Science.gov

Sample records for production oxidative damage

  1. Superoxide and the production of oxidative DNA damage.

    PubMed Central

    Keyer, K; Gort, A S; Imlay, J A

    1995-01-01

    The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron. PMID:7592468

  2. Bee products prevent agrichemical-induced oxidative damage in fish.

    PubMed

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  3. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  4. Estimation of oxidative DNA damage in man from urinary excretion of repair products.

    PubMed

    Loft, S; Poulsen, H E

    1998-01-01

    DNA is constantly damaged and repaired in living cells. The repair products of the oxidative DNA lesions, i.e. oxidised nucleosides and bases, are poor substrates for the enzymes involved in nucleotide synthesis, are fairly water soluble, and generally excreted into the urine without further metabolism. Among the possible products, 8-oxo-2'-deoxyguanosine, 8-oxoguanine, thymine glycol, thymidine glycol and, 5-hydroxymethyluracil have so far been identified in urine. It should be emphasised that the excretion of the repair products in urine represents the average rate of damage in the total body whereas the level of oxidised bases in nuclear DNA is a concentration measurement in that specific tissue/cells in the moment of sampling. The rate of oxidative DNA modifications has been studied in humans by means of the repair products as urinary biomarkers, particularly with respect to 8-oxo-2'-deoxyguanosine. The data obtained so far indicate that the important determinants of the oxidative damage rate include tobacco smoking, oxygen consumption and some inflammatory diseases whereas diet composition, energy restriction and antioxidant supplements have but a minimal influence, possibly with the exception of yet unidentified phytochemicals, e.g. from cruciferous vegetables. The data are consistent with the experimentally based notion that oxidative DNA damage is an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still warranted. In the future the use of biomarkers may provide this evidence and allow further investigations on the qualitative and quantitative importance of oxidative DNA modification and carcinogenesis in man, as well as elucidate possible preventive measures.

  5. Disinfection by-products effect on swimmers oxidative stress and respiratory damage.

    PubMed

    Llana-Belloch, Salvador; Priego Quesada, Jose Ignacio; Pérez-Soriano, Pedro; Lucas-Cuevas, Ángel G; Salvador-Pascual, Andrea; Olaso-González, Gloria; Moliner-Martinez, Yolanda; Verdú-Andres, Jorge; Campins-Falco, Pilar; Gómez-Cabrera, M Carmen

    2016-08-01

    Disinfection by-products (DBPs) are generated through the reaction of chlorine with organic and inorganic matter in indoor swimming pools. Different DBPs are present in indoor swimming pools. This study evaluated the effects of different chlorinated formations in oxidative stress and lung damage in 20 swimmers after 40 min of aerobic swimming in 3 indoor pools with different characteristics. Biological samples were collected to measure lung damage (serum-surfactant-associated proteins A and B), oxidative stress parameters (plasma protein carbonylation and malondialdehyde, and whole-blood glutathione oxidation), and swimming exertion values (blood lactate) before and after exercise. Free chlorine and combined chlorine in water, and chlorine in air samples were determined in all the swimming pools. Chlorination as disinfection treatment led to the formation of chloramines in water samples, mainly mono- and dichloramine. However, free chlorine was the predominate species in ultraviolet-treated swimming pool. Levels of total chlorine increased as a function of the swimming activity in chlorinated swimming pools. The lower quality of the installation resulted in a higher content of total chlorine, especially in air samples, and therefore a higher exposure of the swimmer to DBPs. However, the concentration level of chlorinated DBPs did not result in significant variation in serum-surfactant-associated proteins A and oxidative stress parameters in swimmers. In conclusion, the quality of the installation affected the DBPs concentration; however, it did not lead to lung epithelial damage and oxidative stress parameters in swimmers.

  6. Mass spectrometric quantification of amino acid oxidation products identifies oxidative mechanisms of diabetic end-organ damage

    PubMed Central

    Vivekanadan-Giri, Anuradha; Wang, Jeffrey H.; Byun, Jaeman

    2010-01-01

    Diabetes mellitus is increasingly prevalent worldwide. Diabetic individuals are at markedly increased risk for premature death due to cardiovascular disease. Furthermore, substantial morbidity results from microvascular complications which include retinopathy, nephropathy, and neuropathy. Clinical studies involving diabetic patients have suggested that degree of diabetic hyperglycemia correlates with risk of complications. Recent evidence implicates a central role for oxidative stress and vascular inflammation in all forms of insulin resistance, obesity, diabetes and its complications. Although, glucose promotes glycoxidation reactions in vitro and products of glycoxidation and lipoxidation are elevated in plasma and tissue in diabetics, the exact relationships among hyperglycemia, the diabetic state, and oxidative stress are not well-understood. Using a combination of in vitro and in vivo experiments, we have identified amino acid oxidation markers that serve as molecular fingerprints of specific oxidative pathways. Quantification of these products utilizing highly sensitive and specific gas chromatography/mass spectrometry in animal models of diabetic complications and in humans has provided insights in oxidative pathways that result in diabetic complications. Our studies strongly support the hypothesis that unique oxidants are generated in the microenvironment of tissues vulnerable to diabetic damage. Potential therapies interrupting these reactive pathways in target tissue are likely to be beneficial in preventing diabetic complications. PMID:18752069

  7. Long-lived Indy induces reduced mitochondrial reactive oxygen species production and oxidative damage

    PubMed Central

    Neretti, Nicola; Wang, Pei-Yu; Brodsky, Alexander S.; Nyguyen, Hieu H.; White, Kevin P.; Rogina, Blanka; Helfand, Stephen L.

    2009-01-01

    Decreased Indy activity extends lifespan in D. melanogaster without significant reduction in fecundity, metabolic rate, or locomotion. To understand the underlying mechanisms leading to lifespan extension in this mutant strain, we compared the genome-wide gene expression changes in the head and thorax of adult Indy mutant with control flies over the course of their lifespan. A signature enrichment analysis of metabolic and signaling pathways revealed that expression levels of genes in the oxidative phosphorylation pathway are significantly lower in Indy starting at day 20. We confirmed experimentally that complexes I and III of the electron transport chain have lower enzyme activity in Indy long-lived flies by Day 20 and predicted that reactive oxygen species (ROS) production in mitochondria could be reduced. Consistently, we found that both ROS production and protein damage are reduced in Indy with respect to control. However, we did not detect significant differences in total ATP, a phenotype that could be explained by our finding of a higher mitochondrial density in Indy mutants. Thus, one potential mechanism by which Indy mutants extend life span could be through an alteration in mitochondrial physiology leading to an increased efficiency in the ATP/ROS ratio. PMID:19164521

  8. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers.

    PubMed

    Pelclova, Daniela; Zdimal, Vladimir; Kacer, Petr; Zikova, Nadezda; Komarc, Martin; Fenclova, Zdenka; Vlckova, Stepanka; Schwarz, Jaroslav; Makeš, Otakar; Syslova, Kamila; Navratil, Tomas; Turci, Francesco; Corazzari, Ingrid; Zakharov, Sergey; Bello, Dhimiter

    2017-02-01

    Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial. Animal studies have documented lung injury and inflammation, oxidative stress, cytotoxicity and genotoxicity. Yet, human health data are scarce and quantitative risk assessments and biomonitoring of exposure are lacking. NanoTiO2 is classified by IARC as a group 2B, possible human carcinogen. In our earlier studies we documented an increase in markers of inflammation, as well as DNA and protein oxidative damage, in exhaled breath condensate (EBC) of workers exposed nanoTiO2. This study focuses on biomarkers of lipid oxidation. Several established lipid oxidative markers (malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, 8-isoProstaglandin F2α and aldehydes C6-C12) were studied in EBC and urine of 34 workers and 45 comparable controls. The median particle number concentration in the production line ranged from 1.98 × 10(4) to 2.32 × 10(4) particles/cm(3) with ∼80% of the particles <100 nm in diameter. Mass concentration varied between 0.40 and 0.65 mg/m(3). All 11 markers of lipid oxidation were elevated in production workers relative to the controls (p < 0.001). A significant dose-dependent association was found between exposure to TiO2 and markers of lipid oxidation in the EBC. These markers were not elevated in the urine samples. Lipid oxidation in the EBC of workers exposed to (nano)TiO2 complements our earlier findings on DNA and protein damage. These results are consistent with the oxidative stress hypothesis and suggest lung injury at the molecular level. Further studies should focus on clinical markers of potential disease progression. EBC has reemerged as a sensitive technique for noninvasive monitoring of workers exposed to engineered nanoparticles.

  9. Oxidative damage in dengue fever.

    PubMed

    Seet, Raymond C S; Lee, Chung-Yung J; Lim, Erle C H; Quek, Amy M L; Yeo, Leonard L L; Huang, Shan-Hong; Halliwell, Barry

    2009-08-15

    Oxidative stress may be important in the pathogenesis of dengue infection. Using accurate markers of oxidative damage, we assessed the extent of oxidative damage in dengue patients. The levels of hydroxyeicosatetraenoic acid products (HETEs), F(2)-isoprostanes (F(2)-IsoPs), and cholesterol oxidation products (COPs) were measured in 28 adult dengue patients and 28 age-matched study controls during the febrile, defervescent, and convalescent stages of infection. We compared the absolute and the percentage change in these markers in relation to key clinical parameters and inflammatory markers. The levels of total HETEs and total HETEs/arachidonate, total F(2)-IsoPs/arachidonate, and COPs/cholesterol were higher during the febrile compared to the convalescent level. Total HETEs correlated positively with admission systolic blood pressure (r=0.52, p<0.05), whereas an inverse relationship was found between 7beta-hydroxycholesterol and systolic and diastolic blood pressure (r=-0.61 and -0.59, respectively, p<0.01). The urinary F(2)-IsoP level was higher in urine during the febrile stage compared to the convalescent level. Despite lower total cholesterol levels during the febrile stage compared to convalescent levels, a higher percentage of cholesterol was found as COPs (7beta-, 24-, and 27-hydroxycholesterol). The levels of platelet-activating factor-acetylhydrolase activity, vascular cellular adhesion molecule-1, tumor necrosis factor-alpha, and high-sensitivity C-reactive protein were higher during the febrile stage compared to their convalescent levels (p<0.01). Markers of oxidative damage are altered during the various stages of dengue infection.

  10. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Moretti, Sarah; Pratali, Lorenza; Giardini, Guido; Tacchini, Philippe; Dellanoce, Cinzia; Tonacci, Alessandro; Mastorci, Francesca; Borghini, Andrea; Montorsi, Michela; Vezzoli, Alessandra

    2015-01-01

    Purpose Aiming to gain a detailed insight into the physiological mechanisms involved under extreme conditions, a group of experienced ultra-marathon runners, performing the mountain Tor des Géants® ultra-marathon: 330 km trail-run in Valle d’Aosta, 24000 m of positive and negative elevation changes, was monitored. ROS production rate, antioxidant capacity, oxidative damage and inflammation markers were assessed, adopting micro-invasive analytic techniques. Methods Forty-six male athletes (45.04±8.75 yr, 72.6±8.4 kg, 1.76±0.05 m) were tested. Capillary blood and urine were collected before (Pre-), in the middle (Middle-) and immediately after (Post-) Race. Samples were analyzed for: Reactive Oxygen Species (ROS) production by Electron Paramagnetic Resonance; Antioxidant Capacity by Electrochemistry; oxidative damage (8-hydroxy-2-deoxy Guanosine: 8-OH-dG; 8-isoprostane: 8-isoPGF2α) and nitric oxide metabolites by enzymatic assays; inflammatory biomarkers (plasma and urine interleukin-6: IL-6-P and IL-6-U) by enzyme-linked immunosorbent assays (ELISA); Creatinine and Neopterin by HPLC, hematologic (lactate, glucose and hematocrit) and urine parameters by standard analyses. Results Twenty-five athletes finished the race, while twenty-one dropped out of it. A significant increase (Post-Race vs Pre) of the ROS production rate (2.20±0.27 vs 1.65±0.22 μmol.min-1), oxidative damage biomarkers (8-OH-dG: 6.32±2.38 vs 4.16±1.25 ng.mg-1 Creatinine and 8-isoPGF2α: 1404.0±518.30 vs 822.51±448.91 pg.mg-1Creatinine), inflammatory state (IL-6-P: 66.42±36.92 vs 1.29±0.54 pg.mL-1 and IL-6-U: 1.33±0.56 vs 0.71±0.17 pg.mL1) and lactate production (+190%), associated with a decrease of both antioxidant capacity (-7%) and renal function (i.e. Creatinine level +76%) was found. Conclusions The used micro-invasive analytic methods allowed us to perform most of them before, during and immediately after the race directly in the field, by passing the need of storing and

  11. Damage of polyesters by the atmospheric free radical oxidant NO3 (•): a product study involving model systems.

    PubMed

    Goeschen, Catrin; Wille, Uta

    2013-01-01

    Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 (•) in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed 'hot spots' in polyesters that are particularly vulnerable to attack by NO3 (•) and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions.

  12. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage.

    PubMed

    Dawbaa, Sam; Aybastıer, Önder; Demir, Cevdet

    2017-04-15

    Oxidative stress is considered as one of the significant causes of DNA damage which in turn contributes to cell death through a series of intermediate processes such as cancer formation, mutation, and aging. Natural sources such as plant and fruit products have provided us with interesting substances of antioxidant activity that could be recruited in protecting the genetic materials of the cells. This study is an effort to discover some of those antioxidants effects in their standard and natural forms by performing an ultrasensitive determination of the products of DNA oxidation using GC-MS/MS. Experiments were used to determine the direct antioxidant activity of the substances contained in the tendrils of Vitis vinifera (var. alphonse) by extracting them and achieving Folin-Ciocalteau and CHROMAC analyses to determine the total phenolic content (TPC) and the antioxidant capacity of the extract, respectively; results revealed a phenolic content of 11.39±0.30mg Gallic Acid Equivalent (GAE)/g of the plant's fresh weight (FW) by Folin-Ciocalteau and 8.17±0.49mg Trolox Equivalent (TE)/g FW by CHROMAC assays. The qualitative analysis of the plant extract by HPLC-DAD technique revealed that two flavonoid glycosides namely rutin and isoquercitrin in addition to chlorogenic acid were contained in the extract. The determination of the DNA oxidation products was performed after putting DNA, rutin and isoquercitrin standard samples with different concentration, and the extract's sample under oxidative stress. Eighteen DNA oxidation products were traced using GC-MS/MS with ultra-sensitivity and the experiments proved a significant decrease in the concentration of the DNA oxidation products when the extract was used as a protectant against the oxidative stress. It is believed by conclusion that the extract of V. vinifera's (var. alphonse) tendrils has a good antioxidant activity; hence it is recommended to be used as a part of the daily healthy food list if possible.

  13. Determination of oxidative DNA base damage by gas chromatography-mass spectrometry. Effect of derivatization conditions on artifactual formation of certain base oxidation products.

    PubMed

    England, T G; Jenner, A; Aruoma, O I; Halliwell, B

    1998-10-01

    GC-MS is a widely used tool to measure oxidative DNA damage because of its ability to identify a wide range of base modification products. However, it has been suggested that the derivatization procedures required to form volatile products prior to GC-MS analysis can sometimes produce artifactual formation of certain base oxidation products, although these studies did not replicate previously-used reaction conditions, e.g. they failed to remove air from the derivatization vials. A systematic examination of this problem revealed that levels of 8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-(hydroxymethyluracil) in commercial calf thymus DNA determined by GC-MS are elevated by increasing the temperature at which derivatization is performed in our laboratory. In particular, 8-hydroxyguanine levels after silylation at 140 degrees C were raised 8-fold compared to derivatization at 23 degrees C. Experiments on the derivatization of each undamaged base revealed that the artifactual oxidation of guanine, adenine, cytosine and thymine respectively was responsible. Formation of the above products was potentiated by not purging with nitrogen prior to derivatization. Increasing the temperature to 140 degrees C or allowing air to be present during derivatization did not significantly increase levels of the other oxidized bases measured. This work suggests that artifactual oxidation during derivatization is restricted to certain products (8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-[hydroxymethyluracil]) and can be decreased by reducing the temperature of the derivatization reaction to 23 degrees C and excluding as much air possible. Despite some recent reports, we were easily able to detect formamidopyrimidines in acid-hydrolyzed DNA. Artifacts of derivatization are less marked than has been claimed in some papers and may vary between laboratories, depending on the experimental procedures used, in particular the efficiency of exclusion of O2 during

  14. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.

    PubMed

    Sun, Yan Ping; Gu, Jun Fei; Tan, Xiao Bin; Wang, Chun Fei; Jia, Xiao Bin; Feng, Liang; Liu, Ji Ping

    2016-02-01

    Methylglyoxal (MGO)-induced carbonyl stress and pro-inflammatory responses have been suggested to contribute to endothelial dysfunction. Curcumin (Cur), a polyphenolic compound from Curcuma longa L., may protect endothelial cells against carbonyl stress-induced damage by trapping dicarbonyl compounds such as MGO. However, Cur-MGO adducts have not been studied in depth to date and it remains to be known whether Cur-MGO adducts are able to attenuate endothelial damage by trapping MGO. In the present study, 1,2-diaminobenzene was reacted with MGO to ensure the reliability of the reaction system. Cur was demonstrated to trap MGO at a 1:1 ratio to form adducts 1, 2 and 3 within 720 min. The structures of these adducts were identified by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. The kinetic curves of Cur (10(-7), 10(-6) and 10(-5) M) were measured from 0-168 h by fluorescent intensity. Cur significantly inhibited the formation of advanced glycation end products (AGEs). The differences in oxidative damage and the levels of pro-inflammatory cytokines following MGO + HSA or Cur-MGO treatment were investigated in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to the Cur-MGO reaction adducts significantly reduced the intracellular ROS levels and improved cell viability compared with MGO alone. Furthermore, there was a significant reduction in the expression levels of transforming growth factor-β1 and intercellular adhesion molecule(-1) following treatment with Cur-MGO adducts compared with MGO alone. These results provide further evidence that the trapping of MGO by Cur inhibits the formation of AGEs. The current study indicates that the protective effect of Cur on carbonyl stress and pro-inflammatory responses in endothelial damage occurs via the trapping of MGO.

  15. Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts.

    PubMed Central

    Morita, K; Ihnken, K; Buckberg, G D; Sherman, M P; Young, H H; Ignarro, L J

    1994-01-01

    Cardiopulmonary bypass (CPB) is used increasingly to correct cyanotic heart defects during early infancy, but myocardial dysfunction is often seen after surgical repair. This study evaluates whether starting CPB at a conventional, hyperoxic pO2 causes an "unintentional" reoxygenation (ReO2) injury. We subjected 2-wk-old piglets to ventilator hypoxemia (FIO2 approximately 0.06, pO2 approximately 25 mmHg) followed by 5 min of ReO2 on CPB before instituting cardioplegia. CPB was begun in hypoxemic piglets by either abrupt ReO2 at a pO2 of 400 mmHg (standard clinical practice) or by maintaining pO2 approximately 25 mmHg on CPB until controlling ReO2 with blood cardioplegic arrest. The effects of abrupt vs. gradual ReO2 without surgical ischemia (blood cardioplegia) were also compared. Myocardial nitric oxide (NO) production (chemiluminescence measurements of NO2- + NO3-) and conjugated diene (CD) generation (spectrophotometric A233 measurements of lipid extracts) using aortic and coronary sinus blood samples were assessed during cardioplegic induction. 30 min after CPB, left ventricular end-systolic elastance (Ees, catheter conductance method) was used to determine cardiac function. CPB and blood cardioplegic arrest caused no functional or biochemical change in normoxic (control) hearts. Abrupt ReO2 caused a depression of myocardial function (Ees = 25 +/- 5% of control). Functional depression was relatively unaffected by gradual ReO2 without blood cardioplegia (34% recovery of Ees), and abrupt ReO2 immediately before blood cardioplegia caused a 10-fold rise in cardiac NO and CD production, with subsequent depression of myocardial function (Ees 21 +/- 2% of control). In contrast, controlled cardiac ReO2 reduced NO production 94%, CD did not rise, and Ees was 83 +/- 8% of normal. We conclude ReO2 injury is related to increased NO production during abrupt ReO2, nullifies the cardioprotective effects of blood cardioplegia, and that controlled cardiac ReO2 when starting CPB

  16. OXIDATIVE DNA DAMAGE AND REPAIR IN RATS TREATED WITH POTASSIUM BROMATE AND A MIXTUE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products

    Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...

  17. Chlorogenic acid improves ex vivo vessel function and protects endothelial cells against HOCl-induced oxidative damage, via increased production of nitric oxide and induction of Hmox-1.

    PubMed

    Jiang, Rujia; Hodgson, Jonathan M; Mas, Emilie; Croft, Kevin D; Ward, Natalie C

    2016-01-01

    Dietary polyphenols are potential contributors toward improved cardiovascular health. Coffee is one of the richest sources of dietary polyphenols in a coffee-drinking population, the most abundant form being chlorogenic acid (CGA). Endothelial dysfunction is an early and major risk factor for cardiovascular disease. Nitric oxide (NO) is a key factor in regulation of endothelial function. Heme oxygenase-1 (Hmox-1), an inducible isoform of heme oxygenase that is produced in response to stressors such as oxidative stress, may also play a role in vascular protection. The aim of this study was to investigate the effect of CGA on endothelial function with oxidant-induced damage in isolated aortic rings from C57BL mice. We further examine the mechanism by investigating cell viability, activation of eNOS and induction of Hmox-1 in human aortic endothelial cells (HAECs). We found that pretreatment of isolated aortic rings with 10-μM CGA-protected vessels against HOCl-induced endothelial dysfunction (P<0.05). Pretreatment of cultured HAECs with 10-μM CGA increased endothelial cell viability following exposure to HOCl (P<0.05). Moreover, CGA increased NO production in HAECs in a dose-dependent manner, peaking at 6 h (P<0.05). CGA at 5 μM and 10 μM increased eNOS dimerization at 6 h and induced Hmox-1 protein expression at 6 h and 24 h in HAECs. These results are consistent with the cardiovascular protective effects of coffee polyphenols and demonstrate that CGA can protect vessels and cultured endothelial cells against oxidant-induced damage. The mechanism behind the beneficial effect of CGA appears to be in part via increased production of NO and induction of Hmox-1.

  18. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.

    PubMed

    Garre, Elena; Raginel, Françoise; Palacios, Antonio; Julien, Anne; Matallana, Emilia

    2010-01-01

    The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry wine yeast is routinely used as starter for must fermentations. Many studies have shown the complexity of the cellular effects caused by water loss, including oxidative injuries on macromolecular components. However the technological interest of yeast drying was not addressed in those studies, and the dehydration conditions were far from the industrial practice. In the present study a molecular approach was used to characterize the relevant injuring conditions during pilot plant dehydration under two different drying temperatures (i.e., 35 and 41 degrees C). We have analyzed expression changes for several stress gene markers and we have determined two biochemical redox indicators (glutathione and lipid peroxidation levels) during pilot plant dehydration to produce active dry biomass, according to the standard practice in industry. The main gene expression response involves the induction of genes TRR1 and GRX5, corresponding to the two main redox balance systems, thioredoxins and glutathione/glutaredoxins. Elevated glutathione content and significant lipid peroxidation damage indicate the physiological impact of the oxidative stress on cellular components. The comparison between commercial stocks and pilot plant samples demonstrate the suitability of the molecular approach at the pilot plant scale to study physiological traits of industrial yeast products.

  19. Oxidative DNA damage estimated by urinary 8-hydroxy-2'-deoxyguanosine and arsenic in glass production workers.

    PubMed

    Lin, Tser-Sheng; Wu, Chin-Ching; Wu, Jyun-De; Wei, Chun-Han

    2012-07-01

    A total of 130 male glass workers, including 33 administrative workers, 18 batch house workers, 42 craftsmen, and 37 melting process workers, were recruited to investigate the potential DNA damage resulting from toxic element exposure. The occupational exposure to trace elements, including arsenic (As), cadmium (Cd), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se), was estimated by their urinary levels as internal doses. In addition, all participants filled a self-filled questionnaire indicating their individual information. The average levels of urinary As, Cd, Mn, Ni, Pb, Se, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were 282.3 ± 464.6, 3.07 ± 5.39, 3.81 ± 11.43, 81.48 ± 138.9, 18.23 ± 49.61, 165.2 ± 224.9, and 17.21 ± 26.34 μg/g creatinine, respectively. The urinary levels of 8-OHdG and toxic elements were strongly associated with the work nature of the worker, with an exception of Mn and Pb. In contrast, the levels of toxic element were not influenced by age, smoking behavior, and alcohol consumption. The urinary 8-OHdG was found significantly higher in higher internal exposure groups of As, Cd, Ni, and Se. However, the stepwise multiple regression models showed that urinary 8-OHdG was only associated with urinary As and heat stress but inversely with age.

  20. CYTOTOXIC PHOSPHOLIPID OXIDATION PRODUCTS

    PubMed Central

    Chen, Rui; Yang, Lili; McIntyre, Thomas M.

    2008-01-01

    Phospholipid oxidation products accumulate in the necrotic core of atherosclerotic lesions, in apoptotic cells, and circulate in oxidized LDL. Phospholipid oxidation generates toxic products, but little is known about which specific products are cytotoxic, their receptors, or the mechanism(s) that induces cell death. We find the most common phospholipid oxidation product of oxidized LDL, phosphatidylcholine with esterified sn-2 azelaic acid, induced apoptosis at low micromolar concentrations. The synthetic ether phospholipid hexadecyl azelaoyl phosphatidylcholine (HAzPC) was rapidly internalized, and over-expression of PLA2g7 (PAF acetylhydrolase) that specifically hydrolyzes such oxidized phospholipids suppressed apoptosis. Internalized HAzPC associated with mitochondria, and cytochrome C and apoptosis-inducing factor escaped from mitochondria to the cytoplasm and nucleus, respectively, in cells exposed to HAzPC. Isolated mitochondria exposed to HAzPC rapidly swelled, and released cytochrome C and apoptosis-inducing factor. Other phospholipid oxidation products induced swelling, but HAzPC was the most effective and was twice as effective as its diacyl homolog. Cytoplasmic cytochrome C completes the apoptosome, and activated caspase 9 and 3 were present in cells exposed to HAzPC. Irreversible inhibition of caspase 9 blocked downstream caspase 3 activation, and prevented apoptosis. Mitochondrial damage initiated this apoptotic cascade because over-expression of Bcl-XL, an anti-apoptotic protein localized to mitochondria, blocked cytochrome C escape, and apoptosis. Thus, exogenous phospholipid oxidation products target intracellular mitochondria to activate the intrinsic apoptotic cascade. PMID:17597068

  1. Understanding and preventing mitochondrial oxidative damage

    PubMed Central

    Murphy, Michael P.

    2016-01-01

    Mitochondrial oxidative damage has long been known to contribute to damage in conditions such as ischaemia–reperfusion (IR) injury in heart attack. Over the past years, we have developed a series of mitochondria-targeted compounds designed to ameliorate or determine how this damage occurs. I will outline some of this work, from MitoQ to the mitochondria-targeted S-nitrosating agent, called MitoSNO, that we showed was effective in preventing reactive oxygen species (ROS) formation in IR injury with therapeutic implications. In addition, the protection by this compound suggested that ROS production in IR injury was mainly coming from complex I. This led us to investigate the mechanism of the ROS production and using a metabolomic approach, we found that the ROS production in IR injury came from the accumulation of succinate during ischaemia that then drove mitochondrial ROS production by reverse electron transport at complex I during reperfusion. This surprising mechanism led us to develop further new therapeutic approaches to have an impact on the damage that mitochondrial ROS do in pathology and also to explore how mitochondrial ROS can act as redox signals. I will discuss how these approaches have led to a better understanding of mitochondrial oxidative damage in pathology and also to the development of new therapeutic strategies. PMID:27911703

  2. Coccidian Infection Causes Oxidative Damage in Greenfinches

    PubMed Central

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research. PMID:22615772

  3. Oxidant damage during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.

    2000-01-01

    The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.

  4. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.

  5. Lung oxidative damage by hypoxia.

    PubMed

    Araneda, O F; Tuesta, M

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.

  6. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  7. Inflammation, oxidative DNA damage, and carcinogenesis

    SciTech Connect

    Lewis, J.G.; Adams, D.O.

    1987-12-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H/sub 2/O/sub 2/ and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H/sub 2/O/sub 2/ and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis.

  8. Inflammation, oxidative DNA damage, and carcinogenesis.

    PubMed Central

    Lewis, J G; Adams, D O

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is thought that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. Many studies support the multistep nature of carcinogenesis, and a significant amount of evidence indicates that more than one genetic event is necessary for neoplastic transformation. Selective growth stimulation of initiated cells by TPA does not explain how further genetic events may occur by chronic exposure to this nongenotoxic agent. We and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H2O2 and oxidized lipid products. Furthermore, macrophage populations that release both H2O2 and metabolites of arachidonic acid (AA) are more efficient at inducing oxidative DNA damage in surrounding cells than populations which only release H2O2 or metabolites of AA. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin than C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H2O2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 8. A FIGURE 8. B PMID:3129286

  9. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P; Murr, D P; Watkins, C B

    1997-01-01

    We investigated how salicylic acid (SA) enhances H2O2 and the relative significance of SA-enhanced H2O2 in Arabidopsis thaliana. SA treatments enhanced H2O2 production, lipid peroxidation, and oxidative damage to proteins, and resulted in the formation of chlorophyll and carotene isomers. SA-enhanced H2O2 levels were related to increased activities of Cu,Zn-superoxide dismutase and were independent of changes in catalase and ascorbate peroxidase activities. Prolonging SA treatments inactivated catalase and ascorbate peroxidase and resulted in phytotoxic symptoms, suggesting that inactivation of H2O2-degrading enzymes serves as an indicator of hypersensitive cell death. Treatment of leaves with H2O2 alone failed to invoke SA-mediated events. Although leaves treated with H2O2 accumulated in vivo H2O2 by 2-fold compared with leaves treated with SA, the damage to membranes and proteins was significantly less, indicating that SA can cause greater damage than H2O2. However, pretreatment of leaves with dimethylthiourea, a trap for H2O2, reduced SA-induced lipid peroxidation, indicating that SA requires H2O2 to initiate oxidative damage. The relative significance of the interaction among SA, H2O2, and H2O2-metabolizing enzymes with oxidative damage and cell death is discussed. PMID:9306697

  10. Urinary levels of oxidative DNA and RNA damage among workers exposed to polycyclic aromatic hydrocarbons in silicon production: comparison with 1-hydroxypyrene.

    PubMed

    Marie, Caroline; Ravanat, Jean-Luc; Badouard, Carine; Marques, Marie; Balducci, Franck; Maître, Anne

    2009-03-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous occupational and environmental pollutants and the urinary excretion of 1-hydroxypyrene (1-OHP) is classically measured for the determination of PAH exposure internal dose. Some of PAH are tumorigenic due to their metabolites ability to generate DNA adducts and oxidative DNA damage through the production of reactive oxygen species during metabolism. 8-hydroxy-7,8-dihydro-2'-deoxyguanosine (8-OHdGuo) is one of the major oxidative DNA lesions and its use as a potential biomarker of genotoxic PAH occupational exposure should be evaluated. Indeed conflicting results are frequently reported in occupational studies in terms of correlation between 8-OHdGuo urinary levels and PAH exposure. The aim of our study was therefore to determine the potential for PAH occupational exposure to increase urinary oxidative DNA damage. The population consisted of 68 male workers employed in silicon production. The urinary concentrations of 8-OHdGuo and its homologue in RNA, 8-hydroxy-7,8-dihydroguanosine (8-OHGuo) were determined using high performance liquid chromatography (HPLC) coupled to tandem mass spectrometry, whereas those of 1-OHP were measured using HPLC with fluorescence detection. Individual variation rates were calculated on a working day and a working week. The results indicated that, while 1-OHP levels strongly increased on a working day and even more on a working week, 8-OHdGuo and 8-OHGuo urinary levels did not show similar significant increases. Moreover, no correlation between 1-OHP and oxidative DNA and RNA lesions was found. Consequently, urinary 8-OHdGuo and 8-OHGuo did not seem to be relevant biomarkers of genotoxic PAH exposure in the case of the silicon plant studied.

  11. Early oxidative damage induced by doxorubicin: Source of production, protection by GKT137831 and effect on Ca(2+) transporters in HL-1 cardiomyocytes.

    PubMed

    Asensio-López, Mari C; Soler, Fernando; Sánchez-Más, Jesús; Pascual-Figal, Domingo; Fernández-Belda, Francisco; Lax, Antonio

    2016-03-15

    In atrial-derived HL-1 cells, ryanodine receptor and Na(+)/Ca(2+)-exchanger were altered early by 5 μM doxorubicin. The observed effects were an increase of cytosolic Ca(2+) at rest, ensuing ryanodine receptor phosphorylation, and the slowing of Ca(2+) transient decay after caffeine addition. Doxorubicin triggered a linear rise of reactive oxygen species (ROS) with no early effect on mitochondrial inner membrane potential. Doxorubicin and ROS were both detected in mitochondria by colocalization with fluorescence probes and doxorubicin-induced ROS was totally blocked by mitoTEMPO. The NADPH oxidase activity in the mitochondrial fraction was sensitive to inhibition by GKT137831, and doxorubicin-induced ROS decreased gradually as the GKT137831 concentration added in preincubation was increased. When doxorubicin-induced ROS was prevented by GKT137831, the kinetic response revealed a permanent degree of protection that was consistent with mitochondrial NADPH oxidase inhibition. In contrast, the ROS induction by doxorubicin after melatonin preincubation was totally eliminated at first but the effect was completely reversed with time. Limiting the source of ROS production is a better alternative for dealing with oxidative damage than using ROS scavengers. The short-term effect of doxorubicin on Ca(2+) transporters involved in myocardiac contractility was dependent on oxidative damage, and so the impairment was subsequent to ROS production.

  12. "Action-at-a distance" of a new DNA oxidative damage product 6-furfuryl-adenine (kinetin) on template properties of modified DNA.

    PubMed

    Wyszko, Eliza; Barciszewska, Mirosława Z; Markiewicz, Maria; Szymański, Maciej; Markiewicz, Wojciech T; Clark, Brian F C; Barciszewski, Jan

    2003-02-20

    N(6)-furfuryladenine (kinetin, K) was shown to have cytokinin activity and antiageing effects. It also appears to protect DNA against oxidative damage mediated by the Fenton reaction. Kinetin was identified as a natural component of DNA in plant extract, calf thymus DNA, fresh DNA preparations from human cell culture, as well as in human urine. A proposed mechanism of kinetin synthesis includes furfural, the oxidative damage product of a 2-deoxyribose moiety of DNA, which reacts with an adenine residue to form N(6)-furfuryladenine at DNA level. The identification of kinetin in plant cell extracts, as well as human urine, suggests its excision from DNA by repair mechanisms. Since such a bulky modification as kinetin induces conformational changes of DNA, this could lead to mutations. Therefore, it was interesting to analyze an effect of kinetin on coding properties of DNA. Chemically synthesized oligodeoxynucleotide (20-mer) containing kinetin AAAACTGCCGTCCTGAKGAT was used as a primer. It was elongated in a polymerase chain reaction (PCR) on a template plasmid pEW1 harboring a 210-bp fragment of DNA derived from the 5' end of HIV mRNA. The PCR product of that length containing kinetin in position 17 from the 5' end was isolated and sequenced. Interestingly, DNA polymerase correctly incorporates thymine opposite of kinetin (an adenine derivative) on the complementary strand, but the misincorporations occur in a vicinity of the modified base.

  13. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator.

    PubMed

    Cooksley, Clare; Jenks, Peter J; Green, Andrew; Cockayne, Alan; Logan, Robert P H; Hardie, Kim R

    2003-06-01

    The Helicobacter pylori protein NapA has been identified as a homologue of the Escherichia coli protein Dps. It is shown in this study that, like Dps, NapA is produced maximally in stationary phase cells and contributes to the ability of H. pylori to survive under oxidative stress conditions. Moreover, NapA co-localizes with the nuclear material, suggesting that it can interact with DNA in vivo. Furthermore, it is demonstrated that repression of NapA production by iron starvation was not so pronounced in a H. pylori fur mutant, suggesting that the ferric uptake regulator (Fur) is involved in napA regulation, and a potential fur box by which this control could be mediated is identified. This finding is consistent with the regulation of iron-binding proteins by Fur and also the modulation of Fur during oxidative stress, thus allowing NapA levels to be increased in the environmental conditions under which its ability to protect DNA from attack by toxic free radicals is most beneficial to the cell.

  14. Tissue damage and oxidant/antioxidant balance.

    PubMed

    Kisaoglu, Abdullah; Borekci, Bunyamin; Yapca, O Erkan; Bilen, Habib; Suleyman, Halis

    2013-02-01

    The oxidant/antioxidant balance in healthy tissues is maintained with a predominance of antioxidants. Various factors that can lead to tissue damage disrupt the oxidant/antioxidant balance in favor of oxidants. In this study, disruptions of the oxidant/antioxidant balance in favor of oxidants were found to be a consequence of the over-consumption of antioxidants. For this reason, antioxidants are considered to be of importance in the prevention and treatment of various types of tissue damage that are aggravated by stress.

  15. Electrochemical study of DNA damaged by oxidation stress.

    PubMed

    Zitka, Ondrej; Krizkova, Sona; Skalickova, Sylvie; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-02-01

    Many compounds can interact with DNA leading to changes of DNA structure as point mutation and bases excision, which could trigger some metabolic failures, which leads to the changes in DNA structure resulting in cancer. Oxidation of nucleic acid bases belongs to the one of the mostly occurred type of DNA damaging leading to the above mentioned phenomena. The investigation of processes of DNA oxidation damage is topical and electrochemical methods include a versatile and sensitive tool for these purposes. 8-hydroxydeoxyguanosine (8-OHdG) is the most widely accepted marker of DNA damage. Oxidative damage to DNA by free radicals and exposure to ionizing radiation generate several other products within the double helix besides mentioned oxidation products of nucleic acid bases. The basic electrochemical behaviour of nucleic acids bases on various types of carbon electrodes is reviewed. Further, we address our attention on description of oxidation mechanisms and on detection of the most important products of nucleic bases oxidation. The miniaturization of detector coupled with some microfluidic devices is suggested and discussed. The main aim of this review is to report the advantages and features of the electrochemical detection of guanine oxidation product as 8-OHdG and other similarly produced molecules as markers for DNA damage.

  16. Oxidative Damaged Products, Level of Hydrogen Peroxide, and Antioxidant Protection in Diapausing Pupa of Tasar Silk Worm, Antheraea mylitta: A Comparative Study in Two Voltine Groups.

    PubMed

    Sahoo, Alpana; Dandapat, Jagneshwar; Samanta, Luna

    2015-01-01

    The present study demonstrates tissue-specific (hemolymph and fat body) and inter-voltine [bivoltine (BV) and trivoltine (TV)] differences in oxidatively damaged products, H2O2 content, and the relative level of antioxidant protection in the diapausing pupae of Antheraea mylitta. Results suggest that fat body (FB) of both the voltine groups has oxidative predominance, as evident from the high value of lipid peroxidation and H2O2 content, despite better enzymatic defenses in comparison to hemolymph (HL). This may be attributed to the higher metabolic rate of the tissue concerned, concomitant with high lipid content and abundance of polyunsaturated fatty acids (PUFA). Nondetectable catalase activity in the pupal hemolymph of both strains apparently suggests an additional mechanism for H2O2 metabolism in the tissue. Inter-voltine comparison of the oxidative stress indices and antioxidant defense potential revealed that the TV group has a higher oxidative burden, lower activities for the antioxidant enzymes, and compensatory nonenzymatic protection from reduced glutathione and ascorbic acid.

  17. Puerarin ameliorates heat stress-induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression.

    PubMed

    Cong, Xia; Zhang, Qian; Li, Huatao; Jiang, Zhongling; Cao, Rongfeng; Gao, Shansong; Tian, Wenru

    2017-01-15

    Puerarin, a bioactive isoflavone glucoside extracted from radix Puerariae, has been proven to possess many biological activities. However, the role of puerarin in protecting bovine Sertoli cells (bSCs) under heat stress conditions remains to be clarified. The present study aimed to explore the possible protective mechanism of puerarin for primary cultured bSCs subjected to heat stress. Bovine Sertoli cells were treated with 15 μM of puerarin before they were exposed to 42 °C for 1 hour. The dose of puerarin (15 μM) was determined on the basis of cell viability. The results showed that puerarin treatment suppressed the production of reactive oxygen species and decreased the oxidative damage of the bSCs subjected to heat stress, as indicated by changes in superoxide dismutase, catalase, and glutathione peroxidase activities and malondialdehyde content. Moreover, puerarin treatment also suppressed the initiation of mitochondria-dependent apoptotic pathway, as revealed by changes in Bax to Bcl-2 ratio, mitochondrial membrane potential, cytochrome C release, caspase-3 activation, and apoptotic rate compared with the heat stress group. In addition, puerarin treatment increased Hsp72 expression in the bSCs with no apparent cellular cytotoxicity compared with the control group. Furthermore, increased Hsp72 was detected in the heat stress plus puerarin group compared with the heat stress group. In conclusion, puerarin attenuates heat stress-induced oxidative damage and apoptosis of bSCs by suppressing reactive oxygen species production and upregulating Hsp72 expression.

  18. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  19. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  20. Damage of lipopolysaccharides in outer cell membrane and production of ROS-mediated stress within bacteria makes nano zinc oxide a bactericidal agent

    NASA Astrophysics Data System (ADS)

    Patra, Prasun; Roy, Shuvrodeb; Sarkar, Sampad; Mitra, Shouvik; Pradhan, Saheli; Debnath, Nitai; Goswami, Arunava

    2014-12-01

    Zinc oxide nanoparticle (ZNP) has been synthesized by microwave-assisted technique with the aid of a buffer solution. ZNP inhibited the growth of bacterial system Escherichia coli, even its multidrug-resistant counterpart as well. Systematic evaluation reveals that bioavailable crystalline ZNP damages the lipopolysaccharide layer from outer membrane (OM) of E. coli, subsequently damages the OM followed by inner membrane, enters within the cell and generates extensive reactive oxygen species-mediated damage. A series of biochemical, biophysical and molecular techniques have been used to reach the conclusion. We believe this work is expected to enlighten the detailed mode of action study in bacterial system.

  1. Wheat peptides reduce oxidative stress and inhibit NO production through modulating μ-opioid receptor in a rat NSAID-induced stomach damage model.

    PubMed

    Yin, Hong; Cai, Hui-Zhen; Wang, Shao-Kang; Yang, Li-Gang; Sun, Gui-Ju

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-induced stomach damage model in rats. Different doses of wheat peptides or distilled water were administered daily by gavage for 30 days before the rat stomach damage model was established by administration of NSAIDs (aspirin and indomethacin) into the digestive tract twice. The treatment of wheat peptides decreased the NSAID-induced gastric epithelial cell degeneration and oxidative stress and NO levels in the rats. Wheat peptides significantly increased the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and decreased iNOS activity in stomach. The mRNA expression level of μ-opioid receptor was significantly decreased in wheat peptides-treated rats than that in in the control rats. The results suggest that NSAID drugs induced stomach damage in rats, wchih can be prevented by wheat peptides. The mechanisms for the protective effects were most likely through reducing NSAID-induced oxidative stress.

  2. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  3. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  4. The oxidative damage initiation hypothesis for meiosis.

    PubMed

    Hörandl, Elvira; Hadacek, Franz

    2013-12-01

    The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.

  5. DNA damage, oxidative mutagen sensitivity, and repair of oxidative DNA damage in nonmelanoma skin cancer patients.

    PubMed

    Bendesky, Andrés; Michel, Alejandra; Sordo, Monserrat; Calderón-Aranda, Emma S; Acosta-Saavedra, Leonor C; Salazar, Ana M; Podoswa, Nancy; Ostrosky-Wegman, Patricia

    2006-08-01

    Nonmelanoma skin cancer (NMSC) is the most frequent type of cancer in humans. Exposure to UV radiation is a major risk factor for NMSC, and oxidative DNA damage, caused either by UV radiation itself or by other agents, may be involved in its induction. Increased sensitivity to oxidative damage and an altered DNA repair capacity (DRC) increase the risk of many types of cancer; however, sensitivity to oxidizing agents has not been evaluated for NMSC, and results regarding DRC in NMSC are inconclusive. In the present study, we evaluated DNA damage and repair in leukocytes from 41 NMSC patients and 45 controls. The Comet assay was used to measure basal and H(2)O(2)-induced DNA damage, as well as the DRC, while the cytokinesis-block micronucleus assay was used to measure the basal level of chromosome damage. Although basal DNA damage was higher for the controls than for the patients, this finding was mainly due to sampling more controls in the summer, which was associated with longer comet tails. In contrast, H(2)O(2)-induced DNA damage was significantly higher in cases than in controls, and this parameter was not influenced by the season of the year. The DRC for the H(2)O(2)-induced damage was similar for cases and controls and unrelated to seasonality. Finally, the frequency of binucleated lymphocytes with micronuclei was similar for cases and controls. The results of this study indicate that NMSC patients are distinguished from controls by an increased sensitivity to oxidative DNA damage.

  6. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    PubMed

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would (1) cause enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  7. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.

  8. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2001-10-01

    of Parkinson’s Disease and the MPTP model of Parkinsonism. In the past year, we have developed a novel column switching assay for measurement of...oxidative damage to DNA in human body fluids. We have applied to this plasma samples of Parkinson’s Disease patients. We have also developed a novel...methodology. We have found a relatively high mutation rate and control samples and intend to apply this to Parkinson’s Disease . We have continued our

  9. Oxidative and non-oxidative DNA damage and cardiovascular disease.

    PubMed

    Malik, Qudsia; Herbert, Karl E

    2012-04-01

    Evidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area.

  10. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  11. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    PubMed

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  12. Profiling oxidative DNA damage: effects of antioxidants.

    PubMed

    Box, Harold C; Patrzyc, Helen B; Budzinski, Edwin E; Dawidzik, Jean B; Freund, Harold G; Zeitouni, Nathalie C; Mahoney, Martin C

    2012-11-01

    The goal of this research was to determine whether antioxidant usage could be correlated with changes in DNA damage levels. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used to simultaneously measure five different oxidatively-induced base modifications in the DNA of WBC. Measurements of the five modifications were made before and after an 8-week trial during which participants took the SU.VI.MAX supplement. Levels of the five DNA modifications were compared among different groupings: users versus non-users of antioxidant supplements, before versus after the supplement intervention and men versus women. The statistical significance of differences between groups was most significant for pyrimidine base modifications and the observed trends reflect trends reported in epidemiological studies of antioxidant usage. A combination of modifications derived from pyrimidine bases is suggested as a superior indicator of oxidative stress.

  13. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways.

    PubMed

    Ding, Xiao; Wang, Dian; Li, Longlong; Ma, Haitian

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.

  14. Reformulated meat products protect against ischemia-induced cardiac damage.

    PubMed

    Asensio-Lopez, M C; Lax, A; Sanchez-Mas, J; Avellaneda, A; Planes, J; Pascual-Figal, D A

    2016-02-01

    The protective effects of the antioxidants present in food are of great relevance for cardiovascular health. This study evaluates whether the extracts from reformulated meat products with a reduction in fat and/or sodium content exert a cardioprotective effect against ischemia-induced oxidative stress in cardiomyocytes, compared with non-meat foods. Ischemic damage caused loss of cell viability, increased reactive oxygen species and lipid peroxidation and decreased the antioxidant activity. Pretreatment for 24 h with digested or non-digested extracts from reformulated meat products led to protection against ischemia-induced oxidative damage: increased cell viability, reduced oxidative stress and restored the antioxidant activity. Similar results were obtained using extracts from tuna fish, but not with the extracts of green peas, salad or white beans. These results suggest that reformulated meat products have a beneficial impact in protecting cardiac cells against ischemia, and they may represent a source of natural antioxidants with benefits for cardiovascular health.

  15. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  16. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.

  17. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  18. Prevention of oxidative DNA damage in rats by brussels sprouts.

    PubMed

    Deng, X S; Tuo, J; Poulsen, H E; Loft, S

    1998-03-01

    The alleged cancer preventive effects of cruciferous vegetables could be related to protection from mutagenic oxidative DNA damage. We have studied the effects of Brussels sprouts, some non-cruciferous vegetables and isolated glucosinolates on spontaneous and induced oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in groups of 6-8 male Wistar rats. Excess oxidative DNA damage was induced by 2-nitropropane (2-NP 100 mg/kg). Four days oral administration of 3 g of cooked Brussels sprouts homogenate reduced the spontaneous urinary 8-oxodG excretion by 31% (p<0.05) whereas raw sprouts, beans and endive (1:1), isolated indolyl glucosinolates and breakdown products had no significant effect. An aqueous extract of cooked Brussels sprouts (corresponding to 6.7 g vegetable per day for 4 days) decreased the spontaneous 8-oxodG excretion from 92 +/- 12 to 52 +/- 15 pmol/24 h (p<0.05). After 2-NP administration the 8-oxodG excretion was increased to 132 +/- 26 pmol/24 h (p<0.05) whereas pretreatment with the sprouts extract reduced this to 102 +/- 30 pmol/24 h (p<0.05). The spontaneous level of 8-oxodG in nuclear DNA from liver and bone marrow was not significantly affected by the sprouts extract whereas the level decreased by 27% in the kidney (p<0.05). In the liver 2-NP increased the 8-oxodG levels in nuclear DNA 8.7 and 3.8 times (p<0.05) 6 and 24 h after dose, respectively. The sprouts extract reduced this increase by 57% (p<0.05) at 6 h whereas there was no significant effect at 24 h. In the kidneys 2-NP increased the 8-oxodG levels 2.2 and 1.2 times (p<0.05) 6 and 24 h after dose, respectively. Pretreatment with the sprouts extract abolished these increases (p<0.05). Similarly, in the bone marrow the extract protected completely (p<0.05) against a 4.9-fold 2-NP induced increase (p<0.05) in the 8-oxodG level. These findings demonstrate that cooked Brussels sprouts contain bioactive substance(s) with a potential for reducing the physiological

  19. Type-dependent oxidative damage in frontotemporal lobar degeneration: cortical astrocytes are targets of oxidative damage.

    PubMed

    Martínez, Anna; Carmona, Margarita; Portero-Otin, Manuel; Naudí, Alba; Pamplona, Reinald; Ferrer, Isidre

    2008-12-01

    Oxidative injury and stress responses are common features of many neurodegenerative diseases. To assess oxidative stress responses in frontotemporal lobar degeneration (FTLD), we identified increased 4-hydroxynonenal (HNE) adducts using gel electrophoresis and Western blotting in frontal cortex samples in 6 of 6 cases of FTLD with the P301L mutation in the tau gene (FTLD-tau), in 3 of 10 cases with tau-negative ubiquitin-immunoreactive inclusions, and in 2 of 3 cases associated with motor neuron disease. Selectively increased lipoxidation-derived protein damage associated with altered membrane unsaturation and fatty acid profiles was verified by mass spectrometry in FTLD-tau and FTLD associated with motor neuron disease. All FTLD-tau and most cases with increased HNE-positive bands had marked astrocytosis as determined by glial fibrillary acidic protein (GFAP) immunohistochemistry and increased GFAP expression on Western blotting; 2 FTLD cases with tau-negative ubiquitin-immunoreactive inclusions and with increased GFAP expression did not have increased HNE adducts. Bidimensional gel electrophoresis, Western blotting, in-gel digestion, and mass spectrometry identified GFAP as a major target of lipoxidation in all positive cases; confocal microscopy revealed colocalization of HNE and GFAP in cortical astrocytes, superoxide dismutase 1 in astrocytes, and superoxide dismutase 2 in astrocytes and neurons in all FTLD types. Thus, in FTLD, there is variable disease-dependent oxidative damage that is prominent in FTLD-tau, astrocytes are targets of oxidative damage, and GFAP is a target of lipoxidation. Astrocytes are, therefore, crucial elements of oxidative stress responses in FTLD.

  20. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  1. High-Temperature Oxide Regrowth on Mechanically-Damaged Surfaces

    SciTech Connect

    Blau, Peter Julian; Lowe, Tracie M

    2008-01-01

    Here we report the effects of mechanical damage from a sharp stylus on the regrowth of oxide layers on a Ni-based superalloy known as Pyromet 80A . It was found that the oxide that reformed on the damaged portion of a pre-oxidized surface differed from that which formed on undamaged areas after the equal exposures to elevated temperature in air. These findings have broad implications for modeling the processes of material degradation in applications such as exhaust valves in internal combustion engines because they imply that static oxidation data for candidate materials may not adequately reflect their reaction to operating environments that involve both mechanical contact and oxidation.

  2. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers.

    PubMed

    Donida, Bruna; Jacques, Carlos Eduardo Diaz; Mescka, Caroline Paula; Rodrigues, Daiane Grigolo Bardemaker; Marchetti, Desirèe Padilha; Ribas, Graziela; Giugliani, Roberto; Vargas, Carmen Regla

    2017-03-01

    Lysosomal Storage Disorders (LSD) comprise a heterogeneous group of >50 genetic disorders caused by mutations in genes that encode lysosomal enzymes, transport proteins or other gene products essential for a functional lysosomal system. As a result, abnormal accumulation of substrates within the lysosome leads to a progressive cellular impairment and dysfunction of numerous organs and systems. The exact mechanisms underlying the pathophysiology of LSD remain obscure. Previous studies proposed a relationship between oxidative stress and the pathogenesis of several inborn errors of metabolism, including LSD. Considering these points, in this paper it was reviewed oxidative stress and emerging antioxidant therapy in LSD, emphasizing studies with biological samples from patients affected by this group of conditions. These studies allow presuming that metabolites accumulated in LSD cause an increase of lysosomes' number and size, which may induce excessive production of reactive species and/or deplete the tissue antioxidant capacity, leading to damage in biomolecules. In vitro and in vivo evidence showed that cell oxidative process occurs in LSD and probably contributes to the pathophysiology of these disorders. In this context, it is possible to suggest that, in the future, antioxidants could come to be used as adjuvant therapy for LSD patients.

  3. Oxidative base damage in RNA detected by reverse transcriptase.

    PubMed Central

    Rhee, Y; Valentine, M R; Termini, J

    1995-01-01

    Oxidative base damage in DNA and metabolic defects in the recognition and removal of such damage play important roles in mutagenesis and human disease. The extent to which cellular RNA is a substrate for oxidative damage and the possible biological consequences of RNA base oxidation, however, remain largely unexplored. Since oxidatively modified RNA may contribute to the high mutability of retroviral genomic DNA, we have been interested in developing methods for the sequence specific detection of such damage. We show here that a primer extension assay using AMV reverse transcriptase (RT) can be used to reveal oxidatively damaged sites in RNA. This finding extends the currently known range of RNA modifications detectable with AMV reverse transcriptase. Analogous assays using DNA polymerases to detect base damage in DNA substrates appear to be restricted to lesions at thymine. Oxidative base damage in the absence of any detectable chain breaks was produced by dye photosensitization of RNA. Six out of 20 dyes examined were capable of producing RT detectable lesions. RT stops were seen predominantly at purines, although many pyrimidine sites were also detected. Dye specific photofootprints revealed by RT analysis suggests differential dye binding to the RNA substrate. Some of the photoreactive dyes described here may have potential utility in RNA structural analysis, particularly in the identification of stem-loop regions in complex RNAs. Images PMID:7545285

  4. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    PubMed Central

    Suntres, Zacharias E.

    2011-01-01

    Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. PMID:21876690

  5. Involvement of oxidatively damaged DNA and repair in cancer development and aging

    PubMed Central

    Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard

    2010-01-01

    DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166

  6. Oxidative damage in multiple sclerosis lesions.

    PubMed

    Haider, Lukas; Fischer, Marie T; Frischer, Josa M; Bauer, Jan; Höftberger, Romana; Botond, Gergö; Esterbauer, Harald; Binder, Christoph J; Witztum, Joseph L; Lassmann, Hans

    2011-07-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are currently poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Since mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, we analysed by immunocytochemistry the presence and cellular location of oxidized lipids and oxidized DNA in lesions and in normal-appearing white matter of 30 patients with multiple sclerosis and 24 control patients without neurological disease or brain lesions. As reported before in biochemical studies, oxidized lipids and DNA were highly enriched in active multiple sclerosis plaques, predominantly in areas that are defined as initial or 'prephagocytic' lesions. Oxidized DNA was mainly seen in oligodendrocyte nuclei, which in part showed signs of apoptosis. In addition, a small number of reactive astrocytes revealed nuclear expression of 8-hydroxy-d-guanosine. Similarly, lipid peroxidation-derived structures (malondialdehyde and oxidized phospholipid epitopes) were seen in the cytoplasm of oligodendrocytes and some astrocytes. In addition, oxidized phospholipids were massively accumulated in a fraction of axonal spheroids with disturbed fast axonal transport as well as in neurons within grey matter lesions. Neurons stained for oxidized phospholipids frequently revealed signs of degeneration with fragmentation of their dendritic processes. The extent of lipid and DNA oxidation correlated significantly with inflammation, determined by the number of CD3 positive T cells and human leucocyte antigen-D expressing macrophages and microglia in the lesions. Our data suggest profound oxidative injury of oligodendrocytes and neurons to be associated with active demyelination and axonal or neuronal injury in multiple sclerosis.

  7. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis.

    PubMed

    Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Dai, Yao; Khaidakov, Magomed; Romeo, Francesco; Mehta, Jawahar L

    2014-07-01

    As a major receptor for oxidized low density lipoprotein (ox-LDL), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is upregulated in many pathophysiological events, including endothelial cell dysfunction and smooth muscle cell growth, as well as monocyte migration and transformation into foam cells, which are present in atherosclerosis and myocardial ischemia. Excessive production of reactive oxygen species (ROS) increases LOX-1 expression, induces mitochondrial DNA damage, and activates autophagy. Damaged mitochondrial DNA that escapes from autophagy induces an inflammatory response. This paper reviews the potential link between LOX-1, mitochondrial DNA damage, autophagy, and immune response in atherosclerosis.

  8. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  9. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    EPA Science Inventory

    Rationale:

    Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  10. Strong, damage tolerant oxide-fiber/oxide matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, Yahua

    cationic polyelectrolytes to have a positive surface charge and then dipped into diluted, negatively-charged AlPO4 colloidal suspension (0.05M) at pH 7.5. Amorphous AlPO4 (crystallizes to tridymite- and cristobalite-forms at 1080°C) nano particles were coated on fibers layer-by-layer using an electrostatic attraction protocol. A uniform and smooth coating was formed which allowed fiber pullout from the matrix of a Nextel 720/alumina mini-composite hot-pressed at 1250°C/20MPa. Reaction-bonded mullite (RBM), with low formation temperature and sintering shrinkage was synthesized by incorporation of mixed-rare-earth-oxide (MREO) and mullite seeds. Pure mullite formed with 7.5wt% MREO at 1300°C. Introduction of 5wt% mullite seeds gave RBM with less than 3% shrinkage and 20% porosity. AlPO4-coated Nextel 720/RBM composites were successful fabricated by EPID and pressureless sintering at 1300°C. Significant fiber pullout occurred and the 4-point bend strength was around 170MPa (with 25-30vol% fibers) at room temperature and 1100°C and a Work-of-Fracture 7KJ/m2. At 1200°C, the composite failed in shear due to the MREO-based glassy phase in the matrix. AlPO4-coated Nextel 720 fiber/aluminosilicate (no MREO) showed damage tolerance at 1200°C with a bend strength 170MPa.

  11. Photoexcited riboflavin induces oxidative damage to human serum albumin

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  12. Oxidative DNA Damage in Blood of CVD Patients Taking Detralex

    PubMed Central

    Krzyściak, Wirginia; Cierniak, Agnieszka; Kózka, Mariusz; Kozieł, Joanna

    2011-01-01

    The main goal of the work reported here was to determine the degree of oxidative/alkali-labile DNA damages in peripheral blood as well as in the blood stasis from varicose vein of (chronic venous disorder) CVD patients. Moreover, determination of the impact of Detralex usage on the level of (oxidative) DNA damages in CVD patients was evaluated as well. The degree of oxidative DNA damages was studied in a group consisted of thirty patients with diagnosed chronic venous insufficiency (CVI) in the 2nd and 3rd degree, according to clinical state, etiology, anatomy and pathophysiology (CEAP), and qualified to surgical procedure. The control group consisted of normal volunteers (blood donors) qualified during standard examinations at Regional Centers of Blood Donation and Blood Therapy. The comet assay was used for determination of DNA damages. Analyses of the obtained results showed increase in the level of oxidative/alkali-labile DNA damages in lymphocytes originating from antebrachial blood of CVD patients as compared to the control group (Control) (p < 0.002; ANOVA). In addition, it was demonstrated that the usage of Detralex® resulted in decrease of the level of oxidative/alkali-labile DNA damages in CVD patients as compared to patients without Detralex® treatment (p < 0.001; ANOVA). Based on findings from the study, it may be hypothesized about occurrence of significant oxidative DNA damages as the consequence of strong oxidative stress in CVD. In addition, antioxidative effectiveness of Detralexu® was observed at the recommended dose, one tablet twice daily. PMID:21912579

  13. Oxidative DNA damage in osteoarthritic porcine articular cartilage

    PubMed Central

    Chen, Antonia F.; Davies, Catrin M.; De Lin, Ming; Fermor, Beverley

    2008-01-01

    Purpose Osteoarthritis (OA) is associated with increased levels of reactive oxygen species. This study investigated if increased oxidative DNA damage accumulates in OA articular cartilage compared with non-OA articular cartilage from pigs with spontaneous OA. Additionally, the ability of nitric oxide (NO) or peroxynitrite (ONOO-) induced DNA damage in non-OA chondrocytes to undergo endogenous repair was investigated. Methods Porcine femoral condyles were graded for the stage of OA, macroscopically by the Collins Scale, and histologically by the modified Mankin Grade. Levels of DNA damage were determined in non-OA and OA cartilage, using the comet assay. For calibration, DNA damage was measured by exposing non-OA chondrocytes to 0-12 Gray of x-ray irradiation. Non-OA articular chondrocytes were treated with 0-500 μM of NO donors (NOC-18 or SIN-1), and DNA damage assessed after treatment and 5 days recovery. Results A significant increase (p<0.01) in oxidative DNA damage occurred in OA chondrocytes in joints with Mankin Grades 3 or greater, compared to non-OA chondrocytes. The percentage of nuclei containing DNA damage increased significantly (p<0.001) from early to late grades of OA. An increase of approximately 0.65-1.7 breaks/1000kB of DNA occurred in OA, compared to non-OA nuclei. NOC-18 or SIN-1 caused significant DNA damage (p<0.001) in non-OA chondrocytes that did not undergo full endogenous repair after 5 days (p<0.05). Conclusion Our data suggest significant levels of oxidative DNA damage occur in OA chondrocytes that accumulates with OA progression. Additionally, DNA damage induced by NO and ONOO- in non-OA chondrocytes does not undergo full endogenous repair. PMID:18720406

  14. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    PubMed

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  15. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  16. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences.

    PubMed

    Cadet, Jean; Wagner, J Richard

    2014-09-01

    Hydroxyl radical (OH) and one-electron oxidants that may be endogenously formed through oxidative metabolism, phagocytosis, inflammation and pathological conditions constitute the main sources of oxidatively generated damage to cellular DNA. It is worth mentioning that exposure of cells to exogenous physical agents (UV light, high intensity UV laser, ionizing radiation) and chemicals may also induce oxidatively generated damage to DNA. Emphasis is placed in this short review article on the mechanistic aspects of OH and one-electron oxidant-mediated formation of single and more complex damage (tandem lesions, intra- and interstrand cross-links, DNA-protein cross-links) in cellular DNA arising from one radical hit. This concerns DNA modifications that have been accurately measured using suitable analytical methods such as high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Evidence is provided that OH and one-electron oxidants after generating neutral radicals and base radical cations respectively may partly induce common degradation pathways. In addition, selective oxidative reactions giving rise to specific degradation products of OH and one-electron oxidation reactions that can be used as representative biomarkers of these oxidants have been identified.

  17. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  18. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2003-01-01

    supranuclear palsy brains. There were no significant alterations in 8-hydroxy-2- deoxyguanosine in the plasma of PD patients. We found that...patients and a number of specific genes linked to oxidative stress were reduced in expression. There was increased lipid peroxidation in progressive

  19. Tempol protects blood proteins and lipids against peroxynitrite-mediated oxidative damage

    PubMed Central

    Mustafa, Ayman G; Bani-Ahmad, Mohammad A; Jaradat, Ahmad Q

    2015-01-01

    Oxidative stress is characterized by excessive production of various free radicals and reactive species among which, peroxynitrite is most frequently produced in several pathological conditions. Peroxynitrite is the product of the superoxide anion reaction with nitric oxide, which is reported to take place in the intravascular compartment. Several studies have reported that peroxynitrite targets red blood cells, platelets and plasma proteins, and induces various forms of oxidative damage. This in vitro study was designed to further characterize the types of oxidative damage induced in platelets and plasma proteins by peroxynitrite. This study also determined the ability of tempol to protect blood plasma and platelets against peroxynitrite-induced oxidative damage. The ability of various concentrations of tempol (25, 50, 75, and 100 µM) to antagonize peroxynitrite-induced oxidation was evaluated by measuring the levels of protein carbonyl groups and thiobarbituric-acid-reactive substances in experimental groups. Exposure of platelets and plasma to 100 µM peroxynitrite resulted in an increased levels of carbonyl groups and lipid peroxidation (P < 0.05). Tempol significantly inhibited carbonyl group formation in plasma and platelet proteins (P < 0.05). In addition, tempol significantly reduced the levels of lipid peroxidation in both plasma and platelet samples (P < 0.05). Thus, tempol has antioxidative properties against peroxynitrite-induced oxidative damage in blood plasma and platelets. PMID:25107897

  20. Protective effect of Pterostilbene against free radical mediated oxidative damage

    PubMed Central

    2013-01-01

    Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177

  1. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage.

    PubMed

    Hernández, José A; López-Sánchez, Rosa C; Rendón-Ramírez, Adela

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  2. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    PubMed Central

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms. PMID:26949445

  3. OXIDATIVE DNA DAMAGE FROM POTASSIUM BROMATE EXPOSURE IN LONG-EVANS RATS IS NOT ENHANCED BY A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO3) is a by-product from ozonation of...

  4. Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile.

    PubMed

    Kamendulis, L M; Jiang, J; Xu, Y; Klaunig, J E

    1999-08-01

    Chronic treatment of rats with acrylonitrile (ACN) resulted in a dose-related increase in glial cell tumors (astrocytomas). While the exact mechanism(s) for ACN-induced carcinogenicity remains unresolved, non-genotoxic and possibly tumor promotion modes of action appear to be involved in the induction of glial tumors. Recent studies have shown that ACN induced oxidative stress selectively in rat brain in a dose-responsive manner. The present study examined the ability of ACN to induce oxidative stress in a rat glial cell line, a target tissue, and in cultured rat hepatocytes, a non-target tissue of ACN carcinogenicity. Glial cells and hepatocytes were treated for 1, 4 and 24 h with sublethal concentrations of ACN. ACN induced an increase in oxidative DNA damage, as evidenced by increased production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in glial cells but not in rat hepatocytes. Hydroxyl radical formation following ACN treatment was also selectively increased in glial cells. Following 1 and 4 h of ACN exposure, the levels of the non-enzymatic antioxidant glutathione, as well as the activities of the enzymatic antioxidants catalase and superoxide dismutase were significantly decreased in the rat glial cells. Lipid peroxidation and the activity of glutathione peroxidase were not affected by ACN treatment in rat glial cells. No changes in any of these biomarkers of oxidative stress were observed in hepatocytes treated with ACN. These data indicate that ACN selectively induced oxidative stress in rat glial cells.

  5. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    PubMed Central

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  6. Oxidative DNA damage in mouse sperm chromosomes: Size matters.

    PubMed

    Kocer, Ayhan; Henry-Berger, Joelle; Noblanc, Anais; Champroux, Alexandre; Pogorelcnik, Romain; Guiton, Rachel; Janny, Laurent; Pons-Rejraji, Hanae; Saez, Fabrice; Johnson, Graham D; Krawetz, Stephen A; Alvarez, Juan G; Aitken, R John; Drevet, Joël R

    2015-12-01

    Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.

  7. CUPRAC colorimetric and electroanalytical methods determining antioxidant activity based on prevention of oxidative DNA damage.

    PubMed

    Uzunboy, Seda; Çekiç, Sema Demirci; Eksin, Ece; Erdem, Arzum; Apak, Reşat

    2017-02-01

    An unbalanced excess of oxygen/nitrogen species (ROS/RNS) can give oxidative hazard to DNA and other biomacromolecules under oxidative stress conditions. While the 'comet' assay for measuring DNA damage is neither specific nor practical, monitoring oxidative changes on individual DNA bases and other oxidation products needs highly specialized equipment and operators. Thus, we developed a modified CUPRAC (cupric ion reducing antioxidant capacity) colorimetric method to determine the average total damage on DNA produced by Fenton oxidation, taking advantage of the fact that the degradation products of DNA but not the original macromolecule is CUPRAC-responsive. The DNA-protective effects of water-soluble antioxidants were used to devise a novel antioxidant activity assay, considered to be physiologically more realistic than those using artificial probes. Our method, based on the measurement of DNA oxidative products with CUPRAC colorimetry proved to be 2 orders-of-magnitude more sensitive than the widely used TBARS (thiobarbituric acid-reactive substances) colorimetric assay used as reference. Additionally, the DNA damage was electrochemically investigated using pencil graphite electrodes (PGEs) as DNA sensor platform in combination with differential pulse voltammetry (DPV). The interaction of the radical species with DNA in the absence/presence of antioxidants was detected according to the changes in guanine oxidation signal.

  8. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod

    PubMed Central

    Barreto, Felipe S.; Burton, Ronald S.

    2013-01-01

    Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations. PMID:23902912

  9. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  10. Oxidative damage to rat brain in iron and copper overloads.

    PubMed

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  11. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    SciTech Connect

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  12. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    SciTech Connect

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  13. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients.

    PubMed

    Sertan Copoglu, U; Virit, Osman; Hanifi Kokacya, M; Orkmez, Mustafa; Bulbul, Feridun; Binnur Erbagci, A; Semiz, Murat; Alpak, Gokay; Unal, Ahmet; Ari, Mustafa; Savas, Haluk A

    2015-09-30

    Increasing evidence shows that oxidative stress plays a role in the pathophysiology of schizophrenia. But there is not any study which examines the effects of oxidative stress on DNA in schizophrenia patients. Therefore we aimed to assess the oxidative stress levels and oxidative DNA damage in schizophrenia patients with and without symptomatic remission. A total of 64 schizophrenia patients (38 with symptomatic remission and 26 without symptomatic remission) and 80 healthy volunteers were included in the study. 8-hydroxydeoxyguanosine (8-OHdG), total oxidant status (TOS) and total antioxidant status (TAS) were measured in plasma. TOS, oxidative stress index (OSI) and 8-OHdG levels were significantly higher in non-remission schizophrenic (Non-R-Sch) patients than in the controls. TOS and OSI levels were significantly higher in remission schizophrenic (R-Sch) patients than in the controls. TAS level were significantly lower and TOS and OSI levels were significantly higher in R-Sch patients than in Non-R-Sch patients. Despite the ongoing oxidative stress in patients with both R-Sch and Non-R-Sch, oxidative DNA damage was higher in only Non-R-Sch patients compared to controls. It is suggested that oxidative stress can cause the disease via DNA damage, and oxidative stress plays a role in schizophrenia through oxidative DNA damage.

  14. Induction of oxidative DNA damage by flavonoids of propolis: its mechanism and implication about antioxidant capacity.

    PubMed

    Tsai, Yi-Chih; Wang, Yi-Hsiang; Liou, Chih-Chiang; Lin, Yu-Cun; Huang, Haimei; Liu, Yin-Chang

    2012-01-13

    Propolis from beehives is commonly used as a home remedy for various purposes including as a topical antiseptic. Despite its antioxidant capacity, propolis induces oxidative DNA damage. In exploring the underlying mechanism, we found that the induction of oxidative DNA damage is attributed to the hydrogen peroxide (H(2)O(2)) produced by propolis. The formation of H(2)O(2) can take place without the participation of cells but requires the presence of transition metal ions such as iron. Flavonoids such as galangin, chrysin, and pinocembrin that are commonly detected in propolis have the capacity to induce oxidative DNA damage, and that capacity correlates with the production of H(2)O(2), suggesting the involvement of flavonoids in propolis in this process. On the basis of these results, we propose that the flavonoids of propolis serve as temporary carriers of electrons received from transition metal ions that are relayed to oxygen molecules to subsequently generate superoxide and H(2)O(2). In addition, propolis induces oxidative DNA damage that is subject to repair, and propolis-treated cells show a lower level of DNA damage level when challenged with another oxidative agent such as amoxicillin. This is reminiscent of an adaptive response that might contribute to the beneficial effects of propolis.

  15. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage.

    PubMed

    Lu, Naihao; Chen, Puqing; Yang, Qin; Peng, Yi-Yuan

    2011-06-01

    Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a polyphenol identified in tea, cocoa, and red wine, on hemoglobin-induced protein oxidative damage. It was found that (+)-catechin had the capacities to act as a free radical scavenger and reducing agent to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the presence of (+)-catechin surprisingly promoted hemoglobin-induced protein oxidation, which was probably due to the ability of this anti-oxidant to rapidly trigger the oxidative degradation of normal hemoglobin. In addition, hemoglobin-H2O2-induced protein carbonyl formation was significantly enhanced by (+)-catechin at lower concentrations, while it was efficiently inhibited when higher concentrations were used. These novel results showed that the dietary intake and therapeutic use of catechins might possess pro-oxidant activity through aggravating hemoglobin-related oxidative damage. The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of tea extract and wine (catechins) with cellular heme proteins.

  16. Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

    PubMed Central

    Rodríguez-Lara, Simón Quetzalcoatl; Ramírez-Lizardo, Ernesto Javier; Totsuka-Sutto, Sylvia Elena; Castillo-Romero, Araceli; García-Cobián, Teresa Arcelia

    2016-01-01

    Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states. PMID:28116037

  17. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    PubMed

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  18. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress.

    PubMed

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-11-13

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy.

  19. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  20. [Nitric oxide production in plants].

    PubMed

    Małolepsza, Urszula

    2007-01-01

    There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450.

  1. Oxidative damage to macromolecules in the thyroid - experimental evidence

    PubMed Central

    2012-01-01

    Whereas oxidative reactions occur in all tissues and organs, the thyroid gland constitutes such an organ, in which oxidative processes are indispensable for thyroid hormone synthesis. It is estimated that huge amount of reactive oxygen species, especially of hydrogen peroxide (H2O2), are produced in the thyroid under physiological conditions, justifying the statement that the thyroid gland is an organ of “oxidative nature”. Apart from H2O2, also other free radicals or reactive species, formed from iodine or tyrosine residues, participate in thyroid hormone synthesis. Under physiological conditions, there is a balance between generation and detoxification of free radicals. Effective protective mechanisms, comprising antioxidative molecules and the process of compartmentalization of potentially toxic molecules, must have been developed in the thyroid to maintain this balance. However, with additional oxidative abuse caused by exogenous or endogenous prooxidants (ionizing radiation being the most spectacular), increased damage to macromolecules occurs, potentially leading to different thyroid diseases, cancer included. PMID:23270549

  2. In situ analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine oxidation reveals sequence- and agent-specific damage spectra.

    PubMed

    Lim, Kok Seong; Cui, Liang; Taghizadeh, Koli; Wishnok, John S; Chan, Wan; DeMott, Michael S; Babu, I Ramesh; Tannenbaum, Steven R; Dedon, Peter C

    2012-10-31

    Guanine is a major target for oxidation in DNA, with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a major product. 8-oxodG is itself significantly more susceptible to oxidation than guanine, with the resulting damage consisting of more than 10 different products. This complexity has hampered efforts to understand the determinants of biologically relevant DNA oxidation chemistry. To address this problem, we have developed a high mass accuracy mass spectrometric method to quantify oxidation products arising site specifically in DNA. We applied this method to quantify the role of sequence context in defining the spectrum of damage products arising from oxidation of 8-oxodG by two oxidants: nitrosoperoxycarbonate (ONOOCO(2)(-)), a macrophage-derived chemical mediator of inflammation, and the classical one-electron oxidant, riboflavin-mediated photooxidation. The results reveal the predominance of dehydroguanidinohydantoin (DGh) in 8-oxodG oxidation by both oxidants. While the relative quantities of 8-oxodG oxidation products arising from ONOOCO(2)(-) did not vary as a function of sequence context, products of riboflavin-mediated photooxidation of 8-oxodG were highly sequence dependent. Several of the 8-oxodG oxidation products underwent hydrolytic conversion to new products with half-lives of 2-7 h. The results have implications for understanding the chemistry of DNA oxidation and the biological response to the damage, with DNA damage recognition and repair systems faced with a complex and dynamic set of damage targets.

  3. Oxidative stress and mitochondrial damage in coronary artery bypass graft surgery: effects of antioxidant treatments.

    PubMed

    Milei, J; Ferreira, R; Grana, D R; Boveris, A

    2001-01-01

    We examined antioxidant actions in 73 patients undergoing coronary artery surgery by assessing mitochondrial damage and oxidative stress in ventricular biopsies obtained at preischemia and postreperfusion. Those patients who received antioxidant therapy benefited by less oxidative stress and mitochondrial damage.

  4. Reduction in oxidatively generated DNA damage following smoking cessation

    PubMed Central

    2011-01-01

    Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19) in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA)]; formamide breakdown of pyrimidine bases [d(TgpA)]; 8-oxo-7,8-dihydroguanine [d(Gh)]) via liquid chromatography tandem mass spectrometry (LC-MS/MS). Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA) (χ2(3) = 8.068, p < 0.045), d(PfpA) (χ2(3) = 8.477, p < 0.037), and d(Gh) (χ2(3) = 37.599, p < 0.001) lesions were seen, indicating levels of each decreased significantly after CO-confirmed smoking cessation. The d(TgpA) and d(PfpA) lesions show relatively greater rebound at Week 16 compared to the d(Gh) lesion (88% of baseline for d(TgpA), 64% of baseline for d(PfpA), vs 46% of baseline for d(Gh)). Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis. PMID:21569419

  5. Oxidative damage to poultry: from farm to fork.

    PubMed

    Estévez, M

    2015-06-01

    Poultry and poultry meat are particularly susceptible to oxidative reactions. Oxidation processes have been for decades the focus of animal and meat scientists owing to the negative impact of these reactions on animal growth, performance, and food quality. Lipid oxidation has been recognized a major threat to the quality of processed poultry products. The recent discoveries on the occurrence of protein oxidation in muscle foods have increased the scientific and technological interest in a topic that broadens the horizons of food biochemistry into innovative fields. Furthermore, in recent years we have witnessed a growing interest in consumers on the impact of diet and oxidation on health and aging. Hence, the general description of oxidative reactions as harmful phenomena goes beyond the actual impact on animal production and food quality and reaches the potential influence of oxidized foods on consumer health. Likewise, the current antioxidant strategies aim for the protection of the living tissues, the food systems, and a potential health benefit in the consumer upon ingestion. Along these lines, the application of phytochemicals and other microelements (Se, Cu) with antioxidant potential in the feeds or directly in the meat product are strategies of substantial significance. The present paper reviews in a concise manner the most relevant and novel aspects of the mechanisms and consequences of oxidative reactions in poultry and poultry meat, and describes current antioxidant strategies against these undesirable reactions.

  6. Overloaded training increases exercise-induced oxidative stress and damage.

    PubMed

    Palazzetti, Stephane; Richard, Marie-Jeanne; Favier, Alain; Margaritis, Irene

    2003-08-01

    We hypothesized that overloaded training (OT) in triathlon would induce oxidative stress and damage on muscle and DNA. Nine male triathletes and 6 male sedentary subjects participated in this study. Before and after a 4-week OT, triathletes exercised for a duathlon. Blood ratio of reduced vs. oxidized glutathione (GSH/GSSG), plasma thiobarbituric acid reactive substances (TBARS), leukocyte DNA damage, creatine kinase (CK), and CK-MB mass in plasma, erythrocyte superoxide dismutase (SOD) activity, erythrocyte and plasma glutathione peroxidase (GSH-Px) activities, and plasma total antioxidant status (TAS) were measured before and after OT in pre- and postexercise situations. Triathletes were overloaded in response to OT. In rest conditions, OT induced plasma GSH-Px activity increase and plasma TAS decrease (both p < 0.05). In exercise conditions, OT resulted in higher exercise-induced variations of blood GSH/GSSG ratio, TBARS level (both p < 0.05), and CK-MB mass (p < 0.01) in plasma; and decreased TAS response (p < 0.05). OT could compromise the antioxidant defense mechanism with respect to exercise-induced response. The resulting increased exercise-induced oxidative stress and further cellular susceptibility to damage needs more study.

  7. Choreography of oxidative damage repair in mammalian genomes.

    PubMed

    Mitra, Sankar; Izumi, Tadahide; Boldogh, Istvan; Bhakat, Kishor K; Hill, Jeff W; Hazra, Tapas K

    2002-07-01

    The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.

  8. Measurement of oxidatively generated base damage in cellular DNA.

    PubMed

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  9. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  10. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites.

  11. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline.

    PubMed

    Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Correa, Francisco; Díaz-Ruiz, Jorge Luis; Chávez, Edmundo

    2016-12-01

    In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu(2+) -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca(2+) release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu(2+) -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu(2+) -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.

  12. Bromination of deoxycytidine by eosinophil peroxidase: A mechanism for mutagenesis by oxidative damage of nucleotide precursors

    PubMed Central

    Henderson, Jeffrey P.; Byun, Jaeman; Williams, Michelle V.; McCormick, Michael L.; Parks, William C.; Ridnour, Lisa A.; Heinecke, Jay W.

    2001-01-01

    Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation. PMID:11172002

  13. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  14. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  15. Nitric Oxide Production in Plants

    PubMed Central

    Planchet, Elisabeth

    2006-01-01

    There is now general agreement that nitric oxide (NO) is an important and almost universal signal in plants. Nevertheless, there are still many controversial observations and opinions on the importance and function of NO in plants. Partly, this may be due to the difficulties in detecting and even more in quantifying NO. Here, we summarize major pathways of NO production in plants, and briefly discuss some methodical problems. PMID:19521475

  16. In vitro toxicity of iron oxide nanoparticle: oxidative damages on Hep G2 cells.

    PubMed

    Sadeghi, Leila; Tanwir, Farzeen; Yousefi Babadi, Vahid

    2015-02-01

    During the past years many studies have been done highlighting the great need for a more thorough understanding of cell-iron oxide nanoparticle interactions. To improve our knowledge in this field, there is a great need for standardized protocols that would allow to comparing the cytotoxic potential of any Fe2O3-NP type with previously studied particles. Several approaches are reported that several parameters which are of great importance for Fe2O3 nanoparticle induced toxicity. Nanoparticles because of their very small size can pass through the cell membrane and can make oxidative damage in all parts of the cells such as mitochondria, membrane, DNA due to high surface area. This study focuses on acute cytotoxicity of reactive oxygen species and DNA damaging effects of mentioned nanoparticles. Results showed increase of the oxidative damage leads cells to the apoptosis, therefore reduced cell viability. It is interesting that all of the results are concentration and time dependent.

  17. Transcription-coupled homologous recombination after oxidative damage.

    PubMed

    Wei, Leizhen; Levine, Arthur Samuel; Lan, Li

    2016-08-01

    Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates.

  18. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups.

    PubMed

    Vázquez-Medina, José Pablo; Crocker, Daniel E; Forman, Henry Jay; Ortiz, Rudy M

    2010-07-15

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin-angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2-3 weeks post-weaning) and late (7-8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT(1)), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT(1), a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40-60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences.

  19. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  20. A new potent natural antioxidant mixture provides global protection against oxidative skin cell damage.

    PubMed

    Jorge, A T S; Arroteia, K F; Lago, J C; de Sá-Rocha, V M; Gesztesi, J; Moreira, P L

    2011-04-01

    Oxidative stress occurs when there is an over production of free radicals and cells are not able to neutralize them by their own antioxidant mechanisms. These excess of free radicals will attack cellular macromolecules leading to cell damage, function impairment or death. Because of that, antioxidant substances have been largely used in products to offer complementary protection. In this study a new mixture of three known antioxidants (cocoa, green tea and alpha-tocopherol) was evaluated and its antioxidant protection was assessed focusing on its capacity to protect main cell macromolecules. Results have shown that it has a high antioxidant capacity by protecting lipids, DNA and proteins against oxidative damage. The antioxidant effect of the mixture on cells was also investigated and it was able to reduce oxidative stress generated by lipopolisacharide in human fibroblasts. Finally, as the mixture has proved to be highly antioxidant, its effect on cell senescence was evaluated, and it was demonstrated that fibroblasts in culture had delayed senescence when treated with these actives on a mixture. All results together provide important data about a new antioxidant mixture that uses a small amount of actives and is able to protect cell against oxidative damages in a global way.

  1. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage.

    PubMed

    Liu, Jing; Fang, Hongbo; Chi, Zhenfen; Wu, Zan; Wei, Di; Mo, Dongliang; Niu, Kaifeng; Balajee, Adayabalam S; Hei, Tom K; Nie, Linghu; Zhao, Yongliang

    2015-06-23

    Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria.

  2. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  3. Oxidative Damage in the Aging Heart: an Experimental Rat Model

    PubMed Central

    Marques, Gustavo Lenci; Neto, Francisco Filipak; Ribeiro, Ciro Alberto de Oliveira; Liebel, Samuel; de Fraga, Rogério; Bueno, Ronaldo da Rocha Loures

    2015-01-01

    Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages. Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined. Results: Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups. Conclusion: Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults. PMID:27006709

  4. SOS processing of unique oxidative DNA damages in Escherichia coli.

    PubMed

    Laspia, M F; Wallace, S S

    1989-05-05

    phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.

  5. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  6. Aluminum phosphide-induced genetic and oxidative damages in rats: attenuation by Laurus nobilis leaf extract.

    PubMed

    Türkez, Hasan; Toğar, Başak

    2013-08-01

    Aluminum phosphide (AlP) is a colorless, flammable, liquefied pesticide that is commonly used to control insects, nematodes, weeds, and pathogens in crops, forests, ornamental nurseries, and wood products. Early investigations of AlP-poisoned mammalian cells led to the proposed involvement of oxidative damage in its toxicity mechanism. Therefore, this study was aimed to evaluate the effect of Laurus nobilis (L) leaf extract (LNE) against AlP-induced genetic and oxidative damages in rats. Selected animals were assigned to four groups (n = 6), namely, group A: control (only distilled water is injected); group B: AlP (4 mg kg(-1) injected intraperitoneally (i.p.)); group C: LNE (200 mg kg(-1) injected i.p.), and group D: AlP plus LNE, respectively. The experimental period lasted for 14 successive days. Chromosomal aberrations (CAs) and micronucleus (MN) assay were used for monitoring genotoxic damage. In addition, biochemical parameters such as total antioxidant capacity (TAC) and total oxidative status (TOS) were examined in serum samples to determine oxidative damage. Our results indicated that AlP caused increase in CA and MN assay rates and alterations in TAC and TOS levels when compared with control group. On the contrary, LNE did not change the rates of both the analyzed cytogenetic end points and led to increase in TAC level. Moreover, we observed that LNE suppressed the genetic damage by AlP to bone marrow cells in vivo. Interestingly AlP-induced oxidative stress was also strongly reduced by LNE. The results of the present study indicated that the protective effect of LNE might be ascribable to its antioxidant and free radical scavenging properties.

  7. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    SciTech Connect

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B. . E-mail: mquintan@cinvestav.mx

    2006-10-15

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A{sub 3} (CMA{sub 3})-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA{sub 3}-staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission.

  8. Displacement Cascade Damage Production in Metals

    SciTech Connect

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    2015-01-01

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.

  9. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  10. Influence of dietary carbohydrate on zinc-deficiency-induced changes in oxidative defense mechanisms and tissue oxidative damage in rats.

    PubMed

    Kim, S H; Keen, C L

    1999-10-01

    The aim of this study was to determine the effect of dietary carbohydrate type on the expression of zinc (Zn) deficiency in rats with respect to tissue oxidative damage and defense mechanisms. Rats were fed diets containing adequate (+Zn) or low concentrations (-Zn) of Zn. Both fructose- and glucose-based diets were tested. Pair-fed controls were also studied to evaluate changes in the oxidative defense system which are secondary to Zn-deficiency-induced anorexia. Plasma and liver Zn concentrations and CuZn superoxide dismutase activities were lower in the -Zn rats than in the +Zn rats. Liver glutathione (GSH) and disulfide glutathione concentrations were higher in the -Zn rats than in the +Zn rats; this difference was most pronounced in the fructose groups. Liver and heart selenium glutathione peroxidase (Se-GSH-Px) activities were lower in the -Zn-fructose group than in the +Zn-fructose group. Liver Se-GSH-Px activity was higher in the fructose groups than in the glucose groups. Liver GSH reductase (GSH-Red) activity was lower in the -Zn-fructose group than in its control group. Liver glutamine synthetase activity was lower in the -Zn-glucose group and in the fructose groups than in the glucose control group. Liver thiobarbituric acid reactive substance (TBARS) production was similar among the groups. Collectively, these results support the concept that Zn deficiency can result in an impaired oxidant defense system. Based on the observation that pair-fed control animals also showed evidence of oxidative damage, we suggest that one factor that contributes to the effect of Zn deficiency is the reduction in caloric intake that occurs in these animals. Fructose feeding resulted in increased activities of several of the oxidant defense enzymes. Protein oxidative damage assessed by glutamine synthetase activity was increased by both Zn deficiency and fructose feeding.

  11. Highly oxidized graphene oxide and methods for production thereof

    DOEpatents

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  12. Oxidative DNA damage background estimated by a system model of base excision repair

    SciTech Connect

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  13. Oxidative DNA damage background estimated by a system model of base excision repair.

    PubMed

    Sokhansanj, Bahrad A; Wilson, David M

    2004-08-01

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    PubMed Central

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J.

    2011-01-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells. PMID:22254082

  15. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    PubMed

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Different mechanisms between copper and iron in catecholamines-mediated oxidative DNA damage and disruption of gene expression in vitro.

    PubMed

    Nishino, Yoshihiko; Ando, Motozumi; Makino, Rena; Ueda, Koji; Okamoto, Yoshinori; Kojima, Nakao

    2011-07-01

    Catechols produce reactive oxygen species (ROS) and induce oxidative DNA damage through reduction-oxidation reactions with metals such as copper. Here, we examined oxidative DNA damage by neurotransmitter catecholamines in the presence of copper or iron and evaluated the effects of this damage on gene expression in vitro. Dopamine induced strand breaks and base oxidation in calf thymus DNA in the presence of Cu(II) or Fe(III)-NTA (nitrilotriacetic acid). The extent of this damage was greater for Cu(II) than for Fe(III)-NTA. For the DNA damage induced by dopamine, the responsible reactive species were hydrogen peroxide and Cu(I) for Cu(II) and hydroxyl radicals and Fe(II) for Fe(III)-NTA. Cu(II) induced DNA conformational changes, but Fe(III)-NTA did not in the presence of dopamine. These differences indicate different modes of action between Cu and Fe-NTA with regard to the induction of DNA damage. Expression of the lacZ gene coded on plasmid DNA was inhibited depending on the extent of the oxidative damage and strand breaks. Endogenous catecholamines (dopamine, adrenaline, and noradrenaline) were more potent than catechols (no aminoalkyl side chains) or 3,4-dihydroxybenzylamine (aminomethyl side chain). These results suggest that the metal-mediated DNA damage induced by dopamine disrupts gene expression, and leukoaminochromes (further oxidation products of O-quinones having aminoethyl side chain) are involved in the DNA damage. These findings indicate a possibility that metal (especially iron and copper)-mediated oxidation of catecholamines plays an important role in the pathogenesis of neurodegenerative disorders including Parkinson's disease.

  17. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    PubMed Central

    Wang, Yi; Liang, Xinying; Chen, Yaqi; Zhao, Xiaoping

    2016-01-01

    Sirtuin type 1 (SIRT1) belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs), as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP). The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1. PMID:26981165

  18. Oxidative DNA damage induced by benz[a]anthracene dihydrodiols in the presence of dihydrodiol dehydrogenase.

    PubMed

    Seike, Kazuharu; Murata, Mariko; Hirakawa, Kazutaka; Deyashiki, Yoshihiro; Kawanishi, Shosuke

    2004-11-01

    Tobacco smoke and polluted air are risk factors for lung cancer and contain many kinds of polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P) and benz[a]anthracene (BA). BA, as well as B[a]P, is assessed as probably carcinogenic to humans (IARC group 2A). BA is metabolized to several dihydrodiols. Dihydrodiol dehydrogenase (DD), a member of the aldo-keto reductase superfamily, catalyzes NAD(P)+-linked oxidation of dihydrodiols of aromatic hydrocarbons to corresponding catechols. To clarify the role of DD on PAH carcinogenesis, we examined oxidative DNA damage induced by trans-dihydrodiols of BA and B[a]P treated with DD using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene. In addition, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA by using HPLC with an electrochemical detector. DD-catalyzed BA-1,2-dihydrodiol caused Cu(II)-mediated DNA damage including 8-oxodG formation in the presence of NAD+. BA-1,2-dihydrodiol induced a Fpg sensitive and piperidine labile G lesion at the 5'-ACG-3' sequence complementary to codon 273 of the human p53 tumor suppressor gene, which is known as a hotspot. DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The observation of NADH production by UV-visible spectroscopy suggested that DD catalyzed BA-1,2-dihydrodiol most efficiently to the corresponding catechol among the PAH-dihydrodiols tested. A time-of-flight mass spectroscopic study showed that the catechol form of BA-1,2-dihydrodiol formed after DD treatment. In conclusion, BA-1,2-dihydrodiol can induce DNA damage more efficiently than B[a]P-7,8-dihydrodiol and other BA-dihydrodiols in the presence of DD. The reaction mechanism on oxidative DNA damage may be explained by theoretical calculations with an enthalpy change of dihydrodiols and oxidation potential of their catechol forms. DD

  19. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  20. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  1. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice

    PubMed Central

    Yuvaraju, Priya; Beegam, Sumaya; Fahim, Mohamed A.; Ali, Badreldin H.

    2017-01-01

    CeO2 nanoparticles (CeO2 NPs) which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h) effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg) on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL-) 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs. PMID:28392888

  2. Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum.

    PubMed

    Lai, Tongfei; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2011-01-01

    The effects of nitric oxide (NO) on spore germination of Penicillium expansum were investigated and a possible mechanism was evaluated. The results indicated that NO released by sodium nitroprusside (SNP) significantly suppressed fungal growth. With the use of an oxidant sensitive probe and Western blot analysis, an increased level of intracellular reactive oxygen species (ROS) and enhanced carbonylation damage were detected in spores of P. expansum under NO stress. Exogenous superoxide dismutase (SOD) and ascorbic acid (Vc) could increase the resistance of the spore to the inhibitory effect of NO. The activities of SOD and catalase (CAT), as well as ATP content in spores under NO stress were also lower than those in the control. We suggest that NO in high concentration induces the generation of ROS which subsequently causes severe oxidative damage to proteins crucial to the process of spore germination of P. expansum.

  3. Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage.

    PubMed

    Li, Nanlin; Kong, Xiangwei; Ye, Ruidong; Yang, Qianzi; Han, Junliang; Xiong, Lize

    2011-06-01

    Age is the single most important risk factor for cerebral stroke. Unfortunately, the effect of age on ischemic brain damage is less clear. In this study, we sought to examine the potential influence of aging on the histologic and functional outcomes after ischemia. Juvenile (4 weeks of age), young adult (4 months of age), mid-aged (11-12 months of age), and aged (18-19 months of age) mice were subjected to transient middle cerebral artery occlusion. There was no remarkable difference of infarct volume on postoperative days 1 and 3. However, on postoperative day 7, aged mice exhibited significantly worsened infarct volume compared with juvenile and young mice. Intriguingly, the increase of infarct volume was most prominent in the striatal area rather than in cortex. Accordingly, aged mice displayed a slower and incomplete functional recovery after stroke. We further evaluated the effects of aging on the oxidative damage and mitochondrial dysfunction following ischemia. Brain tissues were assayed for lipid, DNA, and protein peroxidation products, mitochondrial enzyme activities, mitochondrial membrane potential, production of reactive oxygen species, and antioxidant activities. Aging was associated with declined mitochondrial function and antioxidant detoxification following ischemia, thereby inducing a deteriorated oxidative damage. Regional subanalyses demonstrated that, in accordance with infarct area, the pro-oxidant/antioxidant imbalance occurred more prominently in subcortical areas. Collectively, these findings suggest mitochondria-mediated oxidative damage may be involved in the age-related aggravated injury in subcortical areas. Mitochondrial protection could be a promising target for neuroprotective therapy, especially in the aged population.

  4. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  5. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.

    PubMed

    Palacino, James J; Sagi, Dijana; Goldberg, Matthew S; Krauss, Stefan; Motz, Claudia; Wacker, Maik; Klose, Joachim; Shen, Jie

    2004-04-30

    Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.

  6. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  7. Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system.

    PubMed

    Palmer, Debbie M; Kitchin, Jennifer Silverman

    2010-01-01

    It is believed that oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system's ability to neutralize the reactive intermediates. Oxidative damage occurs because of both intrinsic and extrinsic mechanisms. Together, intrinsic and extrinsic damage are the primary causes of skin aging. The skin uses a series of intrinsic antioxidants to protect itself from free radical damage. Naturally occurring extrinsic antioxidants have also been widely shown to offset and alleviate these changes. Unlike sunscreens, which have an SPF rating system to guide consumers in their purchases, there is no widely accepted method to choose antioxidant anti-aging products. ORAC (Oxygen Radical Absorbance Capacity) and ABEL-RAC (Analysis By Emitted Light-Relative Antioxidant Capacity), are both accepted worldwide as a standard measure of the antioxidant capacity of foods, and are rating systems that could be applied to all antioxidant skincare products. The standardization of antioxidant creams could revolutionize the cosmeceutical market and give physicians and consumers the ability to compare and choose effectively.

  8. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  9. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine.

    PubMed Central

    Fraga, C G; Shigenaga, M K; Park, J W; Degan, P; Ames, B N

    1990-01-01

    Oxidative damage to DNA is shown to be extensive and could be a major cause of the physiological changes associated with aging and the degenerative diseases related to aging such as cancer. The oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (oh8dG), one of the approximately 20 known oxidative DNA damage products, has been measured in DNA isolated from various organs of Fischer 344 rats of different ages. oh8dG was present in the DNA isolated from all the organs studied: liver, brain, kidney, intestine, and testes. Steady-state levels of oh8dG ranged from 8 to 73 residues per 10(6) deoxyguanosine residues or 0.2-2.0 x 10(5) residues per cell. Levels of oh8dG in DNA increased with age in liver, kidney, and intestine but remained unchanged in brain and testes. The urinary excretion of oh8dG, which presumably reflects its repair from DNA by nuclease activity, decreased with age from 481 to 165 pmol per kg of body weight per day for urine obtained from 2-month- and 25-month-old rats, respectively. 8-Hydroxyguanine, the proposed repair product of a glycosylase activity, was also assayed in the urine. We estimate approximately 9 x 10(4) oxidative hits to DNA per cell per day in the rat. The results suggest that the age-dependent accumulation of oh8dG residues observed in DNA from liver, kidney, and intestine is principally due to the slow loss of DNA nuclease activity; however, an increase in the rate of oxidative DNA damage cannot be ruled out. PMID:2352934

  10. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  11. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  12. Oxidative damage induced in Vicia faba by coke plant wastewater.

    PubMed

    Liu, Yuxiang; Lv, Yongkang

    2011-10-01

    The present study investigated toxic impacts of coke plant wastewater over a concentration gradient of COD( Cr) 40-640 mg/l on malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in roots and leaves of Vicia faba. MDA levels and SOD activities were significantly increased at all concentrations both in roots and leaves of Vicia faba; CAT and POD activities were significantly enhanced in roots at low concentrations and were significantly decreased at high concentrations (COD(Cr) 320 and 640 mg/l for CAT; COD( Cr) 640 mg/l for POD). In leaves, CAT and POD activities remained enhanced at all concentration and did not show significant difference at COD( Cr) 640 mg/l for CAT and COD(Cr) 40, 640 mg/l for POD. These results suggest that coke plant wastewater can cause oxidative damage in roots and leaves of Vicia faba and root enzymes seemed more sensitive to the wastewater.

  13. Oxidative damage of the male reproductive system induced by paraquat.

    PubMed

    Chen, Qing; Zhang, Xin; Zhao, Jin-Yan; Lu, Xiao-Ning; Zheng, Peng-Sheng; Xue, Xiang

    2016-10-20

    The effects of paraquat (PQ) on the male reproductive system are unclear. In this study, male rats were divided into four groups (0, 0.5, 2, and 8 mg/kg) and treated with PQ by oral gavage for 8 weeks. At the end of the experiment, a significant decline in sperm count, motility, and viability and an increase in teratospermia were observed in the PQ-treated group (P < 0.05). Further investigation found that PQ resulted in enhanced lipid peroxidation and more apoptosis in the testis tissues, and apoptosis was likely to be associated with activation of the mitochondrial pathway. In summary, our study demonstrated oxidative damage due to PQ on the male reproductive system.

  14. Oxidatively induced DNA damage and its repair in cancer.

    PubMed

    Dizdaroglu, Miral

    2015-01-01

    Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.

  15. Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine.

    PubMed

    Suzuki, Masayo; Kino, Katsuhito; Morikawa, Masayuki; Kobayashi, Takanobu; Komori, Rie; Miyazawa, Hiroshi

    2012-06-01

    DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H)-oxazolone (Oz), guanidinohydantoin (Gh)/iminoallantoin (Ia) and spiro-imino-dihydantoin (Sp) are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.

  16. Oxidative stress and DNA damage in horses naturally infected with Theileria equi.

    PubMed

    Radakovic, M; Davitkov, D; Borozan, S; Stojanovic, S; Stevanovic, J; Krstic, V; Stanimirovic, Z

    2016-11-01

    The aim of this study was to determine the concentrations of oxidative stress parameters and DNA damage in horses infected by Theileria equi. Initial screening of 110 horses with duplex PCR enabled the selection of 30 infected horses with T. equi and 30 free of infection (control). Specimens from the 60 horses were further analysed by determining the following oxidative stress parameters: extent of haemolysis (EH), plasma free haemoglobin (PHb), catalase (CAT), Cu,Zn superoxide dismutase (SOD1), paraoxonase (PON1), nitrite (NO2(-)), total nitrate and nitrite (NOx), malondialdehyde (MDA) and free thiol groups (-SH). In addition, relative distribution of lactate dehydrogenase (LDH1-LDH5) activity and the DNA-damaging effects of T. equi infection were evaluated. Compared to control horses, horses infected with T. equi had significantly higher SOD1 activities (P <0.05) and PHb (P <0.01), NO2(-) (P <0.001), NOx (P <0.05) and MDA concentrations (P <0.001), and significantly lower EH (P <0.001), CAT (P <0.01) and PON1 (P <0.001) activities, and thiol group concentrations (P <0.05). The comet assay demonstrated significantly increased DNA damage in T. equi infected cells compared to non-infected cells (P <0.001). Infected horses had significantly increased LDH5 isoenzyme activities (P <0.05). There was higher production of ROS/RNS in T. equi-infected horses, which resulted in changes in osmotic fragility, damage to lipids, proteins and DNA, haemolysis and hepatocellular damage. Oxidative stress in horses naturally infected with T. equi could contribute to the pathogenesis of the infection.

  17. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress.

    PubMed

    Skipper, Anthony; Sims, Jennifer N; Yedjou, Clement G; Tchounwou, Paul B

    2016-01-02

    Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium. Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG₂) cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet) assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay). The result of MTT assay indicated that cadmium chloride induces toxicity to HepG₂ cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05) increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG₂ cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05) was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG₂) cells.

  18. Measurement of oxidative DNA damage by gas chromatography-mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases.

    PubMed

    Jenner, A; England, T G; Aruoma, O I; Halliwell, B

    1998-04-15

    Analysis of oxidative damage to DNA bases by GC-MS enables identification of a range of base oxidation products, but requires a derivatization procedure. However, derivatization at high temperature in the presence of air can cause 'artifactual' oxidation of some undamaged bases, leading to an overestimation of their oxidation products, including 8-hydroxyguanine. Therefore derivatization conditions that could minimize this problem were investigated. Decreasing derivatization temperature to 23 degrees C lowered levels of 8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-(hydroxymethyl)uracil measured by GC-MS in hydrolysed calf thymus DNA. Addition of the reducing agent ethanethiol (5%, v/v) to DNA samples during trimethylsilylation at 90 degrees C also decreased levels of these four oxidized DNA bases as well as 5-hydroxyuracil. Removal of guanine from hydrolysed DNA samples by treatment with guanase, prior to derivatization, resulted in 8-hydroxyguanine levels (54-59 pmol/mg of DNA) that were significantly lower than samples not pretreated with guanase, independent of the derivatization conditions used. Only hydrolysed DNA samples that were derivatized at 23 degrees C in the presence of ethanethiol produced 8-hydroxyguanine levels (56+/-8 pmol/mg of DNA) that were as low as those of guanase-pretreated samples. Levels of other oxidized bases were similar to samples derivatized at 23 degrees C without ethanethiol, except for 5-hydroxycytosine and 5-hydroxyuracil, which were further decreased by ethanethiol. Levels of 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine measured in hydrolysed calf thymus DNA by the improved procedures described here were comparable with those reported previously by HPLC with electrochemical detection and by GC-MS with prepurification to remove undamaged base. We conclude that artifactual oxidation of DNA bases during derivatization can be prevented by decreasing the temperature to 23 degrees C, removing air from the

  19. Acetylsalicylic acid provides cerebrovascular protection from oxidant damage in salt-loaded stroke-prone rats.

    PubMed

    Ishizuka, Toshiaki; Niwa, Atsuko; Tabuchi, Masaki; Ooshima, Kana; Higashino, Hideaki

    2008-03-26

    Inflammatory processes may play a pivotal role in the pathogenesis of cerebrovascular injury in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Recent reports revealed that acetylsalicylic acid (aspirin) has anti-oxidative properties and elicits nitric oxide release by a direct activation of the endothelial NO synthase. The present study was designed to determine whether low-dose aspirin might prevent cerebrovascular injury in salt-loaded SHRSP by protecting oxidative damage. Nine-week-old SHRSP were fed a 0.4% NaCl or a 4% NaCl diet with or without treatment by naproxen (20 mg/kg/day), salicylic acid (5 mg/kg/day), or aspirin (5 mg/kg/day) for 5 weeks. Blood pressure, blood brain barrier impairment, mortality, and the parameters of cerebrovascular inflammation and damage were compared among them. High salt intake in SHRSP significantly increased blood brain barrier impairment and early mortality, which were suppressed by treatment with aspirin independent of changes in blood pressure. Salt loading significantly increased superoxide production in basilar arteries of SHRSP, which were significantly suppressed by treatment with aspirin. Salt loading also significantly decreased NOS activity in the basilar arteries of SHRSP, which were significantly improved by treatment with aspirin. At 5 weeks after salt loading, macrophage accumulation and matrix metalloproteinase-9 activity at the stroke-negative area in cerebral cortex of SHRSP were significantly reduced by treatment with aspirin. These results suggest that low-dose aspirin may exert protective effects against cerebrovascular inflammation and damage by salt loading through down-regulation of superoxide production and induction of nitric oxide synthesis.

  20. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

    PubMed Central

    Zhang, Chao; Luo, Tao; Cui, Shijun; Gu, Yongquan; Bian, Chunjing; Chen, Yibin; Yu, Xiaochun; Wang, Zhonggao

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359] PMID:25748172

  1. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary

    SciTech Connect

    Gupta, R.K.; Schuh, R.A.; Fiskum, G.; Flaws, J.A. . E-mail: jflaws@epi.umaryland.edu

    2006-11-01

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by causing ovarian atrophy, persistent estrous cyclicity, and antral follicle atresia (apoptotic cell death). Oxidative damage resulting from reactive oxygen species (ROS) generation has been demonstrated to lead to toxicant-induced cell death. Thus, this work tested the hypothesis that MXC causes oxidative damage to the mouse ovary and affects mitochondrial respiration in a manner that stimulates ROS production. For the in vitro experiments, mitochondria were collected from adult cycling mouse ovaries, treated with vehicle (dimethyl sulfoxide; DMSO) or MXC, and subjected to polarographic measurements of respiration. For the in vivo experiments, adult cycling CD-1 mice were dosed with either vehicle (sesame oil) or MXC for 20 days. After treatment, ovarian mitochondria were isolated and subjected to measurements of respiration and fluorimetric measurements of H{sub 2}O{sub 2} production. Some ovaries were also fixed and processed for immunohistochemistry using antibodies for ROS production markers: nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHG). Ovaries from in vivo experiments were also used to measure the mRNA expression and activity of antioxidants such as Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT). The results indicate that MXC significantly impairs mitochondrial respiration, increases production of H{sub 2}O{sub 2}, causes more staining for nitrotyrosine and 8-OHG in antral follicles, and decreases the expression and activity of SOD1, GPX, and CAT as compared to controls. Collectively, these data indicate that MXC inhibits mitochondrial respiration, causes ROS production, and decreases antioxidant expression and activity in the ovary, specifically in the antral follicles. Therefore, it is possible that MXC causes atresia of ovarian antral follicles by inducing oxidative stress through mitochondrial production of ROS.

  2. Effect of tannic acid, resveratrol and its derivatives, on oxidative damage and apoptosis in human neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Ignatowicz, Ewa; Krajka-Kuźniak, Violetta; Baer-Dubowska, Wanda

    2015-10-01

    In this study we compared the antioxidant and DNA protective activity of tannic acid and stilbene derivatives, resveratrol, 3,5,4(')-trimethoxystilbene (TMS) and pterostilbene in human neutrophils stimulated to oxidative burst by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in relation to apoptosis induction. All polyphenols within the concentration range 1-100 μM reduced the intracellular ROS and H2O2 production in the TPA-stimulated cells. Tannic acid was the most effective polyphenol in protection against DNA damage induced by TPA. In the resting neutrophils resveratrol and to lesser extent other polyphenols increased DNA damage and increased the level of p53. Pretreatment of the TPA-stimulated cells with tannic acid or stilbenes led to the induction of apoptosis. The most significant effect was observed as a result of treatment with TMS and resveratrol. These compounds appeared the most effective inducers of p53 in the TPA-challenged neutrophils, what may suggest that pro-apoptotic activity of these stilbenes might be related to p53 activation. Overall, the results of our present study demonstrate that tannic acid and stilbenes modulate the ROS production, ultimately leading to cell apoptosis in human neutrophils stimulated to oxidative burst. In resting neutrophils they exhibit pro-oxidant activity, which is accompanied by p53 induction.

  3. Comparison of Oxidative Stress/DNA Damage in Semen and Blood of Fertile and Infertile Men

    PubMed Central

    Guz, Jolanta; Gackowski, Daniel; Foksinski, Marek; Rozalski, Rafal; Zarakowska, Ewelina; Siomek, Agnieszka; Szpila, Anna; Kotzbach, Marcin; Kotzbach, Roman; Olinski, Ryszard

    2013-01-01

    Abnormal spermatozoa frequently display typical features of oxidative stress, i.e. excessive level of reactive oxygen species (ROS) and depleted antioxidant capacity. Moreover, it has been found that a high level of oxidatively damaged DNA is associated with abnormal spermatozoa and male infertility. Therefore, the aim of our study was the comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. The broad range of parameters which describe oxidative stress and oxidatively damaged DNA and repair were analyzed in the blood plasma and seminal plasma of groups of fertile and infertile subjects. These parameters include: (i) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanine (8-oxoGua) levels in urine; (ii) 8-oxodG level in DNA isolated from leukocytes and spermatozoa; (iii) antioxidant vitamins (A, C and E) and uric acid. Urinary excretion of 8-oxodG and 8-oxoGua and the level of oxidatively damaged DNA in leukocytes as well as the level of antioxidant vitamins were analyzed using HPLC and HPLC/GC/MS methods. The results of our study demonstrate that 8-oxodG level significantly correlated with every parameter which describe sperm quality: sperm count, motility and morphology. Moreover, the data indicate a higher level of 8-oxodG in sperm DNA compared with DNA of surrogate tissue (leukocytes) in infertile men as well as in healthy control group. For the whole study population the median values of 8-oxodG/106 dG were respectively 7.85 and 5.87 (p = 0.000000002). Since 8-oxodG level in sperm DNA is inversely correlated with urinary excretion rate of 8-oxoGua, which is the product of OGG1 activity, we hypothesize that integrity of spermatozoa DNA may be highly dependent on OGG1 activity. No relationship between the whole body oxidative stress and that of sperm plasma was found, which suggests that the redox status of semen may be rather independent on this characteristic for other tissues. PMID:23874641

  4. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    PubMed Central

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects. PMID:27042026

  5. Impact-induced muscle damage and urinary pterins in professional rugby: 7,8-dihydroneopterin oxidation by myoglobin.

    PubMed

    Lindsay, A; Healy, J; Mills, W; Lewis, J; Gill, N; Draper, N; Gieseg, S P

    2016-03-01

    Muscle damage caused through impacts in rugby union is known to increase oxidative stress and inflammation. Pterins have been used clinically as markers of oxidative stress, inflammation, and neurotransmitter synthesis. This study investigates the release of myoglobin from muscle tissue due to force-related impacts and how it is related to the subsequent oxidation of 7,8-dihydroneopterin to specific pterins. Effects of iron and myoglobin on 7,8-dihydroneopterin oxidation were examined in vitro via strong cation-exchange high-performance liquid chromatography (SCX-HPLC) analysis of neopterin, xanthopterin, and 7,8-dihydroxanthopterin. Urine samples were collected from 25 professional rugby players pre and post four games and analyzed for myoglobin by enzyme-linked immunosorbent assay, and 7,8-dihydroneopterin oxidation products by HPLC. Iron and myoglobin oxidized 7,8-dihydroneopterin to neopterin, xanthopterin, and 7,8-dihydroxanthopterin at concentrations at or above 10 μM and 50 μg/mL, respectively. All four games showed significant increases in myoglobin, neopterin, total neopterin, biopterin, and total biopterin, which correlated between each variable (P < 0.05). Myoglobin and iron facilitate 7,8-dihydroneopterin oxidation to neopterin and xanthopterin. In vivo delocalization of myoglobin due to muscle damage may contribute to oxidative stress and inflammation after rugby. Increased concentrations of biopterin and total biopterin may indicate production of nitric oxide and monoamine neurotransmitters in response to the physical stress.

  6. In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells

    SciTech Connect

    Fiorani, M.; Biagiarelli, B.; Vetrano, F.; Guidi, G.; Dacha, M.; Stocchi, V.

    1997-05-01

    The aim of this study was to investigate the effects of 50 Hz magnetic fields on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in the authors` laboratory showed that the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate induces hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. The authors also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work, they investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate that a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage in an oxidatively stressed erythrocyte system. In fact, exposure of intact erythrocytes incubated with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents.

  7. Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress.

    PubMed

    Onaran, Ilhan; Guven, Gulgun S; Ozdaş, Sule Beyhan; Kanigur, Gonul; Vehid, Suphi

    2006-12-10

    Metformin (1-(diaminomethylidene)-3,3-dimethyl-guanidine), which is the most commonly prescribed oral antihyperglycaemic drug in the world, was reported to have several antioxidant properties such as the inhibition of advanced glycation end-products. In addition to its use in the treatment of diabetes, it has been suggested that metformin may be a promising anti-aging agent. The present work was aimed at assessing the possible protective effects of metformin against DNA-damage induction by oxidative stress in vitro. The effects of metformin were compared with those of N-acetylcysteine (NAC). For this purpose, peripheral blood lymphocytes from aged (n=10) and young (n=10) individuals were pre-incubated with various concentrations of metformin (10-50microM), followed by incubation with 15microM cumene hydroperoxide (CumOOH) for 48h, under conditions of low oxidant level, which do not induce cell death. Protection against oxidative DNA damage was evaluated by use of the Comet assay and the cytokinesis-block micronucleus technique. Changes in the levels of malondialdehyde+4-hydroxy-alkenals, an index of oxidative stress, were also measured in lymphocytes. At concentrations ranging from 10microM to 50microM, metformin did not protect the lymphocytes from DNA damage, while 50microM NAC possessed an effective protective effect against CumOOH-induced DNA damage. Furthermore, NAC, but not metformin, inhibited DNA fragmentation induced by CumOOH. In contrast to the lack of protection against oxidative damage in lymphocyte cultures, metformin significantly protected the cells from lipid peroxidation in both age groups, although not as effective as NAC in preventing the peroxidative damage at the highest doses. Within the limitations of this study, the results indicate that pharmacological concentrations of metformin are unable to protect against DNA damage induced by a pro-oxidant stimulus in cultured human lymphocytes, despite its antioxidant properties.

  8. Oxidative DNA damage caused by pulsed discharge with cavitation on the bactericidal function

    NASA Astrophysics Data System (ADS)

    Kudo, Ken-ichi; Ito, Hironori; Ihara, Satoshi; Terato, Hiroaki

    2015-09-01

    Plasma-based techniques are expected to have practical use for wastewater purification with a potential for killing contaminated microorganisms and degrading recalcitrant materials. In the present study, we analysed oxidative DNA damage in bacterial cells treated by the plasma to unveil its mechanisms in the bactericidal process. Escherichia coli cell suspension was exposed to the plasma induced by applying an alternating-current voltage of about 1 kV with bubbling formed by water-cavitation, termed pulsed discharge with cavitation. Chromosomal DNA damage, such as double strand break (DSB) and oxidative base lesions, increased proportionally with the applied energy, as determined by electrophoretic and mass spectrometric analyses. Among the base lesions identified, the yields of 8-hydroxyguanine (8-OH-G) and 5-hydroxycytosine (5-OH-C) in chromosomal DNA increased by up to 4- and 15-fold, respectively, compared to untreated samples. The progeny DNA sequences, derived from plasmid DNA exposed to the plasma, indicated that the production rate of 5-OH-C exceeded that of 8-OH-G, as G:C to A:T transitions accounted for 65% of all base changes, but only a few G:C to T:A transversions were observed. The cell viabilities of E. coli cells decreased in direct proportion to increases in the applied energy. Therefore, the plasma-induced bactericidal mechanism appears to relate to oxidative damage caused to bacterial DNA. These results were confirmed by observing the generation of hydroxyl radicals and hydrogen peroxide molecules following the plasma exposure. We also compared our results with the plasma to those obtained with 137Cs γ-rays, as a well-known ROS generator to confirm the DNA-damaging mechanism involved.

  9. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods.

  10. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components.

  11. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  12. Dimethoate-induced oxidative stress and DNA damage in Oncorhynchus mykiss.

    PubMed

    Dogan, Demet; Can, Canan; Kocyigit, Abdurrahim; Dikilitas, Murat; Taskin, Abdullah; Bilinc, Hasan

    2011-06-01

    The present study was conducted in order to investigate pro-oxidant activity of dimethoate in liver and brain tissues following sublethal pesticide exposure for 5, 15 and 30 d by using SOD, GPx, CAT enzyme activities and lipid peroxidation as biomarkers as well as DNA damaging potential via detecting% Tail DNA, Tail moment and Olive tail moment as endpoints in erythrocytes of Oncorhynchus mykiss in an in vitro experiment. Antioxidant enzyme activities were found to elicit two staged response which was an initial induction followed by a sharp inhibition in liver tissue while a sustained increase in GPx activity and slight stimulation in SOD activity were detected in brain tissue. Lipid peroxidation showed an ascending pattern throughout the exposure period in both tissues and a decreasing trend was determined in tissue protein levels which was proved to be positively correlated with duration. Similar findings were obtained from outcomes preferred to quantify DNA damage and TM was decided to reflect the extent of damage more sensitively because of determined positive correlation with concentrations applied. Considering these results, it can be concluded that oxidative stress condition evoked by dimethoate could not be responded effectively and genotoxic nature of pesticide was proven by determined clastogenic effect possibly via being an alkylation agent or stimulating the production of reactive species.

  13. Helicobacter pylori and Its Virulence Factors' Effect on Serum Oxidative DNA Damages in Adults With Dyspepsia.

    PubMed

    Shahi, Heshmat; Bahreiny, Rasoul; Reiisi, Somayeh

    2016-11-01

    Helicobacter Pylori infection is a common gastrointestinal infection that can cause pathological effects, increase oxidative stress and induce an inflammatory response in gastric mucosa. Inflammatory aspects may prompt the production of radical oxygen substance (ROS) which may damage cells and release 8-hydroxydyoxyguanosine (8-OHdG) to serum. In this study, we evaluate the prevalence of H. pylori virulence factors and the association between serum level of 8-OHdG, H. pylori infection, and its various virulence factors. The presence of H. pylori and prevalence of cagA, babA and oipA genes in samples were determined by rapid urease test (RUT), histopathological exam (HE) and polymerase chain reaction (PCR) and oxidative DNA damage situation were assessed by using serum level of 8-OHdG. There was not any direct relation between H. pylori negative and H. pylori oipA+specimens by 8-OHdG serum level (P>0.05). In all clinical observations, the presence of cagA and oipA genes was common. There was a statistical relationship between the presence of cagA, babA factors, and high serum level of 8-OHdG (P<0.05). The presence of cagA and babA virulence factors may be associated with increased serum 8-OHdG in dyspeptic patients and may induce the damage to gastric cells.

  14. An Update on Oxidative Damage to Spermatozoa and Oocytes

    PubMed Central

    Opuwari, Chinyerum S.; Henkel, Ralf R.

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization. PMID:26942204

  15. Biological oxidative damage by carbon nanotubes: fingerprint or footprint?

    PubMed

    Hsieh, Shu-Feng; Bello, Dhimiter; Schmidt, Daniel F; Pal, Anoop K; Rogers, Eugene J

    2012-02-01

    Carbon nanotubes (CNTs) have received much attention for performance and toxicity, but vary substantially in terms of impurity type and content, morphology, and surface activity. This study determined the decrease of antioxidant capacity, defined as biological oxidative damage (BOD), of CNTs-exposed serum. The variability in several physicochemical properties of CNTs and their links to BOD elicited in human serum were explored. Tremendous variation in transition metal type and content (104-fold), specific surface area (SSA, nine-fold), and BOD were observed. Mass specific BOD (mBOD) varied from 0.006-0.187 μmol TEU mg(-1), whereas surface area specific BOD (sBOD) varied from 0.068-0.42 μmol TEU m(-2). The sBOD increased in a stepwise fashion from ∼0.1-0.32 μmol TEU m(-2) for tubes with outer diameter less than 10 nm. The mBOD and sBOD may be useful denominators of surface activity and impurity content and assist in designing safer CNTs.

  16. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  17. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat.

    PubMed

    Bavita, A; Shashi, B; Navtej, S B

    2012-05-01

    Effect of sodium nitroprusside (SNP), a donor of nitric oxide (NO) was examined in two wheat (Triticum aestivum L.) cultivars, C 306 (heat tolerant) and PBW 550 (comparatively heat susceptible) to study the extent of oxidative injury and activities of antioxidant enzyme in relation to high temperature (HT) stress. HT stress resulted in a marked decrease in membrane thermostability (MTS) and 2, 3, 5-triphenyl tetrazolium chloride (TTC) cell viability whereas content of lipid peroxide increased in both the cultivars. The tolerant cultivar C 306 registered less damage to cellular membranes compared to PBW 550 under HT stress. Activities of antioxidant enzymes viz, superoxide dismutase, catalase, ascorbate peroxidase, guaicol peroxidase and glutathione reductase increased with HT in both the cultivars. Following treatment with SNP, activities of all antioxidant enzymes further increased in correspondence with an increase in MTS and TTC. Apparently, lipid peroxide content was reduced by SNP more in shoots of heat tolerant cultivar C 306 indicating better protection over roots under HT stress. The up-regulation of the antioxidant system by NO possibly contributed to better tolerance against HT induced oxidative damage in wheat.

  18. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  19. Dynamics of protein damage in yeast frataxin mutant exposed to oxidative stress.

    PubMed

    Kim, Jin-Hee; Sedlak, Miroslav; Gao, Qiang; Riley, Catherine P; Regnier, Fred E; Adamec, Jiri

    2010-12-01

    Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.

  20. DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine.

    PubMed

    Roginskaya, Marina; Mohseni, Reza; Ampadu-Boateng, Derrick; Razskazovskiy, Yuriy

    2016-07-01

    The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4(•-) were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,' C4,' and C5' positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2'-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-[(2'-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4' oxidation. The contribution of C1' oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1'-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1' was found.

  1. The effect of thiamine and thiamine pyrophosphate on oxidative liver damage induced in rats with cisplatin.

    PubMed

    Turan, Mehmet Ibrahim; Siltelioglu Turan, Isil; Mammadov, Renad; Altınkaynak, Konca; Kisaoglu, Abdullah

    2013-01-01

    The aim of this study was to investigate the effect of thiamine and thiamine pyrophosphate (TPP) on oxidative stress induced with cisplatin in liver tissue. Rats were divided into four groups; thiamine group (TG), TPP + cisplatin group (TPG), healthy animal group (HG), and cisplatin only group (CG). Oxidant and antioxidant parameters in liver tissue and AST, ALT, and LDH levels in rat sera were measured in all groups. Malondialdehyde levels in the CG, TG, TPG, and HG groups were 11 ± 1.4, 9 ± 0.5, 3 ± 0.5, and 2.2 ± 0.48  μ mol/g protein, respectively. Total glutathione levels were 2 ± 0.7, 2.8 ± 0.4, 7 ± 0.8, and 9 ± 0.6 nmol/g protein, respectively. Levels of 8-OH/Gua, a product of DNA damage, were 2.7 ± 0.4 pmol/L, 2.5 ± 0.5, 1.1 ± 0.3, and 0.9 ± 0.3 pmol/L, respectively. A statistically significant difference was determined in oxidant/antioxidant parameters and AST, ALT, and LDH levels between the TPG and CG groups (P < 0.05). No significant difference was determined between the TG and CG groups (P > 0.05). In conclusion, cisplatin causes oxidative damage in liver tissue. TPP seems to have a preventive effect on oxidative stress in the liver caused by cisplatin.

  2. The Effect of Thiamine and Thiamine Pyrophosphate on Oxidative Liver Damage Induced in Rats with Cisplatin

    PubMed Central

    Turan, Mehmet Ibrahim; Siltelioglu Turan, Isil; Mammadov, Renad; Altınkaynak, Konca; Kisaoglu, Abdullah

    2013-01-01

    The aim of this study was to investigate the effect of thiamine and thiamine pyrophosphate (TPP) on oxidative stress induced with cisplatin in liver tissue. Rats were divided into four groups; thiamine group (TG), TPP + cisplatin group (TPG), healthy animal group (HG), and cisplatin only group (CG). Oxidant and antioxidant parameters in liver tissue and AST, ALT, and LDH levels in rat sera were measured in all groups. Malondialdehyde levels in the CG, TG, TPG, and HG groups were 11 ± 1.4, 9 ± 0.5, 3 ± 0.5, and 2.2 ± 0.48 μmol/g protein, respectively. Total glutathione levels were 2 ± 0.7, 2.8 ± 0.4, 7 ± 0.8, and 9 ± 0.6 nmol/g protein, respectively. Levels of 8-OH/Gua, a product of DNA damage, were 2.7 ± 0.4 pmol/L, 2.5 ± 0.5, 1.1 ± 0.3, and 0.9 ± 0.3 pmol/L, respectively. A statistically significant difference was determined in oxidant/antioxidant parameters and AST, ALT, and LDH levels between the TPG and CG groups (P < 0.05). No significant difference was determined between the TG and CG groups (P > 0.05). In conclusion, cisplatin causes oxidative damage in liver tissue. TPP seems to have a preventive effect on oxidative stress in the liver caused by cisplatin. PMID:23841092

  3. In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells.

    PubMed

    Fiorani, M; Biagiarelli, B; Vetrano, F; Guidi, G; Dachà, M; Stocchi, V

    1997-01-01

    The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2-0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed at the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate the a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents.

  4. Cholesterol Oxidation in Fish and Fish Products.

    PubMed

    Dantas, Natalie Marinho; Sampaio, Geni Rodrigues; Ferreira, Fernanda Silva; Labre, Tatiana da Silva; Torres, Elizabeth Aparecida Ferraz da Silva; Saldanha, Tatiana

    2015-12-01

    Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.

  5. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    PubMed

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-02-20

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na(+) and Cl(-) than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H2O2) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation.

  6. Protective effect of erdosteine metabolite I against hydrogen peroxide-induced oxidative DNA-damage in lung epithelial cells.

    PubMed

    Marabini, Laura; Calò, Rossella; Braga, Pier Carlo

    2011-01-01

    It has been shown that the mucolytic agent erdosteine (N-carboxymethylthio-acetyl-homocysteine thiolactone, CAS 84611-23-4) has anti-inflammatory and anti-oxidant properties, and an active metabolite I (MET I) containing pharmacologically active sulphydryl group has been found to have a free radical scavenging activity. The aim of this study was to assess the ability of erdosteine metabolite I to protect A549 human lung adenocarcinoma cell against hydrogen peroxide (H2O2)-mediated oxidative stress and oxidative DNA damage. When A549 cells were pre-treated with the active metabolite I (2.5-5-10 microg/ml) for 10-30 min and then exposed to H2O2 (1-4 mM) for two additional hours at 37 degrees C, 5% at CO2, the intracellular peroxide production, reflected by dichlorofluorescein (DCF) fluorescence, decreased in a concentration-dependent manner. Furthermore, using a comet assay as an indicator for oxidative DNA damage, it was found that the metabolite I prevented damage to cells exposed to shortterm H2O2 treatment. The data suggest that this compound is effective in preventing H2O2-induced oxidative stress and DNA damage in A549 cells. The underlying mechanisms involve the scavenging of intracellular reactive oxygen species (ROS).

  7. Drill-in fluid reduces formation damage, increases production rates

    SciTech Connect

    Hands, N.; Kowbel, K.; Nouris, R.

    1998-07-13

    A sodium formate drill-in fluid system reduced formation damage, resulting in better-than-expected production rates for an off-shore Dutch development well. Programmed to optimize production capacity and reservoir drainage from a Rotliegend sandstone gas discovery, the 5-7/8-in. subhorizontal production interval was drilled and completed barefoot with a unique, rheologically engineered sodium formate drill-in fluid system. The new system, consisting of a sodium formate (NaCOOH) brine as the base fluid and properly sized calcium carbonate as the formation-bridging agent, was selected on the basis of its well-documented record in reducing solids impairment and formation damage in similar sandstone structures in Germany. The system was engineered around the low-shear-rate viscosity (LSRV) concept, designed to provide exceptional rheological properties. After describing the drilling program, the paper gives results on the drilling and completion.

  8. Polymorphic trial in oxidative damage of arsenic exposed Vietnamese

    SciTech Connect

    Fujihara, Junko; Soejima, Mikiko; Yasuda, Toshihiro; Koda, Yoshiro; Kunito, Takashi; Iwata, Hisato; Tanabe, Shinsuke; Takeshita, Haruo

    2011-10-15

    Arsenic causes DNA damage and changes the cellular capacity for DNA repair. Genes in the base excision repair (BER) pathway influence the generation and repair of oxidative lesions. Single nucleotide polymorphisms (SNPs) in human 8-oxoguanine DNA glycosylase (hOGG1) Ser326Cys; apurinic/apyrimidinic endonuclease (APE1) Asp148Glu; X-ray and repair and cross-complementing group 1 (XRCC1) Arg280His and Arg399Gln in the BER genes were analyzed, and the relationship between these 4 SNPs and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations of 100 Vietnamese population exposed to arsenic was investigated. Individuals with hOGG1 326Cys/Cys showed significantly higher urinary 8-OHdG concentrations than did those with 326 Ser/Cys and Ser/Ser. As for APE1 Asp148Glu, heterozygous subjects showed significantly higher urinary 8-OHdG concentrations than did those homozygous for Asp/Asp. Moreover, global ethnic comparison of the allelic frequencies of the 4SNPs was performed in 10 population and previous reported data. The mutant allele frequencies of hOGG1 Ser326Cys in the Asian populations were higher than those in the African and Caucasian populations. As for APE1 Asp148Glu, Caucasians showed higher mutant frequencies than those shown by African and Asian populations. Among Asian populations, the Bangladeshi population showed relatively higher mutant allele frequencies of the APE1 Asp148Glu polymorphism. This study is the first to demonstrate the existence of genetic heterogeneity in a worldwide distribution of SNPs (hOGG1 Ser326Cys, APE1 Asp148Glu, XRCC1 Arg280His, and XRCC1 Arg399Gln) in the BER genes. - Highlights: > We showed that hOGG1 and APE1 are associated with urinary 8-OHdG concentrations. > We showed the existence of inter-ethnic differences in hOGG1 and APE1 polymorphism. > These polymorphisms is a genetic marker of susceptibility to oxidative stress.

  9. Oxidative stress as a damage mechanism in porcine cumulus-oocyte complexes exposed to malathion during in vitro maturation.

    PubMed

    Flores, Diana; Souza, Verónica; Betancourt, Miguel; Teteltitla, Mario; González-Márquez, Humberto; Casas, Eduardo; Bonilla, Edmundo; Ramírez-Noguera, Patricia; Gutiérrez-Ruíz, María Concepción; Ducolomb, Yvonne

    2017-02-10

    Malathion is one of the most commonly used insecticides. Recent findings have demonstrated that it induces oxidative stress in somatic cells, but there are not enough studies that have demonstrated this effect in germ cells. Malathion impairs porcine oocyte viability and maturation, but studies have not shown how oxidative stress damages maturation and which biochemical mechanisms are affected in this process in cumulus-oocyte complexes (COCs). The aims of the present study were to determine the amount of oxidative stress produced by malathion in porcine COCs matured in vitro, to define how biochemical mechanisms affect this process, and determine whether trolox can attenuate oxidative damage. Sublethal concentrations 0, 750, and 1000 µM were used to evaluate antioxidant enzyme expressions, reactive oxygen species (ROS production), protein oxidation, and lipid peroxidation, among other oxidation products. COCs viability and oocyte maturation decreased in a concentration-dependent manner. Malathion increased Cu, Zn superoxide dismutase (SOD1), glutathione-S-transferase (GST), and glucose 6 phosphate dehydrogenase (G6PD) protein level and decreased glutathione peroxidase (GSH-Px) and catalase (CAT) protein level. Species reactives of oxygen (ROS), protein oxidation and Thiobarbituric acid reactive substances (TBARS) levels increased in COCs exposed to the insecticide, but when COCs were pre-treated with the trolox (50 µM) 30 min before and during malathion exposure, these parameters decreased down to control levels. This study showed that malathion has a detrimental effect on COCs during in vitro maturation, inducing oxidative stress, while trolox attenuated malathion toxicity by decreasing oxidative damage.

  10. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise

    PubMed Central

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  11. Oxide production program monthly report - December 2014

    SciTech Connect

    Kelley, Evelyn A.; Whitworth, Julia; Lloyd, Jane Alexandria; Hampton, David Earl; Benavidez, Amelia A.

    2015-01-15

    A summary of the major activities, accomplishments, milestones, financial summary, project performance and issues facing the ARIES Oxide Production Program for the month of December 2014 is presented in this Executive Summary.

  12. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    NASA Astrophysics Data System (ADS)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  13. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  14. Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.

    PubMed

    Montgomery, Magdalene K; Buttemer, William A; Hulbert, A J

    2012-03-01

    The oxidative damage hypothesis of aging posits that the accumulation of oxidative damage is a determinant of an animal species' maximum lifespan potential (MLSP). Recent findings in extremely long-living mammal species such as naked mole-rats challenge this proposition. Among birds, parrots are exceptionally long-living with an average MLSP of 25 years, and with some species living more than 70 years. By contrast, quail are among the shortest living bird species, averaging about 5-fold lower MLSP than parrots. To test if parrots have correspondingly (i) superior antioxidant protection and (ii) lower levels of oxidative damage compared to similar-sized quail, we measured (i) total antioxidant capacity, uric acid and reduced glutathione (GSH) levels, as well as the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase), and (ii) markers of mitochondrial DNA damage (8-OHdG), protein damage (protein carbonyls) and lipid peroxidation (lipid hydroperoxides and TBARS) in three species of long-living parrots and compared these results to corresponding measures in two species of short-living quails (average MLSP=5.5 years). All birds were fed the same diet to exclude differences in dietary antioxidant levels. Tissue antioxidants and oxidative damage were determined both 'per mg protein' and 'per g tissue'. Only glutathione peroxidase was consistently higher in tissues of the long-living parrots and suggests higher protection against the harmful effects of hydroperoxides, which might be important for parrot longevity. The levels of oxidative damage were mostly statistically indistinguishable between parrots and quails (67%), occasionally higher (25%), but rarely lower (8%) in the parrots. Despite indications of higher protection against some aspects of oxidative stress in the parrots, the pronounced longevity of parrots appears to be independent of their antioxidant mechanisms and their accumulation of oxidative damage.

  15. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    SciTech Connect

    Landry, L.G.; Last, R.L.; Chapple, C.C.S.

    1995-12-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs.

  16. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage.

    PubMed Central

    Landry, L G; Chapple, C C; Last, R L

    1995-01-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydroxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. PMID:8539286

  17. [Preventive measures against health damage due to chemicals in household products].

    PubMed

    Kaniwa, Masa-aki

    2006-01-01

    Chemicals in household products have been paid much attention as main cause of health damage on consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabric, plastic and rubber products for household uses, are reviewed, focusing on (1) regulation and voluntary control by manufacturers, (2) incidence of health damage from household products, (3) causative product-chemical investigation, (4) case studies on skin damage and respiratory tract damage.

  18. Protein oxidative damage and heme oxygenase in sunlight-exposed human skin: roles of MAPK responses to oxidative stress.

    PubMed

    Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira

    2010-12-20

    Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.

  19. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    SciTech Connect

    Muniz, Juan F. McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-02-15

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.

  20. 17β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary.

    PubMed

    Stepniak, Jan; Karbownik-Lewinska, Malgorzata

    2016-01-01

    Estrogens, with their principle representative 17β-estradiol, contribute to the redox state of cells showing both pro- and antioxidative properties. In the ovary, being the main source of estrogens, maintaining balance between the production and detoxification of ROS is crucial. Whereas ovary estrogen concentration is difficult to estimate, its circulating concentration in women may reach the nanomolar level. The aim of the study was to evaluate the effects of 17β-estradiol on oxidative damage to membrane lipids (lipid peroxidation, LPO) and to nuclear DNA in the porcine ovary under basal conditions and in the presence of Fenton reaction (Fe(2+)+H2O2→Fe(3+)+(•)OH + OH(-)) substrates. Ovary homogenates and DNA were incubated in the presence of 17β-estradiol (1 mM-1 pM), without/with FeSO4 (30 μM) + H2O2 (0.5 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. The concentration of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) (DNA damage index) was measured by HPLC. We observed that 17β-estradiol did not alter the basal level of oxidative damage, but reduced Fe(2+)+H2O2-induced oxidative damage to membrane lipids when ≥10 nM and to DNA at concentrations ≥1 nM. In the ovary at near physiological concentration, 17β-estradiol prevents experimentally induced oxidative damage. This suggests that under physiological conditions this hormone may contribute to protecting the ovary against oxidative damage.

  1. Phenolic compounds from plants as nitric oxide production inhibitors.

    PubMed

    Conforti, F; Menichini, F

    2011-01-01

    Nitric oxide (NO) is a diatomic free radical produced from L-arginine by constitutive and inducible nitric oxide synthase (cNOS and iNOS) in numerous mammalian cells and tissues. Nitric oxide (NO), superoxide (O2-) and their reaction product peroxynitrite (ONOO-) may be generated in excess during the host response against viral and antibacterial infections and contribute to some pathogenesis by promoting oxidative stress, tissue injury and, even, cancer. Oxidative damage, caused by action of free radicals, may initiate and promote the progression of a number of chronic diseases, including cancer, cardiovascular diseases, Alzheimer's disease, diabetes and inflammation. The mechanism of inflammation injury is attributed, in part, to release of reactive oxygen species from activated neutrophils and macrophages. ROS propagate inflammation by stimulating release of mediators such as NO and cytokines. The interest of the research is motivated by the current need to find new substances of natural origin which have demonstrated effectiveness in the described fields of application and low degree of toxicity for humans. Natural products provide a vast pool of NO inhibitors that can possibly be developed into clinical products. This article reviews some plenolic secondary metabolites from plants with NO inhibitory properties and their structure-activity relationship studies that can be focused for drug development programs.

  2. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract

    PubMed Central

    Khalil, Md. Ibrahim; Ahmmed, Istiyak; Ahmed, Romana; Tanvir, E. M.; Afroz, Rizwana; Paul, Sudip; Gan, Siew Hua; Alam, Nadia

    2015-01-01

    We investigated the protective role of Withania somnifera leaf extract (WSLEt) on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. Subcutaneous injection of ISO (85 mg/kg body weight (b.w.)) administered to rats for two consecutive days caused a significant increase in cardiac troponin I (cTnI) levels and serum lipid profiles, as well as the activities of some marker enzymes. In addition to these diagnostic markers, there were increased levels of lipid peroxidation (LPO) and decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx), and glutathione-S-transferase (GST)) in the myocardium. However, oral pretreatment (100 mg/kg b.w.) with WSLEt for 4 weeks elicited a significant cardioprotective activity by lowering the levels of cTnI, lipid profiles, and marker enzymes. The levels of LPO products were also significantly decreased. Elevated activities of antioxidant enzymes were also observed in rats pretreated with WSLEt. As further confirmed histopathologically, our findings strongly suggest that the cardioprotective effect of WSLEt on myocardium experiencing ISO-induced oxidative damage may be due to an augmentation of the endogenous antioxidant system and an inhibition of LPO in the myocardial membrane. We conclude that WSLEt confers some protection against oxidative damage in ISO-induced MI in rats. PMID:26539517

  3. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  4. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  5. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  6. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio).

    PubMed

    Ge, Weili; Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-02-18

    Imidacloprid is a neonicotinoid insecticide that can have negative effects on nontarget animals. The present study was conducted to assess the toxicity of various imidacloprid doses (0.3, 1.25, and 5 mg/mL) on zebrafish sampled after 7, 14, 21, and 28 days of exposure. The levels of catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione-S-transferase (GST), and malondialdehyde (MDA) and the extent of DNA damage were measured to evaluate the toxicity of imidacloprid on zebrafish. SOD and GST activities were noticeably increased during early exposure but were inhibited toward the end of the exposure period. In addition, the CAT levels decreased to the control level following their elevation during early exposure. High concentrations of imidacloprid (1.25 and 5 mg/L) induced excessive ROS production and markedly increased MDA content on the 21st day of exposure. DNA damage was dose- and time-dependent. In conclusion, the present study showed that imidacloprid can induce oxidative stress and DNA damage in zebrafish.

  7. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    EPA Science Inventory

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  8. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.

    PubMed

    Liu, Yu; He, Xiao-Qin; Huang, Xin; Ding, Lu; Xu, Lin; Shen, Yu-Ting; Zhang, Fei; Zhu, Mao-Bi; Xu, Bai-Hui; Qi, Zhong-Quan; Wang, Hai-Long

    2013-01-01

    Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.

  9. Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin.

    PubMed

    Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan

    2009-06-01

    Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoageing and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum, contains anthocyanins and hydrolysable tannins and possesses strong antioxidant and anti-tumor-promoting properties. In this study, we determined the effect of pomegranate-derived products--POMx juice, POMx extract and pomegranate oil (POMo)--against UVB-mediated damage using reconstituted human skin (EpiDerm(TM) FT-200). EpiDerm was treated with POMx juice (1-2 microl/0.1 ml/well), POMx extract (5-10 microg/0.1 ml/well) and POMo (1-2 microl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm(2)) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoageing by Western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate-derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers (CPD), (ii) 8-dihydro-2'-deoxyguanosine (8-OHdG), (iii) protein oxidation and (iv) proliferating cell nuclear antigen (PCNA) protein expression. We also found that pretreatment of Epiderm with pomegranate-derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12) and (vi) tropoelastin. Gelatin zymography revealed that pomegranate-derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate-derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate-derived products may be useful

  10. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    PubMed

    Qasim, Neha; Mahmood, Riaz

    2015-01-01

    Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan.

  11. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood

    PubMed Central

    Qasim, Neha; Mahmood, Riaz

    2015-01-01

    Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan. PMID

  12. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  13. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  14. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage.

    PubMed

    Huang, Han-Chang; Chang, Ping; Dai, Xue-Ling; Jiang, Zhao-Feng

    2012-07-01

    To investigate the protective effects of curcumin against amyloid-β (Aβ)-induced neuronal damage. Primary rat cortical neurons were cultured with different treatments of Aβ and curcumin. Neuronal morphologies, viability and damage were assessed. Neuronal oxidative stress was assessed, including extracellular hydrogen peroxide and intracellular reactive oxygen species. The abilities of curcumin to scavenge free radicals and to inhibit Aβ aggregation and β-sheeted formation are further assessed and discussed. Curcumin preserves cell viability, which is decreased by Aβ. The results of changed morphology, released Lactate dehydrogenases and cell viability assays indicate that curcumin protects Aβ-induced neuronal damage. Curcumin depresses Aβ-induced up-regulation of neuronal oxidative stress. The treatment sequence impacts the protective effect of curcumin on Aβ-induced neuronal damage. Curcumin shows a more protective effect on neuronal oxidative damage when curcumin was added into cultured neurons not later than Aβ, especially prior to Aβ. The abilities of curcumin to scavenge free radicals and to inhibit the formation of β-sheeted aggregation are both beneficial to depress Aβ-induced oxidative damage. Curcumin prevents neurons from Aβ-induced oxidative damage, implying the therapeutic usage for the treatment of Alzheimer's disease patients.

  15. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  16. Metal Oxide Silicon /MOS/ transistors protected from destructive damage by wire

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Devine, E. J.

    1966-01-01

    Loop of flexible, small diameter, nickel wire protects metal oxide silicon /MOS/ transistors from a damaging electrostatic potential. The wire is attached to a music-wire spring, slipped over the MOS transistor case, and released so the spring tensions the wire loop around all the transistor leads, shorting them together. This allows handling without danger of damage.

  17. Dose-Dependent Protective and Inductive Effects
of Xanthohumol on Oxidative DNA Damage in
Saccharomyces cerevisiae

    PubMed Central

    Carvalho, Daniel O.; Oliveira, Rui; Johansson, Björn

    2016-01-01

    Summary The effect of xanthohumol, a prenylflavonoid isolated from the hop plant (Humulus lupulus L.), on Saccharomyces cerevisiae DNA oxidative damage and viability was evaluated. Yeast cultures under oxidative stress, induced by H2O2, displayed stronger growth in the presence of 5 mg/L of xanthohumol than cultures with only H2O2. Likewise, DNA damage assessed by the comet assay was significantly lower in cells co-incubated with xanthohumol and H2O2. Accordingly, fluorescence of dichlorofluorescein in cells treated with H2O2 and xanthohumol was considerably lower than in cells exclusively treated with H2O2, indicative of a reactive oxygen species scavenging mechanism and consequent formation of oxidation products, as detected by mass spectrometry. However, at concentrations above 5 mg/L, xanthohumol elicited an opposite effect, leading to a slower growth rate and significant increase in DNA damage. A yeast yap1 deletion mutant strain sensitive to oxidative stress grew more slowly in the presence of at least 5 mg/L of xanthohumol than cultures of the wild type, suggesting that xanthohumol toxicity is mediated by oxidative stress. This evidence provides further insight into the impact of xanthohumol on yeast cells, supporting dose-dependent antioxidant/antigenotoxic and prooxidant/genotoxic effects. PMID:27904394

  18. Dose-Dependent Protective and Inductive Effects
of Xanthohumol on Oxidative DNA Damage in
Saccharomyces cerevisiae.

    PubMed

    Carvalho, Daniel O; Oliveira, Rui; Johansson, Björn; Guido, Luís F

    2016-03-01

    The effect of xanthohumol, a prenylflavonoid isolated from the hop plant (Humulus lupulus L.), on Saccharomyces cerevisiae DNA oxidative damage and viability was evaluated. Yeast cultures under oxidative stress, induced by H2O2, displayed stronger growth in the presence of 5 mg/L of xanthohumol than cultures with only H2O2. Likewise, DNA damage assessed by the comet assay was significantly lower in cells co-incubated with xanthohumol and H2O2. Accordingly, fluorescence of dichlorofluorescein in cells treated with H2O2 and xanthohumol was considerably lower than in cells exclusively treated with H2O2, indicative of a reactive oxygen species scavenging mechanism and consequent formation of oxidation products, as detected by mass spectrometry. However, at concentrations above 5 mg/L, xanthohumol elicited an opposite effect, leading to a slower growth rate and significant increase in DNA damage. A yeast yap1 deletion mutant strain sensitive to oxidative stress grew more slowly in the presence of at least 5 mg/L of xanthohumol than cultures of the wild type, suggesting that xanthohumol toxicity is mediated by oxidative stress. This evidence provides further insight into the impact of xanthohumol on yeast cells, supporting dose-dependent antioxidant/antigenotoxic and prooxidant/genotoxic effects.

  19. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  20. Effects of solutes on damage production and recovery in zirconium

    SciTech Connect

    Zee, R.H.; Birtcher, R.C.; MacEwen, S.R.; Abromeit, C.

    1986-04-01

    Dilute zirconium-based alloys and pure zirconium were irradiated at 10 K with spallation neutrons at IPNS. Four types of alloys - Zr-Ti, Zr-Sn, Zr-Dy and Zr-Au - each with three concentration levels, were used. Low-temperature resistivity damage rates are enhanced by the presence of any of the four solutes. The greatest enhancement was produced by Au while the least by Dy. Within each alloy group, damage production also increased but at a decreasing rate, with increasing concentration. Post-irradiation annealing experiments, up to 400 K, showed that all four solutes suppress recovery due to interstitial migration, indicative of interstitial trapping by the solutes. Vacancy recovery is also suppressed by the presence of Sn, Dy or Au. The effect of Ti is to shift this stage to lower temperature. No clear correlation between the results with solute size was detected.

  1. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    SciTech Connect

    Qu, Jian; Ren, Xian; Hou, Rui-ying; Dai, Xing-ping; Zhao, Ying-chun; Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao; Liu, Zhao-qian

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  2. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots.

    PubMed

    Li, Le; Wang, Yanqin; Shen, Wenbiao

    2012-06-01

    Despite hydrogen sulfide (H(2)S) and nitric oxide (NO) are important endogenous signals or bioregulators involved in many vital aspects of plant growth and responses against abiotic stresses, little information was known about their interaction. In the present study, we evaluated the effects of H(2)S and NO on alfalfa (Medicago sativa L.) plants exposed to cadmium (Cd) stress. Pretreatment with an H(2)S donor sodium hydrosulfide (NaHS) and well-known NO donor sodium nitroprusside (SNP) decreased the Cd toxicity. This conclusion was supported by the decreases of lipid peroxidation as well as the amelioration of seedling growth inhibition and Cd accumulation, in comparison with the Cd-stressed alone plants. Total activities and corresponding transcripts of antioxidant enzymes, including superoxide dismutase, peroxidase and ascorbate peroxidase were modulated differentially, thus leading to the alleviation of oxidative damage. Effects of H(2)S above were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the specific scavenger of NO. By using laser confocal scanning microscope combined with Greiss reagent method, further results showed that NO production increased significantly after the NaHS pretreatment regardless of whether Cd was applied or not, all of which were obviously inhibited by cPTIO. These decreases of NO production were consistent with the exaggerated syndromes associated with Cd toxicity. Together, above results suggested that NO was involved in the NaHS-induced alleviation of Cd toxicity in alfalfa seedlings, and also indicated that there exists a cross-talk between H(2)S and NO responsible for the increased abiotic stress tolerance.

  3. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  4. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  5. Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice

    PubMed Central

    Bankoglu, Ezgi Eyluel; Tschopp, Oliver; Schmitt, Johannes; Burkard, Philipp; Jahn, Daniel

    2016-01-01

    Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin. PMID:27893783

  6. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage

    PubMed Central

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD. PMID:26881044

  7. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain.

    PubMed

    Ogaly, Hanan A; Khalaf, A A; Ibrahim, Marwa A; Galal, Mona K; Abd-Elsalam, Reham M

    2015-01-01

    In the present study, we investigated the protective effect of an aqueous extract of green tea leaves (GTE) against neurotoxicity and oxidative damage induced by deltamethrin (DM) in male rats. Four different groups of rats were used: the 1st group was the vehicle treated control group, the 2nd group received DM (0.6 mg/kg BW), the 3rd group received DM plus GTE, and the 4th received GTE alone (25 mg/kg BW). The brain tissues were collected at the end of the experimental regimen for subsequent investigation. Rats that were given DM had a highly significant elevation in MDA content, nitric oxide concentration, DNA fragmentation and expression level of apoptotic genes, TP53 and COX2. Additionally, a significant reduction in the total antioxidant capacity in the second group was detected. The findings for the 3rd group highlight the efficacy of GTE as a neuro-protectant in DM-induced neurotoxicity through improving the oxidative status and DNA fragmentation as well as suppressing the expression of the TP53 and COX2 genes. In conclusion, GTE, at a concentration of 25mg/kg/day, protected against DM-induced neurotoxicity through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product against DM-induced neurotoxicity.

  8. Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage.

    PubMed Central

    Schöpfer, F; Riobó, N; Carreras, M C; Alvarez, B; Radi, R; Boveris, A; Cadenas, E; Poderoso, J J

    2000-01-01

    A major pathway of nitric oxide utilization in mitochondria is its conversion to peroxynitrite, a species involved in biomolecule damage via oxidation, hydroxylation and nitration reactions. In the present study the potential role of mitochondrial ubiquinol in protecting against peroxynitrite-mediated damage is examined and the requirements of the mitochondrial redox status that support this function of ubiquinol are established. (1) Absorption and EPR spectroscopy studies revealed that the reactions involved in the ubiquinol/peroxynitrite interaction were first-order in peroxynitrite and zero-order in ubiquinol, in agreement with the rate-limiting formation of a reactive intermediate formed during the isomerization of peroxynitrite to nitrate. Ubiquinol oxidation occurred in one-electron transfer steps as indicated by the formation of ubisemiquinone. (2) Peroxynitrite promoted, in a concentration-dependent manner, the formation of superoxide anion by mitochondrial membranes. (3) Ubiquinol protected against peroxynitrite-mediated nitration of tyrosine residues in albumin and mitochondrial membranes, as suggested by experimental models, entailing either addition of ubiquinol or expansion of the mitochondrial ubiquinol pool caused by selective inhibitors of complexes III and IV. (4) Increase in membrane-bound ubiquinol partially prevented the loss of mitochondrial respiratory function induced by peroxynitrite. These findings are analysed in terms of the redox transitions of ubiquinone linked to both nitrogen-centred radical scavenging and oxygen-centred radical production. It may be concluded that the reaction of mitochondrial ubiquinol with peroxynitrite is part of a complex regulatory mechanism with implications for mitochondrial function and integrity. PMID:10861208

  9. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  10. Higher dermal exposure of cashiers to BPA and its association with DNA oxidative damage.

    PubMed

    Lv, Yanshan; Lu, Shaoyou; Dai, Yanyan; Rui, Caiyan; Wang, Yongjun; Zhou, Yuanxiu; Li, Yanru; Pang, Qihua; Fan, Ruifang

    2017-01-01

    Bisphenol A (BPA) is a widely used chemical in the production of many polycarbonate plastics, epoxy resin linings for food and beverage containers and thermal papers. Oral intakes from the contaminated diets were considered as the predominant source of BPA exposure for humans. However, due to the high levels of BPA on thermal receipts and their wide applications in our daily life, the amount of BPA be transferred to the skin after holding thermal paper should not be underestimated, particularly for cashiers. To investigate the contribution of BPA exposure levels via the dermal contact route and the relationship between BPA exposure level and oxidative DNA damage, six male volunteers were recruited and required to simulate the cashiers' work and handle the thermal receipts during the study period. Triclosan (TCS, an antimicrobial compound used widely in personal health and skin care products) was applied as a reference compound. Their urinary BPA, TCS and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were determined by high performance liquid chromatography/ tandem spectrometer (LC/MS/MS). The results showed that after handling the thermal receipts, the urinary BPA concentrations of volunteers increased 3 times of those before the experimental period. But TCS levels in urine kept stable. There existed a correlation between BPA exposure and 8-OHdG (R(2)=0.237, p<0.001), but not between TCS and 8-OHdG concentrations (R(2)=0.026, p<0.777), indicating that more BPA exposure could lead to higher oxidative DNA damage. That the increases in 8-OHdG levels in urine being almost consistent with those of BPA suggested that handling thermal receipts resulted in the increasing BPA intakes and BPA exposure was correlated with DNA oxidative damage. After 48h of the end of handling thermal receipts, the urinary BPA levels did not descend to the levels before experiment, suggesting that the excretion of BPA via dermal contact was over 48h. BPA exposure through dermal contact

  11. Sublethal Total Body Irradiation Leads to Early Cerebellar Damage and Oxidative Stress

    DTIC Science & Technology

    2010-01-01

    and myogenic differentiation of hematopoietic progenitor cells in inflammatory myopathies . J Neuropathol Exp Neurol 2008; 67(7): 711-19. [26] Porto...following sublethal TBI. Oxidative stress, inflammatory response and calcium neurotoxicity-associated mechanisms are involved in radiation-induced...neuronal damage. Keyword: Calcium, cerebellum, inflammatory response, oxidative stress, Purkinje cell, sublethal radiation. INTRODUCTION Acute radiation

  12. The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver.

    PubMed

    Boveris, Alberto; Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Torti, Horacio; Massot, Francisco; Repetto, Marisa G

    2012-11-01

    The transition metals iron (Fe) and copper (Cu) are needed at low levels for normal health and at higher levels they become toxic for humans and animals. The acute liver toxicity of Fe and Cu was studied in Sprague Dawley male rats (200 g) that received ip 0-60 mg/kg FeCl(2) or 0-30 mg/kg CuSO(4). Dose and time-responses were determined for spontaneous in situ liver chemiluminescence, phospholipid lipoperoxidation, protein oxidation and lipid soluble antioxidants. The doses linearly defined the tissue content of both metals. Liver chemiluminescence increased 4 times and 2 times after Fe and Cu overloads, with half maximal responses at contents (C(50%)) of 110 μgFe/g and 42 μgCu/g liver, and with half maximal time responses (t(1/2)) of 4h for both metals. Phospholipid peroxidation increased 4 and 1.8 times with C(50%) of 118 μg Fe/g and 45 μg Cu/g and with t(1/2) of 7h and 8h. Protein oxidation increased 1.6 times for Fe with C(50%) at 113 μg Fe/g and 1.2 times for Cu with 50 μg Cu/g and t(1/2) of 4h and 5h respectively. The accumulation of Fe and Cu in liver enhanced the rate of free radical reactions and produced oxidative damage. A similar free radical-mediated process, through the formation HO(•) and RO(•) by a Fenton-like homolytic scission of H(2)O(2) and ROOH, seems to operate as the chemical mechanism for the liver toxicity of both metals.

  13. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees.

  14. Production of pesticide metabolites by oxidative reactions.

    PubMed

    Hodgson, E

    1982-08-01

    The cytochrome P-450-dependent monooxygenase system catalyzes a wide variety of oxidations of pesticide chemicals and related compounds. These reactions include epoxidation and aromatic hydroxylation, aliphatic hydroxylation, O-, N- and S-dealkylation, N-oxidation, oxidative deamination, S-oxidation, P-oxidation, desulfuration and ester cleavage and may result in either detoxication or activation of the pesticide. The current status of such reactions, relative to the production, in vivo, of biologically active intermediates in pesticide metabolism is summarized. More recently we have shown that the FAD-containing monooxygenase of mammalian liver (E.C.1.14.13.8), a xenobiotic metabolizing enzyme of broad specificity formerly known as an amine oxidase, is involved in a variety of pesticide oxidations. These include sulfoxidation of organophosphorus insecticides such as phorate and disulfoton, oxidative desulfuration of phosphonate insecticides such as fonofos and oxidation at the phosphorus atom in such compounds as the cotton defoliant, folex. The relative importance of the FAD-containing monooxygenase vis-a-vis the cytochrome P-450-dependent monooxygenase system is discussed, based on in vitro studies on purified enzymes.

  15. Protective effects of gelam honey against oxidative damage in young and aged rats.

    PubMed

    Sahhugi, Zulaikha; Hasenan, Siti Maisarah; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities.

  16. Oxidative damage induced by copper in mouse primary hepatocytes by single-cell analysis.

    PubMed

    Jing, Mingyang; Liu, Yang; Song, Wei; Yan, Yunxing; Yan, Wenbao; Liu, Rutao

    2016-01-01

    Copper can disturb the intracellular redox balance, induce oxidative stress, and subsequently cause irreversible damage, leading to a variety of diseases. In the present study, mouse primary hepatocytes were chosen to elucidate the in vitro oxidative damage of short-term copper exposure (10-200 μM) by single-cell analysis. We evaluated the toxicity of copper by reactive oxygen species (ROS), glutathione (GSH), and oxidative DNA damage at the single-cell level. Oxidative damage induced by copper was verified by the morphological changes, persistent elevations of excessive ROS and malondialdehyde (MDA), a decrease in GSH level, and the oxidative DNA damage. Furthermore, the average ROS generation, GSH consumption, and the indicators in DNA damage did not significantly change at relatively low concentrations (10 or 50 μM), but we can find the alterations of parameters in some single cells clearly. Emphasis on the analysis of single cells is conducive to gain a better understanding on the toxicity of copper. This study will also complement studies on the environmental risk assessment of copper pollution.

  17. Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease

    PubMed Central

    Du, Yifeng; Wooten, Michael C; Wooten, Marie W.

    2009-01-01

    Recently we reported that declined SQSTM1/p62 expression in Alzheimer disease brain was age-correlated with oxidative damage to the p62 promoter. The objective of this study was to examine whether oxidative damage to the p62 promoter is common to DNA recovered from brain of individuals with neurodegenerative disease. Increased 8-OHdG staining was observed in brain sections from Alzheimer’s disease (AD), Parkinson disease (PD), Huntington disease (HD), Frontotemporal dementia (FTD), and Pick’s disease compared to control subjects. In parallel, the p62 promoter exhibited elevated oxidative damage in samples from various diseases compared to normal brain, and damage was negatively correlated with p62 expression in FTD samples. Oxidative damage to the p62 promoter induced by H2O2 treatment decreased its transcriptional activity. In keeping with this observation, the transcriptional activity of a Sp-1 element deletion mutant displayed reduced stimulus-induced activity. These findings reveal that oxidative damage to the p62 promoter decreased its transcriptional activity and might therefore account for decreased expression of p62. Altogether these results suggest that pharmacological means to increase p62 expression may be beneficial in delaying the onset of neurodegeneration. PMID:19481605

  18. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    PubMed

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress.

  19. Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage

    PubMed Central

    Clark, J. F.; Loftspring, M.; Wurster, W. L.; Beiler, S.; Beiler, C; Wagner, K. R.; Pyne-Geithman, G. J.

    2009-01-01

    Summary Hematoma and perihematomal regions after intracerebral hemorrhage (ICH) are biochemically active environments known to undergo potent oxidizing reactions. We report facile production of bilirubin oxidation products (BOXes) via hemoglobin/Fenton reaction under conditions approximating putative in vivo conditions seen following ICH. Using a mixture of human hemoglobin, physiological buffers, unconjugated solubilized bilirubin, and molecular oxygen and/or hydrogen peroxide, we generated BOXes, confirmed by spectral signature consistent with known BOXes mixtures produced by independent chemical synthesis, as well as HPLC-MS of BOX A and BOX B. Kinetics are straightforward and uncomplicated, having initial rates around 0.002 μM bilirubin per μM hemoglobin per second under normal experimental conditions. In hematomas from porcine ICH model, we observed significant production of BOXes, malondialdehyde, and superoxide dismutase, indicating a potent oxidizing environment. BOX concentrations increased from 0.084 ± 0.01 in fresh blood to 22.24 ± 4.28 in hematoma at 72 h, and were 11.22 ± 1.90 in adjacent white matter (nmol/g). Similar chemical and analytical results are seen in ICH in vivo, indicating the hematoma is undergoing similar potent oxidations. This is the first report of BOXes production using a well-defined biological reaction and in vivo model of same. Following ICH, amounts of unconjugated bilirubin in hematoma can be substantial, as can levels of iron and hemoglobin. Oxidation of unconjugated bilirubin to yield bioactive molecules, such as BOXes, is an important discovery, expanding the role of bilirubin in pathological processes seen after ICH. PMID:19066073

  20. Pre-fledgling oxidative damage predicts recruitment in a long-lived bird

    PubMed Central

    Noguera, José Carlos; Kim, Sin-Yeon; Velando, Alberto

    2012-01-01

    Empirical evidence has shown that stressful conditions experienced during development may exert long-term negative effects on life-history traits. Although it has been suggested that oxidative stress has long-term effects, little is known about delayed consequences of oxidative stress experienced early in life in fitness-related traits. Here, we tested whether oxidative stress during development has long-term effects on a life-history trait directly related to fitness in three colonies of European shags Phalacrocorax aristotelis. Our results revealed that recruitment probability decreased with oxidative damage during the nestling period; oxidative damage, in turn, was related to the level of antioxidant capacity. Our results suggest a link between oxidative stress during development and survival to adulthood, a key element of population dynamics. PMID:21865247

  1. Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats.

    PubMed

    Jang, Y Y; Song, J H; Shin, Y K; Han, E S; Lee, C S

    2000-10-01

    Increased oxidative stress has been suggested to be involved in the pathogenesis and progression of diabetic tissue damage. Several antioxidants have been described as beneficial for oxidative stress-associated diseases. Boldine ([s]-2,9-dihydroxy-1, 10-dimethoxyaporphine) is a major alkaloid found in the leaves and bark of boldo (Peumus boldus Molina), and has been shown to possess antioxidant activity and anti-inflammatory effects. From this point of view, the possible anti-diabetic effect of boldine and its mechanism were evaluated. The experiments were performed on male rats divided into four groups: control, boldine (100 mg kg(-1), daily in drinking water), diabetic [single dose of 80 mg kg(-1)of streptozotocin (STZ), i.p.] and diabetic simultaneously fed with boldine for 8 weeks. Diabetic status was evaluated periodically with changes of plasma glucose levels and body weight in rats. The effect of boldine on the STZ-induced diabetic rats was examined with the formation of malondialdehydes and carbonyls and the activities of endogenous antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in mitochondria of the pancreas, kidney and liver. The scavenging action of boldine on oxygen free radicals and the effect on mitochondrial free-radical production were also investigated. The treatment of boldine attenuated the development of hyperglycemia and weight loss induced by STZ injection in rats. The levels of malondialdehyde (MDA) and carbonyls in liver, kidney and pancreas mitochondria were significantly increased in STZ-treated rats and decreased after boldine administration. The activities of mitochondrial manganese superoxide dismutase (MnSOD) in the liver, pancreas and kidney were significantly elevated in STZ-treated rats. Boldine administration decreased STZ-induced elevation of MnSOD activity in kidney and pancreas mitochondria, but not in liver mitochondria. In the STZ-treated group, glutathione peroxidase activities decreased in liver

  2. [Preventive measures against health damage due to chemicals in household products].

    PubMed

    Kaniwa, Masa-aki

    2010-01-01

    Chemicals in household products have been paid much attention as the main cause of health damage in consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabrics, plastics and rubber products for household use, are reviewed, focusing on 1) the incidence of health damage due to household products, 2) causative product-chemical investigation, and 3) case studies on skin damage.

  3. LC-MS/MS Analysis and Comparison of Oxidative Damages on Peptides Induced by Pathogen Reduction Technologies for Platelets

    NASA Astrophysics Data System (ADS)

    Prudent, Michel; Sonego, Giona; Abonnenc, Mélanie; Tissot, Jean-Daniel; Lion, Niels

    2014-04-01

    Pathogen reduction technologies (PRT) are photochemical processes that use a combination of photosensitizers and UV-light to inactivate pathogens in platelet concentrates (PCs), a blood-derived product used to prevent hemorrhage. However, different studies have questioned the impact of PRT on platelet function and transfusion efficacy, and several proteomic analyses revealed possible oxidative damages to proteins. The present work focused on the oxidative damages produced by the two main PRT on peptides. Model peptides containing residues prone to oxidation (tyrosine, histidine, tryptophane, and cysteine) were irradiated with a combination of amotosalen/UVA (Intercept process) or riboflavin/UVB (Mirasol-like process). Modifications were identified and quantified by liquid chromatography coupled to tandem mass spectrometry. Cysteine-containing peptides formed disulfide bridges (R-SS-R, -2 Da; favored following amotosalen/UVA), sulfenic and sulfonic acids (R-SOH, +16 Da, R-SO3H, +48 Da, favored following riboflavin/UVB) upon treatment and the other amino acids exhibited different oxidations revealed by mass shifts from +4 to +34 Da involving different mechanisms; no photoadducts were detected. These amino acids were not equally affected by the PRT and the combination riboflavin/UVB generated more oxidation than amotosalen/UVA. This work identifies the different types and sites of peptide oxidations under the photochemical treatments and demonstrates that the two PRT may behave differently. The potential impact on proteins and platelet functions may thus be PRT-dependent.

  4. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-05

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue.

  5. DNA oxidation in anionic reverse micelles: ruthenium-mediated damage at Guanine in single- and double-stranded DNA.

    PubMed

    Evans, Sarah E; Mon, Soe; Singh, Robinder; Ryzhkov, Lev R; Szalai, Veronika A

    2006-04-03

    One-electron guanine oxidation in DNA has been investigated in anionic reverse micelles (RMs). A photochemical method for generating Ru3+ from the ruthenium polypyridyl complex tris(2-2'-bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2) is combined with high-resolution polyacrylamide gel electrophoresis (PAGE) to quantify piperidine-labile guanine oxidation products. As characterized by emission spectroscopy of Ru(bpy)3(2+), the addition of DNA to RMs containing Ru(bpy)3(2+) does not perturb the environment of Ru(bpy)3(2+). The steady-state quenching efficiency of Ru(bpy)3(2+) with K3[Fe(CN)6] in buffer solution is approximately 2-fold higher than that observed in RMs. Consistent with the difference in quenching efficiency in the two media, a 1.5-fold higher yield of piperidine-labile damage products as monitored by PAGE is observed for duplex oligonucleotide in buffer vs RMs. In contrast, a 13-fold difference in the yield of PAGE-detected G oxidation products is observed when single-stranded DNA is the substrate. Circular dichroism spectra showed that single-stranded DNA undergoes a structural change in anionic RMs. This structural change is potentially due to cation-mediated adsorption of the DNA phosphates on the anionic headgroups of the RMs, leading to protection of the guanine from oxidatively generated damage.

  6. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster.

    PubMed

    Shukla, A K; Pragya, P; Chowdhuri, D Kar

    2011-12-24

    Modifications to the alkaline Comet assay by using lesion-specific endonucleases, such as formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (ENDOIII, also known as Nth), can detect DNA bases with oxidative damage. This modified assay can be used to assess the genotoxic/carcinogenic potential of environmental chemicals. The goal of this study was to validate the ability of this modified assay to detect oxidative stress-induced genotoxicity in Drosophila melanogaster (Oregon R(+)). In this study, we used three well known chemical oxidative stress inducers: hydrogen peroxide (H(2)O(2)), cadmium chloride (CdCl(2)) and copper sulfate (CuSO(4)). Third instar larvae of D. melanogaster were fed various concentrations of the test chemicals (50-200μM) mixed with a standard Drosophila food for 24h. Alkaline Comet assays with and without the FPG and ENDOIII enzymes were performed with midgut cells that were isolated from the control and treated larvae. Our results show a concentration-dependent increase (p<0.05-0.001) in the migration of DNA from the treated larvae. ENDOIII treatment detected more oxidative DNA damage (specifically pyrimidine damage) in the H(2)O(2) exposed larvae compared to FPG or no enzyme treatment (buffer only). In contrast, FPG treatment detected more oxidative DNA damage (specifically purine damage) in CuSO(4) exposed larvae compared to ENDOIII. Although previously reported to be a potent genotoxic agent, CdCl(2) did not induce more oxidative DNA damage than the other test chemicals. Our results show that the modified alkaline Comet assay can be used to detect oxidative stress-induced DNA damage in D. melanogaster and thus may be applicable for in vivo genotoxic assessments of environmental chemicals.

  7. Microglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage.

    PubMed

    Liu, Junli; Tian, Daishi; Murugan, Madhuvika; Eyo, Ukpong B; Dreyfus, Cheryl F; Wang, Wei; Wu, Long-Jun

    2015-10-01

    NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. In the present study, we sought to determine the role of microglial Hv1 proton channels in a mouse model of cuprizone-induced demyelination, a model for MS. Following cuprizone exposure, wild-type mice presented obvious demyelination, decreased myelin basic protein expression, loss of mature oligodendrocytes, and impaired motor coordination in comparison to mice on a normal chow diet. However, mice lacking Hv1 (Hv1(-/-) ) are partially protected from demyelination and motor deficits compared with those in wild-type mice. These rescued phenotypes in Hv1(-/-) mice in cuprizone-induced demyelination is accompanied by reduced ROS production, ameliorated microglial activation, increased oligodendrocyte progenitor cell (NG2) proliferation, and increased number of mature oligodendrocytes. These results demonstrate that the Hv1 proton channel is required for cuprizone-induced microglial oxidative damage and subsequent demyelination. Our study suggests that the microglial Hv1 proton channel is a unique target for controlling NOX-dependent ROS production in the pathogenesis of MS.

  8. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.

    PubMed

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-10-01

    The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage.

  9. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  10. A high-fat and cholesterol diet causes fatty liver in guinea pigs. The role of iron and oxidative damage.

    PubMed

    Ye, P; Cheah, I K; Halliwell, B

    2013-08-01

    Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease. Iron, cholesterol, and oxidative damage are frequently suggested to be related to the progression of NAFLD, but the precise relationship between them remains unclear. Guinea pigs fed on a high cholesterol and fat diet (without oxidized lipids) generated a disease model of NAFLD with hallmark observations in liver histology and increased liver damage markers. Hepatic cholesterol and iron levels were found to be significantly elevated and directly correlated. Plasma hepcidin and transferrin levels were decreased. Plasma iron concentrations were found to be elevated, likely due to an increased intestinal iron absorption caused by the decrease in plasma hepcidin. However, hepatic transferrin receptor-2 levels were unchanged. No significant increase in hepatic lipid peroxidation was detected using F2-isoprostanes as a reliable biomarker, nor was there a rise in protein carbonyls, a general index of oxidative protein damage. Some increases in cholesterol oxidation products were observed, but largely negated after normalizing for the elevated hepatic cholesterol content. Indeed, increased hemosiderin deposition and unchanged ferritin levels in liver suggested that the excess iron mainly existed as hemosiderin, which is redox-inactive.

  11. Dexamethasone and 1,25-dihydroxyvitamin D3 reduce oxidative stress-related DNA damage in differentiating osteoblasts.

    PubMed

    Pawlowska, Elzbieta; Wysokiński, Daniel; Tokarz, Paulina; Piastowska-Ciesielska, Agnieszka; Szczepanska, Joanna; Blasiak, Janusz

    2014-09-19

    The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in differentiating MC3T3-E1 preosteoblasts challenged by oxidative stress. The process of differentiation was associated with reactive oxygen species (ROS) production and tert-butyl hydroperoxide (TBH) reduced the rate of differentiation. The activity of alkaline phosphatase (ALP), a marker of the process of osteoblasts differentiation, increased in a time-dependent manner and TBH further increased this activity. This may indicate that additional oxidative stress, induced by TBH, may accelerate the differentiation process. The cells displayed changes in the sensitivity to TBH in the course of differentiation. DEX increased ALP activity, but 1,25-D3 had no effect on it. These results suggest that DEX might stimulate the process of preosteoblasts differentiation. Finally, we observed a protective effect of DEX and 1,25-D3 against DNA damage induced by TBH, except the day 24 of differentiation, when DEX increased the extent of TBH-induced DNA damage. We conclude that oxidative stress is associated with osteoblasts differentiation and induce DDR, which may be modulated by RUNX2-modifiers, DEX and 1,25-D3.

  12. Saikosaponin-D attenuates heat stress-induced oxidative damage in LLC-PK1 cells by increasing the expression of anti-oxidant enzymes and HSP72.

    PubMed

    Zhang, Bao-Zhen; Guo, Xiao-Tong; Chen, Jian-Wei; Zhao, Yuan; Cong, Xia; Jiang, Zhong-Ling; Cao, Rong-Feng; Cui, Kai; Gao, Shan-Song; Tian, Wen-Ru

    2014-01-01

    Heat stress stimulates the production of reactive oxygen species (ROS), which cause oxidative damage in the kidney. This study clarifies the mechanism by which saikosaponin-d (SSd), which is extracted from the roots of Bupleurum falcatum L, protects heat-stressed pig kidney proximal tubular (LLC-PK1) cells against oxidative damage. SSd alone is not cytotoxic at concentrations of 1 or 3 μg/mL as demonstrated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To assess the effects of SSd on heat stress-induced cellular damage, LLC-PK1 cells were pretreated with various concentrations of SSd, heat stressed at 42°C for 1 h, and then returned to 37°C for 9 h. DNA ladder and MTT assays demonstrated that SSd helped to prevent heat stress-induced cellular damage when compared to untreated cells. Additionally, pretreatment with SSd increased the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) but decreased the concentration of malondialdehyde (MDA) in a dose-dependent manner when compared to controls. Furthermore, real-time PCR and Western blot analysis demonstrated that SSd significantly increased the expression of copper and zinc superoxide dismutase (SOD-1), CAT, GPx-1 and heat shock protein 72 (HSP72) at both the mRNA and protein levels. In conclusion, these results are the first to demonstrate that SSd ameliorates heat stress-induced oxidative damage by modulating the activity of anti-oxidant enzymes and HSP72 in LLC-PK1 cells.

  13. New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    PubMed Central

    Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.

    2014-01-01

    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887

  14. Oxidative DNA damage is a preliminary step during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide.

    PubMed

    Miranda, Sandra Regina; Noguti, Juliana; Carvalho, Juliana Gonçalves; Oshima, Celina Tijuko Fujiyama; Ribeiro, Daniel Araki

    2011-04-01

    The aim of this study was to investigate oxidative DNA damage during 4-nitroquinoline 1-oxide (4NQO)-induced rat tongue carcinogenesis. For this purpose, male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution through their drinking water for 4, 12, and 20 weeks. Ten animals were used as negative control. The alkaline Comet assay modified with lesion-specific enzymes was used to detect single and double strand breaks, labile sites (SBs), and oxidised purines and pyrimidines. Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure, oxidative DNA damage was detected in the 'normal' oral epithelium. In pre-neoplastic lesions and squamous cell carcinomas induced after 12 and 20 weeks following carcinogen exposure, respectively, oxidative DNA damage was also increased (P < 0.05) when compared to negative control. In conclusion, our results suggest that oxidative DNA damage is an early event during multistep carcinogenesis assay induced by 4NQO. This kind of approach should be considered to persons with high risk of oral cancer, such as in smokers or alcohol consumers.

  15. Identification of the C4'-oxidized abasic site as the most abundant 2-deoxyribose lesion in radiation-damaged DNA using a novel HPLC-based approach.

    PubMed

    Roginskaya, Marina; Mohseni, Reza; Moore, Terence J; Bernhard, William A; Razskazovskiy, Yuriy

    2014-02-01

    A novel analytical high-performance liquid chromatography (HPLC)-based method of quantification of the yields of C4'-oxidized abasic sites, 1, in oxidatively damaged DNA has been elaborated. This new approach is based on efficient conversion of 1 into N-substituted 5-methylene-Δ(3)-pyrrolin-2-ones, 2, upon treatment of damaged DNA with primary amines in neutral or slightly acidic solutions with subsequent quantification of 2 by HPLC. The absolute and relative radiation-chemical yields of 1 in irradiated DNA solutions were re-evaluated using this method. The yields were compared with those of other 2-deoxyribose degradation products including 5-methylene-2(5H)-furanone, malondialdehyde, and furfural resulting from the C1', C4' and C5'-oxidations, respectively. The yield of free base release (FBR) determined in the same systems was employed as an internal measure of the total oxidative damage to the 2-deoxyribose moiety. Application of this technique identifies 1 as the most abundant sugar lesion in double-stranded (ds) DNA irradiated under air in solution (36% FBR). In single-stranded (ss) DNA this product is second by abundance (33% FBR) after 2-deoxyribonolactones (C1'-oxidation; 43% FBR). The production of nucleoside-5'-aldehydes (C5'-oxidation; 14% and 5% FBR in dsDNA and ssDNA, respectively) is in the third place. Taken together with the parallel reaction channel that converts C4'-radicals into malondialdehyde and 3'-phosphoglycolates, our results identify the C4'-oxidation as a prevalent pathway of oxidative damage to the sugar-phosphate backbone (50% or more of all 2-deoxyribose damages) in indirectly damaged DNA.

  16. Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells

    PubMed Central

    McLean, Lancelot S.; Watkins, Cheri N.; Campbell, Petreena; Zylstra, Dain; Rowland, Leah; Amis, Louisa H.; Scott, Lia; Babb, Crystal E.; Livingston, W. Joel; Darwanto, Agus; Davis, Willie L.; Senthil, Maheswari; Sowers, Lawrence C.; Brantley, Eileen

    2015-01-01

    Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action. PMID:25781201

  17. Effects of arginine on hair damage via oxidative coloring process.

    PubMed

    Oshimura, Eiko; Ino, Masahiro

    2004-01-01

    The purpose of this study was to measure the protective effects of arginine in oxidative coloring or bleaching process. Contact angle measurement, tensile measurement and amino acid analysis were employed. As the first step, it was shown that oxidative coloring or bleaching process decreases hair surface hydrophobicity and tensile strength in wet condition. Next the study has been conducted with coloring agents in which part of the ammonia was replaced with arginine, to find that arginine reduced the oxidative change in contact angle and tensile strength. These results suggest that arginine prevents the undesirable attack by hydrogen peroxide on hair proteins and hair surface lipids. Furthermore, it is also suggested from amino acid analysis that a considerable amount of arginine is deposited on, or in hair fibers from coloring agents.

  18. Environmentally relevant concentrations of galaxolide (HHCB) and tonalide (AHTN) induced oxidative and genetic damage in Dreissena polymorpha.

    PubMed

    Parolini, Marco; Magni, Stefano; Traversi, Irene; Villa, Sara; Finizio, Antonio; Binelli, Andrea

    2015-03-21

    Synthetic musk compounds (SMCs) are extensively used as fragrances in several personal care products and have been recognized as emerging aquatic pollutants. Among SMCs, galaxolide (HHCB) and tonalide (AHTN) are extensively used and have been measured in aquatic ecosystems worldwide. However, their potential risk to organisms remains largely unknown. The aim of this study was to investigate whether 21-day exposures to HHCB and AHTN concentrations frequently measured in aquatic ecosystems can induce oxidative and genetic damage in Dreissena polymorpha. The lipid peroxidation (LPO) and protein carbonyl content (PCC) were measured as oxidative stress indexes, while the DNA precipitation assay and the micronucleus test (MN test) were applied to investigate genetic injuries. HHCB induced significant increases in LPO and PCC levels, while AHTN enhanced only protein carbonylation. Moreover, significant increases in DNA strand breaks were caused by exposure to the highest concentrations of HHCB and AHTN tested in the present study, but no fixed genetic damage was observed.

  19. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes.

    PubMed

    He, Xiaoqing; Kan, Hong; Cai, Lu; Ma, Qiang

    2009-01-01

    Exposure to high levels of glucose induces the production of reactive oxygen species (ROS) in cardiomyocytes that may contribute to the development of cardiomyopathy in diabetes. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the antioxidant response element (ARE)-dependent gene regulation in response to oxidative stress. The role of Nrf2 in defense against high glucose-induced oxidative damage in cardiomyocytes was investigated. Glucose at high concentrations induced ROS production in both primary neonatal and adult cardiomyocytes from the Nrf2 wild type (WT) mouse heart, whereas, in Nrf2 knockout (KO) cells, ROS was significantly higher under basal conditions and high glucose markedly further increased ROS production in concentration and time-dependent manners. Concomitantly, high glucose induced significantly higher levels of apoptosis at lower concentrations and in shorter time in Nrf2 KO cells than in WT cells. Primary adult cardiomyocytes from control and diabetic mice also showed dependence on Nrf2 function for isoproterenol-stimulated contraction. Additionally, cardiomyocytes from Nrf2 KO mice exhibited increased sensitivity to 3-nitropropionic acid, an inhibitor of mitochondrial respiratory complex II, for both ROS production and apoptosis compared with Nrf2 WT cells, further emphasizing the role of Nrf2 in ROS defense in the cells. Mechanistically, Nrf2 was shown to mediate the basal expression and induction of ARE-controlled cytoprotective genes, Nqo1 and Ho1, at both mRNA and protein levels in cardiomyocytes, as both the basal and inducible expressions of the genes were lost in Nrf2 KO cells or largely reduced by Nrf2 SiRNA. The findings, for the first time, established Nrf2 as a critical regulator of defense against ROS in normal and diabetic hearts.

  20. Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice.

    PubMed

    Bazmandegan, Gholamreza; Boroushaki, Mohammad Taher; Shamsizadeh, Ali; Ayoobi, Fatemeh; Hakimizadeh, Elham; Allahtavakoli, Mohammad

    2017-01-01

    Oxidative stress plays a critical role in ischemic brain injury. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are the enzymes underlying the endogenous antioxidant mechanisms affected by stroke and are considered as oxidative stress biomarkers. Brown propolis (BP) is a bioactive natural product with a set of biological activities that in turn may differ depending on the area from which the substance is originated. The aim of this study was to investigate the effect of water-extracted brown propolis (WEBPs), from two regions of Iran, against cerebral ischemia-induced oxidative injury in a mouse model of stroke. Experimentally, the chemical characterization and total polyphenol content were determined using GC/MS and Folin-Ciocalteu assay respectively. Seventy-two adult male mice were randomly divided into the surgical sham group, control group (treated with vehicle), and four groups of WEBPs-treated animals. The WEBPs were administered at the doses of 100 and 200mg/kg IP, during four different time points. Oxidative stress biomarkers (SOD and GPx activity, SOD/GPx ratio), lipid peroxidation (LPO) index (malondialdehyde content) and infarct volume were measured 48h post stroke. Behavioral tests were evaluated 24 and 48h after stroke. WEBPs treatment resulted in significant restoration of antioxidant enzymes activity and a subsequent decrease in LPO as well as the infarct volume compared to the control group. Sensory-motor impairment and neurological deficits were improved significantly as well. These results indicate that Iranian BP confers neuroprotection on the stroke-induced neuronal damage via an antioxidant mechanism which seems to be mediated by the endogenous antioxidant system.

  1. Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage.

    PubMed

    Yost, Adam D; Joshi, Suresh G

    2015-01-01

    We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death.

  2. Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage

    PubMed Central

    Yost, Adam D.; Joshi, Suresh G.

    2015-01-01

    We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death. PMID:26461113

  3. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  4. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis.

    PubMed

    Cao, Chao; Lai, Tianwen; Li, Miao; Zhou, Hongbin; Lv, Dan; Deng, Zaichun; Ying, Songmin; Chen, Zhihua; Li, Wen; Shen, Huahao

    2016-04-05

    Oxidative stress induced by tobacco smoking is one of the main causes of DNA damage and is known to be involved in various cancers. Smoking is the leading cause of lung cancer, while the role of cigarette smoke-induced oxidative DNA damage response during lung carcinogenesis is largely unknown. In this study, we investigated oxidative DNA damage response levels in smoking and nonsmoking patients with lung cancer, and evaluated the potential diagnostic value of 8-OHdG for lung cancer. We observed a higher level of 8-OHdG expression and secretion in airways of lung cancer patients than that of noncancer controls. 8-OHdG expression was associated with the TNM stages. Additionally, cigarette smoke-induced oxidative DNA damage response was observed in bronchial epithelial cells in vitro and in vivo. A statistical significance correlation was found between the levels of 8-OHdG and smoking index. With a cut-off value of 2.86 ng/ml, 8-OHdG showed a sensitivity and specificity of 70.0% and 73.7%, respectively, to identify a patient with lung cancer. These findings not only underscore the importance of smoking in oxidative DNA damage response of lung cancer patients, but also suggest 8-OHdG as a potential diagnostic biomarker for lung cancer.

  5. Vitamin E-coated dialysis membranes reduce the levels of oxidative genetic damage in hemodialysis patients.

    PubMed

    Rodríguez-Ribera, Lara; Corredor, Zuray; Silva, Irene; Díaz, Juan Manuel; Ballarín, José; Marcos, Ricard; Pastor, Susana; Coll, Elisabet

    2017-03-01

    End-stage renal disease patients present oxidative stress status that increases when they are submitted to hemodialysis (HD). This increase in oxidative stress can affect their genetic material, among other targets. The objective of this study was to evaluate the effect of using polysulfone membranes coated with vitamin E, during the HD sessions, on the levels of genetic damage of HD patients. Forty-six patients were followed for 6 months, of whom 29 changed from conventional HD to the use of membranes coated with vitamin E. The level of genetic damage was measured using the micronucleus and the comet assays, both before and after the follow-up period. Serum vitamin E concentration was also checked. The obtained results showed that 24% of our patients presented vitamin E deficiency, and this was normalized in those patients treated with vitamin E-coated membranes. Patients with vitamin E deficiency showed higher levels of oxidative DNA damage. After the use of vitamin E-coated membranes we detected a significant decrease in the levels of oxidative damage. Additionally, hemoglobin values increased significantly with the use of vitamin E-coated membranes. In conclusion, the use of vitamin E-coated membranes supposes a decrease on the levels of oxidative DNA damage, and improves the uremic anemia status. Furthermore, the use of this type of membrane was also effective in correcting vitamin E deficiency.

  6. Radiation Damage and Fission Product Release in Zirconium Nitride

    SciTech Connect

    Egeland, Gerald W.

    2005-08-29

    Zirconium nitride is a material of interest to the AFCI program due to some of its particular properties, such as its high melting point, strength and thermal conductivity. It is to be used as an inert matrix or diluent with a nuclear fuel based on transuranics. As such, it must sustain not only high temperatures, but also continuous irradiation from fission and decay products. This study addresses the issues of irradiation damage and fission product retention in zirconium nitride through an assessment of defects that are produced, how they react, and how predictions can be made as to the overall lifespan of the complete nuclear fuel package. Ion irradiation experiments are a standard method for producing radiation damage to a surface for observation. Cryogenic irradiations are performed to produce the maximum accumulation of defects, while elevated temperature irradiations may be used to allow defects to migrate and react to form clusters and loops. Cross-sectional transmission electron microscopy and grazing-incidence x-ray diffractometry were used in evaluating the effects that irradiation has on the crystal structure and microstructure of the material. Other techniques were employed to evaluate physical effects, such as nanoindentation and helium release measurements. Results of the irradiations showed that, at cryogenic temperatures, ZrN withstood over 200 displacements per atom without amorphization. No significant change to the lattice or microstructure was observed. At elevated temperatures, the large amount of damage showed mobility, but did not anneal significantly. Defect clustering was possibly observed, yet the size was too small to evaluate, and bubble formation was not observed. Defects, specifically nitrogen vacancies, affect the mechanical behavior of ZrN dramatically. Current and previous work on dislocations shows a distinct change in slip plane, which is evidence of the bonding characteristics. The stacking-fault energy changes dramatically with

  7. Pentoxifylline Diminishes the Oxidative Damage to Renal Tissue Induced by Streptozotocin in the Rat

    PubMed Central

    Martínez-Morales, F.

    2004-01-01

    Oxidative damage has been suggested to be a contributing factor in the development to diabetic nephropathy (DN). Recently, there has been evidence that pentoxifylline (PTX) has free radical-scavenging properties; thus, its antiinflammatory and renoprotective effects may be related to a reduction in reactive oxygen species production. It is likely that the pharmacological effects of PTX include an antioxidant mechanism as shown in in vitro assays. The aim of this study was to evaluate whether the reported renoprotective effects of PTX could be the result of its antioxidant actions in streptozotocin (STZ)-induced DN in rats. The administration of PTX over a period of 8 weeks, in addition to displaying renoprotective effects, caused a significant reduction in lipoperoxide levels (LPOS) in the diabetic kidney (P < 0.05), compared to untreated rats. These levels were comparable to those in the healthy kidney of experimental animals (P > 0.05). All untreated STZ rats exhibited an increase in LPOS as opposed to healthy controls (H) (P < 0.001). The total antioxidant activity (TAA) in plasma was increased significantly already after 2 days of STZ (P < 0.05). When we examined the progression of TAA in STZ rats, there was a significant decrease over 8 weeks (P < 0.05). PTX treatment caused an increase in TAA when compared to untreated STZ rats (P < 0.05). Renal hypertrophy was less evident in PTX-treated STZ than in untreated STZ rats, evaluated by kidney weight/body weight ratio. These results indicate that PTX decreases the oxidative damage induced by these experimental procedures and may increase antioxidant defense mechanisms in STZ-induced diabetes in rats. PMID:15763938

  8. Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles.

    PubMed

    van Berlo, Damien; Wessels, Anton; Boots, Agnes W; Wilhelmi, Verena; Scherbart, Agnes M; Gerloff, Kirsten; van Schooten, Frederik J; Albrecht, Catrin; Schins, Roel P F

    2010-12-01

    The carcinogenicity of respirable quartz is considered to be driven by reactive oxygen species (ROS) generation in association with chronic inflammation. The contribution of phagocyte-derived ROS to inflammation, oxidative stress, and DNA damage responses was investigated in the lungs of C57BL/6J wild-type and p47(phox-/-) mice, 24h after pharyngeal aspiration of DQ12 quartz (100 mg/kg bw). Bone-marrow-derived neutrophils from wild-type and p47(phox-/-) mice were used for parallel in vitro investigations in coculture with A549 human alveolar epithelial cells. Quartz induced a marked neutrophil influx in both wild-type and p47(phox-/-) mouse lungs. Significant increases in mRNA expression of the oxidative stress markers HO-1 and γ-GCS were observed only in quartz-treated wild-type animals. Oxidative DNA damage in lung tissue was not affected by quartz exposure and did not differ between p47(phox-/-) and WT mice. Differences in mRNA expression of the DNA repair genes OGG1, APE-1, DNA Polβ, and XRCC1 were also absent. Quartz treatment of cocultures containing wild-type neutrophils, but not p47(phox-/-) neutrophils, caused increased oxidative DNA damage in epithelial cells. Our study demonstrates that neutrophil-derived ROS significantly contribute to pulmonary oxidative stress responses after acute quartz exposure, yet their role in the associated induction of oxidative DNA damage could be shown only in vitro.

  9. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

    PubMed

    Xu, Shangcheng; Zhou, Zhou; Zhang, Lei; Yu, Zhengping; Zhang, Wei; Wang, Yuan; Wang, Xubu; Li, Maoquan; Chen, Yang; Chen, Chunhai; He, Mindi; Zhang, Guangbin; Zhong, Min

    2010-01-22

    Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.

  10. Mechanisms of MDMA (Ecstasy)-Induced Oxidative Stress, Mitochondrial Dysfunction, and Organ Damage

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V.; Eddington, Natalie D.; Lee, Insong J.

    2010-01-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  11. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage.

    PubMed

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V; Eddington, Natalie D; Lee, Insong J

    2010-08-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage.

  12. Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood.

    PubMed

    Poletta, Gisela L; Simoniello, María Fernanda; Mudry, Marta D

    2016-01-01

    Several xenobiotics, and among them pesticides, can produce oxidative stress, providing a mechanistic basis for their observed toxicity. Chronic oxidative stress induces deleterious modifications to DNA, lipids and proteins that are used as effective biomarkers to study pollutant-mediated oxidative stress. No previous report existed on the application of oxidative damage and antioxidant defense biomarkers in Caiman latirostris blood, while few studies reported in other crocodilians were done in organs or muscles of dead animals. The aim of this study was to characterize a new set of oxidative stress biomarkers in C. latirostris blood, through the modification of conventional techniques: 1) damage to lipids by thiobarbituric acid reactive substances (TBARS), 2) damage to DNA by comet assay modified with the enzymes FPG and Endo III, and 3) antioxidant defenses: catalase, superoxide dismutase and glutathione; in order to apply them in future biomonitoring studies. We successfully adapted standard procedures for CAT, SOD, GSH and TBARS determination in C. latirostris blood. Calibration curves for FPG and Endo III showed that the three dilutions tested were appropriate to conduct the modified comet assay for the detection of oxidized bases in C. latirostris erythrocytes. One hour of incubation allowed a complete repair of the damage generated. The incorporation of these biomarkers in biomonitoring studies of caiman populations exposed to xenobiotics is highly important considering that this species has recovered from a serious endangered state through the implementation of sustainable use programs in Argentina, and represents nowadays a relevant economic resource for many human communities.

  13. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO4

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO4-induced toxicity. Methods Through combinatory chemistry assays, we evaluated the superoxide (O2●—), hydroxyl radical (OH●), hydrogen peroxide (H2O2) and peroxynitrite (ONOO—) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH• generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO4-exposed brain, liver and lung rat homogenates. Results Xanthone V exhibited a better scavenging capacity for O2●—, ONOO- and OH● than xanthone III, although both xanthones were unable to trap H2O2. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH● generator system. Lipid peroxidation and ROS production evoked by FeSO4 were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Conclusions Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants. PMID:24119308

  14. Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress.

    PubMed

    Moustakas, Michael; Malea, Paraskevi; Zafeirakoglou, Aristi; Sperdouli, Ilektra

    2016-01-01

    The non-selective herbicide paraquat (Pq) is being extensively used for broad-spectrum weed control. Through water runoff and due to its high water solubility it contaminates aquatic environments. Thus, the present study was carried out to investigate the photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa to short- (2h) and long-term (24h) exposure to 2, 20, 200 and 1000μM paraquat (Pq) toxicity by using chlorophyll fluorescence imaging and H2O2 real-time imaging. The effective quantum yield of PSII (ΦPSII) show a tendency to increase at 2μM Pq after 2h exposure, and increased significantly at 20 and 200μM Pq. Τhe maximum oxidative effect on C. nodosa leaves was observed 2h after exposure to 200μM Pq concentration when the highest increases of ΦPSII due to high electron transport rate (ETR) resulted in a significant increase of H2O2 production due to the lowest non-photochemical quenching (NPQ) that was not efficient to serve as a protective mechanism, resulting in photooxidation. Prolonged exposure (24h) to 200μM Pq resulted in a decreased ΦPSII not due to an increase of the photoprotective mechanism NPQ, but due to high quantum yield of non-regulated energy loss in PSII (ΦNO), resulting to the lowest fraction of open PSII reaction centers (qp). This decreased ΦPSII has resulted to less Pq radicals to be formed, with a consequence of a small increase of H2O2 production compared to control C. nodosa leaves, but substantial lower than that of 2h exposure to 200μM Pq. Exposure of C. nodosa leaves to 1000μM Pq toxicity had lower effects on the efficiency of photochemical reactions of photosynthesis under both short- (2h) and long-term (24h) exposure than 200μM Pq. This was evident by an almost unchanged ΦPSII and qp, that remained unchanged even at a longer exposure time (48h), compared to control C. nodosa leaves. Thus, the response of C. nodosa leaves to Pq toxicity fits the "Threshold for Tolerance Model", with a

  15. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans.

    PubMed

    Koska, J; Blazícek, P; Marko, M; Grna, J D; Kvetnanský, R; Vigas, M

    2000-01-01

    Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress.

  16. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  17. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  18. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  19. Oxidative damage in keratinocytes exposed to cigarette smoke and aldehydes.

    PubMed

    Avezov, Katia; Reznick, Abraham Z; Aizenbud, Dror

    2014-06-01

    Cigarette smoke (CS) is a significant environmental source of human exposure to chemically active saturated (acetaldehyde) and α,β-unsaturated aldehydes (acrolein) inducing protein carbonylation and dysfunction. The exposure of oral tissues to environmental hazards is immense, especially in smokers. The objectives of the current study were to examine the effect of aldehydes originating from CS on intracellular proteins of oral keratinocytes and to observe the antioxidant response in these cells. Intracellular protein carbonyl modification under CS, acrolein and acetaldehyde exposure in the HaCaT keratinocyte cell line, representing oral keratinocytes was examined by Western blot. Possible intracellular enzymatic dysfunction under the above conditions was examined by lactate dehydrogenase (LDH) activity assay. Oxidative stress response was investigated, by DCF (2,7-dichlorodihydrofluorescein) assay and GSH (glutathione) oxidation. Intracellular protein carbonyls increased 5.2 times after CS exposure and 2.7 times after exposure to 1 μmol of acrolein. DCF assay revealed an increase of fluorescence intensity 3.2 and 3.1 times after CS and acrolein exposure, respectively. CS caused a 72.5% decrease in intracellular GSH levels compared to controls. Activity of intracellular LDH was preserved. α,β-Unsaturated aldehydes from CS are capable of intracellular protein carbonylation and have a role in intracellular oxidative stress elevation in keratinocytes, probably due to the reduction in GSH levels.

  20. Quercetin protects hamster spermatogenic cells from oxidative damage induced by diethylstilboestrol.

    PubMed

    Li, G; Ma, Aituan; Shi, W; Zhong, Xiuhui

    2010-10-01

    Quercetin has been reported to be an efficient antioxidant which protects chicken spermatogonial cells from oxidative damage through increasing intracellular antioxidants and decreasing lipid peroxidation. Exposure to diethylstilboestrol (DES) could cause reproductive damage in males, which is associated with oxidative stress. This study was conducted to investigate the protective effects of quercetin on DES-induced oxidative damage in cultured hamster spermatogenic cells. The cells were treated with different concentrations of DES, and their growth status was observed under inverted microscope. The viability of spermatogenic cells was detected by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT). The contents of superoxide dismutase (SOD) in supernatants and glutathione peroxidase (GSH-Px) in cells were detected with spectrophotography. The results showed that quercetin significantly inhibited the DES-induced damage on spermatogenic cells, with the exception of the low-dose group in which no significant difference was observed. The cell survival rate increased significantly in the middle- and high-dose groups. The contents of SOD and GSH-Px were significantly elevated after medication with quercetin (P < 0.01). It can be concluded that quercetin protects spermatogenic cells against DES-induced oxidative damage through increasing intracellular antioxidants and decreasing lipid peroxidation. Quercetin plays a very important role in ameliorating reproductive toxicity induced by environmental oestrogens.

  1. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  2. Age-Dependent Oxidative DNA Damage Does Not Correlate with Reduced Proliferation of Cardiomyocytes in Humans

    PubMed Central

    Li, Minghui; Liu, Jinfen; Jiang, Chuan; Zhang, Haibo; Ye, Lincai; Zheng, Jinghao

    2017-01-01

    Background Postnatal human cardiomyocyte proliferation declines rapidly with age, which has been suggested to be correlated with increases in oxidative DNA damage in mice and plays an important role in regulating cardiomyocyte proliferation. However, the relationship between oxidative DNA damage and age in humans is unclear. Methods Sixty right ventricular outflow myocardial tissue specimens were obtained from ventricular septal defect infant patients during routine congenital cardiac surgery. These specimens were divided into three groups based on age: group A (age 0–6 months), group B (age, 7–12 months), and group C (>12 months). Each tissue specimen was subjected to DNA extraction, RNA extraction, and immunofluorescence. Results Immunofluorescence and qRT-PCR analysis revealed that DNA damage markers—mitochondrial DNA copy number, oxoguanine 8, and phosphorylated ataxia telangiectasia mutated—were highest in Group B. However immunofluorescence and qRT-PCR demonstrated that two cell proliferation markers, Ki67 and cyclin D2, were decreased with age. In addition, wheat germ agglutinin-staining indicated that the average size of cardiomyocytes increased with age. Conclusions Oxidative DNA damage of cardiomyocytes was not correlated positively with age in human beings. Oxidative DNA damage is unable to fully explain the reduced proliferation of human cardiomyocytes. PMID:28099512

  3. Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer.

    PubMed

    Oakley, G G; Devanaboyina, U; Robertson, L W; Gupta, R C

    1996-12-01

    We have previously reported that mono- and dichlorinated biphenyls (PCBs) can be metabolized to dihydroxy compounds and further oxidized to reactive metabolites which form adducts with nitrogen and sulfur nucleophiles including DNA [Amaro et al. (1966) Chem. Res. Toxicol. 9, 623-629; Oakley et al. (1996) Carcinogenesis 17, 109-114]. The former studies also demonstrated that during the metabolism of PCBs superoxide may be produced. We have therefore examined the abilities of PCB metabolites to induce free radical-mediated oxidative DNA damage using a newly developed, highly sensitive, 32P-postlabeling assay for 8-oxode-oxyguanosine (8-oxodG) [Devanaboyina, U., and Gupta, R. (1996) Carcinogenesis 17, 917-924]. The incubation of 3,4-dichloro-2'5'-dihydroxybiphenyl (100 microM) with calf thymus DNA (300 micrograms/microL) in the presence of the breast tissue and milk-associated enzyme, lactoperoxidase (10 mU/mL), and H2O2 (0.5 mM) resulted in a significant increase in free radical-induced DNA damage (253 8-oxodG/10(6) nucleotides) as compared to vehicle-treated DNA (118 8-oxodG/10(6) nucleotides). Substituting CuCl(2) (100 microM) for lactoperoxidase/H2O2, however, resulted in a substantial increase in 8-oxodG content (2669 8-oxodG/10(6) nucleotides). FeCl(3) was ineffective, suggesting that CuCl(2) but not FeCl(3) mediates oxidation of PCB dihydroxy metabolites, resulting in oxidative DNA damage. The addition of catalase (100 U/mL) and sodium azide (0.1 M) reduced the effect of CuCl(2) (849 and 896 8-oxodG/10(6) nucleotides, respectively), while superoxide dismutase (600 U/mL) moderately stimulated and glutathione (100 microM) substantially stimulated 8-oxodG formation (3014 and 4415 8-oxodG/10(6) nucleotides, respectively). The effect of various buffers as well as the effects of PCB structure on Cu(II)-mediated oxidative DNA damage were examined. These results demonstrate that free radicals and oxidative DNA damage are produced during oxidation of lower chlorinated

  4. Effects of drugs used in endotoxic shock on oxidative stress and organ damage markers.

    PubMed

    Yazar, Enver; Er, Ayse; Uney, Kamil; Bulbul, Aziz; Avci, Gulcan Erbil; Elmas, Muammer; Tras, Bunyamin

    2010-04-01

    The aim of this study was to determine the effects of enrofloxacin (ENR), flunixin meglumine (FM) and dexamethasone (DEX) on antioxidant status and organ damage markers in experimentally-induced endotoxemia. Rats were divided into three groups. To induce endotoxemia, lipopolysaccharide (LPS) was injected into all groups, including the positive control. The two other groups received the following drugs (simultaneously with LPS): ENR + FM + low-dose DEX and ENR + FM + high-dose DEX. After the treatments, blood samples were collected at 0, 1, 2, 4, 6, 8, 12, 24 and 48 h. Oxidative stress parameters were determined by ELISA, while serum organ damage markers were measured by autoanalyser. LSP increased (p < 0.05) malondialdehyde, 13,14-dihydro-15-keto-prostaglandin F(2 alpha) and nitric oxide, while LPS reduced vitamin C. These changes were especially inhibited (p < 0.05) by ENR + FM + high-dose DEX. LPS increased organ damages markers. Cardiac and hepatic damage was not completely inhibited by any treatment, whereas renal damage was inhibited by two treatments. This study suggested that ENR + FM + high-dose DEX is most effective in the LPS-caused oxidative stress and organ damages.

  5. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Kostrzewa, Artur; Łuczak, Michał; Jagodziński, Paweł P; Baer-Dubowska, Wanda

    2012-06-01

    The aim of this study was to evaluate the effect of betanin, one of the beetroot major components, on ROS production, DNA damage and apoptosis in human resting and stimulated with phorbol 12-myristate13-acetate polymorphonuclear neutrophils, one of the key elements of the inflammatory response. Incubation of neutrophils with betanin in the concentration range 2-500 µM resulted in significant inhibition of ROS production (by 15-46%, depending on the ROS detection assay). The antioxidant capacity of betanin was most prominently expressed in the chemiluminescence measurements. This compound decreased also the percentage of DNA in comet tails in stimulated neutrophils, but only at the 24 h time point. In resting neutrophils an increased level of DNA in comet tails was observed. Betanin did not affect the activity of caspase-3, in resting neutrophils, but significantly enhanced the enzyme activity in stimulated neutrophils. The western blot analysis showed, however, an increased level of caspase-3 cleavage products as a result of betanin treatment both in resting and stimulated neutrophils. The results indicate that betanin may be responsible for the effect of beetroot products on neutrophil oxidative metabolism and its consequences, DNA damage and apoptosis. The dose and time dependent effects on these processes require further studies.

  6. Trace metal ions in hair from frequent hair dyers in China and the associated effects on photo-oxidative damage.

    PubMed

    Tang, Ying; Dyer, Jolon M; Deb-Choudhury, Santanu; Li, Qiao

    2016-03-01

    Human hairs are subject to oxidative modification when exposed to sunlight. In the present study, samples of human hair from Chinese volunteers that included frequent hair dyers and non-dyers were analyzed for metal ions such as iron, copper, magnesium, aluminum, zinc and lead. The generation of hydroxyl radicals during UVA (315-400 nm) photoageing was quantified and oxidative damages characterized by proteomic and SEM analysis. It was concluded that high levels of metal ions, particularly those derived from iron and copper, identified in the dyed hairs are associated with enhanced photoformation of hydroxyl radicals and resultant photooxidative damage of the hair. Reactive oxygen species, including hydroxyl radicals, generated via an electron transfer mechanism with hair photosensitizers react with hair proteins. Proteomic analysis of hair samples from frequent hair dyers, regardless of age and gender, showed an almost 1.6 fold increase in the protein oxidative modification levels compared to the undyed samples. As a result, a more pronounced physical damage including fragmentation and cross-linkage of cuticle scales was observed on the surface of dyed hair samples during the photoageing. This work is aimed at better understanding the role of metal ions in dyed hairs and their possible role in photosensitizing hair proteins. The results from this study are anticipated to contribute to the improved development of hair coloring cosmetics and hair care products.

  7. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  8. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice.

    PubMed

    Mohammad, Mohd Khairul Amran; Mohamed, Muhamad Idham; Zakaria, Ainul Mardhiyah; Abdul Razak, Hairil Rashmizal; Saad, Wan Mazlina Md

    2014-01-01

    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P < 0.05). Mice supplemented with 50% watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.

  9. Antioxidation of Cerium Oxide Nanoparticles to Several Series of Oxidative Damage Related to Type II Diabetes Mellitus In Vitro

    PubMed Central

    Zhai, Jing-hui; Wu, Yi; Wang, Xiao-ying; Cao, Yue; Xu, Kan; Xu, Li; Guo, Yi

    2016-01-01

    Background It is well known that cerium oxide nanoparticles (CeNPs) have intense antioxidant activity. The antioxidant property of CeNPs are widely used in different areas of research, but little is known about the oxidative damage of Cu2+ associated with Type II diabetes mellitus (T2DM). Material/Methods In our research, the function of CeNPs was tested for its protection of β-cells from the damage of Cu2+ or H2O2. We detected hydroxyl radicals using terephthalic acid assay, hydrogen peroxide using Amplex Ultra Red assay, and cell viability using MTT reduction. Results We found that CeNPs can persistently inhibit Cu2+/H2O2 evoked hydroxyl radicals and hydrogen peroxide in oxidative stress of β-cells. Conclusions CeNPs will be useful in developing strategies for the prevention of T2DM. PMID:27752033

  10. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  11. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa?

    PubMed Central

    Strauss, Rupert W.; Lu, Lili; Hafiz, Gulnar; Wolfson, Yulia; Shah, Syed M.; Sophie, Raafay; Mir, Tahreem A.; Scholl, Hendrik P.

    2015-01-01

    Abstract Retinitis pigmentosa (RP) is a group of diseases in which a mutation in one of the large variety of genes causes death of rod photoreceptors. After rods die, cone photoreceptors gradually die resulting in constriction of visual fields and eventual blindness in many patients. Studies in animal models of RP have demonstrated that oxidative damage is a major contributor to cone cell death. In this study, we extended those findings to patients with RP, because compared to control patients, those with RP showed significant reduction in the reduced to oxidized glutathione (GSH/GSSG) ratio in aqueous humor and a significant increase in aqueous protein carbonyl content. In contrast, there was no significant decrease in the serum GSH/GSSG ratio or increase in carbonyl content of serum proteins. These data indicate that patients with RP have ocular oxidative stress and damage in the absence of manifestations of systemic oxidative stress and/or damage indicating that demonstrations of oxidative damage-induced cone cell death in animal models of RP may translate to human RP. These observations lead to the hypothesis that potent antioxidants will promote cone survival and function in patients with RP and that the aqueous GSH/GSSG ratio and carbonyl content on proteins may provide useful biomarkers. Antioxid. Redox Signal. 23, 643–648. PMID:25820114

  12. Exercise-induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification.

    PubMed

    Aoi, W; Naito, Y; Tokuda, H; Tanimura, Y; Oya-Ito, T; Yoshikawa, T

    2012-01-01

    Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.

  13. Oxidative Damage in Pea Plants Exposed to Water Deficit or Paraquat1

    PubMed Central

    Iturbe-Ormaetxe, Iñaki; Escuredo, Pedro R.; Arrese-Igor, Cesar; Becana, Manuel

    1998-01-01

    The application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (−1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.

  14. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy☆

    PubMed Central

    Areti, Aparna; Yerra, Veera Ganesh; Naidu, VGM; Kumar, Ashutosh

    2014-01-01

    Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN) remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy. PMID:24494204

  15. Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants.

    PubMed

    Kumar, Praveen; Tewari, Rajesh Kumar; Sharma, Parma Nand

    2008-02-01

    In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 microM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 microM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H(2)O(2) concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H(2)O(2), contrary to that of O(2)(*-) radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H(2)O(2) and little higher of O(2)(*-) in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 microM) induces oxidative stress by increasing production of H(2)O(2) despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe.

  16. Urea-induced oxidative damage in Elodea densa leaves.

    PubMed

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Prasad, M N V

    2015-09-01

    Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.

  17. Oxidative DNA Damage Response in Helicobacter pylori-Infected Mongolian Gerbils.

    PubMed

    Bae, Minkyung; Lim, Joo Weon; Kim, Hyeyoung

    2013-09-01

    Helicobacter pylori (H. pylori) induced DNA damage which may be related to gastric cancer development. The DNA damage response coordinates DNA repair, cell-cycle transition, and apoptosis through activation of DNA damage response molecules. The damaged DNA is repaired through non-homologous end joining (NHEJ) or homologous recombination (HR). In the present study, we investigated the changes of HR DNA repair proteins (ataxia-telangiectasia-mutated; ATM, ATM and Rad3-related; ATR), NHEJ repair proteins (Ku70/80), cell cycle regulators (Chk1, Chk2), and apoptosis marker (p53/p-p53) were determined in H. pylori-infected Mongolian gerbils. In addition, the effect of an antioxidant N-acetylcysteine (NAC) on H. pylori-induced DNA damage response was determined to assess the involvement of oxidative stress on DNA damage of the animals infected with H. pylori. One week after intragastric inoculation with H. pylori, Mongolian gerbils were fed with basal diet with or without 3% NAC for 6 weeks. After 6 week, the expression levels of DNA repair proteins (Ku70/80, ATM, ATR), cell cycle regulators (Chk1, Chk2) and apoptosis marker (p-p53/p53) were increased in gastric mucosa of Mongolian gerbils, which was suppressed by NAC treatment. In conclusion, oxidative stress mediates H. pylori-induced DNA damage response including NHEJ and HR repairing processes, cell cycle arrest and apoptosis in gastric mucosa of Mongolian gerbils.

  18. Nitric oxide production in striatum and pallidum of cirrhotic rats.

    PubMed

    Montes, Sergio; Pérez-Severiano, Francisca; Vergara, Paula; Segovia, José; Ríos, Camilo; Muriel, Pablo

    2006-01-01

    Ammonium and manganese are neurotoxic agents related to brain metabolic disturbances observed after prolonged liver damage. The aim of this study was to assess the production of nitric oxide (NO) in the brain of cirrhotic rats exposed to manganese. We induced cirrhosis by bile duct ligation for 4 weeks in rats. From brain, striatum and globus pallidus were dissected out, and NO synthase activity and the content of nitrites plus nitrates (NOx) were determined. In pallidum we found a diminished constitutive NO synthase activity from cirrhotic rats, independently of manganese exposure. This result was confirmed by low levels of NOx in the same brain area (P<0.05, two-way ANOVA). This finding was not related to protein expression of NO synthase since no differences were observed in immunoblot signals between cirrhotic and sham-operated animals. Results from present study suggest that the production of NO is reduced in basal ganglia during cirrhosis.

  19. Carcinogenic Potential of Cholesterol Oxidation Products

    DTIC Science & Technology

    1980-04-15

    oxidation products of cholesterol. Subsequent pilot experiments revealed an increase in the incidence of liver tumors after brief inclusion in the diet of...similar properties. 3. To determine whether the nature of the total diet influences the liver tumor incidence in experimental mice on a regimen containing...females. We purchased the mice from the Charles River Laboratories, Inc., Wilmington, Mass. They were placed on the experimental diets shortly after

  20. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-08

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  1. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases.

    PubMed

    Bolaños, J P; Almeida, A; Stewart, V; Peuchen, S; Land, J M; Clark, J B; Heales, S J

    1997-06-01

    Within the CNS and under normal conditions, nitric oxide (.NO) appears to be an important physiological signalling molecule. Its ability to increase cyclic GMP concentration suggests that .NO is implicated in the regulation of important metabolic pathways in the brain. Under certain circumstances .NO synthesis may be excessive and .NO may become neurotoxic. Excessive glutamate-receptor stimulation may lead to neuronal death through a mechanism implicating synthesis of both .NO and superoxide (O2.-) and hence peroxynitrite (ONOO-) formation. In response to lipopolysaccharide and cytokines, glial cells may also be induced to synthesize large amounts of .NO, which may be deleterious to the neighbouring neurones and oligodendrocytes. The precise mechanism of .NO neurotoxicity is not fully understood. One possibility is that it may involve neuronal energy deficiency. This may occur by ONOO- interfering with key enzymes of the tricarboxylic acid cycle, the mitochondrial respiratory chain, mitochondrial calcium metabolism, or DNA damage with subsequent activation of the energy-consuming pathway involving poly(ADP-ribose) synthetase. Possible mechanisms whereby ONOO- impairs the mitochondrial respiratory chain and the relevance for neurotoxicity are discussed. The intracellular content of reduced glutathione also appears important in determining the sensitivity of cells to ONOO- production. It is concluded that neurotoxicity elicited by excessive .NO production may be mediated by mitochondrial dysfunction leading to an energy deficiency state.

  2. Modulatory effects of Moringa oleifera extracts against hydrogen peroxide-induced cytotoxicity and oxidative damage.

    PubMed

    Sreelatha, S; Padma, P R

    2011-09-01

    Studies have demonstrated that the induction of oxidative stress may be involved in oxidative DNA damage. The present study examined and assessed the hydrogen peroxide (H(2)O(2))-mediated DNA damage in human tumor KB cells and also assessed the ability of Moringa oleifera leaf extracts to inhibit the oxidative damage. H(2)O(2) imposed a stress on the membrane lipids which was quantified by the extent of thiobarbituric acid reactive substances (TBARS) formed. The leaf extracts caused a very significant inhibition of the extent of LPO formation and enhanced the activity of antioxidative enzymes such as superoxide dismutase (SOD) and catalase (CAT) in KB cells. The comet assay was employed to study the DNA damage and its inhibition by the leaf extracts. H(2)O(2) caused a significant increase in the number of cells bearing comets, resulting in significant DNA damage. The leaf extracts significantly reduced the incidence of comets in the oxidant stressed cells. The extent of cytotoxicity of H(2)O(2) in the presence and the absence of leaf extracts studied in KB tumor cells by the MTT assay showed that H(2)O(2) caused a marked decrease in the viability of KB cells where as the leaf extracts effectively increased the viability of assaulted KB cells. The observed cytoprotective activity is probably due to the antioxidant properties of its constituents, mainly phenolics. Total phenolics showed higher correlation with antioxidant activity. The leaf extracts showed higher antioxidant activity than the reference compound. These results suggest that the inhibition by the leaf extracts on oxidative DNA damage could be attributed to their free radical scavenging activities and the effect evidenced in KB cells can be in part correlated to a modulation of redox-sensitive mechanisms.

  3. Genomic damage in end-stage renal failure: potential involvement of advanced glycation end products and carbonyl stress.

    PubMed

    Stopper, Helga; Schupp, Nicole; Bahner, Udo; Sebekova, Katarina; Klassen, Andre; Heidland, August

    2004-09-01

    In patients with chronic renal failure, genomic damage has been shown by numerous biomarkers, such as micronuclei frequency and comet assay (single-cell gel electrophoresis) in peripheral lymphocytes, 8-hydroxy 2'-deoxyguanosine (8-OH-dG) content in leukocytes, mitochondrial DNA deletions in skeletal muscle tissue and hair follicles, as well as in DNA repair mechanisms in freshly isolated lymphocytes after ultraviolet light exposure. In the pathogenesis of DNA damage--besides genetic influences, enhanced reactive oxygen species (ROS), and lipid peroxidation-the genotoxic potential of advanced glycation end products (AGEs) and reactive carbonyl compounds deserve special attention. In fact, reactions of glucose with DNA can lead to mutagenic DNA AGEs. In vitro, incubation of tubulus cells with various AGEs and methylglyoxal induces DNA damage, which is suppressed by antioxidants. This underlines the role played by oxidative stress in DNA damage.

  4. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model.

    PubMed

    Sanders, Laurie H; Greenamyre, J Timothy

    2013-09-01

    Parkinson disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. Although the underlying mechanisms contributing to neurodegeneration in PD seem to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or a consequence of dopaminergic death, there is substantial evidence for oxidative stress both in human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids, and proteins in both the brain and the peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help us design better targets for the treatment of PD.

  5. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1.

    PubMed

    Rhee, David B; Ghosh, Avik; Lu, Jian; Bohr, Vilhelm A; Liu, Yie

    2011-01-02

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.

  6. Nitrous oxide production by estuarine epiphyton

    SciTech Connect

    Law, C.S.; Rees, A.P.; Owens, N.J.P. )

    1993-03-01

    Nitrous oxide was produced by denitrifying bacteria in epiphytic communities on the surface of the macroalgae Enteromorpha sp. and Fucus sp. during spring-summer in the Tamar estuary, SW England. Denitrification and N[sub 2]O production exhibited diel variability, in response to photosynthetic oxygen production. Temporal variability in the rate of N[sub 2]O production was observed in Enteromorpha incubations; the variability reflected the heterogeneity of the epiphytic microbial population density. N[sub 2]O production by epiphyton associated with Enteromorpha would enhance the sediment N[sub 2]O flux by 150-500% at maximal algal densities and so increase estuarine N[sub 2]O flux to the atmosphere. 20 refs., 6 figs.

  7. Multiphase Processing of Isoprene Oxidation Products - Kinetic and Product Studies

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Schoene, L.; Schindelka, J.; Herrmann, H.

    2010-12-01

    Isoprene represents a significant fraction of NMHC in the troposphere with recently estimated emission rates of 500-750 TgC yr-1 (1). Due to its enormous source strength, the fate of isoprene and its degradation products is important in atmospheric processes. Possible ascendancies of such oxidation processes are the regional ozone and secondary organic aerosol (SOA) formation. Some aspects of SOA formation from isoprene and its degradation products have already been studied by chamber studies (2,3). Aqueous phase oxidation processes which may occur after phase transfer of ‘early’ oxidation products are often neglected. But these processes provide a potentially important source for organic particle mass constituents such as carboxylic acids. The majority of existing aqueous phase modelling studies focus only on ‘later’ products such as methylglyoxal and oxalic acid. Yet, a recent field study reports much higher aqueous phase concentrations of some ‘earlier’ isoprene oxidation products including methacrolein (MACR) and methyl vinyl ketone (MVK) than expected (4). This indicates a possibly underestimated importance of multiphase chemical processes in the course of the isoprene oxidation as a source for the production of organic particle mass together with known ‘heterogeneous processes’ such as the direct condensation of low-volatility products from gas phase processes onto existing particle surfaces. In order to implement the isoprene multiphase chemistry in atmospheric models detailed kinetic and mechanistic studies are needed. Hence, the temperature dependence of MACR, MVK, methacrylic acid and acrylic acid exposed to NO3, SO4- and OH radicals in the aqueous phase was investigated. The measurements were performed using a laser-photolysis laser long path absorption technique. The analysis confirmed in all cases the much higher reactivity of the OH radical in comparison to SO4- and NO3 radicals. The temperature dependence is most distinct for NO3

  8. Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: implication for treatment of acute pancreatitis

    PubMed Central

    Tsang, Siu Wai; Guan, Yi-Fu; Wang, Juan; Bian, Zhao-Xiang; Zhang, Hong-Jie

    2016-01-01

    Trans-resveratrol is a natural stilbenoid possessing multifarious pharmacological benefits; however, when orally consumed, it is rapidly metabolised by colonic microflora and converted to dihydro-resveratrol. Thus, this microbial metabolite is of great therapeutic relevance. In the present study, upon the oral administration of dihydro-resveratrol (10–50 mg/kg), the severity of acute pancreatitis in the cerulein-treated rats was significantly ameliorated as evidenced by decreased α-amylase activities in the plasma and lessened oedema formation in the pancreatic parenchyma. In addition, the generation of intracellular reactive oxidative products, including malondialdehyde and protein carbonyls, was accordingly reduced, so as the production of pro-inflammatory cytokines. While inhibiting the activities of NADPH oxidase and myeloperoxidase, the depletion of glutathione was considerably restored. Importantly, the attenuation of pancreatic oxidative damage by dihydro-resveratrol was associated with a down-regulation of the nuclear factor-kappaB and phosphatidylinositol 3′-kinase-serine/threonine kinase signalling pathways. Furthermore, we demonstrated that the solubility of dihydro-resveratrol was at least 5 times higher than trans-resveratrol whilst exhibiting a much lower cytotoxicity. Collectively, the current findings accentuate new mechanistic insight of dihydro-resveratrol in pancreatic oxidative damage, and advocate its therapeutic potential for the management of acute pancreatitis, particularly for patients unresponsive to trans-resveratrol due to the lack of proper microbial strains. PMID:26971398

  9. Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: implication for treatment of acute pancreatitis.

    PubMed

    Tsang, Siu Wai; Guan, Yi-Fu; Wang, Juan; Bian, Zhao-Xiang; Zhang, Hong-Jie

    2016-03-14

    Trans-resveratrol is a natural stilbenoid possessing multifarious pharmacological benefits; however, when orally consumed, it is rapidly metabolised by colonic microflora and converted to dihydro-resveratrol. Thus, this microbial metabolite is of great therapeutic relevance. In the present study, upon the oral administration of dihydro-resveratrol (10-50 mg/kg), the severity of acute pancreatitis in the cerulein-treated rats was significantly ameliorated as evidenced by decreased α-amylase activities in the plasma and lessened oedema formation in the pancreatic parenchyma. In addition, the generation of intracellular reactive oxidative products, including malondialdehyde and protein carbonyls, was accordingly reduced, so as the production of pro-inflammatory cytokines. While inhibiting the activities of NADPH oxidase and myeloperoxidase, the depletion of glutathione was considerably restored. Importantly, the attenuation of pancreatic oxidative damage by dihydro-resveratrol was associated with a down-regulation of the nuclear factor-kappaB and phosphatidylinositol 3'-kinase-serine/threonine kinase signalling pathways. Furthermore, we demonstrated that the solubility of dihydro-resveratrol was at least 5 times higher than trans-resveratrol whilst exhibiting a much lower cytotoxicity. Collectively, the current findings accentuate new mechanistic insight of dihydro-resveratrol in pancreatic oxidative damage, and advocate its therapeutic potential for the management of acute pancreatitis, particularly for patients unresponsive to trans-resveratrol due to the lack of proper microbial strains.

  10. Effect of Oxidative Damage on the Stability and Dimerization of Superoxide Dismutase 1

    PubMed Central

    Petrov, Drazen; Daura, Xavier; Zagrovic, Bojan

    2016-01-01

    During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly linked to both familial and sporadic amyotrophic lateral sclerosis (ALS), a devastating, late-onset motor neuronal disease, with more than 150 ALS-related mutations in the SOD1 gene. Importantly, oxidatively damaged SOD1 aggregates have been observed in both familial and sporadic forms of the disease. However, the molecular mechanisms as well as potential implications of oxidative stress in SOD1-induced cytotoxicity remain elusive. In this study, we examine the effects of oxidative modification on SOD1 monomer and homodimer stability, the key molecular properties related to SOD1 aggregation. We use molecular dynamics simulations in combination with thermodynamic integration to study microscopic-level site-specific effects of oxidative “mutations” at the dimer interface, including lysine, arginine, proline and threonine carbonylation, and cysteine oxidation. Our results show that oxidative damage of even single residues at the interface may drastically destabilize the SOD1 homodimer, with several modifications exhibiting a comparable effect to that of the most drastic ALS-causing mutations known. Additionally, we show that the SOD1 monomer stability decreases upon oxidative stress, which may lead to partial local unfolding and consequently to increased aggregation propensity. Importantly, these results suggest that oxidative stress may play a key role in development of ALS, with the mutations in the SOD1 gene being an additional factor. PMID:27074676

  11. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli.

    PubMed

    Schalow, Brandy J; Courcelle, Charmain T; Courcelle, Justin

    2012-05-01

    Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.

  12. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-02-20

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1 - 42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-oxo-G base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1 - 42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1 - 42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1 - 42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1 - 42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1 - 42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  13. Noninvasive prediction of prostatic DNA damage by oxidative stress challenge of peripheral blood lymphocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To move closer to the goal of individualized risk prediction for prostate cancer, we used an in vivo canine model to evaluate whether genetic instability, expressed as the susceptibility of peripheral blood lymphocytes (PBLs) to oxidative stress-induced DNA damage, could identify those individuals w...

  14. Microfluidic array for simultaneous detection of DNA oxidation and DNA-adduct damage.

    PubMed

    Song, Boya; Shen, Min; Jiang, Di; Malla, Spundana; Mosa, Islam M; Choudhary, Dharamainder; Rusling, James F

    2016-10-21

    Exposure to chemical pollutants and pharmaceuticals may cause health issues caused by metabolite-related toxicity. This paper reports a new microfluidic electrochemical sensor array with the ability to simultaneously detect common types of DNA damage including oxidation and nucleobase adduct formation. Sensors in the 8-electrode screen-printed carbon array were coated with thin films of metallopolymers osmium or ruthenium bipyridyl-poly(vinylpyridine) chloride (OsPVP, RuPVP) along with DNA and metabolic enzymes by layer-by-layer electrostatic assembly. After a reaction step in which test chemicals and other necessary reagents flow over the array, OsPVP selectively detects oxidized guanines on the DNA strands, and RuPVP detects DNA adduction by metabolites on nucleobases. We demonstrate array performance for test chemicals including 17β-estradiol (E2), its metabolites 4-hydroxyestradiol (4-OHE2), 2-hydroxyestradiol (2-OHE2), catechol, 2-nitrosotoluene (2-NO-T), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 2-acetylaminofluorene (2-AAF). Results revealed DNA-adduct and oxidation damage in a single run to provide a metabolic-genotoxic chemistry screen. The array measures damage directly in unhydrolyzed DNA, and is less expensive, faster, and simpler than conventional methods to detect DNA damage. The detection limit for oxidation is 672 8-oxodG per 10(6) bases. Each sensor requires only 22 ng of DNA, so the mass detection limit is 15 pg (∼10 pmol) 8-oxodG.

  15. Oxidative DNA damage in XPC-knockout and its wild mice treated with equine estrogen.

    PubMed

    Okamoto, Yoshinori; Chou, Pei-Hsin; Kim, Sung Yeon; Suzuki, Naomi; Laxmi, Y R Santosh; Okamoto, Kanako; Liu, Xiaoping; Matsuda, Tomonari; Shibutani, Shinya

    2008-05-01

    Long-term hormone replacement therapy with equine estrogens is associated with a higher risk of breast, ovarian, and endometrial cancers. Reactive oxygen species generated through redox cycling of equine estrogen metabolites may damage cellular DNA. Such oxidative stress may be linked to the development of cancers in reproductive organs. Xeroderma pigmentosa complementation group C-knockout ( Xpc-KO) and wild-type mice were treated with equilenin (EN), and the formation of 7,8-dihydro-8-oxodeoxyguanosine (8-oxodG) was determined as a marker of typical oxidative DNA damage, using liquid chromatography electrospray tandem mass spectrometry. The level of hepatic 8-oxodG in wild-type mice treated with EN (5 or 50 mg/kg/day) was significantly increased by approximately 220% after 1 week, as compared with mice treated with vehicle. In the uterus also, the level of 8-oxodG was significantly increased by more than 150% after 2 weeks. Similar results were observed with Xpc-KO mice, indicating that Xpc does not significantly contribute to the repair of oxidative damage. Oxidative DNA damage generated by equine estrogens may be involved in equine estrogen carcinogenesis.

  16. Chaga mushroom extract inhibits oxidative DNA damage in lymphocytes of patients with inflammatory bowel disease.

    PubMed

    Najafzadeh, Mojgan; Reynolds, P Dominic; Baumgartner, Adolf; Jerwood, David; Anderson, Diana

    2007-01-01

    Inflammatory Bowel Disease (IBD) is partly caused by oxidative stress from free radicals and reduced antioxidant levels. Using hydrogen peroxide to induce oxidative stress in vitro in peripheral lymphocytes we investigated the induction of DNA damage supplemented with ethanolic extract of Chaga mushroom as a protective antioxidant. Lymphocytes were obtained from 20 IBD patients and 20 healthy volunteers. For treatment, a constant H_{2}O_{2 } dose (50 microg/ml) was used with variable doses of Chaga extract (10-500 microg/ml). DNA damage was evaluated in 50 cells per individual and dose using the Comet assay (making 1000 observations per experimental point ensuring appropriate statistical power). Chaga supplementation resulted in a 54.9% (p < 0.001) reduction of H_{2}O_{2 } induced DNA damage within the patient group and 34.9% (p < 0.001) within the control group. Lymphocytes from Crohn's disease (CD) patients had a greater basic DNA damage than Ulcerative Colitis (UC) patients (p < 0.001). Conclusively, Chaga extract reduces oxidative stress in lymphocytes from IBD patients and also healthy individuals when challenged in vitro. Thus, Chaga extract could be a possible and valuable supplement to inhibit oxidative stress in general.

  17. Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks.

    PubMed

    Lai, Ching-Huang; Jaakkola, Jouni J K; Chuang, Chien-Yi; Liou, Saou-Hsing; Lung, Shih-Chun; Loh, Ching-Hui; Yu, Dah-Shyong; Strickland, Paul T

    2013-01-01

    Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.

  18. Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage

    PubMed Central

    Bhattacharya, Anannya; Hegazy, Ahmed N.; Deigendesch, Nikolaus; Kosack, Lindsay; Cupovic, Jovana; Kandasamy, Richard K.; Hildebrandt, Andrea; Merkler, Doron; Kühl, Anja A.; Vilagos, Bojan; Schliehe, Christopher; Panse, Isabel; Khamina, Kseniya; Baazim, Hatoon; Arnold, Isabelle; Flatz, Lukas; Xu, Haifeng C.; Lang, Philipp A.; Aderem, Alan; Takaoka, Akinori; Superti-Furga, Giulio; Colinge, Jacques; Ludewig, Burkhard; Löhning, Max; Bergthaler, Andreas

    2015-01-01

    Summary Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1−/− mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1−/− and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. Video Abstract PMID:26588782

  19. Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis.

    PubMed

    Xu, Mengchuan; Rui, Dongsheng; Yan, Yizhong; Xu, Shangzhi; Niu, Qiang; Feng, Gangling; Wang, Yan; Li, Shugang; Jing, Mingxia

    2017-03-01

    In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As(3+) than to As(5+). Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.

  20. Oxidative damage and sensitivity to nociceptive stimulus and opioids in aging rats

    PubMed Central

    Raut, Atul; Ratka, Anna

    2009-01-01

    Oxidative stress contributes to aging and may cause alterations in pain and analgesia. Knowledge about effects of oxidative stress on the opioid system is very limited. This project was designed to determine the relationship between age-related oxidative damage and opioid antinocicpetion. Three age groups of male Fischer 344 rats were tested for pain sensitivity and responses to morphine and fentanyl using the hot plate method. Oxidative stress markers in various brain regions were measured. With advancing age, nociceptive threshold and antinociceptive effects of opioids decreased significantly. There was a significant negative correlation between morphine antinociception and protein oxidation in cortex, striatum, and midbrain (r2 = 0.73, 0.87, and 0.77, respectively), and lipid peroxidation in cerebral cortex, hippocampus, and striatum (r2 = 0.73, 0.61 and 0.71, respectively). Similar correlation was observed between oxidative stress markers and fentanyl antinociception. These findings demonstrate that the age-related increase in oxidative damage in brain is associated with a significant decrease in the antinociceptive effects of opioids. PMID:17997197

  1. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    SciTech Connect

    Liu Shukun; Wu Mei; Zhang Zunzhen

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here, cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.

  2. Platelet-rich plasma reduces the oxidative damage determined by a skeletal muscle contusion in rats.

    PubMed

    Martins, Rodrigo Pereira; Hartmann, Diane Duarte; de Moraes, Jefferson Potiguara; Soares, Felix Alexandre Antunes; Puntel, Gustavo Orione

    2016-12-01

    Platelet-rich plasma (PRP) has received increasing attention and is widely used in clinical practice in order to stimulate human tissue healing. Contusions are very common injuries observed in sports and affect the function of the musculoskeletal system. This study investigated the effects of PRP on the oxidative damage determined by a contusion induced in gastrocnemius muscle of rats. PRP was injected intramuscularly immediately after injury and every 48 h, and the biochemical analysis was performed 1, 3, 5, or 7 days after the contusion onset in order to evaluate the changes characteristics of the healing process. The contusion increased the levels of oxidative stress markers such as thiobarbituric acid reactive substances and oxidized dichlorofluorescein both in skeletal muscle tissue and erythrocytes preparations, and PRP treatment significantly reduced these oxidative damage markers. Furthermore, the contusion decreased the cellular viability in the site of the lesion and PRP was effective in diminishing this effect. Moreover, PRP increased the levels of enzymatic antioxidants superoxide dismutase and catalase activities in the injured muscle, and also the non-protein thiols (-SH) group levels in erythrocytes. In conclusion PRP, in the form that was used in this study, was able to modulate the oxidative damage determined by a classical skeletal muscle injury possibly by reducing the impairment of myocytes mitochondrial function and improving their endogenous antioxidant defense systems.

  3. Arsenosugar induced blood and brain oxidative stress, DNA damage and neurobehavioral impairments.

    PubMed

    Bin Sayeed, Muhammad Shahdaat; Ratan, Md; Hossen, Farhad; Hassan, Faizule; Faisal, Mohammad; Kadir, Mohammad Fahim

    2013-02-01

    The effect of Arsenosugar on motor function and contextual memory-related to place and event; the extent of DNA damage and oxidative stress in male swiss albino mice was investigated. Passive avoidance test was used for memory test; rota motor test was used for motor function. Several biochemical parameters were used for assessing oxidative stress due to arsenosugar ingestion. Decreased passive avoidance time and decreased retention time in rotating rod indicated disruption of normal neurobehavior. Significant dose-dependent DNA damage was found in mice blood and brain. Decreased super oxide dismutase, increased lipid peroxidation, decreased protein sulfohydryl content, increased protein carbonyl content in blood and hippocampal tissue; glutathione in blood and glutathione peroxidase in hippocampal tissue indicated the ability of arsenosugar to cause oxidative stress. This study concludes with evidence that arsenosugar ingestion causes higher oxidative stress, increases DNA damage in the blood and hippocampus in vivo. This might be responsible for the dysfunction of cognitive and motor functions. However, further investigation is suggested for deciphering the biomolecular mechanism.

  4. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation.

    PubMed

    Niles, Jacquin C; Wishnok, John S; Tannenbaum, Steven R

    2006-03-01

    Peroxynitrite induces DNA base damage predominantly at guanine (G) and 8-oxoguanine (8-oxoG) nucleobases via oxidation reactions. Nitration products are also observed, consistent with the generation of radical intermediates that can recombine with the (.)NO(2) formed during peroxynitrite degradation. The neutral G radical, G(.), reacts with (.)NO(2) to yield 8-nitroguanine (8-nitroG) and 5-nitro-4-guanidinohydantoin (NI), while for 8-oxoG we have proposed a reactive guanidinylidene radical intermediate. The products generated during peroxynitrite-mediated 8-oxoG oxidation depend on oxidant flux, with dehydroguanidinohydantoin (DGh), 2,4,6-trioxo-[1,3,5]triazinane-1-carboxamidine (CAC) and NO(2)-DGh predominating at high fluxes and spiroiminodihydantoin (Sp), guanidinohydantoin (Gh) and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) predominating at low fluxes. Both product sets are observed at intermediate fluxes. It is therefore important in model systems to ensure that the relative concentrations are well controlled to minimize competing reactions that may not be relevant in vivo. Increasingly sophisticated systems for modeling peroxynitrite production in vivo are being developed and these should help with predicting the products most likely to be formed in vivo. Together with the emerging information on the genotoxic and mutational characteristics of the individual oxidation products, it may be found that the extent of tissue damage, mutational spectra and, hence, cancer risk may change as a function of peroxynitrite fluxes as different product combinations predominate.

  5. Hygroscopic Properties of Oxidation Products of Terpenes

    NASA Astrophysics Data System (ADS)

    Lodhi, N. A.; Mozurkewich, M.

    2009-05-01

    To understand the hygroscopic growth factor (HGF) of secondary organic aerosol (SOA) formed by the oxidation of terpenes, a series of seeded and nucleation experiments were conducted at the York University smog chamber facility. Oxidation of terpenes by OH was carried out in a dry chamber (RH˜5%). In nucleation experiments particles formed were pure organic and their hygroscopic growth factor was measured as function of relative humidity by using a tandem differential mobility analyzer (HTDMA). Humidograms of these particles don't show any deliquescence or efflorescence. Humidograms of pure organic particles formed by the oxidation products of β-pinene show slight but smooth take up of water while particles formed by α-pinene and δ3-carene exhibit very little or no water uptake. Experimental results were fitted with an empirical equation and the hygroscopicity parameter for the particles formed by β-pinene was found to be 0.019±0.009. To examine the interaction of organic and inorganic phases, monodisperse ammonium sulfate seed particles injected into the smog chamber were allowed to undergo condensational growth due to partitioning of terpenes oxidation products from the gas phase. Humidograms of seeded particles show both smooth hygroscopic growth and deliquescence. These experimental results were fitted with a numerical model that accounts for water uptake by both phases and for the gradual dissolution of ammonium sulfate. The results show that volume additivity is a reasonable approximation for this system and that HTDMA results can be inverted to obtain the organic hygroscopicity parameter and the relative amounts of organic and inorganic material

  6. Fission products from the damaged Fukushima reactor observed in Hungary.

    PubMed

    Bihari, Árpád; Dezső, Zoltán; Bujtás, Tibor; Manga, László; Lencsés, András; Dombóvári, Péter; Csige, István; Ranga, Tibor; Mogyorósi, Magdolna; Veres, Mihály

    2014-01-01

    Fission products, especially (131)I, (134)Cs and (137)Cs, from the damaged Fukushima Dai-ichi nuclear power plant (NPP) were detected in many places worldwide shortly after the accident caused by natural disaster. To observe the spatial and temporal variation of these isotopes in Hungary, aerosol samples were collected at five locations from late March to early May 2011: Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI, Debrecen, East Hungary), Paks NPP (Paks, South-Central Hungary) as well as at the vicinity of Aggtelek (Northeast Hungary), Tapolca (West Hungary) and Bátaapáti (Southwest Hungary) settlements. In addition to the aerosol samples, dry/wet fallout samples were collected at ATOMKI, and airborne elemental iodine and organic iodide samples were collected at Paks NPP. The peak in the activity concentration of airborne (131)I was observed around 30 March (1-3 mBq m(-3) both in aerosol samples and gaseous iodine traps) with a slow decline afterwards. Aerosol samples of several hundred cubic metres of air showed (134)Cs and (137)Cs in detectable amounts along with (131)I. The decay-corrected inventory of (131)I fallout at ATOMKI was 2.1±0.1 Bq m(-2) at maximum in the observation period. Dose-rate contribution calculations show that the radiological impact of this event at Hungarian locations was of no considerable concern.

  7. Global oceanic production of nitrous oxide.

    PubMed

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  8. Global oceanic production of nitrous oxide

    PubMed Central

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  9. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-01-01

    Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly

  10. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress.

    PubMed

    Azad, M A K; Kikusato, M; Zulkifli, I; Toyomizu, M

    2013-01-01

    1. The present study was designed to achieve a reduction of reactive oxygen species (ROS)-induced oxidative damage to skeletal muscle and to improve the performance of broiler chickens exposed to chronic heat stress. 2. Chickens were given a control diet with normal drinking water, or diets supplemented with cashew nut shell liquid (CNSL) or grape seed extract (GSE), or a control diet with electrolysed reduced water (ERW) for 19 d after hatch. Thereafter, chickens were exposed to a temperature of either 34°C continuously for a period of 5 d, or maintained at 24°C, on the same diets. 3. The control broilers exposed to 34°C showed decreased weight gain and feed consumption and slightly increased ROS production and malondialdehyde (MDA) concentrations in skeletal muscle. The chickens exposed to 34°C and supplemented with ERW showed significantly improved growth performance and lower ROS production and MDA contents in tissues than control broilers exposed to 34°C. Following heat exposure, CNSL chickens performed better with respect to weight gain and feed consumption, but still showed elevated ROS production and skeletal muscle oxidative damage. GSE chickens did not exhibit improved performance or reduced skeletal muscle oxidative damage. 4. In conclusion, this study suggests that ERW could partially inhibit ROS-induced oxidative damage to skeletal muscle and improve growth performance in broiler chickens under medium-term chronic heat treatment.

  11. Antioxidant activity and protective effects of Trapa japonica pericarp extracts against tert-butylhydroperoxide-induced oxidative damage in Chang cells.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Han, Young-Ki; Kwon, Hyuck-Ju; Hong, Heeok; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2014-02-01

    In this study, the antioxidant properties of Trapa japonica pericarp extracts were evaluated through several biochemical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), alkyl radical scavenging activity, hydroxyl radical scavenging, ferric reducing antioxidant power (FRAP) assay, ABTS radical scavenging activity and oxygen radical absorbance capacity (ORAC). The antioxidant activities were compared with other natural and synthetic antioxidants. The results showed that higher radical scavenging activity and antioxidant capacity in FRAP than those of vitamin C as a positive control. T. japonica pericarp extracts have antioxidant properties through its ability to prevent tert-butylhydroperoxide (t-BHP)-induced toxicity which enhance the cell viability, reduce reactive oxygen species (ROS) production, inhibits of oxidative damage and mitochondria dysfunction in Chang liver cells. Therefore, based on these finding, it seems reasonable to suggest that T. japonica pericarp extracts has the potential to protect liver against t-BHP-induced cell damage and should be considered as a potential functional food.

  12. A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria.

    PubMed

    Matthews, Philip G D; Snelling, Edward P; Seymour, Roger S; White, Craig R

    2012-08-23

    The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O(2) levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O(2) partial pressures (PO(2) ≈ 2-5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal PO(2) even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient PO(2) up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal PO(2) that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal PO(2) achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O(2) requirements by maintaining PO(2) above a critical level, not defend against high levels of O(2).

  13. FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy

    PubMed Central

    Shen, Ming; Jiang, Yi; Guan, Zhiqiang; Cao, Yan; Sun, Shao-chen; Liu, Honglin

    2016-01-01

    Oxidative stress has been implicated in triggering granulosa cell (GC) death during follicular atresia. Recent studies suggested that follicle-stimulating hormone (FSH) has a pivotal role in protecting GCs from oxidative injury, although the exact mechanism remains largely unknown. Here, we report that FSH promotes GC survival by inhibiting oxidative stress-induced mitophagy. The loss of GC viability caused by oxidative stress was significantly reduced after FSH treatment, which was correlated with impaired activation of mitophagy upon oxidative stress. Compared with FSH treatment, blocking mitophagy displayed approximate preventive effect on oxidative stress-induced GC death, but FSH did not further restore viability of cells pretreated with mitophagy inhibitor. Importantly, FSH suppressed the induction of serine/threonine kinase PINK1 during oxidative stress. This inhibited the mitochondrial translocation of the E3 ligase Parkin, which is required for the subsequent clearance of mitochondria, and ultimately cell death via mitophagy. In addition, knocking down PINK1 using RNAi confirmed the role of the FSH-PINK1-Parkin-mitophagy pathway in regulating GC survival under oxidative conditions. These findings introduce a novel physiological function of FSH in protecting GCs against oxidative damage by targeting PINK1-Parkin-mediated mitophagy. PMID:27901103

  14. Effects of Neurological Damage on Production of Formulaic Language

    ERIC Educational Resources Information Center

    Sidtis, Diana; Canterucci, Gina; Katsnelson, Dora

    2009-01-01

    Early studies reported preserved formulaic language in left hemisphere damaged subjects and reduced incidence of formulaic expressions in the conversational speech of stroke patients with right hemispheric damage. Clinical observations suggest a possible role also of subcortical nuclei. This study examined formulaic language in the spontaneous…

  15. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Y, Al Omar Suliman; Ahamed, Maqusood; Siddiqui, Maqsood A; Al-Khedhairy, Abdulaziz A

    2013-01-01

    Background Cobalt oxide nanoparticles (Co3O4NPs) are increasingly recognized for their utility in biological applications, magnetic resonance imaging, and drug delivery. However, little is known about the toxicity of Co3O4NPs in human cells. Methods We investigated the possible mechanisms of genotoxicity induced by Co3O4NPs in human hepatocarcinoma (HepG2) cells. Cell viability, reactive oxygen species (ROS), glutathione, thiobarbituric acid reactive substance, apoptosis, and DNA damage were assessed in HepG2 cells after Co3O4NPs and Co2+ exposure. Results Co3O4NPs elicited a significant (P < 0.01) reduction in glutathione with a concomitant increase in lipid hydroperoxide, ROS generation, superoxide dismutase, and catalase activity after 24- and 48-hour exposure. Co3O4NPs had a mild cytotoxic effect in HepG2 cells; however, it induced ROS and oxidative stress, leading to DNA damage, a probable mechanism of genotoxicity. The comet assay showed a statistically significant (P < 0.01) dose- and time-related increase in DNA damage for Co3O4NPs, whereas Co2+ induced less change than Co3O4NPs but significantly more than control. Conclusion Our results demonstrated that Co3O4NPs induced cytotoxicity and genotoxicity in HepG2 cells through ROS and oxidative stress. PMID:23326189

  16. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    PubMed Central

    Li, Y.; Ma, Q. G.; Zhao, L. H.; Guo, Y. Q.; Duan, G. X.; Zhang, J. Y.; Ji, C.

    2014-01-01

    Alpha-lipoic acid (α-LA) is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1). Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05) change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver. PMID:25050030

  17. Cytokine and nitric oxide production following severe envenomation.

    PubMed

    Petricevich, Vera L

    2004-09-01

    Venom is a complex mixture of many substances such as toxins, enzymes, growth factor activators, and inhibitors are particularly responsible for the deleterious effects of cells. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Envenomation by bees, scorpions, snakes, spiders and wasps involves the activation of the inflammatory response with the release and activation of pro-inflammatory cytokines and other mediators, such as nitric oxide. Recently, a battery of cytokines produced by activated T cells or macrophages have been added to in envenomations. Cytokines are important for the interactions between cells in the immune and inflammatory responses. Although the pathophysiology of envenomation is not fully understood, venom and immune responses are known to trigger the release of cytokines and nitric oxide. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and, as well as a host of physiologic events such as activation of vasodilation, hypotension and increased nitric oxide production. Accumulating evidence indicates that these cytokines play important roles in mediating cell recruitment and activation necessary for inflammation and the repair of tissue damage. A better understanding of the involvement of the inflammatory system in different envenoming syndromes may have future therapeutic benefits.

  18. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    SciTech Connect

    Zana, Marianna . E-mail: mzana@freemail.hu; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Vetro, Agnes; Pakaski, Magdolna; Janka, Zoltan; Kalman, Janos; Szabo, Krisztina; Szucs, Peter; Varkonyi, Agnes; Boda, Krisztina; Rasko, Istvan

    2006-06-30

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults.

  19. Protective Effects of Extracts from Fructus rhodomyrti against Oxidative DNA Damage In Vitro and In Vivo

    PubMed Central

    Ke, Yuebin; Xu, Xinyun; Wu, Shuang; Huang, Juan; Misra, Hara; Li, Yunbo

    2013-01-01

    Objective. To evaluate the potential protective effects of extracts from Fructus rhodomyrti (FR) against oxidative DNA damage using a cellular system and the antioxidant ability on potassium bromate- (KBrO3-) mediated oxidative stress in rats. Methods. The effects of FR on DNA damage induced by hydrogen peroxide (H2O2) were evaluated by comet assay in primary spleen lymphocytes cultures. The effects of FR on the activities of SOD, CAT, and GPx and the levels of GSH, hydroperoxides, and 8-OHdG were determined in the plasma and tissues of rats treated with KBrO3. Results. FR was shown to effectively protect against DNA damage induced by H2O2  in vitro, and the maximum protective effect was observed when FR was diluted 20 times. Endogenous antioxidant status, namely, the activities of SOD, CAT, and GPx and the levels of GSH were significantly decreased in the plasma, the liver, and the kidney of the KBrO3-treated rats, while the pretreatment of FR prevented the decreases of these parameters. In addition, the pretreatment of FR was also able to prevent KBrO3-induced increases in the levels of hydroperoxides and 8-OHdG in the plasma, the liver, and the kidney in rats. Conclusions. Our findings suggested that FR might act as a chemopreventive agent with antioxidant properties offering effective protection against oxidative DNA damage in a concentration-dependent manner in vitro and in vivo. PMID:24089629

  20. CYP2E1-dependent hepatotoxicity and oxidative damage after ethanol administration in human primary hepatocytes

    PubMed Central

    Liu, Lie-Gang; Yan, Hong; Yao, Ping; Zhang, Wen; Zou, Li-Jun; Song, Fang-Fang; Li, Ke; Sun, Xiu-Fa

    2005-01-01

    AIM: To observe the relationship between ethanol-induced oxidative damage in human primary cultured hepatocytes and cytochrome P450 2E1 (CYP2E1) activity, in order to address if inhibition of CYP2E1 could attenuate ethanol-induced cellular damage. METHODS: The dose-dependent (25-100 mmol/L) and time-dependent (0-24 h) exposures of primary human cultured hepatocytes to ethanol were carried out. CYP2E1 activity and protein expression were detected by spectrophotometer and Western blot analysis respectively. Hepatotoxicity was investigated by determination of lactate dehydrogenase (LDH) and aspartate transaminase (AST) level in hepatocyte culture supernatants, as well as the intracellular formation of malondialdehyde (MDA). RESULTS: A dose-and time-dependent response between ethanol exposure and CYP2E1 activity in human hepatocytes was demonstrated. Moreover, there was a time-dependent increase of CYP2E1 protein after 100 mmol/L ethanol exposure. Meanwhile, ethanol exposure of hepatocytes caused a time-dependent increase of cellular MDA level, LDH, and AST activities in supernatants. Furthermore, the inhibitor of CYP2E1, diallyl sulfide (DAS) could partly attenuate the increases of MDA, LDH, and AST in human hepatocytes. CONCLUSION: A positive relationship between ethanol-induced oxidative damage in human primary cultured hepatocytes and CYP2E1 activity was exhibited, and the inhibition of CYP2E1 could partly attenuate ethanol-induced oxidative damage. PMID:16052683

  1. Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay.

    PubMed

    Park, Yoo Kyoung; Lee, Hyang Burm; Jeon, Eun-Jae; Jung, Hack Sung; Kang, Myung-Hee

    2004-01-01

    The Chaga mushroom (Inonotus obliquus) is claimed to have beneficial properties for human health, such as anti-bacterial, anti-allergic, anti-inflammatory and antioxidant activities. The antioxidant effects of the mushroom may be partly explained by protection of cell components against free radicals. We evaluated the effect of aqueous Chaga mushroom extracts for their potential for protecting against oxidative damage to DNA in human lymphocytes. Cells were pretreated with various concentrations (10, 50, 100 and 500 microg/mL) of the extract for 1 h at 37 degrees C. Cells were then treated with 100 microM of H2O2 for 5 min as an oxidative stress. Evaluation of oxidative damage was performed using single-cell gel electrophoresis for DNA fragmentation (Comet assay). Using image analysis, the degree of DNA damage was evaluated as the DNA tail moment. Cells pretreated with Chaga extract showed over 40% reduction in DNA fragmentation compared with the positive control (100 micromol H2O2 treatment). Thus, Chaga mushroom treatment affords cellular protection against endogenous DNA damage produced by H2O2.

  2. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-12-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by {approx} 1.3 fold in the nuclear protein extracts (NE) and {approx} 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was {approx} 1.5 fold higher, whereas in the MEs it was {approx} 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of

  3. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome.

    PubMed

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-08-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.

  4. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome

    PubMed Central

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. PMID:24769161

  5. Aging and luteinizing hormone effects on reactive oxygen species production and DNA damage in rat Leydig cells.

    PubMed

    Beattie, Matthew C; Chen, Haolin; Fan, Jinjiang; Papadopoulos, Vassilios; Miller, Paul; Zirkin, Barry R

    2013-04-01

    We observed previously that after long-term suppression of luteinizing hormone (LH) and thus of Leydig cell steroidogenesis, restimulation of the Leydig cells by LH resulted in significantly higher testosterone production than by age-matched cells from control rats. These studies suggest that stimulation over time may elicit harmful effects on the steroidogenic machinery, perhaps through alteration of the intracellular oxidant-to-antioxidant balance. Herein we compared the effects of LH stimulation on stress response genes, formation of intracellular reactive oxygen species (ROS), and ROS-induced damage to ROS-susceptible macromolecules (DNA) in young and in aged cells. Microarray analysis indicated that LH stimulation resulted in significant increases in expression of genes associated with stress response and antiapoptotic pathways. Short-term LH treatment of primary Leydig cells isolated from young rats resulted in transiently increased ROS levels compared to controls. Aged Leydig cells also showed increased ROS soon after LH stimulation. However, in contrast to the young cells, ROS production peaked later and the time to recovery was increased. In both young and aged cells, treatment with LH resulted in increased levels of DNA damage but significantly more so in the aged cells. DNA damage levels in response to LH and the levels of intracellular ROS were highly correlated. Taken together, these results indicate that LH stimulation causes increased ROS production by young and aged Leydig cells and that while DNA damage occurs in cells of both ages, there is greater damage in the aged cells.

  6. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides.

    PubMed

    Zepeda-Arce, Rigoberto; Rojas-García, Aurora Elizabeth; Benitez-Trinidad, Alma; Herrera-Moreno, José Francisco; Medina-Díaz, Irma Martha; Barrón-Vivanco, Briscia S; Villegas, Germán Pier; Hernández-Ochoa, Isabel; Sólis Heredia, María de Jesús; Bernal-Hernández, Yael Y

    2017-02-24

    The indiscriminate use of pesticides in agriculture and public health campaigns has been associated with an increase of oxidative stress and DNA damage, resulting in health outcomes. Some defense mechanisms against free radical-induced oxidative damage include the antioxidant enzyme systems. The aim of this study was to determine the levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and the relationship of antioxidant enzyme levels with DNA damage among sprayers (workers) occupationally exposed to pesticides. The determinations of MDA and antioxidant enzymes were performed spectrophotometrically. The genotoxic effects were evaluated using the comet assay. The results showed a marginally significant decrease in SOD and CAT activities in the high exposure group compared to the control group. For MDA, statistically significant differences were found among people working long term vs. those working temporarily (P = 0.02) as sprayers. In the moderate exposure group, a positive correlation was observed between MDA levels and GPx activity. In the high exposure group, a negative correlation was observed between GR and CAT activities, and between MDA levels and GPx activities. Furthermore, in the high exposure group, a positive correlation between DNA damage parameters and MDA levels was observed. The results suggest an important role of antioxidant enzymes for the protection of DNA damage caused by occupational exposure to pesticides.

  7. Magnesium Supplementation Diminishes Peripheral Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man

    PubMed Central

    Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana

    2016-01-01

    Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258

  8. Modafinil effects on behavior and oxidative damage parameters in brain of wistar rats.

    PubMed

    Ornell, Felipe; Valvassori, Samira S; Steckert, Amanda V; Deroza, Pedro F; Resende, Wilson R; Varela, Roger B; Quevedo, João

    2014-01-01

    The effects of modafinil (MD) on behavioral and oxidative damage to protein and lipid in the brain of rats were evaluated. Wistar rats were given a single administration by gavage of water or MD (75, 150, or 300 mg/kg). Behavioral parameters were evaluated in open-field apparatus 1, 2, and 3 h after drug administration. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation were measured in the brain. MD increased locomotor activity at the highest dose 1 and 3 h after administration. MD administration at the dose of 300 mg/kg increased visits to the center of open-field 1 h after administration; however, 3 h after administration, all administered doses of MD increased visits to the open-field center. MD 300 mg/kg increased lipid damage in the amygdala, hippocampus, and striatum. Besides, MD increased protein damage in the prefrontal cortex, amygdala, and hippocampus; however, this effect varies depending on the dose administered. In contrast, the administration of MD 75 and 300 mg/kg decreased the protein damage in the striatum. This study demonstrated that the MD administration induces behavioral changes, which was depending on the dose used. In addition, the effects of MD on oxidative damage parameters seemed to be in specific brain region and doses.

  9. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    PubMed

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  10. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage.

    PubMed

    Schürmann, Nura; Forrer, Pascal; Casse, Olivier; Li, Jiagui; Felmy, Boas; Burgener, Anne-Valérie; Ehrenfeuchter, Nikolaus; Hardt, Wolf-Dietrich; Recher, Mike; Hess, Christoph; Tschan-Plessl, Astrid; Khanna, Nina; Bumann, Dirk

    2017-01-23

    Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.

  11. Modafinil Effects on Behavior and Oxidative Damage Parameters in Brain of Wistar Rats

    PubMed Central

    Valvassori, Samira S.; Steckert, Amanda V.; Deroza, Pedro F.; Resende, Wilson R.; Varela, Roger B.

    2014-01-01

    The effects of modafinil (MD) on behavioral and oxidative damage to protein and lipid in the brain of rats were evaluated. Wistar rats were given a single administration by gavage of water or MD (75, 150, or 300 mg/kg). Behavioral parameters were evaluated in open-field apparatus 1, 2, and 3 h after drug administration. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation were measured in the brain. MD increased locomotor activity at the highest dose 1 and 3 h after administration. MD administration at the dose of 300 mg/kg increased visits to the center of open-field 1 h after administration; however, 3 h after administration, all administered doses of MD increased visits to the open-field center. MD 300 mg/kg increased lipid damage in the amygdala, hippocampus, and striatum. Besides, MD increased protein damage in the prefrontal cortex, amygdala, and hippocampus; however, this effect varies depending on the dose administered. In contrast, the administration of MD 75 and 300 mg/kg decreased the protein damage in the striatum. This study demonstrated that the MD administration induces behavioral changes, which was depending on the dose used. In addition, the effects of MD on oxidative damage parameters seemed to be in specific brain region and doses. PMID:25431526

  12. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  13. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  14. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  15. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina.

    PubMed

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and "hot spot" extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes.

  16. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.

  17. Oxidative damage in gills and liver in Nile tilapia (Oreochromis niloticus) exposed to diazinon.

    PubMed

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; González-Jaime, F; Vega-López, A; Becerril-Villanueva, E; Pavón, L; Girón-Pérez, M I

    2016-10-01

    Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development.

  18. Deoxyamphimedine, a Pyridoacridine Alkaloid, Damages DNA via the Production of Reactive Oxygen Species

    PubMed Central

    Marshall, Kathryn M.; Andjelic, Cynthia D.; Tasdemir, Deniz; Concepción, Gisela P.; Ireland, Chris M.; Barrows, Louis R.

    2009-01-01

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity. PMID:19597581

  19. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA via the production of reactive oxygen species.

    PubMed

    Marshall, Kathryn M; Andjelic, Cynthia D; Tasdemir, Deniz; Concepción, Gisela P; Ireland, Chris M; Barrows, Louis R

    2009-05-25

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity.

  20. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells.

    PubMed

    Kong, Kin Weng; Mat-Junit, Sarni; Aminudin, Norhaniza; Hassan, Fouad Abdulrahman; Ismail, Amin; Abdul Aziz, Azlina

    2016-01-01

    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage.

  1. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells

    PubMed Central

    Kong, Kin Weng; Mat-Junit, Sarni; Aminudin, Norhaniza; Hassan, Fouad Abdulrahman; Ismail, Amin

    2016-01-01

    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage. PMID:26839752

  2. Hesperidin methyl chalcone inhibits oxidative stress and inflammation in a mouse model of ultraviolet B irradiation-induced skin damage.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2015-07-01

    Hesperidin methyl chalcone (HMC) is a safe flavonoid used to treat chronic venous diseases, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress have never been described in vivo. Thus, the purpose of this study was to evaluate the effects of systemic administration of HMC in skin oxidative stress and inflammation induced by UVB irradiation. To induce skin damage, hairless mice were exposed to an acute UVB irradiation dose of 4.14 J/cm(2), and the dorsal skin samples were collected to evaluate oxidative stress and inflammatory response. The intraperitoneal treatment with HMC at the dose of 300 mg/kg inhibited UVB irradiation-induced skin edema, neutrophil recruitment, and matrix metalloproteinase-9 activity. HMC also protected the skin from UVB irradiation-induced oxidative stress by maintaining ferric reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability and antioxidant levels (reduced glutathione and catalase). Corroborating, HMC inhibited UVB irradiation-induced superoxide anion generation and gp91phox (NADPH oxidase subunit) mRNA expression. Furthermore, the antioxidant effect of HMC resulted in lower production of inflammatory mediators, including lipid hydroperoxides and a wide range of cytokines. Taken together, these results unveil a novel applicability of HMC in the treatment of UVB irradiation-induced skin inflammation and oxidative stress.

  3. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of UV-induced melanoma in mice

    PubMed Central

    Cotter, Murray A.; Thomas, Joshua; Cassidy, Pamela; Robinette, Kyle; Jenkins, Noah; Scott, R. Florell; Leachman, Sancy; Samlowski, Wolfram E.; Grossman, Douglas

    2008-01-01

    UV radiation is the major environmental risk factor for melanoma and a potent inducer of oxidative stress, which is implicated in the pathogenesis of several malignancies. We evaluated whether the thiol antioxidant N-acetylcysteine (NAC) could protect melanocytes from UV-induced oxidative stress/damage in vitro and from UV-induced melanoma in vivo. In melan-a cells, a mouse melanocyte line, NAC (1–10 mM) conferred protection from several UV-induced oxidative sequelae including production of intracellular peroxide, formation of the signature oxidative DNA lesion 8-oxoguanine (8-OG), and depletion of free reduced thiols (primarily glutathione). Mice transgenic for hepatocyte growth factor and Survivin, previously shown to develop melanoma following a single neonatal dose of UV irradiation, were administered NAC (7 mg/ml, mother’s drinking water) transplacentally and through nursing until two weeks after birth. Delivery of NAC in this manner reduced thiol depletion and blocked formation of 8-OG in skin following neonatal UV treatment. Mean onset of UV-induced melanocytic tumors was significantly delayed in NAC-treated compared to control mice (21 vs. 14 weeks, p=0.0003). Our data highlight the potential importance of oxidative stress in the pathogenesis of melanoma, and suggest that NAC may be useful as a chemopreventive agent. PMID:17908992

  4. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function.

    PubMed

    Shinomol, George Kunnel; Raghunath, Narayanareddy; Bharath, Muchukunte Mukunda Srinivas; Muralidhara

    2013-03-01

    Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.

  5. Curcumin attenuates oxidative stress following downhill running-induced muscle damage.

    PubMed

    Kawanishi, Noriaki; Kato, Kouki; Takahashi, Masaki; Mizokami, Tsubasa; Otsuka, Yoshihiko; Imaizumi, Atsushi; Shiva, Daisuke; Yano, Hiromi; Suzuki, Katsuhiko

    2013-11-22

    Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, -15% grade on the treadmill for 150 min. Curcumin (3mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.

  6. A review of the impact of oxidative stress and some antioxidant therapies on renal damage.

    PubMed

    Tamay-Cach, F; Quintana-Pérez, J C; Trujillo-Ferrara, J G; Cuevas-Hernández, R I; Del Valle-Mondragón, L; García-Trejo, E M; Arellano-Mendoza, M G

    2016-01-01

    An increase in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to complications during chronic kidney disease (CKD). This increase essentially derives from the impairment of natural antioxidant systems of the organism. The resulting oxidative stress produces damage to kidney tissue, especially by affecting nephrons and more generally by disrupting the function and structure of the glomerulus and interstitial tubule. This leads to a rapid decline in the condition of the patient and finally renal failure. Possible causes of kidney tissue damage are explored, as are different therapies, especially those related to the administration of antioxidants.

  7. Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats.

    PubMed

    Castillo, Carmen; Salazar, Veronica; Ariznavarreta, Carmen; Vara, Elena; Tresguerres, Jesus A F

    2005-05-01

    Aging induces changes in several organs and tissues, such as the liver, and this process might be due to oxidative damage caused by free radicals and inflammatory mediators. Melatonin is a secretory product with well-known antioxidant properties. The aim of this study was to investigate the effect of melatonin administration on age-induced alterations in hepatocytes. Twenty-two-month old male Wistar rats were treated with oral melatonin for 10 wk. At the end of the treatment, hepatocytes were isolated and cultured, and different parameters were measured in both cells and medium. Aging induced a significant increase in lipid peroxidation, nitric oxide, carbon monoxide and cyclic guanosyl-monophosphate, as well as a reduction in adenosine triphosphate content and phosphatidylcholine synthesis when compared to young animals. Melatonin administration significantly ameliorated all these age-related changes in males. Melatonin administration seems to exert beneficial effects against age-induced changes in hepatocytes.

  8. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  9. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism

    PubMed Central

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A.; Paci, Jeffrey T.; Espinosa, Horacio D.

    2015-01-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials. PMID:26289729

  10. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome

    PubMed Central

    De Felice, Claudio; Signorini, Cinzia; Durand, Thierry; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Galano, Jean-Marie; Ciccoli, Lucia; Leoncini, Silvia; D'Esposito, Maurizio; Filosa, Stefania; Pecorelli, Alessandra; Valacchi, Giuseppe; Hayek, Joussef

    2011-01-01

    Oxidative damage has been reported in Rett syndrome (RTT), a pervasive developmental disorder caused in up to 95% of cases by mutations in the X-linked methyl-CpG binding protein 2 gene. Herein, we have synthesized F2-dihomo-isoprostanes (F2-dihomo-IsoPs), peroxidation products from adrenic acid (22:4 n-6), a known component of myelin, and tested the potential value of F2-dihomo-IsoPs as a novel disease marker and its relationship with clinical presentation and disease progression. F2-dihomo-IsoPs were determined by gas chromatography/negative-ion chemical ionization tandem mass spectrometry. Newly synthesized F2-dihomo-IsoP isomers [ent-7(RS)-F2t-dihomo-IsoP and 17-F2t-dihomo-IsoP] were used as reference standards. The measured ions were the product ions at m/z 327 derived from the [M–181]− precursor ions (m/z 597) produced from both the derivatized ent-7(RS)-F2t-dihomo-IsoP and 17-F2t-dihomo-IsoP. Average plasma F2-dihomo-IsoP levels in RTT were about one order of magnitude higher than those in healthy controls, being higher in typical RTT as compared with RTT variants, with a remarkable increase of about two orders of magnitude in patients at the earliest stage of the disease followed by a steady decrease during the natural clinical progression. hese data indicate for the first time that quantification of F2-dihomo-IsoPs in plasma represents an early marker of the disease and may provide a better understanding of the pathogenic mechanisms behind the neurological regression in patients with RTT PMID:21917727

  11. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.

    PubMed

    Korge, Paavo; Ping, Peipei; Weiss, James N

    2008-10-10

    Mitochondria are an important source of reactive oxygen species (ROS), implicated in ischemia/reperfusion injury. When isolated from ischemic myocardium, mitochondria demonstrate increased ROS production as a result of damage to electron transport complexes. To investigate the mechanisms, we studied effects of hypoxia/reoxygenation on ROS production by isolated energized heart mitochondria. ROS production, tracked using Fe(2+)-catalyzed, H(2)O(2)-dependent H(2)DCF oxidation or Amplex Red, was similar during normoxia and hypoxia but markedly increased during reoxygenation, in proportion to the duration of hypoxia. In contrast, if mitochondria were rapidly converted from normoxia to near-anoxia ([O(2)], <1 micromol/L), the increase in H(2)DCF oxidation rate during reoxygenation was markedly blunted. To elicit the robust increase in H(2)DCF oxidation rate during reoxygenation, hypoxia had to be severe enough to cause partial, but not complete, respiratory chain inhibition (as shown by partial dissipation of membrane potential and increased NADH autofluorescence). Consistent with its cardioprotective actions, nitric oxide ( O) abrogated increased H(2)DCF oxidation under these conditions, as well as attenuating ROS-induced increases in matrix [Fe(2+)] and aconitase inhibition caused by antimycin. Collectively, these results suggest that (1) hypoxia that is sufficient to cause partial respiratory inhibition is more damaging to mitochondria than near-anoxia; and (2) O suppresses ROS-induced damage to electron transport complexes, probably by forming O-Fe(2+) complexes in the presence of glutathione, which inhibit hydroxyl radical formation.

  12. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion.

    PubMed Central

    González-Flecha, B; Cutrin, J C; Boveris, A

    1993-01-01

    The time course of oxidative stress and tissue damage in zonal liver ischemia-reperfusion in rat liver in vivo was evaluated. After 180 min of ischemia, surface chemiluminescence decreased to zero, state 3 mitochondrial respiration decreased by 70-80%, and xanthine oxidase activity increased by 26% without change in the water content and in the activities of superoxide dismutase, catalase, and glutathione peroxidase. After reperfusion, marked increases in oxyradical production and tissue damage were detected. Mitochondrial oxygen uptake in state 3 and respiratory control as well as the activities of superoxide dismutase, catalase, and glutathione peroxidase and the level of nonenzymatic antioxidants (evaluated by the hydroperoxide-initiated chemiluminescence) were decreased. The severity of the post-reperfusion changes correlated with the time of ischemia. Morphologically, hepatocytes appeared swollen with zonal cord disarrangement which ranged from mild to severe for the tissue reperfused after 60-180 min of ischemia. Neutrophil infiltration was observed after 180 min of ischemia and 30 min of reperfusion. Mitochondria appear as the major source of hydrogen peroxide in control and in reperfused liver, as indicated by the almost complete inhibition of hydrogen peroxide production exerted by the uncoupler carbonylcyanide p-(trifluoromethoxy) phenylhydrazone. Additionally, inhibition of mitochondrial electron transfer by antimycin in liver slices reproduced the inhibition of state 3 mitochondrial respiration and the increase in hydrogen peroxide steady-state concentration found in reperfused liver. Increased rates of oxyradical production by inhibited mitochondria appear as the initial cause of oxidative stress and liver damage during early reperfusion in rat liver. Images PMID:8432855

  13. Photo-induced oxidative damage to dissolved free amino acids by the photosensitizer polycyclic musk tonalide: Transformation kinetics and mechanisms.

    PubMed

    Fang, Hansun; Gao, Yanpeng; Wang, Honghong; Yin, Hongliang; Li, Guiying; An, Taicheng

    2017-05-15

    Residue from the polycyclic musks (PCMs) in household and personal care products may harm human beings through skin exposure. To understand the health effects of PCMs when exposed to sunlight at molecular level, both experimental and computational methods were employed to investigate the photosensitized oxidation performance of 19 natural amino acids, the most basic unit of life. Results showed that a typical PCM, tonalide, acts as a photosensitizer to significantly increase photo-induced oxidative damage to amino acids. Both common and exceptional transformation pathways occurred during the photosensitization damage of amino acids. Experimental tests further identified the different mechanisms involved. The common transformation pathway occurred through the electron transfer from α amino-group of amino acids, accompanying with the formation of O2(•-). This pathway was controlled by the electronic density of N atom in α amino-group. The exceptional transformation pathway was identified only for five amino acids, mainly due to the reactions with reactive oxygen species, e.g. (1)O2 and excited triplet state molecules. Additionally, tonalide photo-induced transformation products could further accelerate the photosensitization of all amino acids with the common pathway. This study may support the protection of human health, and suggests the possible need to further restrict polycyclic musks use.

  14. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites.

    PubMed

    Meyers, Frederick N; Loh, Kenneth J; Dodds, John S; Baltazar, Arturo

    2013-05-10

    This study investigated the design and performance of piezoelectric nanocomposite-based interdigitated transducers (IDTs) for active sensing and damage detection. First, thin films that are highly piezoelectric and mechanically flexible were designed by embedding zinc oxide (ZnO) nanoparticles in a poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) piezo-polymer matrix. Second, the suspended nanoparticle solutions were then spin coated onto patterned comb electrodes to fabricate the IDTs. The films were then poled to align their electric domains and to increase their permanent piezoelectricity. Upon IDT fabrication, its sensing and actuation of Lamb waves on an aluminum pipe was validated. These results were also compared to data obtained from commercial Macro Fiber Composite IDT transducers. In the last phase of this work, damage detection was demonstrated by mounting these nanocomposite sensors and actuators (using a pitch-catch setup) onto an aluminum pipe and plate. Damage was simulated by tightening a band clamp around the pipe and by drilling holes in the plate. A damage index calculation was used to compare results corresponding to different levels of damage applied to the plate (i.e., different drilled hole depths), and good correlation was observed. Thus, ZnO/PVDF-TrFE transducers were shown to have the potential for use as piezoelectric transducers for structural health monitoring and damage detection.

  15. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Meyers, Frederick N.; Loh, Kenneth J.; Dodds, John S.; Baltazar, Arturo

    2013-05-01

    This study investigated the design and performance of piezoelectric nanocomposite-based interdigitated transducers (IDTs) for active sensing and damage detection. First, thin films that are highly piezoelectric and mechanically flexible were designed by embedding zinc oxide (ZnO) nanoparticles in a poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) piezo-polymer matrix. Second, the suspended nanoparticle solutions were then spin coated onto patterned comb electrodes to fabricate the IDTs. The films were then poled to align their electric domains and to increase their permanent piezoelectricity. Upon IDT fabrication, its sensing and actuation of Lamb waves on an aluminum pipe was validated. These results were also compared to data obtained from commercial Macro Fiber Composite IDT transducers. In the last phase of this work, damage detection was demonstrated by mounting these nanocomposite sensors and actuators (using a pitch-catch setup) onto an aluminum pipe and plate. Damage was simulated by tightening a band clamp around the pipe and by drilling holes in the plate. A damage index calculation was used to compare results corresponding to different levels of damage applied to the plate (i.e., different drilled hole depths), and good correlation was observed. Thus, ZnO/PVDF-TrFE transducers were shown to have the potential for use as piezoelectric transducers for structural health monitoring and damage detection.

  16. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice

    PubMed Central

    Song, Ming-Fen; Li, Yun-Shan; Kasai, Hiroshi; Kawai, Kazuaki

    2012-01-01

    Several mechanisms regarding the adverse health effects of nanomaterials have been proposed. Among them, oxidative stress is considered to be one of the most important. Many in vitro studies have shown that nanoparticles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage in DNA. 8-Hydroxy-2'-deoxyguanosine is a major type of oxidative DNA damage, and is often analyzed as a marker of oxidative stress in human and animal studies. In this study, we focused on the in vivo toxicity of metal oxide and silver nanoparticles. In particular, we analyzed the induction of micronucleated reticulocyte formation and oxidative stress in mice treated with nanoparticles (CuO, Fe3O4, Fe2O3, TiO2, Ag). For the micronucleus assay, peripheral blood was collected from the tail at 0, 24, 48 and 72 h after an i.p. injection of nanoparticles. Following the administration of nanoparticles by i.p. injection to mice, the urinary 8-hydroxy-2'-deoxyguanosine levels were analyzed by the HPLC-ECD method, to monitor the oxidative stress. The levels of 8-hydroxy-2'-deoxyguanosine in liver DNA were also measured. The results showed increases in the reticulocyte micronuclei formation in all nanoparticle-treated groups and in the urinary 8-hydroxy-2'-deoxyguanosine levels. The 8-hydroxy-2'-deoxyguanosine levels in the liver DNA of the CuO-treated group increased in a dose-dependent manner. In conclusion, the metal nanoparticles caused genotoxicity, and oxidative stress may be responsible for the toxicity of these metal nanoparticles. PMID:22573923

  17. Association of oxidative DNA damage, protein oxidation and antioxidant function with oxidative stress induced cellular injury in pre-eclamptic/eclamptic mothers during fetal circulation.

    PubMed

    Negi, Reena; Pande, Deepti; Karki, Kanchan; Kumar, Ashok; Khanna, Ranjana S; Khanna, Hari D

    2014-02-05

    Pre-eclampsia is a devastating multi system syndrome and a major cause of maternal, fetal, neonatal morbidity and mortality. Pre-eclampsia is associated with oxidative stress in the maternal circulation. To have an insight on the effect of pre-eclampsia/eclampsia on the neonates, the study was made to explore the oxidative status by quantification of byproducts generated during protein oxidation and oxidative DNA damage and deficient antioxidant activity in umbilical cord blood of pre-eclamptic/eclamptic mothers during fetal circulation. Umbilical cord blood during delivery from neonates born to 19 pre-eclamptic mothers, 14 eclamptic mothers and 18 normotensive mothers (uncomplicated pregnancy) as control cases was collected. 8-OHdG (8-hydroxy-2-deoxyguanosine), protein carbonyl, nitrite, catalase, non-enzymatic antioxidants (vitamin A, E, C), total antioxidant status and iron status were determined. Significant elevation in the levels of 8-OHdG, protein carbonyl, nitrite and iron along with decreased levels of catalase, vitamin A, E, C, total antioxidant status were observed in the umbilical cord blood of pre-eclamptic and eclamptic pregnancies. These parameters might be influential variables for the risk of free radical damage in infants born to pre-eclamptic/eclamptic pregnancies. Increased oxidative stress causes oxidation of DNA and protein which alters antioxidant function. Excess iron level and decreased unsaturated iron binding capacity may be the important factor associated with oxidative stress and contribute in the pathogenesis of pre-eclampsia/eclampsia which is reflected in fetal circulation.

  18. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  19. Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A

    PubMed Central

    Yang, Chunying; Sengupta, Shiladitya; Hegde, Pavana M.; Mitra, Joy; Jiang, Shuai; Holey, Brooke; Sarker, Altaf H.; Tsai, Miaw-Sheue; Hegde, Muralidhar L.; Mitra, Sankar

    2017-01-01

    Reactive oxygen species (ROS), generated both endogenously and in response to exogenous stress, induce point mutations by mis-replication of oxidized bases and other lesions in the genome. Repair of these lesions via base excision repair (BER) pathway maintains genomic fidelity. Regulation of the BER pathway for mutagenic oxidized bases, initiated by NEIL1 and other DNA glycosylases at the chromatin level remains unexplored. Whether single nucleotide (SN)-BER of a damaged base requires histone deposition or nucleosome remodeling is unknown, unlike nucleosome reassembly which is shown to be required for other DNA repair processes. Here we show that chromatin assembly factor (CAF)-1 subunit A (CHAF1A), the p150 subunit of the histone H3/H4 chaperone, and its partner anti-silencing function protein 1A (ASF1A), which we identified in human NEIL1 immunoprecipitation complex, transiently dissociate from chromatin bound NEIL1 complex in G1 cells after induction of oxidative base damage. CHAF1A inhibits NEIL1 initiated repair in vitro. Subsequent restoration of the chaperone-BER complex in cell, presumably after completion of repair, suggests that histone chaperones sequester the repair complex for oxidized bases in non-replicating chromatin, and allow repair when oxidized bases are induced in the genome. PMID:27794043

  20. Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection.

    PubMed

    Pregi, Nicolás; Belluscio, Laura María; Berardino, Bruno Gabriel; Castillo, Daniela Susana; Cánepa, Eduardo Tomás

    2017-01-01

    cAMP response element-binding (CREB) protein is a cellular transcription factor that mediates responses to different physiological and pathological signals. Using a model of human neuronal cells we demonstrate herein, that CREB is phosphorylated after oxidative stress induced by hydrogen peroxide. This phosphorylation is largely independent of PKA and of the canonical phosphoacceptor site at ser-133, and is accompanied by an upregulation of CREB expression at both mRNA and protein levels. In accordance with previous data, we show that CREB upregulation promotes cell survival and that its silencing results in an increment of apoptosis after oxidative stress. Interestingly, we also found that CREB promotes DNA repair after treatment with hydrogen peroxide. Using a cDNA microarray we found that CREB is responsible for the regulation of many genes involved in DNA repair and cell survival after oxidative injury. In summary, the neuroprotective effect mediated by CREB appears to follow three essential steps following oxidative injury. First, the upregulation of CREB expression that allows sufficient level of activated and phosphorylated protein is the primordial event that promotes the induction of genes of the DNA Damage Response. Then and when the DNA repair is effective, CREB induces detoxification and survival genes. This kinetics seems to be important to completely resolve oxidative-induced neuronal damages.

  1. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis.

    PubMed

    Ayala-Peña, Sylvette

    2013-09-01

    Huntington's disease (HD) is a neurodegenerative disorder with an autosomal dominant expression pattern and typically a late-onset appearance. HD is a movement disorder with a heterogeneous phenotype characterized by involuntary dance-like gait, bioenergetic deficits, motor impairment, and cognitive and psychiatric deficits. Compelling evidence suggests that increased oxidative stress and mitochondrial dysfunction may underlie HD pathogenesis. However, the exact mechanisms underlying mutant huntingtin-induced neurological toxicity remain unclear. The objective of this paper is to review recent literature regarding the role of oxidative DNA damage in mitochondrial dysfunction and HD pathogenesis.

  2. Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage.

    PubMed

    Kageyama, Yusuke; Zhang, Zhongyan; Roda, Ricardo; Fukaya, Masahiro; Wakabayashi, Junko; Wakabayashi, Nobunao; Kensler, Thomas W; Reddy, P Hemachandra; Iijima, Miho; Sesaki, Hiromi

    2012-05-14

    Mitochondria divide and fuse continuously, and the balance between these two processes regulates mitochondrial shape. Alterations in mitochondrial dynamics are associated with neurodegenerative diseases. Here we investigate the physiological and cellular functions of mitochondrial division in postmitotic neurons using in vivo and in vitro gene knockout for the mitochondrial division protein Drp1. When mouse Drp1 was deleted in postmitotic Purkinje cells in the cerebellum, mitochondrial tubules elongated due to excess fusion, became large spheres due to oxidative damage, accumulated ubiquitin and mitophagy markers, and lost respiratory function, leading to neurodegeneration. Ubiquitination of mitochondria was independent of the E3 ubiquitin ligase parkin in Purkinje cells lacking Drp1. Treatment with antioxidants rescued mitochondrial swelling and cell death in Drp1KO Purkinje cells. Moreover, hydrogen peroxide converted elongated tubules into large spheres in Drp1KO fibroblasts. Our findings suggest that mitochondrial division serves as a quality control mechanism to suppress oxidative damage and thus promote neuronal survival.

  3. N-Acetyl-L-cysteine Protects the Enterocyte against Oxidative Damage by Modulation of Mitochondrial Function

    PubMed Central

    Xiao, Hao; Wu, Miaomiao; Shao, Fangyuan; Guan, Guiping; Huang, Bo

    2016-01-01

    The neonatal small intestine is susceptible to damage caused by oxidative stress. This study aimed to evaluate the protective role of antioxidant N-acetylcysteine (NAC) in intestinal epithelial cells against oxidative damage induced by H2O2. IPEC-J2 cells were cultured in DMEM-H with NAC and H2O2. After 2-day incubation, IPEC-J2 cells were collected for analysis of DNA synthesis, antioxidation capacity, mitochondrial respiration, and cell apoptosis. The results showed that H2O2 significantly decreased (P < 0.05) proliferation rate, mitochondrial respiration, and antioxidation capacity and increased cell apoptosis and the abundance of associated proteins, including cytochrome C, Bcl-XL, cleaved caspase-3, and total caspase-3. NAC supplementation remarkably increased (P < 0.05) proliferation rate, antioxidation capacity, and mitochondrial bioenergetics but decreased cell apoptosis. These findings indicate that NAC might rescue the intestinal injury induced by H2O2. PMID:28003713

  4. Female plumage colour influences seasonal oxidative damage and testosterone profiles in a songbird

    PubMed Central

    Vitousek, Maren N.; Stewart, Rosemary A.; Safran, Rebecca J.

    2013-01-01

    Across diverse taxa, morphological traits mediate social interactions and mate selection. Physiological constraints on signal elaboration have been widely documented, but the potential for trait display to influence physiological state remains poorly understood. We tested for the presence of causal links between ventral plumage colour—a trait known to covary with reproductive performance—and physiological measures in female North American barn swallows, Hirundo rustica erythrogaster. Naturally darker swallows have lower levels of plasma oxidative damage. Females manipulated to display darker ventral plumage during reproduction rapidly decreased oxidative damage, adopting the physiological state of naturally darker individuals. These results support the presence of a social mechanism that links static plumage traits with the physiological state of their bearer during trait advertisement, long after the completion of signal development. PMID:23966597

  5. Female plumage colour influences seasonal oxidative damage and testosterone profiles in a songbird.

    PubMed

    Vitousek, Maren N; Stewart, Rosemary A; Safran, Rebecca J

    2013-10-23

    Across diverse taxa, morphological traits mediate social interactions and mate selection. Physiological constraints on signal elaboration have been widely documented, but the potential for trait display to influence physiological state remains poorly understood. We tested for the presence of causal links between ventral plumage colour-a trait known to covary with reproductive performance-and physiological measures in female North American barn swallows, Hirundo rustica erythrogaster. Naturally darker swallows have lower levels of plasma oxidative damage. Females manipulated to display darker ventral plumage during reproduction rapidly decreased oxidative damage, adopting the physiological state of naturally darker individuals. These results support the presence of a social mechanism that links static plumage traits with the physiological state of their bearer during trait advertisement, long after the completion of signal development.

  6. Ceruloplasmin protects injured spinal cord from iron-mediated oxidative damage.

    PubMed

    Rathore, Khizr I; Kerr, Bradley J; Redensek, Adriana; López-Vales, Rubèn; Jeong, Suh Young; Ponka, Prem; David, Samuel

    2008-11-26

    CNS injury-induced hemorrhage and tissue damage leads to excess iron, which can cause secondary degeneration. The mechanisms that handle this excess iron are not fully understood. We report that spinal cord contusion injury (SCI) in mice induces an "iron homeostatic response" that partially limits iron-catalyzed oxidative damage. We show that ceruloplasmin (Cp), a ferroxidase that oxidizes toxic ferrous iron, is important for this process. SCI in Cp-deficient mice demonstrates that Cp detoxifies and mobilizes iron and reduces secondary tissue degeneration and functional loss. Our results provide new insights into how astrocytes and macrophages handle iron after SCI. Importantly, we show that iron chelator treatment has a delayed effect in improving locomotor recovery between 3 and 6 weeks after SCI. These data reveal important aspects of the molecular control of CNS iron homeostasis after SCI and suggest that iron chelator therapy may improve functional recovery after CNS trauma and hemorrhagic stroke.

  7. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  8. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers.

    PubMed

    Utrera, Mariana; Estévez, Mario

    2013-08-21

    The susceptibility of meats from different animal species (beef quadriceps femoris, porcine longissimus dorsi, and chicken pectoralis major) to undergo protein oxidation during frozen storage (20 weeks/-18 °C) was studied through the analysis of novel oxidation markers. Frozen storage induced protein carbonylation (α-aminoadipic and γ-glutamic semialdehydes), carboxylation (α-aminoadipic acid), and formation of Schiff bases in meat from the three species. Major rates of protein and lipid oxidation products [thiobarbituric-acid-reactive substances (TBARS) and hexanal] were found in beef patties. Among the endogenous factors having a potential influence on the susceptibility of meat to undergo protein oxidation, heme iron seemed to play a major role. The present study illustrates the severe chemical modifications induced by oxidative stress during frozen storage of ground meat and provides original insight into the underlying mechanisms and factors.

  9. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    PubMed

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.

  10. G6PD protects from oxidative damage and improves healthspan in mice

    PubMed Central

    Nóbrega-Pereira, Sandrina; Fernandez-Marcos, Pablo J.; Brioche, Thomas; Gomez-Cabrera, Mari Carmen; Salvador-Pascual, Andrea; Flores, Juana M.; Viña, Jose; Serrano, Manuel

    2016-01-01

    Reactive oxygen species (ROS) are constantly generated by cells and ROS-derived damage contributes to ageing. Protection against oxidative damage largely relies on the reductive power of NAPDH, whose levels are mostly determined by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here, we report a transgenic mouse model with moderate overexpression of human G6PD under its endogenous promoter. Importantly, G6PD-Tg mice have higher levels of NADPH, lower levels of ROS-derived damage, and better protection from ageing-associated functional decline, including extended median lifespan in females. The G6PD transgene has no effect on tumour development, even after combining with various tumour-prone genetic alterations. We conclude that a modest increase in G6PD activity is beneficial for healthspan through increased NADPH levels and protection from the deleterious effects of ROS. PMID:26976705

  11. Review of structural influences on the laser damage thresholds of oxide coatings

    SciTech Connect

    Hacker, E.; Lauth, H.; Weibbrodt, P.

    1996-12-31

    The laser damage thresholds (LDT) of optical coatings lie, as a rule, markedly below those of the respective bulk materials. This is due to diverse specific real structure properties with regard to composition, crystallography, microstructure and the physico-chemical structure of the interfaces. These properties depend in a highly complex and sensitive way on the substrate treatment, coating techniques and deposition conditions. With evaporated and sputtered oxide coatings as example, some correlations between structural thin film properties (e.g. crystallography, microstructure, anisotropy, chemical composition, defects) and the ultraviolet (248 nm) or near infrared (1064 nm) laser damage thresholds are discussed with concern to a further increase of the damage resistance. It is evident from data that an approach to the problem requires complex investigations of the technology-structure-properties relationships.

  12. Analysis of cavitation damage on the Space Shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Stinebring, D. R.

    1985-01-01

    The performance of the Space Shuttle Main Engines (SSME) has met or exceeded specifications. However, the durability for selected components has not met the desired lifetime criteria. Thus, the High-Pressure Oxidizer Turbopump (HPOTP) has experienced cavitation erosion problems in a number of locations in the pump. An investigation was conducted, taking into account an analysis of the cavitation damage, the development of a flow model for the pump, and the recommendation of design changes which would increase the life expectancy of the unit. The present paper is concerned with the cavitation damage analysis. A model is presented which relates the heavy damage on the housing and over the inducer blades to unsteady blade surface cavitation. This cavitation occurs on the inducer blades in the wakes downstream of the pump inlet housing vanes.

  13. An analysis of pump cavitation damage. [Space Shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1985-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  14. A study of pump cavitation damage. [space shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  15. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin.

    PubMed

    Han, Yingnan; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Zhang, Shumin

    2014-09-01

    Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms.

  16. UVR-induced G-C to C-G transversions from oxidative DNA damage.

    PubMed

    Kino, Katsuhito; Sugiyama, Hiroshi

    2005-04-01

    Many oxidizing agents induce G-C to T-A and G-C to C-G transversions, and the frequency largely depends on the oxidative conditions. Guanine is the most oxidizable base among natural bases. The typical oxidative lesion product 8-oxoguanine (8-oxoG) is responsible for G-C to T-A transversion but not for G-C to C-G transversion, and 8-oxoG is more readily oxidized than guanine because of its lowered ionization potential. Recently, imidazolone (Iz), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) have been demonstrated as oxidative lesion products of guanine and 8-oxoG, which could be responsible for G-C to C-G transversions by forming specific base pair formations.

  17. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  18. Increased Chromosomal and Oxidative DNA Damage in Patients with Multinodular Goiter and Their Association with Cancer

    PubMed Central

    Bayram, Fahri; Bitgen, Nazmiye; Ata, Sibel; Hamurcu, Zuhal; Baskol, Gulden

    2017-01-01

    Thyroid nodules are a common clinical problem worldwide. Although thyroid cancer accounts for a small percentage of thyroid nodules, the majority are benign. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) levels are a marker of oxidative stress and play a key role in the initiation and development of a range of diseases and cancer types. This study evaluates cytokinesis-block micronucleus cytome (CBMN-cyt) assay parameters and plasma 8-OHdG levels and their association with thyroid nodule size and thyroid hormones in patients with multinodular goiter. The study included 32 patients with multinodular goiter and 18 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of patients with multinodular goiter and controls were evaluated, and plasma 8-OHdG levels were measured. The micronucleus (MN) frequency (chromosomal DNA damage), apoptotic and necrotic cells (cytotoxicity), and plasma 8-OHdG levels (oxidative DNA damage) were significantly higher among patients with multinodular goiter. Our study is the first report of increased chromosomal and oxidative DNA damage in patients with multinodular goiter, which may predict an increased risk of thyroid cancer in these patients. MN frequency and plasma 8-OHdG levels may be markers of the carcinogenic potential of multinodular goiters and could be used for early detection of different cancer types, including thyroid cancer. PMID:28373882

  19. A Dose-Response Study of Arsenic Exposure and Markers of Oxidative Damage in Bangladesh

    PubMed Central

    Harper, Kristin N.; Liu, Xinhua; Hall, Megan N.; Ilievski, Vesna; Oka, Julie; Calancie, Larissa; Slavkovich, Vesna; Levy, Diane; Siddique, Abu; Alam, Shafiul; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Objective To evaluate the dose-response relationship between arsenic exposure and markers of oxidative damage in Bangladeshi adults. Methods We recruited 378 participants drinking from wells assigned to five water arsenic exposure categories; the distribution of subjects was as follows: 1) <10 μg/L (n=76); 2) 10–100 μg/L (n=104); 3) 101–200 μg/L (n=86); 4) 201–300 μg/L (n=67); and 5) > 300 μg/L (n=45). Arsenic concentrations were measured in well water, as well as in urine and blood. Urinary 8-oxo-2’-deoxyguanosine (8-oxo-dG) and plasma protein carbonyls were measured to assess oxidative damage. Results None of our measures of arsenic exposure were significantly associated with protein carbonyl or 8-oxo-dG levels. Conclusions We found no evidence to support a significant relationship between chronic exposure to arsenic-contaminated drinking water and biomarkers of oxidative damage among Bangladeshi adults. PMID:24854259

  20. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes.

    PubMed

    Back, Stephen A; Luo, Ning Ling; Mallinson, Rebecca A; O'Malley, Jean P; Wallen, Linda D; Frei, Balz; Morrow, Jason D; Petito, Carol K; Roberts, Charles T; Murdoch, Geoffrey H; Montine, Thomas J

    2005-07-01

    Periventricular white matter injury (PWMI) is the leading cause of cerebral palsy and chronic neurological disability in survivors of prematurity. Despite the large number of affected children, the pathogenetic mechanisms related to PWMI remain controversial. Through studies of 33 human autopsy brains, we determined that early PWMI was related to oxidative damage that particularly targeted the oligodendrocyte lineage, whereas other neuronal and glial cell types were markedly more resistant. F(2)-isoprostanes, an arachidinate metabolite/lipid peroxidation marker of oxidative damage, were significantly increased in early PWMI lesions but not in cerebral cortex. That deleterious lipid peroxidation accompanied early PWMI was supported by similar increases in F(2)-isoprostanes levels in the cerebral cortex from term infants with hypoxic-ischemic cortical injury. Detection of F(4)-neuroprostanes, a neuronal-specific oxidative damage marker, confirmed that neuroaxonal elements were resistant to injury in cerebral cortex and white matter. Significant protein nitration was not detected in PWMI lesions by 3-nitrotyrosine staining. Significant cellular degeneration was confirmed in early PWMI lesions by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and a marked depletion of oligodendrocyte progenitors of 71 +/- 8%. Hence, the predilection of preterm infants for PWMI is related to selective lipid peroxidation-mediated injury of cerebral white matter and targeted death of oligodendrocyte progenitors.

  1. Oxidative damage of the extracts of condensate, particulate and semivolatile organic compounds from gasoline engine exhausts on testicles of rats.

    PubMed

    Che, Wangjun; Qiu, Hong; Liu, Guiming; Ran, Yun; Zhang, Hao; Zhang, Li; Wen, Weihua

    2009-07-01

    Oxidative damage induced by extracts of condensate, particulate matters and semivolatile organic compounds from gasoline engine exhausts were investigated in testicles of adult Sprague-Dawley rats. The results showed that gasoline engine exhaust could increase the contents of malondialdehyde and carbonyl protein, decrease activities of superoxide dismutase and glutathione peroxidase, and induce DNA damage in testicle of rat. Taking together, the gasoline engine exhaust could promote oxidative damage of bio-macromolecular in testicles of rat and oxidative stress might be an alternative mechanism for male reproductive function of male mammals.

  2. Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats.

    PubMed

    Jeyabal, Prince Vijeya Singh; Syed, Mumtaz Banu; Venkataraman, Magesh; Sambandham, Jamuna Kumari; Sakthisekaran, Dhanapal

    2005-09-01

    Apigenin (4',5,7-trihydroxyflavone), a flavone subclass of flavonoid widely distributed in many herbs, fruits, and vegetables is a substantial component of the human diet and has been shown to possess a variety of biological activities including tumor growth inhibition and chemoprevention. Recent studies in several biological systems have shown that apigenin induces tumor growth inhibition, cell cycle arrest, and apoptosis. Free radical-induced degradation of polyunsaturated fatty acid results in electrophilic products and causes severe oxidative stress. Oxidative stress induced by free radicals, nonoxidizing species, electrophiles, and associated DNA damages have been frequently coupled with carcinogenesis. In the present study, the protective role of apigenin was examined against the oxidative stress caused by N-nitrosodiethylamine (NDEA) and phenobarbital (PB) in Wistar albino rats. Oxidative stress was measured in terms of lipid peroxidation (LPO) and protein carbonyl formation. Oxidative stress-induced DNA damage was measured by single cell gel electrophoresis (comet assay). Apigenin exhibited its antioxidant defense against NDEA-induced oxidative stress. We have observed minimal levels of LPO and DNA damage in apigenin-treated hepatoma bearing animals. Based on the results, we suggest that apigenin may be developed as a promising chemotherapeutic agent against the development of chemical carcinogenesis.

  3. Identifying initial molecular targets of PDT: protein and lipid oxidation products

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kim, Junhwan; Rodriguez, Myriam E.; Xue, Liang-yan; Kenney, Malcolm E.; Anderson, Vernon E.

    2009-06-01

    Photodynamic Therapy (PDT) generates singlet oxygen (1O2) which oxidizes biomolecules in the immediate vicinity of its formation. The phthalocyanine photosensitizer Pc 4 localizes to mitochondria and endoplasmic reticulum, and the primary targets of Pc 4-PDT are expected to be lipids and proteins of those membranes. The initial damage then causes apoptosis in cancer cells via the release of cytochrome c (Cyt-c) from mitochondria into the cytosol, followed by the activation of caspases. That damage also triggers the induction of autophagy, an attempt by the cells to eliminate damaged organelles, or when damage is too extensive, to promote cell death. Cyt-c is bound to the cytosolic side of the mitochondrial inner membrane through association with cardiolipin (CL), a phospholipid containing four unsaturated fatty acids and thus easily oxidized by 1O2 or by other oxidizing agents. Increasing evidence suggests that oxidation of CL loosens its association with Cyt-c, and that the peroxidase activity of Cyt-c can oxidize CL. In earlier studies of Cyt-c in homogeneous medium by MALDI-TOF-MS and LC-ESI-MS, we showed that 1O2 generated by Pc 4-PDT oxidized histidine, methionine, tryptophan, and unexpectedly phenylalanine but not tyrosine. Most of the oxidation products were known to be formed by other oxidizing agents, such as hydroxyl radical, superoxide radical anion, and peroxynitrite. However, two products of histidine were unique to 1O2 and may be useful for reporting the action of 1O2 in cells and tissues. These products, as well as CL oxidation products, have now been identified in liposomes and mitochondria after Pc 4-PDT. In mitochondria, the PDT dose-dependent oxidations can be related to specific changes in mitochondrial function, Bcl-2 photodamage, and Cyt-c release. Thus, the role of PDT-generated 1O2 in oxidizing Cyt-c and CL and the interplay between protein and lipid targets may be highly relevant to understanding one mechanism for cell killing by PDT.

  4. Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells.

    PubMed

    Ramalingam, Mahesh; Kim, Sung-Jin

    2016-01-01

    Insulin, a hypoglycemic hormone, has multiple functions in the brain. The aim of this study to identify the mechanisms of insulin in hydrogen peroxide (H(2)O(2)-induced toxicity in the C6 glial cells. Cytotoxicity, lactate dehydrogenase, nitric oxide, reactive oxygen species and calcium ion, lipid peroxidation, protein oxidation and glutathione levels were determined. Signaling pathway molecules were assessed by western blotting and RT-PCR. The results showed that treatment with insulin reduced the cell death and cell membrane damages against H(2)O(2)-induced toxicity. Furthermore, insulin interfered H(2)O(2)-induced intracellular generation of reactive oxygen species and calcium-ion transport, apoptosis, including lipid and protein oxidation products. Cells treated with insulin reverted H(2)O(2)-induced suppression of reduced glutathione levels by blocking oxidized glutathione. Moreover, insulin treatment activates Akt, restores ERK1/2 and Bcl-2 by preventing Bax and Bax/Bcl-2 ratio. Our results suggest that treatment of insulin exerts potential role against 24 h of H(2)O(2)-induced toxicity in C6 cells.

  5. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

  6. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes.

    PubMed

    Yamagishi, Sho-ichi

    2011-04-01

    A non-enzymatic reaction between ketones or aldehydes and the amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules and to the development and progression of various age-related disorders such as vascular complications of diabetes, Alzheimer's disease, cancer growth and metastasis, insulin resistance and degenerative bone disease. Under hyperglycemic and/or oxidative stress conditions, this process begins with the conversion of reversible Schiff base adducts, and then to more stable, covalently-bound Amadori rearrangement products. Over a course of days to weeks, these early glycation products undergo further reactions and rearrangements to become irreversibly crossed-linked, fluorescent protein derivatives termed advanced glycation end products (AGEs). There is a growing body of evidence that AGE and their receptor RAGE (receptor for AGEs) interaction elicits oxidative stress, inflammatory reactions and thrombosis, thereby being involved in vascular aging and damage. These observations suggest that the AGE-RAGE system is a novel therapeutic target for preventing diabetic vascular complications. In this paper, we review the pathophysiological role of the AGE-RAGE-oxidative stress system and its therapeutic intervention in vascular damage in diabetes. We also discuss here the potential utility of the restriction of food-derived AGEs in diabetic vascular complications.

  7. Damage production and accumulation in SiC structures in inertial and magnetic fusion systems

    NASA Astrophysics Data System (ADS)

    Sawan, M. E.; Ghoniem, N. M.; Snead, L.; Katoh, Y.

    2011-10-01

    Radiation damage parameters in SiC/SiC composite structures are determined in both magnetic (MFE) and inertial (IFE) confinement fusion systems. Variations in the geometry, neutron energy spectrum, and pulsed nature of neutron production result in significant differences in damage parameters between the two systems. With the same neutron wall loading, the displacement damage rate in the first wall in an IFE system is ˜10% lower than in an MFE system, while gas production and burnup rates are a factor of 2 lower. Self-cooled LiPb and Flibe blankets were analyzed. While using LiPb results in higher displacement damage, Flibe yields higher gas production and burnup rates. The effects of displacement damage and helium production on defect accumulation in SiC/SiC composites are also discussed.

  8. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A; Perry, George

    2010-03-01

    In an analysis of amyloid pathology in Alzheimer disease, we used an in situ approach to identify amyloid-beta (Abeta) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal-specific antibodies directed against Abeta40 and Abeta42 were used for immunocytochemical analyses, Abeta42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Abeta-oligomer. In comparison to the Abeta42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Abeta42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r=- 0.61, p<0.02). Together with recent evidence that the Abeta peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Abeta may be a compensatory response in neurons to oxidative stress in Alzheimer disease.

  9. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  10. Free fatty acids enhance the oxidative damage induced by ethanol metabolism in an in vitro model.

    PubMed

    Hernández, Ileana; Domínguez-Pérez, Mayra; Bucio, Leticia; Souza, Verónica; Miranda, Roxana U; Clemens, Dahn L; Gomez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María Concepción

    2015-02-01

    In recent years, there has been a growing interest to explore the responsiveness to injury in steatotic hepatocyte. VL-17A cells, which express ADH and Cyp2E1 overloaded with free fatty acids (1 mM of oleic and palmitic acid 2:1) showed an increased oxidative damaged after 24 h free fatty acids treatment when exposed to ethanol (100 mM) for 48 h as a second injury. An increment in reactive oxygen species, determined by DCFH-DA, protein oxidation, and apoptosis were observed although an increase in main antioxidant proteins such as superoxide dismutase 1 and glutathione peroxidase were observed, but failed in gamma-glutamylcysteine synthetase, suggesting a decreased capacity of synthesis of glutathione compared with cells treated only with free fatty acids or ethanol. The increased oxidative stress and toxicity in lipid overloaded VL-17A cells subjected to ethanol exposure were accompanied by increases in Cyp2E1 protein expression. Our data show that lipid loaded in an in vitro model, VL-17A cells, is more susceptible to cell damage and oxidative stress when treated with ethanol.

  11. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    PubMed

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  12. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  13. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.

  14. Induction of ROS Overload by Alantolactone Prompts Oxidative DNA Damage and Apoptosis in Colorectal Cancer Cells.

    PubMed

    Ding, Yushuang; Wang, Hongge; Niu, Jiajing; Luo, Manyu; Gou, Yangmei; Miao, Lining; Zou, Zhihua; Cheng, Ying

    2016-04-14

    Cancer cells typically display higher than normal levels of reactive oxygen species (ROS), which may promote cancer development and progression but may also render the cancer cells more vulnerable to further ROS insult. Indeed, many of the current anticancer therapeutics kill cancer cells via induction of oxidative stress, though they target both cancer and normal cells. Recently, alantolactone (ATL), a natural sesquiterpene lactone, has been shown to induce apoptosis by increasing ROS levels specifically in cancer cells; however, the molecular mechanisms linking ROS overproduction to apoptosis remain unclear. Here we show that the ATL-induced ROS overload in human SW480 and SW1116 colorectal cancer cells was followed by a prominent accumulation of cellular oxidized guanine (8-oxoG) and immediate increase in the number of DNA strand breaks, indicating that increased ROS resulted in extensive oxidative DNA damage. Consequently, the G₁/S-CDK suppresser CDKN1B (p21) and pro-apoptotic proteins Bax and activated caspase-3 were upregulated, while anti-apoptotic Bcl-2 was downregulated, which were followed by cell cycle arrest at G₁ and marked apoptosis in ATL-treated cancer but not non-cancer cells. These results suggest that the ATL-induced ROS overload triggers cell death through induction of massive oxidative DNA damage and subsequent activation of the intrinsic apoptosis pathway.

  15. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus.

    PubMed

    Beavers, William N; Skaar, Eric P

    2016-08-01

    Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.

  16. Brain oxidative damage restored by Sesbania grandiflora in cigarette smoke-exposed rats.

    PubMed

    Ramesh, Thiyagarajan; Sureka, Chandrabose; Bhuvana, Shanmugham; Begum, Vavamohaideen Hazeena

    2015-08-01

    Cigarette smoking has been associated with high risk of neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, etc., The present study was designed to evaluate the restorative effects of Sesbania grandiflora (S. grandiflora) on oxidative damage induced by cigarette smoke exposure in the brain of rats. Adult male Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and consecutively treated with S. grandiflora aqueous suspension (SGAS, 1000 mg/kg body weight per day by oral gavage) for a period of 3 weeks. The levels of protein carbonyl, nitric oxide, and activities of cytochrome P450, NADPH oxidase and xanthine oxidase were significantly increased, whereas the levels of total thiol, protein thiol, non-protein thiol, nucleic acids, tissue protein and the activities of Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were significantly diminished in the brain of rats exposed to cigarette smoke as compared with control rats. Also cigarette smoke exposure resulted in a significant alteration in brain total lipid, total cholesterol, triglycerides and phospholipids content. Treatment of SGAS is regressed these alterations induced by cigarette smoke. The results of our study suggest that S. grandiflora restores the brain from cigarette smoke induced oxidative damage. S. grandiflora could have rendered protection to the brain by stabilizing their cell membranes and prevented the protein oxidation, probably through its free radical scavenging and anti-peroxidative effect.

  17. Risk of Oxidative Damage to Bone from Increased Iron Stores During Space Flight

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Smith, S. M.

    2014-01-01

    Iron stores are increased secondary to neocytolysis of red blood cells and a high dietary intake of iron during space flight. This raises concerns about the risk of excess iron causing oxidative damage in many tissues, including bone. Biomarkers of iron status, oxidative damage, and bone resorption during space flight were analyzed for 23 (16 M/7 F) International Space Station crewmembers as part of the Nutrition SMO project. Up to 5 in-flight blood samples and 24-h urine pools were collected over the course of the 4-6 month missions. Serum iron increased slightly during space flight and was decreased at landing (P < 0.0004). An increase in serum ferritin early in flight (217% in women and 68% in men, P < 0.0004), returning to preflight concentrations at landing, and a decrease in transferrin and transferrin receptors during flight indicated that a transient increase in iron stores occurred. No inflammatory response was observed during flight. The oxidative damage markers 8-hydroxy-2'-deoxyguanosine and prostaglandin F(sub 2(alpha)) were positively correlated (both P < 0.001) with serum ferritin. A greater area under the curve for ferritin during flight was correlated with greater changes in bone mineral density of several bone regions after flight (1). In a separate study (2), a ground-based investigation was conducted that examined the combined effects of radiation exposure and iron overload on sensitivity to radiation injury in several physiological systems in 12-wk male Sprague-Dawley rats. The rats were acclimated to an adequate iron diet (45 mg iron (ferric citrate)/kg diet) for 3 wk and then assigned to one of four groups: adequate iron (Fe) diet/no radiation, adequate Fe diet/ radiation, moderately high Fe diet (650 mg Fe (ferric citrate)/kg diet)/no radiation, and moderately high Fe diet/radiation. Animals remained on the assigned diet for 4 wk. Starting on day 14 of experimental diet treatment, animals were exposed to a fractionated dose (0.375 Gy) of Cs

  18. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling.

    PubMed

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D

    2015-12-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  19. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling

    PubMed Central

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D.

    2015-01-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  20. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats.

    PubMed

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Hossain, Hemayet; Alam, Md Ashraful

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (-)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats.

  1. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage.

    PubMed

    Zhao, Danyue; Shah, Nagendra P

    2016-03-23

    In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.

  2. Oxidative damage to cellular and isolated DNA by metabolites of a fungicide ortho-phenylphenol.

    PubMed

    Murata, M; Moriya, K; Inoue, S; Kawanishi, S

    1999-05-01

    ortho-Phenylphenol (OPP) and its sodium salt, which are used as fungicides and antibacterial agents, have been found to cause carcinomas in the urinary tract of rats. To clarify the carcinogenic mechanism of OPP, we compared the DNA damage inducing ability of an OPP metabolite, phenyl-1,4-benzoquinone (PBQ) with that of another metabolite, phenylhydroquinone (PHQ). Pulsed field gel electrophoresis showed that PBQ and PHQ induced DNA strand breakage in cultured human cells, but PBQ did it more efficiently than PHQ. Significant increases in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were observed in cells treated with PBQ and PHQ, and the increase of 8-oxodG induced by PBQ was significantly higher than that induced by PHQ. Using 32P-5'-end-labeled DNA fragments obtained from human p53 tumor suppressor gene and c-Ha-ras-1 protooncogene, we showed that PBQ plus NADH, and also PHQ, induced DNA damage frequently at thymine residues, in the presence of Cu(II). The intensity of DNA damage by PBQ was stronger than that by PHQ, showing higher importance of PBQ than other OPP metabolites. Catalase and bathocuproine inhibited Cu(II)-mediated DNA damage by PBQ plus NADH and PHQ, suggesting that H2O2 reacts with Cu(I) to produce active species causing DNA damage. Electron spin resonance and UV-visible spectroscopic studies have demonstrated generation of semiquinone radical and superoxide from the reaction of PBQ with NADH or the Cu(II)-mediated autoxidation of PHQ. The present results suggest that these OPP metabolites cause oxidative DNA damage through H2O2 generation in cells, and the damage may lead to mutation and carcinogenesis. It is concluded that PBQ may play a more important role in the expression of OPP carcinogenicity than other OPP metabolites.

  3. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii.

    PubMed

    Wei, Keqiang; Yang, Junxian

    2015-04-01

    Previous studies provide evidences for the possible oxidative damage of toxic environmental pollutants to tissue protein in fish and amphibian, but little information is available about their effects on immunity response in crustacean. In the present study, we evaluated the relationship between oxidative damage and immune response induced by both typical pollutants (viz. copper and beta-cypermethrin), by exposing the freshwater Procambarus clarkii to sub-lethal concentrations (1/40, 1/20, 1/10 and 1/5 of the 96 h LC50) up to 96 h. Five biomarkers of oxidative stress, i.e. reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and protein carbonyl in hepatopancreas, and two immune factors, i.e. phenoloxidase (PO) and hemocyanin in haemolymph were determined. The results indicated that there was a significant increase (P < 0.05) in the contents of ROS, MDA and protein carbonyl accompanied by markedly decreased (P < 0.05) PO and hemocyanin levels in a dose and time dependent manner. The significant and positive correlation (P < 0.01) between protein carbonyls induction and MDA formation was observed in crayfish hepatopancreas at 96 h. The production of these protein carbonyls could significantly depress (P < 0.01) the levels of phenoloxidase and hemocyanin in hemolymph. Higher contents of ROS enhanced the risk of lipid peroxidation, protein carbonylation and immunosuppression of crayfish, and hepatopancreas might play an important role in immune system of crustaceans. Protein oxidation may be one of the main mechanisms for pollution-induced immunotoxicity in P. clarkii.

  4. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain.

    PubMed

    Astiz, Mariana; de Alaniz, María J T; Marra, Carlos Alberto

    2012-12-01

    We have previously demonstrated that the administration of low doses of dimethoate, glyphosate and zineb to rats (i.p. 1/250 LD50, three times a week for 5weeks) provokes severe oxidative stress (OS) in specific brain regions: substantia nigra, cortex and hippocampus. These effects were also observed in plasma. Lipoic acid (LA) is considered an "ideal antioxidant" due to its ability to scavenge reactive species, reset antioxidant levels and cross the blood-brain barrier. To investigate its protective effect we administered LA (i.p. 25, 50 and 100mg/kg) simultaneously with the pesticide mixture (PM) for 5weeks. After suppression of PM administration, we evaluated the restorative effect of LA for a further 5weeks. LA prevented OS and the production of nitrites+nitrates [NOx] caused by PM in a dose-dependent manner. The PM-induced decrease in reduced glutathione and α-tocopherol levels in all brain regions was completely restored by LA at both high doses. PM administration also caused an increase in prostaglandins E(2) and F(2α) in brain that was reduced by LA in a dose-dependent fashion. Taking into account the relationship between OS, inflammation and apoptosis, we measured caspase and calpain activity. Only milli- and micro-calpain isoforms were increased in the PM-treated group and LA reduced the activities to basal levels. We also demonstrated that interrupting PM administration is not enough to restore the levels of all the parameters measured and that LA is necessary to achieve basal status. In our experimental model LA displayed a protective role against pesticide-induced damage, suggesting that LA administration is a promising therapeutic strategy to cope with disorders suspected to be caused by OS generators, especially in brain.

  5. Heme-induced contractile dysfunction in human cardiomyocytes caused by oxidant damage to thick filament proteins.

    PubMed

    Alvarado, Gerardo; Jeney, Viktória; Tóth, Attila; Csősz, Éva; Kalló, Gergő; Huynh, An T; Hajnal, Csaba; Kalász, Judit; Pásztor, Enikő T; Édes, István; Gram, Magnus; Akerström, Bo; Smith, Ann; Eaton, John W; Balla, György; Papp, Zoltán; Balla, József

    2015-12-01

    Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.

  6. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  7. 17β-estradiol ameliorates light-induced retinal damage in Sprague-Dawley rats by reducing oxidative stress.

    PubMed

    Wang, Shaolan; Wang, Baoying; Feng, Yan; Mo, Mingshu; Du, Fangying; Li, Hongbo; Yu, Xiaorui

    2015-01-01

    Oxidative stress is considered as a major cause of light-induced retinal neurodegeneration. The protective role of 17β-estradiol (βE2) in neurodegenerative disorders is well known, but its underlying mechanism remains unclear. Here, we utilized a light-induced retinal damage model to explore the mechanism by which βE2 exerts its neuroprotective effect. Adult male and female ovariectomized (OVX) rats were exposed to 8,000 lx white light for 12 h to induce retinal light damage. Electroretinogram (ERG) assays and hematoxylin and eosin (H&E) staining revealed that exposure to light for 12 h resulted in functional damage to the rat retina, histological changes, and retinal neuron loss. However, intravitreal injection (IVI) of βE2 significantly rescued this impaired retinal function in both female and male rats. Based on the level of malondialdehyde (MDA) production (a biomarker of oxidative stress), an increase in retinal oxidative stress followed light exposure, and βE2 administration reduced this light-induced oxidative stress. Quantitative reverse-transcriptase (qRT)-PCR indicated that the messenger RNA (mRNA) levels of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were downregulated in female OVX rats but were upregulated in male rats after light exposure, suggesting a gender difference in the regulation of these antioxidant enzyme genes in response to light. However, βE2 administration restored or enhanced the SOD and Gpx expression levels following light exposure. Although the catalase (CAT) expression level was insensitive to light stimulation, βE2 also increased the CAT gene expression level in both female OVX and male rats. Further examination indicated that the antioxidant proteins thioredoxin (Trx) and nuclear factor erythroid 2-related factor 2 (Nrf2) are also involved in βE2-mediated antioxidation and that the cytoprotective protein heme oxygenase-1 (HO-1) plays a key role in the endogenous defense mechanism

  8. Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer.

    PubMed

    Tauler, Pedro; Ferrer, Miguel D; Sureda, Antoni; Pujol, Pere; Drobnic, Franchek; Tur, Josep A; Pons, Antoni

    2008-11-01

    The aim of the study was to determine the effects of an antioxidant supplementation, which includes coenzyme Q(10), on plasma and neutrophil oxidative stress and the antioxidant response after a soccer match. Nineteen voluntary male pre-professional footballers were randomly and double-blinded treated with either a multivitamin and mineral supplement (n = 8) or a placebo (n = 11). After the 3 months of supplementation, the sportsmen played a friendly soccer match of 60 min. The 3-month supplementation induced higher plasma ascorbate and coenzyme Q levels when compared to the placebo group. Antioxidant supplementation influenced plasma oxidative stress markers because they were lower in the supplemented group than in the placebo one after the match. The football match induced decreased neutrophil vitamin E levels and catalase and glutathione peroxidase activities but increased glutathione reductase activity. Antioxidant diet supplementation prevented plasma oxidative damage but did not influence the neutrophil response to a football match.

  9. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats.

    PubMed

    Acar, Abdullah; Akil, Esref; Alp, Harun; Evliyaoglu, Osman; Kibrisli, Erkan; Inal, Ali; Unan, Fatma; Tasdemir, Nebahat

    2012-07-01

    To date, there have not been enough studies about the effects of curcumin against oxidative stress on sciatic nerves caused by streptozotocin (STZ) in diabetic rats. Therefore, this study was undertaken to determine whether curcumin, by virtue of its antioxidant properties, could affect the oxidant/antioxidant balance in the sciatic nerve and brain tissues of streptozotocin (STZ)-induced diabetic rats. A total of 28 rats were randomly divided into four groups of seven rats each: normal controls, only curcumin treated, diabetic controls, and diabetics treated with curcumin. Biomarkers-malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and NO levels-for oxidative stress in the brain and sciatic nerve tissues of the rats were measured. We found a significant increase in MDA, NO, TOS, and OSI, along with a reduction in TAS levels in the brains and sciatic nerves of the STZ-induced diabetic rats (for both parameters p < 0.05). The MDA, TOS, OSI, and NO levels in these tissues were significantly reduced in the curcumin-treated diabetic group compared to the untreated diabetic group. In conclusion, the results of this study suggested that curcumin exhibits neuroprotective effects against oxidative damage in the brain and sciatic tissues of diabetic rats.

  10. Oxidative damage of copper chloride overload to the cultured rat astrocytes.

    PubMed

    Hu, Hao-Lu; Ni, Xiu-Shi; Duff-Canning, Sarah; Wang, Xiao-Ping

    2016-01-01

    Disorders of copper metabolism are associated with neurological dysfunction including Wilson's disease (WD). WD is a autosomal recessive disorder caused by mutations in the ATP7B gene resulting in the inability of the hepatocytes to remove excess copper. Gradual copper accumulation causes damage to liver, brain and other organs manifesting in liver disease, neurological and psychiatric symptoms. Also scond copper-neurometaboic disorder: Menkes disease charaterized with mutated ATP7A gene, is ralated with abnormally neuroal transmission and synaptogenesis. Parkinson's disease and Alzheimer's disease both are refered to some degree of copper/iron metabolism changes. The precise mechanisms by which excess copper causes neurological damage remain to be elucidated. In this study, we aimed to investigate the influence of excessive amounts of Cu(2+) on the oxidative damage response and survival of primary astrocytes from newborn rats. Primary cultured rat astrocytes were divided into three groups: 30 μmol/L CuCl2, 100 μmol/L CuCl2 and control. At 12, 24, 48, 96 and 120 hours of CuCl2 intervention, cell viability, intracellular reduced glutathione level and glutathion reductase activity, and nitric oxide secretion were determined. It was found that 30 μmol/L CuCl2 might stimulate the exaltation and the compensatory proliferation of astrocytes. The survival rate of astrocytes in the 100 μmol/L CuCl2 group was significantly decreased relative to the 30 μmol/L CuCl2 group. At 24 hours of CuCl2 intervention, intracellular reduced glutathione level and glutathion reductase activity were significantly decreased in the 100 μmol/L CuCl2 group compared to the control group. At 120 hours of CuCl2 intervention, nitric oxide secretion in the 100 μmol/L CuCl2 group was significantly greater than in the control group. Under pathological conditions, excessive amounts of Cu(2+) greatly damaged the growth and proliferation of astrocytes, reduced the anti-oxidative capacity of

  11. Oxidative damage of copper chloride overload to the cultured rat astrocytes

    PubMed Central

    Hu, Hao-Lu; Ni, Xiu-Shi; Duff-Canning, Sarah; Wang, Xiao-Ping

    2016-01-01

    Disorders of copper metabolism are associated with neurological dysfunction including Wilson’s disease (WD). WD is a autosomal recessive disorder caused by mutations in the ATP7B gene resulting in the inability of the hepatocytes to remove excess copper. Gradual copper accumulation causes damage to liver, brain and other organs manifesting in liver disease, neurological and psychiatric symptoms. Also scond copper-neurometaboic disorder: Menkes disease charaterized with mutated ATP7A gene, is ralated with abnormally neuroal transmission and synaptogenesis. Parkinson’s disease and Alzheimer’s disease both are refered to some degree of copper/iron metabolism changes. The precise mechanisms by which excess copper causes neurological damage remain to be elucidated. In this study, we aimed to investigate the influence of excessive amounts of Cu2+ on the oxidative damage response and survival of primary astrocytes from newborn rats. Primary cultured rat astrocytes were divided into three groups: 30 μmol/L CuCl2, 100 μmol/L CuCl2 and control. At 12, 24, 48, 96 and 120 hours of CuCl2 intervention, cell viability, intracellular reduced glutathione level and glutathion reductase activity, and nitric oxide secretion were determined. It was found that 30 μmol/L CuCl2 might stimulate the exaltation and the compensatory proliferation of astrocytes. The survival rate of astrocytes in the 100 μmol/L CuCl2 group was significantly decreased relative to the 30 μmol/L CuCl2 group. At 24 hours of CuCl2 intervention, intracellular reduced glutathione level and glutathion reductase activity were significantly decreased in the 100 μmol/L CuCl2 group compared to the control group. At 120 hours of CuCl2 intervention, nitric oxide secretion in the 100 μmol/L CuCl2 group was significantly greater than in the control group. Under pathological conditions, excessive amounts of Cu2+ greatly damaged the growth and proliferation of astrocytes, reduced the anti-oxidative capacity of

  12. Role of inducible nitrogen oxide synthase in benzene-induced oxidative DNA damage in the bone marrow of mice.