Science.gov

Sample records for production target irradiation

  1. Development of a Ne gas target for 22Na production by proton irradiation

    NASA Astrophysics Data System (ADS)

    Mandal, Bidhan Ch.; Barua, Luna; Das, Sujata Saha; Pal, Gautam

    2016-03-01

    The article presents the design and development of a neon gas target for the production of 22Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of 22Na in a 6 day long 17 MeV, 5 μA proton irradiation run.

  2. Development of a Ne gas target for (22)Na production by proton irradiation.

    PubMed

    Mandal, Bidhan Ch; Barua, Luna; Das, Sujata Saha; Pal, Gautam

    2016-03-01

    The article presents the design and development of a neon gas target for the production of (22)Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of (22)Na in a 6 day long 17 MeV, 5 μA proton irradiation run. PMID:27036769

  3. Post-Irradiation Examination of 237Np Targets for 238Pu Production

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hobbs, Randy W; Schmidlin, Joshua E

    2015-01-01

    Oak Ridge National Laboratory is recovering the US 238Pu production capability and the first step in the process has been to evaluate the performance of a 237Np target cermet pellet encased in an aluminum clad. The process proceeded in 3 steps; the first step was to irradiate capsules of single pellets composed of NpO2 and aluminum power to examine their shrinkage and gas release. These pellets were formed by compressing sintered NpO2 and aluminum powder in a die at high pressure followed by sintering in a vacuum furnace. Three temperatures were chosen for sintering the solution precipitated NpO2 power used for pellet fabrication. The second step was to irradiate partial targets composed of 8 pellets in a semi-prototypical arrangement at the two best performing sintering temperatures to determine which temperature gave a pellet that performed the best under the actual planned irradiation conditions. The third step was to irradiate ~50 pellets in an actual target configuration at design irradiation conditions to assess pellet shrinkage and gas release, target heat transfer, and dimensional stability. The higher sintering temperature appeared to offer the best performance after one cycle of irradiation by having the least shrinkage, thus keeping the heat transfer gap between the pellets and clad small minimizing the pellet operating temperature. The final result of the testing was a target that can meet the initial production goals, satisfy the reactor safety requirements, and can be fabricated in production quantities. The current focus of the program is to verify that the target can be remotely dissembled, the pellets dissolved, and the 238Pu recovered. Tests are being conducted to examine these concerns and to compare results to code predictions. Once the performance of the full length targets has been quantified, the pellet 237Np loading will be revisited to determine if it can be

  4. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa.

    PubMed

    Morgenstern, Alfred; Lebeda, Ondrej; Stursa, Jan; Bruchertseifer, Frank; Capote, Roberto; McGinley, John; Rasmussen, Gert; Sin, Mihaela; Zielinska, Barbara; Apostolidis, Christos

    2008-11-15

    (230)U and its daughter nuclide (226)Th are novel therapeutic nuclides for application in targeted alpha-therapy of cancer. We have investigated the feasibility of producing (230)U/(226)Th via proton irradiation of (231)Pa according to the reaction (231)Pa(p,2n)(230)U. The experimental excitation function for this reaction is reported for the first time. Cross sections were measured using thin targets of (231)Pa prepared by electrodeposition and (230)U yields were analyzed using alpha-spectrometry. Beam parameters (energy and intensity) were determined both by calculation using a mathematical model based on measured beam orbits and beam current integrator and by parallel monitor reactions on copper foils using high-resolution gamma-spectrometry and IAEA recommended cross-section data. The measured cross sections are in good agreement with model calculations using the EMPIRE-II code and are sufficiently high for the production of (230)U/(226)Th in clinically relevant amounts. A highly effective separation process was developed to isolate clinical grade (230)U from irradiated protactinium oxide targets. Product purity was assessed using alpha- and gamma-spectrometry as well as ICPMS.

  5. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa.

    PubMed

    Morgenstern, Alfred; Lebeda, Ondrej; Stursa, Jan; Bruchertseifer, Frank; Capote, Roberto; McGinley, John; Rasmussen, Gert; Sin, Mihaela; Zielinska, Barbara; Apostolidis, Christos

    2008-11-15

    (230)U and its daughter nuclide (226)Th are novel therapeutic nuclides for application in targeted alpha-therapy of cancer. We have investigated the feasibility of producing (230)U/(226)Th via proton irradiation of (231)Pa according to the reaction (231)Pa(p,2n)(230)U. The experimental excitation function for this reaction is reported for the first time. Cross sections were measured using thin targets of (231)Pa prepared by electrodeposition and (230)U yields were analyzed using alpha-spectrometry. Beam parameters (energy and intensity) were determined both by calculation using a mathematical model based on measured beam orbits and beam current integrator and by parallel monitor reactions on copper foils using high-resolution gamma-spectrometry and IAEA recommended cross-section data. The measured cross sections are in good agreement with model calculations using the EMPIRE-II code and are sufficiently high for the production of (230)U/(226)Th in clinically relevant amounts. A highly effective separation process was developed to isolate clinical grade (230)U from irradiated protactinium oxide targets. Product purity was assessed using alpha- and gamma-spectrometry as well as ICPMS. PMID:18925748

  6. Solid target irradiation and transfer system

    NASA Astrophysics Data System (ADS)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-01

    A compact, fully automated solid target irradiation, handling and transfer system was developed for the 100Mo/99m Tc production; however, it can be used for any solid target material. All the target handling is fully automated. The target is pneumatically transferred to the irradiation station where it is removed from the carrier, placed in the irradiation chamber and the cooling water connected. At the end of irradiation the target is returned to the carrier and transferred to the processing hot cell where it is automatically placed in a distillation unit. 100 Mo targets are prepared by plasma spraying or laser cladding of the copper target.

  7. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  8. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  9. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code. PMID:25574934

  10. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  11. Generation of a rectangular beam distribution for irradiation of the accelerator production of tritium target

    SciTech Connect

    Blind, B.

    1990-01-01

    A scheme has been developed to produce a well-confined rectangular beam-intensity distribution of greatly enhanced uniformity from initially-peaked intensity distributions such as Gaussian or parabolic distributions without beam scraping. This scheme employs a system of linear and nonlinear transport-line elements. The linear elements prepare the beam for the nonlinear focusing and govern the beam size at the target. Uniformity is achieved with octupoles, and beam confinement is assured with duodecapoles. The scheme was applied to the target focus for the Accelerator Production of Tritium (APT) system. An initially Gaussian-distributed beam of 1.6-GeV protons was shaped into a rectangular 4 m by 2 m beam spot of acceptably uniform intensity at the tritium-production target. The scheme eliminates the need for sweeping the beam in a raster pattern to produce uniform target illumination. Details of the scheme are discussed.

  12. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration.

  13. Measurement and modelling of radionuclide production in thick spherical targets irradiated isotropically with 1600 MeV protons

    SciTech Connect

    Michel, R.; Lange, H.J.; Leya, I.; Luepke, M.; Herpers, U.; Meltzow, B.; Roesel, R.; Filges, D.; Cloth, P.; Dragovitsch, P.

    1994-12-31

    Two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at the Saturne accelerator at Laboratoire National Saturne/Saclay in order to simulate the interactions of galactic cosmic ray (GCR) protons with stony and iron meteoroids. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements, in which the depth-dependent production of residual nuclides was measured by {gamma}-, accelerator and conventional mass spectrometry. Theoretical production depth profiles were derived by folding depth-dependent spectra of primary and secondary particles calculated by the HERMES code system with experimental and theoretical production rates shortcomings of the cross section data base can be distinguished and medium-energy neutron cross sections can be improved.

  14. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  15. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.; Aksenov, N. V.; Albin, Yu. A.; Belov, A. G.; Bozhikov, G. A.; Dmitriev, S. N.; Starodub, G. Ya.

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides as {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.

  16. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  17. Computational investigation of ⁹⁹Mo production yield via proton irradiation of natU and ²³²Th targets.

    PubMed

    Mirvakili, Seyed Mohammad; Alizadeh, Masoumeh; Vaziri, Atyeh Joze; Gholamzadeh, Zohreh; Davari, Amin

    2015-07-01

    Accelerators have some advantages such as safety and cheaper operating and decommissioning costs for (99)Mo production. Yield theoretical calculation using computational codes can powerfully estimate usefulness of a proposed nuclear reaction for a routine manufacturing. In this work, Monte Carlo-based code was used to compute (99)Mo yield in (232)Th and (nat)U proton-irradiated targets, as well as maximum applicable beam current. Results showed that the code well agrees with published experimental data. The targets can bear maximum beam current of 30 µA. Targets from (232)Th provides higher (99)Mo yield. PMID:25898237

  18. Thorium silicate compound as a solid-state target for production of isomeric thorium-229 nuclei by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Vasilyev, O. S.; Lebedinskii, Y. Y.; Krasavin, A. V.; Tkalya, E. V.; Troyan, V. I.; Habibulina, R. F.; Chubunova, E. V.; Yakovlev, V. P.

    2016-09-01

    In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSi10O22 were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSi10O22-based target is given. The estimation shows that ThSi10O22 is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.

  19. Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-09-01

    Extension up to 50 MeV incident deuteron energy is presented for excitation functions of activation products formed in monoisotopic Tm (169Tm) and Pr (141Pr). By stacked foil irradiations direct and/or cumulative production of 140,139m,138Nd, 138mPr, 141,139,137m,135Ce on Pr and 166,169Yb, 166,167,168Tm on Tm targets were measured. Confirmation of earlier experimental results for all investigated radionuclides is found and the influence of the higher energy on thick target yields and batch production of medically relevant radionuclides (140Nd, 139Pr (as decay product of 139mNd), 166,169Yb, 167Tm) is discussed. A comparison of experimental values with TALYS1.6 code results (predicted values from TENDL-2015 on-line library) shows a better description of the (d,pxn) reactions than older ones.

  20. Production Target Design Report

    SciTech Connect

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.  The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.  The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.  The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).  The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.  This report summarizes the current status of the plant target design.

  1. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Renner, O.; Šmíd, M.; Batani, D.; Antonelli, L.

    2016-07-01

    In a series of experiments performed with laser-irradiated planar targets at the PALS laser facility, the generation of suprathermal electrons has been studied at conditions relevant for the development of a shock ignition approach to inertial confinement fusion. A simultaneous application of high-collection-efficiency K-shell imaging with high resolution x-ray spectroscopy offers a novel approach to hot electron diagnosis at non-coated or moderately coated, medium-atomic-number targets, where the contribution of suprathermal-electron-generated, frequency-shifted Kα emission from highly ionized atoms cannot be neglected. Based on experimental data provided by these combined techniques and their interpretation via collisional-radiative atomic codes and Monte Carlo modeling of hot electron energy deposition in heated Cu targets, the fraction of the energy converted to hot electrons at laser intensities  ≈1016 W cm‑2 was measured to be at the level of 0.1–0.8%. The higher values of conversion efficiency found for frequency tripled radiation support a theoretical conjecture of enhanced laser energy absorption by a resonance mechanism and its transport to a flow of fast electrons.

  2. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Renner, O.; Šmíd, M.; Batani, D.; Antonelli, L.

    2016-07-01

    In a series of experiments performed with laser-irradiated planar targets at the PALS laser facility, the generation of suprathermal electrons has been studied at conditions relevant for the development of a shock ignition approach to inertial confinement fusion. A simultaneous application of high-collection-efficiency K-shell imaging with high resolution x-ray spectroscopy offers a novel approach to hot electron diagnosis at non-coated or moderately coated, medium-atomic-number targets, where the contribution of suprathermal-electron-generated, frequency-shifted Kα emission from highly ionized atoms cannot be neglected. Based on experimental data provided by these combined techniques and their interpretation via collisional-radiative atomic codes and Monte Carlo modeling of hot electron energy deposition in heated Cu targets, the fraction of the energy converted to hot electrons at laser intensities  ≈1016 W cm-2 was measured to be at the level of 0.1-0.8%. The higher values of conversion efficiency found for frequency tripled radiation support a theoretical conjecture of enhanced laser energy absorption by a resonance mechanism and its transport to a flow of fast electrons.

  3. Separation of transuranium elements from irradiated targets

    SciTech Connect

    Wham, R.M.; Benker, D.E.; Felker, L.K.; Chattin, F.R.

    1993-12-31

    Aluminum targets containing curium/americium oxide are irradiated to produce the transcurium actinides einsteinium, fermium, berkelium, and californium. Recovery of recycle curium/americium and the transcurium elements involves several chemical processing steps to selectively recover those elements and remove fission products. Chemical processing steps developed at the Radiochemical Engineering Development Center (REDC) include aluminum dejacketing, solvent extraction to remove bulk impurities, solvent extraction to remove plutonium, anion exchange to partition curium and transcurium elements from the rare earths, and a second anion exchange cycle to separate americium/curium from the transcurium elements.

  4. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method.

  5. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method. PMID:22944532

  6. PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES

    SciTech Connect

    Hurt, Christopher J; Wham, Robert M; Hobbs, Randall W; Owens, R Steven; Chandler, David; Freels, James D; Maldonado, G Ivan

    2014-01-01

    A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

  7. Molybdenum-99 production from reactor irradiation of molybdenum targets: a viable strategy for enhanced availability of technetium-99m.

    PubMed

    Pillai, M R A; Knapp, F F Russ

    2012-08-01

    Fission-produced 99Mo (F 99Mo) is traditionally used for fabrication of 99Mo/99mTc alumina-based column generators. In this paper, several emerging strategies are discussed which are being pursued or have been suggested to overcome the continuing shortages of F 99Mo. In addition to the hopeful eventual success of these proposed new 99Mo and 99mTc production technologies, an additional attractive strategy is the alternative production and use of low specific activity (LSA) 99Mo. This strategy avoids fission and is accomplished by direct activation of molybdenum targets in nuclear reactors, which would preclude sole continued reliance on F 99Mo. The principal focus of this paper is a detailed discussion on the advantages and strategies for enhanced production of LSA 99Mo using an international network of research reactors. Several effective strategies are discussed to obtain 99mTc from LSA 99Mo as well as more efficient use of the alumina-based generator system. The delayed time period between 99Mo production and traditional 99Mo/99mTc alumina column generator manufacture and distribution to user sites results in the loss of more than 50% of 99Mo activity. Another strategy is a paradigm shift in the use of 99Mo by recovering clinical-grade 99mTc from 99Mo solution as an alternative to use of 99Mo/99mTc column generators, thereby avoiding substantial decreased availability of 99Mo from radioactive decay. Implementation of the suggested strategies would be expected to increase availability of 99mTc to the clinical user community by several fold. Additional important advantages for the use of LSA 99Mo include eliminating the need for fission product waste management and precluding proliferation concerns by phasing out the need for high (HEU)- and low (LEU)-enriched uranium targets required for F 99Mo production.

  8. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  9. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  10. Post-Irradiation Examination of Array Targets - Part I

    SciTech Connect

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.

  11. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  12. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Feinberg, G.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Tessler, M.; Yungrais, Z.

    2014-05-01

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (˜2 × 1010 n/s having a peak energy of ˜27 keV) from the 7Li(p,n)7Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  13. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Aviv, O; Berkovits, D; Dudovitch, O; Eisen, Y; Eliyahu, I; Feinberg, G; Haquin, G; Hazenshprung, N; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M; Yungrais, Z

    2014-05-01

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (~2 × 10(10) n/s having a peak energy of ~27 keV) from the (7)Li(p,n)(7)Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  14. A target design for irradiation of NaI at high beam current

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a target design. A target based on this design was used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  15. A solid target system with remote handling of irradiated targets for PET cyclotrons.

    PubMed

    Siikanen, J; Tran, T A; Olsson, T G; Strand, S-E; Sandell, A

    2014-12-01

    A solid target system was developed for a PET cyclotron. The system is compatible with many different target materials in the form of foils and electroplated/sputtered targets which makes it useful for production of a wide variety of different PET radionuclides. The target material is manually loaded into the system. Remote handling of irradiated target material is managed with a pneumatic piston and a vacuum technique which allows the targets to be dropped into a shielded transport container. To test the target performance, proton irradiations (12.8 MeV, 45 μA) of monoisotopic yttrium foils (0.64 mm, direct water cooling) were performed to produce 89Zr. The yields were 2200±200 MBq (1 h, n=13) and 6300±65 MBq (3 h, n=3).

  16. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  17. WEBEXPIR: Windowless target electron beam experimental irradiation

    NASA Astrophysics Data System (ADS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Van Tichelen, Katrien; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Aït

    2008-06-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R&D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications.

  18. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  19. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  20. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  1. A target design for irradiation of NaI at high beam current.

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a new target design. A target based on this design has been used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129, an isotope useful in nuclear medicine. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  2. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  3. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep

  4. Electron irradiation of dry food products

    NASA Astrophysics Data System (ADS)

    Grünewald, Th.

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10∗∗4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50°C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the iradiation field in a closed conveyor system.

  5. Development of annular targets for {sup 99}MO production.

    SciTech Connect

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-09-30

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.

  6. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION

    SciTech Connect

    Scott Herbst; Terry Todd; Jack Law; Bruce Mincher; Steve Frank; John Swanson

    2006-10-01

    The United States Department of Energy proposes to re-establish a domestic capability for producing plutonium-238 (238Pu) to fuel radioisotope power systems primarily in support of future space missions. A conceptual design report is currently being prepared for a new 238Pu, and neptunium-237 (237Np) target fabrication and processing facility tentatively to be built at the Idaho National Laboratory (INL) in the USA. The facility would be capable of producing at least 5 kg of 238Pu-oxide powder per year. Production of 238Pu requires fabrication of 237Np targets with subsequent irradiation in the existing Advanced Test Reactor (ATR) located at the INL. The targets are 237Np oxide dispersed in a compact of powdered aluminum and clad with aluminum metal. The 238Pu product is separated and purified from the residual 237Np, aluminum matrix, and fission products. The unconverted 237Np is also a valuable starting material and is separated, purified and recycled to the target fabrication process. The proposed baseline method for separating and purifying 238Pu and unconverted 237Np post irradiation is by anion exchange (IX). Separation of Pu from Np by IX was chosen as the baseline method because of the method’s proven ability to produce a quality Pu product and because it is amenable to the relatively small scale, batch type production methods used (small batches of ~200g 238Pu are processed at a time). Multiple IX cycles are required involving substantial volumes of nitric acid and other process solutions which must be cleaned and recycled or disposed of as waste. Acid recycle requires rather large evaporator systems, including one contained in a hot cell for remote operation. Finally, the organic based anion exchange resins are rapidly degraded due to the high a-dose and associated heat production from 238Pu decay, and must be regularly replaced (and disposed of as waste). In summary, IX is time consuming, cumbersome, and requires substantial tankage to accommodate the

  7. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  8. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  9. Preservation of food products by irradiation

    SciTech Connect

    McGivney, W.T.

    1988-01-01

    The use of irradiation to preserve food has the potential to significantly enhance our capacity to maximize the quality and quantity of the food we consume. In a world in which distribution of food occurs across continents and in which malnourished populations are in dire need of basic food products, any safe, effective, and efficient means of preserving food is more than welcome. Irradiation, as a method for food preservation, has been studied for more than 30 years. This discussion focuses on this most recent method for the preservation of food with particular emphasis on its effects on the safety, nutritive, and aesthetic values of the food preserved by irradiation. The use of ionizing radiation as a method to preserve foods is one that has been demonstrated to be effective for a variety of food classes. Irradiation offers a means to decontaminate, disinfest, and retard the spoilage of the food supply. At the same time, it appears that the wholesomeness of these food products is maintained. Nutritive value can be sustained by use of effective doses of radiation. Concerns over the safety of irradiated food are rooted in questions regarding the potential induction of radioactivity, harmful radiolytic products, and pathogenic radiation-resistant or mutant strains of microorganisms. Research findings have allayed concerns over safety. However, more research is necessary to conclusively resolve these safety issues. Food irradiation is a promising technology that has and will contribute to our ability to feed the people of this world. This technology is but one of many available ways to preserve our greatest natural resource, the food supply. Enhancement of the ability to preserve food by irradiation will facilitate the distribution of food from fertile developed regions to the malnourished peoples of underdeveloped countries. 21 references.

  10. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  11. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  12. Evaluation of CERES surface irradiance products

    NASA Astrophysics Data System (ADS)

    Kato, S.; Loeb, N. G.; Rose, F. G.; Rutan, D. A.; Doelling, D.; Radkevich, A.; Ham, S. H.

    2014-12-01

    Understanding the surface radiation budget is important for several reasons. At the global and large temporal scales, it should balance with the sum of surface latent and sensible heat fluxes and ocean heating. At regional scales, it is an indispensable boundary condition for ocean or snow models or any other models that need energy input to the surface. NASA's Clouds and the Earth's Radiant Energy System (CERES) project provides surface irradiance data products for a range of temporal and spatial scales computed using a radiative transfer model initialized using satellite-derived cloud and aerosol properties. Other inputs to the radiative transfer model include temperature and humidity profiles from NASA Global Modeling and Assimilation Office's (GMAO) reanalysis. The CERES team uses more than 80 surface observation sites located over land and ocean to evaluate computed irradiances. When computed monthly 1° by 1° gridded mean downward irradiances are compared with 10 years of observed irradiances, the bias averaged over all land and ocean sites are, respectively, -1.7 Wm-2 and 4.7 Wm-2 for shortwave and -1.0 Wm-2 and -2.0 Wm-2 for longwave. The shortwave agreement is significantly better than other satellite-based surface irradiance products. One of reasons for the better agreement is careful treatment of diurnal cycle of clouds by merging 3-hourly geostationary satellite-derived cloud properties. In addition, computed surface irradiance variability shows a remarkable agreement with observed variability. However, these data sets have their shortcomings. The uncertainty in nighttime surface longwave irradiance over polar regions is larger than that of other regions primarily due to the difficulty of cloud detection and large uncertainties in skin temperature and near-surface temperature and humidity. The large uncertainty in polar region surface irradiances hampers, for example, investigation of surface radiation budget changes in response to changes in sea ice

  13. Prospects for Irradiation in Cellulosic Ethanol Production

    PubMed Central

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  14. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  15. Sample Targeting During Single-Particle Single-Cell Irradiation

    SciTech Connect

    Bigelow, A.W.; Randers-Pehrson, G.; Michel, K.A.; Brenner, D.J.; Dymnikov, A.D.

    2003-08-26

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  16. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  17. Target volume definition and target conformal irradiation technique for breast cancer patients.

    PubMed

    Kiricuta, I C; Götz, U; Schwab, F; Fehn, M; Neumann, H H

    2000-01-01

    The aim of this study was to present the target volume and irradiation technique in the most complex situation where the breast or chest wall and the locoregional lymphatics (mammaria interna lymph nodes, axillary and supraclavicular lymph nodes) have to be irradiated. The study comprised 125 breast cancer patients treated with curative intent after primary surgery in the last two years at our institute. In 62 cases the target volume included the breast or chest wall and the locoregional lymphatics, which were treated using our irradiation technique. The target conformal irradiation technique is a multiple non-opposed beams one isocenter technique developed to protect the heart and lungs. This technique, consisting of several rotation beams modulated with wedge filters and individual lung absorbers as well as additional fixed beams, was used in our study to apply a homogeneous dose of 46 to 56 Gy to the target volume; the irradiation technique was optimized by means of dose-volume histograms. After pre-localization, the patients underwent computerized tomographic scanning, with sections at 1.0 cm intervals. Contouring of target volume and organs at risk was carried out with a MULTIDATA workstation for regions of interest (mammaria interna and/or axillary and/or supraclavicular lymphatics and the breast or chest wall) as well as the organs at risk, such as heart and lung parenchyma. Planning target volume coverage was examined by three-dimensional isodose visualization for all CT axial sections for each patient. To determine the incidence of acute or late side effects on the lung parenchyma, conventional chest x-rays and CT studies were carried out at 1 month, 3 months and 6 months after completion of radiotherapy. Dose-volume histogram analysis revealed that this irradiation technique permits the application of a homogeneous dose to the target volume, conforming to the ICRU norms. The maximum dose applied to the ipsilateral lung parenchyma was less than 50-70% of

  18. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  19. Radioactive Target Production at RIA

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2002-12-01

    We explore the production of samples of long-lived isotopes (t1/2 >1 h) at an advanced radioactive ion beam facility, RIA. Production yields at RIA are compared to capabilities at stable beam facilities and at high-flux reactors. Long-lived neutron-rich nuclei can generally be produced more efficiently in a nuclear reactor if appropriate target samples are available. As a result, only two s process branch point nuclei, 135Cs and 163Ho, seem suitable for sample production at RIA. In contrast, samples of many long-lived proton-rich nuclei are produced effectively at RIA, including isotopes important for the p process. Sample production at RIA is more favored when the lifetime of the isotope is shorter.

  20. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  1. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer. PMID:15607913

  2. Ion-exchange chromatographic separation of einsteinium from irradiated californium targets

    SciTech Connect

    Elesin, A.A.; Nikolaev, V.M.; Shalimov, V.V.; Popov, Yu.S.; Kovantsev, V.N.; Tselishchev, I.V.; Filimonov, V.T.; Mishenev, V.B.; Yadovin, A.A.; Golosovskii, L.S.; Chetverikov, A.P.

    1987-07-01

    Einsteinium was obtained by preparing two experimental californium targets and subjecting them to neutron irradiation in a high-flux reactor. The einsteinium was separated from the bombarded targets on a column packed with KU-2U sulfonated cation-exchange resin (20-50 ..mu..m) and eluted at room temperature with an ammonium ..cap alpha..-hydroxyisobutyrate solution. Three successive separation cycles removed californium to produce einsteinium in 68% yield with a decontamination factor of 5.3 x 10/sup 6/. About 20% of the einsteinium was used up by analysis and 11% remained in intermediate fractions. The method developed yielded pure einsteinium with little fission products present. The contribution of the fission products to the total einsteinium gamma-irradiation dose rate was no greater than 81%, due primarily to the radioisotope terbium-160.

  3. Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.

    PubMed

    Kubiak, Tomasz

    2016-10-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called "cyclinacs", are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs.

  4. Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.

    PubMed

    Kubiak, Tomasz

    2016-10-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called "cyclinacs", are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  5. Materials characterization of irradiated spectralon from the NIF target chamber

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Frieders, Gene; Jensen, Wayne; Pearson, Mark; Datte, Phil

    2015-08-01

    The Near Backscatter Imager (NBI) participates in nearly every kind of experiment conducted at NIF and measures backscatter, the result of the interaction between incident laser light and plasma waves at a target. Large Spectralon plates, on the order of a hundreds of mm per side, are used as Lambertian scatter components for the NBI diagnostics. The plates were deployed in 2009 and replaced in April of 2014. All NBI assemblies suffered reflectivity degradation, and some of these changes were spatially localized defects observed after irradiation to a cumulative combined neutron and Υ dose of 0.038 Gy. The growth of a defect was correlated to the combined cumulative neutron and Υ radiation dose from NIF fusion shots. Spectralon plates that were irradiated to cumulative combined neutron and Υ dose of 0.74 Gy were characterized for materials and mechanical changes with the following techniques: RBS, FTIR, XPS, SEM, EDX and tensile tests. These tests indicate that the bulk Spectralon did not measurably degrade but there are discolorations that affect the reflectivity. Surface analysis indicates that the surface CF2 species re-forms to make various organic and CFx species.

  6. Mono-energetic ions emission by nanosecond laser solid target irradiation

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  7. Cross sections for {sup 68}Ge production in natural- and enriched-germanium targets irradiated with protons of energy 100 MeV and background in experiments devoted to searches for the 2{beta}0{nu} decay of {sup 76}Ge

    SciTech Connect

    Barabanov, I. R. Bezrukov, L. B.; Kianovsky, S. V.; Kornoukhov, V. N.

    2010-11-15

    The rate of {sup 68}Ge production at sea level under the effect of the nuclear component of cosmic rays is calculated. The calculation is based on the experimental values of the cross sections for {sup 68}Ge production in natural- and enriched-germanium targets (enrichment in {sup 76}Ge) irradiated with high-energy protons. The background from the decays of {sup 68}Ge can be a serious problem in new-generation experiments devoted to searches for the 2{beta}0{nu} decay of {sup 76}Ge.

  8. Separation of Plutonium from Irradiated Fuels and Targets

    SciTech Connect

    Gray, Leonard W.; Holliday, Kiel S.; Murray, Alice; Thompson, Major; Thorp, Donald T.; Yarbro, Stephen; Venetz, Theodore J.

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  9. Analysis of nuclide production in the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Konobeyev, A. Yu.; Fischer, U.; Zanini, L.

    2009-07-01

    MEGAPIE, the first liquid metal target irradiated by a proton beam at the MW power level, was successfully operated in 2006. A continuous beam of 575 MeV protons with a current up to 1.35 mA irradiated the liquid lead-bismuth target placed in the SINQ target location at PSI (Switzerland) for a period of 4 months. The activation of the lead-bismuth irradiated in MEGAPIE has been investigated. Experimental cross-sections and evaluated data available for neutron- and proton-induced reaction cross-sections at incident energies from 10 -5 eV to 600 MeV, and results of nuclear model calculations have been used to obtain nuclear reaction rates. Calculated nuclide and gas production rates are compared with calculations using the MCNPX and FLUKA Monte Carlo codes. The total activation of the LBE agrees well with the other codes. Discrepancies with FLUKA and MCNPX are mainly in two mass regions, where experimental data are scarce: the region 30< A<50, and the region 140< A<170. The results obtained can be used for the further study of the safe operation of liquid heavy metal targets of Accelerator-Driven Systems and spallation neutron sources and for the definition of the priorities in the development of evaluated nuclear data libraries at intermediate nucleon energies.

  10. Irradiation of meat products, chicken and use of irradiated spices for sausages

    NASA Astrophysics Data System (ADS)

    Kiss, I. F.; Beczner, J.; Zachariev, Gy.; Kovács, S.

    The shelf-life of packed minced meat has been increased at least threefold at 4°C by applying a 2 kGy dose. Results have been confirmed by detailed quatitative microbiological examinations. Sensory evaluations show no significant difference between the unirradiated samples. The optimal average dose was 4 kGy for packed-frosen chicken. The number of mesophilic aerobic microbes was reduced by 2, that of psychrotolerant by 2-3 and that of Enterbacteriaceae by 3-4 orders of magnitude by 4 kGy. S. aureus and Salmonella could not be detected in the irradiated samples. In sensory evaluations there was no significant difference between untreated and irradiated samples. In 1984-1985 5100 kg irradiated chickens were marketed labelled as radiation treated. Irradiated spices (5 kGy) were used in the production of sausages (heat-treated and non-heat-treated) under industrial conditions. The microbiological contamination of irradiated spices was lower than that of ethylene oxide treated ones. The cell count in products made with irradiated spices was lower than in those made with unirradiated spices. The sausages proved to be of very good quality. In accordance with the permission, products were marketed and because of the low ratio of spices there was no need to declare them as using irradiated spices.

  11. Process and targets for production of no-carrier-added radiotin

    DOEpatents

    Srivastava, Suresh C; Zhuikov, Boris Leonidovich; Ermolaev, Stanislav Victorovich; Konyakhin, Nikolay Alexandrovich; Kokhanyuk, Vladimir Mikhailovich; Khamyanov, Stepan Vladimirovich; Togaeva, Natalya Roaldovna

    2014-04-22

    One embodiment of the present invention includes a process for production and recovery of no-carrier-added radioactive tin (NCA radiotin). An antimony target can be irradiated with a beam of accelerated particles forming NCA radiotin, followed by separation of the NCA radiotin from the irradiated target. The target is metallic Sb in a hermetically sealed shell. The shell can be graphite, molybdenum, or stainless steel. The irradiated target can be removed from the shell by chemical or mechanical means, and dissolved in an acidic solution. Sb can be removed from the dissolved irradiated target by extraction. NCA radiotin can be separated from the remaining Sb and other impurities using chromatography on silica gel sorbent. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  12. The influence of target irradiation conditions on the parameters of laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-03-01

    Recent experimental results demonstrate that the forming of plasma jets is a fundamental process accompanying the laser-produced plasma expansion, if a massive planar target with relatively high atomic number is irradiated by a defocused laser beam. In this paper some new results on the influence of target irradiation conditions on plasma jet parameters are presented. The experiment was carried out at the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)]. with the third harmonic beam of the pulse duration of 250ps. The beam energies varied in the range of 13-160J. The planar massive targets used in the experiment were made of copper. For measurements of the electron density evolution a three frame interferometric system was employed. The jets were produced in the whole range of the laser energy used. Calculations of the efficiency of the plasma jet production show that it decreases with increasing the laser energy.

  13. The influence of target irradiation conditions on the parameters of laser-produced plasma jets

    SciTech Connect

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-03-15

    Recent experimental results demonstrate that the forming of plasma jets is a fundamental process accompanying the laser-produced plasma expansion, if a massive planar target with relatively high atomic number is irradiated by a defocused laser beam. In this paper some new results on the influence of target irradiation conditions on plasma jet parameters are presented. The experiment was carried out at the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)]. with the third harmonic beam of the pulse duration of 250 ps. The beam energies varied in the range of 13-160 J. The planar massive targets used in the experiment were made of copper. For measurements of the electron density evolution a three frame interferometric system was employed. The jets were produced in the whole range of the laser energy used. Calculations of the efficiency of the plasma jet production show that it decreases with increasing the laser energy.

  14. Accuracy of positioning and irradiation targeting for multiple targets in intracranial image-guided radiation therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Tominaga, Hirofumi; Araki, Fujio; Shimohigashi, Yoshinobu; Ishihara, Terunobu; Kawasaki, Keiichi; Kanetake, Nagisa; Sakata, Junichi; Iwashita, Yuki

    2014-12-01

    This study investigated the accuracy of positioning and irradiation targeting for multiple off-isocenter targets in intracranial image-guided radiation therapy (IGRT). A phantom with nine circular targets was created to evaluate both accuracies. First, the central point of the isocenter target was positioned with a combination of an ExacTrac x-ray (ETX) and a 6D couch. The positioning accuracy was determined from the deviations of coordinates of the central point in each target obtained from the kV-cone beam computed tomography (kV-CBCT) for IGRT and the planning CT. Similarly, the irradiation targeting accuracy was evaluated from the deviations of the coordinates between the central point of each target and the central point of each multi-leaf collimator (MLC) field for multiple targets. Secondly, the 6D couch was intentionally rotated together with both roll and pitch angles of 0.5° and 1° at the isocenter and similarly the deviations were evaluated. The positioning accuracy for all targets was less than 1 mm after 6D positioning corrections. The irradiation targeting accuracy was up to 1.3 mm in the anteroposterior (AP) direction for a target 87 mm away from isocenter. For the 6D couch rotations with both roll and pitch angles of 0.5° and 1°, the positioning accuracy was up to 1.0 mm and 2.3 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The irradiation targeting accuracy was up to 2.1 mm and 2.6 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The off-isocenter irradiation targeting accuracy became worse than the positioning accuracy. Both off-isocenter accuracies worsened in proportion to rotation angles and the distance from the isocenter to the targets. It is necessary to examine the set-up margin for off-isocenter multiple targets at each institution because irradiation targeting accuracy is peculiar to the linac machine.

  15. System for target irradiation in the Iskra-6 high-power laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Eroshenko, V A; Kochemasov, G G; L'vov, L V; Mochalov, M R

    1999-03-31

    An analysis is made of various systems for direct irradiation of a target enabling achievement of a high degree of the irradiation uniformity. The required departure from uniformity of target irradiation, {delta}I/I {<=} 1% - 2%, may be attained when the number of laser beams is N {>=} 80, the diameter of the waist is approximately equal to the target diameter, and the intensity profile in the waist is Gaussian or super-Gaussian. Various methods of forming the necessary intensity distribution in a transverse cross section of a beam are considered. (interaction of laser radiation with matter. laser plasma)

  16. Diaphragm contractile dysfunction causes by off-target low-dose irradiation

    PubMed Central

    Hsieh, Chen-Hsi; Lin, Yun-Cheng; Chen, Yu-Jen; Wu, Huey-Dong; Wang, Li-Ying

    2016-01-01

    Background: Diaphragm is a primary inspiratory muscle and often receives off-target dose in patients with thoracic radiotherapy, and whether acute effect of low dose irradiation would cause contractile dysfunction of the diaphragm remains unclear. We use a rat model to investigate the effect of low-dose irradiation on diaphragm contractile function in the current study. Methods: The radiation dose distributions in patients with esophageal cancer receiving radiotherapy were calculated to determine the dose received by the off-target diaphragm area. Rats were randomly assigned to an irradiated or a non-irradiated control group (n = 10 per group). A single-fraction of 5 Gy radiation was then delivered to the diaphragms of Sprague-Dawley rats in the irradiated group. The control group received sham irradiation (0 Gy). Rats were sacrificed 24 hours after the irradiation procedures and diaphragms were removed en bloc for contractile function assessment, oxidative injury and DNA damage analysis. Oxidative injury was determined by analyzing concentration of protein carbonyls and DNA damage was determined by analyzing retention of γH2AX foci in nuclei of diaphragmatic tissue. Results: At 24 hours after delivery of a single dose of 5 Gy radiation, specific twitch (p = 0.03) and tetanus tension (p = 0.02) were significantly lower in the irradiated group than in the control group. The relative force-frequency curves showed a significant downward shift in the irradiated group. Protein carbonyl level (p < 0.01) and percentage of γH2AX-positive diaphragm muscle cells were significantly higher in the irradiated group than in the control group 24 hours after irradiation (58% vs. 30%, p = 0.01). Conclusions: Off-target low dose irradiation could induce acute contractile dysfunction of the diaphragm which was related to radiation-induced direct DNA and indirect oxidative damage. PMID:27186277

  17. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    NASA Astrophysics Data System (ADS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al2O3 (sapphire) and TiO2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al2O3. Results for MgO and α-Al2O3 show steep negative gradients from 10 to 370 K, whereas that for TiO2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al2O3, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO2, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  18. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  19. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells

    PubMed Central

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H.; Sareen, Dhruv

    2015-01-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. Significance The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. PMID:26185257

  20. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    SciTech Connect

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W; Jolly, Brian C; Hunt, Rodney Dale; Trammell, Michael P; Snead, Lance Lewis

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.

  1. Production of No-Carrier Added Lutetium-177 by Irradiation of Enriched Ytterbium-176.

    PubMed

    Tarasov, Valery A; Andreev, Oleg I; Romanov, Evgeny G; Kuznetsov, Rostislav A; Kupriyanov, Vladimir V; Tselishchev, Ivan V

    2015-01-01

    Two methods of Lu-177 production are reviewed: irradiation of isotopically enriched Lu- 176 (direct way) and irradiation of ytterbium enriched with Yb-176 (indirect way). Based on neutronphysical calculations Lu-177 yield and specific activity were estimated for both methods. Lu-177 specific activity strongly depends on neutron flux density in the direct way, that is 75,000 Ci/g for 10- days irradiation in a neutron flux of 2.10(15) cm(-2) s(-1), and only 13,000 Ci/g after 30 days irradiation at neutron flux 1.10(14) cm(-2) s(-1). Irradiation of Yb-176 provides Lu-177 specific activity close to theoretical value (110,000 Ci/g). Neutron flux density effect Lu-177 yield, that is 530 Ci/g for 2.1015 cm(-2) s(-1) neutron flux density after 30 days irradiation. A procedure of isolation and purification of Lu-177 from irradiated targets is described based on combination of galvanostatic extraction of ytterbium followed by cation-exchange chromatography from alfa-hydroxyisobutirate solutions on BioRad AG(®)50W-X8 resin.

  2. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    SciTech Connect

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  3. Target studies for surface muon production

    NASA Astrophysics Data System (ADS)

    Berg, F.; Desorgher, L.; Fuchs, A.; Hajdas, W.; Hodge, Z.; Kettle, P.-R.; Knecht, A.; Lüscher, R.; Papa, A.; Rutar, G.; Wohlmuther, M.

    2016-02-01

    Meson factories are powerful drivers of diverse physics programs. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90°. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30% and 60% over the standard "box-like" target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizing novel target materials such as, e.g., boron carbide.

  4. Light irradiance and spectral distribution effects on cyanobacterial hydrogen production

    NASA Astrophysics Data System (ADS)

    Fatihah Salleh, Siti; Kamaruddin, Azlina; Hekarl Uzir, Mohamad; Rahman Mohamed, Abdul; Halim Shamsuddin, Abdul

    2016-03-01

    Light is an essential energy source for photosynthetic cyanobacteria. Changes in both light irradiance and spectral distribution will affect their photosynthetic productivity. Compared to the light irradiance, little investigations have been carried out on the effect of light spectra towards cyanobacterial hydrogen production. Hence, this work aims to investigate the effects of both light quantity and quality on biohydrogen productivity of heterocystous cyanobacterium, A.variabilis. Under white light condition, the highest hydrogen production rate of 31 µmol H2 mg chl a -1 h-1 was achieved at 70 µE m-2 s-1. When the experiment was repeated at the same light irradiance but different light spectra of blue, red and green, the accumulations of hydrogen were significantly lower than the white light except for blue light. As the light irradiance was increased to 350 µE m-2 s-1, the accumulated hydrogen under the blue light doubled that of the white light. Besides that, an unusual prolongation of the hydrogen production up to 120 h was observed. The results obtained suggest that blue light could be the most desirable light spectrum for cyanobacterial hydrogen production.

  5. Effect of gamma irradiation on rice and its food products

    NASA Astrophysics Data System (ADS)

    Sung, Wen-Chieh

    2005-07-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products.

  6. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  7. Changes in surface composition and morphology of UF 4 targets during heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Watson, P. R.; Loveland, W.; Zielinski, P. M.; Gregorich, K. E.; Nitsche, H.

    2004-12-01

    The changes in surface composition and morphology have been measured for UF4 targets subjected to high dose irradiation (5 × 1018 ions) with ∼195 MeV 37Cl (∼5.3 AMeV). Using atomic force microscopy and an electron microprobe, we observed significant morphological changes in the targets along with changes in chemical composition.

  8. Target telemetry in medical isotope production

    NASA Astrophysics Data System (ADS)

    Nickles, R. J.; Votaw, J. R.; Hutchins, G. D.; Rosenthal, M. S.; Funk, K. M.; Sunderland, J. J.; Satter, M. R.

    1985-05-01

    Positron emission tomography reveals the biochemical basis underlying many disease processes. The key step is the labeling of authentic metabolic substrates, generally starting with precursor compounds of the short-lived radionuclides 11C, 13N, 15O and 18F. These, in turn, are produced on accelerators, with small cyclotrons now appearing in hospitals. The success of maintaining a reliable source of imaging agents in a clinical setting hinges more on making effective use of modest beams and energies (50 μA; 10 MeV) rather than scaling up the cyclotron in an engineering overkill. Target performance is observed by telemetry of a number of parameters during irradiation. In particular, the neutron flux can be singled out as an immediate signature of the (p, n) reaction, and serves as an important variable to optimize during the bombardment.

  9. The SPES High Power ISOL production target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  10. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  11. Production of {sup 99}Mo using LEU and molybdenum targets in a 1 MW Triga reactor

    SciTech Connect

    Mo, S.C.

    1993-12-31

    The production of {sup 99}Mo using Low Enriched Uranium (LEU) and natural molybdenum targets in a 1 MW Triga reactor is investigated. The successive linear programming technique is applied to minimize the target loadings for different yield constraints. The irradiation time is related to the kinetics of the growth and decay of {sup 99}Mo. The feasibility of a neutron generated based {sup 99}Mo production system is discussed.

  12. Different collimators in convergent beam irradiation of irregularly shaped intracranial target volumes.

    PubMed

    Otto-Oelschläger, S; Schlegel, W; Lorenz, W

    1994-02-01

    We compare different collimator forms (circular, elliptic and multi-leaf) in 3-D multiple arc rotation therapy for irregularly shaped intracranial tumors. When homogeneous irradiation of the tumor is ensured, the efficiency of treatment is expressed by the sparing of normal tissue outside the target volume to high dose irradiation. By utilizing integral dose-volume histograms we demonstrate that the multi-leaf collimator has considerable advantages. PMID:8184118

  13. Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor

    SciTech Connect

    Lahodova, Z.; Viererbl, L.; Klupak, V.; Srank, J.

    2012-07-01

    The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

  14. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    SciTech Connect

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-05

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E{sub e} = 40 keV and E{sub p} = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  15. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of licorice root product

    NASA Astrophysics Data System (ADS)

    Al-Bachir, M.; Al-Adawi, M. A.; Al-Kaid, A.

    2004-03-01

    Licorice root products were irradiated at doses of 0, 5, 10, 15 and 20 kGy in a 60Co package irradiator. Irradiated and unirradiated samples were stored at room temperatures. Microbial population on product, chemical changes and sensory properties of produced solution of licorice root products were evaluated after 0 and 12 months of storage. The results indicated that gamma irradiation reduced the counts of microorganisms on licorice root products. D10 of total count and klebsiella spp. were about 1.4 and 0.7 kGy, respectively. The mineral ions (Na, Ca and K) concentration in solution produced from irradiated products were lower than non-irradiated ones. Glycyrrhezinic acid and maltose concentration in solution produced from irradiated products were higher than non-irradiated ones. Sensory evaluation indicated that no significant differences ( P<0.05) were found between solution produced from irradiated and unirradiated products in color, flavor, texture, or taste.

  16. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  17. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation

    PubMed Central

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-01-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  18. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  19. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  20. Targeting nuclear receptors with marine natural products.

    PubMed

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-27

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.

  1. Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer.

    PubMed

    Eisbruch, Avraham; Ship, Jonathan A; Dawson, Laura A; Kim, Hyungjin M; Bradford, Carol R; Terrell, Jeffrey E; Chepeha, Douglas B; Teknos, Theodore N; Hogikyan, Norman D; Anzai, Yoshimi; Marsh, Lon H; Ten Haken, Randall K; Wolf, Gregory T

    2003-07-01

    The goals of this study were to facilitate sparing of the major salivary glands while adequately treating tumor targets in patients requiring comprehensive bilateral neck irradiation (RT), and to assess the potential for improved xerostomia. Since 1994 techniques of target irradiation and locoregional tumor control with conformal and intensity modulated radiation therapy (IMRT) have been developed. In patients treated with these modalities, the salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms (DVHs). In addition, subjective xerostomia questionnaires have been developed and validated. The pattern of locoregional recurrence has been examined from computed tomography (CT) scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans, and regenerating the dose distributions at the recurrence sites. Treatment plans for target coverage and dose homogeneity using static, multisegmental IMRT were found to be significantly better than standard RT plans. In addition, significant parotid gland sparing was achieved in the conformal plans. The relationships among dose, irradiated volume, and the residual saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean radiation dose of 26 Gy was found to be the threshold for preserved stimulated saliva flow. Xerostomia questionnaire scores suggested that xerostomia was significantly reduced in patients irradiated with bilateral neck, parotid-sparing RT, compared to patients with similar tumors treated with standard RT. Examination of locoregional tumor recurrence patterns revealed that the large majority of recurrences occurred inside targets, in areas that had been judged to be at high risk and that had received RT doses according to the perceived risk. Tangible gains in salivary gland sparing and target coverage are being

  2. Experimental study of radiation power flux on the target surface during high heat plasma irradiation

    NASA Astrophysics Data System (ADS)

    Litunovsky, V. N.; Ovchinnikov, I. B.; Titov, V. A.

    2001-03-01

    Some new data of the experimental study of visible radiation from the plasma shielding layer (SL) on the target surface during high heat plasma-material interaction are given in the report. The experiments were performed on the VIKA facility. Long pulse ( τp=0.36 ms) high power ( Pirr˜100 GW m -2 plasma streams were used for irradiation of graphite and tungsten samples. The target inclination ( α=0° normal irradiation; 45°; 70°) and magnetic field ( B=0 to 3 T) were varied in experiments. It is shown that the values of ( Δλ≈400 to 700 nm) visible radiation power flux (VRPF) on the target surface can be characterised by the level of PR˜1 GW m -2 for normal irradiation in the presence of a magnetic field B=2 to 3 T. Inclination of targets leads to the reduction of this flux in conformity with the corresponding decrease of the irradiation power. The material of the target does not influence sufficiently on the level of the incident radiation power flux in the performed experiments.

  3. Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules

    SciTech Connect

    J M Harp; P D Demkowicz; S A Ploger

    2012-10-01

    The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

  4. Growth of ZnO nanostructures by femtosecond laser irradiation of polycrystalline targets

    NASA Astrophysics Data System (ADS)

    Escalante, G.; Ryu, Y. K.; de la Cruz, A. Ruíz; Puerto, D.; Solís, J.; Fernández, P.

    2015-11-01

    The formation of LIPSS upon irradiation with ultrashort laser pulses on the surface of polycrystalline ZnO samples and the potential use of irradiated areas as growth patterns for the production of highly ordered nanostructures upon redeposition have been studied. For this purpose, we have performed different sets of irradiation experiments including static irradiation experiments at low and high repetition rates, as well as scanned beam experiments at high repetition rate, this later in order to generate relatively large template regions for nanostructure growth by redeposition. In all cases, LIPSS formation has been achieved in the ZnO polycrystalline surface. Under appropriate irradiation conditions, the material is redeposited rendering a high density of nanostructures with high aspect ratios and good crystal quality. Given the special luminescent properties and applications of ZnO, particular attention has been paid to the luminescence properties after irradiation and after post-irradiation thermal treatments. The observed evolution has been correlated with evolution of point defects in the treated surfaces. Thermal treatments cause significant changes in both the topography and the cathodoluminescent emission, such as the development of laminar structures, the emergence of nucleation centers and the recovery of ultraviolet emission previously quenched as a consequence of irradiation. Interestingly, LIPSS remain after the luminescent recovery by thermal annealing, opening the possibility to control both luminescence properties and grain size while maintaining an ordered structure with a high effective surface area.

  5. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  6. Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    SciTech Connect

    Andreev, Stepan N; Rukhadze, Anri A; Tarakanov, V P; Yakutov, B P

    2010-01-31

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained. (effects of laser radiation on matter)

  7. Production of (211)At by a vertical beam irradiation method.

    PubMed

    Nagatsu, Kotaro; Minegishi, Katsuyuki; Fukada, Masami; Suzuki, Hisashi; Hasegawa, Sumitaka; Zhang, Ming-Rong

    2014-12-01

    We produced (211)At by irradiating the semi-sealed encapsulated Bi target with an external vertical beam. At 28.5MeV, the yield of (211)At was 22MBq/μAh (600μCi/μAh). (211)At was recovered by dry distillation, and 80% of the produced (211)At was successfully obtained in dry Na(211)At form within 2h from the end of bombardment (EOB). The radionuclidic purity of (211)At was >99% at 5h from EOB. PMID:25439168

  8. Production of (211)At by a vertical beam irradiation method.

    PubMed

    Nagatsu, Kotaro; Minegishi, Katsuyuki; Fukada, Masami; Suzuki, Hisashi; Hasegawa, Sumitaka; Zhang, Ming-Rong

    2014-12-01

    We produced (211)At by irradiating the semi-sealed encapsulated Bi target with an external vertical beam. At 28.5MeV, the yield of (211)At was 22MBq/μAh (600μCi/μAh). (211)At was recovered by dry distillation, and 80% of the produced (211)At was successfully obtained in dry Na(211)At form within 2h from the end of bombardment (EOB). The radionuclidic purity of (211)At was >99% at 5h from EOB.

  9. Investigation on Soft X-Ray Lasers with a Picosecond-Laser-Irradiated Gas Puff Target

    SciTech Connect

    Fiedorowiez, H; Bartnik, A; Jarocki, R; Rakowski, R; Dunn, J; Smith, R F; Hunter, J; Hilsen, J; Shlyaptsev, V N

    2002-10-09

    We present results of experimental studies on transient gain soft x-ray lasers with a picosecond-laser-irradiated gas puff target. The target in a form of an elongated gas sheet is formed by pulsed injection of gas through a slit nozzle using a high-pressure electromagnetic valve developed and characterized at the Institute of Optoelectronics. The x-ray laser experiments were performed at the Lawrence Livermore National Laboratory using the tabletop Compact Multipulse Terawatt (COMET) laser to irradiate argon, krypton or xenon gas puff targets. Soft x-ray lasing in neon-like argon on the 3p-3s transition at 46.9 nm and the 3d-3p transition at 45.1 nm have been demonstrated, however, no amplification for nickel-like krypton or xenon was observed. Results of the experiments are presented and discussed.

  10. The influence of target preparation and mode of irradiation on PIXE analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Galuszka, Janusz; Jarczyk, Lucjan; Rokita, Eugeniusz; Strzalkowski, Adam; Sych, Marek

    1984-04-01

    The following methods of target preparation were examined and compared: dry ashing at high temperature, low temperature ashing in plasma asher, wet ashing, lyophilization at a temperature of 35°C, cryofixation with drying in vacuum and dehydration in alcohol with drying in vacuum. All these techniques were applied to prepare targets from five different rat organs: liver, kidney, brain, lung and muscle tissue. The dried and powdered sample material was pressed into pellets or was distributed on formvar film. The evaporation of the thin carbon layer on the investigated target and placing of the thin carbon film in front of a target were also tested. The targets were irradiated in vacuum using an external beam in the air chamber. The influence of the method of target preparation on the detection limits, time requirements and escape of elements from the sample material is discussed.

  11. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  12. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    SciTech Connect

    Kania, M.J.; Howard A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented.

  13. Sensing device and method for measuring emission time delay during irradiation of targeted samples

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2000-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  14. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    SciTech Connect

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  15. The cytoplasm as a radiation target: an in silico study of microbeam cell irradiation.

    PubMed

    Byrne, H L; Domanova, W; McNamara, A L; Incerti, S; Kuncic, Z

    2015-03-21

    We performed in silico microbeam cell irradiation modelling to quantitatively investigate ionisations resulting from soft x-ray and alpha particle microbeams targeting the cytoplasm of a realistic cell model. Our results on the spatial distribution of ionisations show that as x-rays are susceptible to scatter within a cell that can lead to ionisations in the nucleus, soft x-ray microbeams may not be suitable for investigating the DNA damage response to radiation targeting the cytoplasm alone. In contrast, ionisations from an ideal alpha microbeam are tightly confined to the cytoplasm, but a realistic alpha microbeam degrades upon interaction with components upstream of the cellular target. Thus it is difficult to completely rule out a contribution from alpha particle hits to the nucleus when investigating DNA damage response to cytoplasmic irradiation. We find that although the cytoplasm targeting efficiency of an alpha microbeam is better than that of a soft x-ray microbeam (the probability of stray alphas hitting the nucleus is 0.2% compared to 3.6% for x-rays), stray alphas produce more ionisations in the nucleus and thus have greater potential for initiating damage responses therein. Our results suggest that observed biological responses to cytoplasmic irradiation include a small component that can be attributed to stray ionisations in the nucleus resulting from the stochastic nature of particle interactions that cause out-of-beam scatter. This contribution is difficult to isolate experimentally, thus demonstrating the value of the in silico approach.

  16. The cytoplasm as a radiation target: an in silico study of microbeam cell irradiation

    NASA Astrophysics Data System (ADS)

    Byrne, H. L.; Domanova, W.; McNamara, A. L.; Incerti, S.; Kuncic, Z.

    2015-03-01

    We performed in silico microbeam cell irradiation modelling to quantitatively investigate ionisations resulting from soft x-ray and alpha particle microbeams targeting the cytoplasm of a realistic cell model. Our results on the spatial distribution of ionisations show that as x-rays are susceptible to scatter within a cell that can lead to ionisations in the nucleus, soft x-ray microbeams may not be suitable for investigating the DNA damage response to radiation targeting the cytoplasm alone. In contrast, ionisations from an ideal alpha microbeam are tightly confined to the cytoplasm, but a realistic alpha microbeam degrades upon interaction with components upstream of the cellular target. Thus it is difficult to completely rule out a contribution from alpha particle hits to the nucleus when investigating DNA damage response to cytoplasmic irradiation. We find that although the cytoplasm targeting efficiency of an alpha microbeam is better than that of a soft x-ray microbeam (the probability of stray alphas hitting the nucleus is 0.2% compared to 3.6% for x-rays), stray alphas produce more ionisations in the nucleus and thus have greater potential for initiating damage responses therein. Our results suggest that observed biological responses to cytoplasmic irradiation include a small component that can be attributed to stray ionisations in the nucleus resulting from the stochastic nature of particle interactions that cause out-of-beam scatter. This contribution is difficult to isolate experimentally, thus demonstrating the value of the in silico approach.

  17. Analysis of Beam-Induced Damage to the SLC Positron Production Target

    SciTech Connect

    Bharadwaj, Vinod

    2002-08-20

    The nominal Next Linear Collider (NLC) positron production design is based on extrapolation of the existing SLAC Linear Collider (SLC) positron production system. Given that the SLC positron production target failed during a run, it is necessary to analyze the beam-induced damage to the target in order to validate the extrapolations on which the NLC target is based. The failed SLC target and its associated housing were sent to existing ''hot-cell'' facilities at LANL for analysis. The target material, a tungsten-rhenium ''puck'', was removed from the housing and photographed and x-rayed. Leak-checking on the cooling system was performed. Sections were then removed from the target to determine the extent of internal damage to the material. High resolution photographs were taken and extensive hardness tests were performed on the irradiated and non-irradiated areas of the target material. The results of these analyses and conclusions applicable to the NLC target design are presented in this paper.

  18. Self-Irradiation Effects on 99Mo Reagents and Products

    SciTech Connect

    Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.

    1998-10-07

    produced in 1996 and shipped to pharmaceutical houses for evaluation of compatibility with oxime solution used to precipitate `?vfo as the oxime complex is both air and light-sensitive, and containing a black precipitate that forms during shipment, presumably as a result of self- irradiation. Addition of sodium hypochlorite to the product solution prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of `%lo. to remove any precipitate. Duplicate aliquots of the filtered samples were titrated to a phenolphthalein irradiation and afler standing at room temperature for 86.4 hours. Precipitates were washed to a FTIR analysis of the white precipitate showed it to be alpha benzoin oxime. Since the basic After 86.4 hours, no precipitate had formed in bottles containing sodium hypochlorite. Black precipitate had formed in all bottles that did not contain sodium hypochlorite after 14.4 hours. The precipitate appeared to initially form on the surface of the HDPE sample bottles and Black precipitate was first noticed in sample set 1 after 28.8 hrs' irradiation. No visible sample containing precipitate was kept at room temperature in the original bottle. Precipitate in sample sets 2 and 3. Since no precipitate formed in these bottles, this was equivalent to duplicate samples. Once the precipitate in the 20-mL aliquots that had been set aside had returned to sample sets 1 through 3 and the samples with redissolved precipitate all experienced an average decrease in base strength of 0.013 meq mL-l. Sample 1-C had a decrease of 0.004 meq mL-l and sample 1-D had returned to the initial value of 0.198 meq mL-l. Raman spectra for the black precipitate from samples l-C, 1-D and supplemental sample set 1 Fig. 2. Raman spectra of the black precipitate formed in 9%40 product solutions after 28.8,43.2, 72 and 86.4 hours of `oCo irradiation in Sandia's Gamma Irradiation Facility. increase with time, as seen in the titration of 1-C and 1-D samples

  19. Bioethanol production from Ficus religiosa leaves using microwave irradiation.

    PubMed

    Klein, Miri; Griess, Ofir; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2016-07-15

    A microwave assisted feasible process for the production of bioethanol from Ficus religiosa leaves was developed. Under the process conditions (8 min. microwave irradiation, 1 M HCl), 10.1 wt% glucose yield was obtained from the leaves. Microwave based hydrolysis process yielded higher glucose content (10.1 wt%) compared to the conventional hydrothermal process (4.1 wt%). Upon fermentation of the hydrolysate using Baker's yeast, 3 wt% (dry wt. basis) of bioethanol was produced. PMID:27064733

  20. Modeling the behavior of a light-water production reactor target rod

    SciTech Connect

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting ``pencils`` are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  1. Modeling the behavior of a light-water production reactor target rod

    SciTech Connect

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting pencils'' are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  2. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  3. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  4. Mechanisms of DNA damage response to targeted irradiation in organotypic 3D skin cultures.

    PubMed

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  5. Fixed-target hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2015-08-01

    Results from fixed-target hadroproduction experiments (HARP, MIPP, NA49 and NA61/SHINE) as well as their implications for cosmic ray and neutrino physics are reviewed. HARP measurements have been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve predictions of the muon yields in EAS and of the atmospheric neutrino fluxes as well as to help in the optimization of neutrino factory and super-beam designs. Recent measurements released by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment and for interpretation of EAS data. These hadroproduction experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  6. Remotely Operated Equipment for Post Irradiation Examination of the SNS Target Vessel

    SciTech Connect

    Carroll, Adam J; Graves, Van B; Dayton, Michael J; Riemer, Bernie

    2011-01-01

    The Spallation Neutron Source produces neutrons by accelerating protons into flowing mercury contained inside a stainless steel target vessel. During facility operation the target vessel is degraded by a combination of high-energy neutrons, the proton beam, and cavitation-induced corrosion. The degradation is primarily concentrated at the nose of the target vessel, where the proton beam passes through. Currently, the Spallation Neutron Source has replaced three target vessels and is operating the fourth. To minimize the operational costs of manufacturing and disposing of target vessels, efforts are underway to increase the operational lifetimes of the target vessels by conducting post irradiation examinations of spent vessels. This examination involves remotely removing multiple coupons from the nose of the target vessel using a single piece of equipment, called the Nose Sampling Cutter, installed inside the Spallation Neutron Source s hot cell. The Cutter produces circular coupons approximately 2 inches in diameter using a carbide-tipped hole saw. The nose of the target vessel consists of four layers of material, and the Nose Sampling Cutter is capable of cutting through the layers in a single stroke. This remote operation has been successfully completed twice. In addition to the Nose Sampling Cutter, a large reciprocation saw capable of removing a sizable section of the nose of the target vessel has been constructed and tested, but never implemented. To support this large reciprocation saw other equipment has also been designed. The details of the Nose Sampling Cutter, reciprocation saw, and associated equipment are discussed.

  7. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  8. A Semantically Enabled Metadata Repository for Solar Irradiance Data Products

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Cox, M.; Lindholm, D. M.; Nadiadi, I.; Traver, T.

    2014-12-01

    The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years, and providing the associated data products to the public. LASP has a long history, in particular, of making space-based measurements of the solar irradiance, which serves as crucial input to several areas of scientific research, including solar-terrestrial interactions, atmospheric, and climate. LISIRD, the LASP Interactive Solar Irradiance Data Center, serves these datasets to the public, including solar spectral irradiance (SSI) and total solar irradiance (TSI) data. The LASP extended metadata repository, LEMR, is a database of information about the datasets served by LASP, such as parameters, uncertainties, temporal and spectral ranges, current version, alerts, etc. It serves as the definitive, single source of truth for that information. The database is populated with information garnered via web forms and automated processes. Dataset owners keep the information current and verified for datasets under their purview. This information can be pulled dynamically for many purposes. Web sites such as LISIRD can include this information in web page content as it is rendered, ensuring users get current, accurate information. It can also be pulled to create metadata records in various metadata formats, such as SPASE (for heliophysics) and ISO 19115. Once these records are be made available to the appropriate registries, our data will be discoverable by users coming in via those organizations. The database is implemented as a RDF triplestore, a collection of instances of subject-object-predicate data entities identifiable with a URI. This capability coupled with SPARQL over HTTP read access enables semantic queries over the repository contents. To create the repository we leveraged VIVO, an open source semantic web application, to manage and create new ontologies and populate repository content. A variety of ontologies were used in

  9. Cyclotron production of 64Cu by deuteron irradiation of 64Zn.

    PubMed

    Abbas, K; Kozempel, J; Bonardi, M; Groppi, F; Alfarano, A; Holzwarth, U; Simonelli, F; Hofman, H; Horstmann, W; Menapace, E; Lesetický, L; Gibson, N

    2006-09-01

    The short-lived (12.7h half-life) (64)Cu radioisotope is both a beta(+) and a beta(-) emitter. This property makes (64)Cu a promising candidate for novel medical applications, since it can be used simultaneously for therapeutic application of radiolabelled biomolecules and for diagnosis with PET. Following previous work on (64)Cu production by deuteron irradiation of natural zinc, we report here the production of this radioisotope by deuteron irradiation of enriched (64)Zn. In addition, yields of other radioisotopes such as (61)Cu, (67)Cu, (65)Zn, (69m)Zn, (66)Ga and (67)Ga, which were co-produced in this process, were also measured. The evaporation code ALICE-91 and the transport code SRIM 2003 were used to determine the excitation functions and the stopping power, respectively. All the nuclear reactions yielding the above-mentioned radioisotopes were taken into account in the calculations both for the natural and enriched Zn targets. The experimental and calculated yields were shown to be in reasonable agreement. The work was carried out at the Scanditronix MC-40 Cyclotron of the Institute for Health and Consumer Protection of the Joint Research Centre of the European Commission (Ispra site, Italy). The irradiations were carried out with 19.5 MeV deuterons, the maximum deuteron energy obtainable with the MC-40 cyclotron.

  10. ULTRASONIC AND RADIOGRAPHIC IMAGING OF NIOBIUM TARGET CAPSULES FOR RADIOISOTOPE PRODUCTION

    SciTech Connect

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Dozier, B. E.; Nortier, F. M.; Smith, D. M.; Lenz, J. W.; Moddrell, C.; Smith, P. A.

    2009-03-03

    In the case of proton-irradiated radioisotope production, niobium target capsules containing gallium are exposed to intense radiation, thermally induced stress, for extended periods. The structural integrity of the target capsules is of crucial importance for containing the accelerator-produced radioisotopes and target material. The capsule window should be as thin and transparent to the proton beam as possible, and preferably should not become significantly activated under proton irradiation. In addition, the material for the capsule needs to be as defect-free as possible. Niobium encapsulated gallium targets have a history of unpredictable failure under intense irradiation with 100 MeV protons. This study illustrates the utility of non-destructive testing in order to detect defects that may result in mechanical failure of the capsules during irradiation. Prior to this work, it was not known if the gallium initially wets the niobium capsule that encapsulates it, and if it does, it is not known to what degree. However, the imaging techniques used in this work show that local areas of wetting do occur. We used ultrasonic images from various lots of niobium capsule material to assess the integrity of the capsules. Digital radiography is also used to detect any voids in the gallium that will tend to cause local heating in the capsules.

  11. Proton emission from thin hydrogenated targets irradiated by laser pulses at 10{sup 16} W/cm{sup 2}

    SciTech Connect

    Torrisi, L.; Giuffrida, L.; Cirrone, P.; Cutroneo, M.; Picciotto, A.; Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Ullschmied, J.; Wolowski, J.; Badziak, J.; Rosinski, M.

    2012-02-15

    The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 10{sup 16} W/cm{sup 2}. The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.

  12. Numerical study of the irradiation uniformity of a directly driven inertial confinement fusion target

    NASA Astrophysics Data System (ADS)

    Temporal, M.; Canaud, B.; Laffite, S.; Le Garrec, B. J.; Murakami, M.

    2010-11-01

    In the Inertial Confinement Fusion the uniformity of the irradiation still represents a crucial issue. In this context a spherical capsule directly driven by laser beams have been assessed numerically [1]. Two schemes characterized by 32 and 48 directions of irradiation [2] with associated a single laser beam or a bundle of laser beams [3] characterized by a super-Gaussian intensity profile are considered. Beam imperfections as power imbalance and pointing errors have been taken into account. It is found that the focal spot that minimizes the rms deviation depends on the beam imperfections [4]. The numerical calculations show that the uniformity of the irradiation evolves in time. The results calculated considering the illumination of a spherical target will be compared with those obtained when the irradiation is taken into account. [1] M. Temporal, B. Canaud. Eur. Phys. J. D 55 139 (2009). [2] M. Murakami, N. Sarukura, H. Azechi, M. Temporal, A.J. Schmitt, in press to Phys. Plasmas (July issue, 2010). [3] M. Temporal, B. Canaud, B. J. Le Garrec, Phys. Plasmas 17 022701 (2010). [4] M. Temporal, B. Canaud, S. Laffite, B.J. Le Garrec, M. Murakami. Phys. Plasmas 17 064504 (2010).

  13. Investigation of laser ion acceleration inside irradiated solid targets by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Origins and acceleration directions of accelerated ions inside solid LiF, CH-LiF, and LiF-CH targets irradiated by a 450 fs, 20 J, 1053 nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} have been investigated by neutron spectroscopy. The irradiated targets generate neutrons through the reaction {sup 7}Li (p,n){sup 7}Be between accelerated protons and background {sup 7}Li ions inside the target. The produced neutron spectra observed from two different observation angles 20 deg. and 120 deg. to the target rear-side normal. From the measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, the total number, and the slope temperature of the accelerated ions are investigated. The results indicate that ions are not only accelerated from the front surface toward the rear surface, but also from the rear surface toward the front surface with comparable maximum energy and higher number.

  14. Demonstration of {sup 99}MO production using LEU metal-foil targets in the cintichem process.

    SciTech Connect

    Vandegrift, G. F.; Conner, C.; Hofman, G. L.; Snelgrove, J. L.; Mutalib, A.; Purwadi, B.; Adang, H. G.; Hotman, L.; Kadarisman, Sukmana, A.; Dicky, T. J.; Sriyono, Suripto, A.; Lutfi, D.; Amin; Basiran, A.; Gogo, A.; Sarwani; Taryo, T.

    1999-09-30

    In March and September 1999, demonstrations of the irradiation, disassembly, and processing of LEU metal foil targets were performed in the Indonesian BATAN PUSPIPTEK Facilities. These demonstrations showed that (1) irradiation and disassembly can be performed so that the uranium foil can be easily removed from the target body, and (2) with only minor changes to the current process, the LEU foil can produce yield and purity of the {sup 99}Mo product at least as great as that obtained with the HEU target. Further, because of these modifications, two hours are cut from the processing time, and the liquid waste volume is reduced. Results of these demonstrations will be presented along with conclusions and plans for future work.

  15. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  16. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Lee, Ju-Woon; Park, Don-Hee

    2012-08-01

    Recently, many research works have reported on improvements to the saccharification process that increase bioethanol production from cellulosic materials. Gamma irradiation has been studied as an effective method for the depolymerization of complex polysaccharides. In this study, the effect of gamma irradiation on saccharification of Undaria biomass for bioethanol production was investigated. The Undaria biomass was irradiated at doses of 0, 10, 50, 100, 200 and 500 kGy and then hydrolyzed using sulfuric acid. The effects of gamma irradiation were measured through microscopic analysis to determine morphological changes and concentration of the reducing sugar of hydrolysates. Microscopic images show that gamma irradiation causes structure breakage of the Undaria cell wall. The concentration of reducing sugar of hydrolysates significantly increased as a result of gamma irradiation, with or without acid hydrolysis. These results indicate that the combined method of gamma irradiation with acid hydrolysis can significantly improve the saccharification process for bioethanol production from marine algae materials.

  17. Optimization of ethyl ester production assisted by ultrasonic irradiation.

    PubMed

    Noipin, K; Kumar, S

    2015-01-01

    This study presents the optimization of the continuous flow potassium hydroxide-catalyzed synthesis of ethyl ester from palm oil with ultrasonic assistance. The process was optimized by application of factorial design and response surface methodology. The independent variables considered were ethanol to oil molar ratio, catalyst concentration, reaction temperature and ultrasonic amplitude; and the response was ethyl ester yield. The results show that ethanol to oil molar ratio, catalyst concentration, and ultrasonic amplitude have positive effect on ethyl ester yield, whereas reaction temperature has negative influence on ethyl ester yield. Second-order models were developed to predict the responses analyzed as a function of these three variables, and the developed models predicts the results in the experimental ranges studied adequately. This study shows that ultrasonic irradiation improved the ethyl ester production process to achieve ethyl ester yields above 92%. PMID:25116594

  18. Post-Irradiation Properties of Candidate Materials for High-Power Targets

    SciTech Connect

    Kirk, H.G.; Ludewig, H.; Mausner, L.F.; Simos, N.; Thieberger, P.; Hayato, Y.; Yoshimura, K.; McDonald, K.T.; Sheppard, J.; Trung, L.P.; /SUNY, Stony Brook

    2006-03-15

    The desire of the high-energy-physics community for more intense secondary particle beams motivates the development of multi-megawatt, pulsed proton sources. The targets needed to produce these secondary particle beams must be sufficiently robust to withstand the intense pressure waves arising from the high peak-energy deposition which an intense pulsed beam will deliver. In addition, the materials used for the targets must continue to perform in a severe radiation environment. The effect of the beam induced pressure waves can be mitigated by use of target materials with high-yield strength and/or low coefficient of thermal expansion (CTE). We report here first results of an expanded study of the effects of irradiation on several additional candidate materials with high strength (AlBeMet, beryllium, Ti-V6-Al4) or low CTE (a carbon-carbon composite, a new Toyota ''gum'' metal alloy, Super-Invar).

  19. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  20. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    SciTech Connect

    Bsebsu, F.M.; Abotweirat, F. E-mail: abutweirat@yahoo.com; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  1. Ablation dynamics of Co/ZnS targets under double pulse femtosecond laser irradiation.

    PubMed

    Lopez-Quintas, Ignacio; Loriot, Vincent; Ávila, David; Izquierdo, Jesus G; Rebollar, Esther; Bañares, Luis; Castillejo, Marta; de Nalda, Rebeca; Martin, Margarita

    2016-02-01

    Femtosecond lasers, used as tools to investigate the ablation dynamics of solids, can help to develop strategies to control the deposition of nanomaterials by pulsed laser ablation. In this work, Co/ZnS targets, potential candidates for the synthesis of diluted magnetic semiconductor materials, are irradiated by sequences of two femtosecond laser pulses delayed in the picosecond time scale. The ionic composition of the ablation plasma and the dependence of the ion signals on the interpulse delay and relative fluence are determined by time-of-flight mass spectrometry. The results show that, when pulses of different fluence are used, highly asymmetric ion yields are obtained, with more intense ion signals detected when the lower fluence pulse is temporally ahead. The comparison between asymmetric and equal fluence double pulse ablation dynamics provides some understanding of the different processes that modify the properties of the layer irradiated by the first pulse and of the mechanisms affecting the coupling of the delayed pulse into the material. The final outcome of the double pulse irradiation is characterized through the analysis of the deposits produced upon ablation. PMID:26751831

  2. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  3. Neutron-Rich Isotope Production Using a Uranium Carbide Carbon Nanotubes SPES Target Prototype

    SciTech Connect

    Corradetti, Stefano; Biasetto, Lisa; Manzolaro, Mattia; Scarpa, Daniele; Carturan, S.; Andrighetto, Alberto; Prete, Gianfranco; Vasquez, Jose L; Zanonato, P.; Colombo, P.; Jost, Carola; Stracener, Daniel W

    2013-01-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  4. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  5. X-ray enhancement in a nanohole target irradiated by intense ultrashort laser pulses

    SciTech Connect

    Chakravarty, U.; Arora, V.; Chakera, J. A.; Naik, P. A.; Srivastava, H.; Tiwari, P.; Srivastava, A.; Gupta, P. D

    2011-03-01

    In this paper, we present a comparative study of the laser energy absorption, soft x-ray emission (in the water window region: 2.3-4.4 nm) and hard x-ray emission (in the 2-20 keV range) from planar aluminum and nanohole alumina of 40 nm average diameter, when irradiated by Ti:sapphire laser pulses. The laser pulse duration was varied from 45 to 500 fs, and the focused intensity on the target ranged from {approx}3 x 10{sup 16} W/cm{sup 2} to 3x10{sup 17} W/cm{sup 2}. The x-ray yield enhancement from the nanoholes shows an increased coupling of the laser energy to the target. The effect of laser pulse duration on the x-ray emission was also studied, where a resonance like phenomenon was observed. The laser energy absorption measurements in the nanoholes showed a marginal enhancement in absorption as compared to planar Al. The integrated keV x-ray yield, from nanohole alumina and planar Al, at an intensity of 3 x 10{sup 17} W/cm{sup 2}, was 25 and 3.5 {mu}J, respectively. The results can be explained by considering the hydrodynamic expansion of the laser irradiated structure and field enhancement in the nanoholes.

  6. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    DOEpatents

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  7. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  8. Generation and Transport of Fast Electrons in Laser Irradiated Targets at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Amiranoff, F.; Baton, S. D.; Gremillet, L.; Guilbaud, O.; Koenig, M.; Martinolli, E.; Santos, J. J.; Le Gloahec, M. Rabec; Rousseaux, C.; Hall, T.

    2002-10-01

    The transport of relativistic electrons in solid targets irradiated by a short laser pulse at relativistic intensities has been studied both experimentally and numerically. A Monte-Carlo collision code takes into account individual collisions with the ions and electrons in the target. A 3D-hybrid code takes into account these collisions as well as the generation of electric and magnetic fields and the self-consistent motion of the electrons in these fields. It predicts a magnetic guiding of a fraction of the fast electron current over long distances and a localized heating of the material along the propagation axis. In experiments performed at LULI on the 100 TW laser facility, several diagnostics have been implemented to diagnose the geometry of the fast electron transport and the target heating. The typical conditions were: E1 less-than-or-equal 20 J, lambda = 1 mum, tau approximately 300 fs, I approximately 1018-5.1019W/cm2. The results indicate a modest heating of the target (typically 20-40 eV over 20 mum to 50 mum), consistent with an acceleration of the electrons inside a wide aperture cone along the laser axis.

  9. Chemical isolation of .sup.82 Sr from proton-irradiated Mo targets

    DOEpatents

    Grant, Patrick M.; Kahn, Milton; O'Brien, Jr., Harold A.

    1976-01-01

    Spallation reactions are induced in Mo targets with 200-800 MeV protons to produce microcurie to millicurie amounts of a variety of radionuclides. A six-step radiochemical procedure, incorporating precipitation, solvent extractions, and ion exchange techniques, has been developed for the separation and purification of Sr radioactivities from other spallation products and the bulk target material. Radiostrontium can be quantitatively recovered in a sufficiently decontaminated state for use in biomedical generator development.

  10. The role of diffusion in ISOL targets for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Beyer, G. J.; Hagebø, E.; Novgorodov, A. F.; Ravn, H. L.; Isolde Collaboration

    2003-05-01

    On-line isotope separation techniques (ISOL) for production of ion beams of short-lived radionuclides require fast separation of nuclear reaction products from irradiated target materials followed by a transfer into an ion source. As a first step in this transport chain the release of nuclear reaction products from refractory metals has been studied systematically and will be reviewed. High-energy protons (500-1000 MeV) produce a large number of radionuclides in irradiated materials via the nuclear reactions spallation, fission and fragmentation. Foils and powders of Re, W, Ta, Hf, Mo, Nb, Zr, Y, Ti and C were irradiated with protons (600-1000 MeV) at the Dubna synchrocyclotron, the CERN synchrocyclotron and at the CERN PS-booster to produce different nuclear reaction products. The main topic of the paper is the determination of diffusion coefficients of the nuclear reaction products in the target matrix, data evaluation and a systematic interpretation of the data. The influence of the ionic radius of the diffusing species and the lattice type of the host material used as matrix or target on the diffusion will be evaluated from these systematics. Special attention was directed to the release of group I-, II- and III-elements. Arrhenius plots lead to activation energies of the diffusion process. Results:A strong radius determined diffusion behaviour was found: DIIIB> DIIA> DIA> DVIIIA, ( DY> DSr> DRb> DKr). Rare earth elements diffuse as Me 3+-species. Within the host elements of one period of the periodic table the diffusion of the trace elements changes in the following order: DIIIB> DIVB≫ DVB> DVIB. In a given target trace elements of group I and II of a lower period diffuse faster than the corresponding elements of the higher period of the periodic table. D2ndperiod> D5thperiod> D6thperiod, ( DBe≫ DSr> DBa). The diffusion determined transport rate of nuclear reaction products in solid target materials is often satisfactory, and consequently several

  11. Production of glass balloons for laser targets

    SciTech Connect

    Hendricks, C.D.; Dressler, J.L.

    1982-09-28

    An apparatus for producing small quantities of glass balloons for use as laser fusion targets is described. To produce precise quantities of the ingredients of one glass balloon, a jet of an aqueous solution of the glass constituents and a blowing agent is metered into uniformly sized drops by Rayleigh breakup. A small fraction of these uniform drops is then passed through an oven where the water is evaporated, the remaining solid material is fused into glass, and a blowing agent decomposes or water of hydration evolves as a vapor to blow the drop into a balloon. Photographs of the resulting glass balloons are presented.

  12. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2010-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including data from SORCE, UARS-SOLSTICE, SME, and TIMED-SEE, and model data from the Flare Irradiance Spectral Model (FISM). The user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide continuous coverage from 1981 to the present, while Lyman-alpha measurements, FISM daily data, and TSI models date from the 1940s to the present. LISIRD will also host Glory TSI data as part of the SORCE data system. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD’s interfaces.

  13. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    SciTech Connect

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  14. Plant Natural Products Targeting Bacterial Virulence Factors.

    PubMed

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  15. Explosive Boiling In Carbon Target Irradiated By Third Harmonic Of Nd :YAG Laser

    SciTech Connect

    Yahiaoui, K.; Kerdja, T.; Malek, S.

    2008-09-23

    In order to identify the physical phenomena responsible to the formation of droplets onto thin films grown during laser ablation, and to correlate between the appearance of those droplets versus the laser flux, we have measured the amount of ejected matter for carbon target irradiated by a third harmonic of Nd:YAG laser by changing laser flux. The measurement was achieved by a quartz microbalance placed in front of the target. The obtained results show at first a linear increase of the ejected material followed by a saturation behavior, and then an abrupt increase of the ablated mass beyond a laser Intensity of 3,64x10{sup 10} W/cm{sup 2}. This increasing is assigned to the homogeneous nucleation of bubbles in a layer of the molten material, also called phase explosion, the surface temperature of the target will approaches the critical thermodynamic temperature (T{sub tc}). We have also measured time-of-flight (TOF) distributions of positives ions of carbons in the plasma using a charge collector. The TOF signals have been fitted with a shifted Maxwellian distribution function. This has allowed us to estimate the critical temperature T{sub tc} of the material.

  16. Sucrose radical-production cross-section regarding heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kouichi; Ikota, Nobuo; Anzai, Kazunori

    2008-05-01

    We investigated the sucrose radical-production cross-section induced by heavy-ion irradiation. L-Alanine was also used in order to compare radical yield and cross-section. The stable free radicals after irradiation were analyzed by electron paramagnetic resonance (EPR). The radical yield obtained by the irradiated samples had a logarithmic correlation with the LET (linear energy transfer). Quantitative EPR analyses showed that radical productions for sucrose and L-alanine vary both by different particle irradiation and the LET under the same absorbed dose. Furthermore, the cross-sections of radical productions for samples were calculated. Both cross-sections for C ions irradiation under LET 30 keV/μm at 50 Gy dose were ˜3.0 × 10 -9 μm 2, taking account of the molecular areas of the samples. The values of the cross-sections imply that multiple ionizing particles involve producing stable radicals.

  17. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  18. Systems and methods for retaining and removing irradiation targets in a nuclear reactor

    DOEpatents

    Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.

    2015-12-08

    A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.

  19. Use of gamma irradiation to prevent aflatoxin B 1 production in smoked dried fish

    NASA Astrophysics Data System (ADS)

    Ogbadu, G. H.

    Smoked dried fish bought from the Nigerian market was inoculated with spores of barAspergillus flavus (U.I. 81) and irradiated with doses of 0.625, 1.25, 2.50 and 5.00 KGy gamma irradiation. The effect of aflatoxin B 1 production on subsequent incubation for 8 days as stationary cultures was measured. The amount of aflatoxin B 1 produced was found to decrease with increased gamma irradiation dose levels. While the non-irradiated control produced significantly (at 1% level) greater amounts of aflatoxin B 1 as compared to the treated cultures.

  20. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  1. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-01

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 1023 W/cm2, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >1015 is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ˜15° with an effective temperature of ˜674 MeV. When the laser intensity is doubled, both the positron flux (>1016) and temperature (963 MeV) increase, while the divergence angle gets smaller (˜13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  2. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  3. Automated Production of High Rep Rate Foam Targets

    NASA Astrophysics Data System (ADS)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  4. Mutagenicity and DNA-damaging activity of decomposed products of food colours under UV irradiation.

    PubMed

    Ozaki, A; Kitano, M; Itoh, N; Kuroda, K; Furusawa, N; Masuda, T; Yamaguchi, H

    1998-01-01

    Five synthetic food colours Food Red Nos 3, 40 and 102 and Food Blue Nos 1 and 2, and their UV irradiated products were tested for mutagenic activity by means of the Ames test using Salmonella typhimurium strains TA98 and TA100. Food colours were irradiated with UV light for 14 days. Food Red Nos 3, 40 and 102 and Food Blue No. 1 were non-mutagenic before and after irradiation. UV irradiated products of Food Blue No. 2 were mutagenic in TA98 with or without S-9 mix. The mutagenic activity increased with increasing irradiation period, reached maximum potency on day 6, and then decreased. Moreover, Food Blue No. 2 showed DNA-damaging activity after 14 days of irradiation in rec-assay using Bacillus subtilis strains H17 and M45. The capillary electrophoresis was applied for the analysis of UV irradiated products of Food Blue No. 2. The original peak of Food Blue No. 2 was decomposed into seven peaks after UV irradiation.

  5. Improvement of shelf stability and processing properties of meat products by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Lee, Kyong-Haeng; Kim, Hee-Yun

    2002-03-01

    To evaluate the effects of gamma irradiation on the processing properties of meat products, emulsion-type sausage, beef patties and pork loin ham were manufactured. Most contaminated bacteria were killed by 3 kGy-irradiation to raw ground beef, and sausage can be manufactured with desirable flavor, a reduction of NaCl and phosphate, and extension of shelf life using gamma irradiation on the raw meat. The beef patties were manufactured with the addition of antioxidants (200 ppm), BHA, ascorbyl palmitate, α-tocopherol, or β-carotene, and gamma-irradiation. Retardation of lipid oxidation appeared at the patties with an antioxidant. A dose of 5 kGy was observed to be as effective as the use of 200 ppm NaNO 2 to provide and maintain the desired color of the product during storage. After curing, irradiation, heating and smoking could extensively prolong the shelf life of the hams.

  6. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Deshayes, Stéphanie; Maurizot, Victor; Clochard, Marie-Claude; Berthelot, Thomas; Baudin, Cécile; Déléris, Gérard

    2010-03-01

    Angiogenesis plays a critical role in both growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is an endogenous mediator of tumor angiogenesis. Blocking associations of the VEGF with its corresponding receptors (KDR) have become critical for anti-tumor therapy. A cyclo-peptide (CBO-P11), derived from VEGF, able to inhibit the interaction between the growth factor and its receptor, was synthesized in our laboratory to provide a target for angiogenesis. We have prepared biocompatible poly(vinylidene fluoride) (PVDF) nanoparticles in order to obtain long blood circulating systems. Electron-beam (EB) irradiation was used to activate the PVDF nanoparticles. From electron paramagnetic resonance (EPR) measurements, we studied the radical stability in order to optimize the radio-grafting of acrylic acid (AA). Further functionalization of PVDF-g-PAA nanoparticles with the cyclo-peptide via a spacer arm was also possible by performing coupling reactions. High resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) and MALDI mass spectrometry allowed us to follow each chemical step of this peptide immobilization. We designed a new nanodevice suggesting a great potential for targeting angiogenesis. 7727-21-1

  7. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation

    PubMed Central

    Peng, Jin; Jiang, Zhenzhen; Song, Tao; Wu, Bo; Yue, Jing; Zhou, Rongjing; Xie, Ruifei; Chen, Tian; Wu, Shixiu

    2015-01-01

    Radiotherapy is a primary treatment modality for esophageal squamous cell carcinoma (ESCC). However, most of patients benefited little from radiotherapy due to refractory radioresistance. We found that WISP1, a downstream target gene of Wnt/β-catenin pathway, was re-expressed in 67.3 % of ESCC patients as an oncofetal gene. Expression of WISP1 predicted prognosis of ESCC patients treated with radiotherapy. Overall survival in WISP1-positive patients was significantly poorer than in WISP1-negative patients. Serum concentration of WISP1 after radiotherapy reversely correlated with relapse-free survival. Gain and loss of function studies confirmed that WISP1 mediated radioresistance both in esophageal squamous cancer cells and in xenograft tumor models. Further studies revealed that WISP1 contributed to radioresistance primarily by repressing irradiation-induced DNA damage and activating PI3K kinase. LncRNA BOKAS was up-regulated following radiation and promoted WISP1 expression and resultant radioresistance. Furthermore, WISP1 facilitated its own expression in response to radiation, creating a positive feedback loop and increased radioresistance. Our study revealed WISP1 as a potential target to overcome radioresistance in ESCC.  PMID:25749038

  8. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  9. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  10. Fermilab Tevatron I project target station for antiproton production

    SciTech Connect

    Hojvat, C.; Biallas, G.; Hanson, R.; Heim, J.; Lange, F.

    1983-03-01

    Production of 8-GeV antiprotons in the Fermilab Tevatron I project will utilize 120-GeV protons from the Main Ring. The Target Station consists of an entrance collimator, the target itself, a pulsed lithium lens for anti proton collection, a pulsed magnet for the separation of the 8-GeV secondaries, and a beam dump. These components are mounted on vertical modules within the Target Service Building. Allowance has been made for future improvements to increase the collected anti proton flux. The design of the Target Station and its components is discussed.

  11. Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.

  12. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.

    PubMed

    Yoshida, Ayaka; Yoshino, Fumihiko; Makita, Tetsuya; Maehata, Yojiro; Higashi, Kazuyoshi; Miyamoto, Chihiro; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Takahashi, Osamu; Lee, Masaichi Chang-il

    2013-12-01

    In recent years, it has become well known that the production of reactive oxygen species (ROS) induced by blue-light irradiation causes adverse effects of photo-aging, such as age-related macular degeneration of the retina. Thus, orange-tinted glasses are used to protect the retina during dental treatment involving blue-light irradiation (e.g., dental resin restorations or tooth bleaching treatments). However, there are few studies examining the effects of blue-light irradiation on oral tissue. For the first time, we report that blue-light irradiation by quartz tungsten halogen lamp (QTH) or light-emitting diode (LED) decreased cell proliferation activity of human gingival fibroblasts (HGFs) in a time-dependent manner (<5 min). Additionally, in a morphological study, the cytotoxic effect was observed in the cell organelles, especially the mitochondria. Furthermore, ROS generation induced by the blue-light irradiation was detected in mitochondria of HGFs using fluorimetry. In all analyses, the cytotoxicity was significantly higher after LED irradiation compared with cytotoxicity after QTH irradiation. These results suggest that blue light irradiation, especially by LED light sources used in dental aesthetic treatment, might have adverse effects on human gingival tissue. Hence, this necessitates the development of new dental aesthetic treatment methods and/or techniques to protect HGFs from blue light irradiation during dental therapy.

  13. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.

    PubMed

    Hou, Yanping; Luo, Haiping; Liu, Guangli; Zhang, Renduo; Li, Jiayi; Fu, Shiyu

    2014-09-01

    Methanogenesis inhibition is essential for the improvement of hydrogen (H2) yield and energy recovery in the microbial electrolysis cell (MEC). In this study, ultraviolet (UV) irradiation was proposed as an efficient method for methanogenesis control in a single chamber MEC. With 30 cycles of operation with UV irradiation in the MEC, high H2 concentrations (>91%) were maintained, while without UV irradiation, CH4 concentrations increased significantly and reached up to 94%. In the MEC, H2 yields ranged from 2.87 ± 0.03 to 3.70 ± 0.11 mol H2/mol acetate with UV irradiation and from 3.78 ± 0.12 to 0.03 ± 0.004 mol H2/mol acetate without UV irradiation. Average energy efficiencies from the UV-irradiated MEC were 1.5 times of those without UV irradiation. Energy production from the MEC without UV irradiation was a negative energy yield process because of large amount of CH4 produced over time, which was mainly attributable to cathodic hydrogenotrophic methanogenesis. Our results clearly showed that UV irradiation could effectively inhibit methanogenesis and improve MEC performance to produce H2.

  14. Radiation reaction and resulting photon emission from laser-irradiated solid targets

    NASA Astrophysics Data System (ADS)

    Stark, David; Arefiev, Alexey; Hegelich, Manuel

    2014-10-01

    Once completed, an ongoing upgrade of the Texas-PW laser system would allow us to achieve on-target laser intensities of up to 5 ×1022 W/cm2. As experimental confirmation of the radiation reaction force and the variety of models describing it remains a challenge, here we present a scenario that would enable us to observe the effect by detecting the resulting photon emission. A laser with our planned intensity could accelerate an electron to hundreds of MeV, but the radiation reaction and thus the photon emission would be relatively weak if the electron co-propagates with the wave. We consider a solid density target irradiated by a laser beam so that strong fields are generated due to charge separation. These fields can alter the electron trajectories, leading to strong radiation reaction and photon emission in the focal spot. Simulating this interaction using the particle-in-cell code EPOCH, we perform a target density scan that allows us to optimize the fraction of the laser energy converted into photons and to determine the photon spectrum. Knowing the spectrum and the angular emission is critical for measurements in the lab, since these photons must be distinguished from those from other processes. We use HPC resources from the Texas Advanced Computing Center. This work is supported by DOD-Air Force Contract No. FA9550-14-1-0045, US DOE Contract No. DE-FG02-04ER54742, and DOE SCGF by ORISE-ORAU under Contract No. DE-AC05-06OR23100.

  15. Production of a thin diamond target by laser for HESR at FAIR

    NASA Astrophysics Data System (ADS)

    Balestra, F.; Ferrero, S.; Introzzi, R.; Pirri, F.; Scaltrito, L.; Younis, H.

    2016-04-01

    In the future hadron facility FAIR, the HESR ring will supply antiprotons in the momentum range 1.5-15 GeV/c as projectiles to study charm, strangeness and a wide range of other Physics topics. For all these reactions it will be necessary to use internal targets and in particular, for the production of systems with double strangeness, a solid 12C target will be used. Inserting a solid target inside an antiproton ring creates two main problems: a large background on the detectors due to the overwhelming amount of annihilations and a strong depletion of the beam due to all the hadronic and Coulomb interactions of the antiprotons with the 12C nuclei. The width of the target plays a crucial role in minimizing these unwanted effects. Two wire-shaped prototypes have been already realized, starting from a thin diamond disk. The wire shape has been obtained by using a femto-edge laser. One prototype has been submitted to irradiation by protons of 1.5 MeV and to simultaneous Back-Scattering control to test the impurity level, the 12C density, the radiation hardness and possible phase modifications during irradiation. Both the prototypes have been submitted to Micro-Raman spectroscopy in order to scan the carbon phases along the width. The results show performances which satisfy the experimental requirements.

  16. Global surface solar irradiance product derived from SCIAMACHY FRESCO cloud fraction

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Stammes, Piet; Müller, Richard

    The FRESCO cloud retrieval algorithm has been developed as a simple but fast and efficient algorithm for GOME and SCIAMACHY (Koelemeijer et al., 2001; Fournier et al., 2006; Wang et al., 2008). FRESCO employs the O2 A band at 760 nm to retrieve the effective cloud fraction and cloud pressure using a simple Lambertian cloud model. The effective cloud fraction is a combination of geometric cloud fraction and cloud optical thickness, which yield the same reflectance at the top of the atmosphere as the cloud in the scene. It is well-known that clouds reduce the surface solar irradiance. Therefore the all-sky irradiance can be derived from the clear-sky irradiance with a scaling factor related to the cloud index. The cloud index is very similar to the effective cloud fraction by definition. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) software converts the cloud index to the surface solar irradiance using the Heliosat method (Mueller et al. 2009). The MAGIC algorithm is also used by the CM-SAF surface solar irradiance product for clear sky cases. We applied the MAGIC software to FRESCO effective cloud fraction with slight modifications. In this presentation we will show the FRESCO-SSI monthly mean product and the comparison with the BSRN global irradiance data at Cabauw, the Netherlands and surface solar irradiance measurement at Tibetan plateau in China.

  17. Shielding calculations for a production target for secondary beams

    SciTech Connect

    Rehm, K.E.; Back, B.B.; Jiang, C.L.

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  18. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  19. Nanoparticle production by UV irradiation of combustion generated soot particles

    SciTech Connect

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-07-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm{sup 2} with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process.

  20. Mechanisms of volatile production from sulfur-containing amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Uk Ahn, Dong; Joo Lee, Eun; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Sulfur-containing amino acids were used to study the mechanisms of off-odor production in meat by irradiation. Irradiation not only increased the amounts of volatiles but also produced many new volatiles from sulfur-containing amino acid monomers. We speculate that the majority of the volatiles were the direct radiolytic products of the side chains, but Strecker degradation as well as deamination and decarboxylation of radiolytic products were also involved in the production of volatile compounds from sulfur amino acids. The volatile compounds produced in amino acids were not only the primary products of irradiation, but also the products of secondary chemical reactions after the primary compounds were produced. Cysteine and methionine produced odor characteristics similar to that of the irradiated meat, but the amounts of sulfur volatiles from methionine were far greater than that of cysteine. Although the present study was carried out using an amino acid model system, the information can be applied to the quality indexes of irradiated meats as well as other food products.

  1. Analyses of the plasma generated by laser irradiation on sputtered target for determination of the thickness used for plasma generation

    SciTech Connect

    Kumaki, Masafumi; Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya; Fuwa, Yasuhiro; Cinquegrani, David; Kanesue, Takeshi; Okamura, Masahiro; Washio, Masakazu

    2014-02-15

    In Brookhaven National Laboratory, laser ion source has been developed to provide heavy ion beams by using plasma generation with 1064 nm Nd:YAG laser irradiation onto solid targets. The laser energy is transferred to the target material and creates a crater on the surface. However, only the partial material can be turned into plasma state and the other portion is considered to be just vaporized. Since heat propagation in the target material requires more than typical laser irradiation period, which is typically several ns, only the certain depth of the layers may contribute to form the plasma. As a result, the depth is more than 500 nm because the base material Al ions were detected. On the other hand, the result of comparing each carbon thickness case suggests that the surface carbon layer is not contributed to generate plasma.

  2. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  3. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  4. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    SciTech Connect

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-04-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  5. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  6. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin

    SciTech Connect

    Polla, L.L.; Margolis, R.J.; Dover, J.S.; Whitaker, D.; Murphy, G.F.; Jacques, S.L.; Anderson, R.R.

    1987-09-01

    The specific targeting of melanosomes may allow for laser therapy of pigmented cutaneous lesions. The mechanism of selective destruction of pigmented cells by various lasers, however, has not been fully clarified. Black, brown, and albino guinea pigs were exposed to optical pulses at various radiant exposure doses from a Q-switched, 40 nsec, 694 nm ruby laser. Biopsies were analyzed by light and electron microscopy (EM). Albino animals failed to develop clinical or microscopic evidence of cutaneous injury after irradiation. In both black and brown animals, the clinical threshold for gross change was 0.4 J/cm2, which produced an ash-white spot. By light microscopy, alterations appeared at 0.3 J/cm2 and included separation at the dermoepidermal junction, and the formation of vacuolated epidermal cells with a peripheral cytoplasmic condensation of pigment. By EM, enlarged melanosomes with a central lucent zone were observed within affected epidermal cells at 0.3 J/cm2. At 0.8 and 1.2 J/cm2, individual melanosomes were more intensely damaged and disruption of melanosomes deep in the hair papillae was observed. Dermal-epidermal blisters were formed precisely at the lamina lucida, leaving basal cell membranes and hemidesmosomes intact. Possible mechanisms for melanosomal injury are discussed. These observations show that the effects of the Q-switched ruby laser are melanin-specific and melanin-dependent, and may be useful in the selective destruction of pigmented as well as superficial cutaneous lesions.

  7. Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok; Chun, Byeong-Soo; Ahn, Dong-Hyun; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.

  8. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  9. Biohydrogen production by purple non-sulfur bacteria Rhodobacter sphaeroides: Effect of low-intensity electromagnetic irradiation.

    PubMed

    Gabrielyan, Lilit; Sargsyan, Harutyun; Trchounian, Armen

    2016-09-01

    The present work was focused on the effects of low-intensity (the flux capacity was of 0.06mWcm(-2)) electromagnetic irradiation (EMI) of extremely high frequencies or millimeter waves on the growth and hydrogen (H2) photoproduction by purple non-sulfur bacteria Rhodobacter sphaeroides MDC6521 (from Armenian mineral springs). After exposure of R. sphaeroides, grown under anaerobic conditions upon illumination, to EMI (51.8GHz and 53.0GHz) for 15min an increase of specific growth rate by ~1.2-fold, in comparison with control (non-irradiated cells), was obtained. However, the effect of EMI depends on the duration of irradiation: the exposure elongation up to 60min caused the delay of the growth lag phase and the decrease specific growth rate by ~1.3-fold, indicating the bactericidal effect of EMI. H2 yield of the culture, irradiated by EMI for 15min, determined during 72h growth, was ~1.2-fold higher than H2 yield of control cells, whereas H2 production by cultures, irradiated by EMI for 60min was not observed during 72h growth. This difference in the effects of extremely high frequency EMI indicates a direct effect of radiation on the membrane transfer and the enzymes of these bacteria. Moreover, EMI increased DCCD-inhibited H(+) fluxes across the bacterial membrane and DCCD-sensitive ATPase activity of membrane vesicles, indicating that the proton FoF1-ATPase is presumably a basic target for extremely high frequency EMI related to H2 production by cultures. PMID:27479839

  10. Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products

    SciTech Connect

    Moshonas, M.G.; Shaw, P.E.

    1982-05-01

    Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 50-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found in peel oil from fruit treated with phosphine.

  11. Primordial comet mantle - Irradiation production of a stable, organic crust

    SciTech Connect

    Strazzulla, G.; Baratta, G.A.; Johnson, R.E.; Donn, B. Osservatorio Astrofisico, Catania Virginia, University, Charlottesville )

    1991-05-01

    The thickness and survivability of a cosmic ray-generated primordial comet refractory mantle, or 'crust', are presently predicted by laboratory data and corrected estimates of cosmic ray dose to be capable of surviving a new comet's entry into the inner solar system over numerous revolutions. It is suggested that, since this mantle may be as much as several meters deep, the probe apparatus of the projected CRAF and Rosetta spacecraft will have to be extended in order to reach the desired, unprocessed cometary material. As things stand, there is a high probability that these missions will sample cometary matter than has been heavily irradiated and reprocessed in the Oort cloud. 28 refs.

  12. Beauty and charm production in fixed target experiments

    SciTech Connect

    Kidonakis, Nikolaos; Vogt, Ramona

    2004-05-01

    We present calculations of NNLO threshold corrections for beauty and charm production in {pi}{sup -} p and pp interactions at fixed-target experiments. Recent calculations for heavy quark hadroproduction have included next-to-next-to-leading-order (NNLO) soft-gluon corrections [1] to the double differential cross section from threshold resummation techniques [2]. These corrections are important for near-threshold beauty and charm production at fixed-target experiments, including HERA-B and some of the current and future heavy ion experiments.

  13. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2015-06-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  14. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation.

    PubMed

    Priegnitz, M; Helmbrecht, S; Janssens, G; Perali, I; Smeets, J; Vander Stappen, F; Sterpin, E; Fiedler, F

    2015-06-21

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  15. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  16. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-09-01

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  17. Stressed capsules of austenitic and martensitic steels irradiated in SINQ Target-4 in contact with liquid lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Gavillet, D.; Restani, R.

    2008-06-01

    In the MEGAPIE target, the steels used for the proton beam entrance window and other components in the spallation reaction zone suffer not only from the irradiation damage produced by protons and neutrons but also from the corrosion and embrittlement induced by liquid lead-bismuth eutectic (LBE). Although these effects have been separately studied by a number of authors, the synergistic effects of irradiation, LBE corrosion and embrittlement are little understood. This work presents detailed analyses of two stressed capsules made of the austenitic steel EC316LN and the martensitic steel 9Cr2WVTa, which were irradiated in SINQ Target-4 in contact with LBE at calculated temperatures of 315 and 225 °C, respectively. The Electron Probe Microanalysis (EPMA) on the cross-sections of the capsules showed that the stagnant LBE induced only slight corrosion on both capsules and no cracks existed in the wall of the EC316LN capsule. Some cracks were observed in the electron beam weld (EBW) and its vicinity of the 9Cr2WVTa capsule, which can be attributed to the high stress inside the wall, the hardening of the material induced by either welding (without re-tempering) or irradiation, and the effects of LBE embrittlement.

  18. Eliciting Production of L2 Target Structures through Priming Activities

    ERIC Educational Resources Information Center

    McDonough, Kim; Trofimovich, Pavel; Neumann, Heike

    2015-01-01

    This study focuses on the pedagogical applications of structural priming research in an English for academic purposes (EAP) context, investigating whether priming activities are an effective tool for eliciting production of target grammatical structures. University students across four EAP classes carried out a total of 6 information-exchange…

  19. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cutroneo, M.; Ceccio, G.; Cannavò, A.; Batani, D.; Boutoux, G.; Jakubowska, K.; Ducret, J. E.

    2016-04-01

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions depending on the laser parameters, the irradiation conditions, and a target optimization.

  20. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields.

    PubMed

    Lindegren, S; Bäck, T; Jensen, H J

    2001-08-01

    Astatine-211 was produced via the 209Bi(alpha,2n) 211At reaction. The radionuclide was isolated with a novel procedure employing dry-distillation of the irradiated target material. The astatine was condensed as a dry residue in a PEEK-capillary cryotrap. Distillation was completed within 1-2 min with isolation yields of 92 +/- 3%. Subsequent work-up of the nuclide resulted in final recovery yields of 79 +/- 3%. PMID:11393754

  1. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields.

    PubMed

    Lindegren, S; Bäck, T; Jensen, H J

    2001-08-01

    Astatine-211 was produced via the 209Bi(alpha,2n) 211At reaction. The radionuclide was isolated with a novel procedure employing dry-distillation of the irradiated target material. The astatine was condensed as a dry residue in a PEEK-capillary cryotrap. Distillation was completed within 1-2 min with isolation yields of 92 +/- 3%. Subsequent work-up of the nuclide resulted in final recovery yields of 79 +/- 3%.

  2. Study on increasing production of natural silk by using low dose irradiation

    SciTech Connect

    Ruiying, Z.; Yinfen, Z.; Dingzhu, C.; Jinxian, R.

    1985-01-01

    Radiation effect on silkworm irradiated by low dose fast neutron and ..gamma..-ray emitted from Ra-Be neutron source are reported. It is shown that increasing production of natural silk can only be obtained by irradiation under specified conditions. It was found that an appropriate fluence employed could lead to increase hatching rate of silkworm eggs, make silkworms' bodies strong, grow fast, possess high disease resistance and reduce the whole stadium by 1/2 to 2 1/2 days. In addition, the irradiated silkworm can be expected to spin bigger cocoons with thick layers and the quality of cocoon silk are remarkable improved. The application of irradiation technique has now been extended to the suburbs of Beijing and welcomed by sericulturist.

  3. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils

    SciTech Connect

    Robinson, A. P. L; Gibbon, P.

    2007-01-15

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  4. Indirect Production of No Carrier Added (NCA) (177)Lu from Irradiation of Enriched (176)Yb: Options for Ytterbium/Lutetium Separation.

    PubMed

    Dash, Ashutosh; Chakravarty, Rubel; Knapp, Furn F Russ; Pillai, Ambikalmajan M R

    2015-01-01

    This article presents a concise review of the production of no-carrier-added (NCA) (177)Lu by the 'indirect' route by irradiating ytterbium-176 ((176)Yb)-enriched targets. The success of this production method depends on the ability to separate the microscopic amounts of NCA (177)Lu from bulk irradiated ytterbium targets. The presence of Yb(+3) from the target in the final processed (177)Lu will adversely affect the quality of (177)Lu by decreasing the specific activity and competing with Lu(+3) complexation since ytterbium will follow the same coordination chemistry. Ytterbium and lutetium are adjacent members of the lanthanide family with very similar chemical properties which makes the separation of one from the other a challenging task. This review provides a summary of the methods developed for the separation and purification of NCA (177)Lu from neutron irradiated (176)Yb-enriched targets, a critical assessment of recent developments and a discussion of the current status of this (177)Lu production method.

  5. 60Co irradiation for sterilization of veterinary mastitis products containing antibiotics and steroids

    NASA Astrophysics Data System (ADS)

    Tsuji, K.; Kane, M. P.; Rahn, P. D.; Steindler, K. A.

    Effects of 60Co irradiation for sterilization of veterinary mastitis products were evaluated. The mastitis products which were examined contained various combinations of antibiotics and steroids suspended in peanut oil vehicle. Bioburden data indicated that the unirradiated products were only occasionally contaminated with microorganisms. The D-values of the nonsterile product and environmental isolates were 0.028, 0.15, 0.017, and 0.018 Mrads for Aspergillus fumigatus, Penicillium oxalicum, Pseudomonas aeruginosa, and Pseudomonas maltophilia, respectively. The D-value of the biological indicator organism, Bacillus pumilus spores, in the vehicle was 0.27 Mrads. Thus, an irradiation dose of 1.6 Mrads would be sufficient to achieve six log cycles of destruction of the biological indicator organism. The minimum absorbed irradiation dose of 2.5 Mrads preferred by many countries for sterilization would achieve 9.3 log cycle destruction of the indicator organism and guarantee a probability of 1 × 10 -15 assurance for the most radio-resistant product isolate, Penicillium oxalicum. In order to examine short and long term chemical stabilities of active components, stability indicating high-performance liquid chromatographic (HPLC) methods for the determination of the following antibiotics and steroids were developed. They were: dihydrostreptomycin, neomycin, novobiocin, penicillin G, hydrocortisone acetate, hydrocortisone sodium succinate, and prednisolone. The rates of degradation and radiolytic degradation schemes for the majority of these compounds were elucidated. Formation of new compounds was not observed in these antibiotics and steroids upon 60Co irradiation. The compounds that increased by irradiation were inherently present in commercially available non-irradiated lots and/or can easily be formed by either acidic, basic, or thermal treatment.

  6. A Transversely Oriented Pion Production Target for a Muon Collider

    NASA Astrophysics Data System (ADS)

    King, Bruce; Mokhov, Nikolai

    1998-04-01

    A conceptual design is presented for a high power pion production target incorporating a thin rotating strip of copper-nickel alloy inside a 15 to 20 Tesla solenoidal magnetic capture channel. A 4 MW, 16 GeV proton beam in bunches of 0.25 to 1 × 10^14 protons is incident on the thin edge of the target and perpendicular to the symmetry axis of the solenoid. The mechanical layout and cooling setup are described. Realistic Monte-Carlo calculations are performed and results on the pion yield, energy deposition and shock heating stresses are presented.

  7. UVA irradiation of fatty acids and their oxidized products substantially increases their ability to generate singlet oxygen.

    PubMed

    Regensburger, Johannes; Maisch, Tim; Knak, Alena; Gollmer, Anita; Felgentraeger, Ariane; Lehner, Karin; Baeumler, Wolfgang

    2013-10-28

    UVA radiation plays an important role for adverse reactions in human tissue. UVA penetrates epidermis and dermis of skin being absorbed by various biomolecules, especially endogenous photosensitizers. This may generate deleterious singlet oxygen ((1)O2) that oxidizes fatty acids in cell membranes, lipoproteins, and other lipid-containing structures such as the epidermal barrier. Indications exist that fatty acids are not only the target of (1)O2 but also act as potential photosensitizers under UVA irradiation, if already oxidized. Five different fatty acids in ethanol solution (stearic, oleic, linoleic, linolenic and arachidonic acid) were exposed to UVA radiation (355 nm, 100 mW) for 30 seconds. (1)O2 luminescence was detected time-resolved at 1270 nm and confirmed in spectrally-resolved experiments. The more double bonds fatty acids have the more (1)O2 photons were detected. In addition, fatty acids were continuously exposed to broadband UVA for up to 240 min. During that time span, UVA absorption and (1)O2 luminescence substantially increased with irradiation time, reached a maximum and decreased again. HPLC-MS analysis showed that the amount of peroxidized fatty acids and the (1)O2 generation increased and decreased in parallel. This indicates the high potential of peroxidized fatty acids to produce (1)O2 under UVA irradiation. In conclusion, fatty acids along with peroxidized products are weak endogenous photosensitizers but become strong photosensitizers under continuous UVA irradiation. Since fatty acids and their oxidized products are ubiquitous in living cells and in skin, which is frequently and long-lasting exposed to UVA radiation, this photosensitizing effect may contribute to initiation of deleterious photooxidative processes in tissue.

  8. RTNS-II: irradiations at the Rotating Target Neutron Source-II. 1983 annual report

    SciTech Connect

    Not Available

    1983-01-01

    This is the second annual report summarizing irradiation experiments and operations at RTNS-II. It covers calendar year 1983 and includes reports on all irradiations, non-fusion as well as fusion, and on utilization of Monbusho's transmission electron microscope (TEM) a RTNS-II. Each summary article has been submitted by the investigator and has been altered only to meet the style and format requirements of this report.

  9. GEANT4 simulation of cyclotron radioisotope production in a solid target.

    PubMed

    Poignant, F; Penfold, S; Asp, J; Takhar, P; Jackson, P

    2016-05-01

    The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient. The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation. The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200MeV available in Geant4 version 10.1. The simulation yield of the (64)Ni(p,n)(64)Cu reaction was found to be 7.67±0.074 mCi·μA(-1) for a target energy range of 9-12MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71mCi·μA(-1) and an experimental yield of 6.38mCi·μA(-1). The (64)Ni(p,n)(64)Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and

  10. Helium and hydrogen measurements on pure materials irradiated in SINQ Target 4

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; Dai, Y.

    2009-04-01

    Several irradiations have been performed in the Swiss Spallation Neutron Source (SINQ) to establish a materials database for mixed proton and neutron fluxes for future spallation neutron and other accelerator sources. Pure metal dosimetry materials from the second irradiation (STIP-II) have been analyzed for their total helium and hydrogen contents and their release characteristics with temperature (TDS). Total helium results are similar to those observed earlier from the first irradiation experiment (STIP-I), with concentrations ranging from ˜500 to ˜1000 appm. Hydrogen contents varied over a larger range from ˜100 to ˜60 000. 3He/ 4He ratios were generally consistent with expectations, except for Ti, Nb, and Ta which showed lower values due to 3He from decay of irradiation-generated tritium. Some differences were observed in the hydrogen TDS data for the control and irradiated materials, including some evidence for additional lower-temperature release and for multiple release peaks. Additionally, differences were noted in the releases for irradiated material that been cleaned versus material that had no cleaning.

  11. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  12. Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation

    SciTech Connect

    Gedam, Vidyadhar V.; Regupathi, Iyyaswami

    2012-03-15

    In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation highly depends on the process parameters, like microwave power, microwave absorbers, and time of irradiation. The thoroughness of pyrolysis and product recovery were studied by changing the abovesaid variables. Pyrolysis of MSW occurs in the power rating range of 450-850 W-outside this power rating range, pyrolysis is not possible. Experiments were carried out using various microwave absorbers (i.e., graphite, charcoal, and iron) to enhance the pyrolysis even at lower power rating. The results show that the pyrolysis of MSW was possible even at low power ratings. The major composition of the pyrolysis gaseous product were analyzed with GC-MS which includes CO{sub 2}, CO, CH{sub 4}, etc.

  13. Current and potential trade in horticultural products irradiated for phytosanitary purposes

    NASA Astrophysics Data System (ADS)

    Bustos-Griffin, Emilia; Hallman, Guy J.; Griffin, Robert L.

    2012-08-01

    The current status of trade in horticultural products irradiated for phytosanitary purposes is examined, including trends, strengths and weaknesses. A strategy is proposed to take advantage of the best future opportunities for increasing trade in irradiated horticultural products by identifying best possibilities for expanding both the number and volume of commodities for irradiation and then applying appropriate business criteria in a general analysis of the commodities, commercial scenarios, and geographic regions where the greatest potential exists for expansion. The results show that fresh fruits such as mango, papaya, citrus, grapes, and vegetables such as tomatoes, onions, asparagus, garlic, and peppers from Asia and the Americas show the greatest potential. Substantial opportunities for additional growth exist, especially as regulatory conditions become more favorable.

  14. Hot electron and x-ray production from intense laser irradiation of wavelength-scale polystyrene spheres

    SciTech Connect

    Sumeruk, H. A.; Kneip, S.; Symes, D. R.; Churina, I. V.; Belolipetski, A. V.; Dyer, G.; Landry, J.; Bansal, G.; Bernstein, A.; Donnelly, T. D.; Karmakar, A.; Pukhov, A.; Ditmire, T.

    2007-06-15

    Hot electron and x-ray production from solid targets coated with polystyrene-spheres which are irradiated with high-contrast, 100 fs, 400 nm light pulses at intensity up to 2x10{sup 17} W/cm{sup 2} have been studied. The peak hard x-ray signal from uncoated fused silica targets is an order of magnitude smaller than the signal from targets coated with submicron sized spheres. The temperature of the x-rays in the case of sphere-coated targets is twice as hot as that of uncoated glass. A sphere-size scan of the x-ray yield and observation of a peak in both the x-ray production and temperature at a sphere diameter of 0.26 {mu}m, indicate that these results are consistent with Mie enhancements of the laser field at the sphere surface and multipass stochastic heating of the hot electrons in the oscillating laser field. These results also match well with particle-in-cell simulations of the interaction.

  15. Processing of LEU targets for {sup 99}Mo production: Dissolution of U{sub 3}Si{sub 2} targets by alkaline hydrogen peroxide

    SciTech Connect

    Buchholz, B.A.; Vandegrift, G.F.

    1995-09-01

    Low-enriched uranium silicide targets designed to recover fission product {sup 99}Mo were dissolved in alkaline hydrogen peroxide (H{sub 2}O{sub 2} plus NaOH) at about 90C. Sintering of matrix aluminum powder during irradiation and heat treatment retarded aluminum dissolution and prevented silicide particle dispersion. Gas evolved during dissolution is suspected to adhere to particles and block hydroxide ion contact with aluminum. Reduction of base concentrations from 5M to O.lM NaOH yielded similar silicide dissolution and peroxide destruction rates, simplifying later processing. Future work in particle dispersion enhancement, {sup 99}Mo separation, and waste disposal is also discussed.

  16. Electroplating targets for production of unique PET radionuclides

    SciTech Connect

    Bui, V.; Sheh, Y.; Finn, R.

    1994-12-31

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators.

  17. Electroplated targets for production of unique PET radionuclides

    NASA Astrophysics Data System (ADS)

    Bui, V.; Sheh, Y.; Finn, R.; Francesconi, L.; Cai, S.; Schlyer, D.; Wieland, B.

    1995-12-01

    The past decade has witnessed the applications of positron emission tomography (PET) evolving from a purely research endeavor to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in both medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules, i.e. monoclonal antibodies and peptides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center (MSKCC) cyclotron are examples of target design and development applicable to many medical accelerators.

  18. Alternate Tritium Production Methods Using A Liquid Lithium Target

    SciTech Connect

    Wilson, J.

    2015-10-08

    For over 60 years, the Savannah River Site’s primary mission has been the production of tritium. From the beginning, the Savannah River National Laboratory (SRNL) has provided the technical foundation to ensure the successful execution of this critical defense mission. SRNL has developed most of the processes used in the tritium mission and provides the research and development necessary to supply this critical component. This project was executed by first developing reactor models that could be used as a neutron source. In parallel to this development calculations were carried out testing the feasibility of accelerator technologies that could also be used for tritium production. Targets were designed with internal moderating material and optimized target was calculated to be capable of 3000 grams using a 1400 MWt sodium fast reactor, 850 grams using a 400 MWt sodium fast reactor, and 100 grams using a 62 MWt reactor, annually.

  19. Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse

    SciTech Connect

    Lee, K.; Park, S. H.; Cha, Y.-H.; Lee, Y. W.; Jeong, Y. U.; Lee, J. Y.; Kim, K. N.

    2011-01-15

    An experimental observation has been made by using aluminum-coated Mylar foils, which strongly supports that in the case of plastic target, the energetic part of the proton beam originates from the front-side of the target. When a 30 fs laser pulse with an intensity of 1.6x10{sup 19} W/cm{sup 2} was irradiated on the 12.5-{mu}m-thick Mylar side of the aluminum-coated Mylar foil, the maximum proton energy was reduced by a factor 5.5 as compared to that of 3.3 MeV observed from the single layer of the Mylar foil. With the help of a two-dimensional particle-in-cell simulation, these observations can be interpreted that in the case of plastic target, the energetic proton beam originates from the front-side of the target. In the case of an aluminum-coated 6-{mu}m-thick Mylar foil, more energetic proton beams of 4.7 MeV were also observed when the laser pulse was irradiated on the aluminum side as compared to those of 3.4 MeV from the single Mylar foil.

  20. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature.

    PubMed

    Sánchez, J F; Fernández-Sevilla, J M; Acién, F G; Cerón, M C; Pérez-Parra, J; Molina-Grima, E

    2008-07-01

    In this paper, the biomass and lutein productivity of the lutein-rich new strain Scenedesmus almeriensis is modelled versus irradiance and temperature. The results demonstrate that S. almeriensis is a mesophile microorganism with an optimal growth temperature of 35 degrees C, and capable of withstanding up to 48 degrees C, which caused culture death. This strain is also tolerant to high irradiances, showing no signs of photoinhibition even at the maximum irradiance essayed of 1625 microE m(-2) s(-1) accumulating up to 0.55% dry weight (d.wt.) of lutein. The optimal conditions that maximise the biomass productivity also favour the lutein productivity, lutein being a primary metabolite. Maximal biomass and lutein productivities of 0.87 g l(-1) day(-1) and 4.77 mg l(-1) day(-1), respectively, were measured. The analysis of light availability inside the cultures, quantified as average irradiance, demonstrates that the cultures were mainly photo-limited, although photosaturation also took place at high external irradiances. The effect of temperature was also investigated finding that the specific maximal growth rate is modified by the temperature according to the Arrhenius equation. The influence of both light availability and temperature was included in an overall growth model, which showed, as a result, capable of fitting the whole set of experimental data. An overall lutein accumulation rate model was also proposed and used in a regression analysis. Simulations performed using the proposed models show that under outdoor conditions a biomass productivity of 0.95 g l(-1) day(-1) can be expected, with a lutein productivity up to 5.31 mg l(-1) day(-1). These models may be useful to assist the design and operation optimisation of outdoor cultures of this strain. PMID:18491039

  1. 77 FR 71312 - Irradiation in the Production, Processing and Handling of Food

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... suggested that the irradiation of apple juice might produce furan (Ref. 9). Because furan has been shown to... published in the Federal Register of December 22, 1999 (64 FR 71792), FDA announced that a food additive... December 22, 1999 (64 FR 71792), the phrase ``meat products'' was used while the petitioner used the...

  2. Post-irradiation analysis of an ISOLDE lead-bismuth target: Stable and long-lived noble gas nuclides

    NASA Astrophysics Data System (ADS)

    Leya, I.; Grimberg, A.; David, J.-C.; Schumann, D.; Neuhausen, J.; Zanini, L.; Noah, E.

    2016-07-01

    We measured the isotopic concentrations of long-lived and stable He, Ne, Ar, Kr, and Xe isotopes in a sample from a lead-bismuth eutectic target irradiated with 1.0 and 1.4 GeV protons. Our data indicate for most noble gases nearly complete release with retention fractions in the range of percent or less. Higher retention fractions result from the decay of long-lived radioactive progenitors from groups 1, 2, or 7 of the periodic table. From the data we can calculate a retention fraction for 3H of 2-3%. For alkaline metals we find retention fractions of about 10%, 30%, and 50% for Na, Rb, and Cs, respectively. For the alkaline earth metal Ba we found complete retention. Finally, the measured Kr and Xe concentrations indicate that there was some release of the halogens Br and I during and/or after the irradiation.

  3. Development of additive [11C]CO2 target system in the KOTRON-13 cyclotron and its application for [11C]radiopharmaceutical production

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seok; Lee, Hong Jin; Lee, Won Kyung; Hur, Min Goo; Yang, Seung Dae; Lee, Byung Chul; Kim, Sang Eun

    2015-08-01

    The KOTRON-13 cyclotron, which was developed in South Korea for the production of medical radioisotopes, has the structural limitation of only one beam-output port, restricting the production of the carbon-11 isotope. In the present study, we investigate the design of a switchable target system and develop an effective carbon-11 target in the KOTRON-13 cyclotron, for combination with the fluorine-18 target. The target system was designed by introducing a sliding-type element between the fluorine-18 and carbon-11 targets, a tailor-made C-11 target and its cooling system. For the efficient production of [11C]CO2, the desirable target shape and internal volume were determined by a Stopping and Range of Ions in Matter (SRIM) simulation program, and the target grid was modified to resist the cavity pressure during beam irradiation. We evaluated the [11C]CO2 production while varying the material and thickness of the target foil, oxygen content of the nitrogen gas, and target loading pressure. Using sliding-type equipment including an additional gate valve and a high vacuum in a beam line, the bi-directional conversion between the fluorine-18 and carbon-11 targets was efficient regarding the accurate beam irradiation on both targets. The optimal [11C]CO2 production for 30 min irradiation at 60 μA (86.6 ± 1.7 GBq in the target at EOB) was observed at a thickness of 19 μm with HAVAR® material as a target foil and a target loading pressure of 24 bar with nitrogen plus 300 ppb of oxygen gas. Additionally, the coolant cavity system in the target grid and target chamber is useful to remove the heat transferred to the target body by the internal convection of water and thereby ensure the stability of the [11C]CO2 production under a high beam current. In the application of C-11 labeled radiopharmaceuticals such as [11C]PIB, [11C]DASB, [11C]PBR28, [11C]Methionine and [11C]Clozapine, the radiochemical yields were shown to be 25-38% (decay corrected) with over 166 GBq/μmol of

  4. Production of {sup 4}He and tritium from Be in the COBRA-1A2 irradiation

    SciTech Connect

    Greenwood, L.R.

    1998-03-01

    The production of {sup 4}He and tritium has been calculated for beryllium irradiated in the COBRA-1A2 experiment in the Experimental Breeder Reactor II. Reaction rates were based on adjusted neutron spectra determined from reactor dosimetry measurements at three different elevations in the region of the beryllium capsules. Equations are given so that gas production can be calculated for any specific capsule elevation.

  5. Mechanism Targeted Discovery of Antitumor Marine Natural Products

    PubMed Central

    Nagle, Dale G.; Zhou, Yu-Dong; Mora, Flor D.; Mohammed, Kaleem A.; Kim, Yong-Pil

    2010-01-01

    Antitumor drug discovery programs aim to identify chemical entities for use in the treatment of cancer. Many strategies have been used to achieve this objective. Natural products have always played a major role in anticancer medicine and the unique metabolites produced by marine organisms have increasingly become major players in antitumor drug discovery. Rapid advances have occurred in the understanding of tumor biology and molecular medicine. New insights into mechanisms responsible for neoplastic disease are significantly changing the general philosophical approach towards cancer treatment. Recently identified molecular targets have created exciting new means for disrupting tumor-specific cell signaling, cell division, energy metabolism, gene expression, drug resistance, and blood supply. Such tumor-specific treatments could someday decrease our reliance on traditional cytotoxicity-based chemotherapy and provide new less toxic treatment options with significantly fewer side effects. Novel molecular targets and state-of-the-art molecular mechanism-based screening methods have revitalized antitumor research and these changes are becoming an ever-increasing component of modern antitumor marine natural products research. This review describes marine natural products identified using tumor-specific mechanism-based assays for regulators of angiogenesis, apoptosis, cell cycle, macromolecule synthesis, mitochondrial respiration, mitosis, multidrug efflux, and signal transduction. Special emphasis is placed on natural products directly discovered using molecular mechanism-based screening. PMID:15279579

  6. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Ahn, Dong Uk

    2016-10-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.

  7. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A. L. C. H.; Bergaentzle, M.

    2012-08-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters.

  8. Targeted genetic modification of cell lines for recombinant protein production

    PubMed Central

    Piskareva, Olga; Muniyappa, Mohan

    2007-01-01

    Considerable increases in productivity have been achieved in biopharmaceutical production processes over the last two decades. Much of this has been a result of improvements in media formulation and process development. Though advances have been made in cell line development, there remains considerable opportunity for improvement in this area. The wealth of transcriptional and proteomic data being generated currently hold the promise of specific molecular interventions to improve the performance of production cell lines in the bioreactor. Achieving this—particularly for multi-gene modification—will require specific, targeted and controlled genetic manipulation of these cells. This review considers some of the current and potential future techniques that might be employed to realise this goal. PMID:19003191

  9. Use of irradiation as quarantine treatment for agricultural products infested by mites and insects

    NASA Astrophysics Data System (ADS)

    Ignatowicz, S.; Brzostek, G.

    The criterion for efficacy of irradiation of agricultural products as a quarantine treatment should be based on the inability to perpetuate the pest at a new location rather than in causing immediate mortality. Sterility in insects and mites is achieved following irradiation of adults and immatures at much lower doses than needed to kill these pests. Irradiation of beans infested by the bean weevil, Acanthoscelidesobtectus Say, and grains infested by the grain weevil, Sitophilusgranarius (L.), and/or the rice weevil, S. oryzae (L.), at 60 Gy could be the treatment required to produce an acceptable level of quarantine security. For the acarid mites ( Acaridae), a dose of 250 Gy is suggested. At these dosages, adult survivors of the pest will be present in the treated commodities, but they will not give rise to offspring, and thus this pest would not be able to perpetuate in a new area.

  10. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  11. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus

    PubMed Central

    Atyame, Célestine M.; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  12. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus.

    PubMed

    Atyame, Célestine M; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  13. Irradiation effect on bulgogi sauce for making commercial Korean traditional meat product, bulgogi

    NASA Astrophysics Data System (ADS)

    Jo, C.; Kim, D. H.; Shin, M. G.; Kang, I. J.; Byun, M. W.

    2003-12-01

    Gamma-irradiated sauce of bulogogi, Korean traditional meat products, was compared with heat-pasteurized one to enhance its safety, quality, and commercial availability. The sauce is usually sold in refrigerated state with 2-7 days of self-life or heat-sterilized and sold in room temperature for a year. Raw vegetables, fruits and soy sauce for sauce making were highly contaminated by thermophillic microorganisms (totally 2.13×10 6 CFU/g) and coliform bacteria (totally 5.90×10 4 CFU/g) at the initial stage. Heat treatment (100°C for 30 min) was effective to control coliform and microbes counted from Salmonella-Shigella selective agar in the sauce but not on thermophillic microorganisms, resulting in a rapid spoilage after 2 weeks at 20°C. Gamma irradiation reduced the level of thermophillic microorganisms and the spoilage was prevented during storage for 4 weeks at 20°C. Protease activity of the sauce was significantly reduced by heat treatment while was not changed by irradiation at 2.5, 5.0, and 10 kGy. Sensory evaluation showed that the irradiation was better in color than nonirradiated control or heat-treated sample. Results indicate that low dose irradiation (2.5-5.0 kGy) is effective to ensure safety of bulgogi sauce with acceptable sensory quality.

  14. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    SciTech Connect

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick ()similarreverse arrowto)1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target ()similarreverse arrowto)1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs.

  15. Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses

    NASA Astrophysics Data System (ADS)

    Lin, Zhibin; Johnson, Robert A.; Zhigilei, Leonid V.

    2008-06-01

    The generation of crystal defects in a Cr target irradiated by a short, 200 fs, laser pulse is investigated in computer simulations performed with a computational model that combines the classical molecular dynamics method with a continuum description of the laser excitation of conduction band electrons, electron-phonon coupling, and electron heat conduction. Interatomic interactions are described by the embedded atom method (EAM) potential with a parametrization designed for Cr. The potential is tested by comparing the properties of the EAM Cr material with experimental data and predictions of density functional theory calculations. The simulations are performed at laser fluences close to the threshold for surface melting. Fast temperature variation and strong thermoelastic stresses produced by the laser pulse are causing surface melting and epitaxial resolidification, transient appearance of a high density of stacking faults along the {110} planes, and generation of a large number of point defects (vacancies and self-interstitials). The stacking faults appear as a result of internal shifts in the crystal undergoing a rapid uniaxial expansion in the direction normal to the irradiated surface. The stacking faults are unstable and disappear shortly after the laser-induced tensile stress wave leaves the surface region of the target. Thermally activated generation of vacancy-interstitial pairs during the initial temperature spike and quick escape of highly mobile self-interstitials to the melting front or the free surface of the target, along with the formation of vacancies at the solid-liquid interface during the fast resolidification process, result in a high density of vacancies, on the order of 10-3 per lattice site, created in the surface region of the target. The strong supersaturation of vacancies can be related to the incubation effect in multipulse laser ablation/damage and should play an important role in mixing/alloying of multicomponent or composite

  16. Reduction of ochratoxin A in dry-cured meat products using gamma-irradiation.

    PubMed

    Domijan, Ana-Marija; Pleadin, Jelka; Mihaljević, Branka; Vahčić, Nada; Frece, Jadranka; Markov, Ksenija

    2015-01-01

    This study investigated the efficiency of gamma (γ)-irradiation in the reduction of ochratoxin A (OTA) present in dry-cured meat products prepared from intentionally contaminated raw materials from OTA-treated pigs. OTA concentrations determined in the samples (n = 24) ranged from 25.8 μg kg(-1) in bacon to 17.8 μg kg(-1) in smoked ham. After γ-irradiation at doses of 3, 7 and 10 kGy (i.e. the doses used in the food industry), a dose-depended OTA reduction was observed; however, it was not statistically significant. The mean OTA reduction achieved with 3-, 7- and 10-kGy γ-doses was approximated to 8.5%, 13.9% and 22.5%, respectively. The storage of irradiated samples (1 month, 4°C) did not significantly affect OTA levels. Based on the correlation between the OTA reduction level and basic chemical composition of dry-cured meat samples, OTA reduction may be linked to the samples' fat content. The results indicate that γ-irradiation can reduce OTA levels in dry-cured meat products, but only to a limited extent due to the complexity of the matrix.

  17. Nimbus 7 Solar Backscatter Ultraviolet (SBUV) spectral scan solar irradiance and Earth radiance product user's guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Barry M.; Cebula, Richard P.; Heath, Donald F.; Fleig, Albert J.

    1988-01-01

    The archived tape products from the spectral scan mode measurements of solar irradiance (SUNC tapes) and Earth radiance (EARTH tapes) by the Solar Backscatter UV (SBUV) instrument aboard Nimbus 7 are described. Incoming radiation from 160 to 400 nm is measured at intervals of 0.2 nm. The scan-to-scan repeatability of the solar irradiance measurements ranges from approximately 0.5 to 1 percent longward of 280 nm, to 2 percent around 210 nm and 4 percent near 175 nm. The repeatability of the Earth radiance values ranges from 2 to 3 percent at longer wavelengths and low zenith angles to 10 percent at shorter wavelengths and high zenith angles. The tape formats are described in detail, including file structure and contents of each type of record. Catalogs of the tapes and the time period covered are provided, along with lists of the days lacking solar irradiance measurements and the days dedicated to Earth radiance measurements. The method for production of the tapes is outlined and quality control measures are described. How radiances and irradiances are derived from the raw counts, the corrections for changes in instrument sensitivity, and related uncertainties are discussed.

  18. Three-dimensional thermal response numerical simulation of laser irradiating simulative warhead target

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman

    2015-05-01

    The thermal response of a cylindrical simulative warhead consisting of the steel casing and the TNT explosive irradiated by laser is simulated, basing on the smoothed particle hydrodynamics method. Preliminary computational simulation results show that, when the power density of 500W/cm2 continuous laser irradiation on a sealed explosive device consisting of the type 304 steel casing with thickness of 5mm and TNT explosive, compared with no airflow, the speed of 200m/s tangential airflow can reduce the thermal initiation time of 0.6s. In the case of incident laser power density is high, the convection cooling effect of tangential airflow can be neglected. The oxidation of airflow can significantly shorten the thermal initiation time of internal explosive.

  19. Feasibility study on the medical isotopes production with solution target using OSTR: (99)Mo and related isotopes

    NASA Astrophysics Data System (ADS)

    Baik, Seung-Hyuk

    1999-11-01

    Molybdenum-99 (99Mo) is the parent nuclide of Technetium-99m (99mTc), a radioisotope which is widely used in nuclear medicine. 99Mo is produced from the fission of 235U or the irradiation of 98Mo. This study shows the feasibility of the using an 'aqueous homogeneous uranium solution target' for the production of a medical isotope, 99Mo. Some of the advantages that the solution target has over a solid target include the inherent reactor safety features offered by large negative temperature and power reactivity coefficients, the fabrication convenience, the straightforward extraction process, and a low volume of waste generated. To evaluate the core configuration and the production rate of 99Mo, a three-dimensional model of the Oregon State University TRIGA Reactor (OSTR) core was developed for use with the Monte Carlo N-Particle Transport Code (MCNP) and then verified by comparing with the measured values. Two values are in good agreement within one percent in the keffective values calculated. Two types of solution targets are analyzed for the OSTR. The first one has the same outer-dimensions as an OSTR fuel element but is filled with a uranium solution. The other is the continuous flow target system (CFTS) like solution fuel reactors. Uranyl nitrate and uranyl sulfate solutions enriched to 20% or 93% are investigated as a target material without raising any safety concern to the OSTR operation. A seven-day irradiation of ten tube-type-93% enriched uranyl nitrate solution targets would produce 43% of the 99Mo required in the US for one week. The CFTS would generate 31% of the required 99Mo in a 7-day cycle. The conceptual chemical extraction processes for irradiated solution targets are developed. This work also includes an analysis of nuclear safety issues such as the radiolytic gas, thermal hydraulics, the waste, and the radiological impacts of an accident. The production of 99Mo in the OSTR with the uranium solution is technically feasible as demonstrated in this

  20. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    SciTech Connect

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products to the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.

  1. Effects of gamma irradiation for inactivating Salmonella Typhimurium in peanut butter product during storage.

    PubMed

    Ban, Ga-Hee; Kang, Dong-Hyun

    2014-02-01

    Three types (A, B, and C) of peanut butter product with different water activities (0.18, 0.39, and 0.65 aw) inoculated with a 3-strain mixture of Salmonella Typhimurium were subjected to gamma irradiation (⁶⁰Co) treatment, with doses ranging from 0 to 3 kGy. The inactivation of S. Typhimurium in the 3 types of treated peanut butter product over a 14 day storage period and the influence of storage temperature at 4 (refrigerated) and 25 °C (ambient), and peanut butter product formulation were investigated. Three types of peanut butter product inoculated with S. Typhimurium to a level of ca. 6.6 log CFU/g and subjected to gamma irradiation experienced significant (p<0.05) reductions of 1.3 to 1.9, 2.6 to 2.8, and 3.5 to 4.0 log CFU/g at doses of 1, 2, and 3 kGy, respectively. The time required to reduce S. Typhimurium in peanut butter product to undetectable levels was 14, 5, and 5 days at 25°C after exposure to 3 kGy for products A, B, and C, respectively, and 7 days at 25 °C following exposure to 2 kGy for product C. During storage at 4 and 25 °C, survival of S. Typhimurium was lowest in product C compared to products A and B. Water activity (a(w)) of peanut butter product was likely the most critical factor affecting pathogen survival. When a(w) is reduced, radiolysis of water is reduced, thereby decreasing antimicrobial action. Overall, death was more rapid at 25 °C versus 4 °C for all peanut butter products during 14 day storage. Following gamma irradiation, acid values of peanut butter product were not significantly different from the control, and general observations failed to detect changes in color and aroma, even though lightness observed using a colorimeter was slightly reduced on day 0. The use of gamma irradiation has potential in preventing spoilage of post-packaged food by destroying microorganisms and improving the safety and quality of foods without compromising sensory quality.

  2. Effects of gamma irradiation for inactivating Salmonella Typhimurium in peanut butter product during storage.

    PubMed

    Ban, Ga-Hee; Kang, Dong-Hyun

    2014-02-01

    Three types (A, B, and C) of peanut butter product with different water activities (0.18, 0.39, and 0.65 aw) inoculated with a 3-strain mixture of Salmonella Typhimurium were subjected to gamma irradiation (⁶⁰Co) treatment, with doses ranging from 0 to 3 kGy. The inactivation of S. Typhimurium in the 3 types of treated peanut butter product over a 14 day storage period and the influence of storage temperature at 4 (refrigerated) and 25 °C (ambient), and peanut butter product formulation were investigated. Three types of peanut butter product inoculated with S. Typhimurium to a level of ca. 6.6 log CFU/g and subjected to gamma irradiation experienced significant (p<0.05) reductions of 1.3 to 1.9, 2.6 to 2.8, and 3.5 to 4.0 log CFU/g at doses of 1, 2, and 3 kGy, respectively. The time required to reduce S. Typhimurium in peanut butter product to undetectable levels was 14, 5, and 5 days at 25°C after exposure to 3 kGy for products A, B, and C, respectively, and 7 days at 25 °C following exposure to 2 kGy for product C. During storage at 4 and 25 °C, survival of S. Typhimurium was lowest in product C compared to products A and B. Water activity (a(w)) of peanut butter product was likely the most critical factor affecting pathogen survival. When a(w) is reduced, radiolysis of water is reduced, thereby decreasing antimicrobial action. Overall, death was more rapid at 25 °C versus 4 °C for all peanut butter products during 14 day storage. Following gamma irradiation, acid values of peanut butter product were not significantly different from the control, and general observations failed to detect changes in color and aroma, even though lightness observed using a colorimeter was slightly reduced on day 0. The use of gamma irradiation has potential in preventing spoilage of post-packaged food by destroying microorganisms and improving the safety and quality of foods without compromising sensory quality. PMID:24321602

  3. Σ production from targets of ^4He and ^13C

    NASA Astrophysics Data System (ADS)

    Chrien, R. E.

    1996-10-01

    One of the abiding issues in hypernuclear research has been the question of the formation of nuclear bound states incorporating the Σ-hyperon. The recent increases in beam intensity at the Brookhaven AGS have enabled us to obtain a high statistics study on the production of Σ-hyperons on a ^4He target. Earlier research using stopped kaons at KEK indicated the presence of structure in the (K^-,π^-) reaction, and led to the postulate of a Σ bound state. That structure has now been definitely confirmed in the in-flight kaon experiment at the LESB2 beam line and Moby-Dick spectrometer. An improved measurement of the binding energy of the presumed state will be reported, together with a production cross section. In addition, both (K^-,π^-) and (K^-,π^+) reactions on ^13C have been studied and will be compared to similar measurements on ^9Be.

  4. Monitoring of Irradiated Food Products Marketed in Italy and Evaluation of Electron Spin Resonance Signal Sensitivity of Experimentally Irradiated Fish Scales

    PubMed Central

    Carosielli, Leonardo; Mangiacotti, Michele; Chiaravalle, Eugenio; Smaldone, Giorgio; Anastasio, Aniello

    2014-01-01

    Many countries, in order to authorise the use of food irradiation, claim the availability of methods to detect the occurred treatment in addition to the respect of safe use of this technology. Among physical methods, the electron spin resonance (ESR) measuring the number of free radicals that are formed during irradiation can be applied only to those foods with cellulose, a crystalline or bone structure, in which free radicals have a shelf life greater than irradiated product. The aim of this study was to highlight an irradiation treatment in European and extra-European foods marketed in Southern Italy by the means of ESR technique. Furthermore, in order to optimise the preparation procedures the efficacy of the above mentioned method in fish scales experimentally irradiated has been evaluated. From February to September 2012, a total number of 83 samples of food products of animal and plant origin were taken at the border inspection post and at retail market and finally analysed. At the same time, the scales of grouper and barracuda have been experimentally irradiated at 0.5 kGy and were subsequently analysed using ESR. Results showed 5 frog legs out of 83 samples positive for treatment and confirm the applicability of ESR also for fish scales. PMID:27800329

  5. High e+/e− Ratio Dense Pair Creation with 1021W.cm−2 Laser Irradiating Solid Targets

    PubMed Central

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; Wang, X.; Kao, J.; Hasson, H.; Dyer, G.; Serratto, K.; Riley, N.; Donovan, M.; Ditmire, T.

    2015-01-01

    We report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm−2 and pulse durations as short as ~130 fs. Positron to electron (e+/e−) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e− ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e− approaching 100% and pair skin depth ≪ pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics. PMID:26364764

  6. High e+/e– ratio dense pair creation with 1021W.cm–2 laser irradiating solid targets

    DOE PAGESBeta

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; et al

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm–2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestonesmore » towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.« less

  7. High e+/e- Ratio Dense Pair Creation with 1021W.cm-2 Laser Irradiating Solid Targets

    NASA Astrophysics Data System (ADS)

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; Wang, X.; Kao, J.; Hasson, H.; Dyer, G.; Serratto, K.; Riley, N.; Donovan, M.; Ditmire, T.

    2015-09-01

    We report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm-2 and pulse durations as short as ~130 fs. Positron to electron (e+/e-) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e- ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e- approaching 100% and pair skin depth ≪ pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.

  8. Optimization of x-ray emission from under-critical CH foam coated gold targets by laser irradiation

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Yu, Ruizhen; Zhang, Wenhai; Yang, Jiamin

    2016-08-01

    Under-critical CH foam coated gold targets benefit laser-to-x-ray emission because CH plasma inhibits gold plasma expansion, which leads to higher gold plasma density and temperature. Conversely, the CH foam partially absorbs the incident laser energy, which lowers laser absorption into the gold plasma. An analytical model is built to solve the laser collisional deposition fraction in the CH foam layer. The optimization of x-ray emission from under-critical CH foam coated gold targets by laser irradiation is obtained numerically with different CH foam densities and thicknesses. The plasma and x-ray emission properties are investigated. It is found that different CH thicknesses lead to different increase mechanisms for x-ray emission. The x-ray spectrum distributions show that most of the x-ray emission increases occur with photon energy less than 2000 eV.

  9. ``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products

    SciTech Connect

    Jerde, E.A.; Glasgow, D.C.

    1998-09-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate counting leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.

  10. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    SciTech Connect

    Zarghami, Niloufar Jensen, Michael D.; Talluri, Srikanth; Dick, Frederick A.; Foster, Paula J.; Chambers, Ann F.; Wong, Eugene

    2015-11-15

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  11. Photodegradation of ibuprofen under UV-Vis irradiation: mechanism and toxicity of photolysis products.

    PubMed

    Li, Fu Hua; Yao, Kun; Lv, Wen Ying; Liu, Guo Guang; Chen, Ping; Huang, Hao Ping; Kang, Ya Pu

    2015-04-01

    The photodegradation of ibuprofen (IBP) in aqueous media was studied in this paper. The degradation mechanism, the reaction kinetics and toxicity of the photolysis products of IBP under UV-Vis irradiation were investigated by dissolved oxygen experiments, quenching experiments of reactive oxygen species (ROS), and toxicity evaluation utilizing Vibrio fischeri. The results demonstrated that the IBP degradation process could be fitted by the pseudo first-order kinetics model. The degradation of IBP by UV-Vis irradiation included direct photolysis and self-sensitization via ROS. The presence of dissolved oxygen inhibited the photodegradation of IBP, which indicated that direct photolysis was more rapid than the self-sensitization. The contribution rates of ·OH and (1)O2 were 21.8 % and 38.6 % in self-sensitization, respectively. Ibuprofen generated a number of intermediate products that were more toxic than the base compound during photodegradation.

  12. Fission product Pd-SiC interaction in irradiated coated particle fuels

    SciTech Connect

    Tiegs, T.N.

    1980-04-01

    Silicon carbide is the main barrier to fission product release from coated particle fuels. Consequently, degradation of the SiC must be minimized. Electron microprobe analysis has identified that palladium causes corrosion of the SiC in irradiated coated particles. Further ceramographic and electron microprobe examinations on irradiated particles with kernels ranging in composition from UO/sub 2/ to UC/sub 2/, including PuO/sub 2 -x/ and mixed (Th, Pu) oxides, and in enrichment from 0.7 to 93.0% /sup 235/U revealed that temperature is the major factor affecting the penetration rate of SiC by Pd. The effects of kernel composition, Pd concentration, other fission products, and SiC properties are secondary.

  13. Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

    SciTech Connect

    Blaise Collin

    2014-09-01

    This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive

  14. Promises and Challenges of Two-Step Targets for Production of Neutron-rich RIBs

    SciTech Connect

    Talbert, W.L.; Drake, D.M.; Hsu, H.-H.; Wilson, M.T.

    2003-08-26

    Development of a prototype two-step target to produce neutron-rich RIBs is presented, with particular emphasis on thermal analysis under high-power operation. The two-step target is an attractive concept for production of fission-product activities without interference by high-energy spallation reactions which occur in direct production targets. In this concept, a high-energy production beam interacts with a primary target of refractory metal, depositing beam energy in the primary target and producing low-energy neutrons that cause fissions in a surrounding secondary target of mixed UC2 and excess C. Thermal analysis of the composite target presents challenges in cooling the primary target while maintaining the secondary target at temperatures suitable for release of the fission products. The effects of fission energy deposition in the secondary target are discussed, along with the complexities resulting from the thermally insulating character of the secondary target material.

  15. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.

    PubMed

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-03-21

    In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions. PMID:25497025

  16. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.

    PubMed

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-03-21

    In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions.

  17. Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation.

    PubMed

    Santiago-Morales, Javier; Rosal, Roberto; Hernando, María D; Ulaszewska, Maria M; García-Calvo, Eloy; Fernández-Alba, Amadeo R

    2014-02-15

    This article deals with the degradation of a third-generation (G3) poly(amidoamine) (PAMAM) dendrimer under ozonation and irradiation. The identification and quantification of G3 PAMAM dendrimer and its transformation products has been performed by liquid chromatography-electrospray ionization-hybrid quadrupole time-of-flight-mass spectrometry. The dendrimer was completely depleted by ozone in less than 1 min. The effect of ultraviolet irradiation was attributed to hydroxyl-mediated oxidation. The transformation products were attributed to the oxidation of amines, which resulted in highly oxidized structures with abundance of carboxylic acids, which started from the formation of amine oxide and the scission of the CN bond of the amide group. We studied the toxicity of treated mixtures for six different organisms: the acute toxicity for the bacterium Vibrio fischeri and the microcrustacean Daphnia magna, the multigenerational growth inhibition of the alga Pseudokirchneriella subcapitata, and the seed germination phytotoxicity of Licopersicon esculentum, Lactuca sativa and Lolium perenne. Ozonation and irradiation originated transformation products are more toxic than the parent dendrimer. The toxicity of the dendrimer for the green alga was linked to a strong increase of intracellular reactive oxygen species with intense lipid peroxidation. PMID:24384376

  18. Proton Imaging Of Laser Irradiated Foils And Mass-Limited Targets

    SciTech Connect

    Sokollik, T.; Schnuerer, M.; Ter-Avetisyan, S.; Steinke, S.; Nickles, P. V.; Sandner, W.; Amin, M.; Toncian, T.; Willi, O.; Andreev, A. A.

    2009-07-25

    Due to the envisioned advantages of mass-limited targets for laser driven ion beams, which are high efficiency and high cut-off energies, their field dynamics are of special interest. Micro-water droplets can be used as mass-limited targets with a high repetition rate. Our investigations show that the surrounding dilute plasma of such liquid spheres influences the interaction. We review our experimental findings together with computer simulations and conclude on the different processes in electron transport and related acceleration fields for mass-limited targets and foils, respectively.

  19. L-shell emission from high-Z solid targets by intense 10{sup 19}W/cm{sup 2} irradiation with a 248nm laser

    SciTech Connect

    Nelson, T.R.; Borisov, A.B.; Boyer, K.

    2000-01-05

    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.

  20. Uniform irradiation of adjustable target spots in high-power laser driver

    SciTech Connect

    Jiang Xiujuan; Li Jinghui; Li Huagang; Li Yang; Lin Zunqi

    2011-09-20

    For smoothing and shaping the on-target laser patterns flexibly in high-power laser drivers, a scheme has been developed that includes a zoom lens array and two-dimensional smoothing by spectral dispersion (SSD). The size of the target pattern can be controlled handily by adjusting the focal length of the zoom lens array, while the profile of the pattern can be shaped by fine tuning the distance between the target and the focal plane of the principal focusing lens. High-frequency stripes inside the pattern caused by beamlet interference are wiped off by spectral dispersion. Detailed simulations indicate that SSD works somewhat differently for spots of different sizes. For small spots, SSD mainly smooths the intensity modulation of low-to-middle spatial frequency, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity of middle-to-high frequency. Spatial spectra of the target patterns are given and their uniformity is evaluated.

  1. A method to achieve rapid localised deep heating in a laser irradiated solid density target

    NASA Astrophysics Data System (ADS)

    Schmitz, H.; Robinson, A. P. L.

    2016-09-01

    Rapid heating of small buried regions by laser generated fast electrons may be useful for applications such as extreme ultraviolet (XUV) radiation sources or as drivers for shock experiments. In non-structured targets, the heating profile possesses a global maximum near the front surface. This paper presents a new target design that uses resistive guiding to concentrate the fast electron current density at a finite depth inside the target. The choice of geometry uses principles of non-imaging optics. A global temperature maximum at depths up to 50 μ m into the target is achieved. Although theoretical calculations suggest that small source sizes should perform better than large ones, simulations show that a large angular spread at high intensities results in significant losses of the fast electrons to the sides. A systematic parameter scan suggests an optimal laser intensity. A ratio of 1.6 is demonstrated between the maximum ion temperature and the ion temperature at the front surface.

  2. The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Dicello, John F.

    2006-01-01

    In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.

  3. Inter- and Intrafraction Target Motion in Highly Focused Single Vocal Cord Irradiation of T1a Larynx Cancer Patients

    SciTech Connect

    Kwa, Stefan L.S. Al-Mamgani, Abrahim; Osman, Sarah O.S.; Gangsaas, Anne; Levendag, Peter C.; Heijmen, Ben J.M.

    2015-09-01

    Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and after dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With

  4. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  5. The Collection 6 'dark-target' MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine

    2013-01-01

    Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and

  6. Chemical forms of solid fission products in the irradiated uranium—plutonium mixed nitride fuel

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Maeda, Atsushi; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1994-06-01

    Chemical forms of solid fission products in the irradiated (U, Pu)N fuel were estimated by both thermodynamic equilibrium calculation and electron microprobe analysis on burnup simulated samples prepared by carbothermic reduction. Besides the MX type matrix phase dissolving zirconium, niobium, yttrium and rare earth elements, the existence of two kinds of inclusion was recognized. One is URu 3 type intermetallic compound constituted by uranium and platinum group elements. The other is an alloy containing molybdenum as a principal constituent. Furthermore, the swelling rate due to solid fission products precipitation was evaluated to be about 0.5% per %FIMA.

  7. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  8. Microbial decontamination of cosmetic raw materials and personal care products by irradiation

    NASA Astrophysics Data System (ADS)

    Katušin-Ražem, Branka; Mihaljević, Branka; Ražem, Dušan

    2003-03-01

    Typical levels of sporadically occurring (dynamic) microbial contamination of cosmetic raw materials: pigments, abrasives and liposomes, as well as of final products for personal care: toothpaste, crayons, shampoos, cleansers and creams, were evaluated. In most cases the contamination was dominated by a single population of microorganisms, either Gram-negative bacteria or molds. The feasibility of microbial decontamination by irradiation was studied by determining the resistance to gamma radiation of contaminating microflora in situ. It was expressed as a dose required for the first 90% reduction, D first 90% red . The values in the range 1-2 kGy for molds and 0.1-0.6 kGy for Gram-negative bacteria were obtained. This relatively high susceptibility to irradiation allowed inactivation factors close to 6 to be achieved with doses generally not exceeding 3 kGy, and yielding endpoint contamination less than 10/g.

  9. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation.

    PubMed

    Agbakpe, Michael; Ge, Shijian; Zhang, Wen; Zhang, Xuezhi; Kobylarz, Patricia

    2014-08-01

    There is a pressing need to develop efficient and sustainable separation technologies to harvest algae for biofuel production. In this work, two bacterial species (Escherichia coli and Rhodococus sp.) were used as biocoagulants to harvest Chlorella zofingiensis and Scenedesmus dimorphus. The influences of UV irradiation and polyethylenimine (PEI)-coating on the algal harvesting efficiency were investigated. Results showed that the UV irradiation could slightly enhance bacteria-algae biocoagulation and algal harvesting efficiency. In contrast, the PEI-coated E. coli cells noticeably increased the harvesting efficiencies from 23% to 83% for S. dimorphus when compared to uncoated E. coli cells. Based on the soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, an energy barrier existed between uncoated E. coli cells and algal cells, whereas the PEI coating on E. coli cells eliminated the energy barrier, thereby the biocoagulation was significantly improved. Overall, this work presented groundwork toward the potential use of bacterial biomass for algal harvesting from water.

  10. Production of {sup 4}He, {sup 3}He, and tritium from Be irradiated in FFTF-MOTA-2B

    SciTech Connect

    Greenwood, L.R.

    1998-03-01

    The production of {sup 4}He, {sup 3}He, and tritium has been calculated for beryllium irradiated in the Materials Open Test Assembly (MOTA)-2B experiment in the Fast Flux Test Facility (FFTF). Reaction rates were based on adjusted neutron spectra determined from reactor dosimetry measurements at seven different elevations in the irradiation assembly. Equations are given so that gas production, dpa, and neutron fluences can be calculated for any specific elevation in the MOTA-2B assembly.

  11. Targeted radiotherapy enhancement during electronic brachytherapy of accelerated partial breast irradiation (APBI) using controlled release of gold nanoparticles.

    PubMed

    Cifter, G; Chin, J; Cifter, F; Altundal, Y; Sinha, N; Sajo, E; Ngwa, W

    2015-12-01

    Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia) and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during electronic brachytherapy APBI while reducing normal tissue toxicity. We propose to incorporate GNPs into a micrometer-thick polymer film on the surface of routinely used lumpectomy balloon applicators and provide subsequent treatment using a 50 kVp Xoft device. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 7 mg/g and 43 mg/g. An analytical approach from previously published work was employed to estimate the dose enhancement due to GNPs as a function of distance up to 1 cm from the lumpectomy cavity surface. Clinically significant dose enhancement values of at least 1.2, due to 2 nm GNPs, were found at 1 cm away from the lumpectomy cavity wall when using electronic brachytherapy APBI. Higher customizable dose enhancement was also achieved at other distances as a function of nanoparticle size. Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy.

  12. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  13. Target size analysis by radiation inactivation: a large capacity tube rack for irradiation in a Gammacell 220.

    PubMed

    Beauregard, G; Giroux, S; Potier, M

    1983-07-15

    Target size analysis by radiation inactivation is now a well-established method to study structure-function relationships in biologically active macromolecules without prior purification or even solubilization. Recently, it was reported that a relatively low-dose-rate but commonly available gamma source such as the Gammacell 220 (Atomic Energy of Canada, Ltd.) can be used to carry out radiation inactivation experiments providing it is appropriately calibrated with enzymes of known radiation sensitivities (G. Beauregard and M. Potier (1982) Anal. Biochem. 122, 379-384). In this report, a tube rack designed to fit into the irradiation chamber of the Gammacell 220 which allows five experiments (at 30 tubes per experiment) to be carried out simultaneously with both standard and unknown samples is described. The dose rates delivered at different positions in the rack were determined by irradiating rat liver cytosolic neuraminidase, an enzyme of known radiation sensitivity. A better than 2.7% agreement was obtained between experimental dose rate and computed values from isodose curves previously published by other authors (O. A. Curzio and H. O. Quaranta (1982) Int. J. Appl. Radiat. Isot. 33, 1-3).

  14. Design and analysis of the lithium target system for the International Fusion Materials Irradiation Facility (IFMIF)

    SciTech Connect

    Hua, T.; Smith, D.; Hassanein, A.; Gomes, I.

    1995-09-01

    Three lithium target design options are being evaluated for the IFMIF. The impact of various requirements on material selection, lifetime, operation and maintenance are discussed. Analysis for the free jet option is presented. Key aspects include jet stability, thermal and nuclear responses.

  15. Measurement of desorbed products during organic polymer thin film etching by plasma beam irradiation

    SciTech Connect

    Kurihara, Kazuaki; Karahashi, Kazuhiro; Egami, Akihiro; Nakamura, Moritaka

    2006-11-15

    The authors investigated the etching characteristics of three kinds of methacrylate polymer films, which have the same main chain but with different side chains, using a plasma beam irradiation apparatus. The polymers are polytbutylmethacrylate, polybenzylmethacrylate, and polycyclohexylmethacrylate. The major desorbed products during nitrogen plasma beam etching were found to be HCN and C{sub 2}N{sub 2} for all methacrylate polymer films. The desorbed products originating from the polymer structure, namely, the main chain and the side chain, were hardly observed. The energy distributions of desorbed products were mainly composed of Maxwell-Boltzmann distribution with a small component of collision cascade distribution for all three polymers and were slightly dependent on the ion energy. It is concluded that chemical sputtering, which can be defined as the production of weakly bound species by ion bombardment, followed by thermal desorption, is the significant ion induced mechanism of organic polymer etching.

  16. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    SciTech Connect

    Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO42- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resource Conservation and Recovery Act (RCRA).

  17. Target product selection - where can Molecular Pharming make the difference?

    PubMed

    Paul, Mathew J; Teh, Audrey Y H; Twyman, Richard M; Ma, Julian K-C

    2013-01-01

    Four major developments have taken place in the world of Molecular Pharming recently. In the USA, the DARPA initiative challenged plant biotechnology companies to develop strategies for the large-scale manufacture of influenza vaccines, resulting in a successful Phase I clinical trial; in Europe the Pharma-Planta academic consortium gained regulatory approval for a plant-derived monoclonal antibody and completed a first-in-human phase I clinical trial; the Dutch pharmaceutical company Synthon acquired the assets of Biolex Therapeutics, an established Molecular Pharming company with several clinical candidates produced in their proprietary LEX system based on aquatic plants; and finally, the Israeli biotechnology company Protalix Biotherapeutics won FDA approval for the commercial release of a recombinant form of the enzyme glucocerebrosidase produced in carrot cells, the first plant biotechnology-derived biopharmaceutical in the world approved for the market. Commercial momentum is gathering pace with additional candidates now undergoing or awaiting approval for phase III clinical trials. Filling the product pipeline is vital to establish commercial sustainability, and the selection of appropriate target products for Molecular Pharming will be a critical factor. An interesting feature of the four stories outlined above is that they span the use of very different platform technologies addressing different types of molecules which aim to satisfy distinct market demands. In each case, Molecular Pharming was an economically and technically suitable approach, but this decisionmaking process is not necessarily straightforward. Although the various technologies available to Molecular Pharming are broad ranging and flexible, competing technologies are better established, so there needs to be a compelling reason to move into plants. It is most unlikely that plant biotechnology will be the answer for the whole biologics field. In this article, we discuss the current plant

  18. Target product selection - where can Molecular Pharming make the difference?

    PubMed

    Paul, Mathew J; Teh, Audrey Y H; Twyman, Richard M; Ma, Julian K-C

    2013-01-01

    Four major developments have taken place in the world of Molecular Pharming recently. In the USA, the DARPA initiative challenged plant biotechnology companies to develop strategies for the large-scale manufacture of influenza vaccines, resulting in a successful Phase I clinical trial; in Europe the Pharma-Planta academic consortium gained regulatory approval for a plant-derived monoclonal antibody and completed a first-in-human phase I clinical trial; the Dutch pharmaceutical company Synthon acquired the assets of Biolex Therapeutics, an established Molecular Pharming company with several clinical candidates produced in their proprietary LEX system based on aquatic plants; and finally, the Israeli biotechnology company Protalix Biotherapeutics won FDA approval for the commercial release of a recombinant form of the enzyme glucocerebrosidase produced in carrot cells, the first plant biotechnology-derived biopharmaceutical in the world approved for the market. Commercial momentum is gathering pace with additional candidates now undergoing or awaiting approval for phase III clinical trials. Filling the product pipeline is vital to establish commercial sustainability, and the selection of appropriate target products for Molecular Pharming will be a critical factor. An interesting feature of the four stories outlined above is that they span the use of very different platform technologies addressing different types of molecules which aim to satisfy distinct market demands. In each case, Molecular Pharming was an economically and technically suitable approach, but this decisionmaking process is not necessarily straightforward. Although the various technologies available to Molecular Pharming are broad ranging and flexible, competing technologies are better established, so there needs to be a compelling reason to move into plants. It is most unlikely that plant biotechnology will be the answer for the whole biologics field. In this article, we discuss the current plant

  19. Effect of. gamma. -ray irradiation on sugar production from plant biomass

    SciTech Connect

    Han, Y.W.; Ciegler, A.

    1982-01-01

    During the past several years, evidence has indicated the effectiveness of gamma radiation in altering lignocellulosic polymers to enhance their susceptibility to chemical and enzymatic attack. Reassessment of high-energy radiation as a tool in reducing the use of fossil fuel suggested that the procedure might have practical value in modification of lignocellulosics prior to hydrolysis to sugars for use in fermentation. Select combinations of chemical pretreatment and gamma radiation can also lead to production of feedstocks useful to the chemical synthesis industry. Preliminary research indicated that the properties of lignocellulosics are changed and a variety of compounds are produced by gamma irradiation. In general, gamma irradiation of lignocellulosics such as wood, paper, and crop residues causes depolymerization of biopolymers and decomposition of carbohydrates at dosages between 10 and 100 Mrad, and the resulting materials shows a loss of crystallinity and increase in digestibility by subsequent hydrolysis by acid and enzymes. These changes may be advantageously used for production of energy from biomass. Large quantities of gamma-emitting /sup 137/Cs are found in fission-product wastes stored since the initiation of /sup 239/Pu production during World War II. The task of disposing of the radioactive wastes produced by nuclear power plants is often cited as one of the principal drawbacks to the use of nuclear fission for electric power generation. 1 figure, 3 tables.

  20. Synergistic combination of near-infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation.

    PubMed

    Eom, Kyungsik; Im, Changkyun; Hwang, Seoyoung; Eom, Seyoung; Kim, Tae-Seong; Jeong, Hae Sun; Kim, Kyung Hwan; Byun, Kyung Min; Jun, Sang Beom; Kim, Sung June

    2016-04-01

    Despite a potential of infrared neural stimulation (INS) for modulating neural activities, INS suffers from limited light confinement and bulk tissue heating. Here, a novel methodology for an advanced optical stimulation is proposed by combining near-infrared (NIR) stimulation with gold nanorods (GNRs) targeted to neuronal cell membrane. We confirmed experimentally that in vitro and in vivo neural activation is associated with a local heat generation based on NIR stimulation and GNRs. Compared with the case of NIR stimulation without an aid of GNRs, combination with cell-targeted GNRs allows photothermal stimulation with faster neural response, lower delivered energy, higher stimulation efficiency and stronger behavior change. Since the suggested method can reduce a requisite radiant exposure level and alleviate a concern of tissue damage, it is expected to open up new possibilities for applications to optical neuromodulations for diverse excitable tissues and treatments of neurological disorders. PMID:27446678

  1. Synergistic combination of near-infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation

    PubMed Central

    Eom, Kyungsik; Im, Changkyun; Hwang, Seoyoung; Eom, Seyoung; Kim, Tae-Seong; Jeong, Hae Sun; Kim, Kyung Hwan; Byun, Kyung Min; Jun, Sang Beom; Kim, Sung June

    2016-01-01

    Despite a potential of infrared neural stimulation (INS) for modulating neural activities, INS suffers from limited light confinement and bulk tissue heating. Here, a novel methodology for an advanced optical stimulation is proposed by combining near-infrared (NIR) stimulation with gold nanorods (GNRs) targeted to neuronal cell membrane. We confirmed experimentally that in vitro and in vivo neural activation is associated with a local heat generation based on NIR stimulation and GNRs. Compared with the case of NIR stimulation without an aid of GNRs, combination with cell-targeted GNRs allows photothermal stimulation with faster neural response, lower delivered energy, higher stimulation efficiency and stronger behavior change. Since the suggested method can reduce a requisite radiant exposure level and alleviate a concern of tissue damage, it is expected to open up new possibilities for applications to optical neuromodulations for diverse excitable tissues and treatments of neurological disorders. PMID:27446678

  2. Emission of organic products from the surface of frozen methane under MeV ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaiser, R. I.; Mahfouz, R. M.; Roessler, K.

    1992-03-01

    10 μm layers of CH 4 freshly condensed onto a cold finger at 10-15 K were irradiated with 10-20 MeV protons and 3He 2+ ions. The gases emitted during irradiation and successive warming to ambient temperature were monitored by quadrupole mass spectrometry (QMS). C 2H 2 and C 2H 4 were the primary volatile products at low temperatures. They were converted with increasing irradiation time and dose into C 2H 6, C 3H 6 and heavier hydrocarbons up to C 8. During the warmup phase even more complex hydrocarbons up to C 12 were emitted including substituted benzenes (xylols), naphthalene derivates and anthracene and/or phenanthrene. The preferential formation of unsaturated compounds in the first reaction steps underlines the role of hot carbon atoms in the radiation induced complexation of solid organic matter, starting with their insertion into CH bonds. The interaction of cosmic rays with organic solids in space includes these suprathermal reactions as one of the most prominent processes.

  3. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview

    NASA Astrophysics Data System (ADS)

    Wang, Jianlong; Chu, Libing

    2016-08-01

    Pharmaceutical and personal care products (PPCPs), especially the pharmaceutically active compounds (PhACs) such as antibiotics and hormones have attracted great concerns worldwide for their persistence and potential threat to ecosystem and public health. This paper presents an overview on the ionizing irradiation-induced degradation of PPCPs in aqueous solution. Parameters that affect PPCPs degradation, such as the absorbed dose, solution pH, dose rate, water matrices and the presence of some inorganic ions and humic acid are evaluated. The mechanism and pathways of radiolytic degradation of PPCPs are reviewed. In many cases, PPCPs such as antibiotics and X-ray contrast agent could be removed completely by radiation, but a higher absorbed dose was needed for their mineralization and toxicity reduction. The combination of ionizing irradiation with other methods such as H2O2, ozonation and TiO2 nanoparticles could improve the degradation efficacy and reduce the cost. Ionizing irradiation is a promising alternative for degradation of PPCPs in aqueous solution.

  4. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Ahn, Dong Uk; Byun, Myung Woo

    2001-04-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower ( P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments.

  5. Treatment Optimization Using Computed Tomography-Delineated Targets Should be Used for Supraclavicular Irradiation for Breast Cancer

    SciTech Connect

    Liengsawangwong, Raweewan; Yu, T.-K.; Sun, T.-L.; Erasmus, Jeremy J.; Perkins, George H.; Tereffe, Welela; Oh, Julia L.; Woodward, Wendy A.; Strom, Eric A.; Salephour, Mohammad; Buchholz, Thomas A.

    2007-11-01

    Background: The purpose of this study was to determine whether the use of optimized CT treatment planning offered better coverage of axillary level III (LIII)/supraclavicular (SC) targets than the empirically derived dose prescription that are commonly used. Materials/Methods: Thirty-two consecutive breast cancer patients who underwent CT treatment planning of a SC field were evaluated. Each patient was categorized according to body mass index (BMI) classes: normal, overweight, or obese. The SC and LIII nodal beds were contoured, and four treatment plans for each patient were generated. Three of the plans used empiric dose prescriptions, and these were compared with a CT-optimized plan. Each plan was evaluated by two criteria: whether 98% of target volume receive >90% of prescribed dose and whether < 5% of the irradiated volume received 105% of prescribed dose. Results: The mean depth of SC and LIII were 3.2 cm (range, 1.4-6.7 cm) and 3.1 (range, 1.7-5.8 cm). The depth of these targets varied according across BMI classes (p = 0.01). Among the four sets of plans, the CT-optimized plans were the most successful at achieving both of the dosimetry objectives for every BMI class (normal BMI, p = .003; overweight BMI, p < .0001; obese BMI, p < .001). Conclusions: Across all BMI classes, routine radiation prescriptions did not optimally cover intended targets for every patient. Optimized CT-based treatment planning generated the most successful plans; therefore, we recommend the use of routine CT simulation and treatment planning of SC fields in breast cancer.

  6. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways.

    PubMed

    Li, Yong; Yang, Shaogui; Sun, Cheng; Wang, Lianhong; Wang, Qingeng

    2016-01-01

    In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions.

  7. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways.

    PubMed

    Li, Yong; Yang, Shaogui; Sun, Cheng; Wang, Lianhong; Wang, Qingeng

    2016-01-01

    In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions. PMID:26497275

  8. Development and processing of LEU targets for {sup 99}Mo production

    SciTech Connect

    Snelgrove, J.L.; Vandegrift, G.F.; Hofman, G.L.

    1997-04-01

    Most of the world`s supply of {sup 99m}Tc for medical purposes is currently produced from the decay of {sup 99}Mo derived from the fissioning of high-enriched uranium (HEU). Substantial progress has been made in developing targets and chemical processes for producing {sup 99}Mo using low-enriched uranium (LEU). Target development has been focused on a uranium-metal foil target as a replacement for the coated-UO{sub 2} Cintichem-type target. Although the first designs were not successful because of ion mixing-induced bonding of the uranium foil to the target tubes, recent irradiations of modified targets have proven successful. Only minor modifications of the Cintichem chemical process are required for the uranium-metal foil targets. A demonstration using prototypically irradiated targets is anticipated in February 1997. Progress has also been made in basic dissolution of both uranium-metal foil and aluminum-clad U{sub 3}Si{sub 2} dispersion fuel targets.

  9. A quantitative and comparative study of radionuclidic and chemical impurities in water samples irradiated in a niobium target with Havar vs. niobium-sputtered Havar as entrance foils.

    PubMed

    Avila-Rodriguez, Miguel A; Wilson, John S; McQuarrie, Steve A

    2008-12-01

    Enriched and natural abundance water samples were irradiated in a niobium (Nb) chamber target with Havar and Nb-sputtered Havar foils. Irradiations were performed with 17.5MeV protons at currents from 35 to 100microA lasting for 1-2.5h. Radionuclidic and chemical (cationic) impurities were determined via gamma spectroscopy and ICP-MS, respectively. Anionic impurities were evaluated by ion chromatography. Impurities in water samples irradiated with the Havar-Nb foils were much lower than the samples irradiated with an unmodified Havar foil. No significant differences were observed in the impurity levels between samples of H(2)(18)O-enriched and natural abundance water. Radionuclidic impurities were observed to decrease after 3-4 irradiations on a fresh Havar entrance foil, and reached a constant value for subsequent irradiations with the same integrated current. For targets covered with Havar foil, radionuclidic impurities were found to be proportional to the beam-integrated current regardless of the beam power and, unexpectedly, dependant of the beam power when using a Havar-Nb foil.

  10. EPR as an analytical tool in assessing the mineral nutrients and irradiated food products-vegetables

    NASA Astrophysics Data System (ADS)

    Prasuna, C. P. Lakshmi; Chakradhar, R. P. S.; Rao, J. L.; Gopal, N. O.

    2008-12-01

    EPR spectral investigations of some commonly available vegetables in south India, which are of global importance like Daucus carota (carrot), Cyamopsis tetragonoloba (cluster beans), Coccinia indica (little gourd) and Beta vulgaris (beet root) have been carried out. In all the vegetable samples a free radical corresponding to cellulose radical is observed. Almost all the samples under investigation exhibit Mn ions in different oxidation states. The temperature variation EPR studies are done and are discussed in view of the paramagnetic oxidation states. The radiation-induced defects have also been assessed by using the EPR spectra of such irradiated food products.

  11. Production of microgram amounts of einsteinium 253 by irradiating californium in a reactor

    SciTech Connect

    Kulyukhin, S.A.; Averman, L.N.; Mikheev, N.B.; Novichenko, V.L.; Rumer, I.A.

    1986-07-01

    /sup 253/Es has been made by irradiating 250 microg of /sup 252/Cf in a neutron flux of 5.10/sup 14/ n/cm/sup 2/.sec for 500 h. The product, about 1 microg of einsteinium, was separated chromatographically on Aminex resin of particle size 20-25 microm. The eluent was ammonium alpha-hydroxyisobutyrate (0.14 mole/liter) at pH 4.95. The purification coefficient for Es from Cf was about 1.10/sup 5/. More extensive purification can be provided by repeating the process on another column with the same parameters.

  12. Ablation and transmission of thin solid targets irradiated by intense extreme ultraviolet laser radiation

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Kuznetsov, I.; Bravo, H.; Woolston, M. R.; Rossall, A. K.; Menoni, C. S.; Rocca, J. J.; Tallents, G. J.

    2016-09-01

    The interaction of an extreme ultraviolet (EUV) laser beam with a parylene foil was studied by experiments and simulation. A single EUV laser pulse of nanosecond duration focused to an intensity of 3 × 1010 W cm-2 perforated micrometer thick targets. The same laser pulse was simultaneously used to diagnose the interaction by a transmission measurement. A combination of 2-dimensional radiation-hydrodynamic and diffraction calculations was used to model the ablation, leading to good agreement with experiment. This theoretical approach allows predictive modelling of the interaction with matter of intense EUV beams over a broad range of parameters.

  13. Scattered light diagnostics of overdense plasma cavity in solid targets irradiated by an ultraintense laser pulse.

    PubMed

    Andreev, A A; Zhidkov, A G; Uesaka, M; Kinoshita, K; Platonov, K Yu

    2002-09-01

    The light scattered backward from a target illuminated by ultraintense laser pulses carries important information about the nonlinear laser-plasma interaction. We analyze the usefulness of this information by plasma corona analysis with the help of an analytical model we developed, and particle-in-cell simulation. The spectrum of scattered light is shown to be shifted, to be broadened, and to be modulated, in comparison with the initial laser spectrum, and the spectral shift is an indicator of laser pulse contrast ratio.

  14. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse

    SciTech Connect

    Li Zhichao; Zheng Jian

    2007-05-15

    When an ultra-intense laser pulse impacts the tip of a wire whose other end is grounded, a strong return current can be driven along the wire because some energetic electrons generated in ultra-intense laser matter interaction can escape from the target and an electric field builds up. The wire then behaves like a current-carrying antenna that can emit electromagnetic radiations. If the duration of the driving pulse is several tens of femtoseconds, the radiation spectrum reaches a maximum at terahertz region, and the radiation power per solid angle could be as high as 10{sup 9} W/rad.

  15. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, George F.; Vissers, Donald R.; Marshall, Simon L.; Varma, Ravi

    1989-01-01

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm.sup.2 of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99.

  16. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, G.F.; Vissers, D.R.; Marshall, S.L.; Varma, R.

    1987-10-26

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm/sup 2/ of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99. 2 figs.

  17. Measurement of Particle Production from the MICE Target

    SciTech Connect

    Soler, F. J. P.; Walaron, K.; Booth, C.; Carson, M.; Hodgson, P.; Howlett, L.; Smith, P.; Adams, D.; Edgecock, R.; Murray, W.; Tilley, K.; Cobb, J.; Rayner, M.; Roberts, T.

    2008-02-21

    This article describes the prototype target and the requirements for the target mechanism needed to provide a beam of muons to the Muon Ionization Cooling Experiment (MICE) from the ISIS accelerator at RAL. The mechanism has achieved the required 85g acceleration to be able to insert the target into the ISIS beam during the last 2 ms of the accelerating period. A prototype target test was used to integrate the target into ISIS and to measure the ISIS beam envelope, particle yields and beam loss, showing good agreement between data and simulations.

  18. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-15

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  19. Triton Emission Spectra in Some Target Nuclei Irradiated by Ultra-Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kaplan, A.; Aydın, A.; Büyükuslu, H.; Demirkol, İ.; Arasoğlu, A.

    2010-08-01

    High-current proton accelerator technologies make use of spallation neutrons produced in ( p,xn) and ( n,xn) nuclear reactions on high-Z targets. The produced neutrons are moderated by heavy water. These moderated neutrons are subsequently captured on 3He to produce tritium via the ( n,p) reaction. Tritium self-sufficiency must be maintained for a commercial power plant. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, triton emission spectra by using ultra-fast neutrons (incident neutron energy >50 MeV), the ( n,xt) reactions for some target nuclei as 16O, 27Al, 56Fe, 59Co, 208Pb and 209Bi have been investigated. In the calculations, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  20. Creating astrophysically relevant jets from locally heated targets irradiated by a high-intensity laser

    NASA Astrophysics Data System (ADS)

    Schmitz, Holger; Robinson, Alex

    2014-10-01

    The formation mechanism of jets in the vicinity of young stellar objects has been the subject of investigations for many years. It is thought that jets are formed by the stellar wind interacting with an inhomogeneous plasma. A density gradient from the equator to the poles causes the wind to encounter the inward facing reverse shock at an oblique angle. The wind is focused into a conical flow towards the poles where it emerges as a narrow jet. This mechanism is inaccessible to direct observations due to the small scales on which it operates. Using high intensity lasers to produce comparable jets offers a way to investigate the mechanisms in the laboratory. Previous investigations of jets in the laboratory have directly generated the conical flow, skipping the first part of the formation mechanism. We present simulations of a novel method of generating jets in the laboratory by using magnetic fields generated by resistivity gradients to control the fast electron flow. The return current selectively heats a small region inside the target which drives a blast wave into the low density region behind the target. A conical high density shell focuses the outflow into a narrow jet. We find jets with aspect ratios of over 15 and Mach numbers between 2.5 and 4.3. This work is funded by the European Research Council, Grant STRUCMAGFAST.

  1. Excitation functions for 7Be, 22,24Na production in Mg and Al by deuteron irradiations up to 50 MeV.

    PubMed

    Hermanne, A; Takács, S; Tárkányi, F; Adam-Rebeles, R; Ignatyuk, A

    2012-12-01

    New experimental data for production of (7)Be and (22,24)Na in deuteron irradiation of (nat)Mg and Al up to 50 MeV are presented. The induced activity, measured with HPGe spectroscopy, allows us to determine excitation functions of (nat)Mg(d,x) and (27)Al(d,x) reactions involved in the activation process with reference to (nat)Ti(d,x)(48)V monitor cross sections. A comparison with experimental literature values and results from updated theoretical codes is discussed. Thick target yields were derived from fits to our cross-sections and integrated personnel dose was calculated for different irradiation cycles and exposure scenarios around high power deuteron accelerator facilities. PMID:23044286

  2. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    NASA Astrophysics Data System (ADS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-03-01

    This study investigated the effects of irradiation on Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810-0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage.

  3. Accelerator-based production of the (99m)Tc-(186)Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OsS2).

    PubMed

    Gott, Matthew D; Hayes, Connor R; Wycoff, Donald E; Balkin, Ethan R; Smith, Bennett E; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Wilbur, D Scott; Jurisson, Silvia S

    2016-08-01

    Novel, natural abundance metal disulfide targets were irradiated for 1h with a 10µA proton beam in a small, medical cyclotron. Osmium disulfide was synthesized by simple distillation and precipitation methods while MoS2 and WS2 were commercially available. The targets dissolved under mild conditions and were analyzed by γ-spectroscopy. Production rates and potential applications are discussed, including target recovery and recycling schemes for OsS2 and WS2.

  4. Accelerator-based production of the (99m)Tc-(186)Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OsS2).

    PubMed

    Gott, Matthew D; Hayes, Connor R; Wycoff, Donald E; Balkin, Ethan R; Smith, Bennett E; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Wilbur, D Scott; Jurisson, Silvia S

    2016-08-01

    Novel, natural abundance metal disulfide targets were irradiated for 1h with a 10µA proton beam in a small, medical cyclotron. Osmium disulfide was synthesized by simple distillation and precipitation methods while MoS2 and WS2 were commercially available. The targets dissolved under mild conditions and were analyzed by γ-spectroscopy. Production rates and potential applications are discussed, including target recovery and recycling schemes for OsS2 and WS2. PMID:27236832

  5. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    NASA Astrophysics Data System (ADS)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  6. Identification of mercury methylation product by tert-butyl compounds in aqueous solution under light irradiation.

    PubMed

    Chen, Baowei; Chen, Ping; He, Bin; Yin, Yongguang; Fang, Linchuan; Wang, Xiaowei; Liu, Hongtao; Yang, Lihua; Luan, Tiangang

    2015-09-15

    The methylation of mercury (Hg) is of great concern as methylmercury (MeHg), the most toxic species, is produced. This study examined the possibilities of tert-butyl compounds (tert-butyl alcohol (TBA) and tert-butyl hydroperoxide (TBH)) and other alcohols serving as methyl donors for Hg photo-methylation under light irradiation. The yield of MeHg varied among the methyl donors, and it was also significantly influenced by salinity and pH. MeHg could be generated in the presence of TBH under visible light irradiation. The hydroxyl radical (OH) was found to promote MeHg production at low levels, but degrade MeHg in excess. The photo-production of MeHg was tentatively proposed via the complexation of Hg and methyl donors, the formation of an intermediate (O(Hg)C(CH3)3), and the intramolecular methyl transfer from methyl donors to Hg. This study implicates photoreactions between Hg and organic pollutants in understanding the fate and transformation of Hg in the aquatic environment.

  7. Maximizing the production of Scenedesmus obliquus in photobioreactors under different irradiation regimes: experiments and modeling.

    PubMed

    Barbera, Elena; Sforza, Eleonora; Bertucco, Alberto

    2015-11-01

    Maximizing biomass productivity and photosynthetic efficiency are key factors to develop large-scale microalgae cultivation for biodiesel production. If the photobioreactor (PBR) is not operated under proper conditions, productivity and efficiency values drop considerably. In this work, the growth of Scenedesmus obliquus in continuous flat-panel PBR is considered. Experimental data and simulations were used with the aim of determining suitable working conditions to achieve maximum productivity. Microalgae concentration and productivity have been measured in a continuous 250 mL flat-panel PBR as a function of the space-time τ. Simulations were performed at both low and high irradiance values, with different light regimes (constant light and day-night profiles). Model parameters were optimized based on laboratory-scale experimental data, and the importance of the maintenance energy requirement as a function of light intensity was outlined. The effect of different extent of axial mixing on PBR performances was investigated. Results obtained show how to determine optimum working conditions and how they could be used in the design of a large-scale PBR to achieve maximum microalgal productivity.

  8. Effects of the storage time on the folic acid added to ready-to-eat meat products manufactured by irradiation

    NASA Astrophysics Data System (ADS)

    Galán, I.; García, M. L.; Selgas, M. D.

    2013-04-01

    Three different meat products enriched with folic acid (FA) (2.4 mg/100 g) were manufactured: hamburgers, cooked and dry fermented sausages. They were prepared as ready-to-eat (RTE) products using E-beam radiation (2 and 3 kGy) to ensure their safety. The stability of FA and sensory properties of the irradiated meat products were studied during three months of storage under freezing conditions for hamburgers and refrigeration conditions for cooked and dry fermented sausages. FA content was stable in non-irradiated and irradiated hamburgers and cooked sausages over the storage period, whereas it decreased 20% in non-irradiated dry fermented sausages and 12-8% in irradiated samples at 2 and 3 kGy, respectively. Nevertheless, the final amount remained sufficient to provide the recommended daily intake. Panelists rated the sensory properties of the hamburger as satisfactory even after irradiation and 90 days of storage. The overall acceptability of RTE cooked and dry fermented sausages improved slightly with storage (P>0.05).

  9. Characterization of microRNAs and their target genes associated with transcriptomic changes in gamma-irradiated Arabidopsis.

    PubMed

    Kim, J H; Go, Y S; Kim, J K; Chung, B Y

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression in response to biotic and abiotic stress in plants. We investigated gamma-ray-responsive miRNAs in Arabidopsis wild-type and cmt3-11t mutant plants using miRNA microarray analysis. miRNA expression was differentiated between the wild-type and cmt3-11t mutants. miR164a, miR169d, miR169h, miR172b*, and miR403 were identified as repressible in the wild-type and/or cmt3-11t mutant in response to gamma irradiation, while miR827, miR840, and miR850 were strongly inducible. These eight miRNA genes contain UV-B-responsive cis-elements, including G-box, I-box core, ARE, and/or MBS in the putative promoter regions. Moreover, Box 4, MBS, TCA-element, and Unnamed_4, as well as CAAT- and TATA-box, were identified in these eight miRNA genes. However, a positive correlation between the transcriptions of miRNAs and their putative target genes was only observed between miR169d and At1g30560 in the wild-type, and between miR827 and At1g70700 in the cmt3-11t mutant. Quantitative RT-PCR analysis confirmed that the transcription of miR164a, miR169d, miR169h, miR172b*, miR403, and miR827 differed after gamma irradiation depending on the genotype (wild-type, cmt3-11t, drm2, drd1-6, and ddm1-2) and developmental stage (14 or 28 days after sowing). In contrast, high transcriptional induction of miR840 and miR850 was observed in these six genotypes regardless of the developmental stage. Although the actual target genes and functions of miR840 and miR850 remain to be determined, our results indicate that these two miRNAs may be strongly induced and reproducible genetic markers in Arabidopsis plants exposed to gamma rays. PMID:27525891

  10. Steroid hormone production in testis, ovary, and adrenal gland of immature rats irradiated in utero with /sup 60/Co

    SciTech Connect

    Inano, H.; Suzuki, K.; Ishii-Ohba, H.; Imada, Y.; Kumagai, R.; Kurihara, S.; Sato, A.

    1989-02-01

    Pregnant rats received whole-body irradiation at 20 days of gestation with 2.6 Gy lambda rays from a 60Co source. Endocrinological effects before maturation were studied using testes and adrenal glands obtained from male offspring and ovaries from female offspring irradiated in utero. Seminiferous tubules of the irradiated male offspring were remarkably atrophied with free germinal epithelium and containing only Sertoli cells. Female offspring also had atrophied ovaries. Testicular tissue obtained from intact and 60Co-irradiated rats was incubated with 14C-labeled pregnenolone, progesterone, 17 alpha-hydroxyprogesterone, and androstenedione as a substrate. Intermediates for androgen production and catabolic metabolites were isolated after the incubation. The amounts of these metabolites produced by the irradiated testes were low in comparison with the control. The activities of delta 5-3 beta-hydroxysteroid dehydrogenase, 17 alpha-hydroxylase, C17,20-lyase, and delta 4-5 alpha-reductase in the irradiated testes were 30-40% of those in nonirradiated testes. Also, the activities of 17 beta- and 20 alpha-hydroxysteroid dehydrogenases were 72 and 52% of the control, respectively. In adrenal glands, the 21-hydroxylase activity of the irradiated animals was 38% of the control, but the delta 5-3 beta-hydroxysteroid dehydrogenase activity was comparable to that of the control. On the other hand, the activity of delta 5-3 beta-hydroxysteroid dehydrogenase of the irradiated ovary was only 19% of the control. These results suggest that 60Co irradiation of the fetus in utero markedly affects the production of steroid hormones in testes, ovaries, and adrenal glands after birth.

  11. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-01

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV–visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3–0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  12. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria.

    PubMed

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-17

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections. PMID:27319289

  13. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria.

    PubMed

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-17

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  14. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-01

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  15. Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria

    DOE PAGESBeta

    Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-06-20

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less

  16. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    SciTech Connect

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holder to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time

  17. Atomic scale modeling of defect production and microstructure evolution in irradiated metals

    SciTech Connect

    Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.

    1997-04-01

    Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.

  18. Nanophase iron production through laser irradiation and magnetic detection of space weathering analogs

    NASA Astrophysics Data System (ADS)

    Markley, Matthew; Kletetschka, Gunther

    2016-04-01

    Airless bodies are constantly exposed to space weathering. The Moon and other similar S-type asteroids physically change through comminution, melting, and agglutinate formation, while spectrally they are darkening, steepening (or reddening) the spectral slope toward longer wavelengths, and reducing silicate mineral absorption bands. In these S-type bodies the production of submicroscopic metallic iron, or nanophase iron (SMFe, npFe0) is a major contributor in these spectral changes. We made a qualitative estimate of both quantity and size distribution of produced metallic iron by space weathered analog, olivine irradiated by laser. Through SEM observation we confirmed that nanoparticles of metallic iron formed in the nm range. Spectroscopic and magnetic susceptibility (MS) through temperature analyses reveal an increasing trend of npFe0 formation, darkening, reddening, and shallowing of the 1 μm olivine absorption band. Olivine that produced the larger end of the size range of npFe0 produced similar effects, except for increased reddening. The magnetic data suggests that with laser irradiation there is both a linear increase of nanoparticles and a logarithmic increase in spectral change with SW time.

  19. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    SciTech Connect

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-11-15

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). gammaH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  20. The oxidative stress in the liver of Carassius auratus exposed to acesulfame and its UV irradiance products.

    PubMed

    Ren, Yuhang; Geng, Jinju; Li, Fuchang; Ren, Hongqiang; Ding, Lili; Xu, Ke

    2016-11-15

    Acesulfame (ACE) is listed as an emerging contaminant due to its environmental persistence and wide occurrence in the environment. ACE can be degraded partially in the regular UV disinfection process but the eco-toxicity of its irradiation products remains unclear. This study focused on the possible oxidative status change in the liver of Carassius auratus exposed to ACE and its irradiation products. The UV degradation of ACE follows pseudo-first-order kinetics, and eight irradiation products were identified. Fish were exposed 7days to 0.1 and 10mg/L ACE (ACE group) and ACE after UV irradiance (ACE-UV group). The oxidative stress in fish liver exposed to ACE group had no distinct change. However, in the ACE-UV group, the quantity of OH was induced by 17.96-55% and the MDA content increased by 16.28-68.28% compared to control. Time-effect exposure in the ACE-UV group showed that in the first 3days the quantity of OH reached its peak, causing severe inhibition of SOD and continuous inducement of GPx. GSH helped scavenge OH and decreased below control after 3days. An increased toxicity of ACE after UV irradiance was observed and its transfer after into aquatic environment needs to be recognized as an environmental risk. PMID:27443459

  1. The oxidative stress in the liver of Carassius auratus exposed to acesulfame and its UV irradiance products.

    PubMed

    Ren, Yuhang; Geng, Jinju; Li, Fuchang; Ren, Hongqiang; Ding, Lili; Xu, Ke

    2016-11-15

    Acesulfame (ACE) is listed as an emerging contaminant due to its environmental persistence and wide occurrence in the environment. ACE can be degraded partially in the regular UV disinfection process but the eco-toxicity of its irradiation products remains unclear. This study focused on the possible oxidative status change in the liver of Carassius auratus exposed to ACE and its irradiation products. The UV degradation of ACE follows pseudo-first-order kinetics, and eight irradiation products were identified. Fish were exposed 7days to 0.1 and 10mg/L ACE (ACE group) and ACE after UV irradiance (ACE-UV group). The oxidative stress in fish liver exposed to ACE group had no distinct change. However, in the ACE-UV group, the quantity of OH was induced by 17.96-55% and the MDA content increased by 16.28-68.28% compared to control. Time-effect exposure in the ACE-UV group showed that in the first 3days the quantity of OH reached its peak, causing severe inhibition of SOD and continuous inducement of GPx. GSH helped scavenge OH and decreased below control after 3days. An increased toxicity of ACE after UV irradiance was observed and its transfer after into aquatic environment needs to be recognized as an environmental risk.

  2. CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Dumitrescu, Alexandru

    2016-08-01

    Two products provided by the climate monitoring satellite application facility (CMSAF) are the instantaneous Cloud Fractional Coverage (iCFC) and the instantaneous Cloud Type (iCTY) products. Previous studies based on the iCFC product show that the simple solar radiation models belonging to the cloudiness index class n CFC = 0.1-1.0 have rRMSE values ranging between 68 and 71 %. The products iCFC and iCTY are used here to develop simple models providing hourly estimates for solar global irradiance. Measurements performed at five weather stations of Romania (South-Eastern Europe) are used. Two three-class characterizations of the state-of-the-sky, based on the iCTY product, are defined. In case of the first new sky state classification, which is roughly related with cloud altitude, the solar radiation models proposed here perform worst for the iCTY class 4-15, with rRMSE values ranging between 46 and 57 %. The spreading error of the simple models is lower than that of the MAGIC model for the iCTY classes 1-4 and 15-19, but larger for iCTY classes 4-15. In case of the second new sky state classification, which takes into account in a weighted manner the chance for the sun to be covered by different types of clouds, the solar radiation models proposed here perform worst for the cloudiness index class n CTY = 0.7-0.1, with rRMSE values ranging between 51 and 66 %. Therefore, the two new sky state classifications based on the iCTY product are useful in increasing the accuracy of solar radiation models.

  3. Global Mapping of Underwater UV Irradiances and DNA-Weighted Exposures using TOMS and SeaWiFS Data Products

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne

    1999-01-01

    The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.

  4. Transcribing Disordered Speech: By Target or by Production?

    ERIC Educational Resources Information Center

    Ball, Martin J.

    2008-01-01

    The ability to transcribe disordered speech is a vital tool for speech-language pathologists, as accurate description of a client's speech output is needed for both diagnosis and effective intervention. Clients in the speech clinic often use sounds that are not part of the target sound system and which may, in some cases, be sounds not found in…

  5. Shielding experiments by the JASMIN Collaboration at Fermilab (II) - radioactivity measurement induced by secondary particles from the anti-proton production target

    DOE PAGESBeta

    Hiroshi, Yashima; Norihiro, Matsuda; Yoshimi, Kasugai; Hiroshi, Nakashima; Yukio, Sakamoto; Hiroshi, Matsumura; Hiroshi, Iwase; Norikazu, Kinoshita; David, Boehnlein; Gary, Lautenschlager; et al

    2011-08-01

    The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting of an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 1012 protons per second. The samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured bymore » studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.« less

  6. Upgrading and Refining of Crude Oils and Petroleum Products by Ionizing Irradiation.

    PubMed

    Zaikin, Yuriy A; Zaikina, Raissa F

    2016-06-01

    A general trend in the oil industry is a decrease in the proven reserves of light crude oils so that any increase in future oil exploration is associated with high-viscous sulfuric oils and bitumen. Although the world reserves of heavy oil are much greater than those of sweet light oils, their exploration at present is less than 12 % of the total oil recovery. One of the main constraints is very high expenses for the existing technologies of heavy oil recovery, upgrading, transportation, and refining. Heavy oil processing by conventional methods is difficult and requires high power inputs and capital investments. Effective and economic processing of high viscous oil and oil residues needs not only improvements of the existing methods, such as thermal, catalytic and hydro-cracking, but the development of new technological approaches for upgrading and refining of any type of problem oil feedstock. One of the perspective approaches to this problem is the application of ionizing irradiation for high-viscous oil processing. Radiation methods for upgrading and refining high-viscous crude oils and petroleum products in a wide temperature range, oil desulfurization, radiation technology for refining used oil products, and a perspective method for gasoline radiation isomerization are discussed in this paper. The advantages of radiation technology are simple configuration of radiation facilities, low capital and operational costs, processing at lowered temperatures and nearly atmospheric pressure without the use of any catalysts, high production rates, relatively low energy consumption, and flexibility to the type of oil feedstock.

  7. Upgrading and Refining of Crude Oils and Petroleum Products by Ionizing Irradiation.

    PubMed

    Zaikin, Yuriy A; Zaikina, Raissa F

    2016-06-01

    A general trend in the oil industry is a decrease in the proven reserves of light crude oils so that any increase in future oil exploration is associated with high-viscous sulfuric oils and bitumen. Although the world reserves of heavy oil are much greater than those of sweet light oils, their exploration at present is less than 12 % of the total oil recovery. One of the main constraints is very high expenses for the existing technologies of heavy oil recovery, upgrading, transportation, and refining. Heavy oil processing by conventional methods is difficult and requires high power inputs and capital investments. Effective and economic processing of high viscous oil and oil residues needs not only improvements of the existing methods, such as thermal, catalytic and hydro-cracking, but the development of new technological approaches for upgrading and refining of any type of problem oil feedstock. One of the perspective approaches to this problem is the application of ionizing irradiation for high-viscous oil processing. Radiation methods for upgrading and refining high-viscous crude oils and petroleum products in a wide temperature range, oil desulfurization, radiation technology for refining used oil products, and a perspective method for gasoline radiation isomerization are discussed in this paper. The advantages of radiation technology are simple configuration of radiation facilities, low capital and operational costs, processing at lowered temperatures and nearly atmospheric pressure without the use of any catalysts, high production rates, relatively low energy consumption, and flexibility to the type of oil feedstock. PMID:27573274

  8. [Growth and metabolite production of the marine cyanobacterium Synechococcus sp. (Chroococcales) in function to irradiance].

    PubMed

    Rosales-Loaiza, Néstor; Guevara, Miguel; Lodeiros, César; Morales, Ever

    2008-06-01

    Changes in salinity, temperature and irradiance during wet and dry seasons have induced metabolic versatility in cyanobacteria from saline environments. Cyanobacteria from these environments have biotechnological potential for the production of metabolites with pharmaceutical and industrial interest. We studied the growth, dry mass and metabolite production of the cyanobacterium Synechococcus sp. MOF-03 in function of irradiance (78, 156 and 234 micromol q m(-2) s(-1)). All batch cultures were maintained by triplicate in constant aeration, 12:12 h photoperiod, 30 +/- 2 degrees C and 35% per hundred. Maximum values of protein, carbohydrates and lipids, of 530.19 +/- 11.16, 408.94 +/- 4.27 and 56.20 +/- 1.17 microg ml(-1), respectively, were achieved at 78 micromol q m(-2) s(-1). Pigments, analyzed by HPLC, showed maximum values at 78 micromol q m(-2) s(-1) for chlorophyll a with 7.72 +/- 0.16 microg ml(-1), and at 234 micromol q m(-2) s(-1) for beta-carotene and zeaxanthin with 0.70 +/- 0.01 and 0.67 +/- 0.05 microg ml(-1). Chlorophyll a:beta-carotene ratio decreased from 17.15 to 6.91 at 78 and 234 micromol q m(-2) s(-'1); whereas beta-carotene:zeaxanthin ratio showed no changes between 78 and 156 micromol q m(-2) s(-1), around 1.21, and decreased at 234 micromol q m(-2) s(-1), to 1.04. Also, this cyanobacterium produced the greatest cell density and dry mass at 156 micromol q m(-2) s(-1), with 406.13 +/- 21.74 x l0(6) cell ml(-1) and 1.49 +/- 0.11 mg ml(-1), respectively. Exopolysaccharide production was stable between 156 y 234 micromol q m(-2) s(-1), around 110 microg ml(-1). This Synechococcus strain shows a great potential for the production of enriched biomass with high commercial value metabolites.

  9. Proton beam production by a laser ion source with hydride target.

    PubMed

    Okamura, M; Stifler, C; Palm, K; Steski, D; Ikeda, S; Kumaki, M; Kanesue, T

    2016-02-01

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam. PMID:26931967

  10. Non-targeted transcriptomic effects upon thyroid irradiation: similarity between in-field and out-of-field responses varies with tissue type

    PubMed Central

    Langen, Britta; Rudqvist, Nils; Spetz, Johan; Swanpalmer, John; Helou, Khalil; Forssell-Aronsson, Eva

    2016-01-01

    Non-targeted effects can induce responses in tissues that have not been exposed to ionizing radiation. Despite their relevance for risk assessment, few studies have investigated these effects in vivo. In particular, these effects have not been studied in context with thyroid exposure, which can occur e.g. during irradiation of head and neck tumors. To determine the similarity between in-field and out-of-field responses in normal tissue, we used a partial body irradiation setup with female mice where the thyroid region, the thorax and abdomen, or all three regions were irradiated. After 24 h, transcriptional regulation in the kidney cortex, kidney medulla, liver, lungs, spleen, and thyroid was analyzed using microarray technology. Thyroid irradiation resulted in transcriptional regulation in the kidney medulla and liver that resembled regulation upon direct exposure of these tissues regarding both strength of response and associated biological function. The kidney cortex showed fewer similarities between the setups, while the lungs and spleen showed little similarity between in-field and out-of-field responses. Interestingly, effects were generally not found to be additive. Future studies are needed to identify the molecular mechanisms that mediate these systemic effects, so that they may be used as targets to minimize detrimental side effects in radiotherapy. PMID:27779251

  11. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2016-04-01

    Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low. PMID:27027533

  12. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2016-04-01

    Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.

  13. Influence of gamma irradiation on productivity indices of the edible Emperor moth caterpillar, Cirina forda (Lepidoptera: Saturniidae).

    PubMed

    Odeyemi, M O; Fasoranti, J O; Ande, A T; Olayemi, I K

    2013-08-01

    This study was aimed at generating baseline information for sustainable genetic improvement of Cirana forda larvae for entomophagy, through the use of gamma irradiation. Eggs of C. forda were irradiated with increasing doses of gamma rays from 0 to 200 Gy and raised through larval instal stages under laboratory conditions. The Body Weight (BW) and Head Capsule Width (HCW) of the larval instar stages were monitored as indices of productivity. Successful larval emergence was recorded for all irradiation doses tested and BW of the 1st and 2nd instar larvae were not significantly (p > 0.05) different between the control and treated groups (range = 0.021 +/- 0.003 g/larva in the 200 Gy treatment to 0.028 +/- 0.003 g/larva in the control group and 0.105 +/- 0.003 g/larva in 20 Gy treatment to 0.172 +/- 0.009 g/larva in the control group, respectively). On the other hand, BW during the 3rd and 4th larval instars were significantly (p < 0.05) lower among the irradiated treatments than control. Pattern of distribution of HCW was different from that of BW; as HCW increased with irradiation dose from 10-50 Gy during the 3rd and 4th larval instars. Also, HCW during the 5th instar larvae among the irradiated treatments (range = 5.256 +/- 0.012 to 5.662 +/- 0.026 mm) were not higher than that of the 6th instar in the control group (6.065 +/- 0.010 mm). These results suggest promising potentials of the use of gamma irradiation in sustainably improving the productivity of C. forda larvae for entomophagy.

  14. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    SciTech Connect

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under the following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.

  15. Electron Microscopic Evaluation and Fission Product Identification of Irradiated TRISO Coated Particles from the AGR-1 Experiment: A Preliminary Review

    SciTech Connect

    IJ van Rooyen; DE Janney; BD Miller; PA DEmkowicz; J Riesterer

    2014-05-01

    Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this paper a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objectives of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. Microstructural characterization focused on fission-product precipitates in the SiC-IPyC interface, the SiC layer and the fuel-buffer interlayer. The results provide significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates with significantly higher concentrations of Pd and U. Different approaches to resolving this problem are discussed. An initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations were observed and no debonding of the SiC-IPyC interlayer as a result of irradiation was observed for the samples investigated. Lessons learned from the post-irradiation examination are described and future actions are recommended.

  16. Electron microscopic evaluation and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment: A preliminary Study

    SciTech Connect

    I J van Rooyen; D E Janney; B D Miller; J L Riesterer; P A Demkowicz

    2012-10-01

    ABSTRACT Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this presentation a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objective of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. The characterization emphasized fission-product precipitates in the SiC-IPyC interface, SiC layer and the fuel-buffer interlayer, and provided significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentration Ag in precipitates with significantly higher concentrations of contain Pd and U. Different approaches to resolving this problem are discussed. Possible microstructural differences between particles with high and low releases of Ag particles are also briefly discussed, and an initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations or debonding of the SiC-IPyC interlayer as a result of irradiation were observed. Lessons learned from the post-irradiation examination are described and future actions are recommended.

  17. Experimental plan and design of two experiments for graphite irradiation at temperatures up to 1500 °C in the target region of the high flux isotope reactor

    NASA Astrophysics Data System (ADS)

    McDuffee, J. L.; Burchell, T. D.; Heatherly, D. W.; Thoms, K. R.

    2008-10-01

    Two irradiation capsules have been designed for the target region of the high flux isotope reactor (HFIR). The objective is to provide dimensional change and physical property data for four candidate next generation nuclear plant (NGNP) graphites. The capsules will reach peak doses of ˜1.59 and ˜4.76 dpa, respectively, at temperatures of 900, 1200, and 1500 °C.

  18. Partitioning of fission products from irradiated nitride fuel using inductive vaporization

    SciTech Connect

    Shcherbina, N.; Kulik, D.A.; Kivel, N.; Potthast, H.D.; Guenther-Leopold, I.

    2013-07-01

    Irradiated nitride fuel (Pu{sub 0.3}Zr{sub 0.7})N fabricated at PSI in frame of the CONFIRM project and having a burn-up of 10.4 % FIMA (Fission per Initial Metal Atom) has been investigated by means of inductive vaporization. The study of thermal stability and release behavior of Pu, Am, Zr and fission products (FPs) was performed in a wide temperature range (up to 2300 C. degrees) and on different redox conditions. On-line monitoring by ICP-MS detected low nitride stability and significant loss of Pu and Am at T>1900 C. degrees during annealing under inert atmosphere (Ar). The oxidative pre-treatment of nitride fuel on air at 1000 C. degrees resulted in strong retention of Pu and Am in the solid, as well as of most FPs. Thermodynamic modelling of elemental speciation using GEM-Selektor v.3 code (Gibbs Energy Minimization Selektor), supported by a comprehensive literature review on thermodynamics of actinides and FPs, revealed a number of binary compounds of Cs, Mo, Te, Sr and Ba to occur in the solid. Speciation of some FPs in the fuel is discussed and compared to earlier results of electron probe microanalysis (EPMA). Predominant vapor species predicted by GEM-Selektor calculations were Pu(g), Am(g) and N{sub 2}. Nitrogen can be completely released from the fuel after complete oxidation at 1000 C. degrees. With regard to the irradiated nitride reprocessing technology, this result can have an important practical application as an alternative way for {sup 15}N recovery. (authors)

  19. [Exploring New Drug Targets through the Identification of Target Molecules of Bioactive Natural Products].

    PubMed

    Arai, Masayoshi

    2016-01-01

    With the development of cell biology and microbiology, it has become easy to culture many types of animal cells and microbes, and they are frequently used for phenotypic screening to explore medicinal seeds. On the other hand, it is recognized that cells and pathogenic microbes present in pathologic sites and infected regions of the human body display unique properties different from those under general culture conditions. We isolated several bioactive compounds from marine medicinal resources using constructed bioassay-guided separation focusing on the unique changes in the characteristics of cells and pathogenic microbes (Mycobacterium spp.) in the human body under disease conditions. In addition, we also carried out identification studies of target molecules of the bioactive compounds by methods utilizing the gene expression profile, transformants of cells or microbes, synthetic probe molecules of the isolated compounds, etc., since bioactive compounds isolated from the phenotypic screening system often target new molecules. This review presents our phenotypic screening systems, isolation of bioactive compounds from marine medicinal resources, and target identification of bioactive compounds. PMID:27040348

  20. Discovery of novel drug targets and their functions using phenotypic screening of natural products.

    PubMed

    Chang, Junghwa; Kwon, Ho Jeong

    2016-03-01

    Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.

  1. Simultaneous targeting of Requiem & Alg-2 in Chinese hamster ovary cells for improved recombinant protein production.

    PubMed

    Lim, Yiping; Mantalaris, Athanasios; Yap, Miranda G S; Wong, Danny C F

    2010-11-01

    Apoptosis is known to be the main cause of cell death in the bioreactor environment, leading to the loss of recombinant protein productivity. In a previous study, transcriptional profiling was used to identify and target four early apoptosis-signaling genes: FADD, FAIM, Alg-2, and Requiem. The resulting cell lines had increased viable cell numbers and extended culture viability, which translated to increased protein productivity. Combinatorial targeting of two genes simultaneously has previously been shown to be more effective than targeting one gene alone. In this study, we sought to determine if targeting Requiem and Alg-2 was more effective than targeting Requiem alone. We found that targeting Requiem and Alg-2 did not result in extended culture viability, but resulted in an increase in maximum viable cell numbers and cumulative IVCD under fed-batch conditions. This in turn led to an approximately 1.5-fold increase in recombinant protein productivity.

  2. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    NASA Astrophysics Data System (ADS)

    Lillo, T. M.; van Rooyen, I. J.

    2016-05-01

    In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.

  3. A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions.

    PubMed

    Sicard-Roselli, Cécile; Brun, Emilie; Gilles, Manon; Baldacchino, Gérard; Kelsey, Colin; McQuaid, Harold; Polin, Chris; Wardlow, Nathan; Currell, Frederick

    2014-08-27

    The absolute yield of hydroxyl radicals per unit of deposited X-ray energy is determined for the first time for irradiated aqueous solutions containing metal nanoparticles based on a "reference" protocol. Measurements are made as a function of dose rate and nanoparticle concentration. Possible mechanisms for hydroxyl radical production are considered in turn: energy deposition in the nanoparticles followed by its transport into the surrounding environment is unable to account for observed yield whereas energy deposition in the water followed by a catalytic-like reaction at the water-nanoparticle interface can account for the total yield and its dependence on dose rate and nanoparticle concentration. This finding is important because current models used to account for nanoparticle enhancement to radiobiological damage only consider the primary interaction with the nanoparticle, not with the surrounding media. Nothing about the new mechanism appears to be specific to gold, the main requirements being the formation of a structured water layer in the vicinity of the nanoparticle possibly through the interaction of its charge and the water dipoles. The massive hydroxyl radical production is relevant to a number of application fields, particularly nanomedicine since the hydroxyl radical is responsible for the majority of radiation-induced DNA damage.

  4. Differences in the production of noncharacteristic radiation in gaseous and solid targets

    NASA Technical Reports Server (NTRS)

    Laubert, R.; Peterson, R. S.; Forester, J. P.; Liao, K.-H.; Griffin, P. M.; Hayden, H.; Elston, S. B.; Pegg, D. J.; Thoe, R. S.; Sellin, I. A.

    1976-01-01

    Bell et al. (1975) found that the observed yield of noncharacteristic radiation (NCR) for a beam of S atoms hitting Al and Ne targets is of approximately equal magnitude for gaseous and solid targets under similar collision conditions. They concluded that NCR is produced predominantly in single collisions for 55-MeV S atoms on an Al target. This conclusion is tested in a similar collision system by comparing the NCR yields obtained with a 40-MeV Si(6+) ion beam on SiH4 (gaseous target) and on Al (solid target). Corrected X-ray spectra recorded in both cases clearly indicate a difference in the NCR yield for gaseous and solid targets. The results suggest that double collisions dominate the NCR production and that a single-collision production contribution of 15% to 20% is an upper limit for the projectile-target system used.

  5. Feasibility studies into the production of gamma-irradiated oyster tissue reference materials for paralytic shellfish poisoning toxins.

    PubMed

    Turner, Andrew D; Lewis, Adam M; Hatfield, Robert G; Powell, Andy L; Higman, Wendy A

    2013-09-01

    A study was conducted to assess the feasibility for the production of sterile, stable and homogenous shellfish reference materials containing known concentrations of paralytic shellfish poisoning (PSP) toxins. Pacific oysters were contaminated with toxins following mass culturing of toxic algae and shellfish feeding experiments. Live oysters were shucked and tissues homogenised, before measuring into multiple aliquots, with one batch subjected to gamma irradiation treatment and the other remaining untreated. The homogeneity of both batches of samples was assessed using a pre-column oxidation liquid chromatography with fluorescence detection (Pre-COX LC-FLD) method and shown to be within the limits of normal within-batch repeatability. A twelve-month stability experiment was conducted for both untreated and gamma irradiated batches, specifically examining the effects of long term storage at -20 °C, +4 °C and +40 °C. Results indicated mostly good stability of PSP toxins in both materials when stored frozen at -20 °C, but with the instability of GTX2&3 concentrations in the untreated tissues eliminated in the irradiated tissues. Analysis using a post-column oxidation (PCOX) LC-FLD method also showed epimerisation in both GTX1&4 and GTX2&3 epimeric pairs in untreated samples after only 6 months frozen storage. This issue was not present in the tissues irradiated before long term storage. Biological activity testing confirmed the absence of bacteria in the irradiated samples throughout the 12 month study period. With such results there was clear evidence for the potential of increasing the scale of the mass culturing and shellfish feeding for the production of large batches of tissue suitable for the preparation of a certified matrix reference material. Overall results demonstrated the feasibility for production of oyster reference materials for PSTs, with evidence for prolonged stability following gamma irradiation treatment and storage at -20 °C.

  6. Comparison of line x-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses

    SciTech Connect

    Fazeli, R.; Mahdieh, M. H.

    2015-11-15

    Enhancement of line x-ray emission from both solid and porous iron targets induced by irradiation of single and double laser pulses is studied numerically. The line emission from laser produced plasma is calculated within the extreme ultra-violet lithography wavelength range of 13.5–13.7 nm. The effects of pre-pulse intensity and delay time between two pulses (pre-pulse and main pulse) are examined. The results show that using double pulses irradiation in the conditions of porous target can reduce the x-ray enhancement. According to the results, the use of both pre-pulse and porous target leads to efficient absorption of the laser energy. Calculations also show that such enhanced laser absorption can ionize atoms of the target material to very high degrees of ionization, leading to decrease of the density of appropriate ions that are responsible for line emission in the selected wavelength region. By increasing the target porosity, x-ray yield was more reduced.

  7. Comparison of line x-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses

    NASA Astrophysics Data System (ADS)

    Fazeli, R.; Mahdieh, M. H.

    2015-11-01

    Enhancement of line x-ray emission from both solid and porous iron targets induced by irradiation of single and double laser pulses is studied numerically. The line emission from laser produced plasma is calculated within the extreme ultra-violet lithography wavelength range of 13.5-13.7 nm. The effects of pre-pulse intensity and delay time between two pulses (pre-pulse and main pulse) are examined. The results show that using double pulses irradiation in the conditions of porous target can reduce the x-ray enhancement. According to the results, the use of both pre-pulse and porous target leads to efficient absorption of the laser energy. Calculations also show that such enhanced laser absorption can ionize atoms of the target material to very high degrees of ionization, leading to decrease of the density of appropriate ions that are responsible for line emission in the selected wavelength region. By increasing the target porosity, x-ray yield was more reduced.

  8. High-power liquid-lithium jet target for neutron production.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the (7)Li(p,n)(7)Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm(3)) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the (7)Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ~200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm(2) and volume power density of ~2 MW/cm(3) at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF. PMID:24387433

  9. High-power liquid-lithium jet target for neutron production

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  10. High-power liquid-lithium jet target for neutron production

    SciTech Connect

    Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I.; Paul, M.; Friedman, M.; Tessler, M.

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  11. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  12. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates. PMID:26964663

  13. Fission product release and microstructure changes of irradiated MOX fuel at high temperatures

    NASA Astrophysics Data System (ADS)

    Colle, J.-Y.; Hiernaut, J.-P.; Wiss, T.; Beneš, O.; Thiele, H.; Papaioannou, D.; Rondinella, V. V.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.

    2013-11-01

    burnups correspond reasonably well with measurement of Walker et al. [11]. All those data are shown Fig. 2.Fragments of 2-8 mg were chosen for the experiments. Since these specimens are small compared to the drilled sample size and were taken randomly, the precise radial position could not be determined, in particular the specimens of sample type, A and B could be from close radial locations.Specimens from each drilled sample type were annealed up to complete vaporisation (˜2600 K) at a speed of about 10 K min-1 in a Knudsen effusion mass spectrometer (KEMS) described previously [13,14]. In addition to helium and to the FGs all the species present in the vapour between 83 and 300 a.m.u. were measured during the heating. Additionally, the 85Kr isotope was analysed in a cold trap by β and γ counting. The long-lived fission gas isotopes correspond to masses 131, 132, 134 and 136 for Xe and 83, 84, 85 and 86 for Kr. The absolute quantities of gas released from specimens of sample types A and B were also determined using the in-house built Q-GAMES (Quantitative gas measurement system), described in detail in [15].For each of the samples, fragments were also annealed and measured in the KEMS up to specific temperatures corresponding to different stages of the FGs or He release. These fragments were subsequently analysed by Scanning Electron Microscopy (SEM, Philips XL40) [16] in order to investigate the relationship between structural changes, burn-up, irradiation temperature and fission products release. SEM observations were also done on the samples before the KEMS experiments and the fracture surface appearance of the samples is shown in Fig. 3, revealing the presence of the high burnup structure (HBS) in the Pu-rich agglomerates.A summary of the 12 samples analysed by KEMS, SEM and Q-GAMES is given in Table 1. At 1300 K no clear change potentially related to gas release appears in the UM and PA. At 1450 K a beginning of grain boundaries opening can be observed as well as

  14. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  15. Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective.

    PubMed

    Bauer, Renato A; Wurst, Jacqueline M; Tan, Derek S

    2010-06-01

    Existing drugs address a relatively narrow range of biological targets. As a result, libraries of drug-like molecules have proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. In contrast, natural products are known to be effective at modulating such targets, and new libraries are being developed based on underrepresented scaffolds and regions of chemical space associated with natural products. This has led to several recent successes in identifying new chemical probes that address these challenging targets.

  16. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation

    SciTech Connect

    Byun, T.S.

    2001-11-09

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54 to 2.53 dpa. Irradiation temperatures were in the range 30 to 100 C. Tensile testing was performed at room temperature (20 C) and 164 C to study the effects of test temperature on the tensile properties. Test materials displayed significant radiation-induced hardening and loss of ductility due to irradiation. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative strain hardening. In the EC316LN stainless steel, increasing the test temperature from 20 C to 164 C decreased the strength by 13 to 18% and the ductility by 8 to 36%. The tensile data for the EC316LN stainless steel irradiated in spallation conditions were in line with the values in a database for 316 stainless steels for doses up to 1 dpa irradiated in fission reactors at temperatures below 200 C. However, extra strengthening induced by helium and hydrogen contents is evident in some specimens irradiated to above about 1 dpa. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. It was estimated that the 316 stainless steels would retain more than 1% true stains to necking at 164 C after irradiation to 5 dpa. A calculation using reduction of area (RA) measurements and stress-strain data predicted positive strain hardening during plastic instability.

  17. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.

    PubMed

    Hou, X; Tanguay, J; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-01-21

    In response to the recognized fragility of reactor-produced (99)Mo supply, direct production of (99m)Tc via (100)Mo(p,2n)(99m)Tc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with (99m)Tc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical (99m)Tc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  18. The Pattern of Failure after Re-Irradiation of Recurrent Squamous Cell Head and Neck Cancer: Implications for Defining the Targets

    PubMed Central

    Popovtzer, Aron; Gluck, Iris; Chepeha, Douglas B; Teknos, Theodoros N; Moyer, Jeffrey S; Prince, Mark E; Bradford, Carol R; Eisbruch, Avraham

    2009-01-01

    Purpose Re-irradiation (re-RT) of recurrent head and neck cancer (HNC) may achieve long term disease control in some patients, at the expense of high rates of late sequelae. Limiting the re-RT targets to the recurrent gross tumor volume (rGTV) would reduce the volumes of re-irradiated tissues, however, its effect on tumor recurrence pattern is unknown. Methods Retrospective review of 66 patients who underwent curative-intent re-RT for non-resectable recurrent or second primary mucosal squamous cell HNC. Treatment was delivered with 3-dimensional conformal (3D) RT or intensity modulated RT (IMRT). The targets in all patients consisted of the rGTVs with tight (0.5 cm) margins, with no intent to treat prophylactically lymph nodes or sub-clinical disease in the vicinity of the rGTVs. The sites of local-regional failures (LRFs) were determined using imaging at the time of failure, and were compared to the rGTVs. Results Median re-RT dose was 68 Gy. 47 patients (71%) received concomitant chemotherapy and 31 (47%) received hyperfractionated, accelerated RT. At a median follow up 42 month, 16 (23%) are alive and free of disease. Fifty patients (77%) had a third recurrence or persistent disease, including 47 LRFs. All LRFs occurred within the rGTVs except for two (4%) (95% C.I. 0; 11 %). Nineteen patients (29%) had grade ≥3 late complications, mostly dysphagia (12 patients). Conclusion Almost all LRFs occurred within the re-irradiated rGTVs despite avoiding prophylactic RT of tissue at risk of subclinical disease. These results support confining the re-RT targets to the rGTVs to reduce re-irradiated tissue volumes. PMID:19135312

  19. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.

    PubMed

    Teo, Chee Loong; Idris, Ani

    2014-11-01

    The types of microalgae strains and the method used in lipid extraction have become crucial factors which influence the productivity of crude oil. In this paper, Nannochloropsis sp. and Tetraselmis sp. were chosen as the strains and four different methods were used to extract the lipids: Hara and Radin, Folch, Chen and Bligh and Dyer. These methods were performed by using conventional heating and microwave irradiation methods. Results revealed that highest lipid yield from the different species was obtained using different extraction methods; both under microwave irradiation. The lipid yield for Tetraselmis sp. and Nannochloropsis sp. was highest when Hara and Radin (8.19%), and Folch (8.47%) methods were used respectively under microwave irradiation. The lipids extracted were then transesterified to biodiesel and the quality of the biodiesel was analyzed using the gas chromatography.

  20. Sensitization of hepatocellular carcinoma cells to irradiation by miR‑34a through targeting lactate dehydrogenase‑A.

    PubMed

    Li, Xiaogang; Lu, Ping; Li, Bo; Yang, Rong; Chu, Yan; Zhang, Zhiping; Wan, Hongwei; Niu, Chao; Wang, Chunxiao; Luo, Kaiyuan

    2016-04-01

    Radiation is a therapeutic strategy for the treatment of cancer, and is also used for the treatment of hepatocellular carcinoma. MicroRNAs (miRs) are endogenous, non‑coding single‑stranded RNA molecules, which regulate gene expression at the post‑transcriptional level. In the present study, the roles of miR‑34a‑mediated glycolysis in radiation sensitivity were investigated. By establishing a radioresistant liver cancer cell line, the present study compared the expression level of miR‑34a from radiosensitive and radioresistant cells using the reverse transcription‑quantitative polymerase chain reaction. The glucose uptake and lactate production were also compared between the two types of cells. The results demonstrated that miR‑34a acted as a tumor suppressor in human hepatocellular cancer cells. Following comparison of radiosensitive and radioresistant cancer cells, the results of the present study demonstrated that miR‑34a was negatively correlated with radiation resistance; and levels of miR‑34a were significantly downregulated in the HepG2 radioresistant cells. Furthermore, the rate of glycolysis in the radioresistant cells was elevated, and there was evidence that glucose uptake and lactate production increased. Lactate dehydrogenase A (LDHA), which is a key enzyme in the glycolysis signaling pathway, was found to be a target of miR‑34a in hepatocellular cancer cells. Notably, the overexpression of miR‑34a re‑sensitized HepG2 radioresistant cells to radiation treatment by inhibiting LDHA. The results of the present study revealed a negative correlation between miR‑34a and glycolysis, caused by the targeting of LDHA‑34a, providing a novel mechanism for miR‑34a‑mediated radioresistance. PMID:26956717

  1. Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability.

    PubMed

    Furtado, Andreia F M; Nunes, Mario A P; Ribeiro, Maria H L

    2012-11-01

    Hesperidin (hesperitin-7-O-rutinoside) and hesperitin (hesperitin-7-O-glucoside) show anti-inflammatory, antimicrobial, antioxidant, and anticarcinogenic effects and prevent bone loss. However, hesperidin has a low bioavailability compared to hesperitin due to the rutinoside moiety attached to the flavonoid. The removal of the rhamnose group to yield the corresponding flavonoid glucoside (hesperetin-7-glucoside) improved the bioavailability of the aglycone, hesperetin, in humans. In line with these assumptions, the aim of this work was the enzymatic production of hesperitin from hesperidin with hesperidinase. Despite the low hesperidin solubility in the reaction medium, the enzymatic bioconversion was carried with hesperidin soluble at lower concentrations (≤0.05 mg ml(-1)) and insoluble for high concentrations (>0.1-50 mg ml(-1)). A twofold increase in maximum reaction rates overtook the expected values, pointing to the enzyme ability to degrade insoluble hesperidin. To improve the bioprocess, hesperidinase was tested soluble and immobilized in calcium alginate (2%), k-carrageenan (2%), and chitosan (2%) beads. The immobilization was carried out by adsorption and encapsulation. Chitosan was cross-linked with glutaraldehyde (1% and 2%) and sodium sulfate (13.5% and 15%) in acetate buffer (0.02 M, pH 4.0). The relation between bioprocessing conditions and hesperidinase stability was studied. A residual activity of 193% was obtained with immobilized hesperidinase compared to the soluble form. A half-life of 770 min was attained with hesperidinase encapsulated in calcium alginate beads. The results presented in this work highlight the potential of hesperidinase encapsulation towards hesperitin production with insoluble substrate. To our knowledge, this work presents for the first time the potential of hesperidinase encapsulation on hydrogels for hesperitin production. This is an important achievement for pharmaceutical and nutraceutical applications of hesperitin

  2. Method for fabricating {sup 99}Mo production targets using low enriched uranium, {sup 99}Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, T.C.; Matos, J.E.; Hofman, G.L.

    1997-03-25

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate. 3 figs.

  3. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.

    1997-01-01

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  4. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.

    2000-12-12

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  5. Investigation of the effect of contrails on global irradiance and solar energy production

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Rennhofer, Marcus; Baumgartner, Dietmar; Wagner, Jochen; Laube, Wolfgang; Gadermaier, Josef

    2013-04-01

    In the present study we investigate the effect of contrails on global shortwave radiation and on Photovoltaic module performance. This investigation is performed using continuous hemispherical fish eye photographs of the sky, diffuse and direct shortwave measurements and short circuit current measurements of a-Si, c-Si and CdTe PV modules. These measurements have been performed at the solar observatory Kanzelhöhe (1540 m.a.s.l) located in the southern part of Austria during a period of one and half year. The time resolution of the measurements is one minute, which allows to accurately follow the formation-eventually the disappearance- or the movement of the contrails in the sky. Using the fish eye photographs we identified clear sky days with a high contrail persistence. We especially look at situations where the contrails were shading the sun. Results show that contrails shading the sun may reduce the global radiation by up to 60%. In general we however observe that during days with a high contrail persistence the diffuse irradiance is slightly increased. Finally a statistic of the contrail persistence during the period of measurement is presented and conclusions as to the relevance for the solar energy production are drawn.

  6. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  7. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  8. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  9. An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Tang, Wenjun; Yang, Kun; Lu, Ning; Niu, Xiaolei; Liang, Shunlin

    2015-05-01

    Surface solar irradiance (SSI) is required in a wide range of scientific researches and practical applications. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since SSI is directly measured at a very limited number of stations. Even so, meteorological stations are still sparse, especially in remote areas. Remote sensing can be used to map spatiotemporally continuous SSI. Considering the huge amount of satellite data, coarse-resolution SSI has been estimated for reducing the computational burden when the estimation is based on a complex radiative transfer model. On the other hand, many empirical relationships are used to enhance the retrieval efficiency, but the accuracy cannot be guaranteed out of regions where they are locally calibrated. In this study, an efficient physically based parameterization is proposed to balance computational efficiency and retrieval accuracy for SSI estimation. In this parameterization, the transmittances for gases, aerosols, and clouds are all handled in full band form and the multiple reflections between the atmosphere and surface are explicitly taken into account. The newly proposed parameterization is applied to estimate SSI with both Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric and land products as inputs. These retrievals are validated against in situ measurements at the Surface Radiation Budget Network and at the North China Plain on an instantaneous basis, and moreover, they are validated and compared with Global Energy and Water Exchanges-Surface Radiation Budget and International Satellite Cloud Climatology Project-flux data SSI estimates at radiation stations of China Meteorological Administration on a daily mean basis. The estimation results indicates that the newly proposed SSI estimation scheme can effectively retrieve SSI based on MODIS products with mean root-mean-square errors of about 100 Wm- 1 and 35 Wm- 1 on an instantaneous and daily

  10. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    SciTech Connect

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-10-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the {sup 3}He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ({sup 3}He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the {sup 3}He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment.

  11. High K-alpha X-ray Conversion Efficiency From Extended Source Gas Jet Targets Irradiated by Ultra Short Laser Pulses

    SciTech Connect

    Kugland, N L; Constantin, C; Collette, A; Dewald, E; Froula, D; Glenzer, S H; Kritcher, A; Neumayer, P; Ross, J S; Niemann, C

    2007-11-01

    The absolute laser conversion efficiency to K{sub {alpha}}-like inner shell x-rays (integrated from K{sub {alpha}} to K{sub {beta}}) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultra short pulse laser irradiation. Excluding the higher ionization stages, the conversion efficiency to near-cold K{sub {alpha}} is the same in gas jets as in solid targets. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter.

  12. System-level multi-target drug discovery from natural products with applications to cardiovascular diseases.

    PubMed

    Zheng, Chunli; Wang, Jinan; Liu, Jianling; Pei, Mengjie; Huang, Chao; Wang, Yonghua

    2014-08-01

    The term systems pharmacology describes a field of study that uses computational and experimental approaches to broaden the view of drug actions rooted in molecular interactions and advance the process of drug discovery. The aim of this work is to stick out the role that the systems pharmacology plays across the multi-target drug discovery from natural products for cardiovascular diseases (CVDs). Firstly, based on network pharmacology methods, we reconstructed the drug-target and target-target networks to determine the putative protein target set of multi-target drugs for CVDs treatment. Secondly, we reintegrated a compound dataset of natural products and then obtained a multi-target compounds subset by virtual-screening process. Thirdly, a drug-likeness evaluation was applied to find the ADME-favorable compounds in this subset. Finally, we conducted in vitro experiments to evaluate the reliability of the selected chemicals and targets. We found that four of the five randomly selected natural molecules can effectively act on the target set for CVDs, indicating the reasonability of our systems-based method. This strategy may serve as a new model for multi-target drug discovery of complex diseases.

  13. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  14. Optimization of submerged fermentation conditions for immunosuppressant mycophenolic acid production by Penicillium roqueforti isolated from blue-molded cheeses: enhanced production by ultraviolet and gamma irradiation.

    PubMed

    Ismaiel, Ahmed A; Ahmed, Ashraf S; El-Sayed, El-Sayed R

    2014-10-01

    Mycophenolic acid (MPA) is a promising drug owing to its immunosuppressive and biological activities. In this study, two strains of Penicillium roqueforti designated as AG101 and LG109 were selected among several strains isolated from Roquefort cheese samples on the basis of their activity for MPA-producing ability. The appropriate fermentation conditions necessary for MPA biosynthesis by the two respective fungal strains were investigated. These conditions included selection of the cultivation medium, agitation rate, incubation temperature, fermentation time, pH value, inoculum size, and fermentation medium volume. Maximum MPA productivities were maintained when the fermentation process was carried out using a medium composed of (g l(-1)): Sucrose, 30; peptone, 5.0; KH2PO4, 1.0; MgSO4·7H2O, 0.5 and KCl, 0.5; pH 6.0, inoculated with an inoculum size of 6.0 % (v/v), and incubated at 25 °C for 10 days at 120 rpm. The potentiality of both P. roqueforti strains for further improvement of MPA production was applied by mutagenesis through exposure to irradiation by ultraviolet rays (UV, 254 nm) for different periods of time and gamma rays at various doses (KGy). The dry cell weight of both irradiated fungal strains showed a greater reduction when irradiated either with UV or gamma rays. However, the MPA yield of both strains was increased by 1.27-1.39 fold when irradiated with UV rays and by 2.11-2.33 fold when irradiated with gamma rays, as compared with the respective controls (non-irradiated cultures). These findings indicate the future possibility to reduce the cost of producing fermentation-based drugs.

  15. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  16. INTERACTION OF LASER RADIATION WITH TARGETS Tomographic imaging of a target directly irradiated in experiments on the Iskra-5 iodine laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, R. V.; Garanin, Sergey G.; Zhidkov, N. V.; Oreshkov, O. V.; Potapov, S. V.; Suslov, N. A.; Frolova, N. V.

    2010-12-01

    We set forth the data of experiments involving direct microtarget irradiation by the 12 second-harmonic beams (λ = 0.66 μm) of iodine laser radiation carried out on the Iskra-5 facility. For microtargets we employed glass shells ~500 μm in diameter with ~1-μm thick walls, which were filled with a DT mixture at a pressure pDT approx 3-4 atm. In one of these experiments, a tomographic image of the microtarget was recorded from the images obtained using pinhole cameras, which were arranged along seven different directions. The pinhole images were acquired in the X-ray radiation with photon energies above 1.5 keV. The procedure used for reconstructing the volume luminosity of the microtarget is described. An analysis of the tomographic image suggests that the compressed microtarget domain possesses a complex asymmetric shape; 20-30 μm sized structural elements being clearly visible. The resultant data set allowed us to estimate the initial nonuniformity of microtarget surface irradiation by the laser radiation. The rms nonuniformity of microtarget irradiance was estimated at ~60 %.

  17. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  18. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  19. Production of Light p-Process Isotopes in Neutrino-Irradiated Alpha-Rich Freezeouts

    NASA Astrophysics Data System (ADS)

    Swift, T. P.; Meyer, B. S.; The, L.-S.

    2000-12-01

    The origin of the light, neutron-capture bypassed (p-process) isotopes 92Mo, 94Mo, 96Ru, and 98Ru has long been a mystery. Sites that produce the majority of the p-process isotopes in correct solar proportions have long been known to underproduce the light species [1], thereby suggesting a different origin. The alpha-rich freezeout occurring near a nascent neutron star in Type II supernovae has been proposed [2,3,4]; however, only 92Mo is strongly produced, and it is never the most overproduced isotope, as is required for its site of origin. We explore models of alpha-rich freezeouts that include simultaneous irradiation of the nuclei by the copious neutrinos emitted during the explosion. We find that neutrino-nucleus interactions significantly enhance production of the light p-process species both by affecting the electron-nucleon ratio during the nucleosynthesis and by increasing the charge of nuclei once nuclear quasi-equilibrium clusters have broken. In many models studied, the light p-process isotopes are the most overproduced species, which supports the idea of this being a possible production site. The neutrino fluences required for light p-process isotope production are high--probably somewhat higher than current supernova models allow. Nevertheless, the results are encouraging and suggest further work is needed on this promising site. This work was supported by the NSF Research Experiences for Undergraduates (REU) Site Program through grant AST 96169939 to Florida Tech and the Southeastern Association for Research in Astronomy (SARA). It was also supported by NSF grant AST 9819877 and NASA grant NAG5-4703 at Clemson University. References: [1] Woosley, S. E., and Howard, W. M. 1978, ApJS, 36, 285 [2] Woosley, S. E., and Hoffman, R. D. 1992, ApJ, 395, 202 [3] Fuller, G. M., and Meyer, B. S. 1995, ApJ, 453, 792 [4] Hoffman, R. D., Woosley, S. E., Fuller, G. M., and Meyer, B. S. 1996, ApJ, 460, 478

  20. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; van Rompay, Marc; Ballanger, Anne

    2002-03-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7×10 10 to 3.7×10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach.

  1. X-ray spectral measurement of high-temperature plasma parameters in porous targets irradiated with high-power laser pulses

    SciTech Connect

    Gavrilov, V V; Gol'tsov, A Yu; Koval'skii, N G; Koptyaev, S N; Magunov, A I; Pikuz, T A; Skobelev, I Yu; Faenov, A Ya

    2001-12-31

    The X-ray spectra of multiply charged ions were recorded from planar agar (C{sub 12}H{sub 18}O{sub 9}){sub n} based targets with an average density of 2 mg cm{sup -3} irradiated by high-power laser pulses ({lambda}=1.054 {mu}m, {tau}=2.5 ns, I {approx} 5 x10{sup 13} W cm{sup -2}). The spectra were recorded with a high spectral and spatial resolution employing spherically bent (focusing) crystals of mica and quartz. An analysis of the experimental data obtained by the irradiation of Al{sub 2}O{sub 3}-doped agar samples allowed us to determine the main parameters of the plasma produced inside the targets. The ion temperature of plasma in low-density porous targets was estimated for the first time to be 1.5 - 2 times higher than the electron temperature. (interaction of laser radiation with matter. laser plasma)

  2. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  3. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  4. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism.

    PubMed

    Xu, Bingbing; Chen, Zhonglin; Qi, Fei; Ma, Jun; Wu, Fengchang

    2010-07-15

    N-nitrosodiethylamine (NDEA) is a member of nitrosamines, which is strong carcinogenic. In order to explore an effective treatment method for NDEA removal from water, sole UV irradiation and UV/O(3) were carried out in this study. The removal efficiency, degradation products and pathways were compared between those two processes. Results showed that NDEA removal efficiency achieved 99% within 15 min by both UV and UV/O(3). Degradation reaction well followed pseudo-first-order kinetics. Water pH had different effect on NDEA degradation in those two processes. Acidic and neutral conditions were good for NDEA degradation by sole UV irradiation. However, NDEA underwent rapid degradation under various pH conditions in the UV/O(3) process. Though the ozone introduction in the UV/O(3) process had little effect on NDEA degradation efficiency, it had significant effect on its degradation products and pathways. Methylamine, dimethylamine, ethylamine and diethylamine were observed as aliphatic amine products of NDEA degradation in both two processes. They were assumed to arise due to N-N bond fission under UV irradiation, or due to the reaction of NDEA and hydroxyl radicals in the UV/O(3) process.

  5. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    SciTech Connect

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Binh, D. N.; He, J. J.; Kim, A.

    2008-05-21

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N{sub 2} finger and the circulation of the target gas that goes through the liquid N{sub 2} tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm{sup 2} at the gas pressure of 760 Torr. Intense RI beams, such as a {sup 7}Be beam of 2x10{sup 8} particles per second, were successfully produced using the target.

  6. A vertical-beam target station and high-power targetry for the cyclotron production of radionuclides with medium energy protons

    NASA Astrophysics Data System (ADS)

    Steyn, G. F.; Vermeulen, C.; Botha, A. H.; Conradie, J. L.; Crafford, J. P. A.; Delsink, J. L. G.; Dietrich, J.; du Plessis, H.; Fourie, D. T.; Kormány, Z.; van Niekerk, M. J.; Rohwer, P. F.; Stodart, N. P.; de Villiers, J. G.

    2013-11-01

    A vertical-beam target station (VBTS) is described to exploit the high-intensity proton beams delivered by the upgraded separated-sector cyclotron of iThemba LABS for the production of longer-lived, high value radionuclides such as 22Na, 68Ge and 82Sr. Aspects of the targetry are discussed as well as a beam splitter, which makes it possible to perform radionuclide production bombardments simultaneously in two irradiation vaults. With tandem targets in two stations, four targets can be bombarded simultaneously. The delivery of 66 MeV proton beams of higher intensity has been realized by installing fixed frequency, flat-top RF resonators on both the main cyclotron and an injector cyclotron. The increase in beam intensity also required new non-destructive diagnostic components in the relevant high-energy beamlines. An overview is given of the current radionuclide production target stations, their similarities and differences and the role of the VBTS in the production programme.

  7. Advanced electron microscopic techniques applied to the characterization of irradiation effects and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment

    SciTech Connect

    Rooyen, I.J. van; Lillo, T.M.; Trowbridge, T.L.; Madden, J.M.; Wu, Y.Q.; Goran, D.

    2013-07-01

    Preliminary electron microscopy of coated fuel particles from the AGR-1 experiment was conducted using characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and wavelength dispersive spectroscopy (WDS). Microscopic quantification of fission-product precipitates was performed. Although numerous micro- and nano-sized precipitates observed in the coating layers during initial SEM characterization of the cross-sections, and in subsequent TEM diffraction patterns, were indexed as UPd{sub 2}Si{sub 2}, no Ag was conclusively found. Additionally, characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates in the presence of significantly higher concentrations of Pd and U. The electron microscopy team followed a multi-directional and phased approach in the identification of fission products in irradiated TRISO fuel. The advanced electron microscopy techniques discussed in this paper, not only demonstrate the usefulness of the equipment (methods) as relevant research tools, but also provide relevant scientific results which increase the knowledge about TRISO fuel particles microstructure and fission products transport.

  8. Measurement of the cross sections for the production of the isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co from natural and enriched germanium irradiated with 100-MeV protons

    SciTech Connect

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A.

    2010-07-15

    The cross sections for the production of the radioactive isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope {sup 76}Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of {sup 76}Ge at underground laboratories.

  9. STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel particles from AGR-1 experiment

    NASA Astrophysics Data System (ADS)

    Leng, B.; van Rooyen, I. J.; Wu, Y. Q.; Szlufarska, I.; Sridharan, K.

    2016-07-01

    Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously.

  10. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  11. A ROTATING METAL BAND TARGET FOR PION PRODUCTION AT MUON COLLIDERS.

    SciTech Connect

    KING,B.J.; SIMOS,N.; WEGGEL,R.V.; MOKHOV,N.V.

    2002-01-18

    A conceptual design is presented for a high power pion production target for muon colliders that is based on a rotating metal band. Three candidate materials are considered for the target band: inconel alloy 718, titanium alloy 6Al-4V grade 5 and nickel. A pulsed proton beam tangentially intercepts a chord of the target band that is inside a 20 Tesla tapered solenoidal magnetic pion capture channel similar to designs previously considered for muon colliders and neutrino factories. The target band has a radius of 2.5 meters and is continuously rotated at approximately 1 m/s to carry heat away from the production region and through a water cooling tank. The mechanical layout and cooling setup of the target are described, including the procedure for the routine replacement of the target band. A rectangular band cross section is assumed, optionally with I-beam struts to enhance stiffness and minimize mechanical vibrations. Results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target and from ANSYS finite element calculations for the corresponding shock heating stresses. The target scenario is found to perform satisfactorily and with conservative safety margins for multi-MW pulsed proton beams.

  12. Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets

    DOEpatents

    Lapshina, Elena V.; Zhuikov, Boris L.; Srivastava, Suresh C.; Ermolaev, Stanislav V.; Togaeva, Natalia R.

    2012-01-17

    The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  13. Production and evolution of carbonaceous material by ion irradiation in space.

    PubMed

    Strazzulla, G; Baratta, G A; Spinella, F

    1995-03-01

    We review recent experimental studies concerning the evolution, driven by ion irradiation, of carbonaceous material from frozen gas to a refractory molecular solid. Under further irradiation the latter changes to a polymer-like material and ultimately to amorphous carbon. Most of the results have been obtained by "in situ" and remote IR and Raman spectroscopy. The results have been applied to demonstrate that molecular solids may be easily formed by irradiation of frozen mantles in dense interstellar clouds. Polymer-like material and amorphous carbons may result by further irradiation of organic mantles on grains in the diffuse interstellar medium. Those grains, during the aggregation to form extended bodies like comets (T-Tau phase of the Sun), are further modified. These latter are also irradiated, after the comet formation, during their long stay in the Oort cloud. In particular it has been suggested that comet may develop an ion-produced cometary organic crust that laboratory evidences show to be stable against temperature increases experienced during passages near the Sun. The comparison between the Raman spectra of some IDP (Interplanetary Dust Particles) and the Raman spectra of some ion-produced amorphous carbons, is also discussed.

  14. Production and evolution of carbonaceous material by ion irradiation in space.

    PubMed

    Strazzulla, G; Baratta, G A; Spinella, F

    1995-03-01

    We review recent experimental studies concerning the evolution, driven by ion irradiation, of carbonaceous material from frozen gas to a refractory molecular solid. Under further irradiation the latter changes to a polymer-like material and ultimately to amorphous carbon. Most of the results have been obtained by "in situ" and remote IR and Raman spectroscopy. The results have been applied to demonstrate that molecular solids may be easily formed by irradiation of frozen mantles in dense interstellar clouds. Polymer-like material and amorphous carbons may result by further irradiation of organic mantles on grains in the diffuse interstellar medium. Those grains, during the aggregation to form extended bodies like comets (T-Tau phase of the Sun), are further modified. These latter are also irradiated, after the comet formation, during their long stay in the Oort cloud. In particular it has been suggested that comet may develop an ion-produced cometary organic crust that laboratory evidences show to be stable against temperature increases experienced during passages near the Sun. The comparison between the Raman spectra of some IDP (Interplanetary Dust Particles) and the Raman spectra of some ion-produced amorphous carbons, is also discussed. PMID:11539252

  15. Two-step biodiesel production from crude Jatropha curcas L. oil using ultrasonic irradiation assisted.

    PubMed

    Worapun, Ittipon; Pianthong, Kulachate; Thaiyasuit, Prachasanti

    2012-01-01

    In this paper, the feasibility of crude Jatropha curcas L. oil (CJCO) as raw material to produce biodiesel under low-frequency ultrasonic irradiation (40 kHz) assisted is examined. A two-step transesterification process (acid catalyzed esterification followed by alkaline catalyzed transesterification) is employed to produce biodiesel. In the first step, the high level of free fatty acid (FFA), 12.5%, of CJCO is successfully reduced to less than 3% by acid catalyzed esterification with 15% w/w methanol to oil ratio, catalyst concentration 3.0% w/w, ultrasonic irradiation time 20 min at under reaction temperature 30°C, which are selected as optimum conditions for the acid catalyzed esterification. Then, the second step, alkaline catalyzed transesterification is carried out as methanol to oil ratio 15% w/w, catalyst concentration 1% w/w, reaction temperature 30°C and ultrasonic irradiation time 30 min. This results to high percentage of conversion to biodiesel about 98%. Comparing the results obtained under the ultrasonic irradiation in this study with those under conventional stirring conditions, ultrasonic irradiation technique significantly illustrated the higher efficiency than the conventional method, especially for the high FFA oil. PMID:22450117

  16. Century-long monitoring of solar irradiance and Earth's albedo using a stable scattering target in space

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Egeland, Ricky

    2015-03-01

    An inert sphere of a few metres diameter, placed in a special stable geosynchronous orbit in perpetuo, can be used for a variety of scientific experiments. Ground-based observations of such a sphere, `GeoSphere', can resolve very difficult problems in measuring the long-term solar irradiance. GeoSphere measurements will also help us understand the evolution of Earth's albedo and climate over at least the next century.

  17. Melanin production through novel processing of proopiomelanocortin in the extracellular compartment of the auricular skin of C57BL/6 mice after UV-irradiation.

    PubMed

    Yamamoto, Hiroyuki; Yamane, Tomohiro; Iguchi, Kazuaki; Tanaka, Kiyotaka; Iddamalgoda, Arunasiri; Unno, Keiko; Hoshino, Minoru; Takeda, Atsushi

    2015-09-29

    The production of melanin is regulated by α-melanocyte-stimulating hormone (α-MSH), which is produced from proopiomelanocortin (POMC). Keratinocytes release POMC along with lower levels of α-MSH and ACTH. To clarify the mechanism of melanogenesis after ultraviolet (UV)-irradiation, this study focused on the expression of POMC and POMC-derived peptides after UV-irradiation. Western blot analysis and immunoassays indicated that both POMC and α-MSH-like immunoreactivity (α-MSH-LI) increased after UV-irradiation. However, other POMC-derived products were very low. In hypophysectomized mice, α-MSH-LI increased to the same level as in control mice after UV-irradiation. Structural analysis revealed that the major α-MSH-LI product was ACTH(1-8). Furthermore, ACTH(1-8) competed with [(125)I]-α-MSH for receptor binding and increased melanin production via a melanocortin-1 receptor. These results suggested that melanin was produced through ACTH(1-8) after UV-irradiation. Trypsin-like enzymatic activity, which is responsible for POMC activation, increased after UV-irradiation and was identified as tryptase. In mast cell-deficient mice, which do not produce tryptase, α-MSH-LI levels were unchanged after UV-irradiation. The present study demonstrates the production of ACTH(1-8) from POMC by tryptase, which is a novel peptide-processing mechanism in the extracellular compartment of the skin.

  18. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    NASA Astrophysics Data System (ADS)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. 9, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B 29, 186 (1982); Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasma atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities.

  19. Processing of LEU targets for {sup 99}Mo production -- Dissolution of metal foil targets by alkaline hydrogen peroxide

    SciTech Connect

    Dong, D.; Vandegrift, G.F.; Amini, S.; Hersubeno, J.B.; Nasution, H.; Nampira, Y.

    1995-09-01

    In FY 1995, the authors started studies on a new process for dissolution of low-enriched uranium (LEU) targets for {sup 99}Mo production. In this process, an LEU metal foil target is dissolved in a mixture of sodium hydroxide and hydrogen peroxide, then {sup 99}Mo is recovered from the dissolved solution. They focused on the dissolution kinetics to develop a mechanistic model for predicting the products and the rate of uranium dissolution under process conditions. They thoroughly studied the effects of hydrogen peroxide concentration, sodium hydroxide concentration, and temperature on the rate of uranium dissolution. It was found that uranium dissolution can be classified into a low-base (< 0.2M) and a high-base (> 0.2M) process. In the low-base process, both the equilibrium hydrogen peroxide and hydroxide concentrations affect the rate of uranium dissolution; in the high base process, uranium dissolution is a 0.25th order reaction with respect to the equilibrium hydrogen peroxide. The dissolution activation energy was experimentally determined to be 48.8 kJ/mol. Generally, the rate of uranium dissolution increases to a maximum as the hydroxide concentration is increased from 0.01 to about 1.5M, then it decreases as the hydroxide concentration is further increased. The alkalinity of the dissolution solution is an important factor that affects not only the dissolution rate, but also the amount of radioactive waste.

  20. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  1. Specific features of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense 500-ps-long laser pulse

    SciTech Connect

    Borisenko, N. G.; Merkul’ev, Yu. A.; Orekhov, A. S.; Chaurasia, S.; Tripathi, S.; Munda, D. S.; Dhareshwar, L. J.; Pimenov, V. G.; Sheveleva, E. E.

    2013-08-15

    The properties of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense (10{sup 14} W/cm{sup 3}) short (0.5 ps) 1.064-μm laser pulse were studied. It is found that, even at plasma densities exceeding the critical density, a small fraction of the incident laser radiation penetrates through the plasma in which the processes of density and temperature equalization still take place. The intensification (as compared to plasmas produced from denser foams and solid films) of transport processes in such plasma along and across the laser beam can be caused by the initial microheterogeneity of the solid target. The replacement of a small (10% by mass) part of the polymer with copper nanoparticles leads to a nearly twofold increase in the intensity of the plasma X-ray emission.

  2. Modulated drug release from the stem-and-loop structured oligodeoxynucleotide upon UV-A irradiation in the presence of target DNA.

    PubMed

    Tanabe, Kazuhito; Nakata, Hiroyuki; Mukai, Shin; Nishimoto, Sei-ichi

    2005-11-01

    o-Nitrobenzyl photochemistry as induced by UV-A irradiation was applied to a photoactivated drug releasing system based on a molecular beacon strategy. A stem-and-loop structured oligodeoxynucleotide (ODN) possessing a photoreactive o-nitrobenzyl chromophore at the 3'-end and 1-aminonaphthalene quencher at the 5'-end underwent conformational change into a conventional double strand structure by hybridization with a specified target DNA. The intrinsic stem-and-loop structure suppressed photoactivated release of benzoic acid as a phantom drug from the o-nitrobenzyl chromophore because of intramolecular quenching by the 1-aminonaphthalene unit in close proximity to the chromophore. Formation of the double strand structure in the presence of perfectly matched target DNA minimized occurrence of intramolecular quenching and thereby enhanced the photoactivated drug release.

  3. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production

    PubMed Central

    Blasco, Manuel; Badenes, María Luisa; del Mar Naval, María

    2016-01-01

    Successful haploid induction in loquat (Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar ‘Algerie’ were pollinated using pollen of cultivars ‘Changhong-3’, ‘Cox’ and ‘Saval Brasil’ irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from ‘Algerie’ pollinated with 300-Gy-treated pollen of ‘Saval Brasil’ from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids. PMID:27795686

  4. Comparison of pka energy spectra, gas-atom production and damage energy deposition in neutron irradiation at various facilities

    NASA Astrophysics Data System (ADS)

    Nishiguchi, R.; Shimomura, Y.; Hahn, P. A.; Guinan, M. W.; Kiritani, M.

    1991-03-01

    By dividing neutron-energy spectrum into four energy groups, (I) <10 eV, (II) 10 eV to 0.1 MeV, (III) 0.1 MeV to 10 MeV and (IV) > 10 MeV, contributions to damage parameters (PKA spectrum, damage energy and gas-atom production) from each of the energy group were calculated for neutron irradiations at various facilities with the SPECTER code developed by Greenwood and Smither [1]. The normalized PKA spectra and the gas-atom productions were compared to examine differences in damage parameters. Such comparisons were carried out among (1) irradiations at various positions in different fission reactors (i.e. KUR, JOYO and FFTF-MOTA), and among (2) those at various fission reactors. Damage parameters were also calculated at STARFIRE fusion reactor and RTNS-II. A possible method to correlate damages at different fission reactors is discussed. It is suggested that damages in fusion reactor can be simulated by the superposition of irradiations with fission and D-T neutrons.

  5. Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins

    NASA Astrophysics Data System (ADS)

    Adamson, M. G.; Aitken, E. A.; Lindemer, T. B.

    1985-02-01

    A combination of fuel chemistry modelling and equilibrium thermodynamic calculations has been used to predict the atom ratios of Cs and Te fission products (Cs:Te) that find their way into the fuel-cladding interface region of irradiated stainless steel-clad mixed-oxide fast breeder reactor fuel pins. It has been concluded that the ratio of condensed, chemically-associated Cs and Te in the interface region,Čs:Te, which in turn determines the Te activity, is controlled by an equilibrium reaction between Cs 2Te and the oxide fuel, and that the value of Čs:Te is, depending on fuel 0:M, either equal to or slightly less than 2:1. Since Cs and Te fission products are both implicated as causative agents in FCCI (fission product-assisted inner surface attack of stainless steel cladding) and in FPLME (fission product-assisted liquid metal embrittlement of AISI-Type 316), the observed out-of-pile Cs:Te thresholds for FCCI (4˜:1) and FPLME (2˜:1) have been rationalized in terms of Cs:Te thermochemistry and phase equilibria. Also described in the paper is an updated chemical evolution model for reactive/volatile fission product behavior in irradiated oxide pins.

  6. Particle production and energy deposition studies for the neutrino factory target station

    NASA Astrophysics Data System (ADS)

    Back, John J.; Densham, Chris; Edgecock, Rob; Prior, Gersende

    2013-02-01

    We present FLUKA and MARS simulation studies of the pion production and energy deposition in the Neutrino Factory baseline target station, which consists of a 4 MW proton beam interacting with a liquid mercury jet target within a 20 T solenoidal magnetic field. We show that a substantial increase in the shielding is needed to protect the superconducting coils from too much energy deposition. Investigations reveal that it is possible to reduce the magnetic field in the solenoid capture system without adversely affecting the pion production efficiency. We show estimates of the amount of concrete shielding that will be required to protect the environment from the high radiation doses generated by the target station facility. We also present yield and energy deposition results for alternative targets: gallium liquid jet, tungsten powder jet, and solid tungsten bars.

  7. The generation of oxidation products of benzo(a)pyrene by lipid peroxidation: a study using gamma-irradiation

    SciTech Connect

    Gower, J.D.; Wills, E.D.

    1984-09-01

    The role which active oxygen and radicals generated by the peroxidation of unsaturated fatty acids could play in the oxidation of benzo(a)pyrene has been studied using gamma-irradiation. Irradiation of benzo(a)pyrene resulted in the formation of benzo(a)pyrene 1,6-, 3,6- and 6,12-quinones and other more polar products which were analysed by h.p.l.c. OH. radicals are believed to be involved in this oxidation. The presence of polyunsaturated fatty acids and polyunsaturated lipids stimulated the formation of benzo(a)pyrene products following gamma-irradiation. Oxidation of benzo(a)pyrene also occurred over a period of days in the presence of autoxidising mackerel oil. The rate of benzo(a)pyrene oxidation was related to the extent of lipid peroxidation as determined by malonaldehyde formation. Malonaldehyde production as a result of peroxidising lipids was inhibited by benzo(a)pyrene which suggested that benzo(a)pyrene reacted directly with lipid peroxy radicals or hydroperoxides generated in the process of lipid peroxidation. These results demonstrate that oxidation products of the peroxidation of lipids and fatty acids are able to react directly with benzo(a)pyrene to form products including benzo(a)pyrene quinones without the presence of enzymes such as the cytochrome P-450 mixed function oxidase system and prostaglandin synthetase. It is possible that benzo(a)pyrene may be activated by these types of reactions in vivo or in vitro when benzo(a)pyrene is in contact with polyunsaturated lipids in foodstuffs or the intestinal lumen and peroxidation of unsaturated fats may play an important role in human carcinogenesis.

  8. Potentiating antilymphoma efficacy of chemotherapy using a liposome for integration of CD20 targeting, ultra-violet irradiation polymerizing, and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Li, Huafei; Zhao, He; Zhang, Weiwei; Chen, Yan; Yue, Zhanyi; Lu, Qiong; Wan, Yuxiang; Tian, Xiaoyu; Deng, Anmei

    2014-08-01

    Unlike most malignancies, chemotherapy but not surgery plays the most important role in treating non-Hodgkin lymphoma (NHL). Currently, liposomes have been widely used to encapsulate chemotherapeutic drugs in treating solid tumors. However, higher in vivo stability owns a much more important position for excellent antitumor efficacy in treating hematological malignancies. In this study, we finely fabricated a rituximab Fab fragment-decorated liposome based on 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), which can form intermolecular cross-linking through the diacetylenic group by ultra-violet (UV) irradiation. Our experimental results demonstrated that after the UV irradiation, the liposomes exhibit better serum stability and slower drug release with a decreased mean diameter of approximately 285 nm. The cellular uptake of adriamycin (ADR) by this Fab-navigated liposome was about four times of free drugs. Cytotoxicity assays against CD20+ lymphoma cells showed that the half maximal (50%) inhibitory concentration (IC50) of ADR-loaded immunoliposome was only one fourth of free ADR at the same condition. In vivo studies were evaluated in lymphoma-bearing SCID mice. With the high serum stability, finely regulated structure, active targeting strategy via antigen-antibody reaction and passive targeting strategy via enhanced permeability and retention (EPR) effect, our liposome exhibits durable and potent antitumor activities both in the disseminated and localized human NHL xeno-transplant models.

  9. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.

    PubMed

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2016-04-01

    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production. PMID:26851899

  10. Continuing investigations for technology assessment of /sup 99/Mo production from LEU (low enriched Uranium) targets

    SciTech Connect

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from /sup 99/Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of /sup 99/Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product /sup 99/Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent /sup 99/Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved.

  11. Model nitride irradiated nuclear fuel: production, reaction with water and dilution in nitric acid

    SciTech Connect

    Dvoeglazov, K.; Glushenkov, A.; Sharin, A.; Arseenkov, L.; Lobachev, E.; Davydov, A.; Chebotarev, A.

    2013-07-01

    Samples of the model nuclear fuel (MNF) were made from separately synthesized nitride powders uranium-plutonium, zirconium, lanthanum and metal additives of simulators (Mo, Pd, Rh, Ag) fission products. Synthesis of initial nitride components was carried out from individual oxides, using a carbo-thermal restoration method. From MNF samples baked at a temperature of 1750 C. degrees, were made ceramographic specimens which were investigated by a scanning electron microscope. The analysis showed that distribution of the MNF components and structure of the samples corresponds to distribution of these components in the irradiated nitride fuel. The samples of MNF of nitride fuel were used for carrying out researches on dissolution in water and nitric acid. Experiments on studying the interaction of MNF with water have been made at 20, 50 and 80 C. degrees. The speed of leaching has been determined by a way of measuring the activity of water (Bq/l) in time. It is shown that an increase of temperature leads to an increase of the speed of leaching of plutonium. The formation of a precipitation, allegedly polymeric forms of plutonium, has been observed. The estimated speed of leaching of plutonium from MNF in water at 80 C. degrees is -0,0064 μgPu/(mm{sup 2}*h). From elements of FP simulators, molybdenum appears to be the most significantly leached. The dissolution of MNF in nitric acid (7,8 and 9,4 mol/l) has been carried out at boiling temperature (106-109 C. degrees). During the process of dissolution, gases were emitted. The assessment of composition of the emitted gases has been carried out. During the filtering of the solutions a precipitate whose weight makes about 2% from the weight of initial fuel has been found. Precipitate represents small powder of metal with gray color. Precipitate was investigated by a scanning electron microscope. The analysis of ranges of absorption of solution showed that the Pu(VI) share to the general content of plutonium in solution can

  12. Progress in chemical processing of LEU targets for {sup 99}Mo production -- 1997

    SciTech Connect

    Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G.; Wu, D.; Iskander, F.; Landsberger, S.

    1997-10-01

    Presented here are recent experimental results of the continuing development activities associated with converting current processes for producing fission-product {sup 99}Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified {sup 99}Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the US Federal Drug Administration for production of {sup 99}Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU.

  13. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  14. In silico identification of gene amplification targets for improvement of lycopene production.

    PubMed

    Choi, Hyung Seok; Lee, Sang Yup; Kim, Tae Yong; Woo, Han Min

    2010-05-01

    The identification of genes to be deleted or amplified is an essential step in metabolic engineering for strain improvement toward the enhanced production of desired bioproducts. In the past, several methods based on flux analysis of genome-scale metabolic models have been developed for identifying gene targets for deletion. Genome-wide identification of gene targets for amplification, on the other hand, has been rather difficult. Here, we report a strategy called flux scanning based on enforced objective flux (FSEOF) to identify gene amplification targets. FSEOF scans all the metabolic fluxes in the metabolic model and selects fluxes that increase when the flux toward product formation is enforced as an additional constraint during flux analysis. This strategy was successfully employed for the identification of gene amplification targets for the enhanced production of the red-colored antioxidant lycopene. Additional metabolic engineering based on gene knockout simulation resulted in further synergistic enhancement of lycopene production. Thus, FSEOF can be used as a general strategy for selecting genome-wide gene amplification targets in silico.

  15. 76 FR 20509 - Irradiation in the Production, Processing, and Handling of Food

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND...-1281. SUPPLEMENTARY INFORMATION: I. Introduction In the Federal Register of March 20, 1998 (63 FR 13675... 21, 2000 (65 FR 45280), permitting the irradiation of fresh shell eggs for the reduction...

  16. Application of irradiation in bait production to the control of crawling insects in urban areas

    NASA Astrophysics Data System (ADS)

    Migdał, W.; Owczarczyk, H. B.; Świ ȩtosławski, J.; Świ ȩtosławski, J.

    2000-03-01

    The efficiency and palatability of two baits were studied to the control of crawling insects in urban areas: "Cockroach Kill Gel" for control of cockroaches and Faratox B for control of ants. Ionizing energy was used in producing the baits. It was concluded, that after irradiation the palatability of Faratox B improved and palatability of Cockroach Kill Gel did not change.

  17. ANTIBODY AND IMMUNOGLOBULIN PRODUCTION AT THE CELLULAR LEVEL IN BURSECTOMIZED-IRRADIATED CHICKENS

    PubMed Central

    Alm, Gunnar V.; Peterson, Raymond D. A.

    1969-01-01

    The effect of bursectomy combined with sublethal X-irradiation in the newly hatched chicken on the immunoglobulin and antibody producing capacity in later life was investigated. The previous findings of a significant incidence of hypogammaglobulinemia in such animals were confirmed. Spleen cells from severely hypogammaglobulinemic animals synthesized and secreted little or no immunoglobulin. Such spleen lymphoid cells contained fewer immunoglobulin antigenic determinants than spleen cells from irradiated control animals as evidenced by their relative inability to respond by an increased DNA synthesis after in vitro culture with rabbit antiserum to chicken immunoglobulin. Therefore, the deficiency in the immunoglobulin synthesis extends not only to actively secreting cells such as plasma cells, but to the entire lymphoid cell population. As expected, most irradiated-bursectomized chickens, irrespective of plasma immunoglobulin levels failed to produce detectable amount of circulating antibodies to Brucella abortus antigen in the primary immune response. Severely hypogammaglobulinemic animals were completely unable to elaborate any plaque forming cells (PFC) in the primary response to sheep red blood cells (SRBC). The results of this investigation support the contention that in the severely hypogammaglobulinemic bursectomized-irradiated chicken the entire antibody producing and immunoglobulin producing cell line is absent. The possibility remains that precursor or stem cells are present but are not appropriately directed to antibody synthesis by other cell types. PMID:4181832

  18. 77 FR 71316 - Irradiation in the Production, Processing and Handling of Food

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... irradiation of apple juice may produce furan (Ref. 10). Because furan has been shown to cause tumors in... Federal Register of December 21, 1999 (64 FR 71461), FDA announced that a food additive petition (FAP... applications have been presented in various Federal Register documents (see 51 FR 13376, April 18, 1986; 55...

  19. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  20. Negligible photodesorption of methanol ice and active photon-induced desorption of its irradiation products

    NASA Astrophysics Data System (ADS)

    Cruz-Diaz, G. A.; Martín-Doménech, R.; Muñoz Caro, G. M.; Chen, Y.-J.

    2016-07-01

    Context. Methanol is a common component of interstellar and circumstellar ice mantles and is often used as an evolution indicator in star-forming regions. The observations of gas-phase methanol in the interiors of dense molecular clouds at temperatures as low as 10 K suggest that non-thermal ice desorption must be active. Ice photodesorption has been proposed to explain the abundances of gas-phase molecules toward the coldest regions. Aims: Laboratory experiments were performed to investigate the potential photodesorption of methanol toward the coldest regions. Methods: Solid methanol was deposited at 8 K and UV-irradiated at various temperatures starting from 8 K. The irradiation of the ice was monitored by means of infrared spectroscopy and the molecules in the gas phase were detected using quadrupole mass spectroscopy. Fully deuterated methanol was used for confirmation of the results. Results: The photodesorption of methanol to the gas phase was not observed in the mass spectra at different irradiation temperatures. We estimate an upper limit of 3 × 10-5 molecules per incident photon. On the other hand, photon-induced desorption of the main photoproducts was clearly observed. Conclusions: The negligible photodesorption of methanol could be explained by the ability of UV-photons in the 114-180 nm (10.87-6.88 eV) range to dissociate this molecule efficiently. Therefore, the presence of gas-phase methanol in the absence of thermal desorption remains unexplained. On the other hand, we find CH4 to desorb from irradiated methanol ice, which was not found to desorb in the pure CH4 ice irradiation experiments.

  1. Intentions of UK farmers toward biofuel crop production: implications for policy targets and land use change.

    PubMed

    Mattison, Elizabeth H A; Norris, Ken

    2007-08-15

    The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets depends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have not yet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or large-scale changes in land use.

  2. Chemical proteomics approaches for identifying the cellular targets of natural products.

    PubMed

    Wright, M H; Sieber, S A

    2016-05-01

    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.

  3. Feasibility study of heavy-ion beams and compound target materials for muon production

    NASA Astrophysics Data System (ADS)

    Sohn, Jae Bum; Lee, Ju Hahn; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    We have investigated the feasibility of using compound materials as targets for muon production by virtue of simulations using a GEANT4 toolkit. A graphite material and two thermostable compound materials, beryllium oxide (BeO) and boron carbide (B4C), were considered as muon production targets, and their muon production rates for a 600-MeV proton beam were calculated and compared. For the thermal analysis, the total heat deposited on the targets by the proton beams and the secondary particles was calculated with the MCNPX code; then, the temperature distribution of target was derived from the calculated heat by using the ANSYS code with consideration of heat transfer mechanisms such as thermal conduction and thermal radiation. In addition, we have investigated whether the heavy-ion beams can be utilized for muon production. For various beam species such as 3He2, 4He, 7Li, 10B and 12C, their muon production rates were calculated and compared with the rates experimentally-obtained for a proton beam.

  4. Chemical proteomics approaches for identifying the cellular targets of natural products

    PubMed Central

    Sieber, S. A.

    2016-01-01

    Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  5. Enhanced electron injection in laser-driven bubble acceleration by ultra-intense laser irradiating foil-gas targets

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Bo; Ma, Yan-Yun; Xu, Han; Hafz, Nasr A. M.; Yang, Xiao-Hu; Chen, Min; Yu, Tong-Pu; Zou, De-Bin; Liu, Jian-Xun; Yan, Jian-Feng; Zhuo, Hong-Bin; Gan, Long-Fei; Tian, Li-Chao; Shao, Fu-Qiu; Yin, Yan; Kawata, S.

    2015-08-01

    A scheme for enhancing the electron injection charge in a laser-driven bubble acceleration is proposed. In this scheme, a thin foil target is placed in front of a gas target. Upon interaction with an ultra-intense laser pulse, the foil emits electrons with large longitudinal momenta, allowing them to be trapped into the transmitted shaped laser-excited bubble in the gaseous plasma target. Two-dimensional particle-in-cell simulation is used to demonstrate this scheme, and an electron beam with a total electron number of 4.21 × 10 8 μ m - 1 can be produced, which is twice the number of electrons produced without the foil. Such scheme may be widely used for applications that require high electron yields such as positron and gamma ray generation from relativistic electron beams interacting with solid targets.

  6. A new internal target system for production of (211)At on the cyclotron U-120M.

    PubMed

    Lebeda, O; Jiran, R; Rális, J; Stursa, J

    2005-07-01

    The alpha emitter (211)At is a radionuclide with good potential for use in the therapy of smaller tumours and metastases. However, limited availability of this radionuclide hinders development of this application and the research of astatine chemistry in general. In this general context we have designed and tested a new internal target system. A thin bismuth layer (3-5 microm) was evaporated onto a light target backing (7.5 g) and irradiated at 0.5-1.5 degrees angles with 29.5 MeV alpha particles beam of intensity up to 30 microA. The backing was then released from the target holder and used directly for astatine separation via dry distillation. Astatine condensed on the Teflon capillary walls was then eluted into 150-250 microl of methanol. The saturation yield was found to be ca. 400 MBq/microA, and the radionuclidic purity of (211)At acceptable for medical applications (activity ratio (210)At/(211)At<10(-3) at EOB). The overall separation yield was 65-75%. PMID:15866447

  7. Production of the higher actinides by cyclotron bombardment of thin targets, with reference to mendelevium

    SciTech Connect

    Mikheev, N.B.; Averman, L.N.; Kamenskaya, A.N.; Nouichenko, V.L.

    1986-07-01

    A new method has been developed for preparing a thin-layer target and isolating mendelevium from a collector, which makes it possible to obtain /sup 256/Md. The target is prepared by evaporating 0.1-0.2 ml of D2EHPA under vacuum at 100-120/sup 0/C, which contains 0.5 microg of einsteinium 253, an aluminum foil of thickness 4 microm being the receiver. The target is then heated in air at 400/sup 0/C, which fixes the einsteinium firmly on the foil. The einsteinium is irradiated with ..cap alpha.. particles of energy 28 MeV at a current density of 5 microA/cm/sup 2/. The recoil nuclei are collected on a thin zinc film (2-4 mg/cm/sup 2/) evaporated onto a tantalum disk. The collector is then processed in HCl (5-7 moles/liter) and the zinc is quantitatively separated on Dowex 1 x 10 anion exchanger.

  8. Target designs for Accelerator Production of Tritium (APT) utilizing lithium-aluminum

    SciTech Connect

    Todosow, M.; Van Tuyle, G.J.

    1996-03-01

    A number of accelerator-driven spallation neutron-source target/blanket systems have been developed for production of tritium under the APT Program. The two systems described in this paper employ a proton linear accelerator, and a target which contains a heavy-metal(s) for the production of neutrons via spallation, and solid lithium-aluminum for the production of tritium via neutron capture. lie lithium-aluminum technology is based on that employed at Savannah River for tritium production since the 1950`s. In the APT concept tritium is produced without the presence of fissionable materials; therefore, no high-level waste is produced, and the ES&H concerns are significantly reduced compared to reactor systems.

  9. Self-vapor cooled targets for production of I-123 at high current accelerators. [using Xe-123 production

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Scholz, K. L.; Sodd, V. J.

    1974-01-01

    The basic elements of the vapor cooled target system are shown. This system can be operated as a heat pipe or as a conventional condenser. The choice of target fluid is based on the specific nuclear reaction chosen to produce Xe-123. The reaction using I-127 was studied and shown to have a significant yield for bombarding energies from 47 to 63 MeV. The Cs-133 reaction is also included. Xenon-123 is applied to I-123 production in a purer form for thyroid studies.

  10. Production and segregation of transmutation elements Ca, Ti, Sc in the F82H steel under mixed spectrum irradiation of high energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Kuksenko, Viacheslav; Pareige, Cristelle; Pareige, Philippe; Dai, Yong

    2014-04-01

    Ferritic/martensitic steel F82H was irradiated at 345 °C in a mixed proton-neutron spectrum in the Swiss spallation neutron source up to 20.3 dpa. Nanoscale investigations using the atom probe tomography (APT) technique were performed in order to study the atomic scale evolution of the microstructure of the F82H steel under irradiation. Spallation products Ca, Ti and Sc have been detected. The irradiation led to the production of about 370 appm of Ca, 90 appm of Sc and 800 appm of Ti. APT experiments revealed that regardless their low bulk concentrations, the spallation products extensively participate in the evolution of the microstructure: formation of radiation-induced clusters, segregation at the dislocation loops and alteration of the microchemistry of carbides. In this paper, a quantitative description of the observed features is presented and results are compared with TEM data of the literature obtained on the same steel and under similar irradiation conditions.

  11. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  12. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  13. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  14. Pion-induced production of the Zc(3900 ) off a nuclear target

    NASA Astrophysics Data System (ADS)

    Huang, Yin; He, Jun; Liu, Xiang; Zhang, Hong Fei; Xie, Ju Jun; Chen, Xu Rong

    2016-02-01

    We investigate the possibility to study the charmoniumlike state Zc(3900 ) through the pion-induced production off a nuclear target. By using a high-energy pion beam, the Zc(3900 ) can be produced off a proton or nucleus though the Primakoff effect. The production amplitude is calculated in an effective Lagrangian approach combined with the vector dominance model. The total cross sections of the p (π-,Zc-(3900 )) and p (π-,Zc-(3900 )→J /ψ π-) reactions are calculated, and their order of magnitude is about 0.1 and 0.01 nb, respectively, with an assumption of branch ratio 10% for the Zc(3900 ) decay in J /ψ π channel. If the proton target is replaced by a nuclear target, the production of the Zc(3900 ) enhances obviously. The predicted total cross sections for the A (π-,Zc-(3900 )) and A (π-,Zc-(3900 )→J /ψ π-) reactions with A =12C or 208Pb are on the order of magnitude of 100 and 10 nb, respectively, which is about one thousand times larger than the cross sections off a proton target. Based on these results, we suggest the experimental study of the Zc(3900 ) by using high-energy pion beams with a nuclear target at facilities such as COMPASS and J-PARC.

  15. Thick target spallation product yields from 800 MeV protons on tungsten

    SciTech Connect

    Ullmann, J.L.; Staples, P.; Butler, G.

    1994-07-01

    A number of newly-conceived accelerator based technologies will employ medium-energy particles stopping in thick targets to produce large numbers of neutrons. It is important to quantify the residual radionuclides in the target because one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects of accidental dispersion during operation. Because stopping-length targets are considered, radionuclide production must be known as a function of energy. Moreover, secondary particle production, mostly neutrons, implies a need to be able to calculate particle transport. To test the overall ability to calculate radionuclide yields, a thick-target measurement was carried out and the results compared to detailed calculations. Although numerous measurements of thin-target spallation yields have been made, there have been only a few measurements on thick systems. The most complete study showed results for Pb and U systems. In this contribution, the authors report on measurements made for a stopping-length W target. Special efforts were made to measure short-lived isotopes, and reliable data on isotopes with two or three minute half-lives were obtained.

  16. High-temperature electron irradiation and radiation-thermal technology for utilization, purification and production of some metals

    NASA Astrophysics Data System (ADS)

    Solovetskii, Yu.; Panteleev, D.; Lunin, V.

    1998-06-01

    High-temperature irradiation by the beam of 1.2-1.6 MeV accelerated electrons has been used for production Pt, Pd, Mo, Co, Cu and Ni from desactivated Pt(Pd)-containing reforming catalysts, molybdenum sulfide hydrodesulphurization catalysts and hydrogenation catalyst waste material. The radiation-induced decomposition of supported Ni(Co)-Mo/Al 2O 3 sulfide catalyst and organic fragments of hydrogenation catalyst wastes has been studied. Radiolysis product distributions are shown as function of time (time up to 1, 0 h) and temperature (570-1400K). There was made a principle scheme of the first technological unit for radiation-thermal utilization, purification and production of some metals from solid wastes material.

  17. Acid-beta-glycerophosphatase reaction products in the central nervous system mitochondria following x-ray irradiation.

    PubMed

    Roizin, L; Orlovskaja, D; Liu, J C; Carsten, A L

    1975-06-01

    A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase mehtod, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in beta-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequenco of the pathologic process affecting the ultrastructural-chemical organization of the organelle.

  18. Androgens Attenuate Vitamin D Production Induced by UVB Irradiation of the Skin of Male Mice by an Enzymatic Mechanism.

    PubMed

    Xue, Yingben; Ying, Lee; Horst, Ronald L; Watson, Gordon; Goltzman, David

    2015-12-01

    Cutaneous exposure to UVB irradiation is an important source of vitamin D. Here, we examined sex-specific differences in cutaneous vitamin D production in mice. Both male and female mice on a vitamin D-deficient diet manifested vitamin D deficiency, with mineral abnormalities, secondary hyperparathyroidism, and osteomalacia. UVB irradiation significantly increased vitamin D levels in the skin of female mice and normalized serum 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 levels, as well as mineral and skeletal abnormalities. However, in male mice, the vitamin D response to UVB was attenuated and mineral and skeletal abnormalities were not normalized. The vitamin D precursor, 7-dehydrocholesterol (7DHC), was significantly lower in the skin of male than female mice. This reduction was due to local androgen action in the skin as demonstrated by castration studies and skin-specific androgen receptor deletion in male mice, both of which reversed the male phenotype. Local androgen regulation in the skin of the CYP11A1 gene, which encodes a crucial enzyme that metabolizes cholesterol, 7DHC, and vitamin D, appeared to contribute to the gender differences in UVB-induced vitamin D production and to its reversal of vitamin D deficiency. Sex-specific, enzymatically regulated differences in cutaneous production of vitamin D may therefore be of importance to ensure vitamin D sufficiency.

  19. Particle production of a graphite target system for the intensity frontier

    SciTech Connect

    Ding, X.; Kirk, H.; McDonald, K. T.

    2015-05-03

    A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particle production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.

  20. Creating targeted initial populations for genetic product searches in heterogeneous markets

    NASA Astrophysics Data System (ADS)

    Foster, Garrett; Turner, Callaway; Ferguson, Scott; Donndelinger, Joseph

    2014-12-01

    Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct 'targeted' initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.

  1. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  2. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    SciTech Connect

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  3. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-01

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  4. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-01

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements. PMID:26301371

  5. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  6. Comparison of γ-irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production.

    PubMed

    Liu, Yun; Zhou, Hua; Wang, Shihui; Wang, Keqin; Su, Xiaojun

    2015-04-01

    The effect of γ-irradiation pretreatment was compared with other pretreatment methods including ionic liquids (ILs), 1% HCl, 1% H2SO4, acidic aqueous Ils (AA-ILs), on the bioconversion efficiency of microcrystalline cellulose (MCC) for bioethanol production. The efficiency of MCC pretreatment followed with simultaneous saccharification and fermentation (SSF) was firstly evaluated according to the variations of the irradiation-derived compounds and structure of MCC, as well as yeast growth curve and bioethanol yield. Results showed that the appropriate irradiation dose (891 kGy used in our work) could eliminate the negative effect of toxic irradiation-derived compounds on SSF for ethanol bioconversion with the yield value of 67%. Analyses of SEM, FT-IR, reducing sugar and bioethanol yield showed that the efficiency of pretreatment on MCC was ILs ≈ irradiation pretreatment > AA-ILs pretreatment > 1% HCl pretreatment > 1% H2SO4 pretreatment.

  7. Neutron production using a pyroelectric driven target coupled with a gated field ionization source

    SciTech Connect

    Ellsworth, J. L.; Tang, V.; Falabella, S.; Naranjo, B.; Putterman, S.

    2013-04-19

    A palm sized, portable neutron source would be useful for widespread implementation of detection systems for shielded, special nuclear material. We present progress towards the development of the components for an ultracompact neutron generator using a pulsed, meso-scale field ionization source, a deuterated (or tritiated) titanium target driven by a negative high voltage lithium tantalate crystal. Neutron production from integrated tests using an ion source with a single, biased tungsten tip and a 3 Multiplication-Sign 1 cm, vacuum insulated crystal with a plastic deuterated target are presented. Component testing of the ion source with a single tip produces up to 3 nA of current. Dielectric insulation of the lithium tantalate crystals appears to reduce flashover, which should improve the robustness. The field emission losses from a 3 cm diameter crystal with a plastic target and 6 cm diameter crystal with a metal target are compared.

  8. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Yonai, Shunsuke; Baba, Mamoru; Hoshi, Masaharu

    2014-06-01

    The characteristics of moderator assembly dimension was investigated for the usage of (7)Li(p,n) neutrons by 2.3-2.8MeV protons and W(p,n) neutrons by 50MeV protons. The indexes were the treatable protocol depth (TPD) and advantage depth (AD). Consequently, a configuration for W target with the Fe filter, Fluental moderator, Pb reflector showed the TPD of 5.8cm and AD of 9.3cm. Comparable indexes were found for the Li target in a geometry with the MgF2 moderator and Teflon reflector.

  9. [Margin determination from clinical to planning target volume for lung cancer treated with conformal or intensity-modulated irradiation].

    PubMed

    Berthelot, K; Thureau, S; Giraud, P

    2016-10-01

    Technological progress in radiotherapy enables more precision for treatment planning and delivery. The margin determination between the clinical target volume and the planning target volumes stem from the estimation of geometric uncertainties of the tumour localization into the radiation beam. The inner motion complexity of lung tumours has led to the use of 4D computed tomography and nurtures specific dosimetric concerns. Few strategies consisting in integrating tumour motion allow margin reduction regarding inner movements. The patient immobilization and onboard imagery improvement decrease the setup uncertainties. Each step between the initial planning imagery and treatment delivery has to be analysed as systematic or random errors to calculate the optimal planning margin. PMID:27614506

  10. [Margin determination from clinical to planning target volume for lung cancer treated with conformal or intensity-modulated irradiation].

    PubMed

    Berthelot, K; Thureau, S; Giraud, P

    2016-10-01

    Technological progress in radiotherapy enables more precision for treatment planning and delivery. The margin determination between the clinical target volume and the planning target volumes stem from the estimation of geometric uncertainties of the tumour localization into the radiation beam. The inner motion complexity of lung tumours has led to the use of 4D computed tomography and nurtures specific dosimetric concerns. Few strategies consisting in integrating tumour motion allow margin reduction regarding inner movements. The patient immobilization and onboard imagery improvement decrease the setup uncertainties. Each step between the initial planning imagery and treatment delivery has to be analysed as systematic or random errors to calculate the optimal planning margin.

  11. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.

    PubMed

    Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U

    2013-02-01

    -increase target of 2° might imply a severe constraint on the long-term global consumption of animal food. Due to the relatively limited potential for reducing food-related emissions by higher productivity and technological means, structural changes in food consumption towards less emission-intensive food might be required for meeting the 2° target.

  12. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.

    PubMed

    Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U

    2013-02-01

    -increase target of 2° might imply a severe constraint on the long-term global consumption of animal food. Due to the relatively limited potential for reducing food-related emissions by higher productivity and technological means, structural changes in food consumption towards less emission-intensive food might be required for meeting the 2° target. PMID:23031741

  13. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  14. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  15. Muonium production target for the muon g-2/EDM experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Kanda, Sohtaro

    2014-08-01

    There is more than three standard-deviations discrepancy between measurement and theoretical prediction of the muon anomalous magnetic moment. We are going to measure the precision value of muon g - 2 and search for physics beyond standard model. In addition, we can search for muon EDM which violates CP symmetry. CP violation in charged lepton sector is currently not found. We are developing the 'Ultra Cold Muon Beam' instead of tertiary muon beam with electric focusing. Ultra cold muon is realized by laser ionization of muonium (bound state of a muon and an electron) from the production target. Increase of muonium yield is essential for our experimental goal; 0.1ppm statistical precision. Muonium production experiment at J-PARC MLF MUSE is planned in 2012 autumn. In this paper, we discuss the development of muonium production target and positron detector for the study.

  16. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  17. LASERS: Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    NASA Astrophysics Data System (ADS)

    Annenkov, V. I.; Garanin, Sergey G.; Eroshenko, V. A.; Zhidkov, N. V.; Zubkov, A. V.; Kalipanov, S. V.; Kalmykov, N. A.; Kovalenko, V. P.; Krotov, V. A.; Lapin, S. G.; Martynenko, S. P.; Pankratov, V. I.; Faizullin, V. S.; Khrustalev, V. A.; Khudikov, N. M.; Chebotar, V. S.

    2009-08-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ~0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse.

  18. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    PubMed

    Torkashvand, Fatemeh; Vaziri, Behrouz; Maleknia, Shayan; Heydari, Amir; Vossoughi, Manouchehr; Davami, Fatemeh; Mahboudi, Fereidoun

    2015-01-01

    Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB) multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44) cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM) to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb) titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  19. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    SciTech Connect

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I.

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.

  20. A Pion Production and Capture System for a 4 MW Target Station

    SciTech Connect

    Ding, X.; Kirk, H.; Berg, J.S.

    2010-06-01

    A study of a pion production and capture system for a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the pion production produced by the interaction of a free liquid mercury jet with an intense proton beam. We study the variation of meson production with the direction of the proton beam relative to the target. We also examine the influence on the meson production by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding required in order to avoid radiation damage is discussed. The exploration for the multiple proton beam entry directions relative to mercury jet in the 8GeV proton beam case demonstrates that an asymmetric layout is required in order to achieve the same beam/jet crossing angle at the jet axis. We find a correlation between the distance of beam relative to the jet and the meson production. The peak meson production is 8% higher than for the lowest case. The examination of the influence on the meson production by the focusing of the proton beam shows the meson production loss is negligible (<1%) for a beta function to be 0.3m or higher for the proton beam. By investigating the energy deposition in the target/capture system, we see that the bulk of 4-MW proton beam power is deposited in the water cooled tungsten-carbide (WC) shielding, the mercury jet and the capture beam pipe. In addition, high power deposition in the first superconducting coil causes an issue for its operation and life time. Enhanced shielding is necessary to lower the radiation damage.

  1. ANEM: The future neutron production target for Single Event Effect studies at LNL

    NASA Astrophysics Data System (ADS)

    Acosta Urdaneta, G. C.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Silvestrin, L.; Wyss, J.

    2016-11-01

    The design of a fast-neutron ( E > 1 MeV) irradiation facility, devoted to investigating neutron-induced Single Event Effects in microelectronic devices and systems, is under development at the 70MeV, 0.7mA SPES proton cyclotron at LNL (Legnaro, Italy). Here we report on the progress in the design of ANEM (Atmospheric-Neutron EMulator): a water-cooled rotating target capable of producing neutrons with an energy spectrum similar to that of the neutrons present at sea level. In ANEM the protons from the cyclotron alternatively impinge on two circular sectors of Be and W of different areas; the effective neutron spectrum is a weighted combination of the spectra from the two sectors. Thermal-mechanical Finite Element Analysis calculations of the performance of the ANEM prototype indicate that ANEM can deliver fast neutrons with an atmospheric-like energy spectrum in the 1-65MeV energy range with a maximum integral flux φn^{}(1-65 MeV) ≃ 107 n cm-2s-1 at 6m from the target, a very competitive value for Single Event Effects testing.

  2. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy.

    PubMed

    Guérard, François; Gestin, Jean-François; Brechbiel, Martin W

    2013-02-01

    (211)At is a promising radionuclide for α-particle therapy of cancers. Its physical characteristics make this radionuclide particularly interesting to consider when bound to cancer-targeting biomolecules for the treatment of microscopic tumors. (211)At is produced by cyclotron irradiation of (209)Bi with α-particles accelerated at ~28 MeV and can be obtained in high radionuclidic purity after isolation from the target. Its chemistry resembles iodine, but there is also a tendency to behave as a metalloid. However, the chemical behavior of astatine has not yet been clearly established, primarily due to the lack of any stable isotopes of this element, which precludes the use of conventional analytical techniques for its characterization. There are also only a limited number of research centers that have been able to produce this element in sufficient amounts to carry out extensive investigations. Despite these difficulties, chemical reactions typically used with iodine can be performed, and a number of biomolecules of interest have been labeled with (211)At. However, most of these compounds exhibit unacceptable instability in vivo due to the weakness of the astatine-biomolecule bond. Nonetheless, several compounds have shown high potential for the treatment of cancers in vitro and in several animal models, thus providing a promising basis that has allowed initiation of the first two clinical studies. PMID:23075373

  3. Production of [211At]-Astatinated Radiopharmaceuticals and Applications in Targeted α-Particle Therapy

    PubMed Central

    Guérard, François; Gestin, Jean-François

    2013-01-01

    Abstract 211At is a promising radionuclide for α-particle therapy of cancers. Its physical characteristics make this radionuclide particularly interesting to consider when bound to cancer-targeting biomolecules for the treatment of microscopic tumors. 211At is produced by cyclotron irradiation of 209Bi with α-particles accelerated at ∼28 MeV and can be obtained in high radionuclidic purity after isolation from the target. Its chemistry resembles iodine, but there is also a tendency to behave as a metalloid. However, the chemical behavior of astatine has not yet been clearly established, primarily due to the lack of any stable isotopes of this element, which precludes the use of conventional analytical techniques for its characterization. There are also only a limited number of research centers that have been able to produce this element in sufficient amounts to carry out extensive investigations. Despite these difficulties, chemical reactions typically used with iodine can be performed, and a number of biomolecules of interest have been labeled with 211At. However, most of these compounds exhibit unacceptable instability in vivo due to the weakness of the astatine–biomolecule bond. Nonetheless, several compounds have shown high potential for the treatment of cancers in vitro and in several animal models, thus providing a promising basis that has allowed initiation of the first two clinical studies. PMID:23075373

  4. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy.

    PubMed

    Guérard, François; Gestin, Jean-François; Brechbiel, Martin W

    2013-02-01

    (211)At is a promising radionuclide for α-particle therapy of cancers. Its physical characteristics make this radionuclide particularly interesting to consider when bound to cancer-targeting biomolecules for the treatment of microscopic tumors. (211)At is produced by cyclotron irradiation of (209)Bi with α-particles accelerated at ~28 MeV and can be obtained in high radionuclidic purity after isolation from the target. Its chemistry resembles iodine, but there is also a tendency to behave as a metalloid. However, the chemical behavior of astatine has not yet been clearly established, primarily due to the lack of any stable isotopes of this element, which precludes the use of conventional analytical techniques for its characterization. There are also only a limited number of research centers that have been able to produce this element in sufficient amounts to carry out extensive investigations. Despite these difficulties, chemical reactions typically used with iodine can be performed, and a number of biomolecules of interest have been labeled with (211)At. However, most of these compounds exhibit unacceptable instability in vivo due to the weakness of the astatine-biomolecule bond. Nonetheless, several compounds have shown high potential for the treatment of cancers in vitro and in several animal models, thus providing a promising basis that has allowed initiation of the first two clinical studies.

  5. Optimization of production yields, radionuclidic purity and hotcell shielding of SPECT and PET radionuclides produced by proton irradiation in variable energy 30 MeV cyclotrons--Part 67Ga.

    PubMed

    Adam-Rebeles, R; Van den Winkel, P; De Vis, L

    2007-09-01

    Optimization of the production parameters (incident and exit proton energy, thickness of the (68)Zn target layer, decay time to start chemical processing of an irradiated target after the end of bombardment) and of the thickness of the lead shield of the processing hotcell for the cyclotron production of (67)Ga by the (68)Zn(p,2n) threshold reaction are accomplished by powerful divide et impera and binary search algorithms with the Pharmacopoeia radionuclidic purity of the (67)Ga-citrate radiopharmaceutical at a reference time and the locally accepted dose rate level for the controlled area as boundary conditions. Two sets of equations are presented (one associated with the maximum production rate, the other with the use of a minimum target layer thickness) that allow the expression of the optimized production parameters, the radionuclide yields satisfying the Pharmacopoeia requirements at the start of distribution and the necessary shielding as a function of the required activity at the start of distribution and of the maximum allowable beam current on target.

  6. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

    PubMed

    Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred

    2015-11-01

    We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented. PMID:26488757

  7. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

    PubMed

    Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred

    2015-11-01

    We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

  8. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

    SciTech Connect

    Spurck, T.P.; Stonington, O.G.; Snyder, J.A.; Pickett-Heaps, J.D.; Bajer, A.; Mole-Bajer, J. )

    1990-10-01

    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

  9. A Production System Model of Capturing Reactive Moving Targets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jagacinski, R. J.; Plamondon, B. D.; Miller, R. A.

    1984-01-01

    Subjects manipulated a control stick to position a cursor over a moving target that reacted with a computer-generated escape strategy. The cursor movements were described at two levels of abstraction. At the upper level, a production system described transitions among four modes of activity; rapid acquisition, close following, a predictive mode, and herding. Within each mode, differential equations described trajectory-generating mechanisms. A simulation of this two-level model captures the targets in a manner resembling the episodic time histories of human subjects.

  10. Displacement rate dependence of irradiation creep as predicted by the production bias model

    SciTech Connect

    Woo, C.H.

    1996-04-01

    Recently, it has been shown that the non-swelling component of irradiation creep of austenitic stainless steels is relatively independent of temperature but is sensitive to the displacement rate. An earlier model of Lewthwaite and Mosedale anticipated the sensitivity of displacement rate and attributed it to the flux sensitivity of point defect recombination. The point-defect recombination process does not yield the observed temperature dependence, however, although it does predict an inverse dependence of the creep rate on the square root of the displacement rate that was experimentally observed at relatively low temperatures.

  11. Production of organic molecules in the outer solar system by proton irradiation - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Scattergood, T.; Lesser, P.; Owen, T.

    1975-01-01

    Preliminary experiments to investigate the formation of colored polymers and other interesting molecules by the irradiation of gas mixtures with protons are discussed. As in previous experiments, colored polymers were produced. An important feature of the present work is the presence or absence of absorption at 5 microns in the different materials produced; Titan is quite dark at this wavelength and Io is fairly bright. Such features may provide criteria for accepting or rejecting various materials produced in these experiments as reasonable coloring agents for the outer solar system.

  12. Biological Targets and Mechanisms of Action of Natural Products from Marine Cyanobacteria

    PubMed Central

    Salvador-Reyes, Lilibeth A.

    2015-01-01

    Marine cyanobacteria are an ancient group of organisms and prolific producers of bioactive secondary metabolites. These compounds are presumably optimized by evolution over billions of years to exert high affinity for their intended biological target in the ecologically relevant organism but likely also possess activity in different biological contexts such as human cells. Screening of marine cyanobacterial extracts for bioactive natural products has largely focused on cancer cell viability; however, diversification of the screening platform led to the characterization of many new bioactive compounds. Targets of compounds have oftentimes been elusive if the compounds were discovered through phenotypic assays. Over the past few years, technology has advanced to determine mechanism of action (MOA) and targets through reverse chemical genetic and proteomic approaches, which has been applied to certain cyanobacterial compounds and will be discussed in this review. Some cyanobacterial molecules are the most-potent-in-class inhibitors and therefore may become valuable tools for chemical biology to probe protein function but also be templates for novel drugs, assuming in vitro potency translates into cellular and in vivo activity. Our review will focus on compounds for which the direct targets have been deciphered or which were found to target a novel pathway, and link them to disease states where target modulation may be beneficial. PMID:25571978

  13. HTR-2014 Paper Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

    SciTech Connect

    Blaise Collin

    2001-10-01

    The PARFUME (PARticle FUel ModEl) code was used to predict fission product release from tristructural isotropic (TRISO) coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of fission products silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of fission products from fuel compacts and fuel particles, and retention of fission products in the compacts outside of the SiC layer. PARFUME-predicted fractional release of these fission products was determined and compared to the PIE measurements. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed silicon carbide (SiC) layers, the over-prediction is by a factor of about two, corresponding to an over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of about 100. For intact particles, whose release is much lower, the over-prediction is by an average of about an order of magnitude, which could additionally be attributed to an over-estimated diffusivity in SiC by about 30%. The release of strontium from intact particles is also over-estimated by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the

  14. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOEpatents

    Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  15. Régulation de la production, par des cellules endothéliales, de cytokines pro-inflammatoires après irradiation

    NASA Astrophysics Data System (ADS)

    van der Meeren, A.; Lafont, H.; Mathé, D.

    1998-04-01

    Gamma irradiation leads to an increased production of interleukin- (IL)-6 and IL-8 by human endothelial cells. In order to regulate the radio-induced production of these pro-inflammatory cytokines, we used the immunoregulatory cytokines IL-4 and IL-10. These agents were added either before or after a 10 Gy-irradiation. Our results show that it is possible to decrease the radio-induced production of IL-6 and IL-8 with the use of IL-4 and IL-10. Differences in the intensity of the response have been observed according to the time of treatment. The anti-inflammatory potential of both IL-4 and IL-10 was more pronounced when added after irradiation. Après irradiation gamma, des cellules endothéliales humaines ont une production accrue des interleukines (IL-) -6 et -8. Dans le but de réguler la production de ces cytokines pro-inflammatoires, nous avons utilisé des cytokines dites anti-inflammatoires, l'IL-4 et l'IL-10. Ces agents ont été ajoutés soit avant soit après une irradiation de 10Gy. Nos résultats montrent qu'il est possible de diminuer les productions radio-induites d'IL-6 et d'IL-8 par l'IL-4 et l'IL-10. Des différences dans l'intensité de la réponse ont toutefois été observées selon que l'IL-4 ou l'IL-10 ont été ajoutées avant ou après irradiation; leur efficacité anti-inflammatoire étant plus marquée lorsque les cytokines sont ajoutées après l'irradiation.

  16. High Resolution Monochromatic X-Ray Imaging of Targets Irradiated by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Lehecka, T.; Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Holland, G.

    1996-11-01

    Planar CH foils were accelerated by the main Nike laser driving beams and were backlit by Si plasmas. A spherically-bent quartz crystal (R=25cm, 2d=6.68703 Åimaged the radiation of He-like Si resonance line that was transmitted through the target foil. The intensity of the backlighted image (6 beams, 250 J) was 160 times greater than the self emission from a driven CH foil. The magnified (X9.6) images on DEF film had the resolution about 5 μ m (3 μ m with R=10cm). The resulting 10 μ m spatial resolution in the gated images was determined by 100 μ m resolution of the framing camera. Images of CH targets were recorded 2 nsec after the peak of the laser pulse and revealed the growth of Rayleigh-Taylor instabilities that were seeded by patterns with amplitude as small as 0.25 μ m. The image of driven smooth CH target was quite smooth compared to those of the patterned CH foil. A future imaging instrument will have multiple backlighter plasmas and better quality bent crystals that can be bent into a toroidal shape. Up to four images with higher magnification and spatial resolution of 5 μ m may be recorded on the framing camera. This work supported by the US Department of Energy

  17. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    NASA Astrophysics Data System (ADS)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  18. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products.

    PubMed

    Kibble, Milla; Saarinen, Niina; Tang, Jing; Wennerberg, Krister; Mäkelä, Sari; Aittokallio, Tero

    2015-08-01

    It is widely accepted that drug discovery often requires a systems-level polypharmacology approach to tackle problems such as lack of efficacy and emerging resistance of single-targeted compounds. Network pharmacology approaches are increasingly being developed and applied to find new therapeutic opportunities and to re-purpose approved drugs. However, these recent advances have been relatively slow to be translated into the field of natural products. Here, we argue that a network pharmacology approach would enable an effective mapping of the yet unexplored target space of natural products, hence providing a systematic means to extend the druggable space of proteins implicated in various complex diseases. We give an overview of the key network pharmacology concepts and recent experimental-computational approaches that have been successfully applied to natural product research, including unbiased elucidation of mechanisms of action as well as systematic prediction of effective therapeutic combinations. We focus specifically on anticancer applications that use in vivo and in vitro functional phenotypic measurements, such as genome-wide transcriptomic response profiles, which enable a global modelling of the multi-target activity at the level of the biological pathways and interaction networks. We also provide representative examples of other disease applications, databases and tools as well as existing and emerging resources, which may prove useful for future natural product research. Finally, we offer our personal view of the current limitations, prospective developments and open questions in this exciting field.

  19. Targeted metagenomics: finding rare tryptophan dimer natural products in the environment.

    PubMed

    Chang, Fang-Yuan; Ternei, Melinda A; Calle, Paula Y; Brady, Sean F

    2015-05-13

    Natural product discovery from environmental genomes (metagenomics) has largely been limited to the screening of existing environmental DNA (eDNA) libraries. Here, we have coupled a chemical-biogeographic survey of chromopyrrolic acid synthase (CPAS) gene diversity with targeted eDNA library production to more efficiently access rare tryptophan dimer (TD) biosynthetic gene clusters. A combination of traditional and synthetic biology-based heterologous expression efforts using eDNA-derived gene clusters led to the production of hydroxysporine (1) and reductasporine (2), two bioactive TDs. As suggested by our phylogenetic analysis of CPAS genes, identified in our survey of crude eDNA extracts, reductasporine (2) contains an unprecedented TD core structure: a pyrrolinium indolocarbazole core that is likely key to its unusual bioactivity profile. This work demonstrates the potential for the discovery of structurally rare and biologically interesting natural products using targeted metagenomics, where environmental samples are prescreened to identify the most phylogenetically unique gene sequences and molecules associated with these genes are accessed through targeted metagenomic library construction and heterologous expression.

  20. Ergonomic factors and production target evaluation in eucalyptus timber harvesting operations in mountainous terrains.

    PubMed

    de Souza, Amaury Paulo; Minette, Luciano José; Sanches, André Luis Petean; da Silva, Emília Pio; Rodrigues, Valéria Antônia Justino; de Oliveira, Luciana Aparecida

    2012-01-01

    There are several forest operations involved in Eucalyptus timber harvesting. This study was carried out during brush-cutting; tree felling, bucking, delimbing, piling and manual extraction operations, with the following objectives: a) analyzing, ergonomically, two systems of brush-cutting: one manual and the other semi-mechanized, using two different machines; b) ergonomically evaluating three different brands of pruner machines used in delimbing felled trees. c) determining the feasible target of productivity as a function of ergonomic factors relevant to establish the time of resting pauses for workers in manual and semi-mechanized timber harvesting systems in mountainous terrain. Brush-cutting, either manual or semimechanized, is an activity carried out prior to timber harvesting. It is usually a hard work, with low productivity when compared with mechanized systems. Pruner machines have been used by forest companies, due to the great possibilities to improve productivity, quality and the health of workers. Ergonomics is a discipline that promotes the adequacy of work to the physical and mental characteristics of human beings, seeking to design production systems and products considering relevant aspects, including social, organizational and environmental factors. Companies should consider the ergonomic factor in the determination of daily worker production targets. PMID:22317486

  1. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    SciTech Connect

    Apanasevich, Leonard

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π0 mesons by proton beams at 530 and 800 GeV/c and π- beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  2. Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers

    SciTech Connect

    Andreev, Alexander; Kumar, Naveen; Pukhov, Alexander; Platonov, Konstantin

    2011-10-15

    It's shown that the imposition of sub-laser wavelength relief structures on the surface of mass-limited-targets results into several folds higher short-pulse laser absorption, and consequently the efficient generation of fast ions. The optimum relief parameters for enhanced short-pulse laser absorption and higher ion acceleration are estimated numerically by particle-in-cell simulations and then corroborated by analytical scalings. The stability of the pre-imposed surface modulation during the laser pulse foil interaction is also examined.

  3. Nuclear Structure Measurements of Fermium-254 and Advances in Target Production Methodologies

    NASA Astrophysics Data System (ADS)

    Gothe, Oliver Ralf

    The Berkeley Gas-filled Separator (BGS) has been upgraded with a new gas control system. It allows for accurate control of hydrogen and helium gas mixtures. This greatly increases the capabilities of the separator by reducing background signals in the focal plane detector for asymmetric nuclear reactions. It has also been shown that gas mixtures can be used to focus the desired reaction products into a smaller area, thereby increasing the experimental efficiency. A new electrodeposition cell has been developed to produce metal oxide targets for experiments at the BGS. The new cell has been characterized and was used to produce americium targets for the production of element 115 in the reaction 243Am(48Ca.3n) 288115. Additionally, a new method of producing targets for nuclear reactions was explored. A procedure for producing targets via Polymer Assisted Deposition (PAD) was developed and targets produced via this method were tested using the nuclear reaction 208Pb(40Ar.4 n)244Fm to determine their in-beam performance. It was determined that the silicon nitride backings used in this procedure are not feasible due to their crystal structures, and alternative backing materials have been tested and proposed. A previously unknown level in 254Fm has been identified at 985.7 keV utilizing a newly developed low background coincident apparatus. 254m was produced in the reaction 208Pb(48Ca. n)254No. Reaction products were guided to the two-clover low background detector setup via a recoil transfer chamber. The new level has been assigned a spin of 2- and has tentatively been identified as the octupole vibration in 254Fm. Transporting evaporation residues to a two-clover, low background detector setup can effectively be used to perform gamma-spectroscopy measurements of nuclei that are not accessible by current common methodologies. This technique provides an excellent addition to previously available tools such as in-beam spectroscopy and gamma-ray tracking arrays.

  4. Large-angle production of charged pions with incident pion beams on nuclear targets

    NASA Astrophysics Data System (ADS)

    Apollonio, M.; Artamonov, A.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M. G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Capua, E. Di; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gößling, C.; Gómez-Cadenas, J. J.; Grant, A.; Graulich, J. S.; Grégoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martín-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G. B.; Morone, M. C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-12-01

    Measurements of the double-differential π± production cross section in the range of momentum 100⩽p⩽800 MeV/c and angle 0.35⩽θ⩽2.15 rad using π± beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d2σ/dpdθ at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  5. Large-angle production of charged pions with incident pion beams on nuclear targets

    SciTech Connect

    Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.

    2009-12-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  6. RobOKoD: microbial strain design for (over)production of target compounds

    PubMed Central

    Stanford, Natalie J.; Millard, Pierre; Swainston, Neil

    2015-01-01

    Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design. PMID:25853130

  7. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

    SciTech Connect

    Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S; Green, J; Gregori, G; Heathcote, R; Izumi, N; King, J A; Koch, J A; Kuba, J; Lancaster, K; MacKinnon, A J; Key, M; Mileham, C; Myatt, J; Neely, D; Norreys, P A; Park, H; Pasely, J; Patel, P; Regan, S P; Sawada, H; Shepherd, R; Snavely, R; Stephens, R B; Stoeckl, C; Storm, M; Zhang, B; Sangster, T C

    2005-12-13

    A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.

  8. High e+/e– ratio dense pair creation with 1021W.cm–2 laser irradiating solid targets

    SciTech Connect

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; Wang, X.; Kao, J.; Hasson, H.; Dyer, G.; Serratto, K.; Riley, N.; Donovan, M.; Ditmire, T.

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm–2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.

  9. Aluminum-lithium target behavior

    SciTech Connect

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  10. Target selection and pharma industry productivity: what can we learn from technology S-curve theory?

    PubMed

    Brown, David

    2006-07-01

    The number of new drug approvals per annum has been decreasing regularly over the past decade, and changes made 12 to 15 years ago to the research and development approach of the pharmaceutical industry may have contributed to this fall in productivity. In particular, the rapid switch at that time away from an 'observation-led' approach toward a 'hypothesis-led' approach to target selection may be a key contributing factor to this issue. The strengths and weaknesses of both approaches are analyzed herein, and it is suggested that unsolved weaknesses in both approaches are holding back the productivity of the pharmaceutical/biotechnology industry.

  11. J/{sub psi} production: Tevatron and fixed-target collisions

    SciTech Connect

    Petrelli, A.

    2000-06-01

    In this talk the author shows the results of a fit of the NRQCD matrix elements to the CDF data for direct J/{psi} production, by including the radiative corrections to the g g {r_arrow} {sup 3} S {sub 1}{sup [1]} channel and the effect of the k{sub T}-smearing. Furthermore he performs the NLO NRQCD analysis of J/{psi} production in fixed-target proton-nucleon collisions and he fits the colour-octet matrix elements to the available experimental data. The results are compared to the Tevatron ones.

  12. Production of Ac-225 from Th-229 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; Rasmussen, G; Morgenstern, A

    2005-10-01

    This work describes a method for the separation and purification of Ac-225 from a Th-229 source. The procedure is based on the combination of ion exchange and extraction chromatographic methods in nitric acid media and allows the preparation of carrier-free, clinical grade Ac-225 with an overall yield exceeding 95%. Quality control of the product is performed using radiometric (alpha, gamma spectrometry) and mass spectrometric methods. The Ac-225 product can be loaded on a radionuclide generator for the preparation of Bi-213 for preclinical and clinical studies of targeted alpha therapy of cancer and infectious diseases.

  13. Production of Ac-225 from Th-229 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; Rasmussen, G; Morgenstern, A

    2005-10-01

    This work describes a method for the separation and purification of Ac-225 from a Th-229 source. The procedure is based on the combination of ion exchange and extraction chromatographic methods in nitric acid media and allows the preparation of carrier-free, clinical grade Ac-225 with an overall yield exceeding 95%. Quality control of the product is performed using radiometric (alpha, gamma spectrometry) and mass spectrometric methods. The Ac-225 product can be loaded on a radionuclide generator for the preparation of Bi-213 for preclinical and clinical studies of targeted alpha therapy of cancer and infectious diseases. PMID:16194090

  14. Production of cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation.

    PubMed

    Masuda, Mina; Das, Shonkor Kumar; Fujihara, Shinya; Hatashita, Masanori; Sakurai, Akihiko

    2011-01-01

    Cordycepin (3'-deoxyadenosine) is one of the most versatile metabolites of Cordyceps militaris due to its broad spectrum of biological activity. In our previous study, the C. militaris mutant G81-3, which produces higher levels of cordycepin, was obtained by high-energy proton beam irradiation. In this study, the effects of adenosine on cordycepin production in a surface liquid culture of the mutant and the wild type strains were investigated. For the mutant strain, the optimum dose of adenosine yielded a 30% increase in cordycepin production; the maximum levels of production with adenosine and without adenosine were 8.6g/l and 6.7 g/l, respectively. In contrast, the increase due to adenosine supplementation for the wild type strain was only 15% (3.1g/l with adenosine and 2.7 g/l without adenosine). Furthermore, a repeated batch culture, an efficient production method, was carried out to eliminate the relatively long lag phase of the mutant culture. Over four cycles, both the mutant and the wild type strain maintained a production level of more than 85% of that of the initial cycle. As a result, the disadvantage of the mutant was successfully overcome, resulting in a productivity (0.48 g/(ld)) higher than that of the batch culture (0.29 g/(ld)). The productivity for cordycepin obtained in this study is the highest reported value to date, and this method could be applied to large-scale production of cordycepin at industrial levels. PMID:20863756

  15. Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces

    DOEpatents

    Ownby, G.W.; White, C.W.; Zehner, D.M.

    1979-12-28

    This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an atomically clean region. This can be accomplished in a system at a pressure below 10-/sup 8/ Torr, using Q-switched ruber-laser pulses having an energy density in the range of from about 60 to 190 MW/cm/sup 2/.

  16. Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces

    DOEpatents

    Ownby, Gary W.; White, Clark W.; Zehner, David M.

    1981-01-01

    This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.

  17. Reactive oxygen species production in single cells following laser irradiation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Duquette, Michelle L.; Kim, Justine; Shi, Linda Z.; Berns, Michael W.

    2015-08-01

    Region specific DNA breaks can be created in single cells using laser light that damages DNA but does not directly generate reactive oxygen species (ROS). We have examined the cellular response to directly generated DNA breaks in single cells. Using a combination of ROS specific dyes and oxidase inhibitors we have found that the oxidase and chromatin remodeling protein Lysine demethylase I (LSD1) generates detectable ROS as a byproduct of its chromatin remodeling activity during the initial DNA damage response. ROS is produced at detectable amounts primarily within the first 3 minutes post irradiation. LSD1 activity has been previously associated with transcriptional regulation therefore these findings have implications for regulation of gene expression following DNA damage particularly in cells with altered redox states.

  18. Red clouds in reducing atmospheres. [polymer production by UV irradiation in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1973-01-01

    A dark reddish-brown high-molecular weight polymer is produced by long wavelength ultraviolet irradiation of abundant gases in reducing planetary atmospheres. The polymer is examined by paper chromatography, mass spectrometry, and infrared, visible, and ultraviolet spectroscopy. High carbon-number straight-chain alkanes with NH2 and, probably, OH and C = O groups are identified, along with amino acids. There are chemical similarities between this polymer and organic compounds recovered from carbonaceous chondrites and precambrian sediments. The visible and near-ultraviolet transmission spectrum of the polymer shows its absorption optical depth to be redder than lambda(-2) and perhaps similar in coloration to the clouds of Jupiter, Saturn, and Titan. The nitrile content is small, and the polymer should be semitransparent in the 5 micrometer atmospheric window. Such polymers may be a common constituent of clouds in the outer solar system and on the early earth.

  19. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect

    Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B.; Villette, B.; Girard, F.; Reverdin, C.; Sorce, C.; Jaquez, J.

    2012-08-15

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  20. Ozone Production in Irradiated Laboratory Ices Relevant to Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Cooper, P. D.; Moore, M. H.; Hudson, R. L.

    2005-08-01

    Observations suggest ozone (O3) is present on the icy surfaces of Ganymede (1), and Rhea and Dione (2). Molecular oxygen (O2) has also been observed on Europa (3) and Ganymede (4). The formation and trapping of such molecules in ice and their subsequent transportation to a sub-surface ocean may be potentially important for sustaining astrobiological life (5). It is assumed that ozone is produced in these icy surfaces by the addition of an oxygen atom to molecular oxygen, with the latter formed by prior irradiation of the water ice. The infrared absorption band of ozone in ice at 1037 cm-1 is strong and thus makes ozone a good tracer for the presence of molecular oxygen which is difficult to detect. We will present results of water/oxygen ices irradiated with 800 keV protons and show the band position and growth of ozone with increasing radiation dose. The thermal stability of this radiolytically-produced ozone has also been measured and comparisons made to the Jovian satellites. P. Cooper is grateful for the support from the National Academies Research Associateship Program. (1) Noll, K.S., Johnson, R.E., Lane, A.L., Domingue, D.L., Weaver, H.A., Science, 273, 341-343, (1996). (2) Noll, K.S., Roush, T.L., Cruikshank, D.P., Johnson, R.E., Pendleton, Y.J., Nature, 388, 45-47, (1997). (3) Spencer, J.R., Calvin, W.M., Astron. J., 124, 3400-3403, (2002). (4) Spencer, J.R., Calvin, W.M., Person, M. J., J. Geo. Res. 100 (E9), 19049-19056 (1995). (5) Chyba, C.F., Hand, K.P., Science, 292, 2026-2027, (2001).