADS)

    Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej

    2016-04-01

    Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.

  13. Functional and performance requirements of the next NOAA-Kasas City computer system

    NASA Technical Reports Server (NTRS)

    Mosher, F. R.

    1985-01-01

    The development of the Advanced Weather Interactive Processing System for the 1990's (AWIPS-90) will result in more timely and accurate forecasts with improved cost effectiveness. As part of the AWIPS-90 initiative, the National Meteorological Center (NMC), the National Severe Storms Forecast Center (NSSFC), and the National Hurricane Center (NHC) are to receive upgrades of interactive processing systems. This National Center Upgrade program will support the specialized inter-center communications, data acquisition, and processing needs of these centers. The missions, current capabilities and general functional requirements for the upgrade to the NSSFC are addressed. System capabilities are discussed along with the requirements for the upgraded system.

  14. EMR Database Upgrade from MUMPS to CACHE: Lessons Learned.

    PubMed

    Alotaibi, Abduallah; Emshary, Mshary; Househ, Mowafa

    2014-01-01

    Over the past few years, Saudi hospitals have been implementing and upgrading Electronic Medical Record Systems (EMRs) to ensure secure data transfer and exchange between EMRs.This paper focuses on the process and lessons learned in upgrading the MUMPS database to a the newer Caché database to ensure the integrity of electronic data transfer within a local Saudi hospital. This paper examines the steps taken by the departments concerned, their action plans and how the change process was managed. Results show that user satisfaction was achieved after the upgrade was completed. The system was stable and offered better healthcare quality to patients as a result of the data exchange. Hardware infrastructure upgrades improved scalability and software upgrades to Caché improved stability. The overall performance was enhanced and new functions were added (CPOE) during the upgrades. The essons learned were: 1) Involve higher management; 2) Research multiple solutions available in the market; 3) Plan for a variety of implementation scenarios.

  15. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.

    PubMed

    Xu, Heng; Wang, Kaijun; Holmes, Dawn E

    2014-12-01

    Innovative methods for biogas upgrading based on biological/in-situ concepts have started to arouse considerable interest. Bioelectrochemical removal of CO2 for biogas upgrading was proposed here and demonstrated in both batch and continuous experiments. The in-situ biogas upgrading system seemed to perform better than the ex-situ one, but CO2 content was kept below 10% in both systems. The in-situ system's performance was further enhanced under continuous operation. Hydrogenotrophic methanogenesis and alkali production with CO2 absorption could be major contributors to biogas upgrading. Molecular studies showed that all the biocathodes associated with biogas upgrading were dominated by sequences most similar to the same hydrogenotrophic methanogen species, Methanobacterium petrolearium (97-99% sequence identity). Conclusively, bioelectrochemical removal of CO2 showed great potential for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Catalysts and methods for converting carbonaceous materials to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    Catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels are described. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. Also described are process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  17. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  18. High-quality fuel from food waste - investigation of a stepwise process from the perspective of technology development.

    PubMed

    Yin, Ke; Li, Ling; Giannis, Apostolos; Weerachanchai, Piyarat; Ng, Bernard J H; Wang, Jing-Yuan

    2017-07-01

    A stepwise process (SP) was developed for sustainable energy production from food waste (FW). The process comprised of hydrothermal treatment followed by oil upgrading. Synthetic food waste was primarily used as feedstock in the hydrothermal reactor under subcritical water conditions. The produced hydrochars were analyzed for calorific value (17.0-33.7 MJ/kg) and elemental composition indicating high-quality fuel comparable to coal. Hydrothermal carbonization (e.g. 180°C) would be efficient for oil recovery (>90%) from FW, as compared to hydrothermal liquefaction (320°C) whereby lipid degradation may take place. The recovered oil was upgraded to biodiesel in a catalytic refinery process. Selected biodiesels, that is, B3 and B4 were characterized for density (872.7 and 895.5 kg/m 3 ), kinematic viscosity (3.115 and 8.243 cSt), flash and pour point (30°C and >126°C), micro carbon (0.03% and 0.04%), sulfur (both <0.0016%), and calorific value (38,917 and 39,584 J/g), suggesting similar quality to commercial biodiesel. Fatty acid methyl ethers content was further analyzed to assess the influence of hydrothermal treatment in biodiesel quality, indicating the limited impacts. Overall, the SP provides a promising alternative for sustainable energy recovery through high-quality biofuel and hydrochar production.

  19. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization.

    PubMed

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco

    2018-02-15

    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Highlights from PHENIX at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid

    2018-02-01

    Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.

  1. Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context: Cooperative Research and Development Final Report, CRADA Number CRD-12-500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, Helena L.

    This work focuses on developing a thermochemical route to produce biofuels from agricultural wastes such as sugar cane bagasse, wood chips or corn stover; more specifically it intends to develop the biomass pyrolysis route, which produces bio-oils. Production of bio-oils by pyrolysis is a commercial technology. However, bio-oils are currently not being used for liquid fuels production. Although bio-oils can be produced by high-pressure liquefaction, pyrolysis is a less expensive technology. Nevertheless, bio-oils cannot be used directly as a transportation fuel without upgrading, since they are generally unstable, viscous, and acidic. Thus NREL and Petrobras intend to use their combinedmore » expertise to develop a two-step route to biofuels production: in the first step, a stable bio-oil is produced by NREL biomass pyrolysis technology, while in the second step it is upgraded by using two distinct catalytic processes under development by Petrobras. The first process converts bio-oil into gasoline, LPG, and fuel oil using the catalytic cracking process, while the second one, converts bio-oil into synthesis gas. Syngas gasification catalysts provided by both NREL and Petrobras will be tested. The work includes experiments at both sites to produce bio-oil and then biofuels, life-cycle analysis of each route, personnel training and development of analytical methods with a duration time of two years.« less

  2. Information Processing Research

    DTIC Science & Technology

    1992-01-03

    structure of instances. Opal provides special graphical objects called "Ag- greGadgets" which are used to hold a collection of other objects (either...available in classes of expert systems tasks, re- late this to the structure of parallel production systems, and incorporate parallel-decomposition...Anantharaman et al. 88]. We designed a new pawn structure algorithm and upgraded the king-safety pattern recog- nizers, which contributed significantly

  3. Catalytic upgrading nitrogen-riched wood syngas to liquid hydrocarbon mixture over Fe-Pd/ZSM-5 catalyst

    Treesearch

    Qiangu Yan; Fei Yu; Zhiyong Cai; Jilei Zhang

    2012-01-01

    Biomass like wood chips, switchgrass and other plant residues are first converted to syngas through gasification process using air, oxygen or steam. A downdraft gasifier is performed for syngas production in Mississippi State. The syngas from the gasifier contains up to 49% (vol) N2. High-level nitrogen-containing (nitrogen can be up to 60%)...

  4. Occurrence and abatement of volatile sulfur compounds during biogas production.

    PubMed

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  5. Pyrolysis of waste tyres: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest inmore » pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.« less

  6. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE PAGES

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan; ...

    2016-08-25

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less

  7. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less

  8. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs,more » and pipeline delivery specifications.« less

  9. Is there widespread metal contamination from in-situ bitumen extraction at Cold Lake, Alberta heavy oil field?

    PubMed

    Skierszkan, Elliott K; Irvine, Graham; Doyle, James R; Kimpe, Linda E; Blais, Jules M

    2013-03-01

    The extraction of oil sands by in-situ methods in Alberta has expanded dramatically in the past two decades and will soon overtake surface mining as the dominant bitumen production process in the province. While concerns regarding regional metal emissions from oil sand mining and bitumen upgrading have arisen, there is a lack of information on emissions from the in-situ industry alone. Here we show using lake sediment records and regionally-distributed soil samples that in the absence of bitumen upgrading and surface mining, there has been no significant metal (As, Cd, Cu, Hg, Ni, Pb, V) enrichment from the Cold Lake in-situ oil field. Sediment records demonstrate post-industrial Cd, Hg and Pb enrichment beginning in the early Twentieth Century, which has leveled off or declined since the onset of commercial in-situ bitumen production at Cold Lake in 1985. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Influence of different substrates on the performance of a two-stage high pressure anaerobic digestion system.

    PubMed

    Lemmer, A; Chen, Y; Lindner, J; Wonneberger, A M; Zielonka, S; Oechsner, H; Jungbluth, T

    2015-02-01

    The two-stage autogenerative high-pressure digestion technique is a novel and promising approach for the production of gaseous fuels or upgraded biogas. This new technique is described in the patent DE 10 2011 015415 A1 and integrates biogas production, its upgrading and pressure boosting in one process. Anaerobic digestion under elevated pressure conditions leads to decreasing pH-values in the digestate due to the augmented formation of carboxylic acid. Model calculations carried out to evaluate the two-stage design showed that the pH-value in the pressurized anaerobic filter has a major influence on the methane content of the biogas produced. Within this study, the influence of the nitrogen content as one of the most important buffering substances on the performance of the system has been tested. The results show that higher NH4 contents lead to higher pH-values in the digester and as a consequence to higher methane contents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Catalysts and methods for converting carbonaceous materials to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    This disclosure relates to catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. This disclosure also describes process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  12. Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor

    DOE PAGES

    Jarvis, Mark W.; Olstad, Jessica; Parent, Yves; ...

    2018-01-02

    We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less

  13. Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Mark W.; Olstad, Jessica; Parent, Yves

    We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less

  14. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  15. Quasi-Global Precipitation as Depicted in the GPCPV2.2 and TMPA V7

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric J.; Adler, Robert F.

    2012-01-01

    After a lengthy incubation period, the year 2012 saw the release of the Global Precipitation Climatology Project (GPCP) Version 2.2 monthly dataset and the TRMM Multi-satellite Precipitation Analysis (TMPA) Version 7. One primary feature of the new data sets is that DMSP SSMIS data are now used, which entailed a great deal of development work to overcome calibration issues. In addition, the GPCP V2.2 included a slight upgrade to the gauge analysis input datasets, particularly over China, while the TMPA V7 saw more-substantial upgrades: 1) The gauge analysis record in Version 6 used the (older) GPCP monitoring product through April 2005 and the CAMS analysis thereafter, which introduced an inhomogeneity. Version 7 uses the Version 6 GPCC Full analysis, switching to the Version 4 Monitoring analysis thereafter. 2) The inhomogeneously processed AMSU record in Version 6 is uniformly processed in Version 7. 3) The TMI and SSMI input data have been upgraded to the GPROF2010 algorithm. The global-change, water cycle, and other user communities are acutely interested in how these data sets compare, as consistency between differently processed, long-term, quasi-global data sets provides some assurance that the statistics computed from them provide a good representation of the atmosphere's behavior. Within resolution differences, the two data sets agree well over land as the gauge data (which tend to dominate the land results) are the same in both. Over ocean the results differ more because the satellite products used for calibration are based on very different algorithms and the dominant input data sets are different. The time series of tropical (30 N-S) ocean average precipitation shows that the TMPA V7 follows the TMI-PR Combined Product calibrator, although running approximately 5% higher on average. The GPCP and TMPA time series are fairly consistent, although the GPCP runs approximately 10% lower than the TMPA, and has a somewhat larger interannual variation. As well, the GPCP and TMPA interannual variations have an apparent phase shift, with GPCP running a few months later. Additional diagnostics will include mean maps and selected scatter plots.

  16. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying themore » feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].« less

  17. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBKmore » wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.« less

  18. Global standards and local knowledge building: Upgrading small producers in developing countries

    PubMed Central

    Perez-Aleman, Paola

    2012-01-01

    Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities. PMID:21670309

  19. Global standards and local knowledge building: upgrading small producers in developing countries.

    PubMed

    Perez-Aleman, Paola

    2012-07-31

    Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities.

  20. Optics education for machine operators in the semiconductor industry: moving beyond button pushing

    NASA Astrophysics Data System (ADS)

    Karakekes, Meg; Currier, Deborah

    1995-10-01

    In the competitive semiconductor manufacturing industry, employees who operate equipment are able to make greater contributions if they understand how the equipment works. By understanding the 'why' behind the 'what', the equipment operators can better partner with other technical staff to produce quality integrated circuits efficiently and effectively. This additional knowledge also opens equipment operators to job enrichment and enlargement opportunities. Advanced Micro Devices (AMD) is in the process of upgrading the skills of its equipment operators. This paper is an overview of a pilot program that employs optics education to upgrade stepper operators' skills. The paper starts with stepper tasks that require optics knowledge, examines teaching methods, reports both end-of-course and three months post-training knowledge retention, and summarizes how the training has impacted the production floor.

  1. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.

    2018-01-01

    The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .

  2. Lessons Learned in Process Reengineering at a Community College.

    ERIC Educational Resources Information Center

    Jaacks, Gayle E.; Kurtz, Michael

    1999-01-01

    Summarizes the successful reengineering of business processes to take full advantage of new functionality in a vendor system upgrade at Western Iowa Tech Community College. Suggests that to truly benefit from implementing new systems or major system upgrades, an institution must streamline processes, eliminate duplication of effort, and examine…

  3. Coal Producer's Rubber Waste Processing Development

    NASA Astrophysics Data System (ADS)

    Makarevich, Evgeniya; Papin, Andrey; Nevedrov, Alexander; Cherkasova, Tatyana; Ignatova, Alla

    2017-11-01

    A large amount of rubber-containing waste, the bulk of which are worn automobile tires and conveyor belts, is produced at coal mining and coal processing enterprises using automobile tires, conveyor belts, etc. The volume of waste generated increases every year and reaches enormous proportions. The methods for processing rubber waste can be divided into three categories: grinding, pyrolysis (high and low temperature), and decomposition by means of chemical solvents. One of the known techniques of processing the worn-out tires is their regeneration, aimed at producing the new rubber substitute used in the production of rubber goods. However, the number of worn tires used for the production of regenerate does not exceed 20% of their total quantity. The new method for processing rubber waste through the pyrolysis process is considered in this article. Experimental data on the upgrading of the carbon residue of pyrolysis by the methods of heavy media separation, magnetic and vibroseparation, and thermal processing are presented.

  4. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  5. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, M.R., E-mail: mrislam1985@yahoo.com; Joardder, M.U.H.; Hasan, S.M.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants formore » the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.« less

  6. Physical and chemical characterization of petroleum products by GC-MS.

    PubMed

    Mendez, A; Meneghini, R; Lubkowitz, J

    2007-01-01

    There is a need for reliable and fast means of monitoring refining, conversion, and upgrading processes aiming to increase the yield of light distillates, and thus, reducing the oil barrel bottoms. By simultaneously utilizing the FID and mass selective detectors while splitting the column effluent in a controlled way, it is possible to obtain identical gas chromatograms and total ion chromatograms from a single run. This means that besides the intensity vs. time graphs, the intensity vs. mass and boiling point can also be obtained. As a result, physical and chemical characterization can be performed in a simple and rapid manner. Experimental results on middle, heavy distillates, and crude oil fractions show clearly the effect of upgrading processes on the chemical composition and yields of diesel, jet fuels, and high vacuum gasoil fractions. The methodology is fully compliant with ASTM D-2887, D-7213, D-6352, and D7169 for simulated distillation and the previously mentioned mass spectrometry standards. The group type analysis correlated satisfactorily with high-performance liquid chromatography data.

  7. Life cycle assessment of biogas upgrading technologies.

    PubMed

    Starr, Katherine; Gabarrell, Xavier; Villalba, Gara; Talens, Laura; Lombardi, Lidia

    2012-05-01

    This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Demand Response Availability Profiles for California in the Year 2020

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Daniel; Sohn, Michael; Piette, Mary Ann

    2014-11-01

    Demand response (DR) is being considered as a valuable resource for keeping the electrical grid stable and efficient, and deferring upgrades to generation, transmission, and distribution systems. However, simulations to determine how much infrastructure upgrades can be deferred are necessary in order to plan optimally. Production cost modeling is a technique, which simulates the dispatch of generators to meet demand and reserves in each hour of the year, at minimal cost. By integrating demand response resources into a production cost model (PCM), their value to the grid can be estimated and used to inform operations and infrastructure planning. DR availabilitymore » profiles and constraints for 13 end-uses in California for the year 2020 were developed by Lawrence Berkeley National Laboratory (LBNL), and integrated into a production cost model by Lawrence Livermore National Laboratory (LLNL), for the California Energy Commission’s Value of Energy Storage and Demand Response for Renewable Integration in California Study. This report summarizes the process for developing the DR availability profiles for California, and their aggregate capabilities. While LBNL provided potential DR hourly profiles for regulation product in the ancillary services market and five-minute load following product in the energy market for LLNL’s study, additional results in contingency reserves and an assumed flexible product are also defined. These additional products are included in the analysis for managing high ramps associated with renewable generation and capacity products and they are also presented in this report.« less

  9. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recent developments in fast pyrolysis of ligno-cellulosic materials.

    PubMed

    Kersten, Sascha; Garcia-Perez, Manuel

    2013-06-01

    Pyrolysis is a thermochemical process to convert ligno-cellulosic materials into bio-char and pyrolysis oil. This oil can be further upgraded or refined for electricity, transportation fuels and chemicals production. At the time of writing, several demonstration factories are considered worldwide aiming at maturing the technology. Research is focusing on understanding the underlying processes at all relevant scales, ranging from the chemistry of cell wall deconstruction to optimization of pyrolysis factories, in order to produce better quality oils for targeted uses. Among the several bio-oil applications that are currently investigated the production and fermentation of pyrolytic sugars explores the promising interface between thermochemistry and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Research and development of low cost processes for integrated solar arrays. Final report, April 15, 1974--January 14, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, C.D.; Kulkarni, S.; Louis, E.

    1976-05-01

    Results of a program to study process routes leading to a low cost large area integrated silicon solar array manufacture for terrestrial applications are reported. Potential processes for the production of solar-grade silicon are evaluated from thermodynamic, economic, and technical feasibility points of view. Upgrading of the present arc-furnace process is found most favorable. Experimental studies of the Si/SiF/sub 4/ transport and purification process show considerable impurity removal and reasonable transport rates. Silicon deformation experiments indicate production of silicon sheet by rolling at 1350/sup 0/C is feasible. Significant recrystallization by strain-anneal technique has been observed. Experimental recrystallization studies using anmore » electron beam line source are discussed. A maximum recrystallization velocity of approximately 9 m/hr is calculated for silicon sheet. A comparative process rating technique based on detailed cost analysis is presented.« less

  12. Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency

    DOE PAGES

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel; ...

    2016-12-01

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  13. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. Themore » catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.« less

  14. The development of the new Eureka process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watari, R.; Shoji, Y.; Ishikawa, T.

    1987-01-01

    Fuji Oil and Chiyoda have jointly developed this new Eureka (ET-II) process. It utilizes the unique technology of the original Eureka process, such as the injection of superheated steam into the reaction atmosphere and the handling of pitch in a molten state. It also combines a cracking heater with a high conversion rate and a single flow type reactor. In comparison with the original Eureka process, the advantages offered by the ET-II process are: Lower capital investment; lower operating cost; higher yield of lighter distillates. The cracked oil products can also be processed in secondary upgrading processes and the pitchmore » can then be utilized as a form of pitch water slurry fuel.« less

  15. Commentary: Should Gender Differences Be Included in the Evolutionary Upgrade to Cognitive Load Theory?

    ERIC Educational Resources Information Center

    Bevilacqua, Andy

    2017-01-01

    Recent upgrades to cognitive load theory suggest that evolutionary processes have shaped the way that working memory processes cultural and social information. According to evolutionarily educational psychologists, some forms of information are processed with lower working memory loads than other forms. The former are evolutionarily salient and…

  16. CERES AuTomAted job Loading SYSTem (CATALYST): An automated workflow manager for satellite data production

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Hillyer, T. N.; Wilkins, J.

    2012-12-01

    The CERES Science Team integrates data from 5 CERES instruments onboard the Terra, Aqua and NPP missions. The processing chain fuses CERES observations with data from 19 other unique sources. The addition of CERES Flight Model 5 (FM5) onboard NPP, coupled with ground processing system upgrades further emphasizes the need for an automated job-submission utility to manage multiple processing streams concurrently. The operator-driven, legacy-processing approach relied on manually staging data from magnetic tape to limited spinning disk attached to a shared memory architecture system. The migration of CERES production code to a distributed, cluster computing environment with approximately one petabyte of spinning disk containing all precursor input data products facilitates the development of a CERES-specific, automated workflow manager. In the cluster environment, I/O is the primary system resource in contention across jobs. Therefore, system load can be maximized with a throttling workload manager. This poster discusses a Java and Perl implementation of an automated job management tool tailored for CERES processing.

  17. Real time analysis with the upgraded LHCb trigger in Run III

    NASA Astrophysics Data System (ADS)

    Szumlak, Tomasz

    2017-10-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC bunch-crossing rate of 40 MHz to 1.1 MHz, a rate at which the entire detector is read out. A second level, implemented in a farm of around 20k parallel processing CPUs, the event rate is reduced to around 12.5 kHz. The LHCb experiment plans a major upgrade of the detector and DAQ system in the LHC long shutdown II (2018-2019). In this upgrade, a purely software based trigger system is being developed and it will have to process the full 30 MHz of bunch crossings with inelastic collisions. LHCb will also receive a factor of 5 increase in the instantaneous luminosity, which further contributes to the challenge of reconstructing and selecting events in real time with the CPU farm. We discuss the plans and progress towards achieving efficient reconstruction and selection with a 30 MHz throughput. Another challenge is to exploit the increased signal rate that results from removing the 1.1 MHz readout bottleneck, combined with the higher instantaneous luminosity. Many charm hadron signals can be recorded at up to 50 times higher rate. LHCb is implementing a new paradigm in the form of real time data analysis, in which abundant signals are recorded in a reduced event format that can be fed directly to the physics analyses. These data do not need any further offline event reconstruction, which allows a larger fraction of the grid computing resources to be devoted to Monte Carlo productions. We discuss how this real-time analysis model is absolutely critical to the LHCb upgrade, and how it will evolve during Run-II.

  18. Industrial Catalysis: A Practical Guide

    NASA Astrophysics Data System (ADS)

    Farrauto, Robert J.

    Every student of chemistry, material science, and chemical engineering should be schooled in catalysis and catalytic reactions. The reason is quite simple; most products produced in the chemical and petroleum industry utilize catalysts to enhance the rate of reaction and selectivity to desired products. Catalysts are also extensively used to minimize harmful byproduct pollutants in environmental applications. Enhanced reaction rates translate to higher production volumes at lower temperatures with smaller and less exotic materials of construction necessary. When a highly selective catalyst is used, large volumes of desired products are produced with virtually no undesirable byproducts. Gasoline, diesel, home heating oil, and aviation fuels owe their performance quality to catalytic processing used to upgrade crude oil.

  19. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  20. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions.

    PubMed

    Bassani, Ilaria; Kougias, Panagiotis G; Treu, Laura; Angelidaki, Irini

    2015-10-20

    This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher efficiency of CH4 production and CO2 conversion was recorded. The consequent increase of pH did not inhibit the process indicating adaptation of microorganisms to higher pH levels. The effects of H2 on the microbial community were studied using high-throughput Illumina random sequences and full-length 16S rRNA genes extracted from the total sequences. The relative abundance of archaeal community markedly increased upon H2 addition with Methanoculleus as dominant genus. The increase of hydrogenotrophic methanogens and syntrophic Desulfovibrio and the decrease of aceticlastic methanogens indicate a H2-mediated shift toward the hydrogenotrophic pathway enhancing biogas upgrading. Moreover, Thermoanaerobacteraceae were likely involved in syntrophic acetate oxidation with hydrogenotrophic methanogens in absence of aceticlastic methanogenesis.

  1. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. ILRS: Current Status and Future Challenges

    NASA Astrophysics Data System (ADS)

    Pearlman, M. R.; Bianco, G.; Merkowitz, S.; Noll, C. E.; Pavlis, E. C.; Shargorodsky, V.; Zhongping, Z.

    2016-12-01

    The International Laser Ranging Service (ILRS) is expanding its ground tracking capability with new stations and upgrades to current stations. Our Russian colleagues have installed new stations in Brasilia and South Africa, and have several other sites in process or in planning. The NASA Space Geodesy Program is preparing equipment for U.S. sites (McDonald and Haleakala) and with the Norwegian National Mapping Agency in Ny Ålesund; further deployments are planned. Upgrades continue at sites in China, and new sites are underway or planned in Europe and India. Stations are moving to higher repetition rates and more efficient detection to enhance satellite interleaving capability; some stations have already implemented automated processes that could lead to around-the-clock operation to increase temporal coverage and to make more efficient use of personnel. The ILRS roster of supported satellites continues to grow with the addition of the LARES satellite to augment tracking for the improvement of the ITRF. New GNSS constellations and geosynchronous satellites now bring the total roster to over 80 satellites - so much so, that new tracking strategies and time and location multiplexing are under consideration. There continues to be strong interest in Lunar Ranging. New applications of one-way and two-way laser ranging include ps-accurate time transfer, laser transponders for interplanetary ranging, and tracking of space debris. New laser ranging data products are being developed, including satellite orbit products, satellite orientation, gravity field products, and products to characterize the quality of data and station performance. This talk will give a brief summary of recent progress, current challenges and a view of the path ahead.

  3. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    PubMed

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification

    EPA Science Inventory

    An economically viable and environmentally benign continuous flow intensified process has been developed to demonstrate the ability to upgrade biomass into potential biofuels, solvents, and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst.

  5. Upgrading Yellow-Poplar Seeds

    Treesearch

    F. T. Bonner; G. L. Switzer

    1971-01-01

    Yellow-poplar seed lots can be upgraded considerably by dewinging in a debearder and then cleaning and separating the seeds into four specific-gravity fractions with a fractionating aspirator or a gravity separator. By this process, lots with an original soundness of 6 to 10 percent were upgraded to between 60 and 65 percent full seeds.

  6. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  7. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  8. Plasma production and preliminary results from the ADITYA Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    R, L. TANNA; J, GHOSH; Harshita, RAJ; Rohit, KUMAR; Suman, AICH; Vaibhav, RANJAN; K, A. JADEJA; K, M. PATEL; S, B. BHATT; K, SATHYANARAYANA; P, K. CHATTOPADHYAY; M, N. MAKWANA; K, S. SHAH; C, N. GUPTA; V, K. PANCHAL; Praveenlal, EDAPPALA; Bharat, ARAMBHADIYA; Minsha, SHAH; Vismay, RAULJI; M, B. CHOWDHURI; S, BANERJEE; R, MANCHANDA; D, RAJU; P, K. ATREY; Umesh, NAGORA; J, RAVAL; Y, S. JOISA; K, TAHILIANI; S, K. JHA; M, V. GOPALKRISHANA

    2018-07-01

    The Ohmically heated circular limiter tokamak ADITYA (R 0 = 75 cm, a = 25 cm) has been upgraded to a tokamak named the ADITYA Upgrade (ADITYA-U) with an open divertor configuration with divertor plates. The main goal of ADITYA-U is to carry out dedicated experiments relevant for bigger fusion machines including ITER, such as the generation and control of runaway electrons, disruption prediction, and mitigation studies, along with an improvement in confinement with shaped plasma. The ADITYA tokamak was dismantled and the assembly of ADITYA-U was completed in March 2016. Integration of subsystems like data acquisition and remote operation along with plasma production and preliminary plasma characterization of ADITYA-U plasmas are presented in this paper.

  9. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phasemore » may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.« less

  10. Food safety - the roles and responsibilities of different sectors

    NASA Astrophysics Data System (ADS)

    Karabasil, N.; Bošković, T.; Dimitrijević, M.; Vasilev, D.; Đorđević, V.; Lakićević, B.; Teodorović, V.

    2017-09-01

    Serbia is a relatively small country but with a long tradition in food production, especially meat and meat products. Serbia, as part of its open negotiation process as a candidate country with the European Union (EU), started to harmonise its legislation with the EU, and has published a set of laws and regulations relating to the hygiene of food production and food safety, the official control of production and the welfare of animals. Therefore, the food safety system in Serbia is based on principles established in the EU. There is a need for cooperation of different sectors (government, food business operators and consumers) in the management of food safety, and every sector has its role and responsibility. This paper aims to provide analytical support for the process of upgrading safety and quality in Serbia’s food sector and explains the roles and responsibilities of different sectors in the food chain.

  11. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOPmore » and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.« less

  12. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, October 30, 1991--January 2, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neal, G.W.

    1991-12-31

    During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will bemore » valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.« less

  13. Development of an advanced, continuous mild gasification process for the production of co-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neal, G.W.

    1991-01-01

    During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will bemore » valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.« less

  14. The new solid target system at UNAM in a self-shielded 11 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.; Flores-Moreno, A.; Trejo-Ballado, F.; Avila-Rodriguez, Miguel A.

    2012-12-01

    A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL's was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.

  15. The new solid target system at UNAM in a self-shielded 11 MeV cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.

    2012-12-19

    A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL's was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.

  16. Converting solid wastes into liquid fuel using a novel methanolysis process.

    PubMed

    Xiao, Ye; He, Peng; Cheng, Wei; Liu, Jacqueline; Shan, Wenpo; Song, Hua

    2016-03-01

    Biomass fast pyrolysis followed by hydrodeoxygenation upgrading is the most popular way to produce upgraded bio-oil from biomass. This process requires large quantities of expensive hydrogen and operates under high pressure condition (70-140 atm). Therefore, a novel methanolysis (i.e., biomass pyrolysis under methane environment) process is developed in this study, which is effective in upgraded bio-oil formation at atmospheric pressure and at about 400-600°C. Instead of using pure methane, simulated biogas (60% CH4+40% CO2) was used to test the feasibility of this novel methanolysis process for the conversion of different solid wastes. The bio-oil obtained from canola straw is slightly less than that from sawdust in term of quantity, but the oil quality from canola straw is better in terms of lower acidity, lower Bromine Number, higher H/C atomic ratio and lower O/C atomic ratio. The municipal solid waste and newspaper can also obtain relatively high oil yields, but the oil qualities of them are both lower than those from sawdust and canola straw. Compared with catalysts of 5%Zn/ZSM-5 and 1%Ag/ZSM-5, the 5%Zn-1%Ag/ZSM-5 catalyst performed much better in terms of upgraded bio-oil yield as well as oil quality. During the methanolysis process, the metal silver may be used to reduce the total acid number of the oil while the metal zinc might act to decrease the bromine number of the oil. The highly dispersed Zn and Ag species on/in the catalyst benefit the achievement of better upgrading performance and make it be a very promising catalyst for bio-oil upgrading by biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bitumen and heavy oil upgrading in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.; Germain, R.R.

    1989-01-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgradermore » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less

  18. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  19. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE PAGES

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...

    2018-01-29

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  20. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  1. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  2. Net-aware bitstreams that upgrade FPGA hardware remotely over the Internet: creating intelligent bitstreams that know where to go, what to do when they get there, and can report back when they're done

    NASA Astrophysics Data System (ADS)

    Casselman, Steve; Schewel, John

    2002-07-01

    Success in the marketplace may well depend upon the ability to upgrade and test hardware designs instantly around the world. An upgrade management strategy requires more than just the bitstream file, email or a JTAG cable. A well-managed methodology, capable of transmitting bitstreams directly into targeted FPGAs over the network or internet is an essential element for a successful FPGA based product strategy. Virtual Computer Corporation"s HOTMan, Bitstream Management Environment combines a feature rich cross-platform API with an Object Oriented Bitstream technique for Remote Upgrading of Hardware over the Internet.

  3. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues.

    PubMed

    Baciocchi, Renato; Carnevale, Ennio; Costa, Giulia; Gavasci, Renato; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela

    2013-12-01

    This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Web-Based Mapping Puts the World at Your Fingertips

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's award-winning Earth Resources Laboratory Applications Software (ELAS) package was developed at Stennis Space Center. Since 1978, ELAS has been used worldwide for processing satellite and airborne sensor imagery data of the Earth's surface into readable and usable information. DATASTAR Inc., of Picayune, Mississippi, has used ELAS software in the DATASTAR Image Processing Exploitation (DIPEx) desktop and Internet image processing, analysis, and manipulation software. The new DIPEx Version III includes significant upgrades and improvements compared to its esteemed predecessor. A true World Wide Web application, this product evolved with worldwide geospatial dimensionality and numerous other improvements that seamlessly support the World Wide Web version.

  5. Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer.

    PubMed

    He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei

    2017-08-01

    We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.

  6. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  7. Mining Upgrades to Reduce Pollution

    EPA Pesticide Factsheets

    Settlement with Southern Coal Corporation and 26 affiliates requires the companies to comprehensively upgrade their coal mining and processing operations to prevent polluted wastewater from threatening rivers and streams and communities across Appalachia.

  8. Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel

    NASA Astrophysics Data System (ADS)

    Alamsyah, R.; Siregar, N. C.; Hasanah, F.

    2017-05-01

    Torrefaction is a pyrolysis process with low heating rate and temperature lower than 300°C in an inert condition which transforms biomass into a low emission solid fuel with relatively high energy. Through the torrefaction process biomass can be altered so that the end product is easy to grind and simple in the supply chain. The research was aimed at designing torrefaction reactor and upgrading energy content of some Indonesian biomass. The biomass used consist of empty fruit bunches of oil palm (EFB), cassava peel solid waste, and cocopeat (waste of coconut fiber). These biomass were formed into briquette and pellet form and were torrified with 300°C temperature during 1.5 hours without air. The results of terrified biomass and non-torrefied biomass were compared after burning on the stove in term of energy content and air emission quality. The result shows that energy content of biomass have increased by 1.1 up to 1.36 times. Meanwhile emission air resulted from its combustion was met with Indonesian emission regulation.

  9. Biomass Gasification Research and Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahring, Birgitte K.

    2014-07-22

    The overall objective of the BioChemCat project was to demonstrate the feasibility of using Advanced Wet Oxidation Steam-Explosion (AWEx) process to open and solubilize lignocellulosic biomass (LBM) coupled to an innovative mixed culture fermentation technology capable of producing a wide range of volatile fatty acids (VFAs) from all sugars present in LBM. The VFAs will then be separated and converted to hydrocarbon biofuel through catalytic upgrading. By continuously removing VFAs as they are produced (extractive fermentation), we were able to recover the VFAs while both eliminating the need for pH adjustment and increasing the fermentation productivity. The recovered VFAs weremore » then esterified and upgraded to hydrocarbon fuels through a parallel series of hydrogenolysis/decarboxylation and dehydration reactions. We also demonstrated that a portion of the residual lignin fraction was solubilized and converted into VFAs, also improving the yields of VFAs. The remaining lignin fraction was then shown to be available (after dewatering and drying) for use as a lignin-enriched fuel pellet or as a feedstock for further processing.« less

  10. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    NASA Astrophysics Data System (ADS)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  11. Wide area methane emissions mapping with airborne IPDA lidar

    NASA Astrophysics Data System (ADS)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  12. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.

    PubMed

    Chaemchuen, Somboon; Kabir, Nawsad Alam; Zhou, Kui; Verpoort, Francis

    2013-12-21

    In the midst of the global climate change phenomenon, mainly caused by fossil fuel burning to provide energy for our daily life and discharge of CO2 into the atmosphere, biogas is one of the important renewable energy sources that can be upgraded and applied as a fuel source for energy in daily life. The advantages of the production of hybrid materials, metal-organic framework (MOF) adsorbents, expected for the biogas upgrading, rely on the bulk separation of CO2 under near-ambient conditions. This review highlights the challenges for MOF adsorbents, which have the greatest upgrading abilities for biogas via selective passage of methane. The key factors improving the ideal MOF materials for these high CO2 capture and selectivity uses for biogas upgrading to produce bio-methane and reduce fossil-fuel CO2 emission will be discussed.

  13. Global longitudinal strain software upgrade: Implications for intervendor consistency and longitudinal imaging studies.

    PubMed

    Castel, Anne-Laure; Menet, Aymeric; Ennezat, Pierre-Vladimir; Delelis, François; Le Goffic, Caroline; Binda, Camille; Guerbaai, Raphaëlle-Ashley; Levy, Franck; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre

    2016-01-01

    Speckle tracking can be used to measure left ventricular global longitudinal strain (GLS). To study the effect of speckle tracking software product upgrades on GLS values and intervendor consistency. Subjects (patients or healthy volunteers) underwent systematic echocardiography with equipment from Philips and GE, without a change in their position. Off-line post-processing for GLS assessment was performed with the former and most recent upgrades from these two vendors (Philips QLAB 9.0 and 10.2; GE EchoPAC 12.1 and 13.1.1). GLS was obtained in three myocardial layers with EchoPAC 13.1.1. Intersoftware and intervendor consistency was assessed. Interobserver variability was tested in a subset of patients. Among 73 subjects (65 patients and 8 healthy volunteers), absolute values of GLS were higher with QLAB 10.2 compared with 9.0 (intraclass correlation coefficient [ICC]: 0.88; bias: 2.2%). Agreement between EchoPAC 13.1.1 and 12.1 varied by myocardial layer (13.1.1 only): midwall (ICC: 0.95; bias: -1.1%), endocardium (ICC: 0.93; bias: 1.6%) and epicardial (ICC: 0.80; bias: -3.3%). Although GLS was comparable for QLAB 9.0 versus EchoPAC 12.1 (ICC: 0.95; bias: 0.5%), the agreement was lower between QLAB 10.2 and EchoPAC 13.1.1 endocardial (ICC: 0.91; bias: 1.1%), midwall (ICC: 0.73; bias: 3.9%) and epicardial (ICC: 0.54; bias: 6.0%). Interobserver variability of all software products in a subset of 20 patients was excellent (ICC: 0.97-0.99; bias: -0.8 to 1.0%). Upgrades of speckle tracking software may be associated with significant changes in GLS values, which could affect intersoftware and intervendor consistency. This finding has important clinical implications for the longitudinal follow-up of patients with speckle tracking echocardiography. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Back to Beginnings: Credentialism, Productivity, and Adam Smith's Division of Labour.

    ERIC Educational Resources Information Center

    Davis, Denis J.

    1981-01-01

    The foundation of factional pressures for upgrading educational credentials in the labor market is examined through a review of human capital and screening theories. The writings of Adam Smith are referenced to show that the claims of the beneficial effects of educational upgrading have been questioned for 200 years. (Author/MLW)

  15. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production.

    PubMed

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib S; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-02-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL process. This biorefinery concept offers a sophisticated and sustainable way of converting organic residuals into a range of high-value biofuel streams in addition to combined heat and power (CHP) production. The primary goal of this study is to provide an initial estimate of the feasibility of such a process. By adding a diesel-quality-fuel output to the process, the product value is increased significantly compared to a conventional BP. An input of 1000 kg h(-1) manure delivers approximately 30-38 kg h(-1) fuel and 38-61 kg h(-1) biogas. The biogas can be used to upgrade the biocrude, to supply the gas grid or for CHP. An estimated 62-84% of the biomass energy can be recovered in the biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  17. Software is a Product...Not

    DTIC Science & Technology

    1992-09-01

    understand the process if we consider software as a service , not a prod- uct. Let me expand on this statement. I do not believe we must do any of the... software -building activities differently. Instead, from the perspective of schedul- ing, budgeting, and delivering software , we should use the service ...While we’re not perfect, we do a fairly its upgrades. The pricing scheme be- good job of managing hardware engi- Software as a service . What is a

  18. A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime.

    PubMed

    Franco-Morgado, Mariana; Alcántara, Cynthia; Noyola, Adalberto; Muñoz, Raúl; González-Sánchez, Armando

    2017-08-15

    Microalgal-bacterial processes have emerged as environmental friendly systems for the cost-effective treatment of anaerobic effluents such as biogas and nutrients-laden digestates. Environmental parameters such as temperature, irradiation, nutrient concentration and pH effect the performance of the systems. In this paper, the potential of a microalgal-bacterial photobioreactor operated under high pH (≈9.5) and high alkalinity to convert biogas into biomethane was evaluated. The influence of the illumination regime (continuous light supply vs 12h/12h light/dark cycles) on the synthetic biogas upgrading efficiency, biomass productivity and nutrient removal efficiency was assessed in a High-Rate Algal Pond interconnected to a biogas absorption bubble column. No significant differences in the removal efficiency of CO 2 and H 2 S (91.5±2% and 99.5%±0.5, respectively) were recorded regardless of the illumination regime. The high fluctuations of the dissolved oxygen concentration during operation under light/dark cycles allowed to evaluate the specific growth rate and the specific partial degradation rate of the microalgae biomass by photosynthesis and respiration, respectively. The respiration reduced the net microalgae biomass productivity under light/dark cycles compared with process operation under the continuous light supply. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach.

    PubMed

    Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars

    2016-01-01

    One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.

  1. NASA CDDIS: Next Generation System

    NASA Astrophysics Data System (ADS)

    Michael, B. P.; Noll, C. E.; Woo, J. Y.; Limbacher, R. I.

    2017-12-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to make space geodesy and geodynamics related data and derived products available in a central archive, to maintain information about the archival of these data, to disseminate these data and information in a timely manner to a global scientific research community, and to provide user based tools for the exploration and use of the archive. As the techniques and data volume have increased, the CDDIS has evolved to offer a broad range of data ingest services, from data upload, quality control, documentation, metadata extraction, and ancillary information. As a major step taken to improve services, the CDDIS has transitioned to a new hardware system and implemented incremental upgrades to a new software system to meet these goals while increasing automation. This new system increases the ability of the CDDIS to consistently track errors and issues associated with data and derived product files uploaded to the system and to perform post-ingest checks on all files received for the archive. In addition, software to process new data sets and changes to existing data sets have been implemented to handle new formats and any issues identified during the ingest process. In this poster, we will discuss the CDDIS archive in general as well as review and contrast the system structures and quality control measures employed before and after the system upgrade. We will also present information about new data sets and changes to existing data and derived products archived at the CDDIS.

  2. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  3. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    DOEpatents

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  4. Near-Real-Time Satellite Cloud Products for Icing Detection and Aviation Weather over the USA

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Nguyen, Louis; Murray, J. J.; Heck, Patrick W.; Khaiyer, Mandana M.

    2003-01-01

    A set of physically based retrieval algorithms has been developed to derive from multispectral satellite imagery a variety of cloud properties that can be used to diagnose icing conditions when upper-level clouds are absent. The algorithms are being applied in near-real time to the Geostationary Operational Environmental Satellite (GOES) data over Florida, the Southern Great Plains, and the midwestern USA. The products are available in image and digital formats on the world-wide web. The analysis system is being upgraded to analyze GOES data over the CONUS. Validation, 24-hour processing, and operational issues are discussed.

  5. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation.

    PubMed

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo

    2015-02-01

    This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Influence of the microwave irradiation dewatering on the combustion characteristics of Chinese brown coals

    NASA Astrophysics Data System (ADS)

    Ge, Lichao; Feng, Hongcui; Xu, Chang; Zhang, Yanwei; Wang, Zhihua

    2018-02-01

    This study investigates the influence of microwave irradiation on coal composition, pore structure, coal rank, and combustion characteristics of typical brown coals in China. Results show that the upgrading process significantly decreased the inherent moisture, and increased calorific value and fixed carbon content. After upgrading, pore distribution extended to micropore region, oxygen functional groups were reduced and destroyed, and the apparent aromaticity increased suggesting an improvement in the coal rank. Based on thermogravimetric analysis, the combustion processes of upgraded coals were delayed toward the high temperature region, and the temperatures of ignition, peak and burnout increased. Based on the average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and a high rank coal. In ignition and burnout segments, the activation energy increased but exhibited a decrease in the combustion stage.

  7. GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξ, Ξ and Ξ

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang

    2010-06-01

    An upgraded (second) version of the package GENXICC (A Generator for Hadronic Production of the Double Heavy Baryons Ξ, Ξ and Ξ by C.H. Chang, J.X. Wang and X.G. Wu [its first version in: Comput. Phys. Comm. 177 (2007) 467]) is presented. Users, with this version being implemented in PYTHIA and a GNU C compiler, may simulate full events of these processes in various experimental environments conveniently. In comparison with the previous version, in order to implement it in PYTHIA properly, a subprogram for the fragmentation of the produced double heavy diquark to the relevant baryon is supplied and the interface of the generator to PYTHIA is changed accordingly. In the subprogram, with explanation, certain necessary assumptions (approximations) are made in order to conserve the momenta and the QCD 'color' flow for the fragmentation. Program summaryProgram title: GENXICC2.0 Catalogue identifier: ADZJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 102 482 No. of bytes in distributed program, including test data, etc.: 1 469 519 Distribution format: tar.gz Programming language: Fortran 77/90 Computer: Any LINUX based on PC with FORTRAN 77 or FORTRAN 90 and GNU C compiler as well Operating system: Linux RAM: About 2.0 MByte Classification: 11.2 Catalogue identifier of previous version: ADZJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 177 (2007) 467 Does the new version supersede the previous version?: No Nature of problem: Hadronic production of double heavy baryons Ξ, Ξ and Ξ Solution method: The code is based on NRQCD framework. With proper options, it can generate weighted and un-weighted events of hadronic double heavy baryon production. When the hadronizations of the produced jets and double heavy diquark are taken into account in the production, the upgraded version with proper interface to PYTHIA can generate full events. Reasons for new version: Responding to the feedback from users, we improve the generator mainly by carefully completing the 'final non-perturbative process', i.e. the formulation of the double heavy baryon from relevant intermediate diquark. In the present version, the information for fragmentation about momentum-flow and the color-flow, that is necessary for PYTHIA to generate full events, is retained although reasonable approximations are made. In comparison with the original version, the upgraded one can implement it in PYTHIA properly to do the full event simulation of the double heavy baryon production. Summary of revisions:We try to explain the treatment of the momentum distribution of the process more clearly than the original version, and show how the final baryon is generated through the typical intermediate diquark precisely. We present color flow of the involved processes precisely and the corresponding changes for the program are made. The corresponding changes of the program are explained in the paper. Restrictions: The color flow, particularly, in the piece of code programming of the fragmentation from the produced colorful double heavy diquark into a relevant double heavy baryon, is treated carefully so as to implement it in PYTHIA properly. Running time: It depends on which option is chosen to configure PYTHIA when generating full events and also on which mechanism is chosen to generate the events. Typically, for the most complicated case with gluon-gluon fusion mechanism to generate the mixed events via the intermediate diquark in (cc)[ and (cc)[ states, under the option, IDWTUP=1, to generate 1000 events, takes about 20 hours on a 1.8 GHz Intel P4-processor machine, whereas under the option, IDWTUP=3, even to generate 106 events takes about 40 minutes on the same machine.

  8. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99-125.

    PubMed

    Chen, Changjing; Cai, Di; Qin, Peiyong; Chen, Biqiang; Wang, Zheng; Tan, Tianwei

    2018-06-01

    Hybrid process that integrated fermentation, pervaporation and esterification was established aiming to improve the economic feasibility of the conventional acetone-butanol-ethanol (ABE) fermentation process. Candida sp 99-125 cells were used as full-cell catalyst. The feasibility of batch and fed-batch esterification using the ABE permeate of pervaporation (ranging from 286.9 g/L to 402.9 g/L) as substrate were compared. Valuable butyl oleate was produced along with ethyl oleate. For the batch esterification, due to severe inhibition of substrate to lipase, the yield of butyl oleate and ethyl oleate were only 24.9% and 3.3%, respectively. In contrast, 75% and 11.8% of butyl oleate and ethyl oleate were obtained, respectively, at the end of the fed-batch esterification. The novel integration process provides a promising strategy for in situ upgrading ABE products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

    NASA Astrophysics Data System (ADS)

    Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele

    2010-01-01

    The main goal of this paper is to analyze the innovative process of production of biogas (via fermentation processes) using marine macroalgae as feedstock in a pilot project plant in Augusta (Sicily, Italy). Algae, during their growth, have the capacity to assimilate nutrients and thus subsequent harvesting of the algal biomass recovers the nutrients from biowaste sources giving the possibility to transform negative environmental externalities in positive mainly in terms of eutrophication and climate change impact categories. The paper presents a novel environmental technology for the production of biogas and 2nd generation biofuel (liquid biomethane) after an upgrading process through the use of a cryogenic technology. The paper would also like to make the first attempt at understanding the possibility to implement this innovative technology in the Latvian context. The first calculations and assumptions for the Life Cycle Inventory for a further Life Cycle Assessment are presented.

  10. Direct liquefaction Proof-of-Concept facility. Final technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.

    1995-08-01

    This report presents the results of work which included extensive modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the first PDU run. The 58-day Run 1 demonstrated scale-up of the Catalytic Two-Stage Liquefaction (CTSL Process) on Illinois No. 6 coal to produce distillate liquid products at a rate of up to 5 barrels per to of moisture-ash-free coal. The Kerr McGee Rose-SR unit from Wilsonville was redesigned and installed next to the US Filter installation to allow a comparison of the two solids removal systems. Also included was a new enclosed reactor tower,more » upgraded computer controls and a data acquisition system, an alternate power supply, a newly refurbished reactor, an in-line hydrotreater, interstage sampling system, coal handling unit, a new ebullating pump, load cells and improved controls and remodeled preheaters. Distillate liquid yields of 5 barrels/ton of moisture ash free coal were achieved. Coal slurry recycle rates were reduced from the 2--2.5 to 1 ratio demonstrated at Wilsonville to as low as 0.9 to 1. Coal feed rates were increased during the test by 50% while maintaining process performance at a marginally higher reactor severity. Sulfur in the coal was reduced from 4 wt% to ca. 0.02 wt% sulfur in the clean distillate fuel product. More than 3,500 gallons of distillate fuels were collected for evaluation and upgrading studies. The ROSE-SR Process was operated for the first time with a pentane solvent in a steady-state model. The energy rejection of the ash concentrate was consistently below prior data, being as low as 12%, allowing improved liquid yields and recovery.« less

  11. Dark Forces at DAΦNE

    NASA Astrophysics Data System (ADS)

    Curciarello, F.

    2015-06-01

    The DAΦNE Φ-factory is an ideal place to search for forces beyond the Standard Model. By using the KLOE detector, limits on U-boson coupling ɛ2 of the order of 10-5 ÷ 10-7 and on the αD × ɛ2 product have been set through the study of the Φ Dalitz decay, Uγ events and the Higgsstrahlung process. An improvement of these limits is expected thanks to the KLOE detector and DAΦNE upgrades of KLOE-2.

  12. Literature survey of properties of synfuels derived from coal

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-01-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  13. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.

    PubMed

    Gasser, Christoph A; Čvančarová, Monika; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2017-03-01

    Lignin, a complex three-dimensional amorphous polymer, is considered to be a potential natural renewable resource for the production of low-molecular-weight aromatic compounds. In the present study, a novel sequential lignin treatment method consisting of a biocatalytic oxidation step followed by a formic acid-induced lignin depolymerization step was developed and optimized using response surface methodology. The biocatalytic step employed a laccase mediator system using the redox mediator 1-hydroxybenzotriazole. Laccases were immobilized on superparamagnetic nanoparticles using a sorption-assisted surface conjugation method allowing easy separation and reuse of the biocatalysts after treatment. Under optimized conditions, as much as 45 wt% of lignin could be solubilized either in aqueous solution after the first treatment or in ethyl acetate after the second (chemical) treatment. The solubilized products were found to be mainly low-molecular-weight aromatic monomers and oligomers. The process might be used for the production of low-molecular-weight soluble aromatic products that can be purified and/or upgraded applying further downstream processes.

  14. The Joint Polar Satellite System (JPSS) Program's Algorithm Change Process (ACP): Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Griffin, Ashley

    2017-01-01

    The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.

  15. The upgraded ATLAS and CMS detectors and their physics capabilities.

    PubMed

    Wells, Pippa S

    2015-01-13

    The update of the European Strategy for Particle Physics from 2013 states that Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting 10 times more data than in the initial design. The plans for upgrading the ATLAS and CMS detectors so as to maintain their performance and meet the challenges of increasing luminosity are presented here. A cornerstone of the physics programme is to measure the properties of the 125GeV Higgs boson with the highest possible precision, to test its consistency with the Standard Model. The high-luminosity data will allow precise measurements of the dominant production and decay modes, and offer the possibility of observing rare modes including Higgs boson pair production. Direct and indirect searches for additional Higgs bosons beyond the Standard Model will also continue.

  16. Human Factors Principles in Information Dashboard Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques V.; St. Germain, Shawn

    When planning for control room upgrades, nuclear power plants have to deal with a multitude of engineering and operational impacts. This will inevitably include several human factors considerations, including physical ergonomics of workstations, viewing angles, lighting, seating, new communication requirements, and new concepts of operation. In helping nuclear power utilities to deal with these challenges, the Idaho National Laboratory (INL) has developed effective methods to manage the various phases of the upgrade life cycle. These methods focus on integrating human factors engineering processes with the plant’s systems engineering process, a large part of which is the development of end-state conceptsmore » for control room modernization. Such an end-state concept is a description of a set of required conditions that define the achievement of the plant’s objectives for the upgrade. Typically, the end-state concept describes the transition of a conventional control room, over time, to a facility that employs advanced digital automation technologies in a way that significantly improves system reliability, reduces human and control room-related hazards, reduces system and component obsolescence, and significantly improves operator performance. To make the various upgrade phases as concrete and as visible as possible, an end-state concept would include a set of visual representations of the control room before and after various upgrade phases to provide the context and a framework within which to consider the various options in the upgrade. This includes the various control systems, human-system interfaces to be replaced, and possible changes to operator workstations. This paper describes how this framework helps to ensure an integrated and cohesive outcome that is consistent with human factors engineering principles and also provide substantial improvement in operator performance. The paper further describes the application of this integrated approach in the strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.« less

  17. PGAS in-memory data processing for the Processing Unit of the Upgraded Electronics of the Tile Calorimeter of the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Ohene-Kwofie, Daniel; Otoo, Ekow

    2015-10-01

    The ATLAS detector, operated at the Large Hadron Collider (LHC) records proton-proton collisions at CERN every 50ns resulting in a sustained data flow up to PB/s. The upgraded Tile Calorimeter of the ATLAS experiment will sustain about 5PB/s of digital throughput. These massive data rates require extremely fast data capture and processing. Although there has been a steady increase in the processing speed of CPU/GPGPU assembled for high performance computing, the rate of data input and output, even under parallel I/O, has not kept up with the general increase in computing speeds. The problem then is whether one can implement an I/O subsystem infrastructure capable of meeting the computational speeds of the advanced computing systems at the petascale and exascale level. We propose a system architecture that leverages the Partitioned Global Address Space (PGAS) model of computing to maintain an in-memory data-store for the Processing Unit (PU) of the upgraded electronics of the Tile Calorimeter which is proposed to be used as a high throughput general purpose co-processor to the sROD of the upgraded Tile Calorimeter. The physical memory of the PUs are aggregated into a large global logical address space using RDMA- capable interconnects such as PCI- Express to enhance data processing throughput.

  18. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    NASA Astrophysics Data System (ADS)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  19. Upgrading plant amino acids through cattle to improve the nutritional value for humans: effects of different production systems.

    PubMed

    Patel, M; Sonesson, U; Hessle, A

    2017-03-01

    Efficiency in animal protein production can be defined in different ways, for example the amount of human-digestible essential amino acids (HDEAA) in the feed ration relative to the amount of HDEAA in the animal products. Cattle production systems are characterised by great diversity and a wide variety of feeds and feed ration compositions, due to ruminants' ability to digest fibrous materials inedible to humans such as roughage and by-products from the food and biofuel industries. This study examined the upgrading of protein quality through cattle by determining the quantity of HDEAA in feeds and animal products and comparing different milk and beef production systems. Four different systems for milk and beef production were designed, a reference production system for milk and beef representing typical Swedish production systems today and three alternative improved systems: (i) intensive cattle production based on maize silage, (ii) intensive systems based on food industry by-products for dairy cows and high-quality forage for beef cattle, and (iii) extensive systems based on forage with only small amounts of concentrate. In all four production systems, the quantity of HDEAA in the products (milk and meat) generally exceeded the quantity of HDEAA in the feeds. The intensive production models for beef calves generally resulted in output of the same magnitude as input for most HDEAA. However, in beef production based on calves from dairy cows, the intensive rearing systems resulted in lower output than input of HDEAA. For the extensive models, the amounts of HDEAA in meat were of the same magnitude as the amounts in the feeds. The extensive models with beef calves from suckler cows resulted in higher output in meat than input in feeds for all HDEAA. It was concluded that feeding cattle plants for production of milk and meat, instead of using the plants directly as human food, generally results in an upgrading of both the quantity and quality of protein, especially when extensive, forage-based production models are used. The results imply that the key to efficiency is the utilisation of human-inedible protein by cattle and justifies their contribution to food production, especially in regions where grasslands and/or forage production has comparative benefits over plant food production. By fine-tuning estimation of the efficiency of conversion from human-edible protein to HDEAA, comparisons of different sources of protein production may be more complete and the magnitude of amino acid upgrading in plants through cattle more obvious.

  20. PACS archive upgrade and data migration: clinical experiences

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Sarti, Dennis A.; Huang, H. K.; Donnelly, John

    2002-05-01

    Saint John's Health Center PACS data volumes have increased dramatically since the hospital became filmless in April of 1999. This is due in part of continuous image accumulation, and the integration of a new multi-slice detector CT scanner into PACS. The original PACS archive would not be able to handle the distribution and archiving load and capacity in the near future. Furthermore, there is no secondary copy backup of all the archived PACS image data for disaster recovery purposes. The purpose of this paper is to present a clinical and technical process template to upgrade and expand the PACS archive, migrate existing PACs image data to the new archive, and provide a back-up and disaster recovery function not currently available. Discussion of the technical and clinical pitfalls and challenges involved in this process will be presented as well. The server hardware configuration was upgraded and a secondary backup implemented for disaster recovery. The upgrade includes new software versions, database reconfiguration, and installation of a new tape jukebox to replace the current MOD jukebox. Upon completion, all PACS image data from the original MOD jukebox was migrated to the new tape jukebox and verified. The migration was performed during clinical operation continuously in the background. Once the data migration was completed the MOD jukebox was removed. All newly acquired PACS exams are now archived to the new tape jukebox. All PACs image data residing on the original MOD jukebox have been successfully migrated into the new archive. In addition, a secondary backup of all PACS image data has been implemented for disaster recovery and has been verified using disaster scenario testing. No PACS image data was lost during the entire process and there was very little clinical impact during the entire upgrade and data migration. Some of the pitfalls and challenges during this upgrade process included hardware reconfiguration for the original archive server, clinical downtime involved with the upgrade, and data migration planning to minimize impact on clinical workflow. The impact was minimized with a downtime contingency plan.

  1. Development of Regulatory Documents for Creation (Upgrade) of Physical Protection Systems under the Russian/American MPC&A Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izmaylov, Alexandr V.; Babkin, Vladimir; Kurov, Valeriy

    2009-10-07

    The development of new or the upgrade of existing physical protection systems (PPS) for nuclear facilities involves a multi-step and multidimensional process. The process consists of conceptual design, design, and commissioning stages. The activities associated with each of these stages are governed by Russian government and agency regulations. To ensure a uniform approach to development or upgrading of PPS at Russian nuclear facilities, the development of a range of regulatory and methodological documents is necessary. Some issues of PPS development are covered by the regulatory documents developed by Rosatom, as well as other Russian agencies with nuclear facilities under theirmore » control. This regulatory development has been accomplished as part of the U.S.-Russian MPC&A cooperation or independently by the Russian Federation. While regulatory coverage is extensive, there are a number of issues such as vulnerability analysis, effectiveness assessment, upgrading PPS, and protection of information systems for PPS that require additional regulations be developed. This paper reports on the status of regulatory coverage for PPS development or upgrade, and outlines a new approach to regulatory document development. It describes the evolutionary process of regulatory development through experience gained in the design, development and implementation of PPS as well as experience gained through the cooperative efforts of Russian and U.S. experts involved the development of MPC&A regulations.« less

  2. Technologies for Upgrading Light Water Reactor Outlet Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less

  3. Multifamily Housing Rehabilitation Process Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Marshall L.; Francisco, Abby; Roberts, Sydney G.

    Rea Ventures Group, LLC, (Rea Ventures) partnered with Southface Energy Institute (Southface) on the rehabilitation of 418 low-income rental multifamily apartments located at 14 different properties in Georgia (Climate Zones 2-4). These 22-year old, individually-metered units were arranged in rowhouse or townhouse style units. Rehabilitation plans were developed using a process prescribed by the US Department of Agriculture (USDA) Rural Development program, who partially funded the building upgrades. The USDA is responsible for building, upgrading, and subsidizing housing in rural areas nationwide. In 2012, over $100 million was allocated in grants and loans. Due to the unique financing mechanism asmore » well as long-term ownership requirements, property owners are especially motivated to invest in upgrades that will increase durability and tenant retention. These buildings represent a large stock of rural affordable housing that have the potential for significant energy and cost savings for property owners and tenants. Southface analyzed the energy upgrade potential of one stereotypical property in the Rea Ventures portfolio. This study will provide insight into the most cost-effective, implementable energy efficiency and durability upgrades for this age multifamily housing, having an enormous impact not only on the portfolio of Rea Ventures but on the vast USDA and larger Federal portfolio. Additionally, Southface will identify gaps in the current capital needs assessment process, examine available audit and simulation tools and protocols, and evaluate additional auditor training or certification needs.« less

  4. Hydrodeoxygenation of bio-oil using different mesoporous supports of NiMo catalysts

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kristiani, Anis

    2017-11-01

    Biomass as a renewable and sustainable resources need to utilize in many applications, especially for energy application. One of its energy application is about converting biomass into bio-oil. High oxygen content in bio-oil needs to be upgraded through hydrodeoxygenation process before being used as transportation fuel. The development of heterogenenous catalysts become an important aspect in hydrodeoxygenation process, in particular the upgrading process of bio-oil. Several supporting mesoporous materials, such as TiO2, Al2O3 and MCM-41 have unique properties, both physical and chemical properties that can be utilized in various application, including catalyst. These heterogeneous catalysts were modified their catalytic properties by impregnation with some transition metal. The effect of various supporting material and transition metal impregnated were also studied. Their chemical and physical properties were characterized by X-Ray Diffraction, X-Ray Fluororesence, Fourier Transform Infra-Red, and Surface Area Analyzer. The result of characterizations showed that Ni-Mo/TiO2 is more crystalline than Ni-Mo/MCM-41 and Ni-Mo/Al2O3. In other hand, the specific surface area of Ni-Mo/TiO2 is lower than others. These heterogeneous catalysts were tested their catalytic activity in upgrading bio-oil. The liquid products produced were analyzed by using Elemental Analyzer. The result of catalytic activity tests showed catalysts resulted Ni-Mo/TiO2 exhibits best catalytic activity in hydrodeoxygenation process. The oxygen content decreased significantly from 41.61% to 26.22% by using Ni-Mo/TiO2. Compared with Ni-Mo/TiO2, Ni-Mo/MCM-41 and Ni-Mo/Al2O3 decrease lower to 33.22% % and 28.34%, respectively. Ni-Mo/TiO2 also resulted the highest Deoxygenation Degree (DOD) as of 55% compared with Ni-Mo/MCM-41 and Ni-Mo/Al2O3 as of 31.99 % and 47.99%, respectively.

  5. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    PubMed

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Innovative technology conserves resources and generates savings: a case study from the Sunnybrook Regional Processing Centre.

    PubMed

    Karim, Abdool Z

    2009-01-01

    The regional processing centre at Sunnybrook Health Sciences Centre recently faced the substantial challenge of increasing cleaning capacity to meet the current workload and anticipated future demand without increasing its operating budget. The solution, upgrading its cleaning and decontamination system to a highly automated system, met both objectives. An analysis of the impact of the change found that the new system provided additional benefits, including improved productivity and cleaning quality; decreased costs; reduced water, electricity and chemical use; improved worker safety and morale; and decreased overtime. Investing in innovative technology improved key departmental outcomes while meeting institutional environmental and cost savings objectives.

  7. Autocatalytic Pyrolysis of Wastewater Biosolids for Product Upgrading.

    PubMed

    Liu, Zhongzhe; McNamara, Patrick; Zitomer, Daniel

    2017-09-05

    The main goals for sustainable water resource recovery include maximizing energy generation, minimizing adverse environmental impacts, and recovering beneficial resources. Wastewater biosolids pyrolysis is a promising technology that could help facilities reach these goals because it produces biochar that is a valuable soil amendment as well as bio-oil and pyrolysis gas (py-gas) that can be used for energy. The raw bio-oil, however, is corrosive; therefore, employing it as fuel is challenging using standard equipment. A novel pyrolysis process using wastewater biosolids-derived biochar (WB-biochar) as a catalyst was investigated to decrease bio-oil and increase py-gas yield for easier energy recovery. WB-biochar catalyst increased the py-gas yield nearly 2-fold, while decreasing bio-oil production. The catalyzed bio-oil also contained fewer constituents based on GC-MS and GC-FID analyses. The energy shifted from bio-oil to py-gas, indicating the potential for easier on-site energy recovery using the relatively clean py-gas. The metals contained in wastewater biosolids played an important role in upgrading pyrolysis products. The Ca and Fe in WB-biochar reduced bio-oil yield and increased py-gas yield. The py-gas energy increase may be especially useful at water resource recovery facilities that already combust anaerobic digester biogas for energy since it may be possible to blend biogas and py-gas for combined use.

  8. Multifunctional two-stage riser fluid catalytic cracking process.

    PubMed

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  9. Task Management in the New ATLAS Production System

    NASA Astrophysics Data System (ADS)

    De, K.; Golubkov, D.; Klimentov, A.; Potekhin, M.; Vaniachine, A.; Atlas Collaboration

    2014-06-01

    This document describes the design of the new Production System of the ATLAS experiment at the LHC [1]. The Production System is the top level workflow manager which translates physicists' needs for production level processing and analysis into actual workflows executed across over a hundred Grid sites used globally by ATLAS. As the production workload increased in volume and complexity in recent years (the ATLAS production tasks count is above one million, with each task containing hundreds or thousands of jobs) there is a need to upgrade the Production System to meet the challenging requirements of the next LHC run while minimizing the operating costs. In the new design, the main subsystems are the Database Engine for Tasks (DEFT) and the Job Execution and Definition Interface (JEDI). Based on users' requests, DEFT manages inter-dependent groups of tasks (Meta-Tasks) and generates corresponding data processing workflows. The JEDI component then dynamically translates the task definitions from DEFT into actual workload jobs executed in the PanDA Workload Management System [2]. We present the requirements, design parameters, basics of the object model and concrete solutions utilized in building the new Production System and its components.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleummore » fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.« less

  11. Modernization of the Caltech/USGS Southern California Seismic Network

    NASA Astrophysics Data System (ADS)

    Bhadha, R.; Devora, A.; Hauksson, E.; Johnson, D.; Thomas, V.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Cone, G.; Koesterer, C.

    2009-12-01

    The USGS/ANSS/ARRA program is providing Government Furnished Equipment (GFE), and two year funding for upgrading the Caltech/USGS Southern California Seismic Network (SCSN). The SCSN is the modern digital ground motion seismic network in southern California that monitors seismicity and provides real-time earthquake information products such as rapid notifications, moment tensors, and ShakeMap. The SCSN has evolved through the years and now consists of several well-integrated components such as Short-Period analog, TERRAscope, digital stations, and real-time strong motion stations, or about 300 stations. In addition, the SCSN records data from about 100 stations provided by partner networks. To strengthen the ability of SCSN to meet the ANSS performance standards, we will install GFE and carry out the following upgrades and improvements of the various components of the SCSN: 1) Upgrade of dataloggers at seven TERRAscope stations; 2) Upgrade of dataloggers at 131 digital stations and upgrade broadband sensors at 25 stations; 3) Upgrade of SCSN metadata capabilities; 4) Upgrade of telemetry capabilities for both seismic and GPS data; and 5) Upgrade balers at stations with existing Q330 dataloggers. These upgrades will enable the SCSN to meet the ANSS Performance Standards more consistently than before. The new equipment will improve station uptimes and reduce maintenance costs. The new equipment will also provide improved waveform data quality and consequently superior data products. The data gaps due to various outages will be minimized, and ‘late’ data will be readily available through retrieval from on-site storage. Compared to the outdated equipment, the new equipment will speed up data delivery by about 10 sec, which is fast enough for earthquake early warning applications. The new equipment also has about a factor of ten lower consumption of power. We will also upgrade the SCSN data acquisition and data center facilities, which will improve the SCSN performance and metadata availability. We will improve existing software to facilitate the update of metadata, and to improve the interoperability between SeisNetWatch and our database of metadata. The improved software will also be made available to other regional networks as part of the CISN software distribution. These upgrades, will greatly improve the robustness of the SCSN, and facilitate higher quality and more reliable earthquake monitoring than was available before in southern California. The modernized SCSN will contribute to more coordinated search and rescue as well as economic resilience following a major earthquake by providing accurate earthquake information, and thus facilitate rapid deployment of field crews and rapid business resumption. Further, advances in seismological research will be facilitated by the high quality seismic data that will be collected in one of the most seismically active areas in the contiguous US.

  12. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    NASA Technical Reports Server (NTRS)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  13. 36 CFR 1193.2 - Scoping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accessibility, usability, and compatibility of new products and existing products which undergo substantial change or upgrade, or for which new releases are distributed. This part does not apply to minor or insubstantial changes to existing products that do not affect functionality. ...

  14. HMI conventions for process control graphics.

    PubMed

    Pikaar, Ruud N

    2012-01-01

    Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.

  15. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  16. Bio-oil based biorefinery strategy for the production of succinic acid.

    PubMed

    Wang, Caixia; Thygesen, Anders; Liu, Yilan; Li, Qiang; Yang, Maohua; Dang, Dan; Wang, Ze; Wan, Yinhua; Lin, Weigang; Xing, Jianmin

    2013-01-01

    Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production.

  17. Bio-oil based biorefinery strategy for the production of succinic acid

    PubMed Central

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  18. 40 CFR 280.200 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the production of crude oil or other forms of petroleum (as defined in § 280.12) as well as the..., distillation, separation, conversion, upgrading, and finishing of refined petroleum or petroleum products. (3...

  19. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Brodzik, M. J.; Rittger, K.; Bormann, K. J.; Burgess, A. B.; Zimdars, P.; McGibbney, L. J.; Goodale, C. E.; Joyce, M.

    2015-12-01

    The Snow Data System at NASA JPL includes a data processing pipeline built with open source software, Apache 'Object Oriented Data Technology' (OODT). It produces a variety of data products using inputs from satellites such as MODIS, VIIRS and Landsat. Processing is carried out in parallel across a high-powered computing cluster. Algorithms such as 'Snow Covered Area and Grain-size' (SCAG) and 'Dust Radiative Forcing in Snow' (DRFS) are applied to satellite inputs to produce output images that are used by many scientists and institutions around the world. This poster will describe the Snow Data System, its outputs and their uses and applications, along with recent advancements to the system and plans for the future. Advancements for 2015 include automated daily processing of historic MODIS data for SCAG (MODSCAG) and DRFS (MODDRFS), automation of SCAG processing for VIIRS satellite inputs (VIIRSCAG) and an updated version of SCAG for Landsat Thematic Mapper inputs (TMSCAG) that takes advantage of Graphics Processing Units (GPUs) for faster processing speeds. The pipeline has been upgraded to use the latest version of OODT and its workflows have been streamlined to enable computer operators to process data on demand. Additional products have been added, such as rolling 8-day composites of MODSCAG data, a new version of the MODSCAG 'annual minimum ice and snow extent' (MODICE) product, and recoded MODSCAG data for the 'Satellite Snow Product Intercomparison and Evaluation Experiment' (SnowPEx) project.

  20. Coal-oil coprocessing at HTI - development and improvement of the technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stalzer, R.H.; Lee, L.K.; Hu, J.

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less

  1. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil thatmore » is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.« less

  2. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Lignin Valorization: Emerging Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T

    Lignin, an aromatic biopolymer found in plant cell walls, is a key component of lignocellulosic biomass and generally utilized for heat and power. However, lignin's chemical composition makes it an attractive source for biological and catalytic conversion to fuels and chemicals. Bringing together experts from biology, catalysis, engineering, analytical chemistry, and techno-economic/life-cycle analysis, Lignin Valorization presents a comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies. Chapters will specifically focus on the production of fuels and chemicals from lignin and topics covered include (i) methods for isolating lignin in the context of the lignocellulosic biorefinery, (ii)more » thermal, chemo-catalytic, and biological methods for lignin depolymerization, (iii) chemo-catalytic and biological methods for upgrading lignin, (iv) characterization of lignin, and (v) techno-economic and life-cycle analysis of integrated processes to utilize lignin in an integrated biorefinery. The book provides the latest breakthroughs and challenges in upgrading lignin to fuels and chemicals for graduate students and researchers in academia, governmental laboratories, and industry interested in biomass conversion.« less

  4. LANDSAT-4 MSS Geometric Correction: Methods and Results

    NASA Technical Reports Server (NTRS)

    Brooks, J.; Kimmer, E.; Su, J.

    1984-01-01

    An automated image registration system such as that developed for LANDSAT-4 can produce all of the information needed to verify and calibrate the software and to evaluate system performance. The on-line MSS archive generation process which upgrades systematic correction data to geodetic correction data is described as well as the control point library build subsystem which generates control point chips and support data for on-line upgrade of correction data. The system performance was evaluated for both temporal and geodetic registration. For temporal registration, 90% errors were computed to be .36 IFOV (instantaneous field of view) = 82.7 meters) cross track, and .29 IFOV along track. Also, for actual production runs monitored, the 90% errors were .29 IFOV cross track and .25 IFOV along track. The system specification is .3 IFOV, 90% of the time, both cross and along track. For geodetic registration performance, the model bias was measured by designating control points in the geodetically corrected imagery.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carruth, R.C.; Sotos, W.G.

    As the nation`s nuclear power plants age, the need to consider upgrading of their electronic protection and control systems becomes more urgent. Hardware obsolescence and mechanical wear out resulting from frequent calibration and surveillance play a major role in defining their useful life. At Cook Nuclear Plant, a decision was made to replace a major portion of the plant`s protection and control systems with newer technology. This paper describes the engineering processes involved in this successful upgrade and explains the basis for many decisions made while performing the digital upgrade.

  6. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques; Clefton, Gordon; Joe, Jeffrey

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by variousmore » resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.« less

  7. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  8. The journey

    NASA Astrophysics Data System (ADS)

    Cohen, Lori A.

    1995-12-01

    Kodak Optical Products has embarked on a journey that will ultimately lead to manufacturing excellence and total customer satisfaction. With quality as our compass we have already obtained ISO 9001 and Manufacturing Resource Planning (MRP) II certifications. Seeking and attaining these certifications enabled us to understand and enhance fundamentals relative to the operation of our business. This has provided a solid foundation from which we can launch continuous improvement activities. Now we continue our journey to such destinations as 10X reduction in both defects and cycle time, measuring and reducing our cost of poor quality, and upgrading our quality information system. Our presentation will emphasize our 10X improvement process and how it applies to high-volume production of precision plastic optics.

  9. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space andmore » time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.« less

  10. Acquainting Future Office Employees with Productivity-Improvement Techniques.

    ERIC Educational Resources Information Center

    Quible, Zane K.

    1982-01-01

    Examines factors affecting productivity (government regulations, energy costs, decline in the work ethic, capital investment, number of service workers, work force characteristics, management practices, and unions), and techniques to improve productivity (employee involvement, job structure, communication, flexitime, employee upgrading, incentive…

  11. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    NASA Astrophysics Data System (ADS)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  12. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  13. Catalytic cracking of fast and tail gas reactive pyrolysis bio-oils over HZSM-5

    USDA-ARS?s Scientific Manuscript database

    While hydrodeoxygenation (HDO) of pyrolysis oil is well understood as an upgrading method, the high processing pressures associated with it alone justify the exploration of alternative upgrading solutions, especially those that could adapt pyrolysis oils into the existing refinery infrastructure. Ca...

  14. Fuel quality/processing study. Volume 3: Fuel upgrading studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Bruggink, P.; Sinnett, C.

    1981-01-01

    The methods used to calculate the refinery selling prices for the turbine fuels of low quality are described. Detailed descriptions and economics of the upgrading schemes are included. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in a complete, integrated, stand alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen.

  15. The MPGD-based photon detectors for the upgrade of COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2017-12-01

    The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.

  16. A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense

    DOE PAGES

    Dong, Tao; Fei, Qiang; Genelot, Marie; ...

    2017-03-08

    In light of the availability of low-cost methane (CH 4) derived from natural gas and biogas along with increasing concerns of the greenhouse gas emissions, the production of alternative liquid biofuels directly from CH 4 is a promising approach to capturing wasted energy. A novel biorefinery concept integrating biological conversion of CH 4 to microbial lipids together with lipid extraction and generation of hydrocarbon fuels is demonstrated in this study for the first time. An aerobic methanotrophic bacterium, Methylomicrobium buryatense capable of using CH 4 as the sole carbon source was selected on the basis of genetic tractability, cultivation robustness,more » and ability to accumulate phospholipids in membranes. A maximum fatty acid content of 10% of dry cell weight was obtained in batch cultures grown in a continuous gas sparging fermentation system. Although phospholipids are not typically considered as a good feedstock for upgrading to hydrocarbon fuels, we set out to demonstrate that using a combination of novel lipid extraction methodology with advanced catalyst design, we could prove the feasibility of this approach. Up to 95% of the total fatty acids from membrane-bound phospholipids were recovered by a two-stage pretreatment method followed by hexane extraction of the aqueous hydrolysate. The upgrading of extracted lipids was then demonstrated in a hydrodeoxygeation process using palladium on silica as a catalyst. Lipid conversion in excess of 99% was achieved, with a full selectivity to hydrocarbons. Lastly, the final hydrocarbon mixture is dominated by 88% pentadecane (C 15H 32) based on decarbonylation/decarboxylation and hydrogenation of C16 fatty acids, indicating that a biological gas-to-liquid fuel (Bio-GTL) process is technically feasible.« less

  17. Process Simulation and Techno-Economic Evaluation of Alternative Biorefinery Scenarios

    NASA Astrophysics Data System (ADS)

    Aizpurua Gonzalez, Carlos Ernesto

    A biorefinery is a complex processing facility that uses sustainably produced biomass as feedstock to generate biofuels and chemical products using a wide variety of alternative conversion pathways. The alternative conversion pathways can be generally classified as either biochemical or thermochemical conversion. A biorefinery is commonly based on a core biomass conversion technology (pretreatment, hydrolysis, pyrolysis, etc.) followed by secondary processing stages that determine the specific product, and its recovery. In this study, techno-economic analysis of several different lignocellulosic biomass conversion pathways have been performed. First, a novel biochemical conversion, which used electron beam and steam explosion pretreatments for ethanol production was evaluated. This evaluation include both laboratory work and process modeling. Encouraging experimental results are obtained that showed the biomass had enhanced reactivity to the enzyme hydrolysis. The total sugar recovery for the hardwood species was 72% using 5 FPU/g enzyme dosage. The combination of electron beam and steam explosion provides an improvement in sugar conversion of more than 20% compared to steam explosion alone. This combination of pretreatments was modeled along with a novel ethanol dehydration process that is based on vapor permeation membranes. The economic feasibility of this novel pretreatment-dehydration technology was evaluated and compared with the dilute acid process proposed by NREL in 2011. Overall, the pretreatment-dehydration technology process produces the same ethanol yields (81 gal/bdton). However, the economics of this novel process does not look promising since the minimum ethanol selling price (MESP) to generate an internal rate of return of 10% is of 3.09 /gal, compared to 2.28 /gal for the base case. To enhance the economic potential of a biorefinery, the isolation of value-added co-products was incorporated into the base dilute acid biorefinery process. In this case the work focused on the ethanol extraction of the non-structural components of switchgrass prior to pretreatment and enzymatic hydrolysis. Promising results obtained with an Aspen PlusRTM model showed that a MESP of 2.5 /gal along with an assumed co-product selling price of 1 /Kg generated an 18% internal rate of return (IRR). In a second series of studies biomass fast pyrolysis and the bio-oil upgrading for the production of drop-in fuels was analyzed. Again, an Aspen PlusRTM based process model was used to evaluate the impacts of different biomass feedstock composition on the biofuel product. In this case the biofuel produced both a gasoline and diesel fraction. Model results showed that both the carbon and ash content of the biomass had an impact on the amount and price of the biofuel products. The highest biofuel yield were obtained with the hardwood (red maple) and perennial (switchgrass) feedstocks at about 48 gal/bdton of biomass, while the softwood (loblolly pine) provided 46 gal/bdton. Bark (acacia), the feedstock with the highest ash content, only provided 39 gal/bdton. But when the cost of these feedstocks was included the softwood is predicted to provide the lowest cost fuel, followed by the bark. As expected overall cost of the biofuel was dramatically impacted by the cost of the feedstock, and also by the use of a fraction of the intermediate bio-oil as the source of the hydrogen needed for upgrading the bio-oil to a hydrocarbon fuel product. Using hydrogen from natural gas instead of hydrogen from reforming the intermediate bio-oil reduced the estimated cost of the fuel product by $1.20/gal.

  18. In-situ biogas upgrading process: Modeling and simulations aspects.

    PubMed

    Lovato, Giovanna; Alvarado-Morales, Merlin; Kovalovszki, Adam; Peprah, Maria; Kougias, Panagiotis G; Rodrigues, José Alberto Domingues; Angelidaki, Irini

    2017-12-01

    Biogas upgrading processes by in-situ hydrogen (H 2 ) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H 2 injection into the liquid phase of a fermenter with the aim of modeling and simulating these processes. This was done by including hydrogenotrophic methanogen kinetics for H 2 consumption and inhibition effect on the acetogenic steps. Special attention was paid to gas to liquid transfer of H 2 . The final model was successfully validated considering a set of Case Studies. Biogas composition and H 2 utilization were correctly predicted, with overall deviation below 10% compared to experimental measurements. Parameter sensitivity analysis revealed that the model is highly sensitive to the H 2 injection rate and mass transfer coefficient. The model developed is an effective tool for predicting process performance in scenarios with biogas upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Potential useful products from solid wastes.

    PubMed

    Golueke, C G; Diaz, L F

    1991-10-01

    Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail.

  20. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  2. Equipment upgrades for the Pu-238 program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Stephens, W.D.; Marra, J.E.

    1990-02-14

    Much of the equipment and instrumentation in the Pu-238 production facilities is more than 15 years old. Significant improvements have been made in the available instrumentation, in particular, due to the application of microprocessors and lasers. The Actinide Technology Section of SRL has selected and is in the process of evaluating several state-of-the-art instruments which have potential applications in the Pu-238 program. The ease of operation and the accuracy of the instruments have been improved and, in most cases, the cost of the instruments have decreased. 5 refs.

  3. Fermilab Tevatron and Pbar source status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently undermore » evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)« less

  4. Modernization of the automation control system of technological processes at the preparation plant in the conditions of technical re-equipment

    NASA Astrophysics Data System (ADS)

    Lyakhovets, M. V.; Wenger, K. G.; Myshlyaev, L. P.; Shipunov, M. V.; Grachev, V. V.; Melkozerov, M. Yu; Fairoshin, Sh A.

    2018-05-01

    The experience of modernization of the automation control system of technological processes at the preparation plant under the conditions of technical re-equipment of the preparation plant “Barzasskoye Tovarischestvo” LLC (Berezovsky) is considered. The automated process control systems (APCS), the modernization goals and the ways to achieve them are indicated, the main subsystems of the integrated APCS are presented, the enlarged functional and technical structure of the upgraded system is given. The procedure for commissioning an upgraded system is described.

  5. Novel electrochemical process for coal conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooque, M.

    1989-07-01

    The feasibility of two distinctly different routes to coal conversion at low severity conditions was investigated. An electrochemical approach utilizing both the electro-oxidation and electro-reduction routes was employed. The electro-oxidation route consists of an electrochemical reaction involving H{sub 2}O and coal, leading to the breakup of coal molecules. The observed reaction rate has been explained as a combination of the coal and pyrite electro-oxidation currents. Organic sulfur has been identified as the contributing factor for the observation of more than 100% H{sub 2} production current efficiency with several coal samples. Also, an attractive coal pre-treatment process has been identified whichmore » results in production of useful products and simultaneous upgrading of the coal. Electrochemical oxidation of coal with H{sub 2}O leads to the production of hydrogen, CO{sub 2}, simultaneous removal of pyritic sulfur, and significant reduction of ash content. There is also indirect evidence that the organic sulfur may be removed in the process. A preliminary economic evaluation of this process has projected a cost advantage of > $8 per ton of Illinois {number sign}2 coal. A lab-scale cell has been successfully employed in this study for generating process data useful for future design calculations. This study also explored the electro-reduction route of coal conversion and has successfully demonstrated production of liquid products from different coal types at low severity conditions. A variety of aliphatic and aromatic compounds have been identified in the products. Coal type appeared to be the most important parameter affecting the product spectrum. 32 refs., 26 figs., 19 tabs.« less

  6. Assembling Resistive Plate Chambers for the PHENIX Detector

    NASA Astrophysics Data System (ADS)

    Drummond, Kirk

    2009-10-01

    A fast muon trigger for the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) will enable the study of flavor separated quark and anti-quark spin polarizations in the proton through the analysis of single spin asymmetries for W-boson production in proton-proton collisions. The Phenix experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample rare leptons from W-decay at the highest luminosities at the Relativistic Heavy Ion Collider. This upgrade will enhance our ability to collect and analyze muons that decay from W-bosons produced in polarized proton-proton collisions. This upgrade is comprised of half-octants which encompass three different Resistive Plate Chamber (RPCs) modules that encase a sandwich of copper, mylar, gas gaps, and a signal plane. The summer of 2009 marked the start of this full production, with teams from many institutions contributing to the production in the assembly tent at Brookhaven National Lab. The North Arm Station 3 part of the upgrade is scheduled to be installed in the fall of 2009, and the remaining stations will be installed by the fall of 2011.

  7. Upgrading the Association for the Advancement of Health Education's Health Resources Information System.

    ERIC Educational Resources Information Center

    Miller, Richard E.

    The Association for the Advancement of Health Education (AAHE) and Academic Programs for Health Science, George Mason University (Virginia), have collaborated in upgrading AAHE's Health Resources Information System. The process involved updating the health resources information on file. This information, which represents addresses and telephone…

  8. Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.

    2010-07-01

    The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.

  9. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Knoshaug, Eric

    Current biological pathways to produce biofuel intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels are not cost effective. Previously, oleaginous yeasts have been investigated primarily for lipid production. However, yeasts store neutral lipids intracellularly making recovery difficult and expensive. In addition, once recovered from the cells, lipids are difficult to blend directly with the existing fuels without upgrading. We have, therefore, begun to investigate secreted fatty acid-derived products which can be easily recovered and upgraded to fuels. In this study, we successfully demonstrate the production of fatty alcohols by the oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, throughmore » expression of the fatty acyl-CoA reductase gene from Marinobactor aquaeolei VT8. This strategy resulted in the production of 167 and 770 mg/L of fatty alcohols in shake flask from Y. lipolytica and L starkeyi, respectively. When using a dodecane overlay during fermentation, 92 and 99% of total fatty alcohols produced by Y. lipolytica and L. starkeyi, respectively, were extracted into the dodecane phase, which compares favorably to the 3 and 50% recovered, respectively, without the dodecane layer. In both oleaginous yeasts, long chain length, saturated fatty alcohols, i.e., hexadecanol (C16:0) and octadecanol (C18:0), were predominant and accounted for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Furthermore, this work demonstrates that the oleaginous yeasts, Y. lipolytica and L. starkeyi, can serve as platform organisms for the production of fatty acid-derived biofuels and bioproducts.« less

  10. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica

    DOE PAGES

    Wang, Wei; Wei, Hui; Knoshaug, Eric; ...

    2016-10-24

    Current biological pathways to produce biofuel intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels are not cost effective. Previously, oleaginous yeasts have been investigated primarily for lipid production. However, yeasts store neutral lipids intracellularly making recovery difficult and expensive. In addition, once recovered from the cells, lipids are difficult to blend directly with the existing fuels without upgrading. We have, therefore, begun to investigate secreted fatty acid-derived products which can be easily recovered and upgraded to fuels. In this study, we successfully demonstrate the production of fatty alcohols by the oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, throughmore » expression of the fatty acyl-CoA reductase gene from Marinobactor aquaeolei VT8. This strategy resulted in the production of 167 and 770 mg/L of fatty alcohols in shake flask from Y. lipolytica and L starkeyi, respectively. When using a dodecane overlay during fermentation, 92 and 99% of total fatty alcohols produced by Y. lipolytica and L. starkeyi, respectively, were extracted into the dodecane phase, which compares favorably to the 3 and 50% recovered, respectively, without the dodecane layer. In both oleaginous yeasts, long chain length, saturated fatty alcohols, i.e., hexadecanol (C16:0) and octadecanol (C18:0), were predominant and accounted for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Furthermore, this work demonstrates that the oleaginous yeasts, Y. lipolytica and L. starkeyi, can serve as platform organisms for the production of fatty acid-derived biofuels and bioproducts.« less

  11. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  12. Central exclusive production at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, Leszek; Guryn, Włodek; Turnau, Jacek

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment’s Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at ps = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity | |more » < 1, are presented. Near future plans to take data with the current system at center-of-mass energy ps = 200 GeV and plans to upgrade the forward proton tagging sys- tem are presented. Also a possible addition of the Roman Pots to the sPHENIX detector is discussed.« less

  13. Multi-purpose hydrogen isotopes separation plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overallmore » plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)« less

  14. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  15. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei; Atlas Collaboration

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  16. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  17. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  18. Astrophysical neutrino production diagnostics with the Glashow resonance

    NASA Astrophysics Data System (ADS)

    Biehl, Daniel; Fedynitch, Anatoli; Palladino, Andrea; Weiler, Tom J.; Winter, Walter

    2017-01-01

    We study the Glashow resonance bar nue + e- → W- → hadrons at 6.3 PeV as diagnostic of the production processes of ultra-high energy neutrinos. The focus lies on describing the physics of neutrino production from pion decay as accurate as possible by including the kinematics of weak decays and Monte Carlo simulations of pp and pγ interactions. We discuss optically thick (to photohadronic interactions) sources, sources of cosmic ray ``nuclei'' and muon damped sources. Even in the proposed upgrade IceCube-Gen2, a discrimination of scenarios such as pp versus pγ is extremely challenging under realistic assumptions. Nonetheless, the Glashow resonance can serve as a smoking gun signature of neutrino production from photohadronic (Aγ) interactions of heavier nuclei, as the expected Glashow event rate exceeds that of pp interactions. We finally quantify the exposures for which the non-observation of Glashow events exerts pressure on certain scenarios.

  19. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied frommore » novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.« less

  20. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  1. KSC-2014-2293

    NASA Image and Video Library

    2014-04-24

    CAPE CANAVERAL, Fla. – Modifications continue on the Multi-Payload Processing Facility, or MPPF, at NASA's Kennedy Space Center in Florida. Inside the high bay, Skip Williams, Ground Systems Development and Operations, or GSDO, deputy project manager for the spacecraft offline element integration team, points out artist illustrations of how the MPPF's interior and exterior will look after modifications and upgrades have been completed. Kennedy's Center Operations Directorate is overseeing upgrades to the MPPF for GSDO Program. The extensive upgrades and modernizations will support processing of Orion spacecraft for NASA's exploration missions. The 19,647-square-foot building, originally constructed in 1995, primarily will be used for Orion hypergolic fueling, ammonia servicing and high-pressure gas servicing and checkout before being transported to the Vehicle Assembly Building for integration with the Space Launch System. Photo credit: NASA/Daniel Casper

  2. Investigating the Use of 3d Geovisualizations for Urban Design in Informal Settlement Upgrading in South Africa

    NASA Astrophysics Data System (ADS)

    Rautenbach, V.; Coetzee, S.; Çöltekin, A.

    2016-06-01

    Informal settlements are a common occurrence in South Africa, and to improve in-situ circumstances of communities living in informal settlements, upgrades and urban design processes are necessary. Spatial data and maps are essential throughout these processes to understand the current environment, plan new developments, and communicate the planned developments. All stakeholders need to understand maps to actively participate in the process. However, previous research demonstrated that map literacy was relatively low for many planning professionals in South Africa, which might hinder effective planning. Because 3D visualizations resemble the real environment more than traditional maps, many researchers posited that they would be easier to interpret. Thus, our goal is to investigate the effectiveness of 3D geovisualizations for urban design in informal settlement upgrading in South Africa. We consider all involved processes: 3D modelling, visualization design, and cognitive processes during map reading. We found that procedural modelling is a feasible alternative to time-consuming manual modelling, and can produce high quality models. When investigating the visualization design, the visual characteristics of 3D models and relevance of a subset of visual variables for urban design activities of informal settlement upgrades were qualitatively assessed. The results of three qualitative user experiments contributed to understanding the impact of various levels of complexity in 3D city models and map literacy of future geoinformatics and planning professionals when using 2D maps and 3D models. The research results can assist planners in designing suitable 3D models that can be used throughout all phases of the process.

  3. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production

    DOE PAGES

    Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal; ...

    2016-10-15

    Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg•h -1 fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oilmore » was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through 14C isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO 2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. As a result, the bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading.« less

  4. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal

    Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg•h -1 fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oilmore » was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through 14C isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO 2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. As a result, the bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading.« less

  5. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost delivery as transport distances of raw biomass are reduced. The overall cost of bio-fuel production is determined by the feedstock delivery pathway and also the bio-fuel production process employed. Results show that the minimum cost of petrol and diesel production is 0.86 litre -1 when a bio-oil feedstock is upgraded. This corresponds to a 2750 TPD upgrading facility requiring an annual harvest of 4.30 million m3. The miniμm cost of hydrogen production is 2.92 kg -1, via the gasification of a woodchip feedstock and subsequent water gas shift reactions. This corresponds to a 1100 ODTPD facility and requires an annual harvest of 947,000 m3. The levelised cost of bio-fuel strongly depends on the size of annual harvest required for bio-fuel facilities. There are optimal harvest volumes (bio-fuel facility sizes) for each bio-fuel production route, which yield minimum bio-fuel production costs. These occur as the benefits of economies of scale for larger bio-fuel facilities compete against increasing transport costs for larger harvests. Optimal harvest volumes are larger for bio-fuel production routes that use feedstock sourced from mobile facilities, as mobile facilities reduce total transport requirements.

  6. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  7. Pyrolysis of waste tyres: a review.

    PubMed

    Williams, Paul T

    2013-08-01

    Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Upgrading of the STP Uithoorn: treatment of nutrient rich wastewater from horticulture.

    PubMed

    Piekema, P; Neef, R

    2005-01-01

    The STP Uithoorn will be upgraded to accommodate the treatment of wastewater from a growing population and to meet more stringent nutrient discharge limits in 2006. In 2003 a system choice and preliminary design was made for the upgrading. A special feature is the nutrient rich wastewater flow from the rapidly developing horticulture in the area. Since the future loads from horticulture are highly uncertain, flexibility of the STP after upgrading is an important issue. A three stage system was selected: improved physical-chemical primary treatment, secondary treatment by activated sludge, and tertiary treatment by denitrifying filters. In this way an important part of the existing infrastructure can be reused, and flexibility is assured by constructing the tertiary treatment in modules and by providing a wide range of operational control possibilities. In this paper the process of system choice and selection of type of tertiary treatment are described, as well as the optimisation of the existing treatment. In order to determine the feasibility of allowing a high loading rate on the existing secondary clarifiers, a two-dimensional hydraulic model of the clarification process was used.

  9. Performance evaluation of the croissant production line with reparable machines

    NASA Astrophysics Data System (ADS)

    Tsarouhas, Panagiotis H.

    2015-03-01

    In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.

  10. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.

    PubMed

    Xu, Heng; Gong, Shufen; Sun, Yuanzi; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-01-01

    Hydrogenotrophic methanogenesis has been proved to be a feasible biological method for biogas upgrading. To improve its performance, the feasibility of typical anaerobic granules as the inoculum was investigated in both batch and continuous experiments. The results from batch experiments showed that glucose-acclimated granules seemed to perform better than granules acclimated to acidified products (AP, i.e. acetate, propionate and ethanol) in in situ biogas upgrading systems and a slightly higher H2 consumption rate (1.5 mmol H2 g VSS(-1) h(-1)) was obtained for glucose-acclimated granules. For AP-acclimated granules, the inhibition on anaerobic digestion and pH increase (up to 9.55±0.16) took place, and the upgrading performance was adversely affected. In contrast, better performance for AP-acclimated granules was observed in ex situ systems, possibly due to their higher hydrogenotrophic methanogenic activities (HMA). Moreover, when gas-liquid mass transfer limitations were alleviated, the upgrading performance was significantly improved (three-fold) for both glucose-acclimated and AP-acclimated granules. The HMA of anaerobic granules could be further enhanced to improve biogas upgrading performance via continuous cultivation with H2/CO2 as the sole substrate. During the three months' cultivation, secondary granulation and microbial population shift were observed, but anaerobic granules still remained intact and their HMA increased from 0.2 to 0.6 g COD g VSS(-1) d(-1). It indicated that the formation of hydrogenotrophic methanogenic granules, a new type of anaerobic granules specialized for high-rate hydrogenotrophic methanogenesis and biogas upgrading, might be possible. Conclusively, anaerobic granules showed great potential for biogas upgrading.

  11. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.

    PubMed

    Bormann, Sebastian; Baer, Zachary C; Sreekumar, Sanil; Kuchenreuther, Jon M; Dean Toste, F; Blanch, Harvey W; Clark, Douglas S

    2014-09-01

    Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was identified as the first heterologous chaperone that significantly increases solvent titers above wild type C. acetobutylicum levels, which can be combined with metabolic engineering to further increase solvent production. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Research and development of intelligent controller for high-grade sanitary ware

    NASA Astrophysics Data System (ADS)

    Bao, Kongjun; Shen, Qingping

    2013-03-01

    With the social and economic development and people's living standards improve, more and more emphasis on modern society, people improve the quality of family life, the use of intelligent controller applications in high-grade sanitary ware physiotherapy students. Analysis of high-grade sanitary ware physiotherapy common functions pointed out in the production and use of the possible risks, proposed implementation of the system hardware and matching, given the system software implementation process. High-grade sanitary ware physiotherapy intelligent controller not only to achieve elegant and beautiful, simple, physical therapy, water power, deodorant, multi-function, intelligent control, to meet the consumers, the high-end sanitary ware market, strong demand, Accelerate the enterprise product Upgrade and improve the competitiveness of enterprises.

  13. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  14. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  15. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating wasmore » effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.« less

  16. Fuel quality/processing study. Volume 4: On site processing studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Cutrone, M.; Doering, H.; Hickey, J.

    1981-01-01

    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

  17. Status of the Monolithic Suspensions for Advanced Virgo

    NASA Astrophysics Data System (ADS)

    Travasso, F.; Virgo Collaboration

    2018-02-01

    Successfully implemented in GEO and Virgo+, the monolithic suspensions are one of the most important upgrades in the second generation of gravitational wave interferometric detectors, including Advanced LIGO (aLIGO) and Advanced Virgo (AdV). Characterized by a very low thermal noise, monolithic suspensions are essential for improving the interferometers sensitivity at low frequencies (10-100Hz). In Advanced Virgo their installation was delayed because of a contamination problem in the vacuum system: dust produced by scroll pumps was injected in the main vacuum chambers during the venting processes, damaging the fibers and ultimately causing their repeated failure. The effort to explain and resolve this issue was useful to further confirm the suspensions’ reliability and our control on the production process. Moreover, we developed and implemented new tools and procedures to certify each part of the monolithic suspensions. In the meanwhile, in order to join aLIGO during its second Observation Run (O2), a temporary steel suspension was implemented, based on the initial Virgo design. That solution allowed us to contribute to the first three-detector observation of a gravitational wave (GW) ([1]), and to the first observation of a coalescing neutron star binary ([2]) In the near future the monolithic suspensions will be reinstalled along with additional upgrades of Virgo.

  18. Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Robert S.; Olarte, Mariefel V.; Wang, Huamin

    The fouling of catalysts for the upgrading of bio-oils appears to be very different from the fouling of catalysts for the hydroprocessing of petroleum-derived streams. There are two reasons for the differences: a) bio-oil contains polarizable components and phases that can stabilize reaction intermediates exhibiting charge separation and b) bio-oil components contain functional groups that contain O, notably carbonyls (>C=O). Aldol condensation of carbonyls affords very different pathways for the production of oligomeric, refractory deposits than does dehydrogenation/polymerization of petroleum-derived hydrocarbons. Colloquially, we refer to the bio-oil derived deposits as “gunk” to discriminate them from coke, the carbonaceous deposits encounteredmore » in petroleum refining. Classical gelation, appears to be a suitable model for the “gunking” reaction. Our work has helped explain the temperature range at which bio-oil should be pre-processed (“stabilized”) to confer longer lifetimes on the catalysts used for more severe processing. Stochastic modeling (kinetic Monte Carlo simulations) appears suitable to capture the rates of oligomerization of bio-oil. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  19. Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF).

    PubMed

    Vasan, S N Swetadri; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-02-23

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

  20. The ATLAS multi-user upgrade and potential applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustapha, B.; Nolen, J. A.; Savard, G.

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existingmore » ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.« less

  1. The ATLAS multi-user upgrade and potential applications

    NASA Astrophysics Data System (ADS)

    Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.

    2017-12-01

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~1 MeV/u, isotope production and radiobiological studies at ~6 MeV/u and at the full ATLAS energy of ~15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be discussed. Future plans to enhance the flexibility of this upgrade will be presented.

  2. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  3. The ALICE TPC Upgrad

    NASA Astrophysics Data System (ADS)

    Castro, Andrew; Alice-Usa Collaboration; Alice-Tpc Collaboration

    2017-09-01

    The Time Projection Chamber (TPC) currently used for ALICE (A Large Ion Collider Experiment at CERN) is a gaseous tracking detector used to study both proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) In order to accommodate the higher luminosit collisions planned for the LHC Run-3 starting in 2021, the ALICE-TPC will undergo a major upgrade during the next LHC shut down. The TPC is limited to a read out of 1000 Hz in minimum bias events due to the intrinsic dead time associated with back ion flow in the multi wire proportional chambers (MWPC) in the TPC. The TPC upgrade will handle the increase in event readout to 50 kHz for heavy ion minimum bias triggered events expected with the Run-3 luminosity by switching the MWPCs to a stack of four Gaseous Electron Multiplier (GEM) foils. The GEM layers will combine different hole pitches to reduce the dead time while maintaining the current spatial and energy resolution of the existing TPC. Undertaking the upgrade of the TPC represents a massive endeavor in terms of design, production, construction, quality assurance, and installation, thus the upgrade is coordinated over a number of institutes worldwide. The talk will go over the physics motivation for the upgrade, the ALICE-USA contribution to the construction of Inner Read Out Chambers IROCs, and QA from the first chambers built in the U.S

  4. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    PubMed

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    NASA Astrophysics Data System (ADS)

    Valero, A.; Tile Calorimeter System, ATLAS

    2017-10-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  6. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. Themore » high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.« less

  7. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data frommore » this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading plant scales and feedstock credit (current cost of disposal). It is assumed that the sludge is currently disposed of at $16.20/wet ton ($46/dry ton at 35% solids; $50/ton dry, ash-free basis) and this is included as a feedstock credit in the operating costs. The base case assumptions result in a minimum biocrude selling price of $3.8/gge and a minimum final upgraded fuel selling price of $4.9/gge. Several areas of process improvement and refinements to the analysis have the potential to significantly improve economics relative to the base case: •Optimization of HTL sludge feed solids content •Optimization of HTL biocrude yield •Optimization of HTL reactor liquid hourly space velocity (LHSV) •Optimization of fuel yield from hydrotreating •Combined large and small HTL scales specific to regions (e.g., metropolitan and suburban plants) Combined improvements believed to be achievable in these areas can potentially reduce the minimum selling price of biocrude and final upgraded fuel by about 50%. Further improvements may be possible through recovery of higher value components from the HTL aqueous phase, as being investigated under separate PNNL projects. Upgrading the biocrude at an existing petroleum refinery could also reduce the MFSP, although this option requires further testing to ensure compatibility and mitigation of risks to a refinery. And finally, recycling the HTL aqueous phase product stream back to the headworks of the WWTP (with no catalytic hydrothermal gasification treatment) can significantly reduce cost. This option is uniquely appropriate for application at a water treatment facility but also requires further investigation to determine any technical and economic challenges related to the extra chemical oxygen demand (COD) associated with the recycled water.« less

  8. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.

    PubMed

    Duan, Peigao; Wang, Bing; Xu, Yuping

    2015-06-01

    This study presents experimental results that compare the use of hydrothermal liquefaction (HTL), alcoholysis (Al), pyrolysis (Py) and hydropyrolysis (HPy) for the production of bio-oil from a microalga (Chlorella pyrenoidosa) and the catalytic hydrothermal upgrading of crude bio-oils produced by these four conversion routes. The yields and compositions of bio-oil, solid residue, and gases were evaluated and compared. HTL resulted in a bio-oil that has a higher energy density and superior fuel properties, such as thermal and storage stabilities, compared with the other three conversion routes. The N in crude bio-oils produced from Py and HPy is more easily removed than that in the bio-oils produced from HTL and Al. The upgraded bio-oils contain reduced amounts of certain O-containing and N-containing compounds and significantly increased saturated hydrocarbon contents. All of the upgraded bio-oils have a larger fraction boiling below 350°C than their corresponding crude bio-oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. GFS-10/10/2007-12Z

    Science.gov Websites

    Mountainous Coasts: A change to the GFS post codes will remove a persistent, spurious high pressure system ENVIRONMENTAL PREDICTION /NCEP/ WILL UPGRADE THE GFS POST PROCESSOR. THE PRIMARY EFFORT BEHIND THIS UPGRADE WILL BE TO UNIFY THE POST PROCESSING CODE FOR THE NORTH AMERICAN MESO SCALE /NAM/ MODEL AND THE GFS INTO

  10. Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1999-01-01

    By upgrading its motor systems at its Richmond, California refinery, Chevron was able to realize cost savings of more than $700,000 per year, in addition to reduced energy consumption of approximately 1 million kilowatts per month and improved equipment reliability and process control. This fact sheet tells how they did it.

  11. Impact of Change Management on Employee Behavior in a University Administrative Office

    ERIC Educational Resources Information Center

    Turner, Kendra

    2017-01-01

    This qualitative case study focused on the effect of a system implementation upgrade on employees' job performance within a central administration department of a major research university in the Southern United States. Review of literature revealed a lack of a specific model or process for system implementation upgrades and its impact on…

  12. Upgrading a ColdFusion-Based Academic Medical Library Staff Intranet

    ERIC Educational Resources Information Center

    Vander Hart, Robert; Ingrassia, Barbara; Mayotte, Kerry; Palmer, Lisa A.; Powell, Julia

    2010-01-01

    This article details the process of upgrading and expanding an existing academic medical library intranet to include a wiki, blog, discussion forum, and photo collection manager. The first version of the library's intranet from early 2002 was powered by ColdFusion software and existed primarily to allow staff members to author and store minutes of…

  13. Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process.

    PubMed

    Zhao, Yongjun; Wang, Juan; Zhang, Hui; Yan, Cheng; Zhang, Yuejin

    2013-05-01

    Biogas is a well-known, primary renewable energy source, but its utilizations are possible only after upgrading. The microalgae-based bag photo-bioreactor utilized in this research could effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. Red light was determined as the optimal light wavelength for microalgae growth, biogas upgrading, and digestate nutrient reduction. In the range of moderate light intensities (i.e., 800, 1200, 1600, and 2000 μmol m(-2) s(-1)), higher light intensities achieved higher biogas upgrade and larger digestate nutrient reduction. Methane content attained the highest value of 92.74±3.56% (v/v). The highest chemical oxygen demand, total nitrogen, and total phosphorus reduction efficiency of digestate were 85.35±1.04%, 77.98±1.84%, and 73.03±2.14%, respectively. Considering the reduction and economic efficiencies of the carbon dioxide content of biogas and digestate nutrient as well as the biogas upgrading standard, the optimal light intensity range was determined to be from 1200 to 1600 μmol m(-2) s(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. NPOESS C3S Expandability: SafetyNet(TM) and McMurdo Improvements

    NASA Astrophysics Data System (ADS)

    Paciaroni, J.; Jamilkowski, M. L.

    2009-12-01

    The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The command and telemetry portion of NPOESS is the Command, Control and Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems. C3S is responsible for managing the overall NPOESS mission from control and status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment (SS) to the Interface Data Processing Segment (IDPS) for processing. In addition, the C3S provides the globally distributed ground assets necessary to collect and transport mission, telemetry, and command data between the satellites and the processing locations. The C3S provides all functions required for day-to-day commanding and state-of-health monitoring of the NPP and NPOESS satellites, and delivery of Stored Mission Data (SMD) to each U.S. Weather Central Interface Data Processor (IDP) for data products development and transfer to System subscribers. The C3S also monitors and reports system-wide health and status and data communications with external systems and between the NPOESS segments. Two crucial elements of NPOESS C3S expandability are SafetyNet(TM) and communications improvements to McMurdo Station, Antarctica. ‘SafetyNet(TM)’ is a key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS), vital element of the C3S and Northrop Grumman Space Technology patented data collection architecture. The centerpiece of SafetyNet(TM) is the system of fifteen globally-distributed ground receptors developed by Raytheon Company. These receptors or antennae will collect up to five times as much environmental data approximately four times faster than current polar-orbiting weather satellites. Once collected, these data will be forwarded near-instantaneously to U.S. weather centrals via global fiber optic network for processing and production of data records for use in environmental prediction models. In January 2008, Raytheon Company achieved a significant milestone for the NPOESS program by successfully completing the first phase of a major communications upgrade for Antarctica. The upgrade of the off-continent satellite communications link at McMurdo Station more than tripled the bandwidth available for scientific research, weather prediction, and health and safety of those stationed at McMurdo. The project is part of the company’s C3S under development for NPOESS. This upgrade paves the way for a second major communications upgrade planned for 2012 in preparation for the use of McMurdo Station as one of the 15 NPOESS ground stations worldwide that will be receiving environmental data collected by the NPOESS satellites.

  15. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.

    PubMed

    Wu, Bin; Zhang, Xiangping; Shang, Dawei; Bao, Di; Zhang, Suojiang; Zheng, Tao

    2016-08-01

    A typical biogas system with three utilization pathways, i.e., biogas upgrading, biogas combined heat and power (CHP), biogas solid oxide fuel cells (SOFCs) were designed. It was assessed from the viewpoint of energy, environment and economy by using energy efficiency, green degree and net present value index respectively. The assessment considered the trade-off relationships among these indexes, which is more comprehensive than previous systematic evaluation work only included single or two of the pathway(s) by using one or two of the index(es). Assessment results indicated that biogas upgrading pathway has the highest systematic energy efficiency (46.5%) and shortest payback period (8.9year) with the green degree production is the lowest (9.29gd/day). While for biogas SOFC pathway, although the green degree production is the highest (21.77gd/day), the payback period is longer (14.5year) and the energy efficiency is 13.6% lower than the biogas upgrading pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Status of mirror segment production for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Davis, J. M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Loeff, A.; Lutz, R. D.; Merrill, C.; Strittmatter, P. A.; Tuell, M. T.; Weinberger, S. N.; West, S. C.

    2016-07-01

    The Richard F. Caris Mirror Lab at the University of Arizona is responsible for production of the eight 8.4 m segments for the primary mirror of the Giant Magellan Telescope, including one spare off-axis segment. We report on the successful casting of Segment 4, the center segment. Prior to generating the optical surface of Segment 2, we carried out a major upgrade of our 8.4 m Large Optical Generator. The upgrade includes new hardware and software to improve accuracy, safety, reliability and ease of use. We are currently carrying out an upgrade of our 8.4 m polishing machine that includes improved orbital polishing capabilities. We added and modified several components of the optical tests during the manufacture of Segment 1, and we have continued to improve the systems in preparation for Segments 2-8. We completed two projects that were prior commitments before GMT Segment 2: casting and polishing the combined primary and tertiary mirrors for the LSST, and casting and generating a 6.5 m mirror for the Tokyo Atacama Observatory.

  17. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew; Takada, Kevin; Carter, Layne

    2017-01-01

    The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of Reverse Osmosis technology to reduce the resupply mass of the WPA Multifiltration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the UPA, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, deleting the Separator Plumbing Assembly, and evaluating upgrades to the UPA vacuum pump.

  19. Upgrades to the International Space Station Water Recovery System

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Pruitt, Jennifer M.; Nur, Mononita; Takada, Kevin C.; Carter, Layne

    2017-01-01

    The International Space Station (ISS) Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications aim to reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of reverse osmosis membrane technology to reduce the resupply mass of the WPA Multi-filtration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the system, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, and evaluating upgrades to the UPA vacuum pump.

  20. Mu2e upgrade physics reach optimization studies for the PIP-II era

    DOE PAGES

    Pronskikh, Vitaly S.; Glenzinski, Douglas; Mokhov, Nikolai; ...

    2016-11-29

    The Mu2e experiment at Fermilab is being designed to study the coherent neutrino-less conversion of a negative muon into an electron in the field of a nucleus. This process has an extremely low probability in the Standard Model and its observation would provide unambiguous evidence for BSM physics. The Mu2e design aims to reach a single-event-sensitivity of about 2.5 x 10 -17 and will probe effective new physics mass scales in the 10 3 -10 4 TeV range, well beyond the reach of the LHC. This work examines the maximum beam power that can be tolerated for beam energies inmore » the 0.5-8 GeV range exploring variations in the geometry in the region of the production target using the MARS15 code. Lastly, this has implications for how the sensitivity might be further improved with a second generation experiment using an upgraded proton beam from the PIP-II project, which will be capable of providing MW beams to Fermilab experiments later in the next decade.« less

  1. Upgrading NASA/DOSE laser ranging system control computers

    NASA Technical Reports Server (NTRS)

    Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.

    1993-01-01

    Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.

  2. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.

    PubMed

    Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2017-05-01

    The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO 2 -H 2 S absorption column (AC) via settled broth recirculation. CO 2 -removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H 2 S removal was achieved regardless of the operational conditions. A maximum CH 4 concentration of 94% with a limited O 2 and N 2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm -2 d -1 and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Process Intensification for Cellulosic Biorefineries.

    PubMed

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Acceptance Test Data for BWXT Coated Particle Batches 93172B and 93173B—Defective IPyC and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Helmreich, Grant W.; Dyer, John A.

    Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture ofmore » 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).« less

  5. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  6. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.; Mittal, A.; Mohagheghi, A.

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose,more » glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.« less

  7. Recent Results from ISOLDE and HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Borge, María J. G.

    2018-02-01

    ISOLDE is the CERN facility dedicated to the production of rare ion beams for many different experiments in the fields of nuclear and atomic physics, materials science and life sciences. The HIE-ISOLDE, Higher Intensity and Energy upgrade has finished its stage 1 dedicated to upgrade the energy up to 5.5 MeV/u, producing the first radioactive beams with this energy in September 9th 2016. Recent results from the low energy and post-accelerated beams are given in this contribution.

  8. DEVELOPMENT OF THE PRIEST RAPIDS TURBINE UPGRADE PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBolt, Donald; Richmond, Marshall C.; Donelson, Richard K.

    The Priest Rapids Dam is located on the Columbia River and is operated by Public Utility District No. 2 of Grant County, WA (GCPUD). In operation since 1959, GCPUD decided that a major upgrade was necessary. As with other hydroelectric facilities on the Columbia River, improving fish passage at Priest Rapids Dam is of great importance for salmon and steelhead populations in the Pacific Northwest. Consequently, GCPUD established the Priest Rapids Turbine Upgrade Project to extend the life of the units, increase efficiency and power production, and improve fish-passage. The Priest Rapids powerhouse is equipped with 10 vertical Kaplan turbinesmore » with runner diameters of 7.21 m operating under net heads varying from 18 m to 27 m. The scope of the project included a design competition involving three turbine manufacturers providing up to two designs for evaluation. Selection of the replacement design was determined by the lowest evaluated price based on model test results conducted at an independent laboratory (Ecole Polytechnique Federale de Lausanne in Lausanne Switzerland) and a biological performance score determined by a newly developed Biological Performance Assessment (BioPA) performed by Pacific Northwest National Laboratory in Richland, WA. In the paper, the hydraulic design challenges are reviewed, in addition to comparisons of designs evaluated during the competitive model test program and biological assessment. The paper also provides a description of the process followed by GCPUD, and how the evaluation criteria influenced the development and the finally selected solution.« less

  9. The Economy, Productivity, and Training--A CEO's View. Occasional Paper No. 88.

    ERIC Educational Resources Information Center

    Frey, Donald N.

    The way resources are deployed to educate Americans will affect, as never before, productivity, the economy, and the quality of life. To maintain the present standard of living, Americans will be dependent on a continuous infusion of scientific breakthroughs and productivity-enhancing technology. Periodic upgrading of skills will be a necessity…

  10. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOEpatents

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  11. Video library for video imaging detection at intersection stop lines.

    DOT National Transportation Integrated Search

    2010-04-01

    The objective of this activity was to record video that could be used for controlled : evaluation of video image vehicle detection system (VIVDS) products and software upgrades to : existing products based on a list of conditions that might be diffic...

  12. Automated and Scalable Data Reduction in the textsc{Sofia} Data Processing System

    NASA Astrophysics Data System (ADS)

    Krzaczek, R.; Shuping, R.; Charcos-Llorens, M.; Alles, R.; Vacca, W.

    2015-09-01

    In order to provide suitable data products to general investigators and other end users in a timely manner, the Stratospheric Observatory for Infrared Astronomy SOFIA) has developed a framework supporting the automated execution of data processing pipelines for the various instruments, called the Data Processing System (DPS), see Shuping et al. (2014) for overview). The primary requirement is to process all data collected from a flight within eight hours, allowing data quality assessments and inspections to be made the following day. The raw data collected during a flight requires processing by a number of different software packages and tools unique to each combination of instrument and mode of operation, much of it developed in-house, in order to create data products for use by investigators and other end-users. The requirement to deliver these data products in a consistent, predictable, and performant manner presents a significant challenge for the observatory. Herein we present aspects of the DPS that help to achieve these goals. We discuss how it supports data reduction software written in a variety of languages and environments, its support for new versions and live upgrades to that software and other necessary resources (e.g., calibrations), its accommodation of sudden processing loads through the addition (and eventual removal) of computing resources, and close with an observation of the performance achieved in the first two observing cycles of SOFIA.

  13. Building a new space weather facility at the National Observatory of Athens

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Belehaki, Anna; Tsiropoula, Georgia; Tsagouri, Ioanna; Anastasiadis, Anastasios; Papaioannou, Athanasios

    2016-01-01

    The PROTEAS project has been initiated at the Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS) of the National Observatory of Athens (NOA). One of its main objectives is to provide observations, processed data and space weather nowcasting and forecasting products, designed to support the space weather research community and operators of commercial and industrial systems. The space weather products to be released by this facility, will be the result of the exploitation of ground-based, as well as space-borne observations and of model results and tools already available or under development by IAASARS researchers. The objective will be achieved through: (a) the operation of a small full-disk solar telescope to conduct regular observations of the Sun in the H-alpha line; (b) the construction of a database with near real-time solar observations which will be available to the community through a web-based facility (HELIOSERVER); (c) the development of a tool for forecasting Solar Energetic Particle (SEP) events in relation to observed solar eruptive events; (d) the upgrade of the Athens Digisonde with digital transceivers and the capability of operating in bi-static link mode and (e) the sustainable operation of the European Digital Upper Atmosphere Server (DIAS) upgraded with additional data sets integrated in an interface with the HELIOSERVER and with improved models for the real-time quantification of the effects of solar eruptive events in the ionosphere.

  14. Application of programmable logic controllers to space simulation

    NASA Technical Reports Server (NTRS)

    Sushon, Janet

    1992-01-01

    Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.

  15. Upgraded biogas from municipal solid waste for natural gas substitution and CO{sub 2} reduction – A case study of Austria, Italy, and Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starr, Katherine; Villalba, Gara, E-mail: gara.villalba@uab.es; Sostenipra, Institute de Ciencia i Technologia Ambientals

    2015-04-15

    Highlights: • Biogas can be upgraded to create biomethane, a substitute to natural gas. • Biogas upgrading was applied to landfills and anaerobic digestors in 3 countries. • Up to 0.6% of a country’s consumption of natural gas could be replaced by biomethane. • Italy could save 46% of the national CO{sub 2} emissions attributed to the waste sector. • Scenarios were created to increase biomethane production. - Abstract: Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are amore » large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO{sub 2} reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy.« less

  16. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  17. Modular Filter and Source-Management Upgrade of RADAC

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Smith, Donna C.

    2007-01-01

    In an upgrade of the Range Data Acquisition Computer (RADAC) software, a modular software object library was developed to implement required functionality for filtering of flight-vehicle-tracking data and management of tracking-data sources. (The RADAC software is used to process flight-vehicle metric data for realtime display in the Wallops Flight Facility Range Control Center and Mobile Control Center.)

  18. A Product Analysis Method and Its Staging to Develop Redesign Competences

    ERIC Educational Resources Information Center

    Hansen, Claus Thorp; Lenau, Torben Anker

    2013-01-01

    Most product development work in industrial practice is incremental, i.e., the company has had a product in production and on the market for some time, and now time has come to design an upgraded variant. This type of redesign project requires that the engineering designers have competences to carry through an analysis of the existing product…

  19. Bioprocessing of wheat and paddy straw for their nutritional up-gradation.

    PubMed

    Sharma, Rakesh Kumar; Arora, Daljit Singh

    2014-07-01

    Solid-state bioprocessing of agricultural residues seems to be an emerging and effective method for the production of high quality animal feed. Seven strains of white-rot fungi were selected to degrade wheat and paddy straw (PS) under solid-state conditions. Degradation of different components, i.e., hemicellulose, cellulose and lignin was evaluated along with nutritional parameters including; in vitro digestibility, crude protein, amino acids, total phenolic contents (TPC) etc. Effect of nitrogen-rich supplements on degradation of lignocellulosics was evaluated using two best selected fungal strains (Phlebia brevispora and Phlebia floridensis). The best selected conditions were used to upscale the process up to 200 g batches of wheat and PS. Lignin was selectively degraded up to 30 % with a limited loss of 11-12 % in total organic matter. Finally, the degraded agro-residues demonstrated 50-62 % enhancement in their digestibility. Two-threefold enhancement in other nutritional quality (amino acids, TPCs and antioxidant activity) fortifies the process. Thus the method is quite helpful to design an effective solid-state fermentation system to improve the nutritive quality of agricultural residues by simultaneous production of lignocellulolytic enzyme production and antioxidants.

  20. Missile signal processing common computer architecture for rapid technology upgrade

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biehl, Daniel; Fedynitch, Anatoli; Winter, Walter

    We study the Glashow resonance ν-bar {sub e} + e {sup −} → W {sup −} → hadrons at 6.3 PeV as diagnostic of the production processes of ultra-high energy neutrinos. The focus lies on describing the physics of neutrino production from pion decay as accurate as possible by including the kinematics of weak decays and Monte Carlo simulations of pp and pγ interactions. We discuss optically thick (to photohadronic interactions) sources, sources of cosmic ray ''nuclei'' and muon damped sources. Even in the proposed upgrade IceCube-Gen2, a discrimination of scenarios such as pp versus pγ is extremely challenging undermore » realistic assumptions. Nonetheless, the Glashow resonance can serve as a smoking gun signature of neutrino production from photohadronic (Aγ) interactions of heavier nuclei, as the expected Glashow event rate exceeds that of pp interactions. We finally quantify the exposures for which the non-observation of Glashow events exerts pressure on certain scenarios.« less

  2. The Metallurgy of High Fracture Toughness Aluminum-Based Plate Products for Aircraft Internal Structure

    NASA Astrophysics Data System (ADS)

    Boselli, J.; Bray, G.; Rioja, R. J.; Mooy, D.; Venema, G.; Feyen, G.; Wang, W.

    A significant volume of "thick" aluminum plate products is used in the manufacture of an aircraft's internal structure in applications such as ribs, spars, frames, bulkheads, etc. With the recent launch of more fuel efficient and primarily metallic single aisle aircraft as well as the introduction of composite-intensive twin-aisle aircraft, a number of opportunities exist for upgrading alloys developed more than 30 years ago with a new generation of thick plate products. These include 7xxx aluminum alloys that show significant improvements in both strength and toughness along with Al-Li alloys that show high strength, low density and very high corrosion resistance with significantly improved toughness over previous generation Al-Li. This paper will review these improvements and provide insights into the metallurgy behind better fracture toughness, particularly in the short transverse direction, by considering the impact of composition and processing on quench sensitivity.

  3. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. Integrated modeling and field study of potential mechanisms forinduced seismicity at The Geysers Goethermal Field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Majer, Ernie; Oldenburg, Curt

    2006-06-07

    In this paper, we present progress made in a study aimed atincreasing the understanding of the relative contributions of differentmechanisms that may be causing the seismicity occurring at The Geysersgeothermal field, California. The approach we take is to integrate: (1)coupled reservoir geomechanical numerical modeling, (2) data fromrecently upgraded and expanded NCPA/Calpine/LBNL seismic arrays, and (3)tens of years of archival InSAR data from monthly satellite passes. Wehave conducted a coupled reservoir geomechanical analysis to studypotential mechanisms induced by steam production. Our simulation resultscorroborate co-locations of hypocenter field observations of inducedseismicity and their correlation with steam production as reported in theliterature. Seismicmore » and InSAR data are being collected and processed foruse in constraining the coupled reservoir geomechanicalmodel.« less

  5. A journey from basic stem cell discovery to clinical application: the case of adventitial progenitor cells.

    PubMed

    Spencer, Helen L; Slater, Sadie C; Rowlinson, Jonathan; Morgan, Tom; Culliford, Lucy A; Guttridge, Martin; Emanueli, Costanza; Angelini, Gianni; Madeddu, Paolo

    2015-01-01

    Ischemia is a leading cause of death in the western world. Regenerative medicine aims to improve healing of ischemic injury by complementing pharmacologic/interventional treatments. Navigating regenerative therapies from 'bench-to-bedside' is a multistep time-consuming process, balancing cell expansion, purity, safety and efficacy while complying with regulatory guidelines. Studies started in academic laboratories unused to long-term planning often fail because of poor strategy design, lack of contingency plans or funding. We provide a strategic insight into our translation of saphenous vein-derived adventitial progenitor cells into a clinical grade product to treat angina. We discuss discovery phases, introduction of standard operating procedures and upgrade to clinical standards. We also examine contractual aspects of transferring to GMP-accredited facilities for clinical production and unexpected hurdles.

  6. Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant-producing Pseudomonas aeruginosa AK6U.

    PubMed

    Ismail, Wael Ahmed; Mohamed, Magdy El-Said; Awadh, Maysoon N; Obuekwe, Christian; El Nayal, Ashraf M

    2017-11-01

    Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we investigate two petroleum biotechnology applications, namely valorization and bioupgrading, as green approaches for valorization and upgrading of HVGO. The Pseudomonas aeruginosa AK6U strain grew on 20% v/v of HVGO as a sole carbon and sulfur source. It produced rhamnolipid biosurfactants in a growth-associated mode with a maximum crude biosurfactants yield of 10.1 g l -1 , which reduced the surface tension of the cell-free culture supernatant to 30.6 mN m -1 within 1 week of incubation. The rarely occurring dirhamnolipid Rha-Rha-C 12 -C 12 dominated the congeners' profile of the biosurfactants produced from HVGO. Heavy vacuum gas oil was recovered from the cultures and abiotic controls and the maltene fraction was extracted for further analysis. Fractional distillation (SimDist) of the biotreated maltene fraction showed a relative decrease in the high-boiling heavy fuel fraction (BP 426-565 °C) concomitant with increase in the lighter distillate diesel fraction (BP 315-426 °C). Analysis of the maltene fraction revealed compositional changes. The number-average (Mn) and weight-average (Mw) molecular weights, as well as the absolute number of hydrocarbons and sulfur heterocycles were higher in the biotreated maltene fraction of HVGO. These findings suggest that HVGO can be potentially exploited as a carbon-rich substrate for production of the high-value biosurfactants by P. aeruginosa AK6U and to concomitantly improve/upgrade its chemical composition. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Overview of torus magnet coil production at Fermilab for the Jefferson Lab 12-GeV Hall B upgrade

    DOE PAGES

    Krave, S.; Velev, G.; Makarov, A.; ...

    2016-02-29

    Fermi National Accelerator Laboratory (Fermilab) fabricated the torus magnet coils for the 12-GeV Hall B upgrade at Jefferson Lab (JLab). The production consisted of six large superconducting coils for the magnet and two spare coils. The toroidal field coils are approximately 2 m × 4 m × 5 cm thick. Each of these coils consists of two layers, each of which has 117 turns of copper-stabilized superconducting cable, which will be conduction cooled by supercritical helium. Due to the size of the coils and their unique geometry, Fermilab designed and fabricated specialized tooling and, together with JLab, developed unique manufacturingmore » techniques for each stage of the coil construction. Furthermore, this paper describes the tooling and manufacturing techniques required to produce the six production coils and the two spare coils needed by the project.« less

  8. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (<1 s). Broad community interest in these data is growing rapidly because these data will have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources, and moreover profoundly transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  9. UNAVCO Geodetic HIgh-Rate and Real-Time Products and Services: A next generation geodetic network

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Mencin, D.; Meertens, C. M.; Feaux, K.; Looney, S.

    2012-12-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1 Hz) and low latency (<1 s). These data will have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources, and moreover profoundly transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in our data center. In addition, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time GPS data over the next decade. Additionally, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. As part of this upgrade UNAVCO is also exploring making the 75 PBO borehole strainmeter sites, whose data are now collected with a latency of 24 hours, available in SEED format in real-time in the near future, providing an opportunity to combine high-rate surface positioning and strain data together.

  10. June 2017 Atmospheric Science Forum Newsletter

    Atmospheric Science Data Center

    2017-07-05

    June 2017 Atmospheric Science Forum Newsletter Friday, June 30, 2017 ... DISCOVER-AQ campaign available on Toolsets for Airborne Data (TAD), release of the CERES EBAF TOA and SURFACE Edition 4.0 data products, and the MOPITT V7 product upgrade. Access the full article at: ...

  11. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE PAGES

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.; ...

    2017-04-06

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  12. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  13. Building America Case Study: Rehabilitation of USDA Multifamily Homes, Georgia (Climate Zones 2-4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rea Ventures Group, LLC, (Rea Ventures) partnered with Southface Energy Institute (Southface) on the rehabilitation of 418 low-income rental multifamily apartments located at 14 different properties in Georgia (Climate Zones 2-4). These 22-year old, individually-metered units were arranged in rowhouse or townhouse style units. Rehabilitation plans were developed using a process prescribed by the US Department of Agriculture (USDA) Rural Development program, who partially funded the building upgrades. The USDA is responsible for building, upgrading, and subsidizing housing in rural areas nationwide. In 2012, over $100 million was allocated in grants and loans. Due to the unique financing mechanism asmore » well as long-term ownership requirements, property owners are especially motivated to invest in upgrades that will increase durability and tenant retention. These buildings represent a large stock of rural affordable housing that have the potential for significant energy and cost savings for property owners and tenants. Southface analyzed the energy upgrade potential of one stereotypical property in the Rea Ventures portfolio. This study will provide insight into the most cost-effective, implementable energy efficiency and durability upgrades for this age multifamily housing, having an enormous impact not only on the portfolio of Rea Ventures but on the vast USDA and larger Federal portfolio. Additionally, Southface will identify gaps in the current capital needs assessment process, examine available audit and simulation tools and protocols, and evaluate additional auditor training or certification needs.« less

  14. The CMS Data Acquisition - Architectures for the Phase-2 Upgrade

    NASA Astrophysics Data System (ADS)

    Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. F.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Zejdl, P.

    2017-10-01

    The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 1034 cm-2 s -1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes, and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. In this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ “data center” are analysed. Emerging technologies for data reduction are considered. Novel possible approaches to event building and online processing, inspired by trending developments in other areas of computing dealing with large masses of data, are also examined. We conclude by discussing the opportunities offered by reading out and processing parts of the detector, wherever the front-end electronics allows, at the machine clock rate (40 MHz). This idea presents interesting challenges and its physics potential should be studied.

  15. The CMS Data Acquisition - Architectures for the Phase-2 Upgrade

    DOE PAGES

    Andre, J-M; Behrens, U.; Branson, J.; ...

    2017-10-01

    The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of 7.5 × 10 34 cm -2 s -1 (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes,more » and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. Here in this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ “data center” are analysed. Emerging technologies for data reduction are considered. Novel possible approaches to event building and online processing, inspired by trending developments in other areas of computing dealing with large masses of data, are also examined. We conclude by discussing the opportunities offered by reading out and processing parts of the detector, wherever the front-end electronics allows, at the machine clock rate (40 MHz). This idea presents interesting challenges and its physics potential should be studied.« less

  16. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm-2s-1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  17. The Chandra Source Catalog: Processing and Infrastructure

    NASA Astrophysics Data System (ADS)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  18. Thou Shalt Not Dupe.

    ERIC Educational Resources Information Center

    Association of Data Processing Service Organizations, Arlington, VA.

    The problem of unauthorized computer software duplication impedes the production of upgraded products by software developers, who find thousands of illegal computer program copies have been made by customers who either innocently believe they are doing nothing wrong, or simply choose to ignore the law. Unauthorized duplication and use of software…

  19. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.

    PubMed

    Miskolczi, N; Buyong, F; Angyal, A; Williams, P T; Bartha, L

    2010-11-01

    Thermo-catalytic pyrolysis of refuse derived fuels with different catalysts had been conducted in a two stages process due to its important potential value as fuel. The first stage was a pure thermal pyrolysis in a horizontal tubular reactor with feed rate of 0.5kg hourly. The second stage was a semi-batch process in the presence of catalysts. Results showed that the tested catalysts significantly have affected the quantity of products. E.g. gas yield could be increased with 350% related to the catalyst free case using ZSM-5, while that of pyrolytic oil was 115% over Y-zeolite. Gases consisted of mainly CO and CO(2) obtained from the tubular reactor, while dominantly hydrocarbons from the second stage. Ni-Mo-catalyst and Co-Mo-catalyst had shown activity in pyrolytic oil upgrading via in-situ hydrogenation-dehydrogenation reactions. Sulphur, nitrogen and chlorine level in pyrolytic oils could be significantly declined by using of catalysts.

  20. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  1. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.

    PubMed

    González-Sánchez, Armando; Posten, Clemens

    2017-04-15

    The H 2 S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO 2 and H 2 S are absorbed. The dissolved H 2 S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H 2 S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H 2 S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H 2 S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.

    PubMed

    Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini

    2016-12-01

    Biological biogas upgrading coupling CO 2 with external H 2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H 2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO 2 in the biogas into CH 4 , via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H 2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H 2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO 2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH 4 content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Psychological Selection of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  4. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  5. First Results From the (Multibeam) Hydrosweep DS2 Upgrade on the R/V Maurice Ewing

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Slagle, A.; Caress, D. W.; Arko, R. A.

    2001-12-01

    The ATLAS Hydrosweep DS multibeam swath mapping sonar system on the R/V Maurice Ewing was upgraded to a DS2 in May 2000. This upgrade increased the effective swath width from 59 beams over about 89 degrees to as many as 140 beams over approximately 118 degrees, added sidescan image as well as data records from which backscatter can be extracted. The upgrade replaced the outdated processing computer, half-inch tape drive and console with modern workstations and 4mm tape. The upgrade did not require changes to the under hull transducer arrays or transceivers so it was relatively inexpensive and was accomplished in a few days during a transit of the Panama Canal. Evaluation and software enhancements were done during subsequent transits. MB-System was enhanced to support the native, raw data format of the Hydrosweep DS2. We also expect to be able to support the more general SURF format that is also generated by new ATLAS sonar systems in the near future. In addition to the hardware and software upgrades to the multibeam, we installed a POS/MV-320 vertical reference system to take over from our venerable HIPPY-120 as the primary attitude reference for the Hydrosweep on the Ewing. The attitude data from the POS has allowed us to eliminate the turn rate restrictions and to improve the data quality. As an additional benefit the P-Code aided position data produced by the POS is significantly more stable and better behaved than our other navigation sources. The upgraded sonar was used during EW0108 (Taylor) in the Gulf of Corinth. As is usually the case with new implementations or modifications of complex systems, some unexpected behaviors were observed and carefully documented. Good remote support from the manufacturer enabled us to implement fixes and to generate very good quality bathymetry and sidescan images on board and in shore-side post processing. Two related software prototypes are currently being evaluated as part of this upgrade package. One is a web-based real-time watch standers logbook that facilitates the entry of standard log information directly into a relational database (rather than by hand on paper forms.) The second is a relational database that contains the FGDC metadata for multibeam swath bathymetry. This initial upgrade to our Hydrosweep establishes a stable base from which we expect to evolve significant new capabilities in the future. Some of these capabilities will be based on the unique cross fan capabilities of the Hydrosweep design.

  6. Beyond upgrading typologies - In search of a better deal for honey value chains in Brazil.

    PubMed

    Figueiredo Junior, Hugo S de; Meuwissen, Miranda P M; van der Lans, Ivo A; Oude Lansink, Alfons G J M

    2017-01-01

    Selection of value chain strategies by development practitioners and value chain participants themselves has been restricted to preset types of upgrading. This paper argues for an extension of the range of strategy solutions to value chains. An empirical application identifies successful strategies for honey value chains in Brazil for 2015-2020. Strategy and performance indicators were selected using the value chain Structure-Conduct-Performance (SCP) framework. Experts' opinion was elicited in a Delphi for business scenarios, and adaptive conjoint analysis was used to identify strategies for increasing production growth and local value-added. This study identifies important strategies beyond upgrading typologies, and finds that important strategies differ by performance goal and scenario. The value chain SCP allows searching for promising strategies towards performance-the "better deal"-in an integrated way.

  7. Beyond upgrading typologies – In search of a better deal for honey value chains in Brazil

    PubMed Central

    Meuwissen, Miranda P. M.; van der Lans, Ivo A.; Oude Lansink, Alfons G. J. M.

    2017-01-01

    Selection of value chain strategies by development practitioners and value chain participants themselves has been restricted to preset types of upgrading. This paper argues for an extension of the range of strategy solutions to value chains. An empirical application identifies successful strategies for honey value chains in Brazil for 2015–2020. Strategy and performance indicators were selected using the value chain Structure-Conduct-Performance (SCP) framework. Experts’ opinion was elicited in a Delphi for business scenarios, and adaptive conjoint analysis was used to identify strategies for increasing production growth and local value-added. This study identifies important strategies beyond upgrading typologies, and finds that important strategies differ by performance goal and scenario. The value chain SCP allows searching for promising strategies towards performance–the “better deal”–in an integrated way. PMID:28742804

  8. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  9. An integrated assessment of location-dependent scaling for microalgae biofuel production facilities

    DOE PAGES

    Coleman, André M.; Abodeely, Jared M.; Skaggs, Richard L.; ...

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting and design through processing and upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are partially addressed by applying the Integrated Assessment Framework (IAF) – an integrated multi-scale modeling, analysis, and data management suite – to address key issues in developing and operating an open-pond microalgae production facility.more » This is done by analyzing how variability and uncertainty over space and through time affect feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. To provide a baseline analysis, the IAF was applied in this paper to a set of sites in the southeastern U.S. with the potential to cumulatively produce 5 billion gallons per year. Finally, the results indicate costs can be reduced by scaling downstream processing capabilities to fit site-specific growing conditions, available and economically viable resources, and specific microalgal strains.« less

  10. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  11. The WCRP/GEWEX Surface Radiation Budget Project Release 2: An Assessment of Surface Fluxes at 1 Degree Resolution

    NASA Technical Reports Server (NTRS)

    Stackhouse, P. W., Jr.; Gupta, S. K.; Cox, S. J.; Chiacchio, M.; Mikovitz, J. C.

    2004-01-01

    The U.S. National Aeronautics and Space Administration (NASA) based Surface Radiation Budget (SRB) Project in association with the World Climate Research Programme Global Energy and Water Cycle Experiment (WCRP/GEWEX) is preparing a new 1 deg x 1 deg horizontal resolution product for distribution scheduled for release in early 2001. The new release contains several significant upgrades from the previous version. This paper summarizes the most significant upgrades and presents validation results as an assessment of the new data set.

  12. Examination of optimal upgrade timing and best value: DoD acquisition of commercial vs. military custom flat panel displays

    NASA Astrophysics Data System (ADS)

    Lippitz, Michael J.

    1999-08-01

    This paper proposes a framework for quantitatively balancing the costs, benefits, and risks of alternate upgrade strategies, with Department of Defense (DoD) acquisition of flat panel display as an example. A key issue in DoD Acquisition Reform is the rapid product turnover in commercial markets and the difficulties DoD has traditionally faced in adopting these advances in a timely manner. This paper aims to clarify when commercial technology represents 'best value' to DoD.

  13. Building America Top Innovations 2012: Affordable High Performance in Production Homes: Artistic Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Artistic Homes, a successful New Mexico production builder, who went from code-minimum to under HERS 50 standard on every home, with optional PV upgrades to HERS 35 or true net zero on every home plan offered.

  14. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  15. Control of Technology Transfer at JPL

    NASA Technical Reports Server (NTRS)

    Oliver, Ronald

    2006-01-01

    Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software

  16. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    NASA Technical Reports Server (NTRS)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  17. Research into display sharing techniques for distributed computing environments

    NASA Technical Reports Server (NTRS)

    Hugg, Steven B.; Fitzgerald, Paul F., Jr.; Rosson, Nina Y.; Johns, Stephen R.

    1990-01-01

    The X-based Display Sharing solution for distributed computing environments is described. The Display Sharing prototype includes the base functionality for telecast and display copy requirements. Since the prototype implementation is modular and the system design provided flexibility for the Mission Control Center Upgrade (MCCU) operational consideration, the prototype implementation can be the baseline for a production Display Sharing implementation. To facilitate the process the following discussions are presented: Theory of operation; System of architecture; Using the prototype; Software description; Research tools; Prototype evaluation; and Outstanding issues. The prototype is based on the concept of a dedicated central host performing the majority of the Display Sharing processing, allowing minimal impact on each individual workstation. Each workstation participating in Display Sharing hosts programs to facilitate the user's access to Display Sharing as host machine.

  18. Status of the ATF Damping Ring BPM Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briegel, C.; /Fermilab; Eddy, N.

    2011-12-01

    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it'smore » finalization are presented.« less

  19. Space Shuttle RTOS Bayesian Network

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

  20. Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity

    NASA Astrophysics Data System (ADS)

    Peluso, Enzo

    The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.

  1. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from thismore » effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading plant scales and feedstock credit (current cost of disposal). It is assumed that the sludge is currently disposed of at $16.20/wet ton ($46/dry ton at 35% solids; $50/ton dry, ash-free basis) and this is included as a feedstock credit in the operating costs. The base case assumptions result in a minimum biocrude selling price of $3.8/gge and a minimum final upgraded fuel selling price of $4.9/gge. Several areas of process improvement and refinements to the analysis have the potential to significantly improve economics relative to the base case: • Optimization of HTL sludge feed solids content • Optimization of HTL biocrude yield • Optimization of HTL reactor liquid hourly space velocity (LHSV) • Optimization of fuel yield from hydrotreating • Combined large and small HTL scales specific to regions (e.g., metropolitan and suburban plants) Combined improvements believed to be achievable in these areas can potentially reduce the minimum selling price of biocrude and final upgraded fuel by about 50%. Further improvements may be possible through recovery of higher value components from the HTL aqueous phase, as being investigated under separate PNNL projects. Upgrading the biocrude at an existing petroleum refinery could also reduce the MFSP, although this option requires further testing to ensure compatibility and mitigate risks to a refinery. And finally, recycling the HTL aqueous phase product stream back to the headworks of the WWTP (with no catalytic hydrothermal gasification treatment) can significantly reduce cost. This option is uniquely appropriate for application at a water treatment facility but also requires further investigation to determine any technical and economic challenges related to the extra chemical oxygen demand (COD) associated with the recycled water.« less

  2. Export of electronics equipment waste.

    PubMed

    LaDou, Joseph; Lovegrove, Sandra

    2008-01-01

    Electronics equipment waste ("e-waste") includes discarded computers, computer monitors, television sets, and cell phones. Less than 10% of e-waste is currently recycled. The United States and other developed countries export e-waste primarily to Asia, knowing it carries a real harm to the poor communities where it will be discarded. A 2006 directive bans the use of lead, mercury, cadmium, hexavalent chromium, and certain brominated flame retardants in most electronics products sold in the EU. A similar directive facilitates the development and design of clean electronics products with longer lifespans that are safe and easy to repair, upgrade, and recycle, and will not expose workers and the environment to hazardous chemicals. These useful approaches apply only regionally and cover only a fraction of the hazardous substances used in electronics manufacture, however. There is an urgent need for manufacturers of electronics products to take responsibility for their products from production to end-of-life, and for much tighter controls both on the transboundary movement of e-waste and on the manner in which it is recycled. Manufacturers must develop clean products with longer lifespans that are safe and easy to repair, upgrade, and recycle and will not expose workers and the environment to hazardous chemicals.

  3. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  4. The UARS and open data concept and analysis study. [upper atmosphere

    NASA Technical Reports Server (NTRS)

    Mittal, M.; Nebb, J.; Woodward, H.

    1983-01-01

    Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. Costs for alternative implementations of the UARS designs are presented, showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are then discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign. In addition to a common system design, it is shown that there is significant potential for common software design, especially in the areas of data management software and non-user-unique production software. Archiving the CDHF data are discussed. Following that, cost examples for several modes of communications between the CDHF and Remote User Facilities are presented. Technology application is discussed.

  5. Climate balance of biogas upgrading systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pertl, A., E-mail: andreas.pertl@boku.ac.a; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading)more » method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.« less

  6. Parris Island Wastewater Treatment Plant SCADA Upgrades Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meador, Richard J.; Hatley, Darrel D.

    2004-03-18

    Marine Corp Recruit Depot (MCRD), Parris Island, SC, home of the Easter Recruiting Region Marine Corp Boot Camp, found itself in a situation common to Department of Defense (DOD) facilities. It had to deal with several different types of installed energy-related control systems that could not talk to each other. This situation was being exacerbated by the installation of a new and/or unique type of control system for every new building being constructed or older facility that was being upgraded. The Wastewater Treatment Facility (WWTF) and lift station controls were badly in need of a thorough inspection and a newmore » Supervisory Control and Data Acquisition (SCADA) system upgrade to meet environmental, safety, manpower, and maintenance concerns. A project was recently completed to implement such a wastewater treatment SCADA upgrade, which is compatible with other upgrades to the energy monitoring and control systems for Parris Island buildings and the Pacific Northwest National Laboratory (PNNL) Decision Support for Operations and Maintenance (DSOM) system installed at the Central Energy Plant (CEP). This project included design, specification, procurement, installation, and testing an upgraded SCADA alarm, process monitoring, and display system; and training WWTF operators in its operation. The ultimate goal of this and the other PNNL projects at Parris Island is to allow monitoring and control of energy and environmental components from a central location.« less

  7. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.

    PubMed

    Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog

    2018-03-05

    Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

  8. Smooth Upgrade of Existing Passive Optical Networks With Spectral-Shaping Line-Coding Service Overlay

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-09-01

    A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.

  9. MAPS development for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  10. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agblevor, Foster; Petkovic, Lucia; Bennion, Edward

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalyticmore » pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.« less

  11. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  12. Progress and plan of KSTAR plasma control system upgrade

    DOE PAGES

    Hahn, Sang-hee; Kim, Y. J.; Penaflor, B. G.; ...

    2016-06-01

    The plasma control system (PCS) has been one of essential systems in annual KSTAR plasma campaigns: starting from a single-process version in 2008, extensive upgrades are done through the previous 7 years in order to achieve major goals of KSTAR performance enhancement. Here, major implementations are explained in this paper. In consequences of successive upgrades, the present KSTAR PCS is able to achieve ~48 s of 500 kA plasma pulses with full real-time shaping controls and real-time NB power controls. It has become a huge system capable of dealing with 8 separate categories of algorithms, 26 actuators directly controllable duringmore » the shot, and real-time data communication units consisting of +180 analog channels and +600 digital input/outputs through the reflective memory (RFM) network. The next upgrade of the KSTAR PCS is planned in 2015 before the campaign. An overview of the upgrade layout will be given for this paper. The real-time system box is planned to use the CERN MRG-Realtime OS, an ITER-compatible standard operating system. New hardware is developed for faster real-time streaming system for future installations of actuators/diagnostics.« less

  13. Dilemma for high-tech refiners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The price difference between lighter and heavier crude oils, and between light and heavy refined products, amounts to the incentive for refiners to upgrade processing facilities. When that differential widens, the incentive to utilize lower price, lower quality crude is enhanced; when it narrows, the desirability of relying on light oil prices and supplies is intensified. The incentive to upgrade has been eroded ever since 1981 ushered in world-wide overproduction of crude oil. Lower demand due to recession met with increased pressure on producers to compete for market shares to maintain vital revenue levels - for private and national oilmore » companies alike. Light crude prices suffered, while heavy crude prices improved. As of mid-1984, the shrinkage of the price differential went into dormancy (see Energy Detente 8/8/84, A Hey-Day for Heavy Crudes) after both Mexico and Venezuela raised heavy oil prices by US $0.50 per barrel (bbl). Energy Detente refining netback data for the first half of October are presented for the US Gulf Coast and the US West Coast. The fuel price/tax series and the industrial fuel prices for October 1984 are included for countries of the Eastern Hemisphere.« less

  14. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Daniel; Lobban, Lance; Crossley, Steven

    The goal was to develop a biomass conversion process that optimizes fractionation and conversion to maximize Carbon efficiency and Hydrogen consumption to obtain drop-in fuels. Selective fractionation of raw biomass was obtained via multi-stage thermal fractionation to produce different streams that are enriched in a particular chemical family (acids, furanics or phenolics). These streams were later catalytically upgraded in both liquid and vapor phase to perform C-C bond formation and hydrodeoxygenation. Among various upgrading strategies investigated we have identified an effective path in which cyclopentanone is a crucial intermediate that can be derived from furfural and other furanics obtained inmore » high concentrations from this thermal staged process. Cyclopentanone is a very versatile molecule, which can couple with itself to product high quality jet-fuel, or couple with phenolic or furanics to create long chain molecules. These (mono-oxygenated) compounds in the correct molecular weight fuel range can be hydrotreated to direct drop-in fuels. Interestingly, we have found that the conversion of furfural to cyclopentanone is not affected by the presence of acetic acid, and, more interestingly, it is enhanced by the presence of water. These are very significant findings, since water and acetic acid are always present in all streams from the primary conversion stage. These results have allowed to complete detailed life-cycle assessment and techno-economic analysis that have been back-fed to the experimentalists to refine the catalyst selection and process operations with the objective of maximizing C efficiency at minimum H utilization. These combined investigations have opened the possibility of an economically and technologically effective process that could result in commercial fuels produced from renewable sources at a cost that might be competitive with fossil fuels.« less

  15. Towards Understanding the Impact of Production Techniques and Regulations on Widely Varying Methane Emission Rates in Western Basins

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Edie, R.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2017-12-01

    Recent airborne and mobile lab-based studies by our group and others have demonstrated that production-normalized emission rates of methane can vary dramatically between different Western basins. Three oil and gas basins that are geographically near one another and have relatively similar production characteristics (all three basins produce a mix of natural gas and condensate) have starkly different production-normalized methane emission rates at both the facility and basin-wide levels. This presentation will review previously published data on methane emissions from these basins (Denver Julesburg, Uintah, and Upper Green River) and present new measurement work supporting and expanding upon previous estimates. Beyond this, we use facility level data emissions data combined with information about the date of last upgrade to determine what impact regulations have had on methane emission rates from facilities within the basins. We also investigate what impact different approaches to production may have, in particular the role of having many individual wells processed at a central facility with high throughput is analyzed in terms of its impact on methane emissions.

  16. Towards Understanding the Impact of Production Techniques and Regulations on Widely Varying Methane Emission Rates in Western Basins

    NASA Astrophysics Data System (ADS)

    Regayre, L. A.; Johnson, J. S.; Yoshioka, M.; Pringle, K.; Sexton, D.; Booth, B.; Mann, G.; Lee, L.; Bellouin, N.; Lister, G. M. S.; Johnson, C.; Johnson, B. T.; Mollard, J.; Carslaw, K. S.

    2016-12-01

    Recent airborne and mobile lab-based studies by our group and others have demonstrated that production-normalized emission rates of methane can vary dramatically between different Western basins. Three oil and gas basins that are geographically near one another and have relatively similar production characteristics (all three basins produce a mix of natural gas and condensate) have starkly different production-normalized methane emission rates at both the facility and basin-wide levels. This presentation will review previously published data on methane emissions from these basins (Denver Julesburg, Uintah, and Upper Green River) and present new measurement work supporting and expanding upon previous estimates. Beyond this, we use facility level data emissions data combined with information about the date of last upgrade to determine what impact regulations have had on methane emission rates from facilities within the basins. We also investigate what impact different approaches to production may have, in particular the role of having many individual wells processed at a central facility with high throughput is analyzed in terms of its impact on methane emissions.

  17. Dry cleaning of Turkish coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less

  18. Positron Beam Characteristics at NEPOMUC Upgrade

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  19. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oilmore » and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.« less

  20. Worker Training: Competing in the New International Economy.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Workers' skills are critical to U.S. industrial productivity and competitiveness and to maintaining living standards. Training is the key. Good training pays--for workers whose skills are upgraded, for companies seeking a competitive edge, and for the nation in overall productivity. However, workers in other countries are better trained than most…

  1. An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates.

    PubMed

    Cárdenas-Fernández, Max; Bawn, Maria; Hamley-Bennett, Charlotte; Bharat, Penumathsa K V; Subrizi, Fabiana; Suhaili, Nurashikin; Ward, David P; Bourdin, Sarah; Dalby, Paul A; Hailes, Helen C; Hewitson, Peter; Ignatova, Svetlana; Kontoravdi, Cleo; Leak, David J; Shah, Nilay; Sheppard, Tom D; Ward, John M; Lye, Gary J

    2017-09-21

    Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).

  2. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less

  4. Utilizing the "Plan, Do, Study, Act" Framework to Explore the Process of Curricular Assessment and Redesign in a Physical Therapy Education Program in Suriname.

    PubMed

    Audette, Jennifer Gail; Baldew, Se-Sergio; Chang, Tony C M S; de Vries, Jessica; Ho A Tham, Nancy; Janssen, Johanna; Vyt, Andre

    2017-01-01

    To describe how a multinational team worked together to transition a physical therapy (PT) educational program in Paramaribo, Suriname, from a Bachelor level to a Master of Science in Physical Therapy (MSPT) level. The team was made up of PT faculty from Anton De Kom Universiteit van Suriname (AdeKUS), the Flemish Interuniversity Council University Development Cooperation (VLIR-UOS) leadership, and Health Volunteers Overseas volunteers. In this case study, the process for curricular assessment, redesign, and upgrade is described retrospectively using a Plan, Do, Study, Act (PDSA) framework. PT educational programs in developing countries are eager for upgrade to meet international expectations and to better meet community health-care needs. An ongoing process which included baseline assessment of all aspects of the existing bachelor's program in PT, development of a plan for a MSPT, implementation of the master's program, and evaluation following implementation is described. Curricular assessment and upgrade in resource-limited countries requires the implementation of process-oriented methods. The PDSA process is a useful tool to explore curricular development. The international collaboration described in this paper provides an example of the diligence, consistency, and dedication required to see a project through and achieve success while providing adequate support to the host site. This project might provide valuable insights for those involved in curricular redesign in similar settings.

  5. The Aircraft Industry

    DTIC Science & Technology

    2005-01-01

    market segment. Manufacturers are putting considerable effort into creating new models and upgrading current products for the high-end corporate...market share. Both competitors have new products entering the market with the Airbus A380 due around 2006, and the Boeing 787 scheduled for service in...commonality on all systems and technologies. First production models are expected to be delivered in 2008. Initial operating capability (IOC) for the U.S

  6. Shuttle Safety Improvements

    NASA Technical Reports Server (NTRS)

    Henderson, Edward

    2001-01-01

    The Space Shuttle has been flying for over 20 years and based on the Orbiter design life of 100 missions it should be capable of flying at least 20 years more if we take care of it. The Space Shuttle Development Office established in 1997 has identified those upgrades needed to keep the Shuttle flying safely and efficiently until a new reusable launch vehicle (RLV) is available to meet the agency commitments and goals for human access to space. The upgrade requirements shown in figure 1 are to meet the program goals, support HEDS and next generation space transportation goals while protecting the country 's investment in the Space Shuttle. A major review of the shuttle hardware and processes was conducted in 1999 which identified key shuttle safety improvement priorities, as well as other system upgrades needed to reliably continue to support the shuttle miss ions well into the second decade of this century. The high priority safety upgrades selected for development and study will be addressed in this paper.

  7. Deployment of the Hobby-Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.

    2016-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.

  8. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.

    PubMed

    Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A

    2011-09-01

    In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Aspen Plus Model for In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors for the Conversion of Biomass to Hydrocarbon Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is an Aspen Plus process model for in situ and ex situ upgrading of fast pyrolysis vapors for the conversion of biomass to hydrocarbon fuels. It is based on conceptual designs that allow projections of future commercial implementations of the technologies based on a combination of research and existing commercial technologies. The process model was developed from the ground up at NREL. Results from the model are documented in a detailed design report NREL/TP-5100-62455 (available at http://www.nrel.gov/docs/fy15osti/62455.pdf).

  10. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, T., E-mail: nishizawa@wisc.edu; Nornberg, M. D.; Den Hartog, D. J.

    2016-11-15

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  11. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.

    2016-11-01

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  12. Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440

    DOE PAGES

    Linger, Jeffrey G.; Hobdey, Sarah E.; Franden, Mary Ann; ...

    2016-02-02

    Pyrolysis offers a straightforward approach for the deconstruction of plant cell wall polymers into bio-oil. Recently, there has been substantial interest in bio-oil fractionation and subsequent use of biological approaches to selectively upgrade some of the resulting fractions. A fraction of particular interest for biological upgrading consists of polysaccharide-derived substrates including sugars and sugar dehydration products such as levoglucosan and cellobiosan, which are two of the most abundant pyrolysis products of cellulose. Levoglucosan can be converted to glucose-6-phosphate through the use of a levoglucosan kinase (LGK), but to date, the mechanism for cellobiosan utilization has not been demonstrated. Here, wemore » engineer the microbe Pseudomonas putida KT2440 to use levoglucosan as a sole carbon and energy source through LGK integration. Furthermore, we demonstrate that cellobiosan can be enzymatically converted to levoglucosan and glucose with β-glucosidase enzymes from both Glycoside Hydrolase Family 1 and Family 3. β-glucosidases are commonly used in both natural and industrial cellulase cocktails to convert cellobiose to glucose to relieve cellulase product inhibition and to facilitate microbial uptake of glucose. Using an exogenous β-glucosidase, we demonstrate that the engineered strain of P. putida can grow on levoglucosan up to 60 g/L and can also utilize cellobiosan. Overall, this study elucidates the biological pathway to co-utilize levoglucosan and cellobiosan, which will be a key transformation for the biological upgrading of pyrolysis-derived substrates.« less

  13. Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linger, Jeffrey G.; Hobdey, Sarah E.; Franden, Mary Ann

    Pyrolysis offers a straightforward approach for the deconstruction of plant cell wall polymers into bio-oil. Recently, there has been substantial interest in bio-oil fractionation and subsequent use of biological approaches to selectively upgrade some of the resulting fractions. A fraction of particular interest for biological upgrading consists of polysaccharide-derived substrates including sugars and sugar dehydration products such as levoglucosan and cellobiosan, which are two of the most abundant pyrolysis products of cellulose. Levoglucosan can be converted to glucose-6-phosphate through the use of a levoglucosan kinase (LGK), but to date, the mechanism for cellobiosan utilization has not been demonstrated. Here, wemore » engineer the microbe Pseudomonas putida KT2440 to use levoglucosan as a sole carbon and energy source through LGK integration. Furthermore, we demonstrate that cellobiosan can be enzymatically converted to levoglucosan and glucose with β-glucosidase enzymes from both Glycoside Hydrolase Family 1 and Family 3. β-glucosidases are commonly used in both natural and industrial cellulase cocktails to convert cellobiose to glucose to relieve cellulase product inhibition and to facilitate microbial uptake of glucose. Using an exogenous β-glucosidase, we demonstrate that the engineered strain of P. putida can grow on levoglucosan up to 60 g/L and can also utilize cellobiosan. Overall, this study elucidates the biological pathway to co-utilize levoglucosan and cellobiosan, which will be a key transformation for the biological upgrading of pyrolysis-derived substrates.« less

  14. Biorefining compounds and organocatalytic upgrading methods

    DOEpatents

    Chen, Eugene Y.; Liu, Dajiang

    2017-11-28

    The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5'-di(hydroxymethyl) furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C.sub.8-C.sub.12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.

  15. Biorefining compounds and organocatalytic upgrading methods

    DOEpatents

    Chen, Eugene Y.; Liu, Dajiang

    2016-10-18

    The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5'-di(hydroxymethyl)furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C.sub.8-C.sub.12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.

  16. Tevatron beam position monitor upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbers, Stephen; Banerjee, B.; Barker, B.

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiprotonmore » position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.« less

  17. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evolving software reengineering technology for the emerging innovative-competitive era

    NASA Technical Reports Server (NTRS)

    Hwang, Phillip Q.; Lock, Evan; Prywes, Noah

    1994-01-01

    This paper reports on a multi-tool commercial/military environment combining software Domain Analysis techniques with Reusable Software and Reengineering of Legacy Software. It is based on the development of a military version for the Department of Defense (DOD). The integrated tools in the military version are: Software Specification Assistant (SSA) and Software Reengineering Environment (SRE), developed by Computer Command and Control Company (CCCC) for Naval Surface Warfare Center (NSWC) and Joint Logistics Commanders (JLC), and the Advanced Research Project Agency (ARPA) STARS Software Engineering Environment (SEE) developed by Boeing for NAVAIR PMA 205. The paper describes transitioning these integrated tools to commercial use. There is a critical need for the transition for the following reasons: First, to date, 70 percent of programmers' time is applied to software maintenance. The work of these users has not been facilitated by existing tools. The addition of Software Reengineering will also facilitate software maintenance and upgrading. In fact, the integrated tools will support the entire software life cycle. Second, the integrated tools are essential to Business Process Reengineering, which seeks radical process innovations to achieve breakthrough results. Done well, process reengineering delivers extraordinary gains in process speed, productivity and profitability. Most importantly, it discovers new opportunities for products and services in collaboration with other organizations. Legacy computer software must be changed rapidly to support innovative business processes. The integrated tools will provide commercial organizations important competitive advantages. This, in turn, will increase employment by creating new business opportunities. Third, the integrated system will produce much higher quality software than use of the tools separately. The reason for this is that producing or upgrading software requires keen understanding of extremely complex applications which is facilitated by the integrated tools. The radical savings in the time and cost associated with software, due to use of CASE tools that support combined Reuse of Software and Reengineering of Legacy Code, will add an important impetus to improving the automation of enterprises. This will be reflected in continuing operations, as well as in innovating new business processes. The proposed multi-tool software development is based on state of the art technology, which will be further advanced through the use of open systems for adding new tools and experience in their use.

  19. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  20. Upgrade of goniospectrophtometer GEFE for near-field scattering and fluorescence radiance measurements

    NASA Astrophysics Data System (ADS)

    Bernad, Berta; Ferrero, Alejandro; Pons, Alicia; Hernanz, M. L.; Campos, Joaquín.

    2015-03-01

    The goniospectrophotometer GEFE, designed and developed at IO-CSIC (Instituto de Optica, Agencia Estatal Consejo Superior de Investigaciones Cientificas), was conceived to measure the spectral Bidirectional Reflectance Distribution Function (BRDF) at any pair of irradiation and detection directions. Although the potential of this instrument has largely been proved, it still required to be upgraded to deal with some important scattering features for the assessment of the appearance. Since it was not provided with a detector with spatial resolution, it simply could not measure spectrophotometric quantities to characterize texture through the Bidirectional Texture Function (BTF) or translucency through the more complex Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF). Another requirement in the GEFE upgrading was to provide it with the capability of measuring fluorescence at different geometries, since some of the new pigments used in industry are fluorescent, which can have a non-negligible impact in the color of the product. Then, spectral resolution at irradiation and detection had to be available in GEFE. This paper describes the upgrading of the goniospectrophotometer GEFE, and its new capabilities through the presentation of sparkle and goniofluorescence measurements. In addition, the potential of the instrument to evaluate translucency by the measurement of the BSSRDF is briefly discussed.

  1. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Evans, Tabitha J.; Cheng, Lei

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Majormore » products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.« less

  2. Environmental impact assessment of oilfield upgrades in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Chen, Ruihui; Xiong, Yanna; Li, Jiao; Li, Xianbo

    2018-02-01

    This paper designed 65 environmental monitoring sites to collect samples and analyze for better evaluating the environmental impact generated by cuttings, mud, produced water with oil and oil pollutions that produced during the upgrading in the Bohai Sea where the oil field 34-1 upgraded. Collecting samples include ocean water, marine life and sediments and test items involve PH, dissolved oxygen (DO), salinity, chemical oxygen demand (COD), phosphate, organic carbon, sulfide, inorganic nitrogen, petroleum, copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), total chromium (Cr), total mercury (Hg) and arsenic (As). Meanwhile sample sites collect and analyze the abundance and diversity of marine plants and elaborated the environmental impact caused by upgrading renovation project from the aspects of sea water, marine life and marine sediments. Through analysis and comparison we found that seawater quality conform the Ш seawater quality standards, the excessive rate of Cu is 10%, the average diversity index of marine life is 2.34 and evenness is 0.68. Influence range of marine sediments and pollutants of production is within 2.68km and basically has no serious impact in the surrounding sea area. It’s worth nothing that reconstruction project has the risk of oil spilling and protective measures must be prepared.

  3. Production and characterization of chars from cherry pulp via pyrolysis.

    PubMed

    Pehlivan, E; Özbay, N; Yargıç, A S; Şahin, R Z

    2017-12-01

    Pyrolysis is an eco-friendly process to achieve valuable products like bio-oil, char and gases. In the last decades, biochar production from pyrolysis of a wide variety of industrial and agricultural wastes become popular, which can be utilized as adsorbent instead of the expensive activated carbons. In this study, cherry pulp was pyrolyzed in a fixed bed tubular reactor at five different temperatures (400, 500,550, 600 and 700 °C) and three different heating rates (10, 100 and 200 °C/min) to obtain biochar. Proximate, ultimate, nitrogen adsorption/desorption isotherms, scanning electron microscopy, thermogravimetric analysis, x-ray fluorescence, x-ray diffraction, and Fourier transform infrared spectroscopy were performed on cherry pulp and its chars to examine the chemical alterations after the pyrolysis process. Biochar yields were decreased with increasing pyrolysis temperature and heating rate, based on experimental results. Porous biochars are carbon rich and includes high potassium content. The aromaticity of biochars increased and O/C mass ratio reduced with an increase in the pyrolysis temperature as a result of the development of compact aromatic structure in char. Pyrolysis provides a promising conversion procedure for the production of high energy density char which has promising applications in existing coal-fired boilers without any upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. GOME and Sciamachy data access using the Netherlands Sciamachy Data Center

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; de Vreede, Ernst; van de Vegte, John; van Hees, Ricard; van der Neut, Ian; Stammes, Piet; Pieters, Ankie; van der A, Ronald

    2010-05-01

    The Netherlands Sciamachy Data Center (NL-SCIA-DC) provides access to satellite data from the GOME and Sciamachy instruments for over 10 years now. GOME and Sciamachy both measure trace gases like Ozone, Methane, NO2 and aerosols, which are important for climate and air quality monitoring. Recently (February 2010) a new release of the NL-SCIA-DC provides an improved processing and archiving structure and an improved user interface. This Java Webstart application allows the user to browse, query and download GOME and Sciamachy data products, including KNMI and SRON GOME and Sciamachy products (cloud products, CH4, NO2, CO). Data can be searched on file and pixel level, and can be graphically displayed. The huge database containing all pixel information of GOME and Sciamachy is unique and allows specific selection, e.g., selecting cloud free pixels. Ordered data is delivered by FTP or email. The data available spans the mission times of GOME and Sciamachy, and is constantly updated as new data becomes available. The data services future upgrades include offering additional functionality to end-users of Sciamachy data. One of the functionalities provided will be the possibility to select and process Sciamachy products using different data processors, using Grid technology. This technology was successfully researched and will be made operationally available in the near future.

  5. Production of Solar-Grade Silicon by the SiF4 and Mg Reaction

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobing; Bao, Jianer; Sanjurjo, Angel

    2016-12-01

    Over 90 pct of the solar cells currently produced and installed are Si based, and this industrial dominance is expected to persist for the foreseeable future. The crystalline Si substrate accounts for a significant portion of the total cost of solar cells. In order to further reduce the cost of solar panels, there has been significant effort in producing inexpensive solar-grade Si, mainly through three paths: (1) modification of the Siemens process to lower production costs, (2) upgrading metallurgical-grade Si to reach solar-grade purity, and (3) by means of new metallurgical processes such as the reduction of a silicon halide, e.g., SiF4 or SiCl4, by a reactive metal such as Na or Zn. In this paper, we describe an alternative path that uses Mg to react with SiF4 to produce low-cost solar grade Si. Experimental conditions for complete reaction and separation of the products, Si and MgF2, as well as aspects of the reaction mechanism are described. The reaction involves both a heterogeneous liquid-gas phase reaction and a homogeneous gas-gas phase reaction. When pure Mg was used, the Si product obtained had sub-ppm levels of B and P impurities and is expected to be suitable for solar cell applications.

  6. Process Architecture for Managing Digital Object Identifiers

    NASA Astrophysics Data System (ADS)

    Wanchoo, L.; James, N.; Stolte, E.

    2014-12-01

    In 2010, NASA's Earth Science Data and Information System (ESDIS) Project implemented a process for registering Digital Object Identifiers (DOIs) for data products distributed by Earth Observing System Data and Information System (EOSDIS). For the first 3 years, ESDIS evolved the process involving the data provider community in the development of processes for creating and assigning DOIs, and guidelines for the landing page. To accomplish this, ESDIS established two DOI User Working Groups: one for reviewing the DOI process whose recommendations were submitted to ESDIS in February 2014; and the other recently tasked to review and further develop DOI landing page guidelines for ESDIS approval by end of 2014. ESDIS has recently upgraded the DOI system from a manually-driven system to one that largely automates the DOI process. The new automated feature include: a) reviewing the DOI metadata, b) assigning of opaque DOI name if data provider chooses, and c) reserving, registering, and updating the DOIs. The flexibility of reserving the DOI allows data providers to embed and test the DOI in the data product metadata before formally registering with EZID. The DOI update process allows the changing of any DOI metadata except the DOI name unless the name has not been registered. Currently, ESDIS has processed a total of 557 DOIs of which 379 DOIs are registered with EZID and 178 are reserved with ESDIS. The DOI incorporates several metadata elements that effectively identify the data product and the source of availability. Of these elements, the Uniform Resource Locator (URL) attribute has the very important function of identifying the landing page which describes the data product. ESDIS in consultation with data providers in the Earth Science community is currently developing landing page guidelines that specify the key data product descriptive elements to be included on each data product's landing page. This poster will describe in detail the unique automated process and underlying system implemented by ESDIS for registering DOIs, as well as some of the lessons learned from the development of the process. In addition, this paper will summarize the recommendations made by the DOI Process and DOI Landing Page User Working Groups, and the procedures developed for implementing those recommendations.

  7. Utilizing Regional Centers in Sustaining Upgraded Russian Federation Ministry of Defense Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaldenbach, Karen Yvonne; Chainikov, General Vladimir; Fedorov, General Victor

    2010-01-01

    Since the mid-1990s the governments of the United States (U.S.) and the Russian Federation (RF) have been collaborating on nonproliferation projects, particularly in the protection of nuclear material through the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). To date, this collaboration has resulted in upgrades to more than 72 RF Ministry of Defense (MOD) sensitive sites and facilities. These upgrades include physical protection systems (PPS), facilities to ensure material remains secure in various configurations, and infrastructure to support, maintain, and sustain upgraded sites. Significant effort on the part of both governments has also been expended to ensure thatmore » personnel obtain the necessary skills and training to both operate and maintain the security systems, thereby ensuring long term sustainability. To accomplish this, initial vendor training on physical protection systems was provided to key personnel, and an approved training curriculum was developed to teach the skills of operating, managing, administering, and maintaining the installed physical protection systems. This approach also included documentation of the processes and procedures to support infrastructure, requisite levels of maintenance and testing of systems and equipment, lifecycle management support, inventory systems and spare parts caches. One of the core components in the U.S. exit strategy and full transition to the RF MOD is the development and utilization of regional centers to facilitate centralized training and technical support to upgraded MOD sites in five regions of the RF. To date, two regional centers and one regional classroom facility are functional, and two additional regional centers are currently under construction. This paper will address the process and logistics of regional center establishment and the future vision for integrated regional center support by the RF MOD.« less

  8. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Meng, Jiajia; McCabe, Kevin

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fastmore » pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackner, Friedrich; Ferracin, Paolo; Todesco, Ezio

    The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb3Sn technology. The coils with a length of 7281 mm will bemore » the longest Nb3Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.« less

  10. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.

    PubMed

    Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-05-01

    A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.

  12. Catalytic hydroprocessing of heavy oil feedstocks

    NASA Astrophysics Data System (ADS)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  13. High Speed Operation and Testing of a Fault Tolerant Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Clark, Daniel

    2004-01-01

    Research activities undertaken to upgrade the fault-tolerant facility, continue testing high-speed fault-tolerant operation, and assist in the commission of the high temperature (1000 degrees F) thrust magnetic bearing as described. The fault-tolerant magnetic bearing test facility was upgraded to operate to 40,000 RPM. The necessary upgrades included new state-of-the art position sensors with high frequency modulation and new power edge filtering of amplifier outputs. A comparison study of the new sensors and the previous system was done as well as a noise assessment of the sensor-to-controller signals. Also a comparison study of power edge filtering for amplifier-to-actuator signals was done; this information is valuable for all position sensing and motor actuation applications. After these facility upgrades were completed, the rig is believed to have capabilities for 40,000 RPM operation, though this has yet to be demonstrated. Other upgrades included verification and upgrading of safety shielding, and upgrading control algorithms. The rig will now also be used to demonstrate motoring capabilities and control algorithms are in the process of being created. Recently an extreme temperature thrust magnetic bearing was designed from the ground up. The thrust bearing was designed to fit within the existing high temperature facility. The retrofit began near the end of the summer, 04, and continues currently. Contract staff authored a NASA-TM entitled "An Overview of Magnetic Bearing Technology for Gas Turbine Engines", containing a compilation of bearing data as it pertains to operation in the regime of the gas turbine engine and a presentation of how magnetic bearings can become a viable candidate for use in future engine technology.

  14. 77 FR 27797 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... 4279-2) for the following: Applicant/Location: Samoa Tuna Processors, Inc. Principal Product/Purpose... improvements, replace machinery and equipment and utilities repairs and other upgrades. The plant will be...

  15. DUACS: Toward High Resolution Sea Level Products

    NASA Astrophysics Data System (ADS)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  16. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  17. 77 FR 38351 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change To List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... mines to upgraded copper products--is highly dependent on global trade. According to CPM Group, a... roughly 55% of global output in 2011, while roughly 46% production is performed in Asia. BILLING CODE 8011... global industrial activity, given copper's prominence in major economic sectors such as construction...

  18. Role of potassium exchange in catalytic pyrolysis of biomass over ZSM-5: Formation of alkyl phenols and furans

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis of biomass with ZSM-5 type zeolites is a commonly considered in situ upgrading technique for the production of partially deoxygenated bio-oils. The acidity and structure of ZSM-5 catalysts favor the production of aromatic hydrocarbons from oxygenates present in the pyrolysis...

  19. 77 FR 64374 - Notification of Petition for Approval; Port Authority Trans-Hudson Product Safety Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... assigned the petition Docket Number FRA-2012-0075. PATH is upgrading some of its track circuits with Digicode microprocessor-based track circuits. The Digicode track circuit is part of Alstom's Smartway Digital Track Circuit product line and will be used by PATH for train detection and broken rail detection...

  20. Dispersed processing for ATC.

    DOT National Transportation Integrated Search

    1971-06-01

    An analysis has been made of the potentialities and problems involved in assigning some computer processing and control functions to the remote sites in an upgraded third generation air traffic control system. Interrogator sites offer the most fruitf...

  1. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas.

    PubMed

    Krischan, J; Makaruk, A; Harasek, M

    2012-05-15

    Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Thermodynamic modelling of an onsite methanation reactor for upgrading producer gas from commercial small scale biomass gasifiers.

    PubMed

    Vakalis, S; Malamis, D; Moustakas, K

    2018-06-15

    Small scale biomass gasifiers have the advantage of having higher electrical efficiency in comparison to other conventional small scale energy systems. Nonetheless, a major drawback of small scale biomass gasifiers is the relatively poor quality of the producer gas. In addition, several EU Member States are seeking ways to store the excess energy that is produced from renewables like wind power and hydropower. A recent development is the storage of energy by electrolysis of water and the production of hydrogen in a process that is commonly known as "power-to-gas". The present manuscript proposes an onsite secondary reactor for upgrading producer gas by mixing it with hydrogen in order to initiate methanation reactions. A thermodynamic model has been developed for assessing the potential of the proposed methanation process. The model utilized input parameters from a representative small scale biomass gasifier and molar ratios of hydrogen from 1:0 to 1:4.1. The Villar-Cruise-Smith algorithm was used for minimizing the Gibbs free energy. The model returned the molar fractions of the permanent gases, the heating values and the Wobbe Index. For mixtures of hydrogen and producer gas on a 1:0.9 ratio the increase of the heating value is maximized with an increase of 78%. For ratios higher than 1:3, the Wobbe index increases significantly and surpasses the value of 30 MJ/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents.

    PubMed

    Bahr, Melanie; Díaz, Ignacio; Dominguez, Antonio; González Sánchez, Armando; Muñoz, Raul

    2014-01-01

    The potential of a pilot high rate algal pond (HRAP) interconnected via liquid recirculation with an external absorption column for the simultaneous removal of H2S and CO2 from biogas using an alkaliphilic microalgal-bacterial consortium was evaluated. A bubble column was preferred as external absorption unit to a packed bed column based on its ease of operation, despite showing a comparable CO2 mass transfer capacity. When the combined HRAP-bubble column system was operated under continuous mode with mineral salt medium at a biogas residence time of 30 min in the absorption column, the system removed 100% of the H2S (up to 5000 ppmv) and 90% of the CO2 supplied, with O2 concentrations in the upgraded biogas below 0.2%. The use of diluted centrates as a free nutrient source resulted in a gradual decrease in CO2 removal to steady values of 40%, while H2S removal remained at 100%. The anaerobic digestion of the algal-bacterial biomass produced during biogas upgrading resulted in a CH4 yield of 0.21-0.27 L/gVS, which could satisfy up to 60% of the overall energy demand for biogas upgrading. This proof of concept study confirmed that algal-bacterial photobioreactors can support an integral upgrading without biogas contamination, with a net negative CO2 footprint, energy production, and a reduction of the eutrophication potential of the residual anaerobic effluents.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  5. Dark Searches and γγ Physics at KLOE

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2017-04-01

    The search for a dark sector mediated by a new gauge boson, the dark photon, is motivated by many astrophysical anomalies and by the g - 2 discrepancy. The KLOE experiment, operating at the e+e- DAΦNE collider in Frascati, searched for a visibly-decaying dark photon by investigating the ϕ-Dalitz decay into the η meson, the dark photon production from continuum, and the Higgsstrahlung process. The KLOE-2 run started in November 2014, after the upgrade of both, DAΦNE and the KLOE apparatus. In particular, two high electron and positron tagger stations were installed in the DAΦNE layout to study γγ interactions at 1 GeV. Progress status of the project is given.

  6. NPOESS C3S Expandability: SafetyNetTM and McMurdo Improvements

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Paciaroni, J.; Pela, F.

    2010-12-01

    The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics & Space Administration (NASA) are jointly acquiring the next-generation weather & environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and Dod's Defense Meteorological Satellite Program (DMSP). The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The command & telemetry portion of NPOESS is the Command, Control and Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems. C3S is responsible for managing the overall NPOESS mission from control and status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment (SS) to the Interface Data Processing Segment (IDPS) for processing. In addition, the C3S provides the globally distributed ground assets necessary to collect and transport mission, telemetry, and command data between the satellites and the processing locations. The C3S provides all functions required for day-to-day commanding & state-of-health monitoring of the NPP & NPOESS satellites, and delivery of Stored Mission Data (SMD) to each US Weather Central Interface Data Processor (IDP) for data products development and transfer to System subscribers. The C3S also monitors and reports system-wide health and status & data communications with external systems and between NPOESS segments. Two crucial elements of NPOESS C3S expandability are SafetyNetTM and communications improvements to McMurdo Station, Antarctica. SafetyNetTM is a key feature of NPOESS and a vital element of the C3S and Northrop Grumman Aerospace Systems patented data collection architecture. The centerpiece of SafetyNetTM is the system of fifteen globally-distributed ground receptors developed by Raytheon Company. These antennae will collect up to five times as much environmental data approximately four times faster than current polar-orbiting weather satellites. Once collected, these data will be forwarded near-instantaneously to US weather centrals via the global fiber optic network for processing in environmental prediction models. In January 2008, Raytheon Company achieved a significant milestone for the NPOESS program by successfully completing the first phase of a major communications upgrade for Antarctica. The upgrade of the off-continent satellite communications link at McMurdo Station more than tripled the bandwidth available for scientific research, weather prediction, and health & safety of those stationed at McMurdo. The project is part of the company’s C3S under development for NPOESS. This upgrade paves the way for a second major communications upgrade planned for 2012 in preparation for the use of McMurdo Station as one of the 15 NPOESS ground stations worldwide that will be receiving environmental data collected by the NPOESS satellites. SafetyNet is a trademark of Northrop Grumman Aerospace Systems.

  7. Applications of prebiotics in food industry: A review.

    PubMed

    Singla, Vinti; Chakkaravarthi, S

    2017-12-01

    Benefits of prebiotics for stimulating a healthy intestinal tract are well known. From suppression of pathogens to proliferation of indigenous bacteria of intestines, prebiotics have it all. Since the research on the scope of prebiotics is expanding, new applications are coming up every day thus upgrading the choices consumer has for a healthy living. Incorporation of prebiotics in a wide range of products that food industry offers on shelf is an innovative way to replace fat and sugars along with enhancing the mouthfeel by providing better tongue lubrication. In some cases, the thermal stability of the product is improved along with other sensory, textural and physiological benefits. This paper gives an overview of the various prebiotics available from different sources and their applications in various segments of food industry, notably dairy, beverage, processed fruit-vegetable, bakery, confectionary, extruded snack, sweetener, infant formula, pet food and livestock industry. The effects observed on addition of various prebiotics are also elaborated.

  8. Molecular Methods for Identification of Microorganisms in Traditional Meat Products

    NASA Astrophysics Data System (ADS)

    Cocolin, Luca; Dolci, Paola; Rantsiou, Kalliopi

    Traditional fermentations are those that have been used for centuries and even pre-date written historical records. Fermentation processes have been developed to upgrade plant and animal materials, to yield a more acceptable food, to add flavor, to prevent the growth of pathogenic and spoilage microorganisms, and to preserve food without refrigeration (Hesseltine & Wang, 1980). Among fermented foods, sausages are the meat products with a longer history and tradition. It is often assumed that sausages were invented by the Sumerians, in what is Iraq today, around 3000 BC. Chinese sausage làcháng, which consisted of goat and lamb meat, was first mentioned in 589 BC. Homer, the poet of The Ancient Greece, mentioned a kind of blood sausage in the Odyssey (book 20, verse 25), and Epicharmus (ca. 550 BC-ca. 460 BC) wrote a comedy entitled “The Sausage”.

  9. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    PubMed

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Harvesting and contamination control of microalgae Chlorella ellipsoidea using the bio-polymeric flocculant α-poly-l-lysine.

    PubMed

    Noh, Won; Kim, Jungmin; Lee, Sang-Jun; Ryu, Byung-Gon; Kang, Chang-Min

    2018-02-01

    Microalgae have been extensively studied for the production of various products. However, to date, microalgal biomass has not become economically feasible, mainly due to different issues such as contamination from various sources that occurs during downstream processes, and which leads to low quality biomass with limited application. In this study, to overcome contamination by flocculants and other microorganisms, the cationic biopolymer α-Poly-l-lysine (α-PLL) was applied. The cationic amine moiety and polymeric chain of α-PLL rendered microalgal harvesting efficient. With increasing α-PLL chain length, efficient dose- and time-dependent harvesting was achieved. In addition to efficient flocculation performance, biomass harvested using α-PLL showed suppressed biological contamination through the inherent antimicrobial activity of α-PLL. Thus, it is possible to upgrade the quality and storability of produced microalgal biomass using α-PLL-induced flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods.

    PubMed

    Williams, Eric

    2004-11-15

    The total energy and fossil fuels used in producing a desktop computer with 17-in. CRT monitor are estimated at 6400 megajoules (MJ) and 260 kg, respectively. This indicates that computer manufacturing is energy intensive: the ratio of fossil fuel use to product weight is 11, an order of magnitude larger than the factor of 1-2 for many other manufactured goods. This high energy intensity of manufacturing, combined with rapid turnover in computers, results in an annual life cycle energy burden that is surprisingly high: about 2600 MJ per year, 1.3 times that of a refrigerator. In contrast with many home appliances, life cycle energy use of a computer is dominated by production (81%) as opposed to operation (19%). Extension of usable lifespan (e.g. by reselling or upgrading) is thus a promising approach to mitigating energy impacts as well as other environmental burdens associated with manufacturing and disposal.

  12. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    PubMed

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi--assessment of their effect on the final product and spent substrate properties.

    PubMed

    Koutrotsios, Georgios; Mountzouris, Konstantinos C; Chatzipavlidis, Iordanis; Zervakis, Georgios I

    2014-10-15

    Nine agro-industrial and forestry by-products were subjected to solid-state fermentation by Agrocybe cylindracea and Pleurotus ostreatus, and the process and end-products were comparatively evaluated. Grape marc waste plus cotton gin trash was the best performing medium for both fungi, while substrate composition had a marked effect on most cultivation parameters. Biological efficiency was positively correlated with nitrogen, lignin and ash, and negatively with hemicelluloses and carbohydrate content of substrates. Spent substrates demonstrated high reductions in hemicelluloses and cellulose in contrast to lignin; fibre fractions were correlated with nitrogen, fat and ash content of initial materials, while residual mycelial biomass was affected by mushroom productivity. Mushroom proximate analysis revealed significant variations of constituents depending on the substrate. Crude protein and fat were correlated with substrates nitrogen for both species. Alternative cultivation substrates of high potential are proposed, while spent material could be exploited as animal feed due to its upgraded properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. CryoSat Ice Processor: Known Processor Anomalies and Potential Future Product Evolutions

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Launched in 2010, CryoSat was designed to measure changes in polar sea ice thickness and ice sheet elevation. To reach this goal the CryoSat data products have to meet the highest performance standards and are subjected to a continual cycle of improvement achieved through upgrades to the Instrument Processing Facilities (IPFs). Following the switch to the Baseline-C Ice IPFs there are already planned evolutions for the next processing Baseline, based on recommendations from the Scientific Community, Expert Support Laboratory (ESL), Quality Control (QC) Centres and Validation campaigns. Some of the proposed evolutions, to be discussed with the scientific community, include the activation of freeboard computation in SARin mode, the potential operation of SARin mode over flat-to-slope transitory land ice areas, further tuning of the land ice retracker, the switch to NetCDF format and the resolution of anomalies arising in Baseline-C. This paper describes some of the anomalies known to affect Baseline-C in addition to potential evolutions that are planned and foreseen for Baseline-D.

  15. Enhanced extraction of butyric acid under high-pressure CO2 conditions to integrate chemical catalysis for value-added chemicals and biofuels.

    PubMed

    Chun, Jaesung; Choi, Okkyoung; Sang, Byoung-In

    2018-01-01

    Extractive fermentation with the removal of carboxylic acid requires low pH conditions because acids are better partitioned into the solvent phase at low pH values. However, this requirement conflicts with the optimal near-neutral pH conditions for microbial growth. CO 2 pressurization was used, instead of the addition of chemicals, to decrease pH for the extraction of butyric acid, a fermentation product of Clostridium tyrobutyricum , and butyl butyrate was selected as an extractant. CO 2 pressurization (50 bar) improved the extraction efficiency of butyric acid from a solution at pH 6, yielding a distribution coefficient ( D ) 0.42. In situ removal of butyric acid during fermentation increased the production of butyric acid by up to 4.10 g/L h, an almost twofold increase over control without the use of an extraction process. In situ extraction of butyric acid using temporal CO 2 pressurization may be applied to an integrated downstream catalytic process for upgrading butyric acid to value-added chemicals in an organic solvent.

  16. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel.

    PubMed

    Nitzsche, Roy; Budzinski, Maik; Gröngröft, Arne

    2016-01-01

    Lignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading. Mass and energy balances showed that 61,600t/a polymer-grade ethylene, 58,520tDM/a organosolv lignin, 38,400t/a biomethane and 90,800tDM/a hydrolysis lignin can be produced with a total energy efficiency of 87.1%. A discounted cash flow analysis indicated that the heat integrated biorefinery concept is not yet profitable. However, the economic results are greatly sensitive regarding various assumptions, in particular in terms of the prices for beech wood, ethylene and organosolv lignin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Get More for Your Maintenance Dollar through Contracting.

    ERIC Educational Resources Information Center

    Donahue, Ron

    1983-01-01

    The use of contractors for the performance of maintenance duties in parks and recreational facilities is recommended as a legitimate tool to improve productivity or upgrade quality. An example of the use of contracts is provided. (CJ)

  18. 77 FR 27797 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... 4279-2) for the following: Applicant/Location: Samoa Cold Storage, Inc. Principal Product/Purpose: The... demolition of the interior of the existing facility, renovations and improvements, repairs and upgrades and...

  19. Research and application of key technology of electric submersible plunger pump

    NASA Astrophysics Data System (ADS)

    Qian, K.; Sun, Y. N.; Zheng, S.; Du, W. S.; Li, J. N.; Pei, G. Z.; Gao, Y.; Wu, N.

    2018-06-01

    Electric submersible plunger pump is a new generation of rodless oil production equipment, whose improvements and upgrades of key technologies are conducive to its large-scale application and reduce the cost and improve the efficiency. In this paper, the operating mechanism of the unit in-depth study, aimed at the problems existing in oilfield production, to propose an optimization method creatively, including the optimal design of a linear motor for submersible oil, development of new double-acting load-relief pump, embedded flexible closed-loop control technology, research and development of low-cost power cables. 90 oil wells were used on field application, the average pump inspection cycle is 608 days, the longest pump check cycle has exceeded 1037 days, the average power saving rate is 45.6%. Application results show that the new technology of optimization and upgrading can further improve the reliability and adaptability of electric submersible plunger pump, reduce the cost of investment.

  20. Code query by example

    NASA Astrophysics Data System (ADS)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

Top