Science.gov

Sample records for production seed yield

  1. Pistil Smut Infection Increases Ovary Production, Seed Yield Components, and Pseudosexual Reproductive Allocation in Buffalograss

    PubMed Central

    Chandra, Ambika; Huff, David R.

    2014-01-01

    Sex expression of dioecious buffalograss [Bouteloua dactyloides Columbus (syn. Buchloë dactyloides (Nutt.) Engelm.)] is known to be environmentally stable with approximate 1:1, male to female, sex ratios. Here we show that infection by the pistil smut fungus [Salmacisia buchloëana Huff & Chandra (syn. Tilletia buchloëana Kellerman and Swingle)] shifts sex ratios of buffalograss to be nearly 100% phenotypically hermaphroditic. In addition, pistil smut infection decreased vegetative reproductive allocation, increased most seed yield components, and increased pseudosexual reproductive allocation in both sex forms compared to uninfected clones. In female sex forms, pistil smut infection resulted in a 26 fold increase in ovary production and a 35 fold increase in potential harvest index. In male sex forms, pistil smut infection resulted in 2.37 fold increase in floret number and over 95% of these florets contained a well-developed pistil. Although all ovaries of infected plants are filled with fungal teliospores and hence reproductively sterile, an average male-female pair of infected plants exhibited an 87 fold increase in potential harvest index compared to their uninfected clones. Acquiring an ability to mimic the effects of pistil smut infection would enhance our understanding of the flowering process in grasses and our efforts to increase seed yield of buffalograss and perhaps other grasses. PMID:27135522

  2. Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24.

    PubMed

    Bechtold, Ulrike; Lawson, Tracy; Mejia-Carranza, Jaime; Meyer, Rhonda C; Brown, Ian R; Altmann, Thomas; Ton, Jurriaan; Mullineaux, Philip M

    2010-11-01

    Plants that constitutively express otherwise inducible disease resistance traits often suffer a depressed seed yield in the absence of a challenge by pathogens. This has led to the view that inducible disease resistance is indispensable, ensuring that minimal resources are diverted from growth, reproduction and abiotic stress tolerance. The Arabidopsis genotype C24 has enhanced basal resistance, which was shown to be caused by permanent expression of normally inducible salicylic acid (SA)-regulated defences. However, the seed yield of C24 was greatly enhanced in comparison to disease-resistant mutants that display identical expression of SA defences. Under both water-replete and -limited conditions, C24 showed no difference and increased seed yield, respectively, in comparison with pathogen-susceptible genotypes. C24 was the most drought-tolerant genotype and showed elevated water productivity, defined as seed yield per plant per millilitre water consumed, and achieved this by displaying adjustments to both its development and transpiration efficiency (TE). Therefore, constitutive high levels of disease resistance in C24 do not affect drought tolerance, seed yield and seed viability. This study demonstrates that it will be possible to combine traits that elevate basal disease resistance and improve water productivity in crop species, and such traits need not be mutually exclusive.

  3. Evaluation of Exotically-Derived Soybean Breeding Lines for Seed Yield, Germination, Damage, and Composition under Dryland Production in the Midsouthern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our goal was to identify breeding lines that possess high germin...

  4. Farmyard Manure and Fertilizer Effects on Seed Potato (Solanum tuberosum L.) Yield in Green House Production

    NASA Astrophysics Data System (ADS)

    László, M.

    2009-04-01

    Nowadays is widely well know that the potato is an important vegetable crop at Brazíl. It is grown on about 173.000 ha, with total yield of 2.6 million tons year-1. The average yield is 15 t ha-1. This level is very low because degeneration of crop is rapid under high temperature and high viruses pressure. Therefore seed potato propagation and production is principal on consumption potato production. This is why we found it necessary to develop it. The latossolo vermelho soil-farmyard manure- burnt rice straw-fertilizer 4N:14P:8K greenhouse pot trial was set up at the National Vegetable Crops Research Center, Brasília-DF, Brazíl in 1990. The methods of the experiments were soil x farmyard manure x burnt rice straw, soil x 4N:14P:8K fertilizer and soil x farmyard manure x burnt rice straw x 4N:14P:8K fertilizer on randomized block design in total 29 combination of treatments in 5, 5 and 3 repetitions with in a total parcel of 116. According to chemical analysis of the a., soil, b., farmyard manure and c., burnt rice straw the agrochemistry parameters were as follows (estimated datas): a., latossolo vermelho soil: CaCO3 0.3-0.7%, humo 0.9-1.0%, pH (H2O) 5.3, pH (KCl) 4.5, AL- P2O5 3.2-3.5 mg kg-1, AL- K2O 180 mg kg-1, Mg (KCl) 70 mg kg-1, EDTA-Zn 0.5-0.8 mg kg-1, EDTA-Cu 0.5-0.6 mg kg-1, b., farmyard manure: N 1.8 g kg-1, P2O5 2.0 g kg-1, K2O 4.0 g kg-1, c., burnt rice straw: N 0.8 g kg-1, P2O5 7.0 g kg-1, K2O 4.5 g kg-1. The experimental datas were estimated by analysis of variance, ANOVA and MANOVA. The main conclusions were as follows: 1. Mixture of 80% latossolo vermelho, 10% burnt rice straw and 10% farmyard manure were shown best performance on seed potato productivity. The piece of tubers with a 0-20 mm (consumption seeds) was increased by 77%. 2. Total seed potato number was reached maximum at 10.8 g pot-1 4N:14P:8K fertilizer regarding to average of treatments with a 33%. 3. Dry biomassa production plant-1 was decreased by high dose of 4N:14P:8K

  5. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields.

    PubMed

    Sensöz, Sevgi; Angin, Dilek

    2008-09-01

    Safflower (Charthamus tinctorius L.) seed press cake was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 400 and 600 degrees C with heating rates of 10, 30 and 50 degrees C min(-1). The obtained bio-char, gas and bio-oil yields ranged between 25 and 34 wt%, 19 and 25 wt%, and 28 and 36 wt%, respectively, at different pyrolysis conditions. The highest liquid yield was obtained at 500 degrees C pyrolysis temperature with a heating rate of 50 degrees C min(-1) under the sweep gas of N(2) with a flow rate of 100 cm(3)min(-1). Employing the higher heating rate of 50 degrees C min(-1) results in maximum bio-oil yield, probably due to the decrease in mass transfer limitations. According to the results obtained under the conditions of this study, the effects of pyrolysis temperature and sweep gas flow rate are more significant than the effect of heating rate on the yields.

  6. Peanut pod, seed, and oil yield for biofuel following conventional and organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in demand for organic peanut (Arachis hypogaea L.) makes it increasingly necessary to develop organic methods in their production. Corn gluten meal (CGM) and vinegar are materials used in organic weed control. These were used alone, or in conjunction with cultivation, to evaluate their ef...

  7. Evaluation of Exotically-Derived Soybean Breeding Lines for Seed Yield, Germination, Damage, and Composition under Dryland Production in the Midsouthern USA

    PubMed Central

    Bellaloui, Nacer; Smith, James R.; Mengistu, Alemu; Ray, Jeffery D.; Gillen, Anne M.

    2017-01-01

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our breeding goal was to identify breeding lines that possess high germination, nutritional quality, and yield potential under high heat and dryland production conditions. Our hypothesis was that breeding lines derived from exotic germplasm might possess physiological and genetic traits allowing for higher seed germinability under high heat conditions. In a 2-year field experiment, breeding lines derived from exotic soybean accessions, previously selected for adaptability to the ESPS in maturity groups (MG) III and IV, were grown under non-irrigated conditions. Results showed that three exotic breeding lines had consistently superior germination across 2 years. These lines had a mean germination percentage of >80%. Two (25-1-1-4-1-1 and 34-3-1-2-4-1) out of the three lines with ≥80% germination in both years maintained high seed protein, oleic acid, N, P, K, B, Cu, and Mo in both years. Significant (P < 0.05) positive correlations were found between germination and oleic acid and with K and Cu in both years. Significant negative correlations were found between germination and linoleic acid, Ca, and hard seed in both years. There were positive correlations between germination and N, P, B, Mo, and palmitic acid only in 2013. A negative correlation was found between germination and green seed damage and linolenic acid in 2013 only. Seed wrinkling was significantly negatively correlated with germination in 2012 only. A lower content of Ca in the seed of high germinability genotypes may explain the lower rates of hard seed in those lines, which could lead to higher germination. Many of the differences in yield, germination, diseases, and seed composition between years are likely due to heat and rainfall differences between years. The

  8. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  9. Rapid and high yield biogas production from Jatropha seed cake by co-digestion with bagasse and addition of Fe2+.

    PubMed

    Sen, Kalyani; Mahalingam, Shanthi; Sen, Biswarup

    2013-01-01

    Co-digestion and metal ion addition strategies to improve the biogas production potential of Jatropha seed cake (JSC) by anaerobic digestion were evaluated in the present study. Initially, batch experiments were carried out to obtain the maximum JSC concentration for optimum biogas yield, followed by co-digestion with bagasse, and addition of Fe2+. The optimum JSC concentration of 15% (w/v) gave biogas production rate (BPR) of 66.4 mL/d, specific BPR of 9.7 mL/d/gVS and biogas yield of 0.064 m3/kgVS. The co-digestion strategy increased the carbon/nitrogen of feed (10% JSC + 5% Bagasse, w/v) to 26.5 from 14 (JSC alone), resulting in biogas yield of 0.136 m3/kgVS of JSC, a 2.1-fold increase. Addition of Fe2+ to JSC and bagasse mixture led to biogas yield of 0.203 m3/kgVS, with methane content of 66% and methane production of 8.8 L/L reactor. With short digestion time of 15 days, co-digestion of JSC with bagasse and addition of Fe2+ showed 3.2-fold higher biogas yield than JSC alone.

  10. Methods to assess factors that influence grass seed yield

    NASA Astrophysics Data System (ADS)

    Louhaichi, Mounir

    A greater than 10-fold increase in Canada goose (Branta canadensis ) populations over the past several years has resulted in concerns over grazing impacts on grass seed production in the mid-Willamette Valley, Oregon. This study was designed to develop methods to quantify and statistically analyze goose-grazing impacts on seed yields of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.). Yield-mapping-system equipped combines, incorporating global positioning system (GPS) technology, were used to measure and map yields. Image processing of ground-level photography to estimate crop cover and other relevant observations were spatially located via GPS to establish spatial-temporal goose grazing patterns. We sampled each field semi-monthly from mid-winter through spring. Spatially located yield data, soils information, exclosure locations, and grazing patterns were integrated via geographical information system (GIS) technology. To avoid concerns about autocorrelation, a bootstrapping procedure for subsampling spatially contiguous seed yield data was used to organize the data for appropriate use of analysis of variance. The procedure was used to evaluate grazing impacts on seed yield for areas of fields with different soils and with differential timing and intensity of goose grazing activity. We also used a standard paired-plot procedure, involving exclosures and associated plots available for grazing. The combination of spatially explicit photography and yield mapping, integrated with GIS, proved effective in establishing cause-and-effect relationships between goose grazing and seed yield differences. Exclosures were essential for providing nongrazed controls. Both statistical approaches were effective in documenting goose-grazing impacts. Paired-plots were restricted by small size and few numbers and did not capture grazing impacts as effectively as comparison of larger areas to exclosures. Bootstrapping to subsample larger areas of

  11. Do more seeds per panicle improve grain sorghum yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed number rather than seed mass is largely considered to be the most important yield component of grain sorghum [Sorghum bicolor (L.) Moench]. An experimental sorghum hybrid with enhanced seed number (tri-seed) was grown at the Soil-Plant-Environment Research (SPER) facility, USDA-ARS, Bushland, ...

  12. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis.

    PubMed

    Guan, M; Møller, I S; Schjoerring, J K

    2015-01-01

    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter-green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis.

  13. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis

    PubMed Central

    Guan, M.; Møller, I. S.; Schjoerring, J. K.

    2015-01-01

    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter–green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis. PMID:25316065

  14. Path and Ridge Regression Analysis of Seed Yield and Seed Yield Components of Russian Wildrye (Psathyrostachys juncea Nevski) under Field Conditions

    PubMed Central

    Wang, Quanzhen; Zhang, Tiejun; Cui, Jian; Wang, Xianguo; Zhou, He; Han, Jianguo; Gislum, René

    2011-01-01

    The correlations among seed yield components, and their direct and indirect effects on the seed yield (Z) of Russina wildrye (Psathyrostachys juncea Nevski) were investigated. The seed yield components: fertile tillers m-2 (Y1), spikelets per fertile tillers (Y2), florets per spikelet- (Y3), seed numbers per spikelet (Y4) and seed weight (Y5) were counted and the Z were determined in field experiments from 2003 to 2006 via big sample size. Y1 was the most important seed yield component describing the Z and Y2 was the least. The total direct effects of the Y1, Y3 and Y5 to the Z were positive while Y4 and Y2 were weakly negative. The total effects (directs plus indirects) of the components were positively contributed to the Z by path analyses. The seed yield components Y1, Y2, Y4 and Y5 were significantly (P<0.001) correlated with the Z for 4 years totally, while in the individual years, Y2 were not significant correlated with Y3, Y4 and Y5 by Peason correlation analyses in the five components in the plant seed production. Therefore, selection for high seed yield through direct selection for large Y1, Y2 and Y3 would be effective for breeding programs in grasses. Furthermore, it is the most important that, via ridge regression, a steady algorithm model between Z and the five yield components was founded, which can be closely estimated the seed yield via the components. PMID:21533153

  15. Effect of seed stimulation on germination and sugar beet yield

    NASA Astrophysics Data System (ADS)

    Prośba-Białczyk, U.; Szajsner, H.; Grzyś, E.; Demczuk, A.; Sacała, E.; Bąk, K.

    2013-03-01

    Germination and sugar beet yield after seed stimulation were investigated. The seeds came from the energ'hill technology and were subject to laser irradiation. The experiments were conducted in the laboratory and field conditions. Lengthening of germinal roots and hypocotyls was observed. A positive effect of the stimulation on the morphological features was observed for the Eh seeds and laser irradiation applied in a three-fold dose. The energ'hill seeds exhibited a significantly higher content of carotenoids in seedlings and an increase in the content of chlorophylls. Laser light irradiation favourably modified the ratio of chlorophyll a to b. The leaves and roots of plants developed from the energ'hill and irradiated seeds were characterized by higher dry matter content thanin non-stimulated seeds. Seed stimulation had a positive influence on yielding and the saccharose content.

  16. Methods for high yield production of terpenes

    DOEpatents

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  17. Copyrolysis of Seyitomer-lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization

    SciTech Connect

    Ozlem Onay; Evren Bayram; O. Mete Kockar

    2007-09-15

    Pyrolytic behaviors of biomass/coal mixtures were investigated under a heating rate of 7{sup o}C min{sup -1}, over a range of pyrolysis temperatures between 400 and 700{sup o}C, and the blending ratio of coal in mixtures was varied between 0 and 100 wt %. The results indicated that considerable synergistic effects were observed during the copyrolysis in a fixed-bed reactor leading to an increase in the oil yield at lower than coal blending ratios of 33%. At the lower blending coal ratio conditions, the oil yields are higher than the expected ones, calculated as the sum of oil fractions produced by pyrolysis of each separated component. The maximum pyrolysis oil yield of 39.5% was obtained with 5% of lignite mixed with safflower seed. The obtained oils are characterized by Fourier transform infrared spectroscopy, {sup 1}H nuclear magnetic resonance, gas chromatography mass spectrometry, and elemental analysis. These findings can potentially help to understand and predict the behavior of coal/biomass blends in practical liquefaction systems. 33 refs., 8 figs., 4 tabs.

  18. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton ( Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  19. Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil (Lens culinaris Medik), a nutritious traditional pulse crop, has been experiencing a declining availability in Asia, due to lower yields and marginal soils. The objective of this study was to determine whether selenium (Se) fertilization can increase lentil yield, productivity, and seed quali...

  20. High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning.

    PubMed

    Sánchez-Iglesias, Ana; Winckelmans, Naomi; Altantzis, Thomas; Bals, Sara; Grzelczak, Marek; Liz-Marzán, Luis M

    2017-01-11

    We show that thermal treatment of small Au seeds results in extensive twinning and a subsequent drastic improvement in the yield (>85%) of formation of pentatwinned nanoparticles (NPs), with preselected morphology (nanorods, bipyramids, and decahedra) and aspect ratio. The "quality" of the seeds thus defines the yield of the obtained NPs, which in the case of nanorods avoids the need for additives such as Ag(+) ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final NPs. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. Together, these results represent a paradigm shift in anisotropic gold NP synthesis.

  1. Genetic behaviour of earliness related traits and seed yield in chickpea (Cicer arietinum L.).

    PubMed

    Monpara, B A; Dhameliya, H R

    2013-09-15

    Genetic analysis of five quantitative traits related to earliness and seed yield in chickpea was carried out using eight segregating populations (F2 generations) and their nine parents. Characters included in the study were days to flowering, flowering period, days to maturity, plant height and seed yield per plant. The results showed that no consistency in magnitude of genetic parameters was observed in any cross populations. However, the F2 of P1xP4 exhibited high magnitude of heritability coupled with high genetic advance and GCV for flowering period, days to maturity and plant height and high heritability with moderate genetic advance and GCV for seed yield per plant. This indicated the involvement of additive gene action and potential for development of early maturing genotypes with enhanced seed yield. Correlation study revealed that days to flowering, flowering period and days to maturity recorded significant positive association among themselves. Though, their associations with seed yield per plant were weak in certain genetic backgrounds, otherwise almost non-significant. Thus, correlation studies revealed that selection for earliness will not directly increase productivity. The possibility of combining components of earliness with yield-promoting alleles was suggested.

  2. Salmonella in sesame seed products.

    PubMed

    Brockmann, Stefan O; Piechotowski, Isolde; Kimmig, Peter

    2004-01-01

    In the context of an international outbreak of multiresistant Salmonella Typhimurium DT 104 that was correlated to the consumption of halvah ("helva," an Asian candy made from sesame seed), we examined several sesame seed products for the occurrence of Salmonella. Of 117 ready-to-eat food items containing sesame, we isolated salmonellae from 11 (9.4%) samples. In addition to finding Salmonella Typhimurium DT 104 in the halvah involved in the outbreak, we also isolated different Salmonella Typhimurium strains out of halvah from other manufacturers and countries of origin, as well as Salmonella Offa, Salmonella Tennessee, and Salmonella Poona from sesame paste (tahini) and sesame seed, which is sold for raw consumption in cereals.

  3. NEWER SDHI FUNGICIDES AND GRASSES: EFFECTS ON SEED YIELD AND DISEASE CONTROL.

    PubMed

    Rijckaert, G; Vanden Nest, T

    2015-01-01

    Grass seed crops (ryegrass), a minor crop in Belgium, should be managed more intensively and in an arable way, comparable with the intensive wheat culture. Even more important than higher seed yields are stable, higher yields over time, Integrated pest management (IPM) forms the framework around this intensification. Two similar seed production field trials--one with perennial ryegrass (Lolium perenne L.) and one with Italian ryegrass (Lolium multiflorum L.)--were conducted in 2014, dealing with 4 SDHI fungicides (bixafen, boscalid, fluxapyroxad and isopyrazam) that were compared with an untreated control and some reference treatments. There were four application times (stages): i.e. early stem elongation--BBCH 33 (T1), ear tips visible--BBCH 51 (T2), full ear, begin of flowering--BBCH 61 (T3) and end of flowering--BBCH 69 (T4). Except for the Italian ryegrass trial, only the last three stages were used. In the Italian ryegrass trial, which had only sporadic incidence of disease, all T3 treatments clearly increased seed yield compared with the untreated control, by 13% on average. For the T2 treatments only Fandango and Adexar clearly out yielded the control. The curative T4 treatment (Tilt + Corbel) tended to increase seed yield, but this was not significant. Seed yield differences could not be explained by variations in thousand seed weight (TSW), leaf withering and NDVI scores (crop reflectance). The disease pressure (crown rust) was very low before flowering, but stem rust developed strongly during the last 2 weeks before harvest of the perennial ryegrass trial. Yield responses were mostly pronounced at the T3 treatment. Except for Fandango and Horizon, all T3 treatments clearly increased yield in comparison with the untreated control, by 18.4% on average. The T4 treatment (Tilt + Corbel) could not repair the crop damage. Further seed yield data are discussed in relation to yield components, TSW, leaf withering and vegetation index (NDVI). An integrated

  4. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene.

  5. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  6. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    PubMed

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  7. High Yielding Microbubble Production Method

    PubMed Central

    Fiabane, Joe; Prentice, Paul; Pancholi, Ketan

    2016-01-01

    Microfluidic approaches to microbubble production are generally disadvantaged by low yield and high susceptibility to (micro)channel blockages. This paper presents an alternative method of producing microbubbles of 2.6 μm mean diameter at concentrations in excess of 30 × 106 mL−1. In this method, the nitrogen gas flowing inside the liquid jet is disintegrated into spray of microbubble when air surrounding this coflowing nitrogen gas-liquid jet passes through a 100 μm orifice at high velocity. Resulting microbubble foam has the polydispersity index of 16%. Moreover, a ratio of mean microbubble diameter to channel width ratio was found to be less than 0.025, which substantially alleviates the occurrence of blockages during production. PMID:27034935

  8. Optimizing hill seeding density for high-yielding hybrid rice in a single rice cropping system in South China.

    PubMed

    Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.

  9. Optimizing Hill Seeding Density for High-Yielding Hybrid Rice in a Single Rice Cropping System in South China

    PubMed Central

    Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342

  10. Improving Seed Germination and Peanut Yields by Cold Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Li, Ling; Li, Jiangang; Shen, Minchong; Hou, Jinfeng; Shao, Hanliang; Dong, Yuanhua; Jiang, Jiafeng

    2016-10-01

    This study explored the effects of cold plasma treatment on seed germination, plant growth, and peanut yield. Cold plasma treatment improved germination and seedling growth, and the 120 W treatment produced the best effect. Germination potential and germination rate were markedly raised by 150% and 21%, respectively. Germination was accelerated and the uniformity of emergence improved. The apparent contact angle was decreased by 53%. Seedling shoot and root dry weights increased by 11% and 9%. Leaf area, leaf thickness, leaf nitrogen concentration, chlorophyll contents, and dry weight at the fruiting stage, together with plant height, stem diameter, and root dry weight at the mature stage were all markedly raised by the cold plasma treatment. The cold plasma treatment enhanced yield components, such as branch numbers per plant, pod numbers per plant, and 100 pod weights by 8%, 13%, and 9%, respectively, compared to the control. Furthermore, the yield improved by 10%. These results suggested that cold plasma treatment improved germination, plant growth, and yield, which might be due to the cold plasma increasing the leaf area, nitrogen concentrations, and chlorophyll contents. supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2012BAD05B04), National Natural Science Foundation of China (No. 41201241), “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDB15030301) and Jiangsu Province Science and Technology Support Program (No. BE2013452)

  11. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region

    PubMed Central

    Choi, Doug-Hwan; Ban, Ho-Young; Seo, Beom-Seok; Lee, Kyu-Jong

    2016-01-01

    Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE–R7) were significantly prolonged by the elevated temperatures, especially the R1–R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE–R5) for both cultivars; the optimum temperatures (R5–R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE–R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current

  12. Growth of multicrystalline silicon ingot with both enhanced quality and yield through quartz seeded method

    NASA Astrophysics Data System (ADS)

    Zhang, Huali; You, Da; Huang, Chunlai; Wu, Yihua; Xu, Yan; Wu, Peng

    2016-02-01

    An effective method for ingot quality control in directional solidification by using artificially designed quartz coating as seed is demonstrated in this paper. Quartz powders sprayed at the bottom of the crucible provided numerous nucleation points for the silicon grain growth. The quartz seeded growth ingot showed a large number of small and uniform silicon grains at the bottom, although the grain size increased with crystal growth. Comparatively less dislocation agglomerates and multiplication rate through bottom to top were observed through photoluminescence (PL) analysis. Crystals produced by quartz seeded method showed a higher and more uniform minority carrier lifetime distribution compared to that produced from normal method without seed, and shorter low lifetime area length at the bottom compared to that produced from mc-Si seed-assisted growth method, indicating larger production yield under the same feedstock charging weight. An enhanced average solar cell conversion efficiency of as high as 0.52% in absolute value was obtained compared to that made from seedless method under the same cell manufacture process line, very close to that made from mc-Si seed-assisted growth method.

  13. Estimates of broad-sense heritability for seed yield and yield components of safflower (Carthamus tinctorius L.).

    PubMed

    Camaş, Necdet; Esendal, Enver

    2006-12-01

    This study was carried out to estimate the broad-sense heritability for seed yield and some yield components of safflower (Carthamus tinctorius L.) cultivars. The experimental design was a randomized complete block design with three replications in the 2004 growing season in the Middle Black Sea Region conditions of Turkey. Three safflower cultivars (5-154, Dinçer and Yenice) were grown at five locations (Bafra, Ladik, Suluova, Gümüşhaciköy and Osmancik). The heritability for seed yield, plant height, first branch height, number of branch, head diameter, number of seed per head, 1000-seed weight and oil content were estimates as 35%, 93%, 99%, 45%, 21%, 69%, 81% and 59%, respectively. It was found that first branch height was the least affected trait over environments and followed plant height, thousand seed weight and number of seed per head. On the other hand, head diameter, seed yield, number of branch and oil content were the most affected traits versus environmental conditions. The first branch height, plant height and 1000-seed weight could be used to succeed in selection in early generation.

  14. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    PubMed Central

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605

  15. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    PubMed

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  16. Genetic analysis of seed yield, oil content and their components in safflower (Carthamus tinctorius L.).

    PubMed

    Ramachandram, M; Goud, J V

    1981-05-01

    The genetic architecture of seed yield, oil content and their components was studied in a diallel cross of F1 and F2: eleven parents, representing an adequate diversity for all considered characters in safflower were used. Combining ability analysis revealed the predominance of gca variance for plant height, total capitula, seed weight, seed number and seed yield in F1 and F2 generations and for days to flowering and oil content in F1. The analysis of components of variance indicated that the non-additive factor was the major influence on total capitula and seed yield in F1s, and F2s, and on plant height, seed weight and seed number in the F2 alone. The heterogeneity of the dominance component over generations has been attributed to coupling phase linkage. All four Indian parents, namely S 144, A1, MS 49 and 6 spl, together with G 1157 and US 104 in the exotic group, were the best combiners for seed yield and/or for one of its components while the remainder of the exotic parents were characterized by high gca effects for oil content. VFstp 1 and Frio were the only parents approximating both properties of oil content and seed yield. Breeding methods, such as biparental mating followed by reciprocal recurrent selection, were suggested for the simultaneous improvement of seed yield and oil content.

  17. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    DOE PAGES

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; ...

    2015-10-29

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less

  18. Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration1

    PubMed Central

    Kumagai, Etsushi; Aoki, Naohiro; Masuya, Yusuke; Shimono, Hiroyuki

    2015-01-01

    Selection for cultivars with superior responsiveness to elevated atmospheric CO2 concentrations (eCO2) is a powerful option for boosting crop productivity under future eCO2. However, neither criteria for eCO2 responsiveness nor prescreening methods have been established. The purpose of this study was to identify traits responsible for eCO2 responsiveness of soybean (Glycine max). We grew 12 Japanese and U.S. soybean cultivars that differed in their maturity group and determinacy under ambient CO2 and eCO2 for 2 years in temperature gradient chambers. CO2 elevation significantly increased seed yield per plant, and the magnitude varied widely among the cultivars (from 0% to 62%). The yield increase was best explained by increased aboveground biomass and pod number per plant. These results suggest that the plasticity of pod production under eCO2 results from biomass enhancement, and would therefore be a key factor in the yield response to eCO2, a resource-rich environment. To test this hypothesis, we grew the same cultivars at low planting density, a resource-rich environment that improved the light and nutrient supplies by minimizing competition. Low planting density significantly increased seed yield per plant, and the magnitude ranged from 5% to 105% among the cultivars owing to increased biomass and pod number per plant. The yield increase due to low-density planting was significantly positively correlated with the eCO2 response in both years. These results confirm our hypothesis and suggest that high plasticity of biomass and pod production at a low planting density reveals suitable parameters for breeding to maximize soybean yield under eCO2. PMID:26373658

  19. Pollen- and Seed-Mediated Transgene Flow in Commercial Cotton Seed Production Fields

    PubMed Central

    Heuberger, Shannon; Ellers-Kirk, Christa; Tabashnik, Bruce E.; Carrière, Yves

    2010-01-01

    Background Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt) cotton is planted on millions of hectares annually and is a potential source of transgene flow. Methodology/Principal Findings Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L.) seed production fields (some transgenic for herbicide resistance, some not) for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. Conclusions/Significance A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow. PMID:21152426

  20. [Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca)].

    PubMed

    Liang, Xiao-yan; Guo, Feng; Zhang, Jia-lei; Meng, Jing-jing; Li, Lin; Wan, Shu-bo; Li, Xin-guo

    2015-12-01

    The large-seed peanut cultivar of Huayu 22 was used to study the differences of canopy microenvironment, photosynthetic characteristics, and pod yield at three single-seed sowing densities, i.e., 225000 (S₁), 195000 (S₂) and 165000 (S₃) holes per hectare, in field experiments. The results showed that the canopy light transmittance, canopy air temperature and canopy CO₂concentration all increased at these three single-seed sowing densities compared with those of double-seed sowing pattern (150000 holes per hectare), while the canopy humidity decreased. It seemed that single-seed sowing was helpful to improve microenvironment and the growth of peanut, especially at late growth stage. Meanwhile, the photosynthetic pigment contents and the net photosynthetic rate of peanut under single-seed sowing, especially in S₂ and S₃, were remarkably higher than those under traditional double-seed sowing. S₂ had the optimum population size with an equal distribution of individuals, which reduced the contradiction between individuals and population, optimized the canopy microenvironment, enhanced the photosynthetic characteristics, and increased the synthesis and accumulation of photosynthetic products to maximize the yield production of peanut.

  1. Impact of Thiamethoxam Seed Treatment on Growth and Yield of Rice, Oryza sativa.

    PubMed

    Lanka, S K; Senthil-Nathan, S; Blouin, D J; Stout, M J

    2017-03-07

    Neonicotinoid seed treatments are widely used in agriculture. In rice, Oryza sativa L., in the southern United States, neonicotinoid seed treatments are used to manage early-season populations of the rice water weevil, Lissorhoptrus oryzophilus Kuschel. In addition to their effects on pests, neonicotinoid seed treatments may benefit crop plants directly by increasing plant growth or altering plant responses to stresses. As part of an effort to assess the overall benefits of thiamethoxam seed treatment in rice, rice emergence, growth, and yield were evaluated. In a growth chamber, rice emergence from the soil was 1-2 d more rapid from treated than untreated seeds. These laboratory results were supported by field experiments that revealed higher stand counts from thiamethoxam-treated plots than from untreated plots. Yields from thiamethoxam treatments were no higher than those from untreated plots under conditions in which weevil larvae were absent, a result inconsistent with the hypothesis that thiamethoxam imparts direct yield benefits. In a series of field experiments conducted to compare the relationship between weevil larval densities and rice yields in plots treated with several rates of thiamethoxam or chlorantraniliprole (another widely used seed treatment insecticide), the relationship between weevil density and yield did not differ markedly among both seed treatments. Overall yields from both seed treatments did not differ significantly, despite more effective control in chlorantraniliprole-treated plots. These results provide strong support for effect of thiamethoxam on early-season growth of rice, but only weak support for its direct effect on rice yields.

  2. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedborne fungi can reduce survival, growth, and yield of maize (Zea mays L.). Laboratory, field, and growth chamber experiments were conducted to determine the effects of the seed treatment fungicides fludioxonil, mefenoxam, and azoxystrobin on germination, plant population, and grain yield of maiz...

  3. Boosting production yield of biomedical peptides

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.

    1978-01-01

    Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.

  4. Effect of seeding rate on organic production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...

  5. Optimal fertilizer N rates and yield-scaled global warming potential in drill seeded rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drill seeded rice (Oryza sativa L.) is the dominant rice cultivation practice in the USA. Although drill seeded systems can lead to significant methane and nitrous oxide emissions due to the presence of both anaerobic and aerobic soil conditions, the relationship between high-yielding management pr...

  6. Indirect Effects of Field Management on Pollination Service and Seed Set in Hybrid Onion Seed Production.

    PubMed

    Gillespie, Sandra; Long, Rachael; Williams, Neal

    2015-12-01

    Pollination in crops, as in native ecosystems, is a stepwise process that can be disrupted at any stage. Healthy pollinator populations are critical for adequate visitation, but pollination still might fail if crop management interferes with the attraction and retention of pollinators. Farmers must balance the direct benefits of applying insecticide and managing irrigation rates against their potential to indirectly interfere with the pollination process. We investigated these issues in hybrid onion seed production, where previous research has shown that high insecticide use reduces pollinator attraction. We conducted field surveys of soil moisture, nectar production, pollinator visitation, pollen-stigma interactions, and seed set at multiple commercial fields across 2 yr. We then examined how management actions, such as irrigation rate (approximated by soil moisture), or insecticide use could affect the pollination process. Onions produced maximum nectar at intermediate soil moisture, and high nectar production attracted more pollinators. Insecticide use weakly affected pollinator visitation, but when applied close to bloom reduced pollen germination and pollen tube growth. Ultimately, neither soil moisture nor insecticide use directly affected seed set, but the high correlation between pollinator visitation and seed set suggests that crop management will ultimately affect yields via indirect effects on the pollination process.

  7. The effect of fungicides on seed yield and disease control in Italian ryegrass.

    PubMed

    Rijckaert, G

    2009-01-01

    Under Belgian climatic conditions, the incidence of fungal diseases like mildew, crown rust and stem rust is much lower in seed crops of Italian ryegrass than crops of perennial ryegrass, because of the cleaning effect of the preceding forage cut and the much quicker growing rate of Italian ryegrass. However, in some mild and warm seasons, above diseases can give detrimental effects on seed yield, so a preventive fungicide programme would be very recommended in order to obtain consistently high seed yields over the years. Six different fungicides and an untreated control were tested on two tetraploid varieties of Italian ryegrass, namely cv. Meroa and cv. Salomé (more tolerant to crown rust); one fungicide application took place at early ear emergence for all three trials (2006-07-08). Only in the 2007-trial with very severe rust pressure, the most efficient fungicides increased seed yield by 22-25 % against the control (100%) and the tebuconazol-treatment (106.6%). Yield differences could be attributed to a healthier seed crop, i.e., less withered flag leaf and to a higher thousand seed weight. As both years 2006 and 2008 had very little disease pressure throughout the season, the best treatments (Allegro and Opera) resulted in a moderate seed yield increase of 6-7% in 2006, while 2008 did not give any yield response at all between the fungicide treatments and the untreated check. Seed yield, yield components and disease development are discussed and explained in relation to the seasonal meteorological conditions.

  8. Possibility of sweet corn synthetic seed production.

    PubMed

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2009-08-01

    Somatic embryogenesis in sweet corn has been reported by a number of workers. However, the knowledge maintaining storage life, vigor and viability of these somatic embryos are limited. A model system of synchronous somatic embryos production combined with encapsulation to synthetic seed was studied in sweet corn (Zea mays var. saccharata). In this study immature zygotic embryo cultured on N6 medium, contained 2, 4-D 2 mg L(-1) and sucrose 60 g L(-1) form the embryogenic callus. Higher 2, 4-D levels did not show increasing in inducing embryogenic callus. If the concentration of 2, 4-D decreased globular-stage, somatic zygote form the roots. Somatic embryo develop without surrounding nutritive tissues and protective seed coat has been devoted to causing somatic embryos to functionally mimic embryo, then was encapsulated by 3% (w/v) sodium alginate with 4-6 mm in diameter. It was found that when synthetic seed were treated with 60 g L(-1) sucrose and stored at 15+/-2 degree Celsius for 2 weeks, the survival rate of synthetic seed were 44%, after 8 days of germination test, it was found that there were 91% of which were normal seedling and 9% were abnormal seedling. This result indicated that there is a possibility in sweet corn synthetic seed production. Anyhow, more research for better technique are further required.

  9. Genetic variability on seed yield and related traits of elite faba bean (Vicia faba L.) genotypes.

    PubMed

    Fikreselassie, Million; Seboka, Habtamu

    2012-04-15

    Faba bean is one of the most important cool season crops in the highlands of Ethiopia and the country is considered as the secondary center of diversity. This study was conducted at Haramaya, Boreda and Hirna districts of Eastern Hararghe from 2006 to 2008 cropping season using twenty five elite genotypes of faba bean to determine the extent and pattern of genetic diversity for seed yield and related traits. The treatments were arranged in a randomized complete block design with three replications. The data were subjected to the analyses of variance using the SAS program. The mean squares due to genotypes were highly significant for seed yield (p < 0.01) indicating the existence of sufficient genetic variability for seed yield. Mean squares due to the interaction between year and location were highly significant for all the traits studied (p < 0.01). High genotypic coefficient of variation (10093.53%) was observed for seed yield followed by number of seeds per plant (325.45%). The estimated values of phenotypic variances were in the range of 0.60 for number of seeds per pods to 196564.64 for seed yield. Genetic gains that expected from selecting the top 5% of the genotypes, as a percent of the mean, varied from 12.32% for number of seeds per plant to 35.46% for seed yield. The average linkage technique of clustering produced a more understandable portrayal of the 25 faba bean genotypes by grouping them into five clusters. The maximum distance was found between cluster three and five (D2 = 691.47). Thus, the materials tested in the entire experiment will be maintained for further breeding program.

  10. Kentucky bluegrass (Poa pratensis L.) germplasm for non-burn seed production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ban on open-field burning of post-harvest residue of grass seed production fields has been implemented in Washington, and restrictions are in place in Idaho and Oregon, USA. Our previous research showed that without post-harvest burning of residue, bluegrass seed yield decreased over time (Johnson...

  11. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato seeds resulting from tomato processing by-product have not been effectively utilized as value-added products. This study investigated the kinetics of oil extraction from tomato seeds and sought to optimize the oil extraction conditions. The oil was extracted by using hexane as solvent for 0 t...

  12. Benefits of Neonicotinoid Seed Treatments to Soybean Production

    EPA Pesticide Factsheets

    Read about EPA’s analysis of use of the neonicotinoid seed treatments for insect control in U.S. soybean production. EPA concludes that these seed treatments provide little or no overall benefits to soybean production in most situations.

  13. 40 CFR 153.155 - Seed treatment products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... products. (a) Pesticide products intended for use in treating seeds must contain an EPA-approved dye to... the user to add an EPA-approved dye with the pesticide during the seed treatment process. (2) Products... in form or are used as fumigants. (c) EPA-approved dyes for seed treatment are listed in:...

  14. 40 CFR 153.155 - Seed treatment products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products. (a) Pesticide products intended for use in treating seeds must contain an EPA-approved dye to... the user to add an EPA-approved dye with the pesticide during the seed treatment process. (2) Products... in form or are used as fumigants. (c) EPA-approved dyes for seed treatment are listed in:...

  15. 40 CFR 153.155 - Seed treatment products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products. (a) Pesticide products intended for use in treating seeds must contain an EPA-approved dye to... the user to add an EPA-approved dye with the pesticide during the seed treatment process. (2) Products... in form or are used as fumigants. (c) EPA-approved dyes for seed treatment are listed in:...

  16. 40 CFR 153.155 - Seed treatment products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products. (a) Pesticide products intended for use in treating seeds must contain an EPA-approved dye to... the user to add an EPA-approved dye with the pesticide during the seed treatment process. (2) Products... in form or are used as fumigants. (c) EPA-approved dyes for seed treatment are listed in:...

  17. Confirmation of a seed yield QTL in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic germplasm can be an important source of genetic diversity for soybean [Glycine max (L.) Merr.] improvement. Previously, four yield quantitative trait loci (QTL) had been identified in a cross between the exotic soybean plant introduction (PI) 68658 and the U.S. cultivar Lawrence. The confirma...

  18. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    PubMed

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.

  19. Insect pollination enhances seed yield, quality, and market value in oilseed rape.

    PubMed

    Bommarco, Riccardo; Marini, Lorenzo; Vaissière, Bernard E

    2012-08-01

    The relationships between landscape intensification, the abundance and diversity of pollinating insects, and their contributions to crop yield, quality, and market value are poorly studied, despite observed declines in wild and domesticated pollinators. Abundance and species richness of pollinating insects were estimated in ten fields of spring oilseed rape, Brassica napus var. SW Stratos™, located along a gradient of landscape compositions ranging from simple landscapes dominated by arable land to heterogeneous landscapes with extensive cover of semi-natural habitats. In each field, we assessed the contribution of wind and insect pollination to seed yield, seed quality (individual seed weight and oil and chlorophyll contents), and market value in a block experiment with four replicates and two treatments: (1) all flowers were accessible to insects, self and wind pollination, and (2) flowers enclosed in tulle net bags (mesh: 1 × 1 mm) were accessible only to wind and self pollination. Complex landscapes enhanced the overall abundance of wild insects as well as the abundance and species richness of hoverflies. This did not translate to a higher yield, probably due to consistent pollination by honey bees across all fields. However, the pollination experiment showed that insects increased seed weight per plant by 18% and market value by 20%. Seed quality was enhanced by insect pollination, rendering heavier seeds as well as higher oil and lower chlorophyll contents, clearly showing that insect pollination is required to reach high seed yield and quality in oilseed rape. Our study demonstrates considerable and previously underestimated contributions from pollinating insects to both the yield and the market value of oilseed rape.

  20. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  1. An Economic Analysis of Pigeonpea Seed Production Technology and Its Adoption Behavior: Indian Context

    PubMed Central

    Channanamchery, Radhika; Singh, R. K.; Kethineni, Udaya Bhaskar; Ram, H.; Prasad, S. Rajendra

    2016-01-01

    The present study was based on primary data collected from 100 farmers in Gulbarga district of Karnataka, India, during the agricultural year 2013-2014. Study shows that average land holding size of pigeonpea seed farmers was higher in comparison to grain farmers and district average. The study illustrates a ratio of 32 : 68 towards fixed and variable costs in pigeonpea certified seed production with a total cost of ₹ 39436 and the gross and net returns were ₹ 73300 and ₹ 33864 per hectare, respectively. The total cost of cultivation, gross return, and net return in pigeonpea seed production were higher by around 23, 32, and 44 percent than grain production, respectively. Hence, production of certified seed has resulted in a win-win situation for the farmers with higher yield and increased returns. The decision of the farmer on adoption of seed production technology was positively influenced by his education, age, land holding, irrigated land, number of crops grown, and extension contacts while family size was influencing negatively. Higher yield and profitability associated with seed production can be effectively popularized among farmers, resulting in increased certified seed production. PMID:27478865

  2. Effects of methanol-to-oil ratio, catalyst amount and reaction time on the FAME yield by in situ transesterification of rubber seeds (Hevea brasiliensis)

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami

    2014-10-01

    In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.

  3. Elevated CO2 concentration effects on reproductive phenology and seed yield among soybean cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed yield increases in soybeans caused by increased growth at elevated carbon dioxide concentrations primarily result from increased numbers of pods. However, reasons for differences among cultivars in the increases in pod number caused by elevated carbon dioxide are not clear. In experiments in ...

  4. Dynamics of source strength, seed yield and C:N ratio in Cuphea spp. [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamics of flowering and capsule formation (scaled as number of flowers or capsules per unit biomass), C:N ratio and seed yield per plant of an indeterminate Cuphea spp. germplasm line (C. lanceolata x C. viscosissima) were impacted by defoliation at 100, 200 or 300 growing degree days (GDD1, 2, an...

  5. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds.

    PubMed

    Malik, Meghna R; Yang, Wenyu; Patterson, Nii; Tang, Jihong; Wellinghoff, Rachel L; Preuss, Mary L; Burkitt, Claire; Sharma, Nirmala; Ji, Yuanyuan; Jez, Joseph M; Peoples, Oliver P; Jaworski, Jan G; Cahoon, Edgar B; Snell, Kristi D

    2015-06-01

    Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production.

  6. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown camelina sativa L. Crantz

    PubMed Central

    2012-01-01

    Background Camelina (Camelina sativa L. Crantz) is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS)-1-(4-Chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol] (PBZ), a popular plant growth regulator, on the seed and oil yield of Camelina sativa (cv. Celine). Results A field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011) and five different PBZ treatments (Control: T0; 25 mg l-1: T1; 50 mg l-1: T2; 75 mg l-1: T3; 100 mg l-1: T4; 125 mg l-1: T5) were applied (soil application) at the time of initiation of flowering. PBZ at 100 mg l-1 concentration (T4) resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation. Conclusion We report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from Camelina sativa that holds great promise as a biofuel crop in future. PMID:22410213

  7. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

    PubMed

    Reddy, Krishna N; Bellaloui, Nacer; Zablotowicz, Robert M

    2010-03-24

    When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift.

  8. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  9. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    SciTech Connect

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; Hu, Zhaohui; Swift, Jennifer E.; Yalamanchili, Roopa; Dvora, Mia; Lin, Xiuli; Xie, Deyu; Qu, Rongda; Sederoff, Heike W.

    2015-10-29

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolate catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.

  10. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat.

    PubMed

    Kutman, Bahar Yildiz; Kutman, Umit Baris; Cakmak, Ismail

    2013-09-04

    Glyphosate drift to nontarget crops causes growth aberrations and yield losses. This herbicide can also interact with divalent nutrients and form poorly soluble complexes. The possibility of using nickel (Ni), an essential divalent metal, for alleviating glyphosate drift damage to wheat was investigated in this study. Effects of Ni applications on various growth parameters, seed yield, and quality of durum wheat ( Triticum durum ) treated with sublethal glyphosate at different developmental stages were investigated in greenhouse experiments. Nickel concentrations of various plant parts and glyphosate-induced shikimate accumulation were measured. Foliar but not soil Ni applications significantly reduced glyphosate injuries including yield losses, stunting, and excessive tillering. Both shoot and grain Ni concentrations were enhanced by foliar Ni treatment. Seed germination and seedling vigor were impaired by glyphosate and improved by foliar Ni application to parental plants. Foliar Ni application appears to have a great potential to ameliorate glyphosate drift injury to wheat.

  11. Towards integrated pest management in red clover seed production.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  12. Thiamethoxam Seed Treatments Have No Impact on Pest Numbers or Yield in Cultivated Sunflowers.

    PubMed

    Bredeson, Michael M; Lundgren, Jonathan G

    2015-12-01

    The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a diverse and abundant community of beneficial, nontarget organisms which may be negatively affected by pest management practices. Here, we investigate how the foliar and subterranean arthropod pest communities in sunflower fields were affected by a thiamethoxam seed treatment over three site years (two years on one farm, and another year at an additional field in the second year). Thiamethoxam and its metabolite clothianidin in leaf tissue were quantified throughout the growing season, and yield differences between treatments were measured. Across site years, foliar herbivores and key pests of sunflowers were unaffected by the seed treatment. Likewise, subterranean herbivores were unaffected. Thiamethoxam was measurable in leaf tissue through the R1 plant stage, while its metabolite clothianidin was detected throughout flowering (R6). No difference in sunflower yield was observed between treatments across site years. This research suggests that neonicotinoid seed treatments in sunflowers do not always provide economic benefits to farmers in the form of pest reductions or yield improvements. Future research should focus on sunflower integrated pest management strategies that limit nontarget effects of agrochemicals, while providing greater economic returns to farmers.

  13. Biomass, extracted liquid yields, sugar content or seed yields of biofuel feedstocks as affected by fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting products from plants for conversion into renewable resources is increasing in importance. Determination of nutrition requirements for the applicable crops is necessary, especially in regions where the biofuel feedstock crops have not been grown historically. Sunflower (Helianthus annuus...

  14. Varying Response of the Concentration and Yield of Soybean Seed Mineral Elements, Carbohydrates, Organic Acids, Amino Acids, Protein, and Oil to Phosphorus Starvation and CO2 Enrichment

    PubMed Central

    Singh, Shardendu K.; Barnaby, Jinyoung Y.; Reddy, Vangimalla R.; Sicher, Richard C.

    2016-01-01

    A detailed investigation of the concentration (e.g., mg g-1 seed) and total yield (e.g., g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at either sufficient (0.50 mM P, control) or deficient (0.10 and 0.01 mM, P-stress) levels of P under aCO2 and eCO2 (400 and 800 μmol mol-1, respectively). Both the concentration and yield of 36 out of 38 seed components responded to P treatment and on average 25 and 11 components increased and decreased, respectively, in response to P starvation. Concentrations of carbohydrates (e.g., glucose, sugar alcohols), organic acids (e.g., succinate, glycerate) and amino acids increased while oil, and several minerals declined under P deficiency. However, the yield of the majority of seed components declined except several amino acids (e.g., phenylalanine, serine) under P deficiency. The concentration-based relationship between seed protein and oil was negative (r2 = 0.96), whereas yield-based relationship was positive (r2 = 0.99) across treatments. The CO2 treatment also altered the concentration of 28 out of 38 seed components, of which 23 showed decreasing (e.g., sucrose, glucose, citrate, aconitate, several minerals, and amino acids) while C, iron, Mn, glycerate, and oil showed increasing trends at eCO2. Despite a decreased concentration, yields of the majority of seed components were increased in response to eCO2, which was attributable to the increased seed production especially near sufficient P nutrition. The P × CO2 interactions for the concentration of amino acids and the yield of several components were due to the lack of their response to eCO2 under control or the severe P starvation, respectively. Thus, P deficiency primarily reduced the concentration of oil and mineral elements but enhanced a majority of other components. However, seed components yield

  15. Varying Response of the Concentration and Yield of Soybean Seed Mineral Elements, Carbohydrates, Organic Acids, Amino Acids, Protein, and Oil to Phosphorus Starvation and CO2 Enrichment.

    PubMed

    Singh, Shardendu K; Barnaby, Jinyoung Y; Reddy, Vangimalla R; Sicher, Richard C

    2016-01-01

    A detailed investigation of the concentration (e.g., mg g(-1) seed) and total yield (e.g., g plant(-1)) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at either sufficient (0.50 mM P, control) or deficient (0.10 and 0.01 mM, P-stress) levels of P under aCO2 and eCO2 (400 and 800 μmol mol(-1), respectively). Both the concentration and yield of 36 out of 38 seed components responded to P treatment and on average 25 and 11 components increased and decreased, respectively, in response to P starvation. Concentrations of carbohydrates (e.g., glucose, sugar alcohols), organic acids (e.g., succinate, glycerate) and amino acids increased while oil, and several minerals declined under P deficiency. However, the yield of the majority of seed components declined except several amino acids (e.g., phenylalanine, serine) under P deficiency. The concentration-based relationship between seed protein and oil was negative (r(2) = 0.96), whereas yield-based relationship was positive (r(2) = 0.99) across treatments. The CO2 treatment also altered the concentration of 28 out of 38 seed components, of which 23 showed decreasing (e.g., sucrose, glucose, citrate, aconitate, several minerals, and amino acids) while C, iron, Mn, glycerate, and oil showed increasing trends at eCO2. Despite a decreased concentration, yields of the majority of seed components were increased in response to eCO2, which was attributable to the increased seed production especially near sufficient P nutrition. The P × CO2 interactions for the concentration of amino acids and the yield of several components were due to the lack of their response to eCO2 under control or the severe P starvation, respectively. Thus, P deficiency primarily reduced the concentration of oil and mineral elements but enhanced a majority of other components. However, seed

  16. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat

    NASA Technical Reports Server (NTRS)

    Grotenhuis, T. P.; Bugbee, B.

    1997-01-01

    Although terrestrial atmospheric CO2 levels will not reach 1000 micromoles mol-1 (0.1%) for decades, CO2 levels in growth chambers and greenhouses routinely exceed that concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1(1%). Numerous studies have examined CO2 effects up to 1000 micromoles mol-1, but biochemical measurements indicate that the beneficial effects of CO2 can continue beyond this concentration. We studied the effects of near-optimal (approximately 1200 micromoles mol-1) and super-optimal CO2 levels (2400 micromoles mol-1) on yield of two cultivars of hydroponically grown wheat (Triticum aestivum L.) in 12 trials in growth chambers. Increasing CO2 from sub-optimal to near-optimal (350-1200 micromoles mol-1) increased vegetative growth by 25% and seed yield by 15% in both cultivars. Yield increases were primarily the result of an increased number of heads per square meter. Further elevation of CO2 to 2500 micromoles mol-1 reduced seed yield by 22% (P < 0.001) in cv. Veery-10 and by 15% (P < 0.001) in cv. USU-Apogee. Super-optimal CO2 did not decrease the number of heads per square meter, but reduced seeds per head by 10% and mass per seed by 11%. The toxic effect of CO2 was similar over a range of light levels from half to full sunlight. Subsequent trials revealed that super-optimal CO2 during the interval between 2 wk before and after anthesis mimicked the effect of constant super-optimal CO2. Furthermore, near-optimal CO2 during the same interval mimicked the effect of constant near-optimal CO2. Nutrient concentration of leaves and heads was not affected by CO2. These results suggest that super-optimal CO2 inhibits some process that occurs near the time of seed set resulting in decreased seed set, seed mass, and yield.

  17. Cross-country disparity in agricultural productivity: quantifying the role of modern seed adoption.

    PubMed

    O'Gorman, Melanie; Pandey, Manish

    2010-01-01

    Inequality of agricultural labour productivity across the developing world has increased substantially over the past 40 years. This article asks: to what extent did the diffusion of Green Revolution seed varieties contribute to increasing agricultural labour productivity disparity across the developing countries? We find that 22 per cent of cross-country variation in agricultural labour productivity can be attributed to the diffusion of high-yielding seed varieties across countries, and that the impact of such diffusion differed significantly across regions. We discuss the implications of these findings for policy directed at increasing agricultural labour productivity in the developing world.

  18. No evidence of adverse effects on germination, emergence, and fruit yield due to space exposure of tomato seeds.

    PubMed

    Kahn, B A; Stoffella, P J

    1996-05-01

    Seeds of 'Rutgers California Supreme' tomato (Lycopersicon esculentum Mill.) were exposed to outer space conditions aboard the long duration exposure facility (LDEF) satellite in the space exposed experiment developed for students (SEEDS) project of the National Aeronautics and Space Administration (NASA). Seeds aboard the LDEF were packed in dacron bags forming four layers per sealed canister. Some of these seeds were used in Oklahoma and Florida for studies of germination, emergence, and fruit yield. Among all measured variables in three experiments, there was only one significant main effect of canister 2 versus canister 7 (for mean time to germination) and only one main effect of layer (for seedling shoot dry weight). There also were only two inconsistent canister x layer interactions in the germination tests. The contrast of Earth-based control seed versus space-exposed seed was significant four times: in Oklahoma in 1991 the mean time to germination of space-exposed seeds and the days to 50% of final germination were 0.7 days less than for Earth-based seeds, and in Florida in 1992 seedling percent emergence and shoot dry weight were increased by space exposure. Fruit yield and marketability were unaffected in plants grown from space-exposed seeds. These results support student findings from the SEEDS project, and provide evidence that tomato seeds can survive in space for several years without adverse effects on germination, emergence, and fruit yield.

  19. Seed yield and its components of indeterminate and determinate lines in recombinant inbred lines of soybean

    PubMed Central

    Kato, Shin; Fujii, Kenichiro; Yumoto, Setsuzo; Ishimoto, Masao; Shiraiwa, Tatsuhiko; Sayama, Takashi; Kikuchi, Akio; Nishio, Takeshi

    2015-01-01

    The present study was conducted to evaluate the benefits of indeterminate growth habit in breeding to improve yield potential of Japanese soybean varieties, which exclusively have determinate growth habit. Two populations of recombinant inbred lines (RILs) derived from crosses between determinate Japanese cultivars and indeterminate US cultivars were grown in Akita and Kyoto, and seed weight per plant (SW) and its components were compared between indeterminate and determinate RILs. The difference of SW between the two growth habits in RILs varied depending on maturation time. The SW of early indeterminate lines was significantly higher than that of early determinate ones in Akita, but not in Kyoto. Among yield components, the number of seeds per pod was constantly larger in indeterminate lines than that in determinate ones irrespective of maturation time. The number of seeds per plant and the number of pods per plant of the indeterminate lines were greater than those of the determinate lines in early maturation in Akita. These results suggest that the indeterminate growth habit is an advantageous characteristic in breeding for high yield of early maturing soybean varieties in the Tohoku region. PMID:26069445

  20. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  1. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism.

    PubMed

    MacGregor, Dana R; Kendall, Sarah L; Florance, Hannah; Fedi, Fabio; Moore, Karen; Paszkiewicz, Konrad; Smirnoff, Nicholas; Penfield, Steven

    2015-01-01

    Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy. Here we show that, in Arabidopsis, low temperatures during seed maturation result in an increase in phenylpropanoid gene expression in seeds and that this correlates with higher concentrations of seed coat procyanidins. Lower maturation temperatures cause differences in coat permeability to tetrazolium, and mutants with increased seed coat permeability and/or low procyanidin concentrations are less able to enter strongly dormant states after exposure to low temperatures during seed maturation. Our data show that maternal temperature signalling regulates seed coat properties, and this is an important pathway through which the environmental signals control primary dormancy depth.

  2. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    PubMed

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future.

  3. Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L

    PubMed Central

    2011-01-01

    Background Sucrose is the primary photosynthesis product and the principal translocating form within higher plants. Sucrose transporters (SUC/SUT) play a critical role in phloem loading and unloading. Photoassimilate transport is a major limiting factor for seed yield. Our previous research demonstrated that SUT co-localizes with yield-related quantitative trait loci. This paper reports the isolation of BnA7.SUT1 alleles and their promoters and their association with yield-related traits. Results Two novel BnA7.SUT1 genes were isolated from B. napus lines 'Eagle' and 'S-1300' and designated as BnA7.SUT1.a and BnA7.SUT1.b, respectively. The BnA7.SUT1 protein exhibited typical SUT features and showed high amino acid homology with related species. Promoters of BnA7.SUT1.a and BnA7.SUT1.b were also isolated and classified as pBnA7.SUT1.a and pBnA7.SUT1.b, respectively. Four dominant sequence-characterized amplified region markers were developed to distinguish BnA7.SUT1.a and BnA7.SUT1.b. The two genes were estimated as alleles with two segregating populations (F2 and BC1) obtained by crossing '3715'×'3769'. BnA7.SUT1 was mapped to the A7 linkage group of the TN doubled haploid population. In silico analysis of 55 segmental BnA7.SUT1 alleles resulted three BnA7.SUT1 clusters: pBnA7.SUT1.a- BnA7.SUT1.a (type I), pBnA7.SUT1.b- BnA7.SUT1.a (type II), and pBnA7.SUT1.b- BnA7.SUT1.b (type III). Association analysis with a diverse panel of 55 rapeseed lines identified single nucleotide polymorphisms (SNPs) in promoter and coding domain sequences of BnA7.SUT1 that were significantly associated with one of three yield-related traits: number of effective first branches (EFB), siliques per plant (SP), and seed weight (n = 1000) (TSW) across all four environments examined. SNPs at other BnA7.SUT1 sites were also significantly associated with at least one of six yield-related traits: EFB, SP, number of seeds per silique, seed yield per plant, block yield, and TSW. Expression levels

  4. Herbicide and Application Timing Influence Cutleaf Groundcherry Biomass and Seed Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry population, biomass, seed production, and peanut yield. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) at 0.027 kg ai/ha alone; 4) paraquat...

  5. Activity of meadowfoam (Limnanthes alba) seed meal glucolimnanthin degradation products against soilborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meadowfoam (Limnanthes alba L.) is a herbaceous winter-spring annual grown as a commercial oilseed crop. The meal remaining after oil extraction from the seed contains up to 4% of the glucosinolate glucolimnanthin. Degradation of glucolimnanthin yields toxic breakdown products, and therefore the mea...

  6. Phytotoxicity assay for seed production using Brassica rapa L.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2010-10-01

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wisconsin Fast Plants®, can be used to indicate potential effects on seed production of herbicides applied at relatively low levels (e.g., low field application rates [FAR]). The effects of ≤0.1 × FAR of aminopyralid, cloransulam, glyphosate, primisulfuron, or sulfometuron applied 14 d after emergence (DAE), were evaluated for B. rapa grown in mineral soil in pots under greenhouse conditions. Effects were expressed as the effective concentration of the herbicide producing a 25% reduction in a response (EC25) based on nonlinear regression. Brassica rapa seed dry weight was reduced by sulfometuron at an EC25 of 0.00014 × a field application rate (FAR) of 53 g active ingredient (a.i.) ha(-1), primisulfuron at 0.008 (experiment 1) or 0.0050 (experiment 2) × FAR of 40 g a.i. ha(-1), cloransulam at 0.022 × FAR of 18 g a.i. ha(-1), glyphosate at 0.0399 × FAR of 834 g a.i. ha(-1), and by aminopyralid at 0.005 × FAR of 123 g a.i. ha(-1), but only for 1 of 2 experiments. Reduced seed production occurred at less than the FAR that reduced shoot dry weight with sulfometuron and primisulfuron, whereas neither aminopyralid, cloransulam, nor glyphosate affected shoot dry weight. A short life cycle form of B. rapa could be used to indicate reduced seed production with plants grown only 1 week longer (∼35 DAE) than as the current vegetative vigor test for nontarget herbicide effects on plants.

  7. Impact of decreasing ratios of insecticide-treated seed on flea beetle (Coleoptera: Chrysomelidae, Phyllotreta spp.) feeding levels and canola seed yields.

    PubMed

    Soroka, Juliana J; Grenkow, Larry F; Irvine, R Byron

    2008-12-01

    Field studies were conducted at two locations on the Canadian prairies to investigate use of reduced ratios of insecticide-treated seed in controlling flea beetle (Coleoptera: Chrysomelidae, Phyllotreta spp.) damage to canola (Brassica napus L. and Brassica rapa L.). Five treatments were evaluated: bare seed control, fungicide-only (0X), and three ratios of insecticide plus fungicide in proportions of all (1X), two thirds (0.67X), or one third (0.33X) of the seeds coated with insecticide. Decreasing treated seed ratios by one third had no consistent deleterious effects on flea beetle damage, seedling growth, plant density, seed yield, or net cash return. Flea beetle injury to seedlings in the 1X treatment was similar to that of seedlings in the 0.67X treatment, with only two exceptions, and it was almost always lower than that of seedlings without insecticide. The 0.33X treatment generally had flea beetle feeding levels between those of the two high and the two noninsecticide treatments. Plant stand and seedling growth rates with 1X and 0.67X treatments were similar and higher than with bare seed or fungicide-alone treatments. Seed yields were inversely proportional to flea beetle feeding levels. Under very heavy flea beetle feeding, seed yields and net cash returns were highest in 1X plots, but when flea beetle feeding pressure was less extreme and canola growing conditions were favorable, 0.67X seed yields and profits from them were comparable to those in 1X treatments. On an economic basis, currently there is no advantage to decreasing the level of insecticide treated canola seed, but other considerations may affect this assessment.

  8. Tomato seeds as a novel by-product feed for lactating dairy cows.

    PubMed

    Cassinerio, C A; Fadel, J G; Asmus, J; Heguy, J M; Taylor, S J; DePeters, E J

    2015-07-01

    Whole tomato seeds, a novel by-product feedstuff, were fed to lactating Holstein cows to determine the nutritive value of whole tomato seeds by replacing whole cottonseed in the total mixed ration. Four primiparous and 4 multiparous Holstein cows were used in a 4×4 Latin square design and fed 1 of 4 total mixed rations. Whole tomato seeds replaced whole cottonseed on a weight-to-weight basis for lipid. The proportion of whole tomato seeds to whole cottonseed in the diets were 100:0, 50:50, 25:75, and 0:100 on a lipid basis. Thus, tomato seeds were 4.0, 2.4, 1.1, and 0% of the ration dry matter, respectively. Milk yield and the concentrations and yields of protein, lactose, and solids-not-fat did not differ for the effect of diet. However, milk fat concentration decreased and milk fat yield tended to decrease as whole tomato seeds replaced whole cottonseed. Intakes of dry matter, lipid, and crude protein did not differ. Whole-tract apparent digestibility of dry matter and ash-free neutral detergent fiber did not differ, but digestibility of total fatty acids and crude protein decreased with increasing proportion of whole tomato seeds. Urea concentration in milk and plasma both decreased with increasing whole tomato seeds. Fecal concentration of linoleic and α-linolenic acids increased with increasing whole tomato seeds, suggesting that seeds were passing out of the digestive tract undigested. The concentrations of C18:2n-6 and C18:3n-3 in milk fat had small increases, but their yields were not different, suggesting that only a small amount of whole-tomato-seed lipid might have been digested postruminally. Amounts of trans C18:1 fatty acids in milk fat were higher with increasing whole cottonseed, which might suggest a shift in rumen biohydrogenation pathways. At the level of feeding used in the current study, whole tomato seeds replaced whole cottonseed in the diet of lactating dairy cows without a change in production.

  9. Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of Indian mustard (Brassica juncea L.).

    PubMed

    Sharma, Vinod K; Singh, Rana P

    2011-09-01

    Field experiments were conducted to study the effect of organic matrix based slow release fertilizers (SRFs) on plant growth, nitrate assimilation and seed yield of Brassica juncea L. cv, pusa bold. The agro-waste materials like cow dung, clay soil, neem leaves and rice bran were mixed together in 2:2:1:1 ratio and used as organic matrix for the immobilization of chemical fertilizer nutrients with commercial grade saresh (Acacia gum, 15% solution) as binder. Different fertilizer treatments were organic matrix based slow release fertilizers, SRF-I (542.0 kg ha(-1)); SRF-II (736.5 kg ha(-1)) and chemical fertilizer combinations, boron (3 kg ha(-1))+sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1)) and boron (3 kg ha(-1)) + sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1))+phosphorus (15 kg ha(-1))+potassium (100 kg ha(-1)). Organic matrix based SRF-II released ammonium up to 50-d in wetsoil under laboratory conditions which showed maximum retention of the nutrients. Avery significant increase in plant growth, nitrate assimilation and seed yield was recorded in organic matrix based SRF-II applied plants. The maximum percent increase in biomass production was observed with organic matrix based SRF-II (increase of 65.8% in root fresh weight, 38.0% in root dry weight, 45.9% in leaf fresh weight plant(-1) and 27.5 % in leaf dry weight plant(-1) in 60-d old plants). It also increased the acquisition and assimilation of nitrate from the plant's rhizosphere which was evident by 45.6% increase in nitrate, 27.5% in nitrite and 11.7% in nitrate reductase activity (NRA) in leaves of 45-d old plants over control. The organic matrix based SRF-II significantly increased the seed yield by 28% in Indian mustard. Cost analysis revealed thatthis formulation is cost effective as it is based on agro waste materials.

  10. Ozone and density affect the response of biomass and seed yield to elevated CO2 in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric O3 reduces growth and yield of many crop species, whereas CO2 ameliorates the negative effects of O3. Thus in a combined elevated CO2 and O3 atmosphere, seed yield is at least restored to that of charcoal-filtered (CF) air at ambient CO2. The CO2-induced yield increase in CF air is hi...

  11. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].

    PubMed

    Ruiz-Vera, Ursula M; Siebers, Matthew H; Drag, David W; Ort, Donald R; Bernacchi, Carl J

    2015-11-01

    Rising atmospheric CO2 concentration ([CO2 ]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2 ] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2 ] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free-air CO2 enrichment (FACE) technology was used to target atmospheric [CO2 ] to 200 μmol mol(-1) above ambient [CO2 ] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas-exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2 ] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season-long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down-regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2 ] unless appropriate adaptation traits can be introduced

  12. Spatial dynamics of specialist seed predators on synchronized and intermittent seed production of host plants.

    PubMed

    Satake, Akiko; Bjørnstad, Ottar N

    2004-04-01

    Masting, the synchronized and intermittent seed production by plant populations, provides highly variable food resources for specialist seed predators. Such a reproductive mode helps minimize seed losses through predator satiation and extinction of seed predator populations. The seed predators can buffer the resource variation through dispersal or extended diapause. We developed a spatially explicit resource-consumer model to understand the effect of masting on specialist seed predators. The masting dynamics were assumed to follow a resource-based model for plant reproduction, and the population dynamics of the predator were represented by a spatially extended Nicholson-Bailey model. The resultant model demonstrated that when host plants reproduce intermittently, seed predator populations go locally extinct, but global persistence of the predator is facilitated by dispersal or extended diapause. Global extinction of the predator resulted when the intermittent reproduction is highly synchronized among plants. An approximate invasion criterion for the predators showed that negative lag-1 autocorrelation in seeding reduces invasibility, and positive lag-1 cross-correlation enhances invasibility. Spatial synchronization in seeding at local scale caused by pollen coupling (or climate forcing) further prevented invasion of the predators. If the predators employed extended diapause, extremely high temporal variability in reproduction was required for plants to evade the predators.

  13. The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production.

    PubMed

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially 'seeded' under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m(-1) rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day(-1) between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0 ± 8.8 g dry weight m(-1) (228.7 ± 115.4 g fresh weight m(-1)) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5 ± 7.3 g dry weight m(-1) (120.2 ± 71.8 g fresh weight m(-1)) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems.

  14. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Dierig, David A

    2011-10-01

    Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield

  15. Opiate concentrations following the ingestion of poppy seed products--evidence for 'the poppy seed defence'.

    PubMed

    Meadway, C; George, S; Braithwaite, R

    1998-08-31

    The universally accepted 300 ng/ml cut-off limit for opiate assays stated to be mandatory for all drug screening laboratories by the Substance Abuse and Mental Health Services Administration, has been questioned recently due to positive results being obtained following the ingestion of poppy seed containing food products. To establish the plausibility of the 'the poppy seed defence' the concentrations of codeine, norcodeine, morphine, normorphine and thebaine (a potential marker for seed ingestion) in several varieties of poppy seeds from different countries were quantified by GC-MS. The country of origin of the seed specimen analysed and the preparation of the seeds prior to their culinary use was found to influence the alkaloid concentration determined. The maximum morphine and codeine concentrations determined in the seeds were found to be 33.2 and 13.7 micrograms/g seed respectively. In addition, thebaine concentrations were found to vary with each seed sample analysed. Following the consumption of bread rolls (mean 0.76 g seed covering per roll) by four subjects, all urine specimens analysed produced negative results (using the Dade Bebring EMIT II opiate screening assay) with the exception of one subject (body weight 63.0 kg) who consumed two poppy seed rolls. In this subject opiate positive screening results were obtained for up to 6 h post ingestion with maximum urinary morphine and codeine concentrations of 832.0 ng/ml (@ 2-4 h post ingestion) and 47.9 ng/ml (@ 0-2 h post ingestion) respectively being achieved. Following the ingestion of poppy seed cake containing an average of 4.69 g of seed per slice by four individuals, opiate positive screening results were obtained for up to 24 h. In one subject (dose equivalent to 0.07 g poppy seed/kg body weight) maximum urinary morphine and codeine concentrations of 302.1 ng/ml (@ 0-2 h) and 83.8 ng/ml (@ 2-4 h) respectively were recorded. The elimination of thebaine was found to vary widely between individuals

  16. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana.

    PubMed

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by F(v)/F(m) ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of alpha- and gamma-tocopherol (vitamin E) and beta-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants.

  17. Gallium loading of gold seed for high yield of patterned GaAs nanowires

    SciTech Connect

    Boulanger, J. P.; Chia, A. C. E.; LaPierre, R. R.

    2014-08-25

    A method is presented for maximizing the yield and crystal phase purity of vertically aligned Au-assisted GaAs nanowires grown with an SiO{sub x} selective area epitaxy mask on GaAs (111)B substrates. The nanowires were grown by the vapor-liquid-solid (VLS) method in a gas source molecular beam epitaxy system. During annealing, Au VLS seeds will alloy with the underlying GaAs substrate and collect beneath the SiO{sub x} mask layer. This behavior is detrimental to obtaining vertically aligned, epitaxial nanowire growth. To circumvent this issue, Au droplets were pre-filled with Ga assuring vertical yields in excess of 99%.

  18. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  19. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  20. Heat shock, mass-dependent germination, and seed yield as related components of fitness in Cistus ladanifer.

    PubMed

    Delgado, J A.; Serrano, J M.; López, F; Acosta, F J.

    2001-08-01

    The different weight-number strategies of seed production displayed by individuals of a Mediterranean fire-prone plant species (Cistus ladanifer) were investigated in relation to seed germination responses to pre-germination heating. A control (no heating), a high temperature during a short exposure time (100 degrees C during 5 min) and a high temperature during a long exposure time (100 degrees C during 15 min) were applied to seeds from different individual plants with different mean seed weight. These pre-germination treatments resemble natural germination scenarios for the studied species, absence of fire, typical Mediterranean shrub fire, and severe fire with high fuel load. Seed germination was related to heat treatments and seed mass. Seed heating increased the proportion of seeds germinating compared with the control treatment. Mean seed weight was positively correlated to the proportion of germinated seeds but only within heat treatments. These results suggest that in periods without fire, the relative contributions to the population dynamics are equal for all seeds, regardless of their mass, whereas heavier seeds would be the main contribution after wildfire events. Since lighter seeds can be produced in higher quantities than heavier ones within a given fruit, the number of seedlings produced per fruit depended strongly on the germination conditions. In the absence of wildfire, fruits producing lighter seeds gave rise to more seedlings; nevertheless, they were numerically exceeded by those producing heavy seeds after a wildfire. The implications of these results are discussed in relation to their consequences on the population dynamics of this species, considering also additional information on stand flammability and changes in seed mass with plant age.

  1. Chemical and genetic diversity of high-seed-yield sorghum (Sorghum bicolor M.) germplasms.

    PubMed

    Ryu, J; Im, S B; Kwon, S J; Ahn, J W; Jeong, S W; Kang, S Y

    2016-09-02

    This study evaluated the chemical and genetic diversity of high-seed-yield sorghum germplasms from Korea, the United States, and South Africa. We identified significant differences in the chemical contents of whole plants at the heading stage in all cultivars, including differences in crude protein, fat, fiber, ash, neutral detergent fiber, acid detergent fiber, mineral, and fatty acid contents. Our results suggest that Banwoldang is the most appropriate cultivar for roughage because of its high protein yield. We identified significant differences in the tannin, flavonoid, amylose, mineral, crude fat, fatty acid, and 3-deoxyanthocyanin contents in the whole grain from all cultivars, but not in the mineral or crude fat contents. Tannin levels were generally low. IS645 contained the highest levels of flavonoids and linolenic acid compounds, and Moktak had the highest amylose and deoxyanthocyanidin content in the grain. To assess genetic diversity, we used 10 simple sequence repeat (SSR) primer sets to identify 38 alleles with 3-8 alleles per locus. Based on phylogenetic analysis of the SSR markers, the sorghum cultivars were divided into three major groups. Comparison of clusters based on chemical compositions with those based on SSRs showed that the groups formed by the three native Korean cultivars clustered similarly in molecular dendrograms. Association analysis was conducted for the 10 SSR marker; 48 chemical and growth traits were present for two marker traits (seed color and whole plant fatty acid content) with significant marker-trait associations. These markers could be used to select sorghum cultivars for breeding programs.

  2. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  3. Ecophysiological variables influencing Aleppo pine seed and cone production: a review.

    PubMed

    Ayari, Abdelaziz; Khouja, Mohamed Larbi

    2014-04-01

    The most interesting factors associated with seed and cone production of Aleppo pine were largely reviewed to identify broad patterns and potential effectiveness of reforestation efforts and planning. Aleppo pine cone production and seed yields are relatively variable, with differences between spatial and temporal influences. These differences are considered, mainly between (i) year, (ii) stand characteristics and (iii) individual tree measurements. Annual variability among populations was recorded for cone production per tree, based on influencing factors such as genetic characteristics, wetness, nutrient availability, insect pests and disease. In addition, some factors may affect Aleppo pine tree growth directly but may be affecting seed and cone production indirectly. Therefore, reduced stand density results in less competition among Aleppo pine trees and accompanying understory flora, which subsequently increases the stem diameter and other tree dimensions, including seed production. This review suggests that reforestation planning, particularly thinning, will result in improved tree morphology that will increase Aleppo pine seed and cone crops. Wildfire intensity and stand conditions such as light and soil nutrient status are also examined.

  4. High Yields for Enhanced Sustainable Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, humankind is in the midst of one of the greatest technological, environmental, and social transitions since the industrial revolution as we strive to replace fossil energy with renewable sources. The Billion Ton Report established a target for U.S. bioenergy feedstock production and throug...

  5. Solid-state fermentation for the production of Monascus pigments from jackfruit seed.

    PubMed

    Babitha, Sumathy; Soccol, Carlos R; Pandey, Ashok

    2007-05-01

    The aim of the present work was to investigate the feasibility of jackfruit seed powder as a substrate for the production of pigments by Monascus purpureus in solid-state fermentation (SSF). A pigment yield of 25ODUnits/g dry fermented substrate was achieved by employing jackfruit seed powder with optimized process parameters such as 50% initial moisture content, incubation temperature 30 degrees C, 9x10(4)spores/g dry substrate inoculum and an incubation period of seven days. The color of the pigments was stable over a wide range of pH, apparently due to the buffering nature of the substrate, which could be a significant point for its scope in food applications. To the best of our knowledge this is the first report on pigment production using jackfruit seed powder in solid-state fermentation (SSF).

  6. The effects of planting methods and head pruning on seed yield and yield components of medicinal pumpkin (Cucurbita pepo subsp. Pepo convar. Pepo var. styriaca) at low temperature areas.

    PubMed

    Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D

    2009-03-15

    This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.

  7. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  8. A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential benefits of the low phytic acid (lpa) seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield....

  9. Chronic herbivory negatively impacts cone and seed production, seed quality and seedling growth of susceptible pinyon pines.

    PubMed

    Mueller, Rebecca C; Wade, Brian D; Gehring, Catherine A; Whitham, Thomas G

    2005-05-01

    Although herbivory often reduces the reproduction of attacked trees, few studies have examined how naturally occurring insect-resistant and susceptible trees differ in their reproduction, nor have these effects been experimentally examined through long-term herbivore removals. In addition, few studies have examined the effects of herbivory on the quality of seeds produced and the implications of reduced seed quality on seedling establishment. We evaluated the impact of chronic herbivory by the stem-boring moth, Dioryctria albovittella, on cone and seed production of the pinyon pine (Pinus edulis) during two mast years. Three patterns emerged. First, moth herbivory was associated with reductions in cone production, viable seed production and seed mass. Specifically, pinyons susceptible to moth attack had 93-95% lower cone production, and surviving cones produced 31-37% fewer viable seeds, resulting in a 96-97% reduction in whole tree viable seed production. In addition, surviving seeds from susceptible trees had 18% lower mass than resistant trees. Second, long-term experimental removal of the herbivore resulted in increased rates of cone and seed production and quality, indicating that moth herbivory was the driver of these reductions. Third, seed size was positively associated with seed germination and seedling biomass and height, suggesting that trees suffering chronic herbivory produce poorer quality offspring. Thus, the resistance traits of pinyons can affect the quality of offspring, which in turn may affect subsequent seedling establishment and population dynamics.

  10. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies

    PubMed Central

    Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  11. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    PubMed

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  12. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    SciTech Connect

    Demchik, S.M.; Day, T.A.

    1996-05-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.

  13. Preparation of protein concentrates from whey and seed products

    SciTech Connect

    Saunders, R.M.; Kohler, G.O.

    1980-01-01

    Whey is mixed with a seed product (e.g., cereal, legumes, oil seeds, flour, etc.) and the pH of the mixture adjusted to 9-10. The resultant mixture is treated to separate a juice from the fibrous residue; in a preferred embodiment of the subsequent process, a protein concentrate is recovered from the juice by adding an acid to it to adjust the pH to 3-4 and subsequently adding sodium hexametaphosphate in an amount sufficient to precipitate the protein product. After adjustment of the pH to 7, a protein concentrate may be obtained by drying the alkaline extract.

  14. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  15. [Effects of seeding-box total fertilization on rice yield and nitrogen loss].

    PubMed

    Liu, Ru-Liang; Li, You-Hong; Zhang, Ai-Ping; Wang, Fang; Zhao, Tian-Cheng; Chen, Chen; Hong, Yu; Yang, Zheng-Li

    2012-07-01

    By using seeding-box total fertilization technology, a two-year field plot experiment was conducted to study the effects of applying medium rate of controlled-release urea fertilizer (MN, 80 kg N x hm(-2)), high rate of controlled-release urea fertilizer (HN, 120 kg N x hm(-2)), and conventional urea fertilizer (FP, 300 kg N x hm(-2)) on rice yield and nitrogen loss. As compared with FP, HN did not decrease rice yield significantly, and MN and HN increased the two-year average nitrogen use efficiency (NUE) by 26.2% and 20.7%, respectively (the NUE in treatment FP was 33.2%). In treatment FP, the total N concentration in surface water peaked after 1-3 days of urea application; while in treatments MN and HN, the total N concentration in surfate water peaked after 7-9 days of urea application, and was significantly lower than that in treatment FP throughout the rice growth period. The nitrogen leaching loss in treatment FP mainly occurred at tillering stage, while that in treatments MN and HN delayed to tillering-flowering stage. In all treatments, the NO3(-)-N loss accounted for 59.7% - 64.2% of the total N loss. HN decreased the total N leaching loss by 51.8%, as compared with FP.

  16. Enhancement in the germination, growth and yield of okra (Abelmoschus esculentus) using pre-sowing magnetic treatment of seeds.

    PubMed

    Naz, Afshan; Jamil, Yasir; ul Haq, Zia; Iqbal, Munawar; Ahmad, Muhammad Raza; Ashraf, Muhammad Irfan; Ahmad, Rasheed

    2012-06-01

    The effect of pre-sowing magnetic treatments was investigated on germination, growth and yield of okra (Abelmoschus esculentus cv. Sapz pari). The dry okra seeds were exposed to sinusoidal magnetic field induced by an electromagnet. The average magnetic field exposure was 99 mT for 3 and 11 min and seeds with no magnetic field treatment were considered as control. Both treated and non-treated seeds were sown in experimental plots (120 m2) under similar conditions. Samples were collected at regular intervals for statistical analysis. A significant increase (P < 0.05) was observed in germination percentage, number of flowers per plant, leaf area (cm2), plant height (cm) at maturity, number of fruits per plant, pod mass per plant and number of seeds per plant. The 99 mT for 11 min exposure showed better results as compared to control.

  17. Allium acuminatum Seed Production: First Look at Cultural Parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a report on the first year data for a two year project assessing seed production parameters for the native forb Allium acuminatum. As a component of greater sage-grouse and Southern Idaho ground squirrel habitat, Allium acuminatum Hook. (Taper-tip onion) has been targeted for use in restor...

  18. Competencies Needed by Seed Production and Distribution Company Employees.

    ERIC Educational Resources Information Center

    Morrow, Charles Kendall

    To determine competencies needed by employees in the seed production and distribution industry, a questionnaire containing 49 competencies was compiled with the assistance of specialists and mailed to 100 company managers and 200 nonmanagerial employees. Returns from the 200 usable questionnaires indicate that the competencies needed most by…

  19. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    PubMed

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20.

  20. Glufosinate effects on nitrogen nutrition growth yield and seed composition in glufosinate-resistant and glufosinate-sensitive soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glufosinate applied to glufosinate-resistant crops may drift and injure non-glufosinate-resistant crops. A 2-yr field study examined glufosinate effects on plant injury, chlorophyll content, nodulation, nitrogenase activity, leaf nitrogen, yield, and seed composition in soybean. Glufosinate drift wa...

  1. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering

    PubMed Central

    Pierce, Emily C.; LaFayette, Peter R.; Ortega, María A.; Joyce, Blake L.; Kopsell, Dean A.; Parrott, Wayne A.

    2015-01-01

    The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds. PMID:26376481

  2. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering.

    PubMed

    Pierce, Emily C; LaFayette, Peter R; Ortega, María A; Joyce, Blake L; Kopsell, Dean A; Parrott, Wayne A

    2015-01-01

    The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.

  3. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance

    PubMed Central

    Sahni, Sangita; Prasad, Bishun D.; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P.; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR–related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  4. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome.

    PubMed

    Qian, W; Chen, X; Fu, D; Zou, J; Meng, J

    2005-05-01

    This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (A(n)A(n)C(n)C(n)) and a new type of B. napus with introgressions of genomic components of Brassica rapa (A(r)A(r)). This B. napus was selected from the progeny of B. napus x B. rapa and (B. napus x B. rapa) x B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F(3) or BC(1)F(3) to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC(1)F(5) and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC(1)F(5) and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.

  5. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  6. Cutleafgroundcherry (physalis angulata) density, biomass and seed production in peanut (arachis hypogaea L.) following regrowth due to inadequate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry density, biomass, seed production, and crop yield in a peanut system. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) alone at 0.027 kg ai h...

  7. Estimating seed production of common plants in seasonally flooded wetlands

    USGS Publications Warehouse

    Laubhan, Murray K.; Fredrickson, Leigh H.

    1992-01-01

    We developed a technique to quickly estimate seed production of common moist-soil plants because previously reported methods were too time consuming to be of value to waterfowl resource managers. Eleven regression equations were developed for 13 plant species in the upper Mississippi Alluvial Valley and the Rio Grande Valley, New Mexico. Estimated time to collect a sample was 1.5 minutes. Easily measured vegetation characteristics such as inflorescence number, inflorescence length, and plant height were used as independent variables to estimate seed mass of known mass samples. Coefficients of determination (R2) ranged from 0.79 for rice flatsedge (Cyperus iria) to 0.96 for smartweeds (Polygonum spp.). The accuracy and precision of equations tested using independent data indicate that the technique can be used to detect changes in seed mass of moist-soil plants in seasonally flooded impoundments. Because of the small sample area per plot used (0.0625 m2) and changes in the density of plants within an impoundment, we recommend that as many samples as economically feasible be collected to reliably estimate seed production.

  8. Production of cecropin A antimicrobial peptide in rice seed endosperm

    PubMed Central

    2014-01-01

    Background Cecropin A is a natural antimicrobial peptide that exhibits rapid, potent and long-lasting lytic activity against a broad spectrum of pathogens, thus having great biotechnological potential. Here, we report a system for producing bioactive cecropin A in rice seeds. Results Transgenic rice plants expressing a codon-optimized synthetic cecropin A gene drived by an endosperm-specific promoter, either the glutelin B1 or glutelin B4 promoter, were generated. The signal peptide sequence from either the glutelin B1 or the glutelin B4 were N-terminally fused to the coding sequence of the cecropin A. We also studied whether the presence of the KDEL endoplasmic reticulum retention signal at the C-terminal has an effect on cecropin A subcellular localization and accumulation. The transgenic rice plants showed stable transgene integration and inheritance. We show that cecropin A accumulates in protein storage bodies in the rice endosperm, particularly in type II protein bodies, supporting that the glutelin N-terminal signal peptides play a crucial role in directing the cecropin A to this organelle, independently of being tagged with the KDEL endoplasmic reticulum retention signal. The production of cecropin A in transgenic rice seeds did not affect seed viability or seedling growth. Furthermore, transgenic cecropin A seeds exhibited resistance to infection by fungal and bacterial pathogens (Fusarium verticillioides and Dickeya dadantii, respectively) indicating that the in planta-produced cecropin A is biologically active. Conclusions Rice seeds can sustain bioactive cecropin A production and accumulation in protein bodies. The system might benefit the production of this antimicrobial agent for subsequent applications in crop protection and food preservation. PMID:24755305

  9. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The duration that seeds stay vigorous during storage is difficult to predict but critical to seed industry and conservation communities. Production of volatile compounds from lettuce seeds during storage was investigated as a non-invasive and early detection method of seed aging rates. Over thirty...

  10. Lesquerella seed yield estimation using color image segmentation to track flowering dynamics under water and nitrogen limitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed oil from lesquerella (Physaria fendleri (Gray) O'Kane & Al-Shehbaz) can potentially supplement castor oil as a non-petroleum-based chemical feedstock in the production of many industrial products. However, before lesquerella will become commercially viable, further efforts are needed to address...

  11. Products and yields from O3 photodissociation at 1576 A

    NASA Technical Reports Server (NTRS)

    Taherian, M. R.; Slanger, T. G.

    1985-01-01

    An analysis has been made of the primary atomic and molecular products arising from O3 photodissociation at 1576 A. The yield of oxygen atoms is 1.90 + or - 0.30, of which 71 percent are O(3P) and 29 percent are O(1D). Since a primary yield greater than unity can only be a consequence of three-fragment dissociation, these results suggest that fragmentation into three O(3P) atoms, and production of O(1D) plus a singlet oxygen molecule, have comparable yields. Observation of prompt emission in the 7300-8100 A spectral region indicates that the singlet O2 is O2(b 1Sigma + g). Vibrational levels in the range v = 0-6 have been detected, the distribution corresponding to a vibrational temperature of 1000 K.

  12. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    PubMed

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  13. Trends in United States cotton yield productivity since 1980

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is produced in over 30 countries and provides a major fiber source for textile manufacturers. In 2012, the direct market value of 17.0 million bales of U.S. cotton equated to US$ 8.1 billion. The objective of this study was to document trends in U.S. upland cotton yield productivity since 198...

  14. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions.

    PubMed

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-09-20

    Environmental stress factors such as drought, salinity, temperature extremes and rising CO2 negatively affect crop growth and productivity. Faced with the scarcity of water resources, drought is the most critical threat to world food security. This is particularly important in the context of climate change and an increasing world population. Seed priming is a very promising strategy in modern crop production management. Although it has been known for several years that seed priming can enhance seed quality and the effectiveness of stress responses of germinating seeds and seedlings, the molecular mechanisms involved in the acquisition of stress tolerance by primed seeds in the germination process and subsequent plant growth remain poorly understood. This review provides an overview of the metabolic changes modulated by priming, such as the activation of DNA repair and the antioxidant system, accumulation of aquaporins and late embryogenesis abundant proteins that contribute to enhanced drought stress tolerance. Moreover, the phenomenon of "priming memory," which is established during priming and can be recruited later when seeds or plants are exposed to stress, is highlighted.

  15. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    SciTech Connect

    Koren, S; Veltchev, I; Furhang, E

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(γ,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  16. Comparison of Fission Product Yields and Their Impact

    SciTech Connect

    S. Harrison

    2006-02-01

    This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.

  17. Transgenic Tobacco Overexpressing Brassica juncea HMG-CoA Synthase 1 Shows Increased Plant Growth, Pod Size and Seed Yield

    PubMed Central

    Liao, Pan; Wang, Hui; Wang, Mingfu; Hsiao, An-Shan; Bach, Thomas J.; Chye, Mee-Len

    2014-01-01

    Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS), the second enzyme in the mevalonate (MVA) pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt) and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A) BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A) BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi) of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i) phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1) in comparison to vector-transformed tobacco, (ii) higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii) induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant reproduction

  18. Influence of pre-treatment on yield chemical and antioxidant properties of a Nigerian okra seed (Abelmoschus esculentus moench) flour.

    PubMed

    Adelakun, O E; Oyelade, O J; Ade-Omowaye, B I O; Adeyemi, I A; Van de Venter, M; Koekemoer, T C

    2009-03-01

    Okra seeds are reported to be limited to re-generational purpose in Nigeria while majority are discarded as unfit for this purpose. Studies were carried out to evaluate the effect of soaking and blanching on the yield, proximate composition and antioxidant activity of okra seed flour. Pre-treatment by soaking and blanching were found to increase yield which was time dependent. The range mean obtained for protein, fat, ash and fiber contents were 46.10-38.99, 28.08-25.08, 3.95-3.15 and 3.76-3.10, respectively. Slight but significant DPPH radical scavenging activity increase was observed in soaked samples at 18th-h while blanching resulted into progressive decrease.

  19. Evaluation and compilation of fission product yields 1993

    SciTech Connect

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  20. Effects of UV-B radiation on soybean yield and seed quality: A six-year field study

    SciTech Connect

    Teramura, A.H.; Sullivan, J.H.; Lydon, J.

    1990-01-01

    Two soybean, (Glycine max (L.) Merr.) cultivars, Essex and Williams, were grown in the field for 6 consecutive seasons under ambient and supplemental levels of ultraviolet-B radiation to determine the potential for alterations in yield or seed quality with a reduction in the stratospheric ozone column. The supplemental UV-B fluences simulated a 16 or 25% ozone depletion. The data presented here represent the first field experiment conducted over multiple seasons which assesses the effects of increased UV-B radiation on seed yield. Overall, the cultivar Essex was found to be sensitive to UV-B radiation (yield reductions of 20%) while the cultivar Williams was tolerant. However, the effectiveness of UV-B radiation in altering yield was strongly influenced by the seasonal microclimate, and the 2 cultivars responded differently to these changing factors. Yield was reduced most in Essex during seasons in which water availability was high and was reduced in Williams only when water was severely limiting. The results of the experiments demonstrate the necessity for multiple-year experiments and the need to increase understanding of the interaction between UV-B radiation and other environmental stresses in order to assess the potential consequences of stratospheric ozone depletion.

  1. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa

    PubMed Central

    Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B.; Zhang, Zhao

    2017-01-01

    Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield. PMID:28099471

  2. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa.

    PubMed

    Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B; Zhang, Zhao

    2017-01-01

    Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield.

  3. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  4. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  5. Yield and yield gaps in central U.S. corn production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  6. A Covariance Generation Methodology for Fission Product Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  7. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  8. Effect of seeding density on biomass production in mussel bottom culture

    NASA Astrophysics Data System (ADS)

    Capelle, Jacob J.; Wijsman, Jeroen W. M.; van Stralen, Marnix R.; Herman, Peter M. J.; Smaal, Aad C.

    2016-04-01

    Effects of seeding density on biomass production in mussel bottom culture are investigated by detailed monitoring of culture practice in the western Wadden Sea, The Netherlands. The seeds originate from different sources. The seeds differ in size and farmers apply seeding techniques dependent on the seed size resulting in different seed densities on the culture plots. We hypothesise growth to be density dependent and that biomass production is primarily determined by survival and is therefore a function of seed density which is related to the activities of the farmers. Data was collected from 42 different culture plots over a three year period (June 2009-June 2012). During this period, 66 sub-populations were followed from seeding until harvest. Seeding at the start of the culture resulted in an instantaneous drop in biomass production, caused by large losses in mussel number. These losses were on average 42% of the mussels seeded. This seeding loss decreased with mussel size and increased with seeding density. A subsequent density dependent loss of 1.8 mussels per day was found for smaller mussels (< 30 mm), and a non-density dependent loss of 0.8 mussels per day for larger mussels (> 30 mm) during grow out. Overall loss from seeding to harvest was high, from 92% for the smallest seeds collected from spat collectors, to 54% for half-grown mussels fished from natural beds in the spring. No indication was found that growth or mussel condition was affected by culture plot scale density. Growth was dependent on mussel size and age, and this largely determined the differences in biomass production between seed sources. The density dependent seeding loss associated with seeding activities largely determined survival, and hence overall biomass production.

  9. Defining the Genetic Architecture Underlying Female- and Male-Mediated Nonrandom Mating and Seed Yield Traits in Arabidopsis1[OA

    PubMed Central

    Carlson, Ann Louise; Fitz Gerald, Jonathan Nesbit; Telligman, Megan; Roshanmanesh, Jacob; Swanson, Robert John

    2011-01-01

    Postpollination nonrandom mating among compatible mates is a widespread phenomenon in plants and is genetically undefined. In this study, we used the recombinant inbred line (RIL) population between Landsberg erecta and Columbia (Col) accessions of Arabidopsis (Arabidopsis thaliana) to define the genetic architecture underlying both female- and male-mediated nonrandom mating traits. To map the genetic loci responsible for male-mediated nonrandom mating, we performed mixed pollinations with Col and RIL pollen on Col pistils. To map the genetic loci responsible for female-mediated nonrandom mating, we performed mixed pollinations with Col and Landsberg erecta pollen on RIL pistils. With these data, we performed composite interval mapping to identify two quantitative trait loci (QTLs) that control male-mediated nonrandom mating. We detected epistatic interactions between these two loci. We also explored female- and male-mediated traits involved in seed yield in mixed pollinations. We detected three female QTLs and one male QTL involved in directing seed number per fruit. To our knowledge, the results of these experiments represent the first time the female and male components of seed yield and nonrandom mating have been separately mapped. PMID:22007025

  10. Echium as an oilseed crop in Minnesota: Flowering dates, pollinators, and seed yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Echium (Echium plantagineum) can be a serious winter annual weed in Mediterranean-type environments. However, it also can be an alternative oilseed crop in summer-wet temperate regions. It produces seed oils rich in omega-3 fatty acids. One of these is stearidonic acid, which is desired highly by th...

  11. Effects of seeding rate on the dry matter yield and nutritive value of fall-oat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several recent research projects have evaluated fall-grown oat as a fall-forage option for harvest as silage, or to extend the fall grazing season. Producers frequently ask about the appropriate seeding rates for fall-grown oat and whether or not it is the same as the traditional recommendation for ...

  12. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  13. Thiamethoxam seed treatments hav no impact on pest numbers or yield in cultivated sunflowers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a diverse and abundant community of beneficial, non-target organisms which may be negatively affected by pest management...

  14. Effects of nitrogen and planting seed size on cotton growth, development, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standardized experiment was conducted during 2009 and 2010 at 20 location-years across U.S. cotton (Gossypium hirsutum L.)-producing states to compare the N use requirement of contemporary cotton cultivars based on their planting seed size. Treatments consisted of three cotton varieties with plant...

  15. Current warming will reduce yields unless maize breeding and seed systems adapt immediately

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B.

    2016-10-01

    The development of crop varieties that are better suited to new climatic conditions is vital for future food production. Increases in mean temperature accelerate crop development, resulting in shorter crop durations and reduced time to accumulate biomass and yield. The process of breeding, delivery and adoption (BDA) of new maize varieties can take up to 30 years. Here, we assess for the first time the implications of warming during the BDA process by using five bias-corrected global climate models and four representative concentration pathways with realistic scenarios of maize BDA times in Africa. The results show that the projected difference in temperature between the start and end of the maize BDA cycle results in shorter crop durations that are outside current variability. Both adaptation and mitigation can reduce duration loss. In particular, climate projections have the potential to provide target elevated temperatures for breeding. Whilst options for reducing BDA time are highly context dependent, common threads include improved recording and sharing of data across regions for the whole BDA cycle, streamlining of regulation, and capacity building. Finally, we show that the results have implications for maize across the tropics, where similar shortening of duration is projected.

  16. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm.

    PubMed

    Quijada, Pablo A; Udall, Joshua A; Lambert, Bart; Osborn, Thomas C

    2006-08-01

    The introgression of winter germplasm into spring canola (Brassica napus L.) represents a novel approach to improve seed yield of hybrid spring canola. In this study, quantitative trait loci (QTL) for seed yield and other traits were genetically mapped to determine the effects of genomic regions introgressed from winter germplasm into spring canola. Plant materials used comprised of two populations of doubled haploid (DH) lines having winter germplasm introgression from two related French winter cultivars and their testcrosses with a spring line used in commercial hybrids. These populations were evaluated for 2 years at two locations (Wisconsin, USA and Saskatchewan, Canada). Genetic linkage maps based on RFLP loci were constructed for each DH population. Six QTL were detected in the testcross populations for which the winter alleles increased seed yield. One of these QTL explained 11 and 19% of the phenotypic variation in the two Canadian environments. The winter allele for another QTL that increased seed yield was linked in coupling to a QTL allele for high glucosinolate content, suggesting that the transition of rapeseed into canola could have resulted in the loss of favorable seed yield alleles. Most QTL for which the introgressed allele decreased seed yield of hybrids mapped to genomic regions having homoeologous non-reciprocal transpositions. This suggests that allelic configurations created by these rearrangements might make an important contribution to genetic variation for complex traits in oilseed B. napus and could account for a portion of the heterotic effects in hybrids.

  17. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield.

    PubMed

    Asghar, Tehseen; Iqbal, Munawar; Jamil, Yasir; Zia-Ul-Haq; Nisar, Jan; Shahid, Muhammad

    2017-01-01

    Recently, laser and magnetic field pre-sowing seed treatments attracted the attention of the scientific community in response to their positive effect on plant characteristics and the present study was exemplified for Glycine max Var 90-I. Seeds were exposed to laser (HeNe-wave length 632nm and density power of 1mW/cm(2)) and magnetic field (sinusoidal non-uniform-50, 75 and 100mT for 3, 5min with exposure) and seed germination, seedling growth and yield attributes were compared. The germination (mean germination, germination percentage, emergence index, germination speed, relative germination coefficient, emergence coefficient of uniformity) growth (root dry weight, root length, shoot fresh weight and shoot dry weight, leaf dry & fresh weight, root fresh weight, leaf area, shoot length, plant total dry weight at different stages, stem diameter, number of leaves, vigor index I & II), biochemical (essential oil) and yield attributes (seed weight, count) were enhanced significantly in response to both laser and magnetic field treatments. However, magnetic field treatment furnished slightly higher response versus laser except relative water contents, whole plant weight and shoot length. Results revealed that both laser and magnetic field pre-sowing seed treatments affect the germination, seedling growth, and yield characteristics positively and could possibly be used to enhance Glycine max productivity.

  18. Yield components, leaf pigment contents, patterns of seed filling, dry matter, LAI and LAID of some safflower (Carthamus tinctorius L.) genotypes in Iran.

    PubMed

    Mokhtassi-Bidgoli, A; Akbari, Gh Al; Mirhadi, M J; Pazoki, A R; Soufizadeh, S

    2007-05-01

    In order to assess the genotypic variation among yield components and different physiological parameters and their relationships with safflower seed yield, six safflower genotypes were grown in Pakdasht, Iran in a randomized complete block design with four replications, during 2003-2004 growing season. Among the genotypes, chlorophyll a, chlorophyll b, chlorophyll a+b, total carotenoids contents, chlorophyll a/chlorophyll b ratio and Chlorophyll a+b/total cartenoids ratio ranged from 0.78 to 1.10, from 0.54 to 0.71, from 1.37 to 1.71, from 0.09 to 0.13 mg g(-1), from 1.33 to 1.68 and from 13.52 to 14.82, respectively. Negative relationships existed between seed yield and pigment contents. There were significant yield differences among genotypes and varied from 2452.60 to 3897.20 kg ha(-1). A diverse range of capitulum diameter (24.08-28.91 mm), seed weight/capitulum (1.18-2.04 g), number of seeds/m2 (8704.5-13165.4), number of capitula/plant (16.38-23.27), number of seeds/capitulum (35.65-41.90) and 1000-seed weight (29.94-50.60 g) was recorded. Genotypes differed in HI and the HI values ranged from 21.83% (LRK-262) to 29.62% (IL.111). In the studied set of 6 safflower genotypes, total biomass and LAI peaked around after full flowering and at the beginning of flowering, respectively. Zarghan-279 (with the greatest LAID) had 25% longer LAID than LRV.51.51 (with the lowest LAID). Differences among genotypes for rate of seed filling and effective seed filling duration were significant and differences in seed yield could be attributed to differences in the rate of seed filling. The results of this experiment indicate that physiological parameters including rate of seed filling, rapid leaf formation and expansion and delayed plant senescence are the characteristics of high-yielding safflower. Also, higher dry matter accumulation, HI, seed weight/capitulum, 1000-seed weight and capitulum diameter were found to be closely related to high-yield genotypes.

  19. Prospects for increasing starch and sucrose yields for bioethanol production.

    PubMed

    Smith, Alison M

    2008-05-01

    In the short term, the production of bioethanol as a liquid transport fuel is almost entirely dependent on starch and sugars from existing food crops. The sustainability of this industry would be enhanced by increases in the yield of starch/sugar per hectare without further inputs into the crops concerned. Efforts to achieve increased yields of starch over the last three decades, in particular via manipulation of the enzyme ADPglucose pyrophosphorylase, have met with limited success. Other approaches have included manipulation of carbon partitioning within storage organs in favour of starch synthesis, and attempts to manipulate source-sink relationships. Some of the most promising results so far have come from manipulations that increase the availability of ATP for starch synthesis. Future options for achieving increased starch contents could include manipulation of starch degradation in organs in which starch turnover is occurring, and introduction of starch synthesis into the cytosol. Sucrose accumulation is much less well understood than starch synthesis, but recent results from research on sugar cane suggest that total sugar content can be greatly increased by conversion of sucrose into a non-metabolizable isomer. A better understanding of carbohydrate storage and turnover in relation to carbon assimilation and plant growth is required, both for improvement of starch and sugar crops and for attempts to increase biomass production in second-generation biofuel crops.

  20. Structural and functional properties of hemp seed protein products.

    PubMed

    Malomo, Sunday A; He, Rong; Aluko, Rotimi E

    2014-08-01

    The effects of pH and protein concentration on some structural and functional properties of hemp seed protein isolate (HPI, 84.15% protein content) and defatted hemp seed protein meal (HPM, 44.32% protein content) were determined. The HPI had minimum protein solubility (PS) at pH 4.0, which increased as pH was decreased or increased. In contrast, the HPM had minimum PS at pH 3.0, which increased at higher pH values. Gel electrophoresis showed that some of the high molecular weight proteins (>45 kDa) present in HPM were not well extracted by the alkali and were absent or present in low ratio in the HPI polypeptide profile. The amino acid composition showed that the isolation process increased the Arg/Lys ratio of HPI (5.52%) when compared to HPM (3.35%). Intrinsic fluorescence and circular dichroism data indicate that the HPI proteins had a well-defined structure at pH 3.0, which was lost as pH value increased. The differences in structural conformation of HPI at different pH values were reflected as better foaming capacity at pH 3.0 when compared to pH 5.0, 7.0, and 9.0. At 10 and 25 mg/mL protein concentrations, emulsions formed by the HPM had smaller oil droplet sizes (higher quality), when compared to the HPI-formed emulsions. In contrast at 50 mg/mL protein concentration, the HPI-formed emulsions had smaller oil droplet sizes (except at pH 3.0). We conclude that the functional properties of hemp seed protein products are dependent on structural conformations as well as protein concentration and pH.

  1. Development of turf-type Poa pratensis l. germplasm for seed production without field burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open-field burning of Kentucky bluegrass (Poa pratensis L.) post- harvest residue, which maintains grass seed yield and stand longevity, has been eliminated in Washington and is restricted in Idaho and Oregon, USA. Our objective was to develop Kentucky bluegrass germplasm that has sustainable seed y...

  2. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  3. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.

  4. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    PubMed

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  5. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.

  6. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    PubMed

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  7. Carbon Fluxes And Yield Of Bioenergy Sorghum In An Extreme Desert Production Environment

    NASA Astrophysics Data System (ADS)

    Grantz, D. A.; Oikawa, P. Y.; Jenerette, D.

    2012-12-01

    Carbon accumulation and agronomic yield of tropical C4 grasses are high under irrigated conditions in low desert, western U.S. production areas. These are candidate production systems for purpose-grown biofuel feedstocks. Here we report fluxes of carbon at leaf and canopy scales, along with above-ground biomass yield, in an irrigated, fertilized field (5.26 ha) in the low desert (Imperial Valley) of California. This is an uncommonly productive but environmentally extreme growth environment with typical Tsoil > 55 C and Tair > 42 C during the growing season. We monitored a single field under fallow conditions, followed by planting, growth, harvest, and re-growth from stubble of Sorghum bicolor. Carbon accumulation is one aspect of our developing sustainability metric that characterizes land use conversion to biofuel production. Following 96 days of growth from seed, the canopy was harvested by cutting at 15 cm above the soil surface, yielding 33.8 ± 2.4 dry ton/ha. Over the growth period this represents 35 g m-2 day-1 of average dry matter accumulation, including the cool early season. A second and third cutting are anticipated during the production year suggesting annualized yields more typical of tropical than temperate environments. Tower fluxes of C obtained by eddy covariance suggest maximal rates of C accumulation increased with temperature and canopy development from -17 μmol m-2 s-1 in March to -57 μmol m-2 s-1 in July. Leaf level C assimilation in July exceeded 40 μmol m-2 s-1 in sunlit leaves. Neither EC nor leaf level photosynthetic measurements indicated inhibition of carbon assimilation by the prevailing high temperatures, although it is anticipated that low temperatures will terminate the season. As with unmanaged systems in this environment, fluxes are highly sensitive to pulsed water availability, in this case through irrigation. These data will be used to constrain process models of canopy response to these unusual environmental conditions, in

  8. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Product description of Layer or (Cluster) raisins with... Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins with seeds. Raisins with Seeds that are referred to as Layer or Cluster raisins means that the raisins have not been detached from...

  9. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Product description of Layer or (Cluster) raisins with... Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins with seeds. Raisins with Seeds that are referred to as Layer or Cluster raisins means that the raisins have not been detached from...

  10. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Product description of Layer or (Cluster) raisins with... Standards for Grades of Processed Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins with seeds. Raisins with Seeds that are referred to as Layer or Cluster raisins means that the raisins...

  11. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Product description of Layer or (Cluster) raisins with... Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins with seeds. Raisins with Seeds that are referred to as Layer or Cluster raisins means that the raisins have not been detached from...

  12. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Product description of Layer or (Cluster) raisins with... Standards for Grades of Processed Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins with seeds. Raisins with Seeds that are referred to as Layer or Cluster raisins means that the raisins...

  13. Defoliation effects on Bromus tectorum seed production: Implications for grazing

    USGS Publications Warehouse

    Hempy-Mayer, K.; Pyke, D.A.

    2008-01-01

    Cheatgrass (Bromus tectorum L.) is an invasive annual grass that creates near-homogenous stands in areas throughout the Intermountain sagebrush steppe and challenges successful native plant restoration in these areas. A clipping experiment carried out at two cheatgrass-dominated sites in eastern Oregon (Lincoln Bench and Succor Creek) evaluated defoliation as a potential control method for cheatgrass and a seeding preparation method for native plant reseeding projects. Treatments involved clipping plants at two heights (tall = 7.6 cm, and short = 2.5 cm), two phenological stages (boot and purple), and two frequencies (once and twice), although purple-stage treatments were clipped only once. Treatments at each site were replicated in a randomized complete block design that included a control with no defoliation. End-of-season seed density (seeds??m-2) was estimated by sampling viable seeds from plants, litter, and soil of each treatment. Undipped control plants produced an average of approximately 13 000 and 20 000 seeds??m-2 at Lincoln Bench and Succor Creek, respectively. Plants clipped short at the boot stage and again 2 wk later had among the lowest mean seed densities at both sites, and were considered the most successful treatments (Lincoln Bench: F 6,45 = 47.07, P < 0.0001; Succor Creek: F6,40 = 19.60, P < 0.0001). The 95% confidence intervals for seed densities were 123-324 seeds??m-2 from the Lincoln Bench treatment, and 769-2256 seeds??m-2 from the Succor Creek treatment. Literature suggests a maximum acceptable cheatgrass seed density of approximately 330 seeds??m-2 for successful native plant restoration through reseeding. Thus, although this study helped pinpoint optimal defoliation parameters for cheatgrass control, it also called into question the potential for livestock grazing to be an effective seed-bed preparation technique in native plant reseeding projects in cheatgrass-dominated areas.

  14. The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean.

    PubMed

    Chaudhary, Nivedita; Agrawal, S B

    2015-01-01

    Tropospheric ozone (O3) can be deleterious to plants by decreasing crop yield and quality. Present study was conducted on six cultivars of mung bean (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) grown under ambient O3 (NFC) and elevated O3 levels (ambient+10 ppb; NFC+) in open top chambers (OTCs) for two consecutive years. Ozone monitoring data showed high mean ambient concentration of O3 at the experimental site, which was above the threshold value of 40 ppb. Ozone exposure induced symptoms of foliar injury and also depicted accumulation of reactive oxygen species (ROS) which led to increased membrane damage vis-a-vis solute leakage. Root/shoot allometric coefficient (k), yield and seed quality showed negative response to O3. Differential response of mung bean cultivars against elevated O3 was assessed by comparing the levels of antioxidants, metabolites, growth, total biomass and yield. Cultivar HUM-1 showed maximum sensitivity towards O3 as compared to other cultivars. Findings of present study emphasized the possibility of selection of suitable O3 resistant cultivars for the areas experiencing high concentrations of O3.

  15. Method for obtaining three products with different properties from fennel (Foeniculum vulgare) seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine the effects of distillation time (DT; 15-1080 min) on yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare) seed essential oil (EO) as well as on the yield, composition, and properties of lipids extracted from steam-distilled fenne...

  16. Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China.

    PubMed

    Zhang, Weiwei; Wang, Guanghua; Liu, Xiaobing; Feng, Zhaozhong

    2014-09-01

    Nine soybean cultivars widely cultivated in Northeast China were investigated in present study to assess their O3 sensitivities on the basis of the response of photosynthesis and seed yield to ambient and future ozone (O3) concentrations, and determine whether the effects of O3 vary with the developmental stages (flowering and seed filling stages). Relative to charcoal-filtered air (CF), elevated O3 concentration (E-O3, ambient air+40 ppb) significantly reduced soybean yields by 40%, with a range of 32-46% among cultivars. E-O3 also induced significant decreases in pigment contents, net photosynthetic rate and chlorophyll a fluorescence at both flowering and seed filling stages in most cultivars. Except net photosynthetic rate and stomatal conductance (gs) at seed filling stage, all variables showed no significant interaction between O3 and cultivar, suggesting that all tested cultivars had similar sensitivities to O3. The responses of seed N content to E-O3 differed among cultivars. Ambient O3 concentration (mean of daily concentration of 19 ppb) did not induce any change relative to CF. Significant positive relationship between endogenous gs in CF and yield loss among cultivars was found only at seed filling stage. Positive correlation between effects of E-O3 on leaf N content and effects on light saturated photosynthetic rate (Asat) indicated that gs and leaf N content at seed filling stage contributes to yield loss and decreased photosynthesis by E-O3, respectively. It can be inferred that E-O3 had a larger negative effects on seed filling stage than flowering stage of soybean.

  17. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    PubMed

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  18. Brassinosteroid functions in Arabidopsis seed development

    PubMed Central

    Jiang, Wen-Bo; Lin, Wen-Hui

    2013-01-01

    Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mass and number comprise final seed yield, and seed shape also contributes to seed development and weight. Seed size is coordinated by communication among endosperm, embryo, and integument. Seed number determination is more complex to investigate and shows differencies between monocot and eudicot. Total seed number depends on sillique number and seed number per sillique in Arabidopsis. Seed comes from fertilized ovule, hence the ovule number per flower determines the maximal seed number per sillique. Early studies reported that engineering BR levels increased the yield of ovule and seed; however the molecular mechanism of BR regulation in seed development still remained unclear. Our recent studies demonstrated that BR regulated seed size, shape, and number by transcriptionally modulating specific seed developmental pathways. This review summarizes roles of BR in Arabidopsis seed development and gives clues for future application of BR in agricultural production. PMID:24270689

  19. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    PubMed

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation.

  20. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production

  1. Accessory costs of seed production and the evolution of angiosperms.

    PubMed

    Lord, Janice M; Westoby, Mark

    2012-01-01

    Accessory costs of reproduction frequently equal or exceed direct investment in offspring, and can limit the evolution of small offspring sizes. Early angiosperms had minimum seed sizes, an order of magnitude smaller than their contemporaries. It has been proposed that changes to reproductive features at the base of the angiosperm clade reduced accessory costs thus removing the fitness disadvantage of small seeds. We measured accessory costs of reproduction in 25 extant gymnosperms and angiosperms, to test whether angiosperms can produce small seeds more economically than gymnosperms. Total accessory costs scaled isometrically to seed mass for angiosperms but less than isometrically for gymnosperms, so that smaller seeds were proportionally more expensive for gymnosperms to produce. In particular, costs of abortions and packaging structures were significantly higher in gymnosperms. Also, the relationship between seed:ovule ratio and seed size was negative in angiosperms but positive in gymnosperms. We argue that the carpel was a key evolutionary innovation reducing accessory costs in angiosperms by allowing sporophytic control of pre- and postzygotic mate selection and timing of resource allocation. The resulting reduction in costs of aborting unfertilized ovules or genetically inferior embryos would have lowered total reproductive costs enabling early angiosperms to evolve small seed sizes and short generation times.

  2. Seed production areas for the global restoration challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed availability of wild species is fundamental to the conservation of biodiversity and the achievement of global ecosystem restoration or reforestation targets. The current and future demands for seeds for restoration and reforestation far exceed what can be practically, economically, and ethicall...

  3. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  4. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    PubMed Central

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose–methanol–choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed. Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production. PMID:27864513

  5. Agaricus blazei production on non-composted substrates based on sunflower seed hulls and spent oyster mushroom substrate.

    PubMed

    González Matute, R; Figlas, D; Curvetto, N

    2011-06-01

    Agaricus blazei Murrill is usually cultivated using the same biphasic composting method employed for A. bisporus. Because cultivation of A. blazei on traditional A. bisporus composts poses some disadvantages, non-composted substrates were studied for A. blazei cultivation. Mycelial growth rate and productive performance of A. blazei were evaluated on substrates containing sunflower seed hulls, Pleurotus spp. spent mushroom substrate, or their combination, in the absence or in the presence of different supplements (vermicompost, peat or brewery residues). Substrates were prepared by initially soaking them and then they were sterilized (1 atm for 120 min). In addition, each substrate's degradation was measured after cultivation by obtaining the lignin, cellulose, hemicellulose, organic matter, total fiber, ash, carbon and nitrogen contents before spawn-run and at the end of two flushes of A. blazei. The cultivation of A. blazei on non-composted substrates is possible and with a low rate of contamination when using the spent mushroom substrate as the main component or combined 50:50 with sunflower seed hulls. In addition, the best yields were obtained on those substrates containing spent Pleurotus mushroom substrate with supplements and those mixtures with sunflower seed hulls and vermicompost. These yields were similar to those reported on composted substrates. Substrate changes in composition measured at the end of two flushes indicate that the lignin-hemicellulose fraction was preferentially used and that the substrates exhibiting the best yield showed greater biodegradation of lignin-hemicellulose fraction than the others did.

  6. Fission product yield evaluation for the USA evaluated nuclear data files

    SciTech Connect

    Rider, B.F.; England, T.R.

    1994-10-01

    An evaluated set of fission product yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set.

  7. The impact of sulfate restriction on seed yield and quality of winter oilseed rape depends on the ability to remobilize sulfate from vegetative tissues to reproductive organs.

    PubMed

    Girondé, Alexandra; Dubousset, Lucie; Trouverie, Jacques; Etienne, Philippe; Avice, Jean-Christophe

    2014-01-01

    Our current knowledge about sulfur (S) management by winter oilseed rape to satisfy the S demand of developing seeds is still scarce, particularly in relation to S restriction. Our goals were to determine the physiological processes related to S use efficiency that led to maintain the seed yield and quality when S limitation occurred at the bolting or early flowering stages. To address these questions, a pulse-chase (34)SO(2-) 4 labeling method was carried out in order to study the S fluxes from uptake and remobilization at the whole plant level. In response of S limitation at the bolting or early flowering stages, the leaves are the most important source organ for S remobilization during reproductive stages. By combining (34)S-tracer with biochemical fractionation in order to separate sulfate from other S-compounds, it appeared that sulfate was the main form of S remobilized in leaves at reproductive stages and that tonoplastic SULTR4-type transporters were specifically involved in the sulfate remobilisation in case of low S availability. In response to S limitation at the bolting stage, the seed yield and quality were dramatically reduced compared to control plants. These data suggest that the increase of both S remobilization from source leaves and the root proliferation in order to maximize sulfate uptake capacities, were not sufficient to maintain the seed yield and quality. When S limitation occurred at the early flowering stage, oilseed rape can optimize the mobilization of sulfate reserves from vegetative organs (leaves and stem) to satisfy the demand of seeds and maintain the seed yield and quality. Our study also revealed that the stem may act as a transient storage organ for remobilized S coming from source leaves before its utilization by seeds. The physiological traits (S remobilization, root proliferation, transient S storage in stem) observed under S limitation could be used in breeding programs to select oilseed rape genotypes with high S use

  8. The impact of sulfate restriction on seed yield and quality of winter oilseed rape depends on the ability to remobilize sulfate from vegetative tissues to reproductive organs

    PubMed Central

    Girondé, Alexandra; Dubousset, Lucie; Trouverie, Jacques; Etienne, Philippe; Avice, Jean-Christophe

    2014-01-01

    Our current knowledge about sulfur (S) management by winter oilseed rape to satisfy the S demand of developing seeds is still scarce, particularly in relation to S restriction. Our goals were to determine the physiological processes related to S use efficiency that led to maintain the seed yield and quality when S limitation occurred at the bolting or early flowering stages. To address these questions, a pulse-chase 34SO2−4 labeling method was carried out in order to study the S fluxes from uptake and remobilization at the whole plant level. In response of S limitation at the bolting or early flowering stages, the leaves are the most important source organ for S remobilization during reproductive stages. By combining 34S-tracer with biochemical fractionation in order to separate sulfate from other S-compounds, it appeared that sulfate was the main form of S remobilized in leaves at reproductive stages and that tonoplastic SULTR4-type transporters were specifically involved in the sulfate remobilisation in case of low S availability. In response to S limitation at the bolting stage, the seed yield and quality were dramatically reduced compared to control plants. These data suggest that the increase of both S remobilization from source leaves and the root proliferation in order to maximize sulfate uptake capacities, were not sufficient to maintain the seed yield and quality. When S limitation occurred at the early flowering stage, oilseed rape can optimize the mobilization of sulfate reserves from vegetative organs (leaves and stem) to satisfy the demand of seeds and maintain the seed yield and quality. Our study also revealed that the stem may act as a transient storage organ for remobilized S coming from source leaves before its utilization by seeds. The physiological traits (S remobilization, root proliferation, transient S storage in stem) observed under S limitation could be used in breeding programs to select oilseed rape genotypes with high S use efficiency

  9. Milk yield and quality in Guernsey cows fed cottonseed cake-based diets partially substituted with baobab (Adansonia digitata L.) seed cake.

    PubMed

    Madzimure, James; Musimurimwa, Carmen; Chivandi, Eliton; Gwiriri, Lovemore; Mamhare, Eddison

    2011-01-01

    The objective of this study was to determine the effects of partially substituting cottonseed cake with graded levels of baobab (Adansonia digitata L.) seed cake (BSC) on milk yield and quality in Guernsey cows. Sixteen cows in mid-lactation and in their third parity were allocated to diets containing 0% (control), 5%, 10%, and 15% BSC in a completely randomized design. Each cow was given a daily feed ration of 6 kg and a basal diet of soya bean stover ad libitum. There were no differences in daily feed intake (P > 0.05), but basal intake differed among all treatment groups with cows on the control diet having the highest intake (30 ± 0.34 kg/day). Mean daily milk yield differed (P < 0.05) among all treatment groups. However, the control had higher milk yield of 12.1 ± 0.73 kg/day, and the 15% BSC had the least yield of 7.46 ± 0.73 kg/day. Cows on the control diet had higher milk butterfat content (6.12%; P < 0.05) than those on the BSC-based diets. Protein content differed (P < 0.05) across all treatment groups with cows on 15% BSC producing the highest protein content (3.43%) while the control had the least (2.6%). The concentration of milk total solids for cows fed on 15% BSC was higher (P < 0.05) than that from cows on other diets. Lactose content was not affected by the diets (P > 0.05). These results indicate that BSC can substitute soya bean cake in dairy diets, but milk production and butterfat content are compromised.

  10. Sunflower diseases remain rare in California seed production fields compared to North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of United States sunflower production is in eight Midwestern states, but hybrid planting seed is almost exclusively produced in California. Due to the lack of summer rains and furrow irrigation, California-produced seed is relatively disease free and thus it regularly meets phytosanita...

  11. NEANDC specialists meeting on yields and decay data of fission product nuclides

    SciTech Connect

    Chrien, R.E.; Burrows, T.W.

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  12. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype

    PubMed Central

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Subramanian, Manny; Ishmael Parsai, E.

    2014-01-01

    Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301 125I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images

  13. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype

    SciTech Connect

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Ishmael Parsai, E.; Subramanian, Manny

    2014-02-15

    Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301{sup 125}I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT

  14. Evidence for Proteomic and Metabolic Adaptations Associated with Alterations of Seed Yield and Quality in Sulfur-limited Brassica napus L*

    PubMed Central

    D'Hooghe, Philippe; Dubousset, Lucie; Gallardo, Karine; Kopriva, Stanislav; Avice, Jean-Christophe; Trouverie, Jacques

    2014-01-01

    In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate

  15. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes.

    PubMed

    Khan, Hammad Aziz; Siddique, Kadambot H M; Munir, Rushna; Colmer, Timothy David

    2015-06-15

    Chickpea is a relatively salt sensitive species but shows genotypic variation for salt tolerance, measured as grain yield per plant in mild-to-moderately saline soil. This experiment was designed to evaluate some physiological responses to salinity in three contrasting genotypes. One tolerant (Genesis836), one moderately tolerant (JG11) and one sensitive (Rupali) genotype were grown for 108d in non-saline nutrient solution (controls) and two levels of salinity treatment (30 and 60mM NaCl). No plants survived to maturity in the 60mM NaCl treatment; however, Genesis836 survived longer (87d) than JG11 (67d) while Rupali died after 27d; only Genesis836 flowered, but no pods were filled. At 30mM NaCl, Genesis836 produced a few filled pods, whereas JG11 and Rupali did not. Genotypic differences in plant dry mass at the vegetative stage were evident only at 60mM NaCl, while at maturity differences were evident at 30mM NaCl. Photosynthesis was maintained to different degrees by the three genotypes (e.g. at 30mM NaCl, 35-81% of controls; highest in Genesis836); photosynthesis was restricted predominately due to non-stomatal limitations as the intercellular CO2 concentration was only modestly affected (94-99% of controls). Photosystem II damage was evident in the less tolerant genotypes (e.g. at 30mM NaCl, actual quantum efficiency of photosystem II values were 63-96% of controls). Across treatments, shoot dry mass was negatively correlated with both Na(+) and Cl(-) shoot concentrations. However, the sensitive genotype (Rupali) had equal or lower concentrations of these ions in green leaves, stems or roots compared to tolerant genotypes (JG11 and Genesis836); ion 'exclusion' does not explain variation for salt tolerance among these three chickpea genotypes. The large difference between Rupali (sensitive) and Genesis836 (tolerant) in the salt-induced reduction in net photosynthesis via non-stomatal limitations and the assessed damage to photosystem II, but with similar leaf

  16. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.

    PubMed

    Shen, Bo; Allen, William B; Zheng, Peizhong; Li, Changjiang; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Tarczynski, Mitchell C

    2010-07-01

    Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.

  17. Effects of pollination timing and distance on seed production in a dioecious weed Silene latifolia

    NASA Astrophysics Data System (ADS)

    Anderson, Jay F.; Duddu, Hema S. N.; Shirtliffe, Steven J.; Benaragama, Dilshan; Syrovy, Lena D.; Stanley, Katherine A.; Haile, Teketel A.

    2015-11-01

    Silene latifolia Poir. (white cockle or white campion) is an important invasive weed in North American agriculture. It exhibits dioecy, therefore, both male and female plants are required in order for seed production to occur. However, dioecious species being invasive is not common because of their limitations in pollination and subsequent seed production. The objective of this study is to determine the effect of pollination timing and distance on seed production of Silene latifolia. A series of experiments including pollination exclusion, timing and pollination distance were conducted in 2009 and 2010 at or around Saskatoon, Saskatchewan. For pollination exclusion, exclosures were built around the natural female plants for exclosure, sham-exclosure, and male and female combined treatments. Pollination timing was studied by applying exclosure, non-exclosure, night-exclosure, and day-exclosure treatments to individual female plants. Female plants were transplanted along a linear interval at six different distances from the pollen source to study the effect of pollination distance. S. latifolia was exclusively insect-pollinated and pollination occurred both day and night; however, in one year, pollination occurred mainly at night. Female plants that were in the range of 0-4 m from a compatible pollen source experienced no limitation to pollination. However, when the distance was increased further up to 128 m, pollination levels and subsequent seed production were declined. Moreover, there were differences in seed production between years suggesting that pollination was affected by the environmental conditions during pollination and the crop that white cockle was grown in. These experiments indicate that seed production in S. latifolia is limited by insect-pollination. Although there was pollination limitation for seed production at greater distances from a pollen source, the high fecundity rate (3000-18000 seeds per plant) resulted in a large seed output. Thus, we

  18. Pollen and seed mediated gene flow in commercial alfalfa seed production fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for gene flow has been widely recognized since alfalfa is pollinated by bees. The Western US is a major exporter of alfalfa seed and hay and the organic dairy industry is one of the fastest growing agricultural sectors. Because of this, many alfalfa producers are impacted by market sen...

  19. Transgene movement in commercial alfalfa seed production: Implications for seed purity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States is a major exporter of alfalfa seed and hay and the organic dairy industry is one of the fastest growing agricultural sectors. With the advent of genetically-engineered (GE) alfalfa concerns have risen regarding the coexistence of GE and non GE alfalfa since the crop is largely ou...

  20. Split-gene system for hybrid wheat seed production

    PubMed Central

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-01-01

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore “linked in repulsion.” Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner. PMID:24821800

  1. Split-gene system for hybrid wheat seed production.

    PubMed

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  2. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  3. The Dose-Effect Relationship Between the Seeding Quantity of Human Marrow Mesenchymal Stem Cells and In Vivo Tissue-Engineered Bone Yield.

    PubMed

    Wu, Huanhuan; Kang, Ning; Wang, Qian; Dong, Ping; Lv, Xiaoyan; Cao, Yilin; Xiao, Ran

    2015-01-01

    Although the feasibility of human bone marrow mesenchymal stem cell (hBMMSC)-based tissue-engineered bone (TEB) has been proven in a number of studies, reaching a high positive fraction and bone yield of TEB still remains a challenge. Here we report a dose-effect relationship of the quantity of seeded cells with in vivo bone yield and the required quantity of hBMMSCs for the effective, stable bone formation of TEB. In our study, TEB was constructed using the static seeding technique with the gradient of seeding densities and volumes of passage 3 hBMMSCs. The in vitro characteristics of seeding efficiency, proliferation, viability, distribution, and osteogenic differentiation of hBMMSCs seeded on two commercial scaffolds of β-TCP and CHA were investigated using alamarBlue assay, live/dead staining, confocal laser scanning microscope, scanning electronic microscopy examination, and mRNA expression analysis of osteogenic differentiation markers. After 3 months of ectopic implantation, in vivo bone regeneration was examined by quantitative analysis of histology and micro-CT. The results showed that 10 × 10(6) cells/ml was the minimum cell seeding density for CHA and β-TCP to generate new bone in vivo. In addition, 20 × 10(6) cells/ml and 30 × 10(6) cells/ml were the saturating seeding densities for CHA and β-TCP to produce new bone effectively and stably, respectively. Thus, for different scaffolds, the saturating seeding density should be investigated first to ensure the effectiveness and stability of TEB construction with minimum donor injury, which is essential for the clinical application of TEB.

  4. Use of Direct and Indirect Estimates of Crown Dimensions to Predict One Seed Juniper Woody Biomass Yield for Alternative Energy Uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the western United States there is increased interest in utilizing woodland biomass as an alternative energy source. We conducted a pilot study to predict one seed juniper (Juniperus monosperma) chip yield from tree-crown dimensions measured on the ground or derived from Very Large Scale ...

  5. A Substantial Fraction of Barley (Hordeum vulgare L.) Low Phytic Acid Mutations Have Little or No Effect on Yield across Diverse Production Environments.

    PubMed

    Raboy, Victor; Peterson, Kevin; Jackson, Chad; Marshall, Juliet M; Hu, Gongshe; Saneoka, Hirofumi; Bregitzer, Phil

    2015-04-29

    The potential benefits of the low phytic acid (lpa) seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield. This has given rise to the perception that the lpa trait is tightly correlated with reduced yield in diverse crop species. Here we report a powerful test of this correlation. We measured grain yield in lines homozygous for each of six barley (Hordeum vulgare L.) lpa mutations that greatly differ in their seed phytic acid levels. Performance comparisons were between sibling wild-type and mutant lines obtained following backcrossing, and across two years in five Idaho (USA) locations that greatly differ in crop yield potential. We found that one lpa mutation (Hvlpa1-1) had no detectable effect on yield and a second (Hvlpa4-1) resulted in yield losses of only 3.5%, across all locations. When comparing yields in three relatively non-stressful production environments, at least three lpa mutations (Hvlpa1-1, Hvlpa3-1, and Hvlpa4-1) typically had yields similar to or within 5% of the wild-type sibling isoline. Therefore in the case of barley, lpa mutations can be readily identified that when simply incorporated into a cultivar result in adequately performing lines, even with no additional breeding for performance within the lpa line. In conclusion, while some barley lpa mutations do impact field performance, a substantial fraction appears to have little or no effect on yield.

  6. Functional properties of roselle (Hibiscus sabdariffa L.) seed and its application as bakery product.

    PubMed

    Nyam, Kar-Lin; Leao, Sod-Ying; Tan, Chin-Ping; Long, Kamariah

    2014-12-01

    Roselle (Hibiscus sabdariffa L.) seed is a valuable food resource as it has an excellent source of dietary fibre. Therefore, this study examined the functional properties of roselle seeds. Replacement of cookie flour with roselle seed powder at levels of 0-30 % was investigated for its effect on functional and nutritional properties of cookies. Among the four formulations cookies, the most preferred by panelists was 20 % roselle seed powder cookie (F3), followed by 10 % roselle seed powder cookie (F2) and 30 % roselle seed powder cookie (F4). The least preferred formulation among all was control cookie (F1). Cookie with 20 % roselle seed powder added showed higher content of total dietary fibre (5.6 g/100 g) as compared with control cookie (0.90 g/100 g). Besides that, cookies incorporated with roselle seed powder exhibited improved antioxidant properties. Thus, roselle seed powder can be used as a dietary fibre source and developed as a functional ingredient in food products.

  7. Fruitful factors: what limits seed production of flowering plants in the alpine?

    PubMed

    Straka, Jason R; Starzomski, Brian M

    2015-05-01

    Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators.

  8. Alginate-chitosan coacervation in production of artificial seeds.

    PubMed

    Tay, L F; Khoh, L K; Loh, C S; Khor, E

    1993-08-05

    Survival of secondary embryoids of winter oilseed rape (Brassica napus ssp. oleifera cv. Primor) has been used as an assay for the development of artificial seeds involving complex coacervation of alginate (polyanion) with chitosan (polycation). Germination frequency of 100% was achieved for encapsulated embryoids when alginate formed the inner matrix and chitosan the outer layer. When the matrix makeup was reversed, there was no germination of embryoids. The artificial seeds produced were hardened in dilute alkaline solutions of NaOH and Ca(OH)(2). An optimum setting time could be selected based on a quantitative measurement of resistance of hardened capsules to compression and the germination frequency of the encapsulated embryoids.

  9. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  10. A technique for estimating seed production of common moist soil plants

    USGS Publications Warehouse

    Laubhan, Murray K.

    1992-01-01

    Seeds of native herbaceous vegetation adapted to germination in hydric soils (i.e., moist-soil plants) provide waterfowl with nutritional resources including essential amino acids, vitamins, and minerals that occur only in small amounts or are absent in other foods. These elements are essential for waterfowl to successfully complete aspects of the annual cycle such as molt and reproduction. Moist-soil vegetation also has the advantages of consistent production of foods across years with varying water availability, low management costs, high tolerance to diverse environmental conditions, and low deterioration rates of seeds after flooding. The amount of seed produced differs among plant species and varies annually depending on environmental conditions and management practices. Further, many moist-soil impoundments contain diverse vegetation, and seed production by a particular plant species usually is not uniform across an entire unit. Consequently, estimating total seed production within an impoundment is extremely difficult. The chemical composition of seeds also varies among plant species. For example, beggartick seeds contain high amounts of protein but only an intermediate amount of minerals. In contrast, barnyardgrass is a good source of minerals but is low in protein. Because of these differences, it is necessary to know the amount of seed produced by each plant species if the nutritional resources provided in an impoundment are to be estimated. The following technique for estimating seed production takes into account the variation resulting from different environmental conditions and management practices as well as differences in the amount of seed produced by various plant species. The technique was developed to provide resource managers with the ability to make quick and reliable estimates of seed production. Although on-site information must be collected, the amount of field time required is small (i.e., about 1 min per sample); sampling normally is

  11. Variability in pyrolysis product yield from novel shrub willow genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is becoming a more attractive conversion option for the production of biofuels, due to the potential for directly producing hydrocarbon fuels seamlessly compatible with petroleum products (drop-in fuels). Dedicated bioenergy crops, like perennial grasses and short-rotation woody crop...

  12. 40 CFR 153.155 - Seed treatment products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... established under the Federal Food, Drug and Cosmetic Act for residues of the pesticide. (b) The following... labeled for use solely by commercial seed treaters, provided that the label bears a statement requiring... determination by EPA that the use is unlikely to result in residues in food/feed....

  13. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.

    PubMed

    Kranner, Ilse; Roach, Thomas; Beckett, Richard P; Whitaker, Claire; Minibayeva, Farida V

    2010-07-01

    Extracellularly produced reactive oxygen species (ROS) play key roles in plant development, but their significance for seed germination and seedling establishment is poorly understood. Here we report on the characteristics of extracellular ROS production during seed germination and early seedling development in Pisum sativum. Extracellular superoxide (O2(.-)) and hydrogen peroxide (H2O2) production and the activity of extracellular peroxidases (ECPOX) were determined spectrophotometrically, and O2(.-) was identified by electron paramagnetic resonance. Cell wall fractionation of cotyledons, seed coats and radicles was used in conjunction with polyacrylamide gel electrophoresis to investigate substrate specificity and molecular masses of O2(.-)-producing enzymes, and the forces that bind them to the cell wall. Seed imbibition was accompanied by an immediate, transient burst of redox activity that involved O2(.-) and other substances capable of oxidizing epinephrine, and also H2O2. At the final stages of germination, coinciding with radicle elongation, a second increase in O2(.-) but not H2O2 production occurred and was correlated with an increase in extracellular ECPOX activity. Electrophoretic analyses of cell wall fractions demonstrated the presence of enzymes capable of O2(.-) production. The significance of extracellular ROS production during seed germination and early seedling development, and also during seed aging, is discussed.

  14. Radiation use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...

  15. Engineering Fluorometabolite Production: Fluorinase Expression in Salinispora tropica Yields Fluorosalinosporamide†

    PubMed Central

    Eustáquio, Alessandra S.; O'Hagan, David; Moore, Bradley S.

    2010-01-01

    Organofluorine compounds play an important role in medicinal chemistry where they are responsible for up to 15% of the pharmaceutical products on the market. While natural products are valuable sources of new chemical entities, natural fluorinated molecules are extremely rare and the pharmaceutical industry has not benefited from a microbial source of this class of compounds. Streptomyces cattleya is an unusual bacterium in that it elaborates fluoroacetate and the amino acid 4-fluorothreonine. The discovery in 2002 of the fluorination enzyme FlA responsible for C-F bond formation in S. cattleya, and its subsequent characterization, opened up for the first time the prospect of genetically engineering fluorometabolite production from fluoride ion in host organisms. As a proof of principle, we report here the induced production of fluorosalinosporamide by replacing the chlorinase gene salL from Salinispora tropica with the fluorinase gene flA. PMID:20085308

  16. Production of green fluorescent protein in transgenic rice seeds.

    PubMed

    Li, Ding; Gao, Jing; Shen, Chunxiu; Fang, Zhen; Xia, Yumei; Yuan, Longping; Cao, Mengliang

    2013-03-01

    Immature embryos from immature seeds of rice (Oryza sativa L.) were transformed by biolistic bombardment with the plasmid carrying the coding region of the hygromycin phosphotransferase gene under the control of the 5' region of the cauliflower mosaic virus 35S promoter and the synthetic green fluorescence protein gene (sgfp) under the control of the maize ubiquitine promoter. Southern blot analysis confirmed the stable integration of hpt and sgfp genes in transformants. Subsequently leaves from regenerated plants were resistant to hygromycin, and microscopic observation of the green fluorescence and immunoblotting analysis revealed that green fluorescence protein was not only detected in the leaf and pollen of primary transformants but also in mature seeds. The results bear out the importance of the suitability of GFP as an in vivo marker to follow the processes of selection of somatic hybrid embryos and plants.

  17. Antioxidant activities and phenolics of Passiflora edulis seed recovered from juice production residue.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree

    2013-01-01

    Passion fruit seed was refluxed in methanolic water and further liquid - liquid extracted yielding n-Hexane, Ethyl acetate (EtOAc) and aqueous (Aq.) extracts. The EtOAc part was the most potent antioxidant (IC 50DPPH = 2.7 ± 0.2 and IC 50ABTS = 9.0 ± 0.0 µg/mL) that significantly (p < 0.05) better than Aq. extract (IC 50DPPH = 177.8 ± 1.3 and IC 50ABTS = 15.4 ± 0.0 µg/mL). The antioxidant EtOAc exhibited ferric reducing powder (EC1mM FeSO4 = 2,813.9 ± 11.6) and tyrosinase inhibitory effect (39.9 ± 0.0 % at 1 mg/mL). The more potent active extract had significant higher total phenolic content than the Aq. one (p < 0.05). Sun protection factor of the EtOAc extract was comparable to ferulic acid. Chlorogenic acid, rosmarinic acid and quercetin were highly found in EtOAc extract, whereas kojic acid and gallic acid were largely determined in the Aq. part. The most potent biologically active fraction was non cytotoxic in vero cells at the highest test concentration (50 µg/mL). A process to minimize the waste from the fruit juice production is offered. Passion fruit value and profitability in agribusinesses will be increased by the biochemical transformation of the seed into active extracts appraisal for natural cosmetic as a multifunction ingredient.

  18. Yield, irrigation response, and water productivity of deficit to fully irrigated spring canola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola (Brassica napus) is an oil-seed crop that is adapted to the northern High Plains of the USA and is considered a viable rotational and biofuel crop. However, decreased ground water allocations have necessitated determining the impact of limited irrigation on canola productivity. The objectives...

  19. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  20. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed.

    PubMed

    Adams, A; Gore, J; Musser, F; Cook, D; Catchot, A; Walker, T; Dobbins, C

    2016-02-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management.

  1. Highly efficient method for production of radioactive silver seed cores for brachytherapy.

    PubMed

    Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti

    2017-02-01

    A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy.

  2. Effect of land preparation methods on growth, seed yields of Jasmine 105 paddy rice (Oryza sativa L.) and growth of weeds, grown in Northeast Thailand.

    PubMed

    Srisa-Ard, K

    2008-01-01

    This experiment was carried out on a grower's paddy field, Ban Som Hoeng Village, Kantarawichai, Mahasarakham Province, Northeast Thailand with the use of Roi-Et soil series (Oxic Paleustults) in the rainy season of the 2006 (May to November) to investigate effect of land preparation methods on rice plant heights, amounts of weeds and seed yields of Jasmine 105 aromatic paddy rice (Oryza sativa L.). The experiment was laid in a Randomized Complete Block Design (RCBD) with four replications. The results showed that plant height due to treatments was significantly highest for T3 but T3 was similar to T2, whilst T1 (control) was the least. Mean values of dry weight of narrow leaf type of weeds, in most cases, were significantly lowest with T3 followed by T2 and T3, particularly at the final two sampling periods. Broad leaf type of weeds was significantly highest with T2 throughout the experimental period, whilst T1 and T3, in most cases, were similar. Unfilled seeds were significantly highest with T3 but similar to T1 but T2 was the lowest, whilst filled seeds were significantly highest with T3, both T1 and T2 gave a similar weight. Numbers of panicles m(-2) were significantly highest with T3 but T3 was similar to T2, whilst T1 was the least. Seed size or 1000-seed weight was significantly highest with T3, whilst T2 and T1 were similar. Seed yield was highest and highly significant with T3 (1,136.25 kg ha(-1)) but T3 was similar to T2 (1,083.31 kg ha(-1)), whilst T1 was the lowest (487.50 kg ha(-1)). Land preparation method of T3 treatment may be recommended as the first choice, whilst T2 may be used as an alternative choice.

  3. [Survey of synthetic disinfectants in grapefruit seed extract and its compounded products].

    PubMed

    Sugimoto, Naoki; Tada, Atsuko; Kuroyanagi, Masanori; Yoneda, Yuko; Yun, Young Sook; Kunugi, Akira; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Ken-Ichi

    2008-02-01

    Grapefruit seed extract (GSE), derived from the seeds of grapefruit (Citrus paradisi MCAF.), is listed as a natural food additive in Japan. Products containing GSE are used as disinfectants made from only natural sources, especially after Japanese researchers found that GSE prevents the growth of norovirus. On the other hand, recent overseas studies indicated that synthetic disinfectants, such as benzalkonium and benzethonium chlorides, were present in some commercial GSE products. To confirm the quality of commercial GSE products available in Japanese markets, we carried out comprehensive research to identify the major constituents of commercial GSE products which are used as food additives (13 products from 6 manufacturers), dietary supplements (5 products from 4 manufacturers), cosmetic materials (16 products from 10 manufacturers) and disinfectant or deodorant sprays (7 products from 7 manufacturers). By means of NMR and LC/MS analysis, synthetic disinfectants such as benzethonium or benzalkonium salts were detected in most of the commercial GSE products.

  4. Improved Mannanase Production from Penicillium occitanis by Fed-Batch Fermentation Using Acacia Seeds

    PubMed Central

    Blibech, Monia; Ellouz Ghorbel, Raoudha; Chaari, Fatma; Dammak, Ilyes; Bhiri, Fatma; Neifar, Mohamed; Ellouz Chaabouni, Semia

    2011-01-01

    By applying a fed-batch strategy, production of Penicillium occitanis mannanases could be almost doubled as compared to a batch cultivation on acacia seeds (76 versus 41 U/mL). Also, a 10-fold increase of enzyme activities was observed from shake flask fermentation to the fed-batch fermentation. These production levels were 3-fold higher than those obtained on coconut meal. The high mannanase production using acacia seeds powder as inducer substrate showed the suitability of this culture process for industrial-scale development. PMID:23724314

  5. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta

    PubMed Central

    Chapagain, Tejendra; Good, Allen

    2015-01-01

    Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management. The objective of this study was to determine wheat (Triticum spp. L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) yields and production gaps in Alberta. We used 10 years of data (2005–2014) to understand yield variability and input efficiency at a farmers’ specified level of management, and the yield potential under optimal management to suggest appropriate pathways for closing yield gaps. Significant management gaps were observed between attainable and actual yields of rainfed wheat (24%), barley (25%), and canola (30%). In addition, genetic gaps (i.e., gaps due to genetic selection) in wheat, barley, and canola were 18, 12, and 5%, respectively. Genetic selection with optimal crop management could increase yields of wheat, barley, and canola significantly, with estimated yield gains of 3.42, 1.92, and 1.65 million tons, respectively, each year under rainfed conditions in Alberta. This paper identifies yield gaps and offers suggestions to improve efficiency in crop production. PMID:26635824

  6. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus.

  7. ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging.

    PubMed

    Parkhey, Suruchi; Naithani, S C; Keshavkant, S

    2012-08-01

    Reactive oxygen species (ROS) and lipid peroxidation products appear to correlate strongly with the desiccation induced loss of viability in recalcitrant sal seeds. The 100% germination in fresh sal seeds declined with dehydration under natural storage conditions (26 ± 1 °C, relative humidity 52 ± 2%). Seeds became non-viable within 8 days. Desiccation induced disturbances in the metabolic activity of seeds resulted in generation of enormous amounts of ROS that are responsible for cellular damage and viability loss. Oxidative stress in the dehydrating aging sal seeds was further aggravated by inducing lipid peroxidation as the amounts of free fatty acid, conjugated diene, lipid hydroperoxide and secondary free radicals; malondialdehyde and 4-hydroxy-2-nonenal, were also promoted. In addition, significant rise in lipid degrading enzymes; lipase (EC 3.1.1.3) and lipoxygenase (LOX, EC 1.13.11.12) were detected in dehydrating sal seeds. Our results indicated multiple pathways (ROS, lipid peroxidation & lipase and LOX) that operate in the dehydrating recalcitrant sal seeds finally contributing to loss of viability.

  8. Mapping quantitative trait loci controlling seed and grain production traits of intermediate wheatgrass (Thinopyrum intermedium)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intermediate wheatgrass (Thinopyrum intermedium) is a cool-season perennial grass cultivated for seed used in forage production, conservation plantings, and consumable grain products such as flour. Intermediate wheatgrass (2n=6x=42) has a large, allohexploid genome (~13 GB) and is a distant relativ...

  9. Characteristics of Surian Flower, Fruit and Seed Productions (Toona sinensis (A. Juss.) M. Roem.) in Sumedang, West Java

    PubMed Central

    Pramono, Agus Astho; Palupi, Endah Retno; Siregar, Iskandar Zulkarnaen; Kusmana, Cecep

    2016-01-01

    Community forest development requires a constant supply of high-quality seeds. In addition, sound management of Toona sinensis (surian) seed sources requires a deep understanding of factors affecting seed production. This present study investigated the reproduction characteristics of surian, including flower, fruit and seed productions, variations in the productions of fruits and seeds among trees and among branches, and dendrometric factors that influence the productions of fruits and seeds. Flower production characteristics were observed in 99 panicles, fruit production characteristics were observed in 128 panicles, and seed characteristics were evaluated based on 890 fruits. The number of fruits per panicle ranged from 38 to 646. The number of seeds in fruits ranged from 1 to 35. Fruit size was correlated to the number of filled seeds following a quadratic regression equation. The optimal number of filled seeds was 20 per fruit. Stem diameter, crown width, crown base height, and the number of sub-branches positively influenced the production of panicles per tree, while the crown base height (of the tree) negatively affected the fruit set. PMID:27019683

  10. Chemical and nutritional changes in bitter and sweet lupin seeds (Lupinus albus L.) during bulgur production.

    PubMed

    Yorgancilar, Mustafa; Bilgiçli, Nermin

    2014-07-01

    In this research, bitter and sweet Lupin (Lupinus albus L.) seeds were used in bulgur production. The proximate chemical compositions and the contents of phytic acid, mineral, amino acid and fatty acid of raw material and processed lupin seeds as bulgur were determined. The sensory properties of bulgur samples were also researched. Bulgur process decreased ash, fat and phytic acid content of lupin seeds while significant increase (p < 0.05) was observed in protein content of bulgur compared with lupin seeds. Phytic acid losses in bitter and sweet lupin bulgurs were found as 18.8% and 21.3%, respectively. Generally sweet lupin seeds/bulgurs showed rich essential amino acids composition than that of bitter seeds/bulgurs. Linoleic and linolenic acid content of the lupin was negatively affected by bulgur process. Bitter lupin bulgur received lower scores in terms of taste, odor and overall acceptability than sweet lupin bulgur in sensory evaluation. Sweet lupin bulgur can be used as new legume-based product with high nutritional and sensorial properties.

  11. Abelmoschus esculentus (L.) Moench. and Abelmoschus moschatus Medik: seeds production and analysis of the volatile compounds.

    PubMed

    Molfetta, Ilaria; Ceccarini, Lucia; Macchia, Mario; Flamini, Guido; Cioni, Pier Luigi

    2013-11-01

    Nine accessions of Abelmoschus esculentus (L.) Moench. and three of Abelmoschus moschatus Medik were both grown in Central Italy for the evaluation of the production of seeds. Furthermore, the volatiles emitted by the mature seeds were sampled by mean of SPME. Seventy compounds were detected in the headspace of the seeds of A. esculentus. The principal constituents common to all the nine accessions were isopentyl 2-methyl butanoate (24.5-59.1%) and heptanoic acid 2-methylbutyl ester (6.6-13.5%). In the headspace around the seeds of A. moschatus 93 components were detected. Among the main volatiles shared by the three accessions, n-tridecane (1.5-26.9%), isopentyl 2-methyl butanoate (0.2-14.3%) and decanal (1.6-5.7%) should be mentioned. Many differences were present in the volatiles emitted by the various accessions and between the two Abelmoschus species.

  12. Purification of allantoinase from soybean seeds and production and characterization of anti-allantoinase antibodies.

    PubMed Central

    Webb, M A; Lindell, J S

    1993-01-01

    Allantoinase catalyzes the hydrolysis of allantoin to allantoic acid, a reaction important in both biogenesis and degradation of ureides. Ureide production in cotyledons of germinating soybean (Glycine max L.) seeds has not been studied extensively but may be important in mobilizing nitrogen reserves. Allantoinase was purified approximately 2500-fold from a crude extract of soybean seeds by differential centrifugation, heat treatment, ammonium sulfate fractionation, ethanol fractionation, and fast protein liquid chromatography (Pharmacia) with Mono-Q and Superose columns. The purified enzyme had a subunit size of 30 kD. Polyclonal antibodies produced against the purified protein titrated allantoinase activity in a crude extract of seed proteins. Antibodies recognized the 30-kD band in western blot analysis of crude seed extracts, indicating that they were specific for allantoinase. PMID:8290630

  13. Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24.

    PubMed

    Islam, Sharmin; Griffiths, Cara A; Blomstedt, Cecilia K; Le, Tuan-Ngoc; Gaff, Donald F; Hamill, John D; Neale, Alan D

    2013-01-01

    Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.

  14. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate.

    PubMed

    Tersago, K; Verhagen, R; Servais, A; Heyman, P; Ducoffre, G; Leirs, H

    2009-02-01

    Recently, human cases of nephropathia epidemica (NE) due to Puumala virus infection in Europe have increased. Following the hypothesis that high reservoir host abundance induces higher transmission rates to humans, explanations for this altered epidemiology must be sought in factors that cause bank vole (Myodes glareolus) abundance peaks. In Western Europe, these abundance peaks are often related to high tree seed production, which is supposedly triggered by specific weather conditions. We evaluated the relationship between tree seed production, climate and NE incidence in Belgium and show that NE epidemics are indeed preceded by abundant tree seed production. Moreover, a direct link between climate and NE incidence is found. High summer and autumn temperatures, 2 years and 1 year respectively before NE occurrence, relate to high NE incidence. This enables early forecasting of NE outbreaks. Since future climate change scenarios predict higher temperatures in Europe, we should regard Puumala virus as an increasing health threat.

  15. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  16. [Sex structure and seed productivity of Mentha canadensis L. from natural flora of primorye of Russia].

    PubMed

    Voronkova, T V; Shelepova, O V; Kondrat'eva, V V; Bidiukova, G F

    2014-01-01

    The sex structure and seed productivity of Mentha canadensis L. from different climatic regioins of Primorye of Russia was studied. We established that M. canadensis is characterized by a homogeneous population structure due to the formation of vegetative clones. The ratio of female and androgynous individuals was 1:5, and it is possible that this is a species-specific trait. Both sexual forms produced fruits under conditions of isolation from cross-pollination. We discuss the possibility of apomixis and the influence of climatic conditions on seed productivity and morphometric characteristics of plants.

  17. Seed sprout production: Consumables and a foundation for higher plant growth in space

    NASA Technical Reports Server (NTRS)

    Day, Michelle; Thomas, Terri; Johnson, Steve; Luttges, Marvin

    1990-01-01

    Seed sprouts can be produced as a source of fresh vegetable materials and as higher plant seedlings in space. Sprout production was undertaken to evaluate the mass accumulations possible, the technologies needed, and the reliability of the overall process. Baseline experiments corroborated the utility of sprout production protocols for a variety of seed types. The automated delivery of saturated humidity effectively supplants labor intensive manual soaking techniques. Automated humidification also lend itself to modest centrifugal sprout growth environments. A small amount of ultraviolet radiation effectively suppressed bacterial and fungal contamination, and the sprouts were suitable for consumption.

  18. Survival of bio-inoculants on fungicides-treated seeds of wheat, pea and chickpea and subsequent effect on chickpea yield.

    PubMed

    Gaind, Sunita; Rathi, Maheshwar S; Kaushik, Brahma D; Nain, Lata; Verma, Om P

    2007-08-01

    Survival of Mesorhizobium ciceri (SP(4)) and Azotobacter chroococcum (CBD-15 and M(4)) was tested on chickpea (Cicer arietinum) seeds treated with fungicides bavistin [methyl N-(1H-benzimidazol-2yl) carbamate] and thiram (tetramethyl-thiuram disulfide), whereas survival of phosphate solubilizing bacteria (PSB), Pseudomonas striata (27) and Bacillus polymyxa (H(5)) was examined on two cultivars (Arkel and BV) of pea (Pisum sativum) seeds treated with thiram. Viability of Azotobacter chroococcum (W(5)) was also examined on wheat (Triticum aestivum) seeds treated with bavistin, captan (cis-N-trichloromethyl thio-4 cyclohexane-1, 2-dicarboximide) and thiram under laboratory conditions using standard dilution and the plate count technique. All the tested strains of diazotrophs and PSB showed decline in their viable population on prolonged contact with fungicides. However, PSB showed variation in their viable population even with the cultivar. BV cultivar of pea seeds showed better recovery of viable P. striata (10.75 to 10.61 log no. of viable cells with in 0-24 hrs) in the presence of thiram, whereas the Arkel cultivar of pea resulted in better recovery of viable B. polymyxa. Azotobacter chroococcum (W(5)), a potential strain for wheat, showed better survival in the presence of bavistin, compared to thiram and captan. Higher viable population of Mesorhizobium ciceri (SP(4)) and Azotobacter chroococcum (M(4)) was recovered from chickpea seeds treated with bavistin compared to thiram. However, thiram-treated seeds resulted in a greater number of extractable Azotobacter chroococcum (CBD-15). Under field conditions, adverse effect of thiram was reflected on the performance of Mesorhizobium ciceri (SP(4)) and A. chroococcum (M(4)) strains, resulting in reduced root and shoot biomass and grain yield, compared to bavistin treated and culture inoculated treatment. CBD-15 showed better performance in the presence of thiram compared to bavistin.

  19. Phytotoxicity assay for seed production using Brassica rapa L.

    EPA Science Inventory

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wiscon...

  20. Pressure-Dependent Yields and Product Branching Ratios in the Broadband Photolysis of Chlorine Nitrate

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Sander, Stanley P.; Friedl, Randall R.

    1996-01-01

    The photolysis of chlorine nitrate was studied using broadband flash photolysis coupled with long-path ultraviolet-visible absorption spectroscopy. Branching ratios for the Cl + NO3 and ClO + NO2 product channels were determined from time-dependent measurements of ClO and NO3 concentrations. Yields of the ClO and NO3 products displayed a dependence on the bath gas density and the spectral distribution of the photolysis pulse. Product yields decreased with increasing bath gas density regardless of the spectral distribution of the photolysis pulse; however, the decrease in product yield was much more pronounced when photolysis was limited to longer wavelengths. For photolysis in a quartz cell (lambda > 200 nm) the yield decreased by a factor of 2 over the pressure 10-100 Torr. In a Pyrex cell (lambda > 300 nm), the yield decreased by a factor of 50 over the same pressure range. When photolysis was limited to lambda > 350 nm, the yield decreased by a factor of 250. Branching ratios for the photolysis channels [ClONO2 + h.nu yields ClO + NO2 (1a) and ClONO2 + h.nu yields Cl + NO3 (lb)] were determined from the relative ClO and NO3 product yields at various pressures. Although the absolute product yield displayed a pressure dependence, the branching between the two channels was independent of pressure. The relative branching ratios (assuming negligible contributions from other channels) are 0.61 +/- 0.20 for channel 1a and 0.39 +/- 0.20 for channel lb for photolysis with lambda > 200 nm and 0.44 +/- 0.08 for channel 1a and 0.56 +/- 0.08 for channel 1b for photolysis with lambda > 300 nm. The implications of these results for the chemistry of the lower stratosphere are discussed.

  1. Synchronicity of pollination and inoculation with Claviceps africana and its effects on pollen-pistil compatibility and seed production in sorghum.

    PubMed

    Cisneros-López, Ma Eugenia; Mendoza-Onofre, Leopoldo E; González-Hernández, Víctor A; Zavaleta-Mancera, H Araceli; Mora-Aguilera, Gustavo; Hernández-Martínez, Miguel; Córdova-Téllez, Leobigildo

    2010-04-01

    Sorghum ergot (caused by Claviceps africana) is a disease that affects sorghum seed development and yield. The interaction between pollen tube growth and hyphal development determines whether ovaries will be fertilized or colonized. Thus their respective deposition times on the stigma are critical. The effect of the time interval between pollination and inoculation on stigma receptivity and seed production was measured under field conditions in the male-sterile line A9 at Montecillo, State of México (2240m altitude). Pollination and inoculation treatments, from simultaneous application to 2 and 4h difference, were imposed when all stigmas on the panicle had emerged. Control panicles were either only pollinated or only inoculated. Eighteen hours later, pollen grains that adhered to, and germinated within the stigma, pollen tubes in the style and ovary, and fertilized pistils were counted. Pistils showing some disease expression (germinated spores, mycelium growth, or tissue necrosis) at 18, 48, and 72h were recorded. The number of diseased florets was registered at the dough growth stage, while number of seeds, grain yield and 100-seeds weight was measured at the physiological maturity. The pathogen applied in a water suspension of macro and secondary conidia caused a decrease in stigma receptivity; the greatest decrease (40-60%) occurred when the pollen and the inoculum were deposited almost simultaneously, regardless of which was deposited first. The route of the pollen tube was also the route for fungal infection. On average, treatments first inoculated had 60% more diseased florets and 36% less grain yield, 30% fewer seeds and seed size decreased 8%, than those first pollinated.

  2. Kinetics, Mechanism and Product Yields in the Atmospheric Oxidation of Dimethylsulfide

    DTIC Science & Technology

    2016-06-14

    Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, Florida 33149-1098 ahynes...decomposition and reaction, b) direct confirmation of production, and quantitative product yields of potential reaction products and intermediates...School of Marine and Atmospheric Science ,4600 Rickenbacker Causeway,Miami,FL,33149 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  3. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  4. Pollination biology and the impact of floral display, pollen donors, and distyly on seed production in Arcytophyllum lavarum (Rubiaceae).

    PubMed

    García-Robledo, C; Mora, F

    2007-07-01

    In animal-pollinated plants, two factors affecting pollen flow and seed production are changes in floral display and the availability of compatible mates. Changes in floral display may affect the number of pollinator visits and the availability of compatible mates will affect the probability of legitimate pollination and seed production. Distyly is a floral polymorphism where long-styled (pin) and short-styled (thrum) floral morphs occur among different individuals. Distylous plants frequently exhibit self and intra-morph incompatibility. Therefore changes in morph abundance directly affect the arrival of compatible pollen to the stigmas. Floral morph by itself may also affect female reproductive success because floral morphs may display differences in seed production. We explored the effects of floral display, availability of neighboring compatible mates, and floral morph on seed production in the distylous herb ARCYTOPHYLLUM LAVARUM. We found that floral display does not affect the mean number of seeds produced per flower. There is also no effect of the proportion of neighboring legitimate pollen donors on seed production in pin or thrum flowers. However, floral morphs differed in their female reproductive success and the thrum morph produced more seeds. Hand pollination experiments suggest that differences in seed production between morphs are the result of pollen limitation. Future research will elucidate if the higher seed production in thrum flowers is a consequence of higher availability of pollen donors in the population, or higher efficiency of the pin morph as pollen donor.

  5. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application.

  6. The LANL C-NR counting room and fission product yields

    SciTech Connect

    Jackman, Kevin Richard

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  7. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.

    PubMed

    Roach, Thomas; Beckett, Richard P; Minibayeva, Farida V; Colville, Louise; Whitaker, Claire; Chen, Hongying; Bailly, Christophe; Kranner, Ilse

    2010-01-01

    Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.

  8. Production yield of rare-earth ions implanted into an optical crystal

    SciTech Connect

    Kornher, Thomas Xia, Kangwei; Kolesov, Roman; Reuter, Rolf; Villa, Bruno; Wrachtrup, Jörg; Kukharchyk, Nadezhda; Wieck, Andreas D.; Siyushev, Petr; Stöhr, Rainer; Schreck, Matthias; Becker, Hans-Werner

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  9. Auxin production in the endosperm drives seed coat development in Arabidopsis

    PubMed Central

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  10. Sensitivity of quantum yield for O(/sup 1/D) production from ozone photolysis

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.

    1980-06-01

    Recent laboratory studies have indicated that the quantum yield for O(/sup 1/D) production from photolysis of ozone may be less than unity at wavelengths shorter than 300 nm (below the fall off region). Previously it had been assumed that the quantum yield was unity at these wavelengths. Based on the recent work of Brock and Watson (who measured the quantum yield at 266 nm), the effect of assuming a quantum yield of 0.9 for O(/sup 1/D) production at wavelengths less than 300 nm in the LLL 1-d model was tested. Since measurements of the quantum yield fall off at longer wavelength also assume unity quantum yield below the fall off region, we also multiplied the O(/sup 1/D) quantum yield through this region by 0.9. The remaining quantum yield from the photolysis reaction is assumed to produce O(/sup 3/P) at all wavelengths so that the total quantum yield is unity.

  11. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-01-01

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region. PMID:27881868

  12. Complete utilization of non-edible oil seeds of Cascabela thevetia through a cascade of approaches for biofuel and by-products.

    PubMed

    Sut, Debashis; Chutia, Rahul Singh; Bordoloi, Neonjyoti; Narzari, Rumi; Kataki, Rupam

    2016-08-01

    Lipid-rich biomass, generally opted for biodiesel production, produces a substantial amount of by-product (de-oiled cake and seed cover) during the process. Complete utilization of Cascabela thevetia seeds for biofuel production through both chemical and thermochemical conversion route is investigated in the present study. Various properties of biodiesel produced was characterized and compared with those obtained from similar oil seeds. The by-products of the chemical process were used as a feedstock for pyrolysis at different temperatures in a fixed bed reactor. Maximum bio-oil yields of 29.11% and 26.18% were observed at 500°C. The bio-oil obtained at optimum yield was characterized by CHN analyzer, NMR and FTIR spectroscopy. The biochar produced was further characterized by SEM-EDX, XRD and FTIR along with elemental analysis to explore its utilization for various purposes. The present investigation depicts a new approach towards complete utilization of lipid-rich bio-resources to different types of biofuels and biochar.

  13. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  14. Growth, Physiological and Yield Responses to the Mid-Season Application of Moddus for Seed Cane Quality in Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moddus is a plant growth regulator for sugarcane (Saccharum spp.) and has been used to produce high quality of seed cane in Florida by reducing internode length, mitigating plant lodging, and facilitating harvest in addition to commonly using as a ripener for improving sucrose content. But little is...

  15. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis

    PubMed Central

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-01-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level. PMID:22442419

  16. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Li, Rong-Jun; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-06-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.

  17. Processing of coriander fruits for the production of essential oil, triglyceride, and high protein seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as a fresh green herb or as a spice. The essential oil extracted from coriander fruit is also widely used as flavoring in a variety of food products. The fatty oil (triglyceride) fraction in the seed is rich in petrosel...

  18. DIURON OCCURRENCE AND DISTRIBUTION IN SOIL AND SURFACE AND GROUND WATER ASSOCIATED WITH GRASS SEED PRODUCTION

    EPA Science Inventory

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) is the principal herbicide used in grass seed production. The occurrence and distribution of diuron was investigated at a poorly-drained field site located along an intermittent tributary of Lake Creek in the southern Willamette ...

  19. Seeding cool-season grasses to suppress white locoweed (Oxytropis sericea) reestablishment and increase forage production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock poisoning can occur on short-grass prairies when locoweeds (Astragalus and Oxytropis spp.) are actively growing in spring before warm-season grasses begin growth. White locoweed grows in early spring, completes flowering and seed production by early summer, and goes dormant. Perennial co...

  20. Pea (Pisum sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides.

    EPA Science Inventory

    Even though herbicide drift can affect plant reproduction, current plant testing protocols emphasize effects on vegetative growth. In this study, we determined whether a short–growing season plant can indicate potential effects of herbicides on seed production. Pea (Pisum sativum...

  1. Selfing rate in an alfalfa seed production field pollinated with leafcutter bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Self-pollination or “selfing” in autotetraploid alfalfa (Medicago sativa L.) (2n = 4x = 32) leads to severe inbreeding depression. Investigating selfing in alfalfa seed production may allow mitigation strategy development against potential negative impacts of selfing on varietal performance. Using m...

  2. Effects of growth regulator herbicide on downy brome (Bromus tectorum) seed production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research showed growth regulator herbicides, such as picloram and aminopyralid, have a sterilizing effect on Japanese brome (Bromus japonicus Thunb.) that can reduce this invasive annual grass’s seed production nearly 100%. This suggests growth regulators might be used to control invasive ...

  3. Organic potato productionseed potato production and participatory variety trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potatoes are vegetatively propagated, thus many pathogens can be transmitted in seed potatoes and affect the subsequent crop. Certified seed potatoes, which are inspected to ensure that pathogen levels are below a specified threshold, provide effective control of most tuber-borne diseases. Organic g...

  4. From seed production to seedling establishment: Important steps in an invasive process

    NASA Astrophysics Data System (ADS)

    Ferreras, Ana Elisa; Galetto, Leonardo

    2010-03-01

    It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.

  5. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  6. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  7. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    PubMed Central

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J.R.

    2016-01-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OH•) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OH• generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OH• was removed. This suggests that OH• radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures. PMID:27346977

  8. Crop protection by seed coating.

    PubMed

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  9. Fruit production and predispersal seed fall and predation in Rhamnus alaternus (Rhamnaceae)

    NASA Astrophysics Data System (ADS)

    Bas, Josep M.; Gómez, Crisanto; Pons, Pere

    2005-03-01

    In the reproductive cycle of fleshy-fruited plants, and before the seeds are dispersed, some fruits fall down or are predated on the branches. Here, we study the predispersal biology of Rhamnus alaternus in the north-east of the Iberian Peninsula over a 4-year period. Specifically, we examined fruit production, fructification and the phenology of ripening, together with the causes and the consequences of the predispersal loss in female plants. In addition, we evaluated the influence of the biometric traits and the spatial distribution of plants with regard to these aspects. The total estimated fruit production and fruiting phenology varied between localities and years, and there was no relation either to the plant biometry or to the spatial situation. The ripening period was between April and August, with a mean period of fruit permanence on the branches of 102 days. The maximum presence of ripe fruits was from early June to July, 54 days in average after fruit ripening began. The interaction of animals with the fruits has four important consequences: (a) losses in the initial production due to depredation of seeds, mainly by rodents; (b) direct fall of fruit and seeds under the cover of the female plants due to invertebrate predators of pulp; (c) reduction of the period of fruit availability on the branches; and (d) reduction of the proportion of ripe fruits on branches. In summary, the number of seeds available to be dispersed by frugivorous vertebrates is considerably reduced as a consequence of predispersal effects.

  10. Evaluation of the impact of compositional differences in switchgrass genotypes on pyrolysis product yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a dedicated bioenergy crop, switchgrass is a major feedstock within the United States for biofuels production and can be converted to energy dense bio-oil through fast pyrolysis. Biomass compositional differences can influence the conversion efficiency and bio-oil product yield and quality. In ...

  11. Jointly assimilating MODIS LAI and ET products into SWAP model for winter wheat yield estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf Area Index (LAI) and Evapotranspiration (ET) are two key biophysical variables related to crop growth and grain yield. This study presents a framework to assimilate MODIS LAI products (MCD15A3) and MODIS ET products (MOD16A2) into the soil water atmosphere plant (SWAP) model to improve estimate...

  12. Protocols for In Vitro Propagation, Conservation, Synthetic Seed Production, Microrhizome Production, and Molecular Profiling in Turmeric (Curcuma longa L.).

    PubMed

    Nirmal Babu, K; Divakaran, Minoo; Pillai, Geetha S; Sumathi, V; Praveen, K; Raj, Rahul P; Akshita, H J; Ravindran, P N; Peter, K V

    2016-01-01

    Turmeric is a rhizomatous herbaceous perennial but cultivated as annual, belonging to the family Zingiberaceae. It is a native of India and South East Asia. The tuberous rhizomes or underground stems of turmeric are used from antiquity as condiments, a dye and as an aromatic stimulant in several medicines. Turmeric is an important crop in India and it is used as a spice, food preservative, coloring agent, cosmetic as well as for its medicinal properties. Propagation is done vegetatively with rhizome bits as seed materials. It is plagued by rhizome rot diseases most of which are mainly spread through infected seed rhizomes. Micropropagation will help in production of disease-free seed. Sexual reproduction is rare in turmeric, making recombinant breeding very difficult. In vitro technology can thus become the preferred choice and it can be utilized for multiplication, conservation of genetic resources, generating variability, gene transfer, molecular tagging, and their utility in crop improvement.

  13. High-yield hydrogen production by catalytic gasification of coal or biomass

    SciTech Connect

    Hauserman, W.B.

    1992-01-01

    Gasification of coal or wood, catalyzed by soluble metallic cations to maximize reaction rates and hydrogen yields, offers a potential for large-scale, economical hydrogen production with near-commercial technology. With optimum reaction conditions and catalysts, product gas rich in both hydrogen and methane can be used in fuel cells to produce electricity at efficiencies nearly double those of conventional power plant. If plantation silvaculture techniques can produce wood at a raw energy cost competitive with coal, further enhancement of product gas yields may be possible, with zero net contribution of CO{sub 2} to the atmosphere.

  14. Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds1[W][OA

    PubMed Central

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-01-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production. PMID:21562329

  15. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  16. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis.

    PubMed

    Majumdar, Sanghamitra; Almeida, Igor C; Arigi, Emma A; Choi, Hyungwon; VerBerkmoes, Nathan C; Trujillo-Reyes, Jesica; Flores-Margez, Juan P; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-11-17

    The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.

  17. Processing of Brassica seeds for feedstock in biofuels production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  18. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    SciTech Connect

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal

  19. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.

    PubMed

    Aysu, Tevfik; Durak, Halil; Güner, Serkan; Bengü, Aydın Şükrü; Esim, Nevzat

    2016-04-01

    Pyrolysis of Anchusa azurea, a lignocellulosic gramineous plant, was carried out in a tubular, fixed-bed reactor in the presence of four catalysts (Ca(OH)2, Na2CO3, ZnCl2, Al2O3). The influences of pyrolysis parameters such as catalyst and temperature on the yields of products were studied. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts effected the yields of products differently and the composition of bio-oils. Liquid yields were increased in the presence of Na2CO3, ZnCl2 and Al2O3 and decreased with Ca(OH)2. The highest bio-oil yield (34.05%) by weight including aqueous phase was produced with Na2CO3 catalyst at 450°C. The yields of products (bio-char, bio-oil and gas) and the compositions of the resulting bio-oils were determined by GC-MS, FT-IR and elemental analysis. GC-MS identified 124 and 164 different compounds in the bio-oils obtained at 350 and 550°C respectively.

  20. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries

    NASA Astrophysics Data System (ADS)

    Kowalik, Wanda; Dabrowska-Zielinska, Katarzyna; Meroni, Michele; Raczka, Teresa Urszula; de Wit, Allard

    2014-10-01

    In the period 1999-2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were used together with official wheat yield statistics to fine-tune a statistical model for each NUTS2 region, based on the Partial Least Squares Regression (PLSR) method. This method has been chosen to construct the model in the presence of many correlated predictor variables (10-day values of remote sensing indicators) and a limited number of wheat yield observations. The model was run in two different modalities: the "monitoring mode", which allows for an overall yield assessment at the end of the growing season, and the "forecasting mode", which provides early and timely yield estimates when the growing season is on-going. Performances of yield estimation at the regional and national level were evaluated using a cross-validation technique against yield statistics and the estimations were compared with those of a reference crop growth model. Models based on either NDVI or FAPAR normalized indicators achieved similar results with a minimal advantage of the model based on the FAPAR product. Best modelling results were obtained for the countries in Central Europe (Poland, North-Eastern Germany) and also Great Britain. By contrast, poor model performances characterize countries as follows: Sweden, Finland, Ireland, Portugal, Romania and Hungary. Country level yield estimates using the PLSR model in the monitoring mode, and those of a reference crop growth model that do not make use of remote sensing information showed comparable accuracies. The largest estimation errors were observed in Portugal, Spain and Finland for both approaches. This convergence may indicate poor reliability of the official yield statistics in these countries.

  1. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples.

    PubMed

    Chandu, Dilip; Paul, Sudakshina; Parker, Mathew; Dudin, Yelena; King-Sitzes, Jennifer; Perez, Tim; Mittanck, Don W; Shah, Manali; Glenn, Kevin C; Piepenburg, Olaf

    2016-01-01

    Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings.

  2. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples

    PubMed Central

    Chandu, Dilip; Paul, Sudakshina; Parker, Mathew; Dudin, Yelena; King-Sitzes, Jennifer; Perez, Tim; Mittanck, Don W.; Shah, Manali; Glenn, Kevin C.; Piepenburg, Olaf

    2016-01-01

    Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings. PMID:27314015

  3. Chemical investigation of commercial grape seed derived products to assess quality and detect adulteration.

    PubMed

    Villani, Tom S; Reichert, William; Ferruzzi, Mario G; Pasinetti, Giulio M; Simon, James E; Wu, Qingli

    2015-03-01

    Fundamental concerns in quality control arise due to increasing use of grape seed extract (GSE) and the complex chemical composition of GSE. Proanthocyanidin monomers and oligomers are the major bioactive compounds in GSE. Given no standardized criteria for quality, large variation exists in the composition of commercial GSE supplements. Using HPLC/UV/MS, 21 commercial GSE containing products were purchased and chemically profiled, major compounds quantitated, and compared against authenticated grape seed extract, peanut skin extract, and pine bark extract. The antioxidant capacity and total polyphenol content for each sample was also determined and compared using standard techniques. Nine products were adulterated, found to contain peanut skin extract. A wide degree of variability in chemical composition was detected in commercial products, demonstrating the need for development of quality control standards for GSE. A TLC method was developed to allow for rapid and inexpensive detection of adulteration in GSE by peanut skin.

  4. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major

  5. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  6. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture.

    PubMed

    Cassman, K G

    1999-05-25

    Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.

  7. Biomass Production in Switchgrass across the United States: Database Description and Determinants of Yield

    SciTech Connect

    Wullschleger, Stan D; Davis, Ethan B.; Borsuk, Mark E.; Gunderson, Carla A; Lynd, L.

    2010-01-01

    Fundamental to deriving a sustainable supply of cellulosic feedstock for an emerging biofuels industry is understanding how biomass yield varies as a function of crop management, climate, and soils. Here we focus on the perennial switchgrass (Panicum virgatum L.) and compile a database that contains 1190 observations of yield from 39 field trials conducted across the United States. Data include site location, stand age, plot size, cultivar, crop management, biomass yield, temperature, precipitation, and information on land quality. Statistical analysis revealed the major sources of variation in yield. Frequency distributions of yield for upland and lowland ecotypes were unimodal, with mean ({+-}SD) biomass yields of 8.7 {+-} 4.2 and 12.9 {+-} 5.9 Mg ha-1 for the two ecotypes, respectively. We looked for, but did not find, bias toward higher yields associated with small plots or preferential establishment of stands on high quality lands. A parametric yield model was fit to the data and accounted for one-third of the total observed variation in biomass yields, with an equal contribution of growing season precipitation, annual temperature, N fertilization, and ecotype. The model was used to predict yield across the continental United States. Mapped output was consistent with the natural range of switchgrass and, as expected, yields were shown to be limited by precipitation west of the Great Plains. Future studies should extend the geographic distribution of field trials and thus improve our understanding of biomass production as a function of soil, climate, and crop management for promising biofuels such as switchgrass.

  8. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  9. Two-dimensional isobutyl acetate production pathways to improve carbon yield.

    PubMed

    Tashiro, Yohei; Desai, Shuchi H; Atsumi, Shota

    2015-06-25

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways.

  10. Considerations for comparative tobacco product assessments based on smoke constituent yields.

    PubMed

    Belushkin, M; Jaccard, G; Kondylis, A

    2015-10-01

    Cigarette smoke is a complex mixture of more than 8000 smoke constituents. The quantification of selected mainstream smoke constituent yields is one of the methods to evaluating and comparing the performance of different products. Numerous regulatory and scientific advisory bodies have used cigarette smoke constituent yield data for reporting and product comparison purposes. For more than a decade limitations of the indiscriminate application of traditional statistical methods such as the t-test for differences in comparative smoke constituent yield assessments lacking a specific study design, have been highlighted. In the present study, the variability of smoke constituent yields is demonstrated with data obtained under the ISO smoking regime for the Kentucky reference cigarette 3R4F and one commercial brand, analyzed on several occasions between 2007 and 2014. Specifically it is shown that statistically significant differences in the yields of selected smoke constituents do not readily translate to differences between products, and that tolerances need to be defined. To this end, two approaches have been proposed in the literature--minimal detectable differences, and the statistical equivalence. It is illustrated how both approaches provide more meaningful comparison outcomes than the statistical t-test for differences. The present study provides considerations relevant for comparative tobacco product assessments both in the scientific and regulatory contexts.

  11. Developmental Genes Have Pleiotropic Effects on Plant Morphology and Source Capacity, Eventually Impacting on Seed Protein Content and Productivity in Pea1[W][OA

    PubMed Central

    Burstin, Judith; Marget, Pascal; Huart, Myriam; Moessner, Annie; Mangin, Brigitte; Duchene, Christiane; Desprez, Bruno; Munier-Jolain, Nathalie; Duc, Gérard

    2007-01-01

    Increasing pea (Pisum sativum) seed nutritional value and particularly seed protein content, while maintaining yield, is an important challenge for further development of this crop. Seed protein content and yield are complex and unstable traits, integrating all the processes occurring during the plant life cycle. During filling, seeds are the main sink to which assimilates are preferentially allocated at the expense of vegetative organs. Nitrogen seed demand is satisfied partly by nitrogen acquired by the roots, but also by nitrogen remobilized from vegetative organs. In this study, we evaluated the respective roles of nitrogen source capacity and sink strength in the genetic variability of seed protein content and yield. We showed in eight genotypes of diverse origins that both the maximal rate of nitrogen accumulation in the seeds and nitrogen source capacity varied among genotypes. Then, to identify the genetic factors responsible for seed protein content and yield variation, we searched for quantitative trait loci (QTL) for seed traits and for indicators of sink strength and source nitrogen capacity. We detected 261 QTL across five environments for all traits measured. Most QTL for seed and plant traits mapped in clusters, raising the possibility of common underlying processes and candidate genes. In most environments, the genes Le and Afila, which control internode length and the switch between leaflets and tendrils, respectively, determined plant nitrogen status. Depending on the environment, these genes were linked to QTL of seed protein content and yield, suggesting that source-sink adjustments depend on growing conditions. PMID:17449650

  12. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    NASA Astrophysics Data System (ADS)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  13. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    PubMed

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  14. Use of Se-enriched mustard and canola seed meals as potential bioherbicides and green fertilizers in strawberry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New plant-based products can be produced from seed harvested from Brassica species used for phytomanaging selenium (Se) in the westside of central California. We tested Se-enriched seed meals produced from canola (Brassica napus) and mustard (Sinapis alba) plants as potential bio-herbicides and as g...

  15. The role of competition and seed production environment on the success of two perennial grass species in a roadside restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When large-scale restorations are undertaken using local genotypes, wild-collected sources often undergo a generation in an agronomic environment for seed increase. We have little information on how a single generation of agronomic production can alter seed success in restoration. In this study, we...

  16. Diversity of Cacao Trees in Waslala, Nicaragua: Associations between Genotype Spectra, Product Quality and Yield Potential

    PubMed Central

    Trognitz, Bodo; Cros, Emile; Assemat, Sophie; Davrieux, Fabrice; Forestier-Chiron, Nelly; Ayestas, Eusebio; Kuant, Aldo; Scheldeman, Xavier; Hermann, Michael

    2013-01-01

    The sensory quality and the contents of quality-determining chemical compounds in unfermented and fermented cocoa from 100 cacao trees (individual genotypes) representing groups of nine genotype spectra (GG), grown at smallholder plantings in the municipality of Waslala, Nicaragua, were evaluated for two successive harvest periods. Cocoa samples were fermented using a technique mimicking recommended on-farm practices. The sensory cocoa quality was assessed by experienced tasters, and seven major chemical taste compounds were quantified by near infrared spectrometry (NIRS). The association of the nine, partially admixed, genotype spectra with the analytical and sensory quality parameters was tested. The individual parameters were analyzed as a function of the factors GG and harvest (including the date of fermentation), individual trees within a single GG were used as replications. In fermented cocoa, significant GG-specific differences were observed for methylxanthines, theobromine-to-caffeine (T/C) ratio, total fat, procyanidin B5 and epicatechin, as well as the sensory attributes global score, astringency, and dry fruit aroma, but differences related to harvest were also apparent. The potential cocoa yield was also highly determined by the individual GG, although there was significant tree-to-tree variation within every single GG. Non-fermented samples showed large harvest-to-harvest variation of their chemical composition, while differences between GG were insignificant. These results suggest that selection by the genetic background, represented here by groups of partially admixed genotype spectra, would be a useful strategy toward enhancing quality and yield of cocoa in Nicaragua. Selection by the GG within the local, genetically segregating populations of seed-propagated cacao, followed by clonal propagation of best-performing individuals of the selected GG could be a viable alternative to traditional propagation of cacao by seed from open pollination. Fast and

  17. Diversity of cacao trees in Waslala, Nicaragua: associations between genotype spectra, product quality and yield potential.

    PubMed

    Trognitz, Bodo; Cros, Emile; Assemat, Sophie; Davrieux, Fabrice; Forestier-Chiron, Nelly; Ayestas, Eusebio; Kuant, Aldo; Scheldeman, Xavier; Hermann, Michael

    2013-01-01

    The sensory quality and the contents of quality-determining chemical compounds in unfermented and fermented cocoa from 100 cacao trees (individual genotypes) representing groups of nine genotype spectra (GG), grown at smallholder plantings in the municipality of Waslala, Nicaragua, were evaluated for two successive harvest periods. Cocoa samples were fermented using a technique mimicking recommended on-farm practices. The sensory cocoa quality was assessed by experienced tasters, and seven major chemical taste compounds were quantified by near infrared spectrometry (NIRS). The association of the nine, partially admixed, genotype spectra with the analytical and sensory quality parameters was tested. The individual parameters were analyzed as a function of the factors GG and harvest (including the date of fermentation), individual trees within a single GG were used as replications. In fermented cocoa, significant GG-specific differences were observed for methylxanthines, theobromine-to-caffeine (T/C) ratio, total fat, procyanidin B5 and epicatechin, as well as the sensory attributes global score, astringency, and dry fruit aroma, but differences related to harvest were also apparent. The potential cocoa yield was also highly determined by the individual GG, although there was significant tree-to-tree variation within every single GG. Non-fermented samples showed large harvest-to-harvest variation of their chemical composition, while differences between GG were insignificant. These results suggest that selection by the genetic background, represented here by groups of partially admixed genotype spectra, would be a useful strategy toward enhancing quality and yield of cocoa in Nicaragua. Selection by the GG within the local, genetically segregating populations of seed-propagated cacao, followed by clonal propagation of best-performing individuals of the selected GG could be a viable alternative to traditional propagation of cacao by seed from open pollination. Fast and

  18. Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield.

    PubMed

    Xu, Guangli; Singh, Shardendu K; Reddy, Vangimalla R; Barnaby, Jinyoung Y; Sicher, Richard C; Li, Tian

    2016-10-20

    To evaluate the combined effect of temperature and CO2 on photosynthetic processes, leaf metabolites and growth, soybean was grown under a controlled environment at low (22/18°C, LT), optimum (28/24°C, OT) and high (36/32°C HT) temperatures under ambient (400μmolmol(-1); aCO2) or elevated (800μmolmol(-1); eCO2) CO2 concentrations during the reproductive stage. In general, the rate of photosynthesis (A), stomatal (gs) and mesophyll (gm) conductance, quantum yield of photosystem II, rates of maximum carboxylation (VCmax), and electron transport (J) increased with temperature across CO2 levels. However, compared with OT, the percentage increases in these parameters at HT were lower than the observed decline at LT. The photosynthetic limitation at LT and OT was primarily caused by photo-biochemical processes (49-58%, Lb) followed by stomatal (27-32%, Ls) and mesophyll (15-19%, Lm) limitations. However, at HT, it was primarily caused by Ls (41%) followed by Lb (33%) and Lm (26%). The dominance of Lb at LT and OT was associated with the accumulation of non-structural carbohydrates (e.g., starch) and several organic acids, whereas this accumulation did not occur at HT, indicating increased metabolic activities. Compared with OT, biomass and seed yield declined more at HT than at LT. The eCO2 treatment compensated for the temperature-stress effects on biomass but only partially compensated for the effects on seed yield, especially at HT. Photosynthetic downregulation at eCO2 was possibly due to the accumulation of non-structural carbohydrates and the decrease in gs and Astd (standard A measured at 400μmolmol(-1) sub-stomatal CO2 concentration), as well as the lack of CO2 effect on gm, VCmax, and J, and photosynthetic limitation. Thus, the photosynthetic limitation was temperature-dependent and was primarily influenced by the alteration in photo-biochemical processes and metabolic activities. Despite the inconsistent response of photosynthesis (or biomass accumulation

  19. Thermophysical characterization of the seeds of invasive Chinese tallow tree: importance for biofuel production.

    PubMed

    Picou, Laura; Boldor, Doran

    2012-10-16

    The limited supply of traditional fossil based fuels, and increased concern about their environmental impact has driven the interest in the utilization of biomass based energy sources, including those that are underutilized or otherwise nuisance species such as Chinese tallow trees (Triadica sebifera [L.]). This species is a prolific seeds producer, and this paper shows that they contain more than 50% lipids by mass that are suitable for conversion into biodiesel. We present here, for the first time, the seeds' thermophysical properties important for biofuel production. The seeds were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and ultimate analysis; their thermal conductivity, thermal diffusivity, and specific heat were determined. The characterization results were correlated to fatty acid composition and lipid content for whole seeds and individual layers, as well as to the protein, hemicellulose, cellulose, and lignin content. The TGA analysis indicated the presence, in addition to lipids, of hemicellulose, cellulose, lignin, and proteins, depending on the layer analyzed. Thermal conductivity and specific heat were, respectively 0.14 ± 0.007 W/mK and 3843.5 ± 171.16 J/kgK for wax, 0.20 ± 0.002 W/mK and 2018.7 ± 5.18 J/kgK for shells, 0.13 ± 0.0 W/mK and 1237 ± 3.15 J/kgK for internal kernel, and 0.13 ± 0.000 W/mK and 2833.9 ± 104.11 J/kgK for whole seeds. These properties and characterization method can be further used in engineering analysis used to determine the most optimum processing method for production of biofuels from this feedstock.

  20. Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize

    PubMed Central

    Wang, Shi; Park, Yong-Soon; Yang, Yang; Borrego, Eli J.; Isakeit, Tom; Gao, Xiquan; Kolomiets, Michael V.

    2017-01-01

    Ethylene (ET) emitted by plant tissues has been broadly reported to play important roles in plant development, response to environmental stresses and defense against certain pathogens. Recent evidence obtained from using in vitro fungal cultures exposed to ET suggested that exogenous ET may regulate the production of aflatoxin by Aspergilli. However, the function of endogenous, seed-derived ET has not been explored. In this study, we found that the maize lipoxygenase lox3 mutant, previously reported to be susceptible to Aspergillus spp., emitted greater levels of ET upon A. flavus infection, suggesting the potential involvement of endogenous ET in the susceptibility of maize to A. flavus. Supporting this idea, both colonization and conidiation of A. flavus were reduced in wild-type (WT) kernels treated with AgNO3, an ET synthesis inhibitor. There was no ET emission from non-viable kernels colonized by A. flavus, suggesting that living seed but not the fungus itself was the primary source of ET released upon infection with A. flavus. The kernels of acs2 and acs6, two ET biosynthetic mutants carrying Mutator transposons in the ACC synthase genes, ACS2 and ACS6, respectively, displayed enhanced seed colonization and conidiation, but not the levels of aflatoxin, upon infection with A. flavus. Surprisingly, both acs2 and acs6 mutant kernels emitted greater levels of ET in response to infection by A. flavus as compared with WT seed. The increased ET in single mutants was found to be due to overexpression of functional ACS genes in response to A. flavus infection. Collectively, these findings suggested that ET emitted by infected seed facilitates colonization by A. flavus but not aflatoxin production.

  1. Efficient production of Clostridium botulinum exotoxin C3 in bacteria: a screening method to optimize production yields.

    PubMed

    Gadea, Gilles; Boublik, Yvan; Delga, Stephanie; Roux, Pierre

    2005-03-01

    Clostridium botulinum exoenzyme C3 is responsible for the inactivation of members of the Rho GTPase family that are implicated in actin-cytoskeleton reorganization. This property has been extensively used in the field to investigate the functionality of the Rho GTPases. However, systematic analysis of Rho GTPase functions requires large amounts of such inhibitors and consequently an optimization of the production yield of these proteins. Bacterial production of soluble proteins often requires a refolding step that noticeably affects the production yields and necessitates additional experiments to verify functional activity. This is particularly true for TAT-C3, the production yields of which are generally low. In this report, we describe a rapid and efficient method for the production of soluble C3 exoenzyme developed by screening a collection of bacterial strains. The recombinant C3 protein was fused to the TAT protein-transduction domain from HIV, to allow protein delivery into cells, and to a hexahistidine tag, that permitted purification by Nickel affinity chromatography. We have demonstrated the production of large amounts of soluble and functional protein using the bacterial strain AD494 (DE3)pLysS. This rapid and efficient method for the production of soluble C3 exoenzyme could also be useful for the production of other proteins with solubility problems.

  2. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  3. Beach almond (Terminalia catappa, Combretaceae) seed production and predation by scarlet macaws (Ara macao) and variegated squirrels (Sciurus variegatoides).

    PubMed

    Henn, Jonathan J; McCoy, Michael B; Vaughan, Christopher S

    2014-09-01

    Knowledge of ecological impacts of exotic beach almond (Terminalia catappa) in the central Pacific of Costa Rica are little known, but studies have found this species to be a potentially important food source for endangered scarlet macaws (Ara macao). In this study, reproductive phenology and seed predation by variegated squirrels (Sciurus variegatoides) and scarlet macaws were measured during March and April 2011 on beaches of central Pacific coastal Costa Rica. Seed productivity and predation levels were quantified on a weekly basis for 111 beach almond trees to assess the importance of beach almond as a food source for scarlet macaws and the extent of resource partitioning between seed predators. Seed production of the trees was great (about 194 272 seeds) and approximately 67% of seeds were predated by seed predators. Macaws consumed an estimated 49% of seeds while squirrels consumed 18%. Additionally, evidence of resource partitioning between squirrels and macaws was found. Scarlet macaws preferred to feed on the northern side and edge of the canopy while squirrels preferred to feed on the southern and inside parts of the canopy. Both species ate most seeds on the ocean side of the tree. Despite the status of this tree as an exotic species, the beach almond appears to be an important resource for scarlet macaw population recovery. The resource produced by this tree should be taken into account as reforestation efforts continue in Costa Rica.

  4. Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae.

    PubMed

    Neveux, N; Yuen, A K L; Jazrawi, C; Magnusson, M; Haynes, B S; Masters, A F; Montoya, A; Paul, N A; Maschmeyer, T; de Nys, R

    2014-03-01

    Six species of marine and freshwater green macroalgae were cultivated in outdoor tanks and subsequently converted to biocrude through hydrothermal liquefaction (HTL) in a batch reactor. The influence of the biochemical composition of biomass on biocrude yield and composition was assessed. The freshwater macroalgae Oedogonium afforded the highest biocrude yield of all six species at 26.2%, dry weight (dw). Derbesia (19.7%dw) produced the highest biocrude yield for the marine species followed by Ulva (18.7%dw). In contrast to significantly different yields across species, the biocrudes elemental profiles were remarkably similar with higher heating values of 33-34MJkg(-1). Biocrude productivity was highest for marine Derbesia (2.4gm(-2)d(-1)) and Ulva (2.1gm(-2)d(-1)), and for freshwater Oedogonium (1.3gm(-2)d(-1)). These species were therefore identified as suitable feedstocks for scale-up and further HTL studies based on biocrude productivity, as a function of biomass productivity and the yield of biomass conversion to biocrude.

  5. Populus seed fibers as a natural source for production of oil super absorbents.

    PubMed

    Likon, Marko; Remškar, Maja; Ducman, Vilma; Švegl, Franc

    2013-01-15

    The genus Populus, which includes poplars, cottonwoods and aspen trees, represents a huge natural source of fibers with exceptional physical properties. In this study, the oil absorption properties of poplar seed hair fibers obtained from Populus nigra italica when tested with high-density motor oil and diesel fuel are reported. Poplar seed hair fibers are hollow hydrophobic microtubes with an external diameter between 3 and 12 μm, an average length of 4±1 mm and average tube wall thickness of 400±100 nm. The solid skeleton of the hollow fibers consists of lignocellulosic material coated by a hydrophobic waxy coating. The exceptional chemical, physical and microstructural properties of poplar seed hair fibers enable super-absorbent behavior with high absorption capacity for heavy motor oil and diesel fuel. The absorption values of 182-211 g heavy oil/g fiber and 55-60 g heavy oil/g fiber for packing densities of 0.005 g/cm(3) and 0.02 g/cm(3), respectively, surpass all known natural absorbents. Thus, poplar seed hair fibers obtained from Populus nigra italica and other trees of the genus Populus are an extremely promising natural source for the production of oil super absorbents.

  6. Superoxide radical production and performance index of Photosystem II in leaves from magnetoprimed soybean seeds.

    PubMed

    Baby, Shine Madukakkuzhyil; Narayanaswamy, Guruprasad Kadur; Anand, Anjali

    2011-11-01

    Priming of soybean seeds with static magnetic field exposure of 200 mT (1 h) and 150 mT (1 h) resulted in plants with enhanced performance index (PI). The three components of PI i.e the density of reaction centers in the chlorophyll bed (RC/ABS), exciton trapped per photon absorbed (φpo) and efficiency with which a trapped exciton can move in electron transport chain (Ψo) were found to be 17%, 27% and 16% higher, respectively in leaves from 200 mT (1h) treated compared to untreated seeds. EPR spectrum of O2.--PBN adduct revealed that the O2.-radical level was lower by 16% in the leaves of plants that emerged from magnetic field treatment. Our study revealed that magnetoprimed seeds have a long lasting stimulatory effect on plants as reduced superoxide production and higher performance index contributed to higher efficiency of light harvesting that consequently increased biomass in plants that emerged from magnetoprimed seeds.

  7. Aflatoxin B1 in sesame seeds and sesame products from the Greek market.

    PubMed

    Kollia, Eleni; Tsourouflis, Kyriakos; Markaki, Panagiota

    2016-09-01

    Aflatoxin B1 (AFB1) is considered as the most potent liver carcinogen for humans. A method for determination in sesame seeds was developed. AFB1 was extracted by methanol-water, cleaned by immunoaffinity columns and determined by high-performance liquid chromatography with fluorescence detection. The recovery factor and the limit of detection (LOD) of AFB1 in sesame seeds were 111.5% and 0.02 ng g(-1), respectively. Thirty samples of sesame products were examined for the presence of AFB1. After analysis, 77.6% of samples were found to be contaminated. Eight samples exceeded the European Union (EU) limit (2 µg AFB1 kg(-1)). In 15 samples, AFB1 was below the EU limit. Seven samples remained below the LOD. The most contaminated (14.49 ng AFB1 g(-1)) sample was unpeeled packaged sesame seeds. In all samples, aflatoxigenic Aspergilli fungi as well as the risk for AFB1 presence in sesame seed was investigated.

  8. Batch versus flow photochemistry: a revealing comparison of yield and productivity.

    PubMed

    Elliott, Luke D; Knowles, Jonathan P; Koovits, Paul J; Maskill, Katie G; Ralph, Michael J; Lejeune, Guillaume; Edwards, Lee J; Robinson, Richard I; Clemens, Ian R; Cox, Brian; Pascoe, David D; Koch, Guido; Eberle, Martin; Berry, Malcolm B; Booker-Milburn, Kevin I

    2014-11-10

    The use of flow photochemistry and its apparent superiority over batch has been reported by a number of groups in recent years. To rigorously determine whether flow does indeed have an advantage over batch, a broad range of synthetic photochemical transformations were optimized in both reactor modes and their yields and productivities compared. Surprisingly, yields were essentially identical in all comparative cases. Even more revealing was the observation that the productivity of flow reactors varied very little to that of their batch counterparts when the key reaction parameters were matched. Those with a single layer of fluorinated ethylene propylene (FEP) had an average productivity 20% lower than that of batch, whereas three-layer reactors were 20% more productive. Finally, the utility of flow chemistry was demonstrated in the scale-up of the ring-opening reaction of a potentially explosive [1.1.1] propellane with butane-2,3-dione.

  9. Land application of sugar beet by-products: effects on nitrogen mineralization and crop yields.

    PubMed

    Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew

    2009-01-01

    Land application of food processing wastes has become an acceptable practice because of the nutrient value of the wastes and potential cost savings in their disposal. Spoiled beets and pulp are among the main by-products generated by the sugar beet (Beta vulgaris L.) processing industry. Farmers commonly land apply these by-products at rates >224 Mg ha(-1) on a fresh weight basis. However, information on nutrient release in soils treated with these by-products and their subsequent impacts on crop yield is lacking. Field studies were conducted to determine the effects of sugar beet by-product application on N release and crop yields over two growing seasons. Treatments in the first year were two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year after by-product application, the control treatment was fertilized with N fertilizer and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet in the subsequent year. By-product treatments caused a significant reduction in wheat grain yield compared with the control. This was due to a decline in N availability as a result of immobilization. Based on microplots receiving 15N labeled beets, wheat took up <1% of spoiled beet-N (approximately 4.7 kg ha(-1)) during the year of by-product application. In the second cropping year, sugar beet root yields were significantly higher in the fertilized control and by-product treatments than the nonfertilized control. The lack of significant difference in sugar beet yield between the fertilized control and by-product treatments was likely due to the greater availability of N in the second year. Labeled 15N data also showed that the sugar beet crop recovered a 17% of sugar beet-N, an equivalent of 86 kg N ha(-1), during the second cropping year. There was no difference in sugar beet root yield, N uptake, or

  10. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  11. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    PubMed

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  12. Ocular irritation from product of pesticide degradation among workers in a seed warehouse.

    PubMed

    Matsukawa, Takehisa; Yokoyama, Kazuhito; Itoh, Hiroaki

    2015-01-01

    Four workers at a seed supply warehouse in Chiba Prefecture, Japan, complained of ocular irritation on the job. Pesticide-coated seeds were stored in the warehouse but no significant amount of pesticide was detected in the air inside the warehouse. To identify the cause of the ocular irritation and to determine an appropriate solution to the problem, the authors used thermal desorption gas chromatography-mass spectrometry to analyze the profiles of volatile organic compounds (VOCs) in the air of the two warehouses at the site-warehouse A, where the four workers experienced ocular irritation, and warehouse B, where no workers experienced ocular irritation. Comparing the profiles of VOCs in these warehouses indicated that n-butyl isocyanate, a hydrolyzed product of the fungicide benomyl, was the cause of the workers' ocular irritation. n-Butyl isocyanate is known to be a contact irritant and if the benomyl-coated seeds were not properly dried before storage in the warehouse n-butyl isocyanate would have been produced. The results of the study suggest that more attention should be paid both to the pesticide itself and to the products of pesticide degradation. In this study, n-butyl isocyanate was identified as a product of pesticide degradation and a causative chemical affecting occupational health.

  13. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  14. A novel male sterility-fertility restoration system in plants for hybrid seed production.

    PubMed

    Singh, Surendra Pratap; Singh, Sudhir P; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V

    2015-06-15

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.

  15. Date seed characterisation, substrate extraction and process modelling for the production of polyhydroxybutyrate by Cupriavidus necator.

    PubMed

    Yousuf, R G; Winterburn, J B

    2016-12-01

    Poly-3-hydroxybutrate (PHB) is a biodegradable polymer synthesised via bacterial fermentation as a means of storing carbon and energy under unbalanced growth conditions. The production cost of petroleum-based plastics is currently lower than that for biopolymers, and the carbon source is the most significant contributor to biopolymer production cost. A feasibility study to assess the suitability of using a date seed derived media as an alternative for PHB production under various stress conditions was investigated. Results include fructose extraction from date seeds and a mass transfer model to describe the process, demonstrating that the high nutrient content of date seeds makes them a promising raw material for microbial growth and that a meaningful amount of PHB can be produced without supplementation. Maximum dry cell weight and PHB concentrations were 6.3g/l and 4.6g/l respectively, giving a PHB content of 73%, when an initial fructose concentration of 10.8g/l was used.

  16. Water productivity, yield, and berry composition in sustained versus regulated deficit irrigation of Merlot grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wine grape cultivar Merlot (Vitis vinifera L.) was irrigated at incremental fractions of estimated crop evapotranspiration or a regulated deficit (RDI) regime to identify which practice best optimized water productivity and berry composition without compromising yield. Three severities of susta...

  17. Disease severity and yield potential of rice cultivars in organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has driven the steady increase in the acreage of organic rice in the U. S., with Texas and California being the largest states. Yield potential and disease management are among the principal challenges associated with organic rice production. We evalua...

  18. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  19. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.

    PubMed

    González-Cabaleiro, Rebeca; Lema, Juan M; Rodríguez, Jorge

    2015-01-01

    The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.

  20. Use of acid whey and mustard seed to replace nitrites during cooked sausage production.

    PubMed

    Wójciak, Karolina M; Karwowska, Małgorzata; Dolatowski, Zbigniew J

    2014-02-01

    The aim was to determine the effects of sea salt, acid whey, native and autoclaved mustard seed on the physico-chemical properties, especially colour formation, microbial stability and sensory evaluation of non-nitrite cooked sausage during chilling storage. The cooked pork sausages were divided into 4 groups (group I--control sausages with curing salt (2.8%) and water (5%) added; group II--sausages with sea salt (2.8%) and acid whey (5%) added; group III--sausages with sea salt (2.8%), acid whey (5%) and mustard seed (1%) added; group IV--sausages with sea salt (2.8%), acid whey (5%) and autoclaved mustard seed (1%) added). Instrumental colour (L*, a*, b*), oxygenation index (ΔR), 650/570 nm ratio, heme iron, pH value and water activity (aw) were determined 1 day after production and after 10, 20 and 30 days of refrigerated storage (4 °C). Sensory analysis was conducted immediately after production (day 1). Microbial analysis (lactic acid bacteria, total viable count, Clostridium spp.) was determinated at the end of storage (30 days). The autoclaved mustard with acid whey can be used at 1.0% (w/w) of model cooked sausages with beneficial effect on physico-chemical and sensory qualities of no-nitrite sausage. This product can be stored at refrigeration temperature for up to 30 days, in vacuum, with good acceptability. The colour, visual appearance and overall quality of samples with autoclaved mustard seed and acid whey were similar to the control with curing agent.

  1. Assessment of fission product yields data needs in nuclear reactor applications

    SciTech Connect

    Kern, K.; Becker, M.; Broeders, C.

    2012-07-01

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  2. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum

    DOE PAGES

    Papanek, Beth A.; Biswas, Ranjita; Rydzak, Thomas; ...

    2015-09-12

    Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, we study a mutant strain of C. thermocellum that was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulosemore » Avicel, effectively eliminating formate, acetate, and lactate production and reducing H2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. In conclusion, with the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.« less

  3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.

    PubMed

    Papanek, Beth; Biswas, Ranjita; Rydzak, Thomas; Guss, Adam M

    2015-11-01

    Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulose Avicel, effectively eliminating formate, acetate, and lactate production and reducing H2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1mM ethanol on 10 g/L Avicel. With the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.

  4. Characterization of Edible Pork By-products by Means of Yield and Nutritional Composition

    PubMed Central

    Moon, Sung Sil

    2014-01-01

    Basic information regarding the yield and nutritional composition of edible pork by-products, namely heart, liver, lung, stomach, spleen, uterus, pancreas, and small and large intestines, was studied. Our results revealed that the yields varied widely among the pork by-products examined; in particular, liver had the highest yield (1.35%); whereas, spleen had the lowest yield (0.16%). The approximate composition range (minimum to maximum) of these by-products was found to be: moisture 71.59-82.48%; fat 0.28-19.54%; ash 0.155-1.34%, and protein 8.45-22.05%. The highest protein, vitamin A, B2, B6, and total essential amino acid (EAA) contents were found in liver. Large intestine had the highest fat content and lowest EAA content. Heart had the highest vitamin B1 content, whereas pancreas had the highest niacin and vitamin B3 contents. The concentrations of Fe and Zn were highest in liver and pancreas. Total saturated fatty acids (SFA) levels and polyunsaturated fatty acids (PUFA) levels between the by-products ranged from 43.15-50.48%, and 14.92-30.16%, respectively. Furthermore, with the exception of large intestine, all the by-products showed favorable PUFA/SFA ratios. The study indicated that almost all of the pork by-products examined were good sources of important nutrients, and that these data will be of great importance in the promotion of the consumption of edible pork by-products, as well as their utilization in meat processing. PMID:26761170

  5. Effect of Monascus purpureus inoculum concentration on pigment production in jackfruit seed flour substrate

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Yanti; Kusnadi, Yuliani, Lia Amelia

    2016-02-01

    The used of synthetic dyes have various negative effects on human health. Roomates pigment produced by Monascus purpureus mold can be used as an alternative natural food coloring. The research on the effect of inoculum concentration's M. purpureus to pigment production on the jackfruit seed flour has been done. The objective of research to is to investigate the effect of inoculum concentration's M. purpureus to the production of red, yellow and orange pigment on the jackfruit seed flour. The concentrations used were 0%, 5%, 10%, and 15% (v/w). The result of the data analysed using One-Way ANOVA showed that the inoculum concentration affected the production of red pigment M. purpureus, as well as the data analysis using the Kruskal-Wallis showed that inoculum concentration has influence on the production of yellow and orange pigments. Inoculum concentration of 15% is the optimum concentration for the production of red, yellow and orange pigments with 0:10, 0:50 and 0:20 absorbance units per gram of sample respectively. Based on the results of the research, it can be concluded that inoculum concentration of M. purpureus influenced the production of red, yellow and orange pigments.

  6. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production

    PubMed Central

    Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva

    2016-01-01

    The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha−1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated “balanced genotypes” for the four minerals and for the aforementioned characteristics. Selection and breeding of such “balanced genotypes” may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population. PMID:28231184

  7. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli.

    PubMed

    Cabulong, Rhudith B; Valdehuesa, Kris Niño G; Ramos, Kristine Rose M; Nisola, Grace M; Lee, Won-Keun; Lee, Chang Ro; Chung, Wook-Jin

    2017-02-01

    The microbial production of renewable ethylene glycol (EG) has been gaining attention recently due to its growing importance in chemical and polymer industries. EG has been successfully produced biosynthetically from d-xylose through several novel pathways. The first report on EG biosynthesis employed the Dahms pathway in Escherichia coli wherein 71% of the theoretical yield was achieved. This report further improved the EG yield by implementing metabolic engineering strategies. First, d-xylonic acid accumulation was reduced by employing a weak promoter which provided a tighter control over Xdh expression. Second, EG yield was further improved by expressing the YjgB, which was identified as the most suitable aldehyde reductase endogenous to E. coli. Finally, cellular growth, d-xylose consumption, and EG yield were further increased by blocking a competing reaction. The final strain (WTXB) was able to reach up to 98% of the theoretical yield (25% higher as compared to the first study), the highest reported value for EG production from d-xylose.

  8. Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness.

    PubMed

    Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia

    2014-04-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts.

  9. The role of climate in balancing soil production and sediment yield in New Zealand

    NASA Astrophysics Data System (ADS)

    Norton, K. P.

    2013-12-01

    New Zealand hosts some of the highest specific sediment yields on the planet reaching up to nearly 30,000 t km-2 yr-1. Sediment yields measure the export of sediment from a basin and give an indication of erosion from hillslopes. In New Zealand high sediment yields correlate with high annual precipitation and high rates of tectonic strain (Hicks et al., 1996). It is, however, unclear how soil production keeps pace with such extreme erosion. Here, this question is investigated by modelling soil production as a function of local climate parameters. Two simple models for building climate into soil production are through effective energy and mass transfer, EEMT, (Rasmussen and Tabor, 2007) and primary chemical weathering. When applied to ~30 year climate data, these models highlight the variability of potential soil production across New Zealand. Due partially to high annual rainfall, some of the fastest erosion rates on the west coast of the South Island are nearly in balance with soil production. In other regions such as the east coast of the North Island, hotspots exist where annual sediment yields exceed reasonable soil production rates such that additional mechanisms must operate to generate sediment and make up this deficit. Globally, precipitation tends to increase and temperature decreases with increasing elevation. In New Zealand, increasing elevations also roughly correlate with an increase in mean basin slope angle and the percent of a basin at >30° slopes. As a result, modelled soil production also tends to increase with increasing mean basin slope angle. This correlation occurs independent of erosion feedbacks on the modelled soil production rates. This relationship presents an intriguing scenario in which the topography of the mountain range may be maintained by climate through variations in soil production. Even with rapid modelled soil production at high precipitation rates and/or high temperatures and/or high temperatures, many basins cannot keep pace

  10. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods.

    PubMed

    Redondo-Cuenca, Araceli; Villanueva-Suárez, Ma José; Mateos-Aparicio, Inmaculada

    2008-06-01

    The composition of soybean seeds and its by-product okara has been studied in this work. Dietary fibre was analysed by Englyst et al. method, by enzymatic-gravimetric methods of AOAC and by the quantification of the monomers obtained from the AOAC residues after acid hydrolysis (AOAC plus hydrolysis). Total dietary fibre by the enzymatic-gravimetric methods of AOAC in okara (55.48g/100g dry matter) is more than twice that of soybean seeds (24.37g/100g dry matter). The proportion IF/SF is 11 in okara and 6 in soybean seeds. Dietary fibre results from enzymatic-gravimetric AOAC methods are higher in okara and soybean seed samples than those from the Englyst method (okara: 41.14g/100g dry matter; soybean seeds: 15.05g/100g dry matter), and AOAC plus hydrolysis (okara: 44.91g/100g dry matter; soybean seeds: 16.38g/100g dry matter). In the case of the insoluble fibre from both samples, AOAC plus hydrolysis gives significantly (p<0.001) higher values than the Englyst method, whilst for soluble fibre the opposite occurs (p<0.001). The main monomers in soybean seeds and okara fibre are glucose, galactose, uronic acids, arabinose and xylose. The proportion of each monomer is similar in soybean seeds and okara, so the healthy properties of soybean seeds fibre are also claimed for okara.

  11. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    NASA Astrophysics Data System (ADS)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  12. Yield Trends Are Insufficient to Double Global Crop Production by 2050.

    PubMed

    Ray, Deepak K; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2013-01-01

    Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

  13. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    PubMed

    Chauhan, Harsh; Khurana, Neetika; Agarwal, Preeti; Khurana, Jitendra P; Khurana, Paramjit

    2013-01-01

    Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF) gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  14. Bioproduction and optimization of rosmarinic acid production in Solenostemon scutellarioides through media manipulation and conservation of high yielding clone via encapsulation.

    PubMed

    Sahu, Ranabir; Dewanjee, Saikat; Gangopadhyay, Moumita

    2013-09-01

    The present study describes the role of different exogenous phytohormones, polyamines and sucrose on growth and rosmarinic acid (RA) production in whole plant culture of Solenostemon scutellarioides. It was further aimed to conserve elite clones via synthetic seed technology. S. scutellarioides was treated either singly or in combination with different phytohormones. Cultures incubated with NAA (0.5 mg L(-1)) yielded the highest RA accumulation (g(-1FW)), but negatively affected the growth. So, overall RA content was insignificant. Cultures incubated with IBA, BAP and GA3 at low concentration significantly improved growth and RA bioaccumulation. In the combinatorial study, IBA+BAP+GA3 (0.5 mg L(-1) each) was found optimum for plant biomass and RA production (65.2% improvement of total RA). Amongst polyamines, putrescine (1 mg L(-1)) exhibited 20.4% improvement of total RA content. The intracellular RA accumulation (g(-1FW)) was significantly higher between 5 and 7% of sucrose concentrations. However, the total increase in RA content was inhibited due to deterioration of the culture with increasing sucrose concentration. Based on the effect of different treatments on growth and RA accumulation, a high yielding and stable plant line was selected for conservation via alginate encapsulation. Uniform shaped alginate coated synthetic seeds conserved up to 6 months exhibited high regeneration potential and RA content.

  15. Photofission product yields of 238U and 239Pu with 22-MeV bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Yang, Haori

    2016-06-01

    In homeland security and nuclear safeguards applications, non-destructive techniques to identify and quantify special nuclear materials are in great demand. Although nuclear materials naturally emit characteristic radiation (e.g. neutrons, γ-rays), their intensity and energy are normally low. Furthermore, such radiation could be intentionally shielded with ease or buried in high-level background. Active interrogation techniques based on photofission have been identified as effective assay approaches to address this issue. In designing such assay systems, nuclear data, like photofission product yields, plays a crucial role. Although fission yields for neutron-induced reactions have been well studied and readily available in various nuclear databases, data on photofission product yields is rather scarce. This poses a great challenge to the application of photofission techniques. In this work, short-lived high-energy delayed γ-rays from photofission of 238U were measured in between linac pulses. In addition, a list-mode system was developed to measure relatively long-lived delayed γ-rays from photofission of 238U and 239Pu after the irradiation. Time and energy information of each γ-ray event were simultaneously recorded by this system. Cumulative photofission product yields were then determined using the measured delayed γ-ray spectra.

  16. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China

    PubMed Central

    Zheng, Huaiguo; Xu, Xinpeng

    2016-01-01

    In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site

  17. Ugba, the fermented African oilbean seeds; its production, chemical composition, preservation, safety and health benefits.

    PubMed

    Ogueke, C C; Nwosu, J N; Owuamanam, C I; Iwouno, J N

    2010-05-15

    Ugba is the Ibo name of the fermented African Oilbean seeds (Pentaclethra macrophylla, Benth). It is a traditional food condiment generally produced by natural (local) fermentation in homes as a small family business. It is an important and cheap source of protein for people whose staple foods are deficient in proteins. It is also eaten as a delicacy and used as flavouring for soup. This write up aims to review all published studies on ugba in the direction of the various methods used in the production, the chemical composition of the seeds, the microorganisms involved and the biochemical changes that occur during fermentation and optimization of the fermentation. The nutritional and food values, toxicological properties, health promoting potentials, microbiological safety as well as the storage and preservation have also been highlighted.

  18. Amygdalin content of seeds, kernels and food products commercially-available in the UK.

    PubMed

    Bolarinwa, Islamiyat F; Orfila, Caroline; Morgan, Michael R A

    2014-01-01

    Cyanogenic glycosides are a large group of secondary metabolites that are widely distributed in the plant kingdom, including many plants that are commonly consumed by humans. The diverse chemical nature of cyanogenic glycosides means that extraction and analysis of individual compounds can be difficult. In addition, degradation can be rapid under appropriate conditions. Amygdalin is one of the cyanogenic glycosides found, for example, in apples, apricots and almonds. We have developed and applied a high performance liquid chromatographic procedure for amygdalin quantification to investigate extraction efficiency and to determine levels in a range of commercially-available foods for the first time. Our results show that seed from Rosaceae species contained relatively high amounts (range 0.1-17.5 mg g(-1)) of amygdalin compared to seed from non-Rosaceae species (range 0.01-0.2 mg g(-1)). The amygdalin content of processed food products was very low.

  19. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2012-12-01

    Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel.

  20. Ethanol, feed components and fungal biomass production from field bean (Vicia faba var. equina) seeds in an integrated process.

    PubMed

    Pietrzak, Witold; Kawa-Rygielska, Joanna; Król, Barbara; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2016-09-01

    The use of field beans, a non-food leguminous crop, was studied for ethanol, feed components and fungal biomass production. The seeds were hydrolyzed using enzymes or with combination of acid (H3PO4) and alkaline (Ca(OH)2) pretreatment and enzymatic hydrolysis. Fermentation by Saccharomyces cerevisiae, with or without removal of suspended solids, yielded 38.3-42.5gL(-1) ethanol (71.3-79.2% efficiency). The filtration residues contained ca. 247-326gkg(-1) crude protein, 10.6-15.5% acid detergent fiber and 19.9-29.1% neutral detergent fiber. They were enriched in phenolics (by up to 93.4%) and depleted in condensed tannin (by up to 59.3%) in comparison to the raw material. The thin stillages were used for cultivation of edible fungus Neurospora intermedia which produced 8.5-15.9gL(-1) ethanol and 4.8-16.2gL(-1) biomass containing over 62% protein. The mass balances showed that fermentation of unfiltered mashes was more efficient yielding up to 195.9gkg(-1) ethanol and 84.4% of protein recovery.

  1. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  2. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    SciTech Connect

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    2015-01-01

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  3. Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow.

    PubMed

    Moallem, U

    2016-04-01

    The objectives were to examine the gross and marginal production efficiencies in high-yielding dairy cows and the future consequences on dairy industry profitability. Data from 2 experiments were used in across-treatments analysis (n=82 mid-lactation multiparous Israeli-Holstein dairy cows). Milk yields, body weights (BW), and dry matter intakes (DMI) were recorded daily. In both experiments, cows were fed a diet containing 16.5 to 16.6% crude protein and net energy for lactation (NEL) at 1.61 Mcal/kg of dry matter (DM). The means of milk yield, BW, DMI, NEL intake, and energy required for maintenance were calculated individually over the whole study, and used to calculate gross and marginal efficiencies. Data were analyzed in 2 ways: (1) simple correlation between variables; and (2) cows were divided into 3 subgroups, designated low, moderate, and high DMI (LDMI, MDMI, and HDMI), according to actual DMI per day: ≤ 26 kg (n=27); >26 through 28.2 kg (n=28); and >28.2 kg (n=27). The phenotypic Pearson correlations among variables were analyzed, and the GLM procedure was used to test differences between subgroups. The relationships between milk and fat-corrected milk yields and the corresponding gross efficiencies were positive, whereas BW and gross production efficiency were negatively correlated. The marginal production efficiency from DM and energy consumed decreased with increasing DMI. The difference between BW gain as predicted by the National Research Council model (2001) and the present measurements increased with increasing DMI (r=0.68). The average calculated energy balances were 1.38, 2.28, and 4.20 Mcal/d (standard error of the mean=0.64) in the LDMI, MDMI, and HDMI groups, respectively. The marginal efficiency for milk yields from DMI or energy consumed was highest in LDMI, intermediate in MDMI, and lowest in HDMI. The predicted BW gains for the whole study period were 22.9, 37.9, and 75.8 kg for the LDMI, MDMI, and HDMI groups, respectively. The

  4. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses

    PubMed Central

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2009-01-01

    Background and Aims Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Methods Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2·5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. Key Results There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. Conclusions The results can be explained in terms of the seed size–seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil

  5. Protease increases fermentation rate and ethanol yield in dry-grind ethanol production.

    PubMed

    Johnston, David B; McAloon, Andrew J

    2014-02-01

    The effects of acid protease and urea addition during the fermentation step were evaluated. The fermentations were also tested with and without the addition of urea to determine if protease altered the nitrogen requirements of the yeast. Results show that the addition of the protease had a statistically significant effect on the fermentation rate and yield. Fermentation rates and yields were improved with the addition of the protease over the corresponding controls without protease. Protease addition either with or with added urea resulted in a higher final ethanol yield than without the protease addition. Urea addition levels >1200 ppm of supplemental nitrogen inhibited ethanol production. The economic effects of the protease addition were evaluated by using process engineering and economic models developed at the Eastern Regional Research Center. The decrease in overall processing costs from protease addition was as high as $0.01/L (4 ¢/gal) of denatured ethanol produced.

  6. Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants

    PubMed Central

    North, Helen M.; Berger, Adeline; Saez-Aguayo, Susana; Ralet, Marie-Christine

    2014-01-01

    Background The epidermal cells of the seed coat of certain species accumulate polysaccharides during seed development for cell wall reinforcement or release on imbibition to form mucilage. Seed-coat epidermal cells show natural variation in their structure and mucilage production, which could explain the diverse ecophysiological roles proposed for the latter. Arabidopsis mucilage mutants have proved to be an important tool for the identification of genes involved in the production of seed-coat polysaccharides. Scope This review documents genes that have been characterized as playing a role in the differentiation of the epidermal cells of the arabidopsis seed coat, the natural variability in polysaccharide features of these cells and the physiological roles attributed to seed mucilage. Conclusions Seed-coat epidermal cells are an excellent model for the study of polysaccharide metabolism and properties. Intra- and interspecies natural variation in the differentiation of these epidermal cells is an under-exploited resource for such studies and promises to play an important part in improving our knowledge of polysaccharide production and ecophysiological function. PMID:24607722

  7. Effect of aqueous and ethanolic extracts of Pimpinella anisum L. seeds on milk production in rats.

    PubMed

    Hosseinzadeh, Hossein; Tafaghodi, Mohsen; Abedzadeh, Shirin; Taghiabadi, Elahe

    2014-08-01

    Pimpinella anisum L. (P. anisum) is used as a galactagogue in traditional medicine; hence, the effect of aqueous and ethanolic extracts of P. anisum seeds on milk production in rats was evaluated. The milk production was assessed by measuring the pups' weights during the suckling period. The intraperitoneal LD(50) values of P. anisum aqueous and ethanolic extracts were 4.93 and 3.77 g/kg, respectively. The aqueous (1 g/kg) and ethanolic extracts (1 g/kg) increased the milk production significantly (p < 0.001), with about 68.1% and 81% more milk being produced, respectively, than in the control group. The pups gained weight during the study period with the aqueous (0.5 and 1 g/kg, p < 0.05) and ethanolic (0.5 and 1 g/kg, p < 0.01) extracts. Thus, P. anisum aqueous and ethanolic extracts can increase milk production in rats.

  8. Assessing the Effects of Climate Variability on Orange Yield in Florida to Reduce Production Forecast Errors

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.

    2015-12-01

    Orange production in Florida has experienced a decline over the past decade. Hurricanes in 2004 and 2005 greatly affected production, almost to the same degree as strong freezes that occurred in the 1980's. The spread of the citrus greening disease after the hurricanes has also contributed to a reduction in orange production in Florida. The occurrence of hurricanes and diseases cannot easily be predicted but the additional effects of climate on orange yield can be studied and incorporated into existing production forecasts that are based on physical surveys, such as the October Citrus forecast issued every year by the USDA. Specific climate variables ocurring before and after the October forecast is issued can have impacts on flowering, orange drop rates, growth, and maturation, and can contribute to the forecast error. Here we present a methodology to incorporate local climate variables to predict the USDA's orange production forecast error, and we study the local effects of climate on yield in different counties in Florida. This information can aid farmers to gain an insight on what is to be expected during the orange production cycle, and can help supply chain managers to better plan their strategy.

  9. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes

    PubMed Central

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E.; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar (‘Cocodrie’ and ‘Rondo’), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice. PMID:26978525

  10. Biodiesel and biohydrogen production from cotton-seed cake in a biorefinery concept.

    PubMed

    Panagiotopoulos, I A; Pasias, S; Bakker, R R; de Vrije, T; Papayannakos, N; Claassen, P A M; Koukios, E G

    2013-05-01

    Biodiesel production from cotton-seed cake (CSC) and the pretreatment of the remaining biomass for dark fermentative hydrogen production was investigated. The direct conversion to biodiesel with alkali free fatty acids neutralization pretreatment and alkali transesterification resulted in a biodiesel with high esters content and physicochemical properties fulfilling the EN-standards. Blends of cotton-seed oil methyl esters (CME) and diesel showed an improvement in lubricity and cetane number. Moreover, CME showed good compatibility with commercial biodiesel additives. On the basis of conversion of the remaining CSC to sugars fermentable towards hydrogen, the optimal conditions included removal of the oil of CSC and pretreatment at 10% NaOH (w/w dry matter). The extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus showed good hydrogen production, 84-112% of the control, from NaOH-pretreated CSC and low hydrogen production, 15-20% of the control, from the oil-rich and not chemically pretreated CSC, and from Ca(OH)2-pretreated CSC.

  11. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present

  12. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production.

    PubMed

    Faber, Mariana de Oliveira; Ferreira-Leitão, Viridiana Santana

    2016-11-01

    The aims of this study were to simplify the fermentation medium and to optimize the conditions of dark fermentation of residual glycerin to produce biohydrogen. It was possible to remove all micronutrients of fermentation medium and improve biohydrogen production by applying residual glycerin as feedstock. After statistical analysis of the following parameters pH, glycerin concentration and volatile suspended solids, the values of 5.5; 0.5g.L(-1) and 8.7g.L(-1), respectively, were defined as optimum condition for this process. It generated 2.44molH2/molglycerin, an expressive result when compared to previous results reported in literature and considering that theoretical yield of H2 from glycerol in dark fermentation process is 3molH2/molglycerol. This study allowed the improvement of yield and productivity by 68% and 67%, respectively.

  13. Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars.

    PubMed

    David, Geraldo Ferreira; Perez, Victor Haber; Rodriguez Justo, Oselys; Garcia-Perez, Manuel

    2017-01-01

    The aim of this work was to improve sugarcane bagasse thermochemical conversion to pyrolytic sugars production, particularly to levoglucosan. The experiments were carried out evaluating the effect of acid washing with HNO3 (0.1wt.%) followed by H2SO4 addition (0.1, 0.2 and 0.3wt.%) at pyrolysis temperatures of 350, 400, 450, 500, 550 and 600°C was studied by Py-GC/MS. The experimental results showed that HNO3 washing, followed by H2SO4 concentration of 0.2wt.% at 350°C resulted in an increase in levoglucosan yield between 5 and 7 times the yield obtained when the raw bagasse was processed. Thus, these results are very attractive to improve pyrolytic sugars production in sugarcane bagasse by previously acid treatment to pyrolysis technology.

  14. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields.

    PubMed

    Gibson, Kelly; Park, Jong-Sug; Nagai, Yasuko; Hwang, Seon-Kap; Cho, Young-Chan; Roh, Kyung-Hee; Lee, Si-Myung; Kim, Dong-Hern; Choi, Sang-Bong; Ito, Hiroyuki; Edwards, Gerald E; Okita, Thomas W

    2011-09-01

    Improvements in plant productivity (biomass) and yield have centered on increasing the efficiency of leaf CO(2) fixation and utilization of products by non-photosynthetic sink organs. We had previously demonstrated a correlation between photosynthetic capacity, plant growth, and the extent of leaf starch synthesis utilizing starch-deficient mutants. This finding suggested that leaf starch is used as a transient photosynthetic sink to recycle inorganic phosphate and, in turn, maximize photosynthesis. To test this hypothesis, Arabidopsis thaliana and rice (Oryza sativa L.) lines were generated with enhanced capacity to make leaf starch with minimal impact on carbon partitioning to sucrose. The Arabidopsis engineered plants exhibited enhanced photosynthetic capacity; this translated into increased growth and biomass. These enhanced phenotypes were displayed by similarly engineered rice lines. Manipulation of leaf starch is a viable alternative strategy to increase photosynthesis and, in turn, the growth and yields of crop and bioenergy plants.

  15. High-yield electrochemical production of formaldehyde from CO2 and seawater.

    PubMed

    Nakata, Kazuya; Ozaki, Takuya; Terashima, Chiaki; Fujishima, Akira; Einaga, Yasuaki

    2014-01-13

    The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron-doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher-order products, and also reduces the generation of H2 . In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74%) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp(3)-bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost-effective conversion of CO2.

  16. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.

    PubMed

    Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin

    2016-03-01

    Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions.

  17. Biochemical changes during the fermentation of Prosopis africana seeds for ogiri-okpei production.

    PubMed

    Odibo, F J C; Ezeaku, E O; Ogbo, F C

    2008-09-01

    Biochemical changes during fermentation of seeds of Prosopis africana for production of ogiri-okpei, a food condiment popular among people of West Africa were studied. Fermentation resulted in a net increase in concentrations of total soluble sugars and free amino acids, both reaching a peak after 72 h of fermentation but declining thereafter. Corresponding increases were observed in amylase and protease activities, respectively. Lipase activity was observed to be very strong, increasing throughout the duration of fermentation. Analyses of amino and fatty acid composition using an amino acid analyzer and gas liquid chromatography, respectively, revealed a wide variety of amino acids including glutamine > cystine > arginine and the fatty acids stearic > Arachidic > linolenic > linoleic in the unfermented seed in the highest concentrations. Fluctuations in the concentrations of these compounds were observed during the fermentation. At the end of 96 h fermentation, glutamine > cystine > lysine and an unidentified fatty acid > arachidic > linolenic acids were found in the highest concentrations. Marked increases in composition with increasing period of fermentation were observed for Ca, P, K, Mn, and Z. Transformations of amino acids, fatty acids, and minerals during the fermentation of this seed revealed during this study will contribute towards the development of an industrial process for ogiri-okpei as well as an understanding of its contribution to the nutrition of its consumers.

  18. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    NASA Astrophysics Data System (ADS)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  19. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p <0.01, in the Muscat Ottonel cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  20. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields.

    PubMed

    Park, Jinje; Lee, Yongwoon; Ryu, Changkook; Park, Young-Kwon

    2014-03-01

    Among many uses of rice straw, application of its biochar from pyrolysis to the soil is receiving greater interest for increased crop productivity and sequestration of CO2. This study investigated slow pyrolysis of rice straw at 300-700°C to characterize the yields and detailed composition of the biochar, bio-oil and non-condensable gases. Biochar was analyzed for pH, microscopic surface area and pore volume distribution. Although the mass yield for the organic fraction was only about 25% above 500°C, biochar was the primary product of pyrolysis containing 40% of energy and 45% of carbon from the straw. The utilization of by-products (bio-oil and gases) as energy resources was essential, since the sum of energy yield was about 60%. The gases could be burned to produce the heat for an auto-thermal pyrolysis process, but the heat balance was significantly influenced by the moisture content of the raw material.

  1. A novel male sterility-fertility restoration system in plants for hybrid seed production

    PubMed Central

    Singh, Surendra Pratap; Singh, Sudhir P.; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V.

    2015-01-01

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility–fertility restoration system by engineering the inmost nutritive anther wall layer tapetum of female and male parents. In the female parent, high–level, and stringent expression of Arabidopsis autophagy–related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1NT131) with TBPm3 (HFR1NT131-TBPm3) to exercise regulatory control over it. In the male parent, tapetum–specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1L105A) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1–mediated degradation of TBPm3 pool (HFR1NT131-TBPm3). The system can be deployed for hybrid seed production in agricultural crops. PMID:26073981

  2. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects ...

  3. Effects of Chronic Elevated Ozone Concentration on Antioxidant Capacity, Photosynthesis and Seed Yield of 10 Soybean Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crops losses due to ozone (O3) in the United States are estimated to cost $1-3 billion annually, making it the most damaging air pollutant to plants. This challenge to crop production is expected to increase as O3 levels rise over the next half-century, particularly in sensitive crop species like so...

  4. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa.

    PubMed

    Roy Choudhury, Swarup; Riesselman, Adam J; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins consisting of Gα, Gβ and Gγ subunits play an integral role in mediating multiple signalling pathways in plants. A novel, recently identified plant-specific Gγ protein, AGG3, has been proposed to be an important regulator of organ size and mediator of stress responses in Arabidopsis, whereas its potential homologs in rice are major quantitative trait loci for seed size and panicle branching. To evaluate the role of AGG3 towards seed and oil yield improvement, the gene was overexpressed in Camelina sativa, an oilseed crop of the Brassicaceae family. Analysis of multiple homozygous T4 transgenic Camelina lines showed that constitutive overexpression of AGG3 resulted in faster vegetative as well as reproductive growth accompanied by an increase in photosynthetic efficiency. Moreover, when expressed constitutively or specifically in seed tissue, AGG3 was found to increase seed size, seed mass and seed number per plant by 15%-40%, effectively resulting in significantly higher oil yield per plant. AGG3 overexpressing Camelina plants also exhibited improved stress tolerance. These observations draw a strong link between the roles of AGG3 in regulating two critical yield parameters, seed traits and plant stress responses, and reveal an effective biotechnological tool to dramatically increase yield in agricultural crops.

  5. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.

    PubMed

    Kim, Se Won; Hong, Chae-Hwan; Jeon, Sung-Wan; Shin, Hyun-Jae

    2015-11-01

    Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes.

  6. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production.

    PubMed

    Zhang, Junhua; Jiang, Lifeng

    2008-12-01

    A technique to produce biodiesel from crude Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) was developed. The acid value of ZSO was reduced to 1.16mg KOH/g from 45.51mg KOH/g by only one-step acid-catalyzed esterification with methanol-to-oil molar ratio 24:1, H(2)SO(4) 2%, temperature 60 degrees C and reaction time 80min, which was selected as optimum for the acid-catalyzed esterification. During the acid-catalyzed esterification, FFA was converted into fatty acid methyl esters, which was confirmed by (1)H NMR spectrum. Compared with the other two-step pretreatment procedure, this one-step pretreatment can reduce the production cost of ZSO biodiesel. Alkaline-catalyzed transesterification converted the pretreated ZSO into ZSO biodiesel. The yield of ZSO biodiesel was above 98% determined by (1)H NMR spectrum. This study supports the use of crude ZSO as a viable and valuable raw feedstock for biodiesel production.

  7. Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism

    USGS Publications Warehouse

    Holland, J. Nathaniel; Bronstein, Judith L.; DeAngelis, Donald L.

    2004-01-01

    Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.

  8. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.)

    PubMed Central

    Thomas, C. L.; Graham, N. S.; Hayden, R.; Meacham, M. C.; Neugebauer, K.; Nightingale, M.; Dupuy, L. X.; Hammond, J. P.; White, P. J.; Broadley, M. R.

    2016-01-01

    Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. PMID:27052342

  9. The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species.

    PubMed

    Booker, Fitzgerald; Muntifering, Russell; McGrath, Margaret; Burkey, Kent; Decoteau, Dennis; Fiscus, Edwin; Manning, William; Krupa, Sagar; Chappelka, Arthur; Grantz, David

    2009-04-01

    The productivity, product quality and competitive ability of important agricultural and horticultural plants in many regions of the world may be adversely affected by current and anticipated concentrations of ground-level ozone (O3). Exposure to elevated O3 typically results in suppressed photosynthesis, accelerated senescence, decreased growth and lower yields. Various approaches used to evaluate O3 effects generally concur that current yield losses range from 5% to 15% among sensitive plants. There is, however, considerable genetic variability in plant responses to O3. To illustrate this, we show that ambient O3 concentrations in the eastern United States cause substantially different levels of damage to otherwise similar snap bean cultivars. Largely undesirable effects of O3 can also occur in seed and fruit chemistry as well as in forage nutritive value, with consequences for animal production. Ozone may alter herbicide efficacy and foster establishment of some invasive species. We conclude that current and projected levels of O3 in many regions worldwide are toxic to sensitive plants of agricultural and horticultural significance. Plant breeding that incorporates O3 sensitivity into selection strategies will be increasingly necessary to achieve sustainable production with changing atmospheric composition, while reductions in O3 precursor emissions will likely benefit world food production and reduce atmospheric concentrations of an important greenhouse gas.

  10. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  11. Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with N-NH4+ and/or Mn(II).

    PubMed

    Curvetto, N R; Figlas, D; Devalis, R; Delmastro, S

    2002-09-01

    The mycelial growth rates in lineal growth assay, yield, and production rate of five Pleurotus ostreatus strains were evaluated in response to different levels of Mn(II) and/or NH4+ in a substrate containing sunflower seed hulls as a main energy and nutritional component. Each strain showed different basal values for mycelial growth rate and biological efficiency on sunflower seed-hull substrate. Adding growth limiting mineral nutrients increased the mycelial growth rate by 13-25%. Primordia initiation for the first flush appeared between day 24 and 28 and days to the second crop ranged from 39 to 51. Biological efficiency increased over control values and reached 60-112%, depending on the strain and the concentration of Mn(II) and NH4+. This study demonstrated the advantage of selecting the most productive P. ostreatus strains in a substrate formulated with sunflower seed hulls to provide the main energy and nutritional ingredients and supplemented with Mn(II) and/or NH4+.

  12. [Production of pectinases by Penicillium simplicissimum A3263 in an amaranth-seed flour medium].

    PubMed

    Pastor, M D; Lorda, G S; Balatti, A

    2002-01-01

    The present work studies the production of pectinases using a strain of Penicillium simplicissimum A3263 and considering the influence of adding Amaranthus cruentus seed meal in a selected medium. We also considered the influence of aeration on enzyme production. Research was oriented towards the production of pectin lyase, the enzyme having the highest commercial value. This work was carried out in Erlenmeyer flasks in rotary shaker to select the medium and in a mechanically stirred fermentor to study aeration. The microorganism was developed as pellets of 1 mm diameter. Enzyme levels were of the order of 8216.21 pectin lyase units and 167.57 polygalacturonase units per gram of fungal biomass, respectively, using a medium containing 40 g/l of amaranth seed meal. As for the influence of aeration, it was determined that the higher values were obtained at 750 rpm corresponding to an oxygen absorption rate of 2691 ml O2/lh for an air flow of 1 l/l.min. The results obtained are considered very important in view of the fact that they exceeded in 550% those obtained by other authors.

  13. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    SciTech Connect

    Pigni, M.T. Francis, M.W.; Gauld, I.C.

    2015-01-15

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {sup 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  14. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    NASA Astrophysics Data System (ADS)

    Pigni, M. T.; Francis, M. W.; Gauld, I. C.

    2015-01-01

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  15. Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms.

    PubMed

    Sobolev, Victor S

    2013-02-27

    Under favorable conditions, the peanut plant demonstrates appreciable resistance to fungal invasion by producing and accumulating phytoalexins, antimicrobial stilbenoids. This mechanism for resistance is little understood, yet it is crucial for breeding and genetically modifying peanut plants to develop new cultivars with fungal resistance. The dynamics of phytoalexin production in peanut seeds and embryos challenged by selected important fungi and bacteria was investigated. Different biotic agents selectively elicited production of major peanut stilbenoids, resveratrol, arachidin-1, arachidin-3, and SB-1. Aspergillis species, compared to other biotic agents, were more potent elicitors of stilbenoids. Embryos demonstrated significantly higher production of stilbenoids compared to cotyledons and may serve as a convenient source of genetic material in isolating genes for peanut plant defense enhancement.

  16. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production.

    PubMed

    Berger, Christian; Montag, Cindy; Berndt, Sandra; Huster, Daniel

    2011-03-01

    The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy. The Y2 receptor was fused to a C-terminal 8x histidine tag by means of the pET vector system for easy one-step purification via affinity chromatography, yielding a purity of 95-99% for every condition tested, which was determined by SDS-PAGE and Western blot analysis. The Y2 receptor was expressed as inclusion body aggregates in complex media and minimal media, using different carbon sources. We investigated the influences of media composition, temperature, pH, and set specific growth rate on cell behavior, biomass wet weight specific and culture volume specific amounts of the target protein, which had been identified by inclusion body preparation, solubilization, followed by purification and spectrometric determination of the protein concentration. The developed process control strategy led to very high reproducibility of cell growth and protein concentrations with a maximum yield of 800 μg purified Y2 receptor per gram wet biomass when glycerol was used as carbon source in the mineral salt medium composition (at 38 °C, pH 7.0, and a set specific growth rate of 0.14 g/(gh)). The maximum biomass specific amount of purified Y2 receptor enabled the production of 35 mg Y2R per liter culture medium at an optical density (600 nm) of 25.

  17. Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO₂].

    PubMed

    Zhu, Chunwu; Zhu, Jianguo; Cao, Jing; Jiang, Qian; Liu, Gang; Ziska, Lewis H

    2014-11-01

    Understanding the basis for intraspecific yield variability may be important in elucidating biological mechanisms that are associated with superior yield performance in response to projected increases in carbon dioxide concentration, [CO₂]. Using a free-air CO₂ enrichment (FACE) facility, two rice lines, S63 and W14, which differed consistently in their enhancement of seed yield when grown at elevated [CO₂] in multiple field trials, were examined. To determine if the different cultivar responses were linked to changes in photosynthetic characteristics at elevated [CO₂], spatial and temporal changes in photosynthetic stimulation and the occurrence of down-regulation, or acclimation, in relation to panicle sink development were quantified for the uppermost canopy leaves. Changes in photosynthetic capacity were determined by quantifying changes in the sink:source ratio, leaf nitrogen (N) content, the concentration and mRNA expression of the large Rubisco subunit, and changes in V c,max, the maximum ribulose bisphosphate (RuBP)-saturated rate of carboxylation. For the W14 cultivar, significant reductions in photosynthesis at the elevated, relative to ambient [CO₂], signalling photosynthetic acclimation, were observed following panicle initiation. The observance of photosynthetic acclimation was consistent with significant reductions in N, Rubisco content and expression, and V c,max. In contrast, for the cultivar S63, elevated [CO₂] resulted in increased spikelet number and grain weight, increased sink:source ratios, and continued stimulation of photosynthesis up to grain maturity. Overall, these data suggest that the greater response of the S63 line to elevated [CO₂] may be associated with enhanced carbon sinks relative to sources, and the ability to maintain photosynthetic capacity during grain development.

  18. Simulation of biomass yield and soil organic carbon under bioenergy sorghum production.

    PubMed

    Dou, Fugen; Wight, Jason P; Wilson, Lloyd T; Storlien, Joseph O; Hons, Frank M

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0-50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha-1, while the simulated SOC was from 56.3 to 67.3 Mg C ha-1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management.

  19. Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production

    PubMed Central

    Dou, Fugen; Wight, Jason P.; Wilson, Lloyd T.; Storlien, Joseph O.; Hons, Frank M.

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management. PMID:25531758

  20. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  1. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose.

    PubMed

    Myung, Suwan; Rollin, Joseph; You, Chun; Sun, Fangfang; Chandrayan, Sanjeev; Adams, Michael W W; Zhang, Y-H Percival

    2014-07-01

    Hydrogen is one of the most important industrial chemicals and will be arguably the best fuel in the future. Hydrogen production from less costly renewable sugars can provide affordable hydrogen, decrease reliance on fossil fuels, and achieve nearly zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. An in vitro synthetic enzymatic pathway comprised of 15 enzymes was designed to split water powered by sucrose to hydrogen. Hydrogen and carbon dioxide were spontaneously generated from sucrose or glucose and water mediated by enzyme cocktails containing up to 15 enzymes under mild reaction conditions (i.e. 37°C and atm). In a batch reaction, the hydrogen yield was 23.2mol of dihydrogen per mole of sucrose, i.e., 96.7% of the theoretical yield (i.e., 12 dihydrogen per hexose). In a fed-batch reaction, increasing substrate concentration led to 3.3-fold enhancement in reaction rate to 9.74mmol of H2/L/h. These proof-of-concept results suggest that catabolic water splitting powered by sugars catalyzed by enzyme cocktails could be an appealing green hydrogen production approach.

  2. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    SciTech Connect

    Zhao, Z.; Stickel, R.E.; Wine, P.H.

    1995-03-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well known quantum yield for CO production from 248 nm photolysis of phosgene (Cl{sub 2}CO). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S({sup 3}P{sub j}) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S({sup 1}D{sub 2})+OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N{sub 2}+N{sub 2}O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought. 25 refs., 1 fig., 2 tabs.

  3. Coexistence in tropical forests through asynchronous variation in annual seed production.

    PubMed

    Usinowicz, Jacob; Wright, S Joseph; Ives, Anthony R

    2012-09-01

    The storage effect is a mechanism that can facilitate the coexistence of competing species through temporal fluctuations in reproductive output. Numerous natural systems have the prerequisites for the storage effect, yet it has rarely been quantitatively assessed. Here, we investigate the possible importance of the storage effect in explaining the coexistence of tree species in the diverse tropical forest on Barro Colorado Island, Panama. This tropical forest has been monitored for more than 20 years, and annual seed production is asynchronous among species, a primary requirement for the storage effect. We constructed a model of forest regeneration that includes species-specific recruitment through seed, sapling, and adult stages, and we parameterized the model using data for 28 species for which information is known about seedling germination and survival. Simulations of the model demonstrated that the storage effect alone can be a strong mechanism allowing long-term persistence of species. We also developed a metric to quantify the strength of the storage effect in a way comparable to classical resource partitioning. Applying this metric to seed production data from 108 species, the storage effect reduces the strength of pairwise interspecific competition to 11-43% of the strength of intraspecific competition, thereby demonstrating strong potential to facilitate coexistence. Finally, for a subset of 51 species whose phylogenetic relationships are known, we compared the strength of the storage effect between pairs of species to their phylogenetic similarity. The strength of the storage effect between closely related species was on average no different from distantly related species, implying that the storage effect can be important in promoting the coexistence of even closely related species.

  4. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    SciTech Connect

    Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

    2013-03-15

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.

  5. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production.

    PubMed

    Su, Ning; Hu, Mao-Long; Wu, Dian-Xing; Wu, Fu-Qing; Fei, Gui-Lin; Lan, Ying; Chen, Xiu-Ling; Shu, Xiao-Li; Zhang, Xin; Guo, Xiu-Ping; Cheng, Zhi-Jun; Lei, Cai-Lin; Qi, Cun-Kou; Jiang, Ling; Wang, Haiyang; Wan, Jian-Min

    2012-05-01

    The pentatricopeptide repeat (PPR) gene family represents one of the largest gene families in higher plants. Accumulating data suggest that PPR proteins play a central and broad role in modulating the expression of organellar genes in plants. Here we report a rice (Oryza sativa) mutant named young seedling albino (ysa) derived from the rice thermo/photoperiod-sensitive genic male-sterile line Pei'ai64S, which is a leading male-sterile line for commercial two-line hybrid rice production. The ysa mutant develops albino leaves before the three-leaf stage, but the mutant gradually turns green and recovers to normal green at the six-leaf stage. Further investigation showed that the change in leaf color in ysa mutant is associated with changes in chlorophyll content and chloroplast development. Map-based cloning revealed that YSA encodes a PPR protein with 16 tandem PPR motifs. YSA is highly expressed in young leaves and stems, and its expression level is regulated by light. We showed that the ysa mutation has no apparent negative effects on several important agronomic traits, such as fertility, stigma extrusion rate, selfed seed-setting rate, hybrid seed-setting rate, and yield heterosis under normal growth conditions. We further demonstrated that ysa can be used as an early marker for efficient identification and elimination of false hybrids in commercial hybrid rice production, resulting in yield increases by up to approximately 537 kg ha(-1).

  6. Reduction of lunar basalt 70035: Oxygen yield and reaction product analysis

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A.; Knudsen, Christian W.; Bruenemen, David J.; Allen, Carlton C.; Kanamori, Hiroshi; Mckay, David S.

    1994-01-01

    Oxygen production from a lunar rock has been experimentally demonstrated for the first time. A 10 g sample of high-Ti basalt 70035 was reduced with hydrogen in seven experiments at temperatures of 900-1050 C and pressures of 14.7-150 psia. In all experiments, water evolution began almost immediately and was essentially complete in tens of minutes. Oxygen yields ranged from 2.93 to 4.61% of the starting sample weight, and showed weak dependence on temperature and pressure. Analysis of the solid samples demonstrated total reduction of Fe(2+) in ilmenite and small degrees of reduction in olivine and pyroxene. Ti O2 was also partially reduced to one or more suboxides. Data from these experiments provide a basis for predicting the yield of oxygen from lunar basalt as well as new constraints on natural reduction in the lunar regolith.

  7. Kelp biomass production: yield, genetics, and planting technology. Annual report, January 1983-August 1984. Technical report

    SciTech Connect

    Neushul, M.; Harger, B.W.W.

    1985-01-01

    Progress was made toward the long-term goal of growing macroalgae in the sea as a future source of substitute natural gas. The annual report discusses progress made to: (1) measure macroalgal yield, (2) enhance yield by row planting and selective harvesting, (3) genetically breed high-producing plants, (4) devise methods for planting kelps and (5) maintain and extend collaborative research efforts and communication with scientists working on macroalgal biomass production in Japan, China and elsewhere. The report discusses kelp biology and macroalgal mariculture in general terms, the theories that have been proposed and the existing data base in the scientific literature. Particular attention is given to new techniques used to make in-the-sea hydrodynamic and light-climate measurements and microspectrophotometric measurements of DNA levels in kelp sporophytes and gametophytes.

  8. A quantum yield determination of O/1D/ production from ozone via laser flash photolysis

    NASA Technical Reports Server (NTRS)

    Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    The quantum yield of electronically excited atomic oxygen produced from ozone photolysis was measured at 298 K from wavelengths of 293.0 to 316.5 nm. The reaction of the atomic oxygen with N2O to form excited NO2 was used to monitor the O production; a frequency-doubled flashlamp-pumped dye laser which provided tunable ultraviolet in the desired spectral region with 0.1-nm linewidth served as the photolysis source. The atomic oxygen quantum yield was found to be constant below 300 nm, with a sharp decrease centered at 308 nm and a diminution to less than one tenth of the constant value by 313.5 nm.

  9. Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black water floodplains.

    PubMed

    Piedade, Maria Teresa F; Parolin, Pia; Junk, Wolfgang J

    2006-12-01

    Astrocaryum jauari Mart. (Arecaceae) is one of the commonest palm species occurring in nutritionally poor Amazonian black water floodplains. It is an emergent or subcanopy tree that grows on river banks and islands, with a wide distribution along the entire flooding gradient, tolerating flood durations between 30 and 340 days. The species is important for fish nutrition in the floodplains, and is also used for hearts of palm. In the present study, the auto-ecology of A. jauari was analysed over a period of two years in the Anavilhanas Archipelago, Rio Negro, Brazil, with a focus on phenology, fruit production, and seed dispersal. Fruit fall is annual and synchronized with high water levels, with a production of 1.6 ton of fruit ha(-1). The fruits are eaten by at least 16 species of fish which either gnaw the pulp, fragment the seed, or ingest the entire fruit, thus acting as dispersal agents. Besides ichthyocory, barochory (with subsequent vegetative propagation) is an important dispersal mode, enhancing the occurrence of large masses of individuals in the Anavilhanas islands and in the region of maximum palm heart extraction near Barcelos.

  10. Ethylene Production is Associated with Germination but not Seed Dormancy in Red Rice

    PubMed Central

    Gianinetti, Alberto; Laarhoven, Lucas J. J.; Persijn, Stefan T.; Harren, Frans J. M.; Petruzzelli, Luciana

    2007-01-01

    Background and Aims The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species. Methods Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser–photoacoustic system. Key Results Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene. Conclusions The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred. PMID:17347162

  11. Yucca brevifolia fruit production, predispersal seed predation, and fruit removal by rodents during two years of contrasting reproduction

    USGS Publications Warehouse

    Borchert, Mark I.; DeFalco, Lesley

    2016-01-01

    PREMISE OF THE STUDY: The distribution of Yucca brevifolia, a keystone species of the Mojave Desert, may contract with climate change, yet reproduction and dispersal are poorly understood. We tracked reproduction, seed predation, and fruit dispersal for two years and discuss whether Y. brevifolia is a masting species. METHODS: Fruit maturation, seed predation (larval yucca moths), and fruit dispersal (rodents) were monitored on a random sample of panicles during 2013 and 2014, which were years of high and low reproduction, respectively. Fates of fruits placed on the ground and in canopies were also tracked. Rodents were live-trapped to assess abundance and species composition. KEY RESULTS: In 2013, 66% of inflorescences produced fruit of which 53% escaped larval predation; 19.5% of seeds were destroyed in infested fruits. Total seed production was estimated to be >100 times greater in 2013 than 2014. One-third of the fruit crop fell to the ground and was removed by rodents over the course of 120 d. After ground fruits became scarce, rodents exploited canopy fruits. Rodent numbers were low in 2013, so fruits remained in canopies for 370 d. In 2014, fruit production was approximately 20% lower. Larvae infested the majority of fruits, and almost twice the number of seeds were damaged. Fruits were exploited by rodents within 65 d. CONCLUSIONS: High fertilization, prolific seed production, and low predispersal predation in 2013 suggests that pollinator attraction and satiation of seed predators influence masting in Y. brevifolia. Abundant, prolonged fruit availability to seed-dispersing rodents likely extends recruitment opportunities during mast years.

  12. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m

  13. The Reaction between CH3O2 and OH Radicals: Product Yields and Atmospheric Implications.

    PubMed

    Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa; Heard, Dwayne; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2017-02-21

    The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕHO2 = (0.8 ± 0.2) and an upper limit for ϕCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.

  14. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.

    PubMed

    Alam, Mohammed S; Rickard, Andrew R; Camredon, Marie; Wyche, Kevin P; Carr, Timo; Hornsby, Karen E; Monks, Paul S; Bloss, William J

    2013-11-27

    The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.

  15. The reaction between CH3O2 and OH radicals: Product yields and atmospheric implications

    DOE PAGES

    Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa; ...

    2017-01-25

    The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ΦHO2 = (0.8 ± 0.2) and an upper limit formore » ΦCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Finally, production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.« less

  16. Alfalfa forage and seed crop tolerance to flumioxazin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control is an important component of producing high quality and high yielding alfalfa seed and forage. Flumioxazin was evaluated for weed control in alfalfa forage and seed production in 2007 and 2008 in Washington State. Flumioxazin applied at 0.14 and 0.28 kg ai/ha plus paraquat in February t...

  17. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, J.A.

    1984-11-29

    A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.

  18. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, John A.

    1986-01-01

    A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.

  19. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity

    PubMed Central

    Sekulic, Gregory; Rempel, Curtis B.

    2016-01-01

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species. PMID:27527233

  20. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity.

    PubMed

    Sekulic, Gregory; Rempel, Curtis B

    2016-08-03

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species.

  1. The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus.

    PubMed

    Credali, Alfredo; García-Calderón, Margarita; Dam, Svend; Perry, Jillian; Díaz-Quintana, Antonio; Parniske, Martin; Wang, Trevor L; Stougaard, Jens; Vega, José M; Márquez, Antonio J

    2013-01-01

    The physiological role of K(+)-dependent and K(+)-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K(+)-dependent NSE1 asparaginase in the model legume Lotus japonicus. For this purpose, four different mutants were identified by TILLING and characterized, two of which affected the structure and function of the asparaginase molecule and caused asparagine accumulation. Plant growth and total seed weight of mature mutant seeds as well as the level of both legumin and convicilin seed storage proteins were affected in the mutants. The mutants isolated in the present work are the first of their type in legumes and have enabled us to demonstrate the importance of asparagine and K(+)-dependent NSE1 asparaginase for nitrogen remobilization and seed production in L. japonicus plants.

  2. Hypergravity prevents seed production in Arabidopsis by disrupting pollen tube growth.

    PubMed

    Musgrave, Mary E; Kuang, Anxiu; Allen, Joan; van Loon, Jack J W A

    2009-10-01

    How tightly land plants are adapted to the gravitational force (g) prevailing on Earth has been of interest because unlike many other environmental factors, g presents as a constant force. Ontogeny of mature angiosperms begins with an embryo that is formed after tip growth by a pollen tube delivers the sperm nucleus to the egg. Because of the importance to plant fitness, we have investigated how gravity affects these early stages of reproductive development. Arabidopsis thaliana (L.) Heynh. plants were grown for 13 days prior to being transferred to growth chambers attached to a large diameter rotor, where they were continuously exposed to 2-g or 4-g for the subsequent 11 days. Plants began flowering 1 day after start of the treatments, producing hundreds of flowers for analysis of reproductive development. At 4-g, Arabidopsis flowers self-pollinated normally but did not produce seeds, thus derailing the entire life cycle. Pollen viability and stigma esterase activity were not compromised by hypergravity; however, the growth of pollen tubes into the stigmas was curtailed at 4-g. In vitro pollen germination assays showed that 4-g average tube length was less than half that for 1-g controls. Closely related Brassica rapa L., which produces seeds at 4-g, required forces in excess of 6-g to slow in vitro tube growth to half that at 1-g. The results explain why seed production is absent in Arabidopsis at 4-g and point to species differences with regard to the g-sensitivity of pollen tube growth.

  3. Spontaneous high-yield hydrogen production from cellulosic materials and water catalyzed by enzyme cocktail

    SciTech Connect

    Ye, Xinhao; Wang, Yiran; Hopkins, Robert C.; Adams, Michael W. W.; Evans, Barbara R; Mielenz, Jonathan R; Zhang, Y.-H. Percival

    2009-01-01

    Carbon-neutral hydrogen gas is a compelling energy carrier, especially for the transportation section. Low-cost hydrogen can be produced from abundant renewable lignocellulosic biomass through a number of methods employing chemical catalysis, biocatalysis or a combination of both, but these technologies suffer from low hydrogen yields (well below the theoretical yield of 12 H2 per glucose), undesired side-products and/or required severe reaction conditions. Here we present a novel in vitro synthetic biology approach for producing near theoretical hydrogen yields from cellulosic materials (cellodextrins) and water at 32oC and 1 atm. These non-natural catabolic pathways containing up to 14 enzymes and one coenzyme degrade cellodextrins initially to glucose-1-phosphate and eventually to CO2, split water and finally release the chemical energy in the form of hydrogen gas. Up to 11.2 H2 per anhydroglucose was produced in a batch reaction. This spontaneous endothermic reaction is driven by entropy gain, suggesting that the thermal energy is adsorbed for generating more chemical energy (hydrogen gas) than that in cellodextrins, i.e., output/input of chemical energy > 1, with an input of ambient-temperature thermal energy.

  4. Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach.

    PubMed

    Sudha, A; Sivakumar, V; Sangeetha, V; Devi, K S Priyenka

    2015-08-01

    Cassava pulp, a potential biological feedstock for ethanol production has been subjected to microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. Liquid to solid ratio for the pretreatment of cassava pulp was found to be 20:1. Cassava pulp was pretreated at various NaOH concentration, microwave temperature and gave maximum yield of reducing sugar with 1.5% NaOH at 90 °C in 30 min than conventional alkali pretreatment after enzymatic hydrolysis. The subsequent enzymatic saccharification of pretreated cassava pulp using α amylase dosage of 400 IU at microwave temperature of 90 °C resulted in highest reducing sugar yield of 723 mg/g pulp. Microwave-assisted alkali pretreatment improved the enzymatic saccharification of cassava pulp by increasing its accessibility to hydrolytic enzymes. Microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis are found to be efficient for improving the yield of reducing sugar.

  5. A review on biomass production from C4 grasses: yield and quality for end-use.

    PubMed

    Tubeileh, Ashraf; Rennie, Timothy J; Goss, Michael J

    2016-06-01

    With a dry biomass production exceeding 40Mgha(-1) in many environments, Miscanthus spp. is the most productive perennial C4 grass species thanks to five advantages over North American prairie tallgrasses. However, miscanthus has a slower nutrient remobilization system, resulting in higher nutrient concentrations at harvest. Perennial C4 grasses benefit from soil microbial associations, reducing their nutrient needs. For combustion purposes, grasses with low moisture content, high lignin and low nutrients are desired. For ethanol, preferred feedstock will have lower lignin, higher sugars, starch, or cellulose/hemicellulose depending on the conversion method. Species with high stem-to-leaf ratio provide better biofuel conversion efficiency and quality. Recently-developed transgenic switchgrass lines have much higher ethanol yields and lower transformation costs. Further selection and breeding are needed to optimize biomass quality and nutrient cycling.

  6. Maximum cell productivity by repeated fed-batch culture for constant yield case

    SciTech Connect

    Weigand, W.A.

    1981-02-01

    Optimal operation of repeatedly fed-batch fermentation was determined by the continuous maximum principle for the constant yield case. The objective of maximum cell productivity for a fixed final cell concentration was achieved by finding the substrate feeding policy that minimized the processing time. Analytical criteria for the optimal filling policy show that an exponential policy is optimum when the specific growth rate has a maximum, and also that operation in the simple repeated batch model is optimum when the specific growth rate is optimum when the specific growth rate is monotonic increasing. Comparisons between optimal repeated fed-batch culture and other modes of operation were made for the case of substrate-inhibited growth. Cell productivity by repeated fed-batch exceeds both repeated batch and continuous operation for the case of low residual substrate concentration.

  7. Sesame seed products contaminated with Salmonella: three outbreaks associated with tahini.

    PubMed

    Unicomb, L E; Simmons, G; Merritt, T; Gregory, J; Nicol, C; Jelfs, P; Kirk, M; Tan, A; Thomson, R; Adamopoulos, J; Little, C L; Currie, A; Dalton, C B

    2005-12-01

    In November 2002, the first of three outbreaks of Salmonella Montevideo infection in Australia and New Zealand was identified in New South Wales, Australia. Affected persons were interviewed, and epidemiologically linked retail outlets inspected. Imported tahini was rapidly identified as the source of infection. The contaminated tahini was recalled and international alerts posted. A second outbreak was identified in Australia in June-July 2003 and another in New Zealand in August 2003. In a total of 68 S. Montevideo infections, 66 cases were contacted. Fifty-four (82%) reported consumption of sesame seed-based foods. Laboratory analyses demonstrated closely related PFGE patterns in the S. Montevideo isolates from human cases and sesame-based foods imported from two countries. On the basis of our investigations sesame-based products were sampled in other jurisdictions and three products in Canada and one in the United Kingdom were positive for Salmonella spp., demonstrating the value of international alerts when food products have a wide distribution and a long shelf life. A review of the controls for Salmonella spp. during the production of sesame-based products is recommended.

  8. Use of transgenic seeds in Brazilian agriculture and concentration of agricultural production to large agribusinesses.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; Amaral, S C S; de Mello, M P

    2012-07-19

    We identified the commercial releases of genetically modified organisms (GMOs) in Brazil, their characteristics, the types of genetic transformation used, and the companies responsible for the development of these GMOs, classifying them into two categories: private companies, subdivided into multinational and national, and public institutions. The data came from the data bank of the national registration of cultivars and the service of national protection of cultivars of the Ministry of Agriculture, Fishing and Supply (MAPA). This survey was carried out from 1998 to February 12, 2011. Until this date, 27 GMOs had been approved, including five for soybean, 15 for maize and seven for cotton cultivars. These GMOs have been used for the development of 766 cultivars, of which, 305 are soybean, 445 are maize, and 13 are cotton cultivars. The Monsato Company controls 73.2% of the transgenic cultivars certified by the MAPA; a partnership between Dow AgroSciences and DuPont accounts for 21.4%, and Syngenta controls 4.96%. Seed supply by these companies is almost a monopoly supported by law, giving no choice for producers and leading to the fast replacement of conventional cultivars by transgenic cultivars, which are expensive and exclude small producers from the market, since seeds cannot be kept for later use. This situation concentrates production in the hands of a few large national agribusiness entrepreneurs.

  9. Corn seeds as bioreactors for the production of phytase in the feed industry.

    PubMed

    Chen, Rumei; Zhang, Chunyi; Yao, Bin; Xue, Guangxing; Yang, Wenzhu; Zhou, Xiaojin; Zhang, Junmin; Sun, Cheng; Chen, Ping; Fan, Yunliu

    2013-05-20

    Corn seed is a major ingredient of animal feed worldwide. However, it contains phytate, a major phosphate storage form that is unavailable to monogastric animals like pigs and poultry. We report a transgenic corn with bioavailable phosphate, achieved by seed-specific overexpression of Aspergillus niger phytase, an enzyme catalyzing the release of phosphate from phytate. We obtained maximal phytase activity of 125 FTU/g kernels, 1000-fold above that of the wild type, with 1000 g of kernels containing up to 67 times the feed industry requirement. Enzymatic characterization of Zea mays recombinant phytase (ZmrPhy) showed it to be equivalent to yeast (Pichia pastoris) recombinant phytase (PprPhy), a commercially available phytase product. An animal feeding trial demonstrated that ZmrPhy had similar nutritional effects on broiler chickens to PprPhy in terms of reducing inorganic phosphorus addition to feed and phosphate excretion in animal manure. These results suggest that transgenic phytase corn can be used directly in the feed industry. Experiments were conducted to assess the food safety of the corn; the results demonstrated no difference versus regular corn. This is the first genetically modified corn officially issued with a biosafety certificate in China and has great potential in the animal feed industry.

  10. Steam gasification of waste tyre: influence of process temperature on yield and product composition.

    PubMed

    Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

    2013-03-01

    An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.

  11. Thick target spallation product yields from 800 MeV protons on tungsten

    SciTech Connect

    Ullmann, J.L.; Staples, P.; Butler, G.

    1994-07-01

    A number of newly-conceived accelerator based technologies will employ medium-energy particles stopping in thick targets to produce large numbers of neutrons. It is important to quantify the residual radionuclides in the target because one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects of accidental dispersion during operation. Because stopping-length targets are considered, radionuclide production must be known as a function of energy. Moreover, secondary particle production, mostly neutrons, implies a need to be able to calculate particle transport. To test the overall ability to calculate radionuclide yields, a thick-target measurement was carried out and the results compared to detailed calculations. Although numerous measurements of thin-target spallation yields have been made, there have been only a few measurements on thick systems. The most complete study showed results for Pb and U systems. In this contribution, the authors report on measurements made for a stopping-length W target. Special efforts were made to measure short-lived isotopes, and reliable data on isotopes with two or three minute half-lives were obtained.

  12. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides.

    PubMed

    Miao, Xiaoling; Wu, Qingyu

    2004-05-13

    The use of renewable energy sources is becoming increasingly necessary to mitigate global warming. Recently much research has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuels. This paper reports an approach for increasing the yield of bio-oil production from fast pyrolysis after manipulating the metabolic pathway in microalgae through heterotrophic growth. The yield of bio-oil (57.9%) produced from heterotrophic Chlorella protothecoides cells was 3.4 times higher than from autotrophic cells by fast pyrolysis. The bio-oil was characterized by a much lower oxygen content, with a higher heating value (41 MJ kg(-1)), a lower density (0.92 kg l(-1)), and lower viscosity (0.02 Pas) compared to those of bio-oil from autotrophic cells and wood. These properties are comparable to fossil oil. The research could contribute to the creation of a system to produce energy from microalgae, and also could have great commercial potential for liquid fuel production.

  13. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa.

    PubMed

    Wang, Fengxia; Xu, Yan-Ge; Wang, Shuai; Shi, Weiwei; Liu, Ranran; Feng, Gu; Song, Jie

    2015-10-01

    The effect of salinity on brown seeds/black seeds ratio, seed weight, endogenous hormone concentrations, and germination of brown and black seeds in the euhalophyte Suaeda salsa was investigated. The brown seeds/black seeds ratio, seed weight of brown and black seeds and the content of protein increased at a concentration of 500 mM NaCl compared to low salt conditions (1 mM NaCl). The germination percentage and germination index of brown seeds from plants cultured in 500 mM NaCl were higher than those cultured in 1 mM NaCl, but it was not true for black seeds. The concentrations of IAA (indole-3-acetic acid), ZR (free zeatin riboside) and ABA (abscisic acid) in brown seeds were much greater than those in black seeds, but there were no differences in the level of GAs (gibberellic acid including GA1 and GA3) regardless of the degree of salinity. Salinity during plant culture increased the concentration of GAs, but salinity had no effect on the concentrations of the other three endogenous hormones in brown seeds. Salinity had no effect on the concentration of IAA but increased the concentrations of the other three endogenous hormones in black seeds. Accumulation of endogenous hormones at different concentrations of NaCl during plant growth may be related to seed development and to salt tolerance of brown and black S. salsa seeds. These characteristics may help the species to ensure seedling establishment and population succession in variable saline environments.

  14. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security

    PubMed Central

    Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R.

    2016-01-01

    After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize

  15. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security.

    PubMed

    Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R

    2016-01-01

    After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize

  16. Genome Sequencing and Analysis of Phomopsis longicolla Isolate MSPL 10-6 Causing Phomopsis Seed Decay in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis seed decay of soybean is caused primarily by the seed-borne fungal pathogen Phomopsis longicolla (syn. Diaporthe longicolla). This disease causes poor seed quality, reduces seedling vigor and stand establishment, and suppresses yield in most soybean production regions, especially in southe...

  17. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.

    PubMed

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-06-09

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

  18. Consumption and quantitation of delta9-tetrahydrocannabinol in commercially available hemp seed oil products.

    PubMed

    Bosy, T Z; Cole, K A

    2000-10-01

    There has been a recent and significant increase in the use and availability of hemp seed oil products. These products are being marketed as a healthy source of essential omega fatty acids when taken orally. Although the health aspects of these oils is open to debate, the probability that oils derived from the hemp seed will contain delta9-tetrahyrdocannabinol (THC) is noteworthy. Recent additions to the literature cite a number of studies illustrating that the ingestion of these products results in urinary levels of the THC metabolite, delta9-tetrahyrdocannabinol carboxylic acid (THCA), well above the administrative cutoff (50 ng/mL) used during random drug screens. Testing performed by our laboratory found that the concentration of THC in hemp oil products has been reduced considerably since the publication of earlier studies. The purpose of this study is to quantitate the THC levels in commercially available hemp oils and to administer those oils tested to THC-free volunteers to determine urine metabolite levels following several 15-g doses. Two extraction protocols were evaluated for removing THC from the oil matrix: a single step liquid-liquid extraction was compared to a two-phase process using both liquid-liquid and solid-phase techniques. Gas chromatography-mass spectrometry was used to determine THC levels in several products: four from Spectrum Essentials (3 bottled oils and 1-g capsules), two from Health from the Sun (1-g capsules and bottled oil) oils, and single samples of both Hempstead and Hempola hemp oils. These hemp oil products contained THC concentrations of 36.0, 36.4, 117.5, 79.5, 48.6, 45.7, 21.0, and 11.5 mg/g, respectively. The Abbott AxSYM FPIA and Roche On-Line KIMS immunoassays were used to screen the urine samples, and GC-MS was used to determine the amount of THC in each oil as well as confirm and quantitate THCA in the urine of study participants immediately before and 6 h after each dose. Peak THCA levels in the participants' urine

  19. Preparative HSCCC isolation of phloroglucinolysis products from grape seed polymeric proanthocyanidins as new powerful antioxidants.

    PubMed

    Zhang, Shuting; Cui, Yan; Li, Lingxi; Li, Yuanyuan; Zhou, Peiyu; Luo, Lanxin; Sun, Baoshan

    2015-12-01

    Polymeric proanthocyanidins isolated from a grape seed phenolic extract were hydrolysed in the presence of phloroglucinol into monomer catechins and their nucleophile derivatives. Each of the phloroglucinolysis products was successfully separated and isolated in large amount by semi-preparative HSCCC technique under the optimized conditions based on a selection of suitable solvent system. The optimized solvent system consisted of n-hexane-ethyl acetate-water (1:80:80, v/v/v) with a combination of head-tail and tail-head elution modes. By only one-step HSCCC separation, the purity of each obtained phloroglucinolysis product, including monomer catechins and their nucleophile derivatives was above 76%, verified by UPLC. The structures of these products were tentatively identified by UPLC based on their retention time and further confirmed by MS and (1)H NMR analysis. Furthermore, by DPPH, ABTS and FRAP assays, it was verified that all these phloroglucinolysis products possessed strong antioxidant activities, being catechin-nucleophile derivatives more powerful than free catechins.

  20. A nonlinear relationship between genetic diversity and productivity in a polyphagous seed beetle.

    PubMed

    Burls, K J; Shapiro, J; Forister, M L; Hoelzer, G A

    2014-05-01

    There has been a renewed interest in the effects of genetic diversity on population-level and community-level processes. Many of these studies have found non-additive, positive effects of diversity, but these studies have rarely examined ecological mechanisms by which diverse populations increase productivity. We used the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) to study genetic diversity in insect host preference and fecundity and its effects on total productivity and resource use. We created genetically distinct lineages that varied in host preference and fecundity and then assembled groups consisting of one, three, five, or all ten lineages. We found that lineages with intermediate diversity had the highest productivity, though resource use did not change in diverse groups. In addition, lineages showed substantial plasticity in host preference when preference was assayed either individually or in groups, and productivity was much lower in groups than predicted by individual assays. These results highlight the interplay of genetic diversity, resource variation, and phenotypic plasticity in determining the ecological consequences of genetic diversity. In addition, when plasticity modifies a population's response to population density, this may create a complex interaction between genetic diversity and density, influencing selective pressures on the population and potentially maintaining genetic diversity across generations.

  1. Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production.

    PubMed

    Zhang, Na; Zhang, Hai-Jun; Sun, Qian-Qian; Cao, Yun-Yun; Li, Xingsheng; Zhao, Bing; Wu, Ping; Guo, Yang-Dong

    2017-03-29

    Seed germination is a critical and complex process in the plant life cycle. Although previous studies have found that melatonin can promote seed germination under salt stress, the involvement of melatonin in the regulation of proteomic changes remains poorly understood. In this study, a total of 157 proteins were significantly influenced (ratio ≥ 2 or ≤ -2) by melatonin during seed germination under salt stress using a label-free quantitative technique. Our GO analysis revealed that several pathways were obviously regulated by melatonin, including ribosome biosynthesis, lipid metabolism, carbohydrate metabolism, and storage protein degradation. Not only stress-tolerant proteins but also proteins that produce ATP as part of glycolysis, the citric acid cycle, and the glyoxylate cycle were upregulated by melatonin. Overall, this study provides new evidence that melatonin alleviates the inhibitory effects of NaCl stress on seed germination by promoting energy production. This study is the first to provide insights at the proteomic level into the molecular mechanism of melatonin in response to salt stress in cucumber seeds. This may be helpful to further understand the role of melatonin in cucumber seed germination under stress conditions.

  2. Oxygen atom transfer to a half-sandwich iridium complex: clean oxidation yielding a molecular product.

    PubMed

    Turlington, Christopher R; White, Peter S; Brookhart, Maurice; Templeton, Joseph L

    2014-03-12

    The oxidation of [Ir(Cp*)(phpy)(NCAr(F))][B(Ar(F))4] (1; Cp* = η(5)-pentamethylcyclopentadienyl, phpy = 2-phenylene-κC(1')-pyridine-κN, NCAr(F) = 3,5-bis(trifluoromethyl)benzonitrile, B(Ar(F))4 = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) with the oxygen atom transfer (OAT) reagent 2-tert-butylsulfonyliodosobenzene (sPhIO) yielded a single, molecular product at -40 °C. New Ir(Cp*) complexes with bidentate ligands derived by oxidation of phpy were synthesized to model possible products resulting from oxygen atom insertion into the iridium-carbon and/or iridium-nitrogen bonds of phpy. These new ligands were either cleaved from iridium by water or formed unreactive, phenoxide-bridged iridium dimers. The reactivity of these molecules suggested possible decomposition pathways of Ir(Cp*)-based water oxidation catalysts with bidentate ligands that are susceptible to oxidation. Monitoring the [Ir(Cp*)(phpy)(NCAr(F))](+) oxidation reaction by low-temperature NMR techniques revealed that the reaction involved two separate OAT events. An intermediate was detected, synthesized independently with trapping ligands, and characterized. The first oxidation step involves direct attack of the sPhIO oxidant on the carbon of the coordinated nitrile ligand. Oxygen atom transfer to carbon, followed by insertion into the iridium-carbon bond of phpy, formed a coordinated organic amide. A second oxygen atom transfer generated an unidentified iridium species (the "oxidized complex"). In the presence of triphenylphosphine, the "oxidized complex" proved capable of transferring one oxygen atom to phosphine, generating phosphine oxide and forming an Ir-PPh3 adduct in 92% yield. The final Ir-PPh3 product was fully characterized.

  3. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: biodiesel production and characterization.

    PubMed

    Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk

    2010-05-01

    Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements.

  4. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield

    PubMed Central

    Yang, Peng; Liu, Wenjing; Cheng, Xuelian; Wang, Jing; Qi, Qingsheng

    2016-01-01

    ABSTRACT 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineered Corynebacterium glutamicum CgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS from Rhodobacter capsulatus SB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinant C. glutamicum. Through overexpression of the heterologous nonspecific ALA exporter RhtA from Escherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future. IMPORTANCE In this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host, Corynebacterium glutamicum. The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future. PMID:26921424

  5. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields.

    PubMed

    Hagler, James R; Mueller, Shannon; Teuber, Larry R; Machtley, Scott A; Van Deynze, Allen

    2011-01-01

    A study was conducted in 2006 and 2007 designed to examine the foraging range of honey bees, Apis mellifera (Hymenoptera: Apidae), in a 15.2 km(2) area dominated by a 128.9 ha glyphosate-resistant Roundup Ready® alfalfa seed production field and several non-Roundup Ready alfalfa seed production fields (totaling 120.2 ha). Each year, honey bee self-marking devices were placed on 112 selected honey bee colonies originating from nine different apiary locations. The foraging bees exiting each apiary location were uniquely marked so that the apiary of origin and the distance traveled by the marked (field-collected) bees into each of the alfalfa fields could be pinpointed. Honey bee self-marking devices were installed on 14.4 and 11.2% of the total hives located within the research area in 2006 and 2007, respectively. The frequency of field-collected bees possessing a distinct mark was similar, averaging 14.0% in 2006 and 12.6% in 2007. A grand total of 12,266 bees were collected from the various alfalfa fields on seven sampling dates over the course of the study. The distances traveled by marked bees ranged from a minimum of 45 m to a maximum of 5983 m. On average, marked bees were recovered ~ 800 m from their apiary of origin and the recovery rate of marked bees decreased exponentially as the distance from the apiary of origin increased. Ultimately, these data will be used to identify the extent of pollen-mediated gene flow from Roundup Ready to conventional alfalfa.

  6. High Temperature Induced Glume Closure Resulted in Lower Fertility in Hybrid Rice Seed Production

    PubMed Central

    Yan, Haoliang; Zhang, Binglin; Zhang, Yunbo; Chen, Xinlan; Xiong, Hui; Matsui, Tsutomu; Tian, Xiaohai

    2017-01-01

    Predicted climate changes, in particular, the increased dimension and frequency of heat waves, are expected to affect crop growth in the future seriously. Hybrid rice relies on seed production from male sterile and restorer lines. Experiments were conducted over two consecutive years to compare the high temperature tolerance of parents of different hybrid rice combinations, in terms of fertility rate, flowering pattern, pollination and physiological parameters of the lodicule. Three male sterile lines and a broad compatibility restorer line (as pollen donor and conventional variety as well) were grown to heading stage and then treated with average daily temperatures of 26°C (range 23–30°C), 28°C (25–32°C), and 30°C (26–34°C), respectively, continued for 5–7 days each in a natural light phytotron which simulated the local typical high temperature weather in the field. The results indicated that male sterile lines were more sensitive to high temperature than the restorer line for fertility rate, and the sensitivity varied between varieties. The fertility rate of the restorer line was maintained at about 90% under the high temperature treatments, while it decreased in the male sterile lines by 23.3 and 48.1% at 28 and 30°C, respectively. The fertility rate of the most sensitive line declined by 70%, and the tolerant line declined by 34% at 30°C. Glume closure in the male sterile lines was a major reason for the reduced fertility rate under high temperature, which is closely correlated with carbohydrates content and the vascular bundle pattern in the lodicule. The present study identified a useful trait to select male sterile lines with high temperature tolerance for seed production. PMID:28105031

  7. In Vitro Inhibition of Cholera Toxin Production in Vibrio cholerae by Methanol Extract of Sweet Fennel Seeds and Its Components.

    PubMed

    Chatterjee, Shruti; Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Chowdhury, Nityananda; Asakura, Masahiro; Hinenoya, Atsushi; Ramamurthy, T; Iwaoka, Emiko; Aoki, Shunji; Yamasaki, Shinji

    2016-09-21

    A newly emerged Vibrio cholerae O1 El Tor variant strain with multidrug resistance is considered a threat to public health. Recent strategies to suppress virulence factors production instead of bacterial growth may lead to less selective pressure for the emergence of resistant strains. The use of spices and their active constituents as the inhibitory agents against cholera toxin (CT) production in V. cholerae may be an alternative approach to treat cholera. In this study, we examined the potential of sweet fennel seed (Foeniculum vulgare Miller var. dulce) methanol extract to inhibit CT production in V. cholerae without affecting viability. The methanol extract of sweet fennel seeds significantly inhibited CT production in various V. cholerae strains, regardless of serogroup or biotype. Interestingly, trans-anethole and 4-allylanisole, essential oil components of sweet fennel seeds, also demonstrated similar effects. Here, we report that sub-bactericidal concentrations of sweet fennel seed methanol extract and its major components can drastically inhibit CT production in various V. cholerae strains.

  8. Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water

    PubMed Central

    Pothasin, Pornwiwan; Compton, Stephen G.; Wangpakapattanawong, Prasit

    2016-01-01

    The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate. PMID:27010540

  9. Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water.

    PubMed

    Pothasin, Pornwiwan; Compton, Stephen G; Wangpakapattanawong, Prasit

    2016-01-01

    The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate.

  10. Improvement of ε-poly-L-lysine production through seed stage development based on in situ pH monitoring.

    PubMed

    Sun, Qi-Xing; Chen, Xu-Sheng; Ren, Xi-Dong; Mao, Zhong-Gui

    2015-01-01

    Nissin, natamycin, and ε-poly-L-lysine (ε-PL) are three safe, microbial-produced food preservatives used today in the food industry. However, current industrial production of ε-PL is only performed in several countries. In order to realize large-scale ε-PL production by fermentation, the effects of seed stage on cell growth and ε-PL production were investigated by monitoring of pH in situ in a 5-L laboratory-scale fermenter. A significant increase in ε-PL production in fed-batch fermentation by Streptomyces sp. M-Z18 was achieved, at 48.9 g/L, through the optimization of several factors associated with seed stage, including spore pretreatment, inoculum age, and inoculum level. Compared with conventional fermentation approaches using 24-h-old shake-flask seed broth as inoculum, the maximum ε-PL concentration and productivity were enhanced by 32.3 and 36.6 %, respectively. The effect of optimized inoculum conditions on ε-PL production on a large scale was evaluated using a 50-L pilot-scale fermenter, attaining a maximum ε-PL production of 36.22 g/L in fed-batch fermentation, constituting the first report of ε-PL production at pilot scale. These results will be helpful for efficient ε-PL production by Streptomyces at pilot and plant scales.

  11. THE GAS PHASE REACTION OF OZONE WITH 1,3-BUTADIENE: FORMATION YIELDS OF SOME TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separa...

  12. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  13. Tropospheric ozone pollution in India: effects on crop yield and product quality.

    PubMed

    Singh, Aditya Abha; Agrawal, S B

    2017-02-01

    Ozone (O3) in troposphere is the most critical secondary air pollutant, and being phytotoxic causes substantial losses to agricultural productivity. Its increasing concentration in India particularly in Indo-Gangetic plains is an issue of major concern as it is posing a threat to agriculture. In view of the issue of rising surface level of O3 in India, the aim of this compilation is to present the past and the prevailing concentrations of O3 and its important precursor (oxides of nitrogen) over the Indian region. The resulting magnitude of reductions in crop productivity as well as alteration in the quality of the product attributable to tropospheric O3 has also been taken up. Studies in relation to yield measurements have been conducted predominantly in open top chambers (OTCs) and also assessed by using antiozonant ethylene diurea (EDU). There is a substantial spatial difference in O3 distribution at different places displaying variable O3 concentrations due to seasonal and geographical variations. This review further recognizes the major information lacuna and also highlights future perspectives to get the grips with rising trend of ground level O3 pollution and also to formulate the policies to check the emissions of O3 precursors in India.

  14. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    SciTech Connect

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.; Balagopalan, C.; Whitwill, S.T.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more than or equal to 6.0 in a liquid medium, or pH of more than or equal to 7.0 on solid media. The optimum growth conditions of pH 3.8 and 45 degrees were strongly inhibitive to potential contaminants. It rapidly hydrolyzed cassava starch. It did not utilize sucrose, but approximately 16% of the small sucrose component of cassava was chemically hydrolyzed during the process. Growth with cassava meal (50 g/l) was complete in approximately 20 h, yielding 22.5 g/l (dry biomass), containing 41% crude protein (48-50% crude protein in the mycelium) and 31% true protein (7.0 g/l). Resting and germinating spores (10 to the power of 6 - 10 to the power of 8 per animal) injected by various routes into normal and gamma-irradiated 6-week-old mice and 7-day-old chickens failed to initiate infections.

  15. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  16. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.

    PubMed

    Ogo, Yuko; Ozawa, Kenjiro; Ishimaru, Tsutomu; Murayama, Tsugiya; Takaiwa, Fumio

    2013-08-01

    Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes.

  17. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method.

    PubMed

    House, James D; Neufeld, Jason; Leson, Gero

    2010-11-24

    The macronutrient composition and the quality of protein of hemp seed and products derived from hemp seed grown in Western Canada were determined. Thirty samples of hemp products (minimum 500 g), including whole hemp seed, hemp seed meal from cold-press expelling, dehulled, or shelled, hemp seed and hemp seed hulls, were obtained from commercial sources. Proximate analysis, including crude protein (% CP), crude fat (% fat) and fiber, as well as full amino acid profiles, were determined for all samples. Protein digestibility-corrected amino acid score (PDCAAS) measurements, using a rat bioassay for protein digestibility and the FAO/WHO amino acid requirement of children (2-5 years of age) as reference, were conducted on subsets of hemp products. Mean (±SD) percentage CP and fat were 24.0(2.1) and 30.4(2.7) for whole hemp seed, 40.7(8.8) and 10.2(2.1) for hemp seed meal, and 35.9(3.6) and 46.7(5.0) for dehulled hemp seed. The percentage protein digestibility and PDCAAS values were 84.1-86.2 and 49-53% for whole hemp seed, 90.8-97.5 and 46-51% for hemp seed meal, and 83.5-92.1 and 63-66% for dehulled hemp seed. Lysine was the first limiting amino acid in all products. Removal of the hull fraction improved protein digestibility and the resultant PDCAAS value. The current results provide reference data in support of protein claims for hemp seed products and provide evidence that hemp proteins have a PDCAAS equal to or greater than certain grains, nuts, and some pulses.

  18. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production.

    PubMed

    Fast, Alan G; Schmidt, Ellinor D; Jones, Shawn W; Tracy, Bryan P

    2015-06-01

    Mass yields of biofuels and chemicals from sugar fermentations are limited by the decarboxylation reactions involved in Embden-Meyerhof-Parnas (EMP) glycolysis. This paper reviews one route to recapture evolved CO2 using the Wood-Ljungdahl carbon fixation pathway (WLP) in a process called anaerobic, non-photosynthetic (ANP) mixotrophic fermentation. In ANP mixotrophic fermentation, the two molecules of CO2 and eight electrons produced from glycolysis are used by the WLP to generate three molecules of acetyl-CoA from glucose, rather than the two molecules that are produced by typical fermentation processes. In this review, we define the bounds of ANP mixotrophy, calculate the potential metabolic advantages, and discuss the viability in a number of host organisms. Additionally, we highlight recent accomplishments in the field, including the recent discovery of electron bifurcation in acetogens, and close with recommendations to realize mixotrophic biofuel and biochemical production.

  19. Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.

    2010-12-01

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on

  20. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    PubMed

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.

  1. Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles.

    PubMed

    Grieshop, K; Stångberg, J; Martinossi-Allibert, I; Arnqvist, G; Berger, D

    2016-06-01

    Theory predicts that sexual reproduction can increase population viability relative to asexual reproduction by allowing sexual selection in males to remove deleterious mutations from the population without large demographic costs. This requires that selection acts more strongly in males than females and that mutations affecting male reproductive success have pleiotropic effects on population productivity, but empirical support for these assumptions is mixed. We used the seed beetle Callosobruchus maculatus to implement a three-generation breeding design where we induced mutations via ionizing radiation (IR) in the F0 generation and measured mutational effects (relative to nonirradiated controls) on an estimate of population productivity in the F1 and effects on sex-specific competitive lifetime reproductive success (LRS) in the F2 . Regardless of whether mutations were induced via F0 males or females, they had strong negative effects on male LRS, but a nonsignificant influence on female LRS, suggesting that selection is more efficient in removing deleterious alleles in males. Moreover, mutations had seemingly shared effects on population productivity and competitive LRS in both sexes. Thus, our results lend support to the hypothesis that strong sexual selection on males can act to remove the mutation load on population viability, thereby offering a benefit to sexual reproduction.

  2. Wheat Brassinosteroid-Insensitive1 (TaBRI1) Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis.

    PubMed

    Singh, Akanksha; Breja, Priyanka; Khurana, Jitendra P; Khurana, Paramjit

    2016-01-01

    Brassinosteroids (BRs) hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1) when they bind to its extracellular Leu-rich repeat (LRR) domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR), a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs) gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5), at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL) hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress.

  3. Wheat Brassinosteroid-Insensitive1 (TaBRI1) Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis

    PubMed Central

    Singh, Akanksha; Breja, Priyanka; Khurana, Jitendra P.; Khurana, Paramjit

    2016-01-01

    Brassinosteroids (BRs) hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1) when they bind to its extracellular Leu-rich repeat (LRR) domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR), a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs) gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5), at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL) hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress. PMID:27322749

  4. Increase of Farmers' Knowledge through Farmer Seed Production Schools in Vietnam as Assessed on the Basis of Ex-Ante and Ex-Post Tests

    ERIC Educational Resources Information Center

    Tin, Huynh Q.; Struik, Paul C.; Price, Lisa L.; Tuyen, Nguyen P.; Hoan, Nguyen P.; Bos, Heleen

    2010-01-01

    The study was designed to assess changes in farmers' knowledge of farmer seed production through schools (FSPSs) in Vietnam. A set of 25 questions covering five technical areas of the seed production process was used for pre and post knowledge testing at 12 FSPSs in the provinces Binh Dinh, Nam Dinh, Nghe An and Dong Thap. The main findings show…

  5. Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the variation of sap flow in female and male parents of maize for hybrid seed production and evapotranspiration (ET) partitioning is useful in accurately determining water use of the female and male parents and improving irrigation management of maize for hybrid seed production. Sap fl...

  6. The Adoption Process of Ricefield-Based Fish Seed Production in Northwest Bangladesh: An Understanding through Quantitative and Qualitative Investigation

    ERIC Educational Resources Information Center

    Haque, Mohammad Mahfujul; Little, David C.; Barman, Benoy K.; Wahab, Md. Abdul

    2010-01-01

    Purpose: The purpose of the study was to understand the adoption process of ricefield based fish seed production (RBFSP) that has been developed, promoted and established in Northwest Bangladesh. Design/Methodology/Approach: Quantitative investigation based on regression analysis and qualitative investigation using semi-structured interview were…

  7. Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product.

    PubMed

    Demiral, Ilknur; Ayan, Emine Asli

    2011-02-01

    In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600°C), heating rate (10-50°C/min) and nitrogen gas flow rate (50-200 cm(3)/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550°C, sweeping gas flow rate of 100 cm(3)/min and heating rate of 50°C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, (1)H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.

  8. Occurrence of Transgenic Feral Alfalfa (Medicago sativa subsp. sativa L.) in Alfalfa Seed Production Areas in the United States

    PubMed Central

    Greene, Stephanie L.; Kesoju, Sandya R.; Martin, Ruth C.; Kramer, Matthew

    2015-01-01

    The potential environmental risks of transgene exposure are not clear for alfalfa (Medicago sativa subsp. sativa), a perennial crop that is cross-pollinated by insects. We gathered data on feral alfalfa in major alfalfa seed-production areas in the western United States to (1) evaluate evidence that feral transgenic plants spread transgenes and (2) determine environmental and agricultural production factors influencing the location of feral alfalfa, especially transgenic plants. Road verges in Fresno, California; Canyon, Idaho; and Walla Walla, Washington were surveyed in 2011 and 2012 for feral plants, and samples were tested for the CP4 EPSPS protein that conveys resistance to glyphosate. Of 4580 sites surveyed, feral plants were observed at 404 sites. Twenty-seven percent of these sites had transgenic plants. The frequency of sites having transgenic feral plants varied among our study areas. Transgenic plants were found in 32.7%, 21.4.7% and 8.3% of feral plant sites in Fresno, Canyon and Walla Walla, respectively. Spatial analysis suggested that feral populations started independently and tended to cluster in seed and hay production areas, places where seed tended to drop. Significant but low spatial auto correlation suggested that in some instances, plants colonized nearby locations. Neighboring feral plants were frequently within pollinator foraging range; however, further research is needed to confirm transgene flow. Locations of feral plant clusters were not well predicted by environmental and production variables. However, the likelihood of seed spillage during production and transport had predictive value in explaining the occurrence of transgenic feral populations. Our study confirms that genetically engineered alfalfa has dispersed into the environment, and suggests that minimizing seed spillage and eradicating feral alfalfa along road sides would be effective strategies to minimize transgene dispersal. PMID:26699337

  9. Occurrence of Transgenic Feral Alfalfa (Medicago sativa subsp. sativa L.) in Alfalfa Seed Production Areas in the United States.

    PubMed

    Greene, Stephanie L; Kesoju, Sandya R; Martin, Ruth C; Kramer, Matthew

    2015-01-01

    The potential environmental risks of transgene exposure are not clear for alfalfa (Medicago sativa subsp. sativa), a perennial crop that is cross-pollinated by insects. We gathered data on feral alfalfa in major alfalfa seed-production areas in the western United States to (1) evaluate evidence that feral transgenic plants spread transgenes and (2) determine environmental and agricultural production factors influencing the location of feral alfalfa, especially transgenic plants. Road verges in Fresno, California; Canyon, Idaho; and Walla Walla, Washington were surveyed in 2011 and 2012 for feral plants, and samples were tested for the CP4 EPSPS protein that conveys resistance to glyphosate. Of 4580 sites surveyed, feral plants were observed at 404 sites. Twenty-seven percent of these sites had transgenic plants. The frequency of sites having transgenic feral plants varied among our study areas. Transgenic plants were found in 32.7%, 21.4.7% and 8.3% of feral plant sites in Fresno, Canyon and Walla Walla, respectively. Spatial analysis suggested that feral populations started independently and tended to cluster in seed and hay production areas, places where seed tended to drop. Significant but low spatial auto correlation suggested that in some instances, plants colonized nearby locations. Neighboring feral plants were frequently within pollinator foraging range; however, further research is needed to confirm transgene flow. Locations of feral plant clusters were not well predicted by environmental and production variables. However, the likelihood of seed spillage during production and transport had predictive value in explaining the occurrence of transgenic feral populations. Our study confirms that genetically engineered alfalfa has dispersed into the environment, and suggests that minimizing seed spillage and eradicating feral alfalfa along road sides would be effective strategies to minimize transgene dispersal.

  10. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk).

    PubMed

    Gómez-Caravaca, Ana María; López-Cobo, Ana; Verardo, Vito; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2016-04-01

    Free and bound phenolic and other polar compounds in mango edible fraction and its by-products (peel, seed, and seed husk) have been determined by HPLC-DAD-ESI-qTOF-MS. This analytical technique has demonstrated to be a valuable platform for the identification and quantification of these compounds in mango. In fact, UV-Vis and mass spectra data allowed the determination of 91 free compounds and 13 bound (cell wall linked) compounds taking into account the four fractions of mango. To our knowledge, this is the first time that mango seed husk has been studied regarding its phenolic compounds. The method proposed showed LODs between 0.006 and 0.85 μg/mL and accuracy ranged from 94.8 and 100.7%. Mango peel presented the highest concentration of free polar compounds followed by seed, pulp, and seed husk. It is also important to highlight that bound phenolic compounds had never been determined in mango pulp, seed, and seed husk before. Furthermore, ellagic acid was the most abundant bound compound in the four mango fractions analyzed. These results show that mango pulp and its by-products are a good source of phenolic and other polar compounds. In particular, mango seed contains a high total concentration of ellagic acid (650 mg/100 g dry weight).

  11. Removal of cadmium from water using by-product Crambe abyssinica Hochst seeds as biosorbent material.

    PubMed

    Rubio, Fernanda; Gonçalves, Affonso Celso; Meneghel, Ana Paula; Tarley, Cesar Ricardo Teixeira; Schwantes, Daniel; Coelho, Gustavo Ferreira

    2013-01-01

    The effectiveness of Crambe abyssinica Hochst seeds by-product as a biosorbent for the removal of cadmium ions from wastewater was analyzed. The biomass of crambe was characterized by scanning electron microscopy, infrared spectroscopy and determining the point of zero charge. The optimum adsorption conditions obtained were 400 mg of biomass in a solution of pH 6.0 and contact time of 60 min to remove 19.342 mg g(-1) cadmium ions. The isotherms of adsorption were constructed and, according to the mathematical linearization, the best fitting followed the Freundlich and Dubinin-Radushkevich models, describing a multilayer adsorption and chemical interaction, also confirmed by the pseudo-second order model and enthalpy value. In the desorption process, about 79% of cadmium ions that had been adsorbed were recovered. The same conditions applied for studying the isotherms of adsorption and desorption were used for comparative study with activated carbon. It was concluded that the use of crambe by-product as biosorbent for cadmium removal in wastewaters was not only a viable alternative to activated carbon, but also required no previous treatment, so it represents a sustainable material with high applicability and low environmental impact.

  12. New neolignans from the seeds of Myristica fragrans that inhibit nitric oxide production.

    PubMed

    Cao, Gui-Yun; Xu, Wei; Yang, Xiu-Wei; Gonzalez, Frank J; Li, Fei

    2015-04-15

    Five new 8-O-4' type neolignans, named myrifralignan A-E (1-5), together with five known analogues (6-10), were isolated from the seeds of Myristica fragrans Houtt. Their chemical structures were determined using several spectroscopic methods. Compounds 3-10 exhibited potent inhibitory activity against the production of nitric oxide (NO) in the RAW264.7 cell line stimulated by lipopolysaccaride. Myrislignan (7) and machilin D (10) were the most potent inhibitors of NO production amongst these compounds. The IC50 values of myrislignan and machilin D were 21.2 and 18.5 μM. And, their inhibitory activity was more than L-N(6)-(1-iminoethyl)-lysine, a selective inhibitor of inducible nitric oxide synthase (IC50=27.1 μM). Furthermore, real-time PCR analysis revealed that these neolignans could significantly suppress the expression of inducible nitric oxide synthase mRNA. These results demonstrated that the 8-O-4' type neolignans are promising candidates as anti-inflammatory agents.

  13. [Comparative study of allozyme polymorphism in groups of pine trees (Pinus sylvestris L.) with different seed productivity].

    PubMed

    Korshikov, I I; Kalafat, L A

    2004-01-01

    Genotypes of 196 Pinus sylvestris L. plants from 10 natural populations of five Ukrainian regions have been determined using 19 polymorphic isozyme loci. Variability of quantity of full-grained, empty-grained and underdeveloped seeds in the cones of these plants has been studied. The basic indexes of genetic polymorphism were determined for 6 samples presented by 18-19 trees with high and low productivity of the full-grained, empty-grained and underdeveloped seeds. The maximum amount of rare alleles and genotypes as well as the highest heterozygosity (Ho = 0.285) were typical for the sample of plants with the maximum quantity of empty-grained seeds in the cones.

  14. Fermentation of cacao (Theobroma cacao L.) seeds with a hybrid Kluyveromyces marxianus strain improved product quality attributes.

    PubMed

    Leal, Gildemberg Amorim; Gomes, Luiz Humberto; Efraim, Priscilla; de Almeida Tavares, Flavio Cesar; Figueira, Antonio

    2008-08-01

    Fermentation of Theobroma cacao (cacao) seeds is an absolute requirement for the full development of chocolate flavor precursors. An adequate aeration of the fermenting cacao seed mass is a fundamental prerequisite for a satisfactory fermentation. Here, we evaluated whether a controlled inoculation of cacao seed fermentation using a Kluyveromyces marxianus hybrid yeast strain, with an increased pectinolytic activity, would improve an earlier liquid drainage ('sweatings') from the fermentation mass, developing a superior final product quality. Inoculation with K. marxianus increased by one third the volume of drained liquid and affected the microorganism population structure during fermentation, which was detectable up to the end of the process. Introduction of the hybrid yeast affected the profile of total seed protein degradation evaluated by polyacrylamide gel electrophoresis, with improved seed protein degradation, and reduction of titrable acidity. Sensorial evaluation of the chocolate obtained from beans fermented with the K. marxianus inoculation was more accepted by analysts in comparison with the one from cocoa obtained through natural fermentation. The increase in mass aeration during the first 24 h seemed to be fundamental for the improvement of fermentation quality, demonstrating the potential application of this improved hybrid yeast strain with superior exogenous pectinolytic activity.

  15. The effect of cattle slurry electroflotation products as fertilizers on gaseous emissions and grassland yield.

    PubMed

    Menéndez, S; Merino, P; Lekuona, A; Pinto, M; González-Murua, C; Estavillo, J M

    2008-01-01

    The climatic conditions of the Basque Country (northern Spain) provide the favorable conditions for the growth of grasslands and the development of livestock enterprises. The intensification of the farms is leading to serious environmental risks due to the great generation of manures and slurries and their subsequent inefficient management. Their application involves N losses that can be pollutant. The environmental company ADE BIOTEC S.L. is developing the process called "electroflotation" with the aim of reducing the volume of slurries from intensive livestock farms. The process consists basically of an electrolysis of the slurry catalyzed by iron which leads to the flocculation of the solid particles, giving as a final result a solid and a liquid fraction. The objective of this work was to assess the usefulness of these two fractions as fertilizers. With this aim, the environmental risk of their application was determined regarding gaseous emissions to the atmosphere (i.e., of NO, NH(3), N(2)O, and CO(2)) and their fertilizer capacity was investigated by determining their effects on grassland yield and N uptake in comparison to the untreated slurry. The untreated slurry and the solid and the liquid fractions were all applied at a rate of 70 kg NH(4)(+)-N ha(-1). The application of the products of electroflotation did not affect N(2)O and CO(2) losses, being of the same magnitude as those caused by the application of the original slurry. However, after their application, a reduction in NH(3) volatilization losses was induced in the short term and a reduction in NO losses was caused in the long term. The solid and liquid fractions both increased biomass yield with respect to the untreated slurry. The solid fraction even induced a higher N uptake than the liquid fraction and the untreated slurry.

  16. Optimum poultry litter rates for maximum profit vs. yield in cotton production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...

  17. Transcriptional silencing of heterologous anther promoters in maize: a genetic method to replace detasseling for seed production.

    PubMed

    Cigan, A Mark; Haug-Collet, Kristin; Clapp, Joshua

    2014-09-01

    The promoter of the maize male fertility gene ZmMs45, and other anther-specific maize promoters, was previously shown to be transcriptionally silenced by constitutively expressed promoter-inverted repeat RNAs (pIRs). In addition, ZmMS45pIR-mediated male sterility was reversed by co-expression of Ms45 transcribed by promoters not targeted by pIR RNA silencing. In this report, male fertility was restored to ms45 maize by fusing non-maize inflorescence promoters to the ZmMS45 coding region. This complementation assay also established that these rice or Arabidopsis promoters, when expressed as pIRs, functioned to silence sequence identical promoters. These observations were exploited to develop a genetic method to replace maize detasseling during hybrid seed production. In this system, the ZmMS45 coding region was fused to one of two dissimilar non-maize promoters to generate paired sets of ms45 recessive inbred parents which could be self-pollinated and maintained independently. Linked to each unique Ms45 gene was a non-maize pIR which targeted the promoter transcribing the Ms45 copy contained in the paired inbred parent plant. A cross of these pairs brings the dissimilar pIR cassettes together and resulted in silencing both transformed copies of Ms45. The net result uncovers the ms45 allele carried by the inbreds yielding male sterile progeny. The application of heterologous promoters and transcriptional silencing in plants provides an alternative to post-transcriptional gene silencing as a means to restore and silence gene function in plants.

  18. Effect of initial biomass on channel catfish yield and water quality in a biofloc technology production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofloc technology (BFT) production systems are being used more commonly to produce high yields of fish or shrimp because very high feed rates are possible. In an outdoor BFT production system, a complex of living organisms is closely associated with particulate organic matter and is maintained in ...

  19. Microbiological Safety and Food Handling Practices of Seed Sprout Products in the Australian State of Victoria.

    PubMed

    Symes, Sally; Goldsmith, Paul; Haines, Heather

    2015-07-01

    Seed sprouts have been implicated as vehicles for numerous foodborne outbreaks worldwide. Seed sprouts pose a unique food safety concern because of the ease of microbiological seed contamination, the inherent ability of the sprouting process to support microbial growth, and their consumption either raw or lightly cooked. To examine seed sprout safety in the Australian state of Victoria, a survey was conducted to detect specific microbes in seed sprout samples and to investigate food handling practices relating to seed sprouts. A total of 298 seed sprout samples were collected from across 33 local council areas. Escherichia coli was detected in 14.8%, Listeria spp. in 12.3%, and Listeria monocytogenes in 1.3% of samples analyzed. Salmonella spp. were not detected in any of the samples. A range of seed sprout handling practices were identified as potential food safety issues in some food businesses, including temperature control, washing practices, length of storage, and storage in proximity to unpackaged ready-to-eat potentially hazardous foods.

  20. Dehulling of cuphea seed for the production of crude oil with low chlorophyll content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea (PSR23) seed oil is rich in medium chain fatty acids (MCFAs). MCFAs are used in soaps, detergents, cosmetics, lubricants, and food applications. Currently, cuphea is being grown to provide oil needed for research. The oil can be extracted effectively by screw pressing flaked whole seeds. ...

  1. Production and short-term of synthetic seeds from encapsulated begonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic seeds were formed from in vitro grown Begonia (cvs ‘Sweetheart Mix’ and ‘Baby Wing White’) shoot tips using 3% sodium alginate in Murashige and Skoog (1962) medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by re...

  2. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization.

    PubMed

    Wang, Li; Wu, Min; Liu, Hua-Min; Ma, Yu-Xiang; Wang, Xue-De; Qin, Guang-Yong

    2017-03-25

    Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO₂ (SC-CO₂) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O₂/kg) than extractions using CS and SC-CO2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.

  3. Effects of inorganic seed aerosols on the particulate products of aged 1,3,5-trimethylbenzene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Huang, Mingqiang; Hao, Liqing; Cai, Shunyou; Gu, Xuejun; Zhang, Weixiong; Hu, Changjin; Wang, Zhenya; Fang, Li; Zhang, Weijun

    2017-03-01

    Inorganic aerosols such as (NH4)2SO4, NaNO3 and CaCl2 are commonly present in the Chinese urban atmosphere. They could significantly affect the formation and aging of ambient secondary organic aerosols (SOA), but the underlying mechanisms remain unknown. In this work we studied SOA formation from the photooxidation reaction of 1,3,5-trimethylbenzene (135-TMB) with 100 μg/m3 of the above three types of inorganic aerosols as seeds in a laboratory chamber. We focused on the aging products of SOA particles by exposing them to high levels of oxidizing hydroxyl radicals (OH). The particulate products of SOA were measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) and Fuzzy C-Means (FCM) were applied to organic mass spectra for clustering. In the presence of (NH4)2SO4 seeds, 4-methyl-1H-imidazole, 4-methyl-imidazole-2-acetaldehyde and other imidazole derivative compounds formed from reactions of NH4+ with methylglyoxal were detected as new aged products. We also observed aromatic nitrogen-containing organic compounds as the major aged products in the presence of NaNO3 seeds as a consequence of reaction with OH and NO2 radicals, which were generated by UV irradiation of acidic aqueous nitrate, inducing nitration reactions with phenolic compounds. As CaCl2 has the strongest hygroscopic properties of the three salt particles tested, the greater water content on the surface of the aerosol may facilitate the condensing of more gas-phase organic acid products to the hygroscopic CaCl2 seeds, forming H+ ions that catalyze the heterogeneous reaction of aldehydes, products of photooxidation of 135-TMB, and forming high-molecular-weight (HMW) compounds. These results provide new insight into the aromatic SOA aging mechanisms.

  4. Optimizing cropland cover for stable food production in Sub-Saharan Africa using simulated yield and Modern Portfolio Theory

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.

    2014-12-01

    Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.

  5. Exploratory study of fission product yield determination from photofission of Pu239 at 11 MeV with monoenergetic photons

    DOE PAGES

    Bhike, Megha; Tornow, W.; Krishichayan, -; ...

    2017-02-14

    Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγmore » = 11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.« less

  6. High-yield production of graphene by liquid-phase exfoliation of graphite.

    PubMed

    Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M; Sun, Zhenyu; De, Sukanta; McGovern, I T; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K; Boland, John J; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari, Andrea C; Coleman, Jonathan N

    2008-09-01

    Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

  7. Measurement of Charged Pion Production Yields off the NuMI Target

    SciTech Connect

    Paley, J. M.; et al.

    2014-08-04

    The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using $dE/dx$, time-of-flight and Cherenkov radiation measurements. MIPP collected $1.42 \\times10^6$ events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.

  8. Aerosol and product yields from NO{sub 3} radical-initiated oxidation o/f selected monoterpenes

    SciTech Connect

    Hallquist, M.; Ljungstroem, E.; Waengberg, I.; Barnes, I.; Becker, K.H.

    1999-02-15

    Atmospheric transformation of monoterpenes gives products that may cause environmental consequences. In this work the NO{sub 3} radical-initiated oxidation of the monoterpenes {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene has been investigated. All experiments were conducted in EUPHORE, the EUropean PHOto REactor facility in Valencia, Spain. The aerosol and product yields were measured in experiments with a conversion of the terpenes in the interval from 7 to 400 ppb. The lower end of the concentrations used are close to those measured in ambient pine forest air. Products were measured using long path in situ FTIR. Aerosol yields were obtained using a DMA-CPC system. The aerosol mass yields measured at low concentrations were <1, 10, 15, and 17% for {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene, respectively. The total molar alkylnitrate yields were calculated to be 19, 61, 66, and 48%, and molar carbonyl compound yields were estimated to be 71, 14, 29, and 69% for {alpha}-pinene, {beta}-pinene, {Delta}{sup 3}-carene, and limonene, respectively. The aerosol yields were strongly dependent on the amounts of terpene reacted, whereas the nitrate and carbonyl yields do not depend on the amount of terpene converted. The principal carbonyl compound from {alpha}pinene oxidation was pinonaldehyde. In the case of limonene, endolim was tentatively identified and appears to be a major product. The reactions with {beta}-pinene and {Delta}{sup 3}-carene yielded 1--2% of nopinone and 2--3% caronaldehyde, respectively. The results show that it is not possible to use generalized descriptions of terpene chemistry, e.g., in mathematical models.

  9. The population ecology of male gametophytes: the link between pollination and seed production.

    PubMed

    Harder, Lawrence D; Aizen, Marcelo A; Richards, Shane A

    2016-05-01

    The fate of male gametophytes after pollen reaches stigmas links pollination to ovule fertilisation, governing subsequent siring success and seed production. Although male gametophyte performance primarily involves cellular processes, an ecological analogy may expose insights into the nature and implications of male gametophyte success. We elaborate this analogy theoretically and present empirical examples that illustrate associated insights. Specifically, we consider pollen loads on stigmas as localised populations subject to density-independent mortality and density-dependent processes as they traverse complex stylar environments. Different combinations of the timing of pollen-tube access to limiting stylar resources (simultaneous or sequential), the tube distribution among resources (repulsed or random) and the timing of density-independent mortality relative to competition (before or after) create signature relations of mean pollen-tube success and its variation among pistils to pollen receipt. Using novel nonlinear regression analyses (two-moment regression), we illustrate contrasting relations for two species, demonstrating that variety in these relations is a feature of reproductive diversity among angiosperms, rather than merely a theoretical curiosity. Thus, the details of male gametophyte ecology should shape sporophyte reproductive success and hence the dynamics and structure of angiosperm populations.

  10. New inhibitors of nitric oxide production from the seeds of Myristica fragrans.

    PubMed

    Cao, Gui-Yun; Yang, Xiu-Wei; Xu, Wei; Li, Fei

    2013-12-01

    Six dihydrobenzofuran type neolignans were isolated from the dried ripe seeds of Myristica fragrans Houtt. (family: Myristicaceae) and their chemical structures were identified as licarin B (1), 3'-methoxylicarin B (2), myrisfrageal A (3), isodihydrocainatidin (4), dehydrodiisoeugenol (5), and myrisfrageal B (6), respectively, on the basis of spectroscopic data analyses. Among them, compounds 3 and 6 are new compounds. Compounds 1-6 showed inhibition of nitric oxide production in lipopolysaccharide-activated murine monocyte-macrophage RAW264.7 with IC50 values of 53.6, 48.7, 76.0, 36.0, 33.6, and 45.0 μM, respectively. These values were compared to those of the positive controls, indomethacin and L-N(6)-(1-iminoethyl)-lysine, which have IC50 values of 65.3 and 27.1 μM, respectively. Further compounds 3, 5 and 6 suppressed LPS-induced iNOS mRNA expression in a does-dependent manner in RAW 264.7 cells assayed by real-time RT-PCR. Compounds 3, 5 and 6 may inhibit NO overproduction via inhibition of iNOS mRNA expression. The results provided valuable information for further investigation of compounds 1-6 as anti-inflammatory and chemopreventive agents.

  11. Optimization of production yield and functional properties of pectin extracted from sugar beet pulp.

    PubMed

    Lv, Cheng; Wang, Yong; Wang, Li-jun; Li, Dong; Adhikari, Benu

    2013-06-05

    A central composite design was employed to determine the optimum extraction condition to obtain higher yield, better color attribute as well as better rheological and emulsifying properties in pectin extracted from sugar beet pulp (SBP). A second-order polynomial model was developed for predicting the yield of sugar beet pulp pectin (SBPP) based on the composite design. Response surface methodology (RSM) was used to quantify the integral effect of three processing parameters (extraction temperature, time and pH) on yield, yield stress, color attribute (tint value) and emulsifying activity index (EAI). Through the frequency analysis it was found that the optimal temperature, time and pH value of the extraction were 93.7 °C, 3 h, and 1.21, respectively. The yield, yield stress and tint value of the SBPP extracted at the optimal condition were 24.45%, above 0.1 Pa and -6.0, respectively.

  12. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.

    PubMed

    Tetali, Sailaja; Zaka, Mujtaba; Schönfelder, Ronny; Bachmatiuk, Alicja; Börrnert, Felix; Ibrahim, Imad; Lin, Jarrn H; Cuniberti, Gianaurelio; Warner, Jamie H; Büchner, Bernd; Rümmeli, Mark H

    2009-12-22

    The use of mixed catalysts for the high-yield production of single-walled carbon nanotubes is well-known. The mechanisms behind the improved yield are poorly understood. In this study, we systematically explore different catalyst combinations from Ni, Co, and Mo for the synthesis of carbon nanotubes via laser evaporation. Our findings reveal that the mixing of catalysts alters the catalyst cluster size distribution, maximizing the clusters' potential to form a hemispherical cap at nucleation and, hence, form a single-walled carbon nanotube. This process significantly improves the single-walled carbon nanotube yields.

  13. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.; Ahmad, F. A.

    2015-04-01

    In semi-arid areas within the MENA region, food security problems are the main problematic imposed. Remote sensing can be a promising too early diagnose food shortages and further prevent the population from famine risks. This study is aimed at examining the possibility of forecasting yield before harvest from remotely sensed MODIS-derived Enhanced Vegetation Index (EVI), Net photosynthesis (net PSN), and Gross Primary Production (GPP) in semi-arid and arid irrigated agro-ecosystems within the conflict affected country of Syria. Relationships between summer yield and remotely sensed indices were derived and analyzed. Simple regression spatially-based models were developed to predict summer crop production. The validation of these models was tested during conflict years. A significant correlation (p<0.05) was found between summer crop yield and EVI, GPP and net PSN. Results indicate the efficiency of remotely sensed-based models in predicting summer yield, mostly for cotton yields and vegetables. Cumulative summer EVI-based model can predict summer crop yield during crisis period, with deviation less than 20% where vegetables are the major yield. This approach prompts to an early assessment of food shortages and lead to a real time management and decision making, especially in periods of crisis such as wars and drought.

  14. Compositional analysis of grain and forage from MON 87427, an inducible male sterile and tissue selective glyphosate-tolerant maize product for hybrid seed production.

    PubMed

    Venkatesh, Tyamagondlu V; Breeze, Matthew L; Liu, Kang; Harrigan, George G; Culler, Angela H

    2014-02-26

    Conventional maize hybrid seed production has historically relied upon detasseling using either manual methods or semiautomated processes to ensure the purity of the hybrid cross. Monsanto Co. has developed biotechnology-derived MON 87427 maize with tissue-selective glyphosate tolerance to facilitate the production of hybrid maize seed. MON 87427 utilizes a specific promoter and intron combination to drive expression of CP4 EPSPS protein in vegetative and female reproductive tissues, conferring tolerance to glyphosate. This specific combination of regulatory elements also results in limited or no production of CP4 EPSPS protein in two key male reproductive tissues: pollen microspores, which develop into pollen grains, and tapetum cells that supply nutrients to the pollen. Thus, MON 87427 induces a male sterile phenotype after appropriately timed glyphosate applications. To confer additional benefits of herbicide tolerance and/or insect resistance, MON 87427 was combined with MON 89034 and NK603 by conventional breeding to develop MON 87427 × MON 89034 × NK603. The work described here is an assessment of the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of MON 87427 and MON 87427 × MON 89034 × NK603. Results demonstrated that MON 87427 is compositionally equivalent to a near-isogenic conventional comparator. Results from this analysis established that the compositional equivalence observed for the single-event product MON 87427 is extendable to the combined-trait product, MON 87427 × MON 89034 × NK603. With increasing global demand for food production, the development of more efficient seed production strategies is important to sustainable agriculture. The study reported here demonstrated that biotechnology can be applied to simplify hybrid maize seed production without affecting crop composition.

  15. Challenges of Mating Disruption Using Aerosol-Emitting Pheromone Puffers in Red Clover Seed Production Fields to Control Coleophora deauratella (Lepidoptera: Coleophoridae).