Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook
2007-03-01
To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.
Device and method for creating Gaussian aberration-corrected electron beams
McMorran, Benjamin; Linck, Martin
2016-01-19
Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.
Intensity-corrected Herschel Observations of Nearby Isolated Low-mass Clouds
NASA Astrophysics Data System (ADS)
Sadavoy, Sarah I.; Keto, Eric; Bourke, Tyler L.; Dunham, Michael M.; Myers, Philip C.; Stephens, Ian W.; Di Francesco, James; Webb, Kristi; Stutz, Amelia M.; Launhardt, Ralf; Tobin, John J.
2018-01-01
We present intensity-corrected Herschel maps at 100, 160, 250, 350, and 500 μm for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel Photodetector Array Camera and Spectrometer (PACS) and Spectral Photometric Imaging Receiver (SPIRE) maps from the Herschel Science Archive (HSA) using Planck data. Since these HSA maps are small, we cannot correct them using typical methods. Here we introduce a technique to measure the zero-point corrections for small Herschel maps. We use radial profiles to identify offsets between the observed HSA intensities and the expected intensities from Planck. Most clouds have reliable offset measurements with this technique. In addition, we find that roughly half of the clouds have underestimated HSA-SPIRE intensities in their outer envelopes relative to Planck, even though the HSA-SPIRE maps were previously zero-point corrected. Using our technique, we produce corrected Herschel intensity maps for all 56 clouds and determine their line-of-sight average dust temperatures and optical depths from modified blackbody fits. The clouds have typical temperatures of ∼14–20 K and optical depths of ∼10‑5–10‑3. Across the whole sample, we find an anticorrelation between temperature and optical depth. We also find lower temperatures than what was measured in previous Herschel studies, which subtracted out a background level from their intensity maps to circumvent the zero-point correction. Accurate Herschel observations of clouds are key to obtaining accurate density and temperature profiles. To make such future analyses possible, intensity-corrected maps for all 56 clouds are publicly available in the electronic version. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Intensity correction for multichannel hyperpolarized 13C imaging of the heart.
Dominguez-Viqueira, William; Geraghty, Benjamin J; Lau, Justin Y C; Robb, Fraser J; Chen, Albert P; Cunningham, Charles H
2016-02-01
Develop and test an analytic correction method to correct the signal intensity variation caused by the inhomogeneous reception profile of an eight-channel phased array for hyperpolarized (13) C imaging. Fiducial markers visible in anatomical images were attached to the individual coils to provide three dimensional localization of the receive hardware with respect to the image frame of reference. The coil locations and dimensions were used to numerically model the reception profile using the Biot-Savart Law. The accuracy of the coil sensitivity estimation was validated with images derived from a homogenous (13) C phantom. Numerical coil sensitivity estimates were used to perform intensity correction of in vivo hyperpolarized (13) C cardiac images in pigs. In comparison to the conventional sum-of-squares reconstruction, improved signal uniformity was observed in the corrected images. The analytical intensity correction scheme was shown to improve the uniformity of multichannel image reconstruction in hyperpolarized [1-(13) C]pyruvate and (13) C-bicarbonate cardiac MRI. The method is independent of the pulse sequence used for (13) C data acquisition, simple to implement and does not require additional scan time, making it an attractive technique for multichannel hyperpolarized (13) C MRI. © 2015 Wiley Periodicals, Inc.
A simple method of obtaining concentration depth-profiles from X-ray diffraction
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Unnam, J.
1984-01-01
The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.
McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy
2007-08-01
An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.
Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi
2007-08-01
To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.
Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering
NASA Astrophysics Data System (ADS)
Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc
2015-03-01
Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.
Three-dimensional surface profile intensity correction for spatially modulated imaging
NASA Astrophysics Data System (ADS)
Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.
2009-05-01
We describe a noncontact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (μa) and reduced scattering (μs') coefficients, based on geometric correction of the sample's Lambertian (diffuse) reflectance intensity. Because the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the three-dimensional object could be acquired and used to extract the object's optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from two- to ten-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40 deg. These data lay the foundation for employing structured light for quantitative imaging during surgery.
Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorndyke, Brian; Schreibmann, Eduard; Koong, Albert
Respiratory motion artifacts in positron emission tomography (PET) imaging can alter lesion intensity profiles, and result in substantially reduced activity and contrast-to-noise ratios (CNRs). We propose a corrective algorithm, coined 'retrospective stacking' (RS), to restore image quality without requiring additional scan time. Retrospective stacking uses b-spline deformable image registration to combine amplitude-binned PET data along the entire respiratory cycle into a single respiratory end point. We applied the method to a phantom model consisting of a small, hot vial oscillating within a warm background, as well as to {sup 18}FDG-PET images of a pancreatic and a liver patient. Comparisons weremore » made using cross-section visualizations, activity profiles, and CNRs within the region of interest. Retrospective stacking was found to properly restore the lesion location and intensity profile in all cases. In addition, RS provided CNR improvements up to three-fold over gated images, and up to five-fold over ungated data. These phantom and patient studies demonstrate that RS can correct for lesion motion and deformation, while substantially improving tumor visibility and background noise.« less
Hydrodynamic Controls on Acoustical and Optical Water Properties in Tropical Reefs
2012-09-30
scattering, absorption, and backscattering , shows more complex variations, with a strong diel signal , but with a tidal influence reflecting asymmetry in...Relative acoustic backscatter (ABS) profiles were derived from individual ADCP beam echo intensity correcting for range and absorption using the sonar...REFERENCES Deines K. L., 1999, Backscatter estimation using Broadband acoustic Doppler current profilers. Proceedings of the IEEE Sixth Working
Recovering Galaxy Rotation Speeds from Irregular Emission Profiles
NASA Astrophysics Data System (ADS)
Lavezzi, T. E.; Dickey, J. M.
1997-12-01
We simulate extragalactic emission spectra in order to determine whether the spectra of molecular gas measure the full velocity of disk rotation, despite their confined gas distributions. We present synthetic emission profiles to determine the effects on profile shapes due to factors such as telescope beam size. gas distribution, opacity, and pointing errors. We find that linewidths cease to be useful if the telescope beam resolves the solid body rotation region of the galaxy disk, or if the disk is very optically thick. Opacity is more problematic for edge-on galaxies; at lower optical depths, we find that very often a trough is created in the center of the emission line. We establish guidelines for rejecting spectra as unreliable disk-velocity indicators, and determine what corrections to the measured line widths at 20% and 50% of the peak intensity are best to recover twice the disk rotation velocity. Following the procedure of Bicay & Giovanelli (1986, AJ, 91, 705) we find that the 50% of peak intensity threshold for measuring linewidths (W50p, or FWHM) is the most robust, yielding the smallest measurement errors as a function of signal to noise, and requires the smallest turbulence corrections.
Resonant beam behavior studies in the Proton Storage Ring
NASA Astrophysics Data System (ADS)
Cousineau, S.; Holmes, J.; Galambos, J.; Fedotov, A.; Wei, J.; Macek, R.
2003-07-01
We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.
An improved level set method for brain MR images segmentation and bias correction.
Chen, Yunjie; Zhang, Jianwei; Macione, Jim
2009-10-01
Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.
Impact of mismatched and misaligned laser light sheet profiles on PIV performance
NASA Astrophysics Data System (ADS)
Grayson, K.; de Silva, C. M.; Hutchins, N.; Marusic, I.
2018-01-01
The effect of mismatched or misaligned laser light sheet profiles on the quality of particle image velocimetry (PIV) results is considered in this study. Light sheet profiles with differing widths, shapes, or alignment can reduce the correlation between PIV images and increase experimental errors. Systematic PIV simulations isolate these behaviours to assess the sensitivity and implications of light sheet mismatch on measurements. The simulations in this work use flow fields from a turbulent boundary layer; however, the behaviours and impacts of laser profile mismatch are highly relevant to any fluid flow or PIV application. Experimental measurements from a turbulent boundary layer facility are incorporated, as well as additional simulations matched to experimental image characteristics, to validate the synthetic image analysis. Experimental laser profiles are captured using a modular laser profiling camera, designed to quantify the distribution of laser light sheet intensities and inform any corrective adjustments to an experimental configuration. Results suggest that an offset of just 1.35 standard deviations in the Gaussian light sheet intensity distributions can cause a 40% reduction in the average correlation coefficient and a 45% increase in spurious vectors. Errors in measured flow statistics are also amplified when two successive laser profiles are no longer well matched in alignment or intensity distribution. Consequently, an awareness of how laser light sheet overlap influences PIV results can guide faster setup of an experiment, as well as achieve superior experimental measurements.
Hack, Erwin; Gundu, Phanindra Narayan; Rastogi, Pramod
2005-05-10
An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.
Boettger, Soenke; Meyer, Rafael; Richter, André; Fernandez, Susana Franco; Rudiger, Alain; Schubert, Maria; Jenewein, Josef; Nuñez, David Garcia
2018-05-24
The importance of the proper identification of delirium, with its high incidence and adversities in the intensive care setting, has been widely recognized. One common screening instrument is the Intensive Care Delirium Screening Checklist (ICDSC); however, the symptom profile and key features of delirium dependent on the level of sedation have not yet been evaluated. In this prospective cohort study, the ICDSC was evaluated versus the Diagnostic and Statistical Manual, 4th edition, text revision, diagnosis of delirium set as standard with respect to the symptom profile, and correct identification of delirium. The aim of this study was to identify key features of delirium in the intensive care setting dependent on the Richmond Agitation and Sedation Scale levels of sedation: drowsiness versus alert and calmness.ResultThe 88 delirious patients of 225 were older, had more severe disease, and prolonged hospitalization. Irrespective of the level of sedation, delirium was correctly classified by items related to inattention, disorientation, psychomotor alterations, inappropriate speech or mood, and symptom fluctuation. In the drowsy patients, inattention reached substantial sensitivity and specificity, whereas psychomotor alterations and sleep-wake cycle disturbances were sensitive lacked specificity. The positive prediction was substantial across items, whereas the negative prediction was only moderate. In the alert and calm patient, the sensitivities were substantial for psychomotor alterations, sleep-wake cycle disturbances, and symptom fluctuations; however, these fluctuations were not specific. The positive prediction was moderate and the negative prediction substantial. Between the nondelirious drowsy and alert, the symptom profile was similar; however, drowsiness was associated with alterations in consciousness.Significance of resultsIn the clinical routine, irrespective of the level of sedation, delirium was characterized by the ICDSC items for inattention, disorientation, psychomotor alterations, inappropriate speech or mood and symptom fluctuation. Further, drowsiness caused altered levels of consciousness.
NASA Astrophysics Data System (ADS)
Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi
2018-02-01
Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.
Intensity Conserving Spectral Fitting
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.
2015-01-01
The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.
Brink, Wyger M; Versluis, Maarten J; Peeters, Johannes M; Börnert, Peter; Webb, Andrew G
2016-12-01
To explore the effects of high permittivity dielectric pads on the transmit and receive characteristics of a 3 Tesla body coil centered at the thighs, and their implications on image uniformity in receive array applications. Transmit and receive profiles of the body coil with and without dielectric pads were simulated and measured in healthy volunteers. Parallel imaging was performed using sensitivity encoding (SENSE) with and without pads. An intensity correction filter was constructed from the measured receive profile of the body coil. Measured and simulated data show that the dielectric pads improve the transmit homogeneity of the body coil in the thighs, but decrease its receive homogeneity, which propagates into reconstruction algorithms in which the body coil is used as a reference. However, by correcting for the body coil reception profile this effect can be mitigated. Combining high permittivity dielectric pads with an appropriate body coil receive sensitivity filter improves the image uniformity substantially compared with the situation without pads. Magn Reson Med 76:1951-1956, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
The beam stop array method to measure object scatter in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, Haeng-hwa; Kim, Ye-seul; Park, Hye-Suk; Kim, Hee-Joung; Choi, Jae-Gu; Choi, Young-Wook
2014-03-01
Scattered radiation is inevitably generated in the object. The distribution of the scattered radiation is influenced by object thickness, filed size, object-to-detector distance, and primary energy. One of the investigations to measure scatter intensities involves measuring the signal detected under the shadow of the lead discs of a beam-stop array (BSA). The measured scatter by BSA includes not only the scattered radiation within the object (object scatter), but also the external scatter source. The components of external scatter source include the X-ray tube, detector, collimator, x-ray filter, and BSA. Excluding background scattered radiation can be applied to different scanner geometry by simple parameter adjustments without prior knowledge of the scanned object. In this study, a method using BSA to differentiate scatter in phantom (object scatter) from external background was used. Furthermore, this method was applied to BSA algorithm to correct the object scatter. In order to confirm background scattered radiation, we obtained the scatter profiles and scatter fraction (SF) profiles in the directions perpendicular to the chest wall edge (CWE) with and without scattering material. The scatter profiles with and without the scattering material were similar in the region between 127 mm and 228 mm from chest wall. This result indicated that the measured scatter by BSA included background scatter. Moreover, the BSA algorithm with the proposed method could correct the object scatter because the total radiation profiles of object scatter correction corresponded to original image in the region between 127 mm and 228 mm from chest wall. As a result, the BSA method to measure object scatter could be used to remove background scatter. This method could apply for different scanner geometry after background scatter correction. In conclusion, the BSA algorithm with the proposed method is effective to correct object scatter.
A new method for depth profiling reconstruction in confocal microscopy
NASA Astrophysics Data System (ADS)
Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe
2018-05-01
Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinders, Suzanne M.; Delft University of Technology, Delft; Breedveld, Sebastiaan
Purpose: To investigate how dose distributions for liver stereotactic body radiation therapy (SBRT) can be improved by using automated, daily plan reoptimization to account for anatomy deformations, compared with setup corrections only. Methods and Materials: For 12 tumors, 3 strategies for dose delivery were simulated. In the first strategy, computed tomography scans made before each treatment fraction were used only for patient repositioning before dose delivery for correction of detected tumor setup errors. In adaptive second and third strategies, in addition to the isocenter shift, intensity modulated radiation therapy beam profiles were reoptimized or both intensity profiles and beam orientationsmore » were reoptimized, respectively. All optimizations were performed with a recently published algorithm for automated, multicriteria optimization of both beam profiles and beam angles. Results: In 6 of 12 cases, violations of organs at risk (ie, heart, stomach, kidney) constraints of 1 to 6 Gy in single fractions occurred in cases of tumor repositioning only. By using the adaptive strategies, these could be avoided (<1 Gy). For 1 case, this needed adaptation by slightly underdosing the planning target volume. For 2 cases with restricted tumor dose in the planning phase to avoid organ-at-risk constraint violations, fraction doses could be increased by 1 and 2 Gy because of more favorable anatomy. Daily reoptimization of both beam profiles and beam angles (third strategy) performed slightly better than reoptimization of profiles only, but the latter required only a few minutes of computation time, whereas full reoptimization took several hours. Conclusions: This simulation study demonstrated that replanning based on daily acquired computed tomography scans can improve liver stereotactic body radiation therapy dose delivery.« less
Volz, Steffen; Hattingen, Elke; Preibisch, Christine; Gasser, Thomas; Deichmann, Ralf
2009-05-01
T2-weighted gradient echo (GE) images yield good contrast of iron-rich structures like the subthalamic nuclei due to microscopic susceptibility induced field gradients, providing landmarks for the exact placement of deep brain stimulation electrodes in Parkinson's disease treatment. An additional advantage is the low radio frequency (RF) exposure of GE sequences. However, T2-weighted images are also sensitive to macroscopic field inhomogeneities, resulting in signal losses, in particular in orbitofrontal and temporal brain areas, limiting anatomical information from these areas. In this work, an image correction method for multi-echo GE data based on evaluation of phase information for field gradient mapping is presented and tested in vivo on a 3 Tesla whole body MR scanner. In a first step, theoretical signal losses are calculated from the gradient maps and a pixelwise image intensity correction is performed. In a second step, intensity corrected images acquired at different echo times TE are combined using optimized weighting factors: in areas not affected by macroscopic field inhomogeneities, data acquired at long TE are weighted more strongly to achieve the contrast required. For large field gradients, data acquired at short TE are favored to avoid signal losses. When compared to the original data sets acquired at different TE and the respective intensity corrected data sets, the resulting combined data sets feature reduced signal losses in areas with major field gradients, while intensity profiles and a contrast-to-noise (CNR) analysis between subthalamic nucleus, red nucleus and the surrounding white matter demonstrate good contrast in deep brain areas.
Mupfasoni, Denise; Karibushi, Blaise; Koukounari, Artemis; Ruberanziza, Eugene; Kaberuka, Teddy; Kramer, Michael H.; Mukabayire, Odette; Kabera, Michee; Nizeyimana, Vianney; Deville, Marie-Alice; Ruxin, Josh; Webster, Joanne P.; Fenwick, Alan
2009-01-01
Background Intestinal schistosomiasis and soil-transmitted helminth (STH) infections constitute major public health problems in many parts of sub-Saharan Africa. In this study we examined the functional significance of such polyparasite infections in anemia and undernutrition in Rwandan individuals. Methods Three polyparasite infection profiles were defined, in addition to a reference profile that consisted of either no infections or low-intensity infection with only one of the focal parasite species. Logistic regression models were applied to data of 1,605 individuals from 6 schools in 2 districts of the Northern Province before chemotherapeutic treatment in order to correctly identify individuals who were at higher odds of being anaemic and/or undernourished. Findings Stunted relative to nonstunted, and males compared to females, were found to be at higher odds of being anaemic independently of polyparasite infection profile. The odds of being wasted were 2-fold greater for children with concurrent infection of at least 2 parasites at M+ intensity compared to those children with the reference profile. Males compared to females and anaemic compared to nonanaemic children were significantly more likely to be stunted. None of the three polyparasite infection profiles were found to have significant effects on stunting. Conclusion The present data suggest that the levels of polyparasitism, and infection intensities in the Rwandan individuals examined here may be lower as compared to other recent similar epidemiological studies in different regions across sub-Saharan Africa. Neither the odds of anaemia nor the odds of stunting were found to be significantly different in the three-polyparasite infection profiles. However, the odds of wasting were higher in those children with at least two parasites at M+ intensity compared to those children with the reference profile. Nevertheless, despite the low morbidity levels indicated in the population under study here, we recommend sustainable efforts for the deworming of affected populations to be continued in order to support the economic development of the country. PMID:19753110
Multidimensional photoemission spectroscopy—the space-charge limit
NASA Astrophysics Data System (ADS)
Schönhense, B.; Medjanik, K.; Fedchenko, O.; Chernov, S.; Ellguth, M.; Vasilyev, D.; Oelsner, A.; Viefhaus, J.; Kutnyakhov, D.; Wurth, W.; Elmers, H. J.; Schönhense, G.
2018-03-01
Photoelectron spectroscopy, especially at pulsed sources, is ultimately limited by the Coulomb interaction in the electron cloud, changing energy and angular distribution of the photoelectrons. A detailed understanding of this phenomenon is crucial for future pump-probe photoemission studies at (x-ray) free electron lasers and high-harmonic photon sources. Measurements have been performed for Ir(111) at hν = 1000 eV with photon flux densities between ˜102 and 104 photons per pulse and μm2 (beamline P04/PETRA III, DESY Hamburg), revealing space-charge induced energy shifts of up to 10 eV. In order to correct the essential part of the energy shift and restore the electron distributions close to the Fermi energy, we developed a semi-analytical theory for the space-charge effect in cathode-lens instruments (momentum microscopes, photoemission electron microscopes). The theory predicts a Lorentzian profile of energy isosurfaces and allows us to quantify the charge cloud from measured energy profiles. The correction is essential for the determination of the Fermi surface, as we demonstrate by means of ‘k-space movies’ for the prototypical high-Z material tungsten. In an energy interval of about 1 eV below the Fermi edge, the bandstructure can be restored up to substantial shifts of ˜7 eV. Scattered photoelectrons strongly enhance the inelastic background in the region several eV below E F, proving that the majority of scattering events involves a slow electron. The correction yields a gain of two orders of magnitude in usable intensity compared with the uncorrected case (assuming a tolerable shift of 250 meV). The results are particularly important for future experiments at SASE-type free electron lasers, since the correction also works for strongly fluctuating (but known) pulse intensities.
Mode-medium instability and its correction with a Gaussian-reflectivity mirror
NASA Technical Reports Server (NTRS)
Webster, K. L.; Sung, C. C.
1992-01-01
A high-power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity-dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.
Mode-medium instability and its correction with a Gaussian reflectivity mirror
NASA Technical Reports Server (NTRS)
Webster, K. L.; Sung, C. C.
1990-01-01
A high power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.
Wave energetics of the southern hemisphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2018-07-01
An assessment of the energetics of transient waves in the southern hemisphere of Mars is presented using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. The dataset is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for three Mars years. Spring eddies are the most intense, with eddies during the fall being less intense due to a marginally more stable mean-temperature profile and reduced recirculation of ageostrophic geopotential fluxes compared to the spring. Eddy kinetic energy during winter is reduced in intensity as a result of the winter solstitial pause in wave activity, and eddy kinetic energy during the summer is limited. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter as a result of a stabilized vertical temperature profile. Barotropic energy conversion acts as both a source and a sink of eddy kinetic energy, being most positive during the solstitial pause. Eddies take a northwest to southeast track across the southern highlands in the fall but have a more zonal track in the spring due to stronger eddy kinetic energy advection. Wave energetics is less intense in the southern compared to the northern hemisphere as a result of a shallower baroclinically unstable vertical profile.
NASA Technical Reports Server (NTRS)
Bernstein, D. R.; Dashen, R.; Flatte, S. M.
1983-01-01
A theory is developed which describes intensity moments for wave propagation through random media. It is shown using the path integral technique that these moments are significantly different from those of a Rayleigh distribution in certain asymptotic regions. The path integral approach is extended to inhomogeneous, anisotropic media possessing a strong deterministic velocity profile. The behavior of the corrections to Rayleigh statistics is examined, and it is shown that the important characteristics can be attributed to a local micropath focusing function. The correction factor gamma is a micropath focusing parameter defined in terms of medium fluctuations. The value of gamma is calculated for three ocean acoustic experiments, using internal waves as the medium fluctuations. It is found that all three experiments show excellent agreement as to the relative values of the intensity moments. The full curved ray is found to yield results that are significantly different from the straight-line approximations. It is noted that these methods are applicable to a variety of experimental situations, including atmospheric optics and radio waves through plasmas.
NASA Astrophysics Data System (ADS)
Yankovsky, Valentine A.; Manuilova, Rada O.
2017-11-01
The altitude profiles of ozone concentration are retrieved from measurements of the volume emission rate in the 1.27 μm oxygen band in the TIMED-SABER experiment. In this study we compare the methods of retrieval of daytime [O3] altitude profile in the framework of two models: electronic-vibrational kinetics and a purely electronic kinetics of excited products of ozone and oxygen photolysis. In order to retrieve the [O3] altitude profile from the measurements of the intensity of the O2 band in the region of 1.27 μm correctly, it is necessary to use the photochemical model of the electronic-vibrational kinetics of excited products of ozone and oxygen photolysis in the mesosphere and lower thermosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Dudu; Yang, Sichun; Lu, Lanyuan
2016-06-20
Structure modellingviasmall-angle X-ray scattering (SAXS) data generally requires intensive computations of scattering intensity from any given biomolecular structure, where the accurate evaluation of SAXS profiles using coarse-grained (CG) methods is vital to improve computational efficiency. To date, most CG SAXS computing methods have been based on a single-bead-per-residue approximation but have neglected structural correlations between amino acids. To improve the accuracy of scattering calculations, accurate CG form factors of amino acids are now derived using a rigorous optimization strategy, termed electron-density matching (EDM), to best fit electron-density distributions of protein structures. This EDM method is compared with and tested againstmore » other CG SAXS computing methods, and the resulting CG SAXS profiles from EDM agree better with all-atom theoretical SAXS data. By including the protein hydration shell represented by explicit CG water molecules and the correction of protein excluded volume, the developed CG form factors also reproduce the selected experimental SAXS profiles with very small deviations. Taken together, these EDM-derived CG form factors present an accurate and efficient computational approach for SAXS computing, especially when higher molecular details (represented by theqrange of the SAXS data) become necessary for effective structure modelling.« less
NASA Technical Reports Server (NTRS)
Vakhtin, Andrei; Krasnoperov, Lev
2011-01-01
An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes. This technology is based on detection of light scattered by aerosol particles where an optical layout is used to enhance the performance of the laboratory prototype instrument, which allows detection of smaller aerosol particles and improves the accuracy of aerosol particle size measurement. It has been determined that using focused illumination geometry without any apertures is advantageous over using the originally proposed collimated beam/slit geometry (that is supposed to produce uniform illumination over the beam cross-section). The illumination source is used more efficiently, which allows detection of smaller aerosol particles. Second, the obtained integral scattered light intensity measured for the particle can be corrected for the beam intensity profile inhomogeneity based on the measured beam intensity profile and measured particle location. The particle location (coordinates) in the illuminated sample volume is determined based on the information contained in the image frame. The procedure considerably improves the accuracy of determination of the aerosol particle size.
Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA
NASA Astrophysics Data System (ADS)
Donovan, J.; Singer, J.; Armstrong, J. T.
2016-12-01
Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.
Tilting-filter measurements in dayglow rocket photometry.
Schaeffer, R C; Fastie, W G
1972-10-01
A rocket-borne photometer containing two tilting-filter channels for the measurement of the [OI] lambdalambda6300-A and 5577A emission lines in the day airglow is described. The results of one flight substantiate the employment of tilting filters to determine accurate corrections for background continuum and provide reliable height profiles of emission intensity down to approximately 90 km. Discussions on the calibration of the instrument and its baffling against sunlight are also presented.
Viddeleer, Alain R; Sijens, Paul E; van Ooijen, Peter M A; Kuypers, Paul D L; Hovius, Steven E R; Oudkerk, Matthijs
2009-08-01
Nerve regeneration could be monitored by comparing MRI image intensities in time, as denervated muscles display increased signal intensity in STIR sequences. In this study long-term reproducibility of STIR image intensity was assessed under clinical conditions and the required image intensity nonuniformity correction was improved by using phantom scans obtained at multiple positions. Three-dimensional image intensity nonuniformity was investigated in phantom scans. Next, over a three-year period, 190 clinical STIR hand scans were obtained using a standardized acquisition protocol, and corrected for intensity nonuniformity by using the results of phantom scanning. The results of correction with 1, 3, and 11 phantom scans were compared. The image intensities in calibration tubes close to the hands were measured every time to determine the reproducibility of our method. With calibration, the reproducibility of STIR image intensity improved from 7.8 to 6.4%. Image intensity nonuniformity correction with 11 phantom scans gave significantly better results than correction with 1 or 3 scans. The image intensities in clinical STIR images acquired at different times can be compared directly, provided that the acquisition protocol is standardized and that nonuniformity correction is applied. Nonuniformity correction is preferably based on multiple phantom scans.
Single-Molecule Denaturation Mapping of DNA in Nanofluidic Channels
NASA Astrophysics Data System (ADS)
Reisner, Walter; Larsen, Niels; Silahtaroglu, Asli; Kristensen, Anders; Tommerup, Niels; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik
2010-03-01
Nanochannel based DNA stretching can serve as a platform for a new optical mapping technique based on measuring the pattern of partial melting along the extended molecules. We partially melt DNA extended in nanofluidic channels via a combination of local heating and added chemical denaturants. The melted molecules, imaged via a standard fluorescence videomicroscopy setup, exhibit a nonuniform fluorescence profile corresponding to a series of local dips and peaks in the intensity trace along the stretched molecule. We show that this barcode is consistent with the presence of locally melted regions along the molecule and can be explained by calculations of sequence-dependent melting probability. Specifically, we obtain experimental melting profiles for T4, T7, lambda-phage and bacterial artificial chromosome DNA (from human chromosome 12) and compare these profiles to theory. In addition, we demonstrate that the BAC melting profile can be used to align the BAC to its correct position on chromosome 12.
Figure correction of a metallic ellipsoidal neutron focusing mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jiang, E-mail: jiang.guo@riken.jp; Yamagata, Yutaka; Morita, Shin-ya
2015-06-15
An increasing number of neutron focusing mirrors is being adopted in neutron scattering experiments in order to provide high fluxes at sample positions, reduce measurement time, and/or increase statistical reliability. To realize a small focusing spot and high beam intensity, mirrors with both high form accuracy and low surface roughness are required. To achieve this, we propose a new figure correction technique to fabricate a two-dimensional neutron focusing mirror made with electroless nickel-phosphorus (NiP) by effectively combining ultraprecision shaper cutting and fine polishing. An arc envelope shaper cutting method is introduced to generate high form accuracy, while a fine polishingmore » method, in which the material is removed effectively without losing profile accuracy, is developed to reduce the surface roughness of the mirror. High form accuracy in the minor-axis and the major-axis is obtained through tool profile error compensation and corrective polishing, respectively, and low surface roughness is acquired under a low polishing load. As a result, an ellipsoidal neutron focusing mirror is successfully fabricated with high form accuracy of 0.5 μm peak-to-valley and low surface roughness of 0.2 nm root-mean-square.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-05-15
The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less
A Kp-based model of auroral boundaries
NASA Astrophysics Data System (ADS)
Carbary, James F.
2005-10-01
The auroral oval can serve as both a representation and a prediction of space weather on a global scale, so a competent model of the oval as a function of a geomagnetic index could conveniently appraise space weather itself. A simple model of the auroral boundaries is constructed by binning several months of images from the Polar Ultraviolet Imager by Kp index. The pixel intensities are first averaged into magnetic latitude-magnetic local time (MLT-MLAT) and local time bins, and intensity profiles are then derived for each Kp level at 1 hour intervals of MLT. After background correction, the boundary latitudes of each profile are determined at a threshold of 4 photons cm-2 s1. The peak locations and peak intensities are also found. The boundary and peak locations vary linearly with Kp index, and the coefficients of the linear fits are tabulated for each MLT. As a general rule of thumb, the UV intensity peak shifts 1° in magnetic latitude for each increment in Kp. The fits are surprisingly good for Kp < 6 but begin to deteriorate at high Kp because of auroral boundary irregularities and poor statistics. The statistical model allows calculation of the auroral boundaries at most MLTs as a function of Kp and can serve as an approximation to the shape and extent of the statistical oval.
NASA Astrophysics Data System (ADS)
Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar
2017-01-01
Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.
NASA Astrophysics Data System (ADS)
Hawdon, Aaron; McJannet, David; Wallace, Jim
2014-06-01
The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.
Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.
Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel
2017-04-01
Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.
NASA Astrophysics Data System (ADS)
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
Farabegoli, Federica; Pirini, Maurizio; Rotolo, Magda; Silvi, Marina; Testi, Silvia; Ghidini, Sergio; Zanardi, Emanuela; Remondini, Daniel; Bonaldo, Alessio; Parma, Luca; Badiani, Anna
2018-06-08
The authenticity of fish products has become an imperative issue for authorities involved in the protection of consumers against fraudulent practices and in the market stabilization. The present study aimed to provide a method for authentication of European sea bass (Dicentrarchus labrax) according to the requirements for seafood labels (Regulation 1379/2013/EU). Data on biometric traits, fatty acid profile, elemental composition, and isotopic abundance of wild and reared (intensively, semi-intensively and extensively) specimens from 18 Southern European sources (n = 160) were collected and clustered in 6 sets of parameters, then subjected to multivariate analysis. Correct allocations of subjects according to their production method, origin and stocking density were demonstrated with good approximation rates (94%, 92% and 92%, respectively) using fatty acid profiles. Less satisfying results were obtained using isotopic abundance, biometric traits, and elemental composition. The multivariate analysis also revealed that extensively reared subjects cannot be analytically discriminated from wild ones.
NASA Astrophysics Data System (ADS)
Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin
2009-04-01
The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields.
A programmable and portable NMES device for drop foot correction and blood flow assist applications.
Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid
2009-04-01
The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.
A programmable and portable NMES device for drop foot correction and blood flow assist applications.
Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; OLaighin, Gearoid
2007-01-01
The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor based foot switches and NMES based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.
A novel methodology for litho-to-etch pattern fidelity correction for SADP process
NASA Astrophysics Data System (ADS)
Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng
2017-03-01
For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.
NASA Astrophysics Data System (ADS)
Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael
2013-03-01
A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Crawford, Chris; Butow, Steven J.; Nugent, David; Koop, Mike; Holman, David; Houston, Jane; Jobse, Klaas; Kronk, Gary
2000-01-01
A new hybrid technique of visual and video meteor observations was developed to provide high precision near real-time flux measurements for satellite operators from airborne platforms. A total of 33,000 Leonids. recorded on video during the 1999 Leonid storm, were watched by a team of visual observers using a video head display and an automatic counting tool. The counts reveal that the activity profile of the Leonid storm is a Lorentz profile. By assuming a radial profile for the dust trail that is also a Lorentzian, we make predictions for future encounters. If that assumption is correct, we passed 0.0003 AU deeper into the 1899 trailet than expected during the storm of 1999 and future encounters with the 1866 trailet will be less intense than. predicted elsewhere.
Krause, Lennard; Herbst-Irmer, Regine; Sheldrick, George M; Stalke, Dietmar
2015-02-01
The quality of diffraction data obtained using silver and molybdenum microsources has been compared for six model compounds with a wide range of absorption factors. The experiments were performed on two 30 W air-cooled Incoatec IµS microfocus sources with multilayer optics mounted on a Bruker D8 goniometer with a SMART APEX II CCD detector. All data were analysed, processed and refined using standard Bruker software. The results show that Ag K α radiation can be beneficial when heavy elements are involved. A numerical absorption correction based on the positions and indices of the crystal faces is shown to be of limited use for the highly focused microsource beams, presumably because the assumption that the crystal is completely bathed in a (top-hat profile) beam of uniform intensity is no longer valid. Fortunately the empirical corrections implemented in SADABS , although originally intended as a correction for absorption, also correct rather well for the variations in the effective volume of the crystal irradiated. In three of the cases studied (two Ag and one Mo) the final SHELXL R 1 against all data after application of empirical corrections implemented in SADABS was below 1%. Since such corrections are designed to optimize the agreement of the intensities of equivalent reflections with different paths through the crystal but the same Bragg 2θ angles, a further correction is required for the 2θ dependence of the absorption. For this, SADABS uses the transmission factor of a spherical crystal with a user-defined value of μ r (where μ is the linear absorption coefficient and r is the effective radius of the crystal); the best results are obtained when r is biased towards the smallest crystal dimension. The results presented here suggest that the IUCr publication requirement that a numerical absorption correction must be applied for strongly absorbing crystals is in need of revision.
Jenaro, Cristina; Cruz, Maribel; Perez, María Del Carmen; Flores, Noelia E; Vega, Vanessa
2011-10-01
In agreement with the new paradigm of supports, this study examines the adequacy and psychometric properties of the Supports Intensity Scale (SIS) in a sample of 182 participants with severe mental illness (mean Global Assessment of Functioning [GAF] score = 60.2). The measure focuses on identifying the profile and intensities of support needs and on the planning and service delivery rather than on weaknesses and limitations. Internal consistency indexes ranged from .83 to .97; interrater reliability indexes ranged from .67 to .98. Intercorrelations among SIS subscales supported its construct validity. SIS scores correlated to GAF scores and length of disease. Discriminant analysis correctly classified 60.9% of participants. Therefore, the SIS demonstrated adequate reliability and validity, and it can be used by nursing professionals to plan for required supports in this population. Copyright © 2011 Elsevier Inc. All rights reserved.
Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy
Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2014-01-01
Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539
Laser damage metrology in biaxial nonlinear crystals using different test beams
NASA Astrophysics Data System (ADS)
Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille
2008-01-01
Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.
Birch, Gabriel Carisle; Griffin, John Clark
2015-07-23
Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less
SU-F-T-69: Correction Model of NIPAM Gel and Presage for Electron and Proton PDD Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, C; Tu, P
Purpose: The current standard equipment for proton PDD measurement is multilayer-parallel-ion-chamber. Disadvantage of multilayer-parallel-ion-chamber is expensive and complexity manipulation. NIPAM-gel and Presage are options for PDD measurement. Due to different stopping power, the result of NIPAM-gel and Presage need to be corrected. This study aims to create a correction model for NIPAM-gel and Presage PDD measurement. Methods: Standard water based PDD profiles of electron 6MeV, 12MeV, and proton 90MeV were acquired. Electron PDD profile after 1cm thickness of NIPAM-gel added on the top of water was measured. Electron PDD profile with extra 1cm thickness of solid water, PTW RW3, wasmore » measured. The distance shift among standard PDD, NIPAM-gel PDD, and solid water PDD at R50% was compared and water equivalent thickness correction factor (WET) was calculated. Similar process was repeated. WETs for electron with Presage, proton with NIPAM-gel, and proton with Presage were calculated. PDD profiles of electron and proton with NIPAM-gel and Presage columns were corrected with each WET. The corrected profiles were compared with standard profiles. Results: WET for electron 12MeV with NIPAM-gel was 1.135, and 1.034 for electron 12Mev with Presage. After correction, PDD profile matched to the standard profile at the fall-off range well. The difference at R50% was 0.26mm shallower and 0.39mm deeper. The same WET was used to correct electron 6MeV profile. Energy independence of electron WET was observed. The difference at R50% was 0.17mm deeper for NIPAM-gel and 0.54mm deeper for Presage. WET for proton 90MeV with NIPAM-gel was 1.056. The difference at R50% was 0.37 deeper. Quenching effect at Bragg peak was revealed. The underestimated dose percentage at Bragg peak was 27%. Conclusion: This correction model can be used to modify PDD profile with depth error within 1mm. With this correction model, NIPAM-gel and Presage can be practical at PDD profile measurement.« less
Electron heating by intense short-pulse lasers propagating through near-critical plasmas
NASA Astrophysics Data System (ADS)
Debayle, A.; Mollica, F.; Vauzour, B.; Wan, Y.; Flacco, A.; Malka, V.; Davoine, X.; Gremillet, L.
2017-12-01
We investigate the electron heating induced by a relativistic-intensity laser pulse propagating through a near-critical plasma. Using particle-in-cell simulations, we show that a specific interaction regime sets in when, due to the energy depletion caused by the plasma wakefield, the laser front profile has steepened to the point of having a length scale close to the laser wavelength. Wave breaking and phase mixing have then occurred, giving rise to a relativistically hot electron population following the laser pulse. This hot electron flow is dense enough to neutralize the cold bulk electrons during their backward acceleration by the wakefield. This neutralization mechanism delays, but does not prevent the breaking of the wakefield: the resulting phase mixing converts the large kinetic energy of the backward-flowing electrons into thermal energy greatly exceeding the conventional ponderomotive scaling at laser intensities > {10}21 {{{W}}{cm}}-2 and gas densities around 10% of the critical density. We develop a semi-numerical model, based on the Akhiezer-Polovin equations, which correctly reproduces the particle-in-cell-predicted electron thermal energies over a broad parameter range. Given this good agreement, we propose a criterion for full laser absorption that includes field-induced ionization. Finally, we show that our predictions still hold in a two-dimensional geometry using a realistic gas profile.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.
Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M
2006-06-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry
Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.
2007-01-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900
Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr
2007-06-14
The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third and fourth energy derivatives), except for a few weak combination bands which were dominated by the anharmonic tensor contributions.
NASA Astrophysics Data System (ADS)
Daněček, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bouř, Petr
2007-06-01
The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800cm-1) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third and fourth energy derivatives), except for a few weak combination bands which were dominated by the anharmonic tensor contributions.
Mårtensson, Johan; Bailey, Michael; Venkatesh, Balasubramanian; Pilcher, David; Deane, Adam; Abdelhamid, Yasmine Ali; Crisman, Marco; Verma, Brij; MacIsaac, Christopher; Wigmore, Geoffrey; Shehabi, Yahya; Suzuki, Takafumi; French, Craig; Orford, Neil; Kakho, Nima; Prins, Johannes; Ekinci, Elif I; Bellomo, Rinaldo
2017-09-01
To determine the impact of the intensity of early correction of hyperglycaemia on outcomes in patients with diabetic ketoacidosis (DKA) admitted to the intensive care unit. We studied adult patients with DKA admitted to 171 ICUs in Australia and New Zealand from 2000 to 2013. We used their blood glucose levels (BGLs) in the first 24 hours after ICU admission to determine whether intensive early correction of hyperglycemia to ≤ 180 mg/dL was independently associated with hypoglycaemia, hypokalaemia, hypo-osmolarity or mortality, compared with partial early correction to > 180 mg/dL as recommended by DKA-specific guidelines. Among 8553 patients, intensive early correction of BGL was applied to 605 patients (7.1%). A greater proportion of these patients experienced hypoglycaemia (20.2% v 9.1%; P < 0.001) and/or hypo-osmolarity (29.4% v 22.0%; P < 0.001), but not hypokalaemia (16.7% v 15.6%; P = 0.47). Overall, 11 patients (1.8%) in the intensive correction group and 112 patients (1.4%) in the partial correction group died (P = 0.42). However, after adjustment for illness severity, partial early correction of BGL was independently associated with a lower risk of hypoglycaemia (odds ratio [OR], 0.38; 95% CI, 0.30-0.48; P < 0.001), lower risk of hypo-osmolarity (OR, 0.80; 95% CI, 0.65-0.98; P < 0.03) and lower risk of death (OR, 0.44; 95% CI, 0.22-0.86; P = 0.02). In a large cohort of patients with DKA, partial early correction of BGL according to DKA-specific guidelines, when compared with intensive early correction of BGL, was independently associated with a lower risk of hypoglycaemia, hypo-osmolarity and death.
NASA Astrophysics Data System (ADS)
Fita, L.; Romero, R.; Luque, A.; Ramis, C.
2009-08-01
The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and spatial resolution of the assimilated data also presents a case dependence. It also shows a significant sensitivity of the results of the observation nudging to the specific choice of the values of coefficient weight and vertical ratio of the ingested observations.
SU-F-T-281: Monte Carlo Investigation of Sources of Dosimetric Discrepancies with 2D Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afifi, M; Deiab, N; El-Farrash, A
2016-06-15
Purpose: Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA). Understanding the limitations and use of dosimeters to measure these dose distributions is critical to safe IMRT implementation. In this work, we used Monte Carlo simulations to investigate the possible sources of discrepancy between our measurement with 2D array system and our dose calculation using our treatment planning system (TPS). Material and Methods: MCBEAM and MCSIM Monte Carlo codes were used for treatment head simulation and phantom dose calculation. Accurate modeling of a 6MV beam from Varian trilogy machine wasmore » verified by comparing simulated and measured percentage depth doses and profiles. Dose distribution inside the 2D array was calculated using Monte Carlo simulations and our TPS. Then Cross profiles for different field sizes were compared with actual measurements for zero and 90° gantry angle setup. Through the analysis and comparison, we tried to determine the differences and quantify a possible angular calibration factor. Results: Minimum discrepancies was seen in the comparison between the simulated and the measured profiles for the zero gantry angles at all studied field sizes (4×4cm{sup 2}, 10×10cm{sup 2}, 15×15cm{sup 2}, and 20×20cm{sup 2}). Discrepancies between our measurements and calculations increased dramatically for the cross beam profiles at the 90° gantry angle. This could ascribe mainly to the different attenuation caused by the layer of electronics at the base behind the ion chambers in the 2D array. The degree of attenuation will vary depending on the angle of beam incidence. Correction factors were implemented to correct the errors. Conclusion: Monte Carlo modeling of the 2D arrays and the derivation of angular dependence correction factors will allow for improved accuracy of the device for IMRT QA.« less
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.
2015-06-01
The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.
3D Rainbow Particle Tracking Velocimetry
NASA Astrophysics Data System (ADS)
Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang
2017-11-01
A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.
High-speed transport-of-intensity phase microscopy with an electrically tunable lens.
Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand
2013-10-07
We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.
NASA Astrophysics Data System (ADS)
Gorodetskaya, Irina V.; Maahn, Maximilian; Gallée, Hubert; Kneifel, Stefan; Souverijns, Niels; Gossart, Alexandra; Crewell, Susanne; Van Lipzig, Nicole P. M.
2016-04-01
Large interannual variability has been found in surface mass balance (SMB) over the East Antarctic ice sheet coastal and escarpment zones, with the total yearly SMB strongly depending on occasional intense precipitation events. Thus for correct prediction of the ice sheet climate and SMB, climate models should be capable to represent such events. Not less importantly, models should also correctly represent the relevant mechanisms behind. The coupled land-atmosphere non-hydrostatic regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB of Dronning Maud Land (DML), East Antarctica. DML has shown a significant increase in SMB during the last years attributed to only few occasional very intense snowfall events. MAR is run at 5km horizontal resolution using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. The MAR microphysical scheme predicts the evolution of the mixing ratios of five water species: specific humidity, cloud droplets and ice crystals, raindrops and snow particles. Additional prognostic equation describes the number concentration of cloud ice crystals. The mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type. These definitions are important to determine single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into the Passive and Active Microwave radiative TRAnsfer model (PAMTRA). PAMTRA allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar reflectivity and Doppler velocity for particular precipitation events. The comparison is based on the measurements from the vertically profiling 24-GHz MRR radar operating as part of the cloud-precipitation-meteorological observatory at Princess Elisabeth (PE) base in DML escarpment zone, from 2010 through now. Preliminary results show that MAR simulates well the timing of major synoptic-scale precipitation events, while a bias exists towards higher radar reflectivities using MAR snowfall properties compared to PE MRR measurements. This bias can be related to the differences both in the amount and type of snowflakes reaching the surface. The spatial extent of precipitation also matters as PE provides only vertical profiling. PAMTRA is used to evaluate specific intense snowfall events at PE-centered grid, while MAR-simulated atmospheric fields are further analyzed for understanding the large- and meso-scale atmospheric circulation and moisture transport patterns, together with cloud properties responsible for these events. PE measurements showed that the most intense precipitation events at PE (up to 30 mm water equivalent per day) have been associated with atmospheric rivers, where enhanced tropospheric integrated water vapor amounts are concentrated in narrow long bands stretching from subtropical latitudes to the East Antarctic coast. We analyze representation of such events in MAR, including their extent, intensity, as well as time and location of where such moisture bands are reaching the Antarctic coast.
Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui
2014-09-01
Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.
An extended source for CN jets in Comet P/Halley
NASA Technical Reports Server (NTRS)
Klavetter, James Jay; A'Hearn, Michael F.
1994-01-01
We examined radial intensity profiles of CN jets in comparison with the diffuse, isotropic component of the CN coma of Comet P/Halley. All images were bias-subtracted, flat-fielded, and continuum-subtracted. We calculated the diffuse profiles by finding the azimuthal mean of the coma least contaminated by jets yielding profiles similar to those of vectorial and Haser models of simple photodissociation. We found the jet profiles by calculating a mean around a Gaussian-fitted center in r-theta space. There is an unmistakable difference between the profiles of the CN jets and the profiles of the diffuse CN. Spatial derivatives of these profiles, corrected for geometrical expansion, show that the diffuse component is consistent with a simple photodissociation process, but the jet component is not. The peak production of the jet profile occurs 6000 km from the nucleus at a heliocentric distance of 1.4 AU. Modeling of both components of the coma indicate results that are consistent with the diffuse CN photochemically produced, but the CN jets need an additional extended source. We found that about one-half of the CN in the coma of Comet P/Halley originated from the jets, the rest from the diffuse component. These features, along with the width of the jet being approximately constant, are consistent with a CHON grain origin for the jets.
Ablation algorithms and corneal asphericity in myopic correction with excimer lasers
NASA Astrophysics Data System (ADS)
Iroshnikov, Nikita G.; Larichev, Andrey V.; Yablokov, Michail G.
2007-06-01
The purpose of this work is studying a corneal asphericity change after a myopic refractive correction by mean of excimer lasers. As the ablation profile shape plays a key role in the post-op corneal asphericity, ablation profiles of recent lasers should be studied. The other task of this research was to analyze operation (LASIK) outcomes of one of the lasers with generic spherical ablation profile and to compare an asphericity change with theoretical predictions. The several correction methods, like custom generated aspherical profiles, may be utilized for mitigation of unwanted effects of asphericity change. Here we also present preliminary results of such correction for one of the excimer lasers.
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
Robust incremental compensation of the light attenuation with depth in 3D fluorescence microscopy.
Kervrann, C; Legland, D; Pardini, L
2004-06-01
Summary Fluorescent signal intensities from confocal laser scanning microscopes (CLSM) suffer from several distortions inherent to the method. Namely, layers which lie deeper within the specimen are relatively dark due to absorption and scattering of both excitation and fluorescent light, photobleaching and/or other factors. Because of these effects, a quantitative analysis of images is not always possible without correction. Under certain assumptions, the decay of intensities can be estimated and used for a partial depth intensity correction. In this paper we propose an original robust incremental method for compensating the attenuation of intensity signals. Most previous correction methods are more or less empirical and based on fitting a decreasing parametric function to the section mean intensity curve computed by summing all pixel values in each section. The fitted curve is then used for the calculation of correction factors for each section and a new compensated sections series is computed. However, these methods do not perfectly correct the images. Hence, the algorithm we propose for the automatic correction of intensities relies on robust estimation, which automatically ignores pixels where measurements deviate from the decay model. It is based on techniques adopted from the computer vision literature for image motion estimation. The resulting algorithm is used to correct volumes acquired in CLSM. An implementation of such a restoration filter is discussed and examples of successful restorations are given.
Milles, Julien; Zhu, Yue Min; Gimenez, Gérard; Guttmann, Charles R G; Magnin, Isabelle E
2007-03-01
A novel approach for correcting intensity nonuniformity in magnetic resonance imaging (MRI) is presented. This approach is based on the simultaneous use of spatial and gray-level histogram information. Spatial information about intensity nonuniformity is obtained using cubic B-spline smoothing. Gray-level histogram information of the image corrupted by intensity nonuniformity is exploited from a frequential point of view. The proposed correction method is illustrated using both physical phantom and human brain images. The results are consistent with theoretical prediction, and demonstrate a new way of dealing with intensity nonuniformity problems. They are all the more significant as the ground truth on intensity nonuniformity is unknown in clinical images.
Method of absorbance correction in a spectroscopic heating value sensor
Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John
2013-09-17
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.
Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T.
Uwano, Ikuko; Kudo, Kohsuke; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Ito, Kenji; Harada, Taisuke; Ogawa, Akira; Sasaki, Makoto
2014-02-01
To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the "New Segment" module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.
Damage Detection for Historical Architectures Based on Tls Intensity Data
NASA Astrophysics Data System (ADS)
Li, Q.; Cheng, X.
2018-04-01
TLS (Terrestrial Laser Scanner) has long been preferred in the cultural heritage field for 3D documentation of historical sites thanks to its ability to acquire the geometric information without any physical contact. Besides the geometric information, most TLS systems also record the intensity information, which is considered as an important measurement of the spectral property of the scanned surface. Recent studies have shown the potential of using intensity for damage detection. However, the original intensity is affected by scanning geometry such as range and incidence angle and other factors, thus making the results less accurate. Therefore, in this paper, we present a method to detect certain damage areas using the corrected intensity data. Firstly, two data-driven models have been developed to correct the range and incidence angle effect. Then the corrected intensity is used to generate 2D intensity images for classification. After the damage areas being detected, they are re-projected to the 3D point cloud for better visual representation and further investigation. The experiment results indicate the feasibility and validity of the corrected intensity for damage detection.
NASA Astrophysics Data System (ADS)
Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.
2009-10-01
Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.
NASA Astrophysics Data System (ADS)
Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.
2018-02-01
A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.
A possible reinterpretation of the Princeton superpipe data
NASA Astrophysics Data System (ADS)
Perry, A. E.; Hafez, S.; Chong, M. S.
2001-07-01
In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles in a boundary layer disagreed with those obtained with hot wires. The standard MacMillan (1956) correction for the probe displacement effect and a correction for turbulence intensity were both required for obtaining agreement between the two sets of mean velocity data. We were thus motivated to reanalyse the Princeton superpipe data using the same two corrections. The result is a plausible conclusion that the superpipe is rough at the higher Reynolds numbers and its data follow the Colebrook (1939) formula for commercial pipes rather well. It also appears that the logarithmic law of the wall is valid, with a Kármán constant close to that found recently by Österlund (1999) from boundary layer measurements with a hot wire. The smooth regime in the pipe gave almost the same additive constant for the log-law as Österlund's. A comparison between the superpipe data and the pipe data of Perry, Henbest & Chong (1997) suggests that the conventional velocity defect law may be valid down to lower Reynolds numbers than concluded by Zagarola & Smits (1998).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuxuan; Martin, William; Williams, Mark
In this paper, a correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi–one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNPmore » results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. Finally, the new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense.« less
NASA Astrophysics Data System (ADS)
Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.
2017-09-01
This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Ahmed A., E-mail: asaleh@uow.edu.au
Even with the use of X-ray polycapillary lenses, sample tilting during pole figure measurement results in a decrease in the recorded X-ray intensity. The magnitude of this error is affected by the sample size and/or the finite detector size. These errors can be typically corrected by measuring the intensity loss as a function of the tilt angle using a texture-free reference sample (ideally made of the same alloy as the investigated material). Since texture-free reference samples are not readily available for all alloys, the present study employs an empirical procedure to estimate the correction curve for a particular experimental configuration.more » It involves the use of real texture-free reference samples that pre-exist in any X-ray diffraction laboratory to first establish the empirical correlations between X-ray intensity, sample tilt and their Bragg angles and thereafter generate correction curves for any Bragg angle. It will be shown that the empirically corrected textures are in very good agreement with the experimentally corrected ones. - Highlights: •Sample tilting during X-ray pole figure measurement leads to intensity loss errors. •Texture-free reference samples are typically used to correct the pole figures. •An empirical correction procedure is proposed in the absence of reference samples. •The procedure relies on reference samples that pre-exist in any texture laboratory. •Experimentally and empirically corrected textures are in very good agreement.« less
Optical design with Wood lenses
NASA Astrophysics Data System (ADS)
Caldwell, J. Brian
1991-01-01
Spherical aberration in a flat surfaced radial gradient-index lens (a Wood lens) with a parabolic index profile can be corrected by altering the profile to Include higher order terms. However this results in a large amowfl of third order coma. This paper presents an alternative method of aberration correction similar to that used in the catadiopthc Schmidtsystem. A Wood lens with a parabolic profile is used to provide all or most of the optical power. Coma is corrected by stop shifting and Spherical aberration is corrected by placing a powerless Wood lens corrector plate at the stop. 1.
Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere.
Banakh, Victor A; Marakasov, Dimitrii A
2007-10-01
Reconstruction of the wind profile from the statistics of intensity fluctuations of an optical beam propagating in a turbulent atmosphere is considered. The equations for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of a Gaussian beam are obtained. The algorithms of wind profile retrieval from the spatiotemporal intensity spectrum are described and the results of end-to-end computer experiments on wind profiling based on the developed algorithms are presented. It is shown that the developed algorithms allow retrieval of the wind profile from the turbulent optical beam intensity fluctuations with acceptable accuracy in many practically feasible laser measurements set up in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serpa, L.F.; Cook, K.L.
Aeromagnetic and gravity surveys were conducted during 1978 in the Black Rock Desert, Utah over an area of about 2400 km/sup 2/ between the north-trending Pavant and Cricket Mountains. The surveys assisted in evaluating the geothermal resources in the Meadow-Hatton Known Geothermal Resource Area (KGRA) and vicinity by delineating geophysical characteristics of the subsurface. The gravity measurements from approximately 700 new stations were reduced to complete Bouguer gravity anomaly values with the aid of a computerized terrain-correction program and contoured at an interval of 1 milligal. The aeromagnetic survey was drape flown at an altitude of 305 m (1000 ft)more » and a total intensity residual aeromagnetic map with a contour interval of 20 gammas was produced. Two gravity and aeromagnetic east-west profiles and one north-south profile were modeled using a simultaneous 2 1/2-dimensional modeling technique to provide a single model satisfying both types of geophysical data.« less
X-ray metrology and performance of a 45-cm long x-ray deformable mirror
Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; ...
2016-05-20
We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less
X-ray metrology and performance of a 45-cm long x-ray deformable mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyneer, Lisa A., E-mail: poyneer1@llnl.gov; Brejnholt, Nicolai F.; Hill, Randall
2016-05-15
We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less
Comparative study of quantitative phase imaging techniques for refractometry of optical fibers
NASA Astrophysics Data System (ADS)
de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre
2018-02-01
The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.
Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes
NASA Astrophysics Data System (ADS)
Darzi, Milad; Park, Chanwoo
2017-05-01
Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.
Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.
Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M
2010-11-08
In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.
CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction
Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.
2012-01-01
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons. PMID:23032638
Mantini, Dante; Petrucci, Francesca; Del Boccio, Piero; Pieragostino, Damiana; Di Nicola, Marta; Lugaresi, Alessandra; Federici, Giorgio; Sacchetta, Paolo; Di Ilio, Carmine; Urbani, Andrea
2008-01-01
Independent component analysis (ICA) is a signal processing technique that can be utilized to recover independent signals from a set of their linear mixtures. We propose ICA for the analysis of signals obtained from large proteomics investigations such as clinical multi-subject studies based on MALDI-TOF MS profiling. The method is validated on simulated and experimental data for demonstrating its capability of correctly extracting protein profiles from MALDI-TOF mass spectra. The comparison on peak detection with an open-source and two commercial methods shows its superior reliability in reducing the false discovery rate of protein peak masses. Moreover, the integration of ICA and statistical tests for detecting the differences in peak intensities between experimental groups allows to identify protein peaks that could be indicators of a diseased state. This data-driven approach demonstrates to be a promising tool for biomarker-discovery studies based on MALDI-TOF MS technology. The MATLAB implementation of the method described in the article and both simulated and experimental data are freely available at http://www.unich.it/proteomica/bioinf/.
Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc
2015-10-01
Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa
2005-12-15
A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
Verwer, P E B; van Leeuwen, W B; Girard, V; Monnin, V; van Belkum, A; Staab, J F; Verbrugh, H A; Bakker-Woudenberg, I A J M; van de Sande, W W J
2014-02-01
In 2005, a new sibling species of Aspergillus fumigatus was discovered: Aspergillus lentulus. Both species can cause invasive fungal disease in immune-compromised patients. The species are morphologically very similar. Current techniques for identification are PCR-based or morphology-based. These techniques are labour-intense and not sufficiently discriminatory. Since A. lentulus is less susceptible to several antifungal agents, it is important to correctly identify the causative infectious agent in order to optimize antifungal therapy. In this study we determined whether Raman spectroscopy and/or MALDI-TOF MS were able to differentiate between A. lentulus and A. fumigatus. For 16 isolates of A. lentulus and 16 isolates of A. fumigatus, Raman spectra and peptide profiles were obtained using the Spectracell and MALDI-TOF MS (VITEK MS RUO, bioMérieux) respectively. In order to obtain reliable Raman spectra for A. fumigatus and A. lentulus, the culture medium needed to be adjusted to obtain colourless conidia. Only Raman spectra obtained from colourless conidia were reproducible and correctly identified 25 out of 32 (78 %) of the Aspergillus strains. For VITEK MS RUO, no medium adjustments were necessary. Pigmented conidia resulted in reproducible peptide profiles as well in this case. VITEK MS RUO correctly identified 100 % of the Aspergillus isolates, within a timeframe of approximately 54 h including culture. Of the two techniques studied here, VITEK MS RUO was superior to Raman spectroscopy in the discrimination of A. lentulus from A. fumigatus. VITEK MS RUO seems to be a successful technique in the daily identification of Aspergillus spp. within a limited timeframe.
Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Herman, Dave J.; James, Mark A.
2003-01-01
Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).
NASA Astrophysics Data System (ADS)
Nagib, Hassan; Vinuesa, Ricardo
2013-11-01
Ability of available Pitot tube corrections to provide accurate mean velocity profiles in ZPG boundary layers is re-examined following the recent work by Bailey et al. Measurements by Bailey et al., carried out with probes of diameters ranging from 0.2 to 1.89 mm, together with new data taken with larger diameters up to 12.82 mm, show deviations with respect to available high-quality datasets and hot-wire measurements in the same Reynolds number range. These deviations are significant in the buffer region around y+ = 30 - 40 , and lead to disagreement in the von Kármán coefficient κ extracted from profiles. New forms for shear, near-wall and turbulence corrections are proposed, highlighting the importance of the latest one. Improved agreement in mean velocity profiles is obtained with new forms, where shear and near-wall corrections contribute with around 85%, and remaining 15% of the total correction comes from turbulence correction. Finally, available algorithms to correct wall position in profile measurements of wall-bounded flows are tested, using as benchmark the corrected Pitot measurements with artificially simulated probe shifts and blockage effects. We develop a new scheme, κB - Musker, which is able to accurately locate wall position.
Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling.
Amorello, Diana; Orecchio, Santino; Pace, Andrea; Barreca, Salvatore
2016-09-01
Twenty-one almond samples from three different geographical origins (Sicily, Spain and California) were investigated by determining minerals and fatty acids compositions. Data were used to discriminate by chemometry almond origin by linear discriminant analysis. With respect to previous PCA profiling studies, this work provides a simpler analytical protocol for the identification of almonds geographical origin. Classification by using mineral contents data only was correct in 77% of the samples, while, by using fatty acid profiles, the percentages of samples correctly classified reached 82%. The coupling of mineral contents and fatty acid profiles lead to an increased efficiency of the classification with 87% of samples correctly classified.
Time-dependent modulation of galactic cosmic rays by merged interaction regions
NASA Technical Reports Server (NTRS)
Perko, J. S.
1993-01-01
Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner heliosphere this model accounts for the delay experienced by lower-rigidity protons in reaching their time-intensity peak. The actual delays in this model, however, are somewhat smaller than the data. In the outer heliosphere the models sees no delays, and the data are ambiguous as to their existence. It appears that strong magnetic field compression regions (merged interaction regions) that are 3-4 times the average field strength can, at least in a helioequatorial band, disrupt effects, such as drifts, that could dominate in quieter magnetic fields. The question remains: Is the heliosphere ever quiet enough to allow such effects to be unambiguously measured, at least in the midlatitudes?
Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.
2013-01-01
Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307
Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori
2012-04-18
It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.
Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi
2015-10-01
We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.
Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye
NASA Astrophysics Data System (ADS)
Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.
1995-08-01
In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.
Cao, Yanpeng; Tisse, Christel-Loic
2013-09-01
In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.
Toxic effects of electrolyte and trace mineral administration in the intensive care unit.
Besunder, J B; Smith, P G
1991-07-01
Electrolytes and trace minerals are administered routinely to ICU patients to correct deficiencies or as specific therapy for various conditions. Complications are usually related to the rate of infusion, rapidity of correction of a deficiency state, or iatrogenic poisoning with the agent. Adverse effects associated with Na+ administration included volume overload, CPM, and central nervous system bleeds. The toxic effects of K+, Ca2+, and Mg2+ are primarily related to their effects on the myocardium, nervous system, and muscle. Other than precipitating or maintaining a metabolic acidosis, Cl- administration is relatively nontoxic. Its accompanying anion (i.e., ammonium or arginine), however, may contribute significantly to patient morbidity and, possibly, mortality. Side effects observed with phosphate administration include hypocalcemia, metastatic calcification, and hypernatremia or hyperkalemia. Most of these toxicities are avoidable if appropriate precautions are taken and appropriate monitoring implemented. Finally, when administering any of these agents, the intensivist should be familiar with their toxicologic profiles and management of potential complications.
NASA Astrophysics Data System (ADS)
Alves, Julio Cesar L.; Poppi, Ronei J.
2013-02-01
This paper reports the application of piecewise direct standardization (PDS) for matrix correction in front face fluorescence spectroscopy of solids when different excipients are used in a pharmaceutical preparation based on a mixture of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine. As verified in earlier studies, the use of different excipients and their ratio can cause a displacement, change in fluorescence intensity or band profile. To overcome this important drawback, a standardization strategy was adopted to convert all the excitation-emission fluorescence spectra into those used for model development. An excitation-emission matrix (EEM) for which excitation and emission wavelengths ranging from 265 to 405 nm and 300 to 480 nm, respectively, was used. Excellent results were obtained using unfolded partial least squares (U-PLS), with RMSEP values of 8.2 mg/g, 10.9 mg/g and 2.7 mg/g for ASA, paracetamol and caffeine, respectively, and with relative errors lesser than 5% for the three analytes.
NASA Astrophysics Data System (ADS)
Fang, L.
2014-12-01
The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.
Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael
2009-01-01
An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This technique could have important implications in the field of High Intensity Focused Ultrasound even in complex configurations such as transcranial, transcostal or deep seated organs. PMID:19942526
Pappas, E; Maris, T G; Papadakis, A; Zacharopoulou, F; Damilakis, J; Papanikolaou, N; Gourtsoyiannis, N
2006-10-01
The aim of this work is to investigate experimentally the detector size effect on narrow beam profile measurements. Polymer gel and magnetic resonance imaging dosimetry was used for this purpose. Profile measurements (Pm(s)) of a 5 mm diameter 6 MV stereotactic beam were performed using polymer gels. Eight measurements of the profile of this narrow beam were performed using correspondingly eight different detector sizes. This was achieved using high spatial resolution (0.25 mm) two-dimensional measurements and eight different signal integration volumes A X A X slice thickness, simulating detectors of different size. "A" ranged from 0.25 to 7.5 mm, representing the detector size. The gel-derived profiles exhibited increased penumbra width with increasing detector size, for sizes >0.5 mm. By extrapolating the gel-derived profiles to zero detector size, the true profile (Pt) of the studied beam was derived. The same polymer gel data were also used to simulate a small-volume ion chamber profile measurement of the same beam, in terms of volume averaging. The comparison between these results and actual corresponding small-volume chamber profile measurements performed in this study, reveal that the penumbra broadening caused by both volume averaging and electron transport alterations (present in actual ion chamber profile measurements) is a lot more intense than that resulted by volume averaging effects alone (present in gel-derived profiles simulating ion chamber profile measurements). Therefore, not only the detector size, but also its composition and tissue equivalency is proved to be an important factor for correct narrow beam profile measurements. Additionally, the convolution kernels related to each detector size and to the air ion chamber were calculated using the corresponding profile measurements (Pm(s)), the gel-derived true profile (Pt), and convolution theory. The response kernels of any desired detector can be derived, allowing the elimination of the errors associated with narrow beam profile measurements.
NASA Astrophysics Data System (ADS)
Carrea, Dario; Abellan, Antonio; Humair, Florian; Matasci, Battista; Derron, Marc-Henri; Jaboyedoff, Michel
2016-03-01
Ground-based LiDAR has been traditionally used for surveying purposes via 3D point clouds. In addition to XYZ coordinates, an intensity value is also recorded by LiDAR devices. The intensity of the backscattered signal can be a significant source of information for various applications in geosciences. Previous attempts to account for the scattering of the laser signal are usually modelled using a perfect diffuse reflection. Nevertheless, experience on natural outcrops shows that rock surfaces do not behave as perfect diffuse reflectors. The geometry (or relief) of the scanned surfaces plays a major role in the recorded intensity values. Our study proposes a new terrestrial LiDAR intensity correction, which takes into consideration the range, the incidence angle and the geometry of the scanned surfaces. The proposed correction equation combines the classical radar equation for LiDAR with the bidirectional reflectance distribution function of the Oren-Nayar model. It is based on the idea that the surface geometry can be modelled by a relief of multiple micro-facets. This model is constrained by only one tuning parameter: the standard deviation of the slope angle distribution (σslope) of micro-facets. Firstly, a series of tests have been carried out in laboratory conditions on a 2 m2 board covered by black/white matte paper (perfect diffuse reflector) and scanned at different ranges and incidence angles. Secondly, other tests were carried out on rock blocks of different lithologies and surface conditions. Those tests demonstrated that the non-perfect diffuse reflectance of rock surfaces can be practically handled by the proposed correction method. Finally, the intensity correction method was applied to a real case study, with two scans of the carbonate rock outcrop of the Dents-du-Midi (Swiss Alps), to improve the lithological identification for geological mapping purposes. After correction, the intensity values are proportional to the intrinsic material reflectance and are independent from range, incidence angle and scanned surface geometry. The corrected intensity values significantly improve the material differentiation.
Quality Controlled Radiosonde Profile from MC3E
Toto, Tami; Jensen, Michael
2014-11-13
The sonde-adjust VAP produces data that corrects documented biases in radiosonde humidity measurements. Unique fields contained within this datastream include smoothed original relative humidity, dry bias corrected relative humidity, and final corrected relative humidity. The smoothed RH field refines the relative humidity from integers - the resolution of the instrument - to fractions of a percent. This profile is then used to calculate the dry bias corrected field. The final correction fixes a time-lag problem and uses the dry-bias field as input into the algorithm. In addition to dry bias, solar heating is another correction that is encompassed in the final corrected relative humidity field. Additional corrections were made to soundings at the extended facility sites (S0*) as necessary: Corrected erroneous surface elevation (and up through rest of height of sounding), for S03, S04 and S05. Corrected erroneous surface pressure at Chanute (S02).
NASA Astrophysics Data System (ADS)
Tripathi, Markandey M.; Tshikudi, Diane M.; Hajjarian, Zeinab; Van Cott, Elizabeth M.; Nadkarni, Seemantini K.
2016-02-01
Impaired blood coagulation is often associated with increased postoperative mortality and morbidity in cardiovascular patients. The capability for blood coagulation profiling rapidly at the bedside will enable the timely detection of coagulation defects and open the opportunity for tailoring therapy to correct specific coagulation deficits Optical Thromboelastography (OTEG), is an optical approach to quantify blood coagulation status within minutes using a few drops of whole blood. The goal of the current study is to evaluate the diagnostic accuracy of OTEG for rapid coagulation profiling in patients. In OTEG, temporal laser speckle intensity fluctuations from a drop of clotting blood are measured using a CMOS camera. To quantify coagulation status, the speckle intensity autocorrelation function is measured, the mean square displacement of scattering particles is extracted, and viscoelastic modulus (G), during coagulation is measured via the generalized Stokes-Einstein relation. By quantifying time-resolved changes in G, the coagulation parameters, reaction time (R), clot progression time (K), clot progression rate (Angle), and maximum clot strength (MA) are derived. In this study, the above coagulation parameters were measured using OTEG in 269 patients and compared with standard mechanical Thromboelastography (TEG). Our results showed a strong correlation between OTEG and TEG measurements for all parameters: R-time (R=0.80, p<0.001), clotting time (R=0.78, p<0.001), Angle (R=0.58, p<0.001), and MA (R=0.60, p<0.001). These results demonstrate the unique capability of OTEG for rapid quantification of blood coagulation status to potentially improve clinical capability for identifying impaired coagulation in cardiovascular patients at the point of care.
A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope
NASA Astrophysics Data System (ADS)
Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.
2016-10-01
Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Duvall, T. L., Jr.
1991-01-01
A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.
Measuring and correcting wobble in large-scale transmission radiography.
Rogers, Thomas W; Ollier, James; Morton, Edward J; Griffin, Lewis D
2017-01-01
Large-scale transmission radiography scanners are used to image vehicles and cargo containers. Acquired images are inspected for threats by a human operator or a computer algorithm. To make accurate detections, it is important that image values are precise. However, due to the scale (∼5 m tall) of such systems, they can be mechanically unstable, causing the imaging array to wobble during a scan. This leads to an effective loss of precision in the captured image. We consider the measurement of wobble and amelioration of the consequent loss of image precision. Following our previous work, we use Beam Position Detectors (BPDs) to measure the cross-sectional profile of the X-ray beam, allowing for estimation, and thus correction, of wobble. We propose: (i) a model of image formation with a wobbling detector array; (ii) a method of wobble correction derived from this model; (iii) methods for calibrating sensor sensitivities and relative offsets; (iv) a Random Regression Forest based method for instantaneous estimation of detector wobble; and (v) using these estimates to apply corrections to captured images of difficult scenes. We show that these methods are able to correct for 87% of image error due wobble, and when applied to difficult images, a significant visible improvement in the intensity-windowed image quality is observed. The method improves the precision of wobble affected images, which should help improve detection of threats and the identification of different materials in the image.
Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...
2016-04-22
Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less
Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes
Nord, G.L.
1982-01-01
Analytical scanning transmission electron microscopy has been successfully used to characterize the structure and composition of lamellar exsolution products in pyroxenes. At operating voltages of 100 and 200 keV, microanalytical techniques of x-ray energy analysis, convergent-beam electron diffraction, and lattice imaging have been used to chemically and structurally characterize exsolution lamellae only a few unit cells wide. Quantitative X-ray energy analysis using ratios of peak intensities has been adopted for the U.S. Geological Survey AEM in order to study the compositions of exsolved phases and changes in compositional profiles as a function of time and temperature. The quantitative analysis procedure involves 1) removal of instrument-induced background, 2) reduction of contamination, and 3) measurement of correction factors obtained from a wide range of standard compositions. The peak-ratio technique requires that the specimen thickness at the point of analysis be thin enough to make absorption corrections unnecessary (i.e., to satisfy the "thin-foil criteria"). In pyroxenes, the calculated "maximum thicknesses" range from 130 to 1400 nm for the ratios Mg/Si, Fe/Si, and Ca/Si; these "maximum thicknesses" have been contoured in pyroxene composition space as a guide during analysis. Analytical spatial resolutions of 50-100 nm have been achieved in AEM at 200 keV from the composition-profile studies, and analytical reproducibility in AEM from homogeneous pyroxene standards is ?? 1.5 mol% endmember. ?? 1982.
Roper, Ian P E; Besley, Nicholas A
2016-03-21
The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.
Engineering the on-axis intensity of Bessel beam by a feedback tuning loop
NASA Astrophysics Data System (ADS)
Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong
2018-02-01
The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.
Correction of aeroheating-induced intensity nonuniformity in infrared images
NASA Astrophysics Data System (ADS)
Liu, Li; Yan, Luxin; Zhao, Hui; Dai, Xiaobing; Zhang, Tianxu
2016-05-01
Aeroheating-induced intensity nonuniformity effects severely influence the effective performance of an infrared (IR) imaging system in high-speed flight. In this paper, we propose a new approach to the correction of intensity nonuniformity in IR images. The basic assumption is that the low-frequency intensity bias is additive and smoothly varying so that it can be modeled as a bivariate polynomial and estimated by using an isotropic total variation (TV) model. A half quadratic penalty method is applied to the isotropic form of TV discretization. And an alternating minimization algorithm is adopted for solving the optimization model. The experimental results of simulated and real aerothermal images show that the proposed correction method can effectively improve IR image quality.
22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz
NASA Astrophysics Data System (ADS)
Clady, R.; Azamoum, Y.; Charmasson, L.; Ferré, A.; Utéza, O.; Sentis, M.
2018-05-01
We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics ( f/4.5).
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon
NASA Astrophysics Data System (ADS)
Kumar, Shailendra
2017-08-01
The present study explores the properties of precipitating shallow echoes (PSEs) over the tropical areas (30°S-30°N) during Indian summer monsoon season using attenuated corrected radar reflectivity factor (Ze) measured by the Tropical Rainfall Measuring Mission satellite. Radar echoes observed in study are less than the freezing height, so they belong to warm precipitation. Radar echoes with at least 0.75 km wide are considered for finding the shallow echoes climatology. Western Ghats and adjoining ocean (Arabian sea) have the highest PSEs followed by Myanmar and Burma coast, whereas the overall west coast of Latin America consists of the lowest PSEs. Tropical oceanic areas contain fewer PSEs compared to coastal areas. Average vertical profiles show nearly similar Ze characteristics which peaks between 1.5 and 2 km altitude with model value 32-34 dBZ. Slope of Ze is higher for intense PSEs as radar reflectivity decreases more rapidly in intense PSEs.
Robb, Paul D; Craven, Alan J
2008-12-01
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.
WE-G-18C-05: Characterization of Cross-Vendor, Cross-Field Strength MR Image Intensity Variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulson, E; Prah, D
2014-06-15
Purpose: Variations in MR image intensity and image intensity nonuniformity (IINU) can challenge the accuracy of intensity-based image segmentation and registration algorithms commonly applied in radiotherapy. The goal of this work was to characterize MR image intensity variations across scanner vendors and field strengths commonly used in radiotherapy. Methods: ACR-MRI phantom images were acquired at 1.5T and 3.0T on GE (450w and 750, 23.1), Siemens (Espree and Verio, VB17B), and Philips (Ingenia, 4.1.3) scanners using commercial spin-echo sequences with matched parameters (TE/TR: 20/500 ms, rBW: 62.5 kHz, TH/skip: 5/5mm). Two radiofrequency (RF) coil combinations were used for each scanner: bodymore » coil alone, and combined body and phased-array head coils. Vendorspecific B1- corrections (PURE/Pre-Scan Normalize/CLEAR) were applied in all head coil cases. Images were transferred offline, corrected for IINU using the MNI N3 algorithm, and normalized. Coefficients of variation (CV=σ/μ) and peak image uniformity (PIU = 1−(Smax−Smin)/(Smax+Smin)) estimates were calculated for one homogeneous phantom slice. Kruskal-Wallis and Wilcoxon matched-pairs tests compared mean MR signal intensities and differences between original and N3 image CV and PIU. Results: Wide variations in both MR image intensity and IINU were observed across scanner vendors, field strengths, and RF coil configurations. Applying the MNI N3 correction for IINU resulted in significant improvements in both CV and PIU (p=0.0115, p=0.0235). However, wide variations in overall image intensity persisted, requiring image normalization to improve consistency across vendors, field strengths, and RF coils. These results indicate that B1- correction routines alone may be insufficient in compensating for IINU and image scaling, warranting additional corrections prior to use of MR images in radiotherapy. Conclusions: MR image intensities and IINU vary as a function of scanner vendor, field strength, and RF coil configuration. A two-step strategy consisting of MNI N3 correction followed by normalization was required to improve MR image consistency. Funding provided by Advancing a Healthier Wisconsin.« less
An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.
2009-10-01
This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.
NASA Astrophysics Data System (ADS)
Borlaff, Alejandro; Eliche-Moral, M. Carmen; Beckman, John E.; Ciambur, Bogdan C.; Pérez-González, Pablo G.; Barro, Guillermo; Cava, Antonio; Cardiel, Nicolas
2017-08-01
Context. The controversy about the origin of the structure of early-type S0-E/S0 galaxies may be due to the difficulty of comparing surface brightness profiles with different depths, photometric corrections and point spread function (PSF) effects (which are almost always ignored). Aims: We aim to quantify the properties of Type-III (anti-truncated) discs in a sample of S0 galaxies at 0.2
Killoren, Sarah E.; De Jesús, Sue A. Rodríguez; Updegraff, Kimberly A.; Wheeler, Lorey A.
2015-01-01
We examined profiles of sibling relationship qualities in 246 Mexican-origin families living in the United States using latent profile analyses. Three profiles were identified: Positive, Negative and Affect-Intense. Links between profiles and youths’ familism values and adjustment were assessed using longitudinal data. Siblings in the Positive profile reported the highest familism values, followed by siblings in the Affect-Intense profile and, finally, siblings in the Negative profile. Older siblings in the Positive and Affect-Intense profiles reported fewer depressive symptoms than siblings in the Negative profile. Further, in the Positive and Negative profiles, older siblings reported less involvement in risky behaviors than younger siblings. In the Negative profile, younger siblings reported greater sexual risk behaviors in late adolescence than older siblings; siblings in opposite-sex dyads, as compared to same-sex dyads, engaged in riskier sexual behaviors. Our findings highlight sibling relationship quality as promotive and risky, depending on sibling characteristics and adjustment outcomes. PMID:28239217
Killoren, Sarah E; De Jesús, Sue A Rodríguez; Updegraff, Kimberly A; Wheeler, Lorey A
2017-03-01
We examined profiles of sibling relationship qualities in 246 Mexican-origin families living in the United States using latent profile analyses. Three profiles were identified: Positive , Negative and Affect-Intense . Links between profiles and youths' familism values and adjustment were assessed using longitudinal data. Siblings in the Positive profile reported the highest familism values, followed by siblings in the Affect-Intense profile and, finally, siblings in the Negative profile. Older siblings in the Positive and Affect-Intense profiles reported fewer depressive symptoms than siblings in the Negative profile. Further, in the Positive and Negative profiles, older siblings reported less involvement in risky behaviors than younger siblings. In the Negative profile, younger siblings reported greater sexual risk behaviors in late adolescence than older siblings; siblings in opposite-sex dyads, as compared to same-sex dyads, engaged in riskier sexual behaviors. Our findings highlight sibling relationship quality as promotive and risky, depending on sibling characteristics and adjustment outcomes.
Producing superfluid circulation states using phase imprinting
NASA Astrophysics Data System (ADS)
Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène
2018-04-01
We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, D; Gach, H; Li, H
Purpose: The daily treatment MRIs acquired on MR-IGRT systems, like diagnostic MRIs, suffer from intensity inhomogeneity issue, associated with B1 and B0 inhomogeneities. An improved homomorphic unsharp mask (HUM) filtering method, automatic and robust body segmentation, and imaging field-of-view (FOV) detection methods were developed to compute the multiplicative slow-varying correction field and correct the intensity inhomogeneity. The goal is to improve and normalize the voxel intensity so that the images could be processed more accurately by quantitative methods (e.g., segmentation and registration) that require consistent image voxel intensity values. Methods: HUM methods have been widely used for years. A bodymore » mask is required, otherwise the body surface in the corrected image would be incorrectly bright due to the sudden intensity transition at the body surface. In this study, we developed an improved HUM-based correction method that includes three main components: 1) Robust body segmentation on the normalized image gradient map, 2) Robust FOV detection (needed for body segmentation) using region growing and morphologic filters, and 3) An effective implementation of HUM using repeated Gaussian convolution. Results: The proposed method was successfully tested on patient images of common anatomical sites (H/N, lung, abdomen and pelvis). Initial qualitative comparisons showed that this improved HUM method outperformed three recently published algorithms (FCM, LEMS, MICO) in both computation speed (by 50+ times) and robustness (in intermediate to severe inhomogeneity situations). Currently implemented in MATLAB, it takes 20 to 25 seconds to process a 3D MRI volume. Conclusion: Compared to more sophisticated MRI inhomogeneity correction algorithms, the improved HUM method is simple and effective. The inhomogeneity correction, body mask, and FOV detection methods developed in this study would be useful as preprocessing tools for many MRI-related research and clinical applications in radiotherapy. Authors have received research grants from ViewRay and Varian.« less
NASA Astrophysics Data System (ADS)
De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe
2017-02-01
From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity difference to the physical characteristics of the real disturbance thus contributing to improve the empirical model proposed for the correction of data.[Figure not available: see fulltext.
Intensity inhomogeneity correction of SD-OCT data using macular flatspace.
Lang, Andrew; Carass, Aaron; Jedynak, Bruno M; Solomon, Sharon D; Calabresi, Peter A; Prince, Jerry L
2018-01-01
Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.
Wegener, Sonja; Sauer, Otto A
2018-02-01
Different detector properties will heavily affect the results of off-axis measurements outside of radiation fields, where a different energy spectrum is encountered. While a diode detector would show a high spatial resolution, it contains high atomic number elements, which lead to perturbations and energy-dependent response. An ionization chamber, on the other hand, has a much smaller energy dependence, but shows dose averaging over its larger active volume. We suggest a way to obtain spatial energy response corrections of a detector independent of its volume effect for profiles of arbitrary fields by using a combination of two detectors. Measurements were performed at an Elekta Versa HD accelerator equipped with an Agility MLC. Dose profiles of fields between 10 × 4 cm² and 0.6 × 0.6 cm² were recorded several times, first with different small-field detectors (unshielded diode 60012 and stereotactic field detector SFD, microDiamond, EDGE, and PinPoint 31006) and then with a larger volume ionization chamber Semiflex 31010 for different photon beam qualities of 6, 10, and 18 MV. Correction factors for the small-field detectors were obtained from the readings of the respective detector and the ionization chamber using a convolution method. Selected profiles were also recorded on film to enable a comparison. After applying the correction factors to the profiles measured with different detectors, agreement between the detectors and with profiles measured on EBT3 film was improved considerably. Differences in the full width half maximum obtained with the detectors and the film typically decreased by a factor of two. Off-axis correction factors outside of a 10 × 1 cm² field ranged from about 1.3 for the EDGE diode about 10 mm from the field edge to 0.7 for the PinPoint 31006 25 mm from the field edge. The microDiamond required corrections comparable in size to the Si-diodes and even exceeded the values in the tail region of the field. The SFD was found to require the smallest correction. The corrections typically became larger for higher energies and for smaller field sizes. With a combination of two detectors, experimentally derived correction factors can be obtained. Application of those factors leads to improved agreement between the measured profiles and those recorded on EBT3 film. The results also complement so far only Monte Carlo-simulated values for the off-axis response of different detectors. © 2017 American Association of Physicists in Medicine.
Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle
2018-01-01
Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.
Point spread function based classification of regions for linear digital tomosynthesis
NASA Astrophysics Data System (ADS)
Israni, Kenny; Avinash, Gopal; Li, Baojun
2007-03-01
In digital tomosynthesis, one of the limitations is the presence of out-of-plane blur due to the limited angle acquisition. The point spread function (PSF) characterizes blur in the imaging volume, and is shift-variant in tomosynthesis. The purpose of this research is to classify the tomosynthesis imaging volume into four different categories based on PSF-driven focus criteria. We considered linear tomosynthesis geometry and simple back projection algorithm for reconstruction. The three-dimensional PSF at every pixel in the imaging volume was determined. Intensity profiles were computed for every pixel by integrating the PSF-weighted intensities contained within the line segment defined by the PSF, at each slice. Classification rules based on these intensity profiles were used to categorize image regions. At background and low-frequency pixels, the derived intensity profiles were flat curves with relatively low and high maximum intensities respectively. At in-focus pixels, the maximum intensity of the profiles coincided with the PSF-weighted intensity of the pixel. At out-of-focus pixels, the PSF-weighted intensity of the pixel was always less than the maximum intensity of the profile. We validated our method using human observer classified regions as gold standard. Based on the computed and manual classifications, the mean sensitivity and specificity of the algorithm were 77+/-8.44% and 91+/-4.13% respectively (t=-0.64, p=0.56, DF=4). Such a classification algorithm may assist in mitigating out-of-focus blur from tomosynthesis image slices.
The Interplanetary Transport Effects on the Fe/O Ratio of Large Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Qin, G.; Wang, Y.
2016-12-01
Mason and coauthors in 2006 invested the intensities of O and Fe in large western solar energetic particle (SEP) events observed by ACE spacecraft. It was found that the Fe/O ratio decreases with time at the same kinetic energy per nucleon during the rising phase of time-intensity profile, and the Fe/O ratio gradually becomes a constant during the decay phase of intensity. However, if the O intensity is compared at a higher kinetic energy with the Fe intensity, the behaviors of intensity profiles of O and Fe are similar. So they concluded that for such kind of events the injection profiles of Fe and O are similar near the Sun, and that scattering effects dominates. With numerical simulations, we find that in order to get such kind of SEPs behavior, Fe and O have to have similar injection profiles near the Sun, and similar diffusion and adiabatic cooling processes in the interplanetary space.
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2018-02-01
Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.
NASA Astrophysics Data System (ADS)
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2018-02-01
Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.
Error correcting coding-theory for structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-06-01
Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.
Thonusin, Chanisa; IglayReger, Heidi B; Soni, Tanu; Rothberg, Amy E; Burant, Charles F; Evans, Charles R
2017-11-10
In recent years, mass spectrometry-based metabolomics has increasingly been applied to large-scale epidemiological studies of human subjects. However, the successful use of metabolomics in this context is subject to the challenge of detecting biologically significant effects despite substantial intensity drift that often occurs when data are acquired over a long period or in multiple batches. Numerous computational strategies and software tools have been developed to aid in correcting for intensity drift in metabolomics data, but most of these techniques are implemented using command-line driven software and custom scripts which are not accessible to all end users of metabolomics data. Further, it has not yet become routine practice to assess the quantitative accuracy of drift correction against techniques which enable true absolute quantitation such as isotope dilution mass spectrometry. We developed an Excel-based tool, MetaboDrift, to visually evaluate and correct for intensity drift in a multi-batch liquid chromatography - mass spectrometry (LC-MS) metabolomics dataset. The tool enables drift correction based on either quality control (QC) samples analyzed throughout the batches or using QC-sample independent methods. We applied MetaboDrift to an original set of clinical metabolomics data from a mixed-meal tolerance test (MMTT). The performance of the method was evaluated for multiple classes of metabolites by comparison with normalization using isotope-labeled internal standards. QC sample-based intensity drift correction significantly improved correlation with IS-normalized data, and resulted in detection of additional metabolites with significant physiological response to the MMTT. The relative merits of different QC-sample curve fitting strategies are discussed in the context of batch size and drift pattern complexity. Our drift correction tool offers a practical, simplified approach to drift correction and batch combination in large metabolomics studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen
2009-06-01
At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by transmit B(1) heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T(1) contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio.
Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen
2009-01-01
At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by Transmit B1 heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T1 contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio. PMID:19233292
NASA Astrophysics Data System (ADS)
Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda
2017-10-01
The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.
Utility of CrIS/ATMS profiles to diagnose extratropical transition
NASA Astrophysics Data System (ADS)
Berndt, Emily; Folmer, Michael
2018-03-01
Anticipating changes in hurricane intensity can be challenging in data sparse regions of the North Atlantic Ocean. Hyperspectral infrared retrieved profiles have the potential to provide a wealth of information about the vertical structure of thermodynamic characteristics of the atmosphere such as temperature and moisture which can impact hurricane intensity. Increased forecaster situational awareness and identification of moist or dry layers in the near-storm environment can indicate impending changes in storm intensity. This investigation demonstrates the utility and value of hyperspectral infrared retrieved profiles to diagnose thermodynamic characteristics of the near-storm environment to anticipate changes in hurricane intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp
The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper showsmore » how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.« less
Granovsky, Yelena; Yarnitsky, David
2013-01-01
Experimental pain stimuli can be used to simulate patients’ pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests—conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine. PMID:24228167
Granovsky, Yelena; Yarnitsky, David
2013-01-01
Experimental pain stimuli can be used to simulate patients' pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests-conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine.
Correction of Spatial Bias in Oligonucleotide Array Data
Lemieux, Sébastien
2013-01-01
Background. Oligonucleotide microarrays allow for high-throughput gene expression profiling assays. The technology relies on the fundamental assumption that observed hybridization signal intensities (HSIs) for each intended target, on average, correlate with their target's true concentration in the sample. However, systematic, nonbiological variation from several sources undermines this hypothesis. Background hybridization signal has been previously identified as one such important source, one manifestation of which appears in the form of spatial autocorrelation. Results. We propose an algorithm, pyn, for the elimination of spatial autocorrelation in HSIs, exploiting the duality of desirable mutual information shared by probes in a common probe set and undesirable mutual information shared by spatially proximate probes. We show that this correction procedure reduces spatial autocorrelation in HSIs; increases HSI reproducibility across replicate arrays; increases differentially expressed gene detection power; and performs better than previously published methods. Conclusions. The proposed algorithm increases both precision and accuracy, while requiring virtually no changes to users' current analysis pipelines: the correction consists merely of a transformation of raw HSIs (e.g., CEL files for Affymetrix arrays). A free, open-source implementation is provided as an R package, compatible with standard Bioconductor tools. The approach may also be tailored to other platform types and other sources of bias. PMID:23573083
M = +1, ± 1 and ± 2 mode helicon wave excitation.
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.
1996-11-01
The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.
Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.
Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M
2017-05-01
In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.
NASA Astrophysics Data System (ADS)
Lesur, V.; Schachtschneider, R.; Gebler, A.
2013-12-01
In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The measured magnetic data appear to be consistent with the expected signal. Here we present preliminary results of the data processing. From the calibration maneuvers we have been able to correct the data for most of the plane generated signal. High frequency noise, probably associated with the plane engines, has been filtered out. Along profile data are compared with the Italian aeromagnetic grid as provided by the last version of the WDMAM (World Digital Magnetic Anomaly Map).
The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images.
Duan, Yuping; Chang, Huibin; Huang, Weimin; Zhou, Jiayin; Lu, Zhongkang; Wu, Chunlin
2015-11-01
We propose a new variant of the Mumford-Shah model for simultaneous bias correction and segmentation of images with intensity inhomogeneity. First, based on the model of images with intensity inhomogeneity, we introduce an L0 gradient regularizer to model the true intensity and a smooth regularizer to model the bias field. In addition, we derive a new data fidelity using the local intensity properties to allow the bias field to be influenced by its neighborhood. Second, we use a two-stage segmentation method, where the fast alternating direction method is implemented in the first stage for the recovery of true intensity and bias field and a simple thresholding is used in the second stage for segmentation. Different from most of the existing methods for simultaneous bias correction and segmentation, we estimate the bias field and true intensity without fixing either the number of the regions or their values in advance. Our method has been validated on medical images of various modalities with intensity inhomogeneity. Compared with the state-of-art approaches and the well-known brain software tools, our model is fast, accurate, and robust with initializations.
USDA-ARS?s Scientific Manuscript database
Fluorescence and Raman inner filter effects (IFE) cause spectral distortion and nonlinearity between spectral signal intensity with increasing analyte concentration. Convenient and effective correction of fluorescence IFE has been an active research goal for decades. Presented herein is the finding ...
ERIC Educational Resources Information Center
Scott, Terrance M.; Cooper, Justin
2013-01-01
Students in alternative, residential, and correctional settings present challenges in the classroom and facility due to the complexity and intensity of their behaviors. In addition, the factors typically associated with these settings including crowding, inconsistency, and conflicting staff perspectives on education and discipline present…
Peripheral refractive correction and automated perimetric profiles.
Wild, J M; Wood, J M; Crews, S J
1988-06-01
The effect of peripheral refractive error correction on the automated perimetric sensitivity profile was investigated on a sample of 10 clinically normal, experienced observers. Peripheral refractive error was determined at eccentricities of 0 degree, 20 degrees and 40 degrees along the temporal meridian of the right eye using the Canon Autoref R-1, an infra-red automated refractor, under the parametric conditions of the Octopus automated perimeter. Perimetric sensitivity was then undertaken at these eccentricities (stimulus sizes 0 and III) with and without the appropriate peripheral refractive correction using the Octopus 201 automated perimeter. Within the measurement limits of the experimental procedures employed, perimetric sensitivity was not influenced by peripheral refractive correction.
Demonstrating Optical Aberration Correction With a Mems Micro-Mirror Device
1996-12-01
intensity distributions for a corrected and uncorrected MEMS reflection. The curves have been nor- malized to the peak value of the corrected wave front...demonstration: A = 632.8 mn, f = 7 mm, and L = 203 ym. For the solid curve , s = 0, while the dashed curve shows s = 7r/L, so that the change in phase...specified for Figure 8 (see page 29), so that the figures are directly comparable. The solid curve shows an intensity distribution for 01 = 0 (no
Automated acoustic intensity measurements and the effect of gear tooth profile on noise
NASA Technical Reports Server (NTRS)
Atherton, William J.; Pintz, Adam; Lewicki, David G.
1987-01-01
Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.
2011-01-01
A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.
On the Intensity Profile of Electric Lamps and Light Bulbs
ERIC Educational Resources Information Center
Bacalla, Xavier; Salumbides, Edcel John
2013-01-01
We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…
NASA Astrophysics Data System (ADS)
Shedekar, Vinayak S.; King, Kevin W.; Fausey, Norman R.; Soboyejo, Alfred B. O.; Harmel, R. Daren; Brown, Larry C.
2016-09-01
Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd.), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm·h- 1 to 250 mm·h- 1) and three different volumetric settings. Instantaneous and cumulative values of simulated rainfall were recorded at 1, 2, 5, 10 and 20-min intervals. All three TBR models showed a substantial deviation (α = 0.05) in measurements from actual rainfall depths, with increasing underestimation errors at greater rainfall intensities. Simple linear regression equations were developed for each TBR to correct the TBR readings based on measured intensities (R2 > 0.98). Additionally, two dynamic calibration techniques, viz. quadratic model (R2 > 0.7) and T vs. 1/Q model (R2 = > 0.98), were tested and found to be useful in situations when the volumetric settings of TBRs are unknown. The correction models were successfully applied to correct field-collected rainfall data from respective TBR models. The calibration parameters of correction models were found to be highly sensitive to changes in volumetric calibration of TBRs. Overall, the HS-TB3 model (with a better protected tipping bucket mechanism, and consistent measurement errors across a range of rainfall intensities) was found to be the most reliable and consistent for rainfall measurements, followed by the ISCO-674 (with susceptibility to clogging and relatively smaller measurement errors across a range of rainfall intensities) and the TR-525 (with high susceptibility to clogging and frequent changes in volumetric calibration, and highly intensity-dependent measurement errors). The study demonstrated that corrections based on dynamic and volumetric calibration can only help minimize-but not completely eliminate the measurement errors. The findings from this study will be useful for correcting field data from TBRs; and may have major implications to field- and watershed-scale hydrologic studies.
A nonlinear lag correction algorithm for a-Si flat-panel x-ray detectors
Starman, Jared; Star-Lack, Josh; Virshup, Gary; Shapiro, Edward; Fahrig, Rebecca
2012-01-01
Purpose: Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is sensitive to both the exposure intensity and the technique used for determining the IRF. Even when the LTI correction that produces the minimum error is found, residual artifact remains. A new non-LTI method was developed to take into account the IRF measurement technique and exposure dependencies. Methods: First, a multiexponential (N = 4) LTI model was implemented for lag correction. Next, a non-LTI lag correction, known as the nonlinear consistent stored charge (NLCSC) method, was developed based on the LTI multiexponential method. It differs from other nonlinear lag correction algorithms in that it maintains a consistent estimate of the amount of charge stored in the FP and it does not require intimate knowledge of the semiconductor parameters specific to the FP. For the NLCSC method, all coefficients of the IRF are functions of exposure intensity. Another nonlinear lag correction method that only used an intensity weighting of the IRF was also compared. The correction algorithms were applied to step-response projection data and CT acquisitions of a large pelvic phantom and an acrylic head phantom. The authors collected rising and falling edge step-response data on a Varian 4030CB a-Si FP detector operating in dynamic gain mode at 15 fps at nine incident exposures (2.0%–92% of the detector saturation exposure). For projection data, 1st and 50th frame lag were measured before and after correction. For the CT reconstructions, five pairs of ROIs were defined and the maximum and mean signal differences within a pair were calculated for the different exposures and step-response edge techniques. Results: The LTI corrections left residual 1st and 50th frame lag up to 1.4% and 0.48%, while the NLCSC lag correction reduced 1st and 50th frame residual lags to less than 0.29% and 0.0052%. For CT reconstructions, the NLCSC lag correction gave an average error of 11 HU for the pelvic phantom and 3 HU for the head phantom, compared to 14–19 HU and 2–11 HU for the LTI corrections and 15 HU and 9 HU for the intensity weighted non-LTI algorithm. The maximum ROI error was always smallest for the NLCSC correction. The NLCSC correction was also superior to the intensity weighting algorithm. Conclusions: The NLCSC lag algorithm corrected for the exposure dependence of lag, provided superior image improvement for the pelvic phantom reconstruction, and gave similar results to the best case LTI results for the head phantom. The blurred ring artifact that is left over in the LTI corrections was better removed by the NLCSC correction in all cases. PMID:23039642
NASA Astrophysics Data System (ADS)
Johnstone, Samuel; Hourigan, Jeremy; Gallagher, Christopher
2013-05-01
Heterogeneous concentrations of α-producing nuclides in apatite have been recognized through a variety of methods. The presence of zonation in apatite complicates both traditional α-ejection corrections and diffusive models, both of which operate under the assumption of homogeneous concentrations. In this work we develop a method for measuring radial concentration profiles of 238U and 232Th in apatite by laser ablation ICP-MS depth profiling. We then focus on one application of this method, removing bias introduced by applying inappropriate α-ejection corrections. Formal treatment of laser ablation ICP-MS depth profile calibration for apatite includes construction and calibration of matrix-matched standards and quantification of rates of elemental fractionation. From this we conclude that matrix-matched standards provide more robust monitors of fractionation rate and concentrations than doped silicate glass standards. We apply laser ablation ICP-MS depth profiling to apatites from three unknown populations and small, intact crystals of Durango fluorapatite. Accurate and reproducible Durango apatite dates suggest that prolonged exposure to laser drilling does not impact cooling ages. Intracrystalline concentrations vary by at least a factor of 2 in the majority of the samples analyzed, but concentration variation only exceeds 5x in 5 grains and 10x in 1 out of the 63 grains analyzed. Modeling of synthetic concentration profiles suggests that for concentration variations of 2x and 10x individual homogeneous versus zonation dependent α-ejection corrections could lead to age bias of >5% and >20%, respectively. However, models based on measured concentration profiles only generated biases exceeding 5% in 13 of the 63 cases modeled. Application of zonation dependent α-ejection corrections did not significantly reduce the age dispersion present in any of the populations studied. This suggests that factors beyond homogeneous α-ejection corrections are the dominant source of overdispersion in apatite (U-Th)/He cooling ages.
Huang, Zhihua; Wei, Xiaofeng; Li, Mingzhong; Wang, Jianjun; Lin, Honghuan; Xu, Dangpeng; Deng, Ying; Zhang, Rui
2012-04-01
Coherent and incoherent combination of Gaussian beams employing a lens array distributed on the spherical chamber is theoretically analyzed. The output field of each source in the array is coupled through an individual optical system whose local optical axis coincides with the radial direction of the chamber. The resulting intensity profile near the origin is derived. The intensity profile and power in the bucket on the target for rectangular and hexagonal arrangement are numerically calculated. The influences of the center-to-center separation and the ring number of the focusing lens array are given. The synthetic intensity profile of incoherent combination changes little for a lens array scale much smaller than the chamber size. In contrast, the synthetic intensity profile of coherent combination shows an interference pattern with a sharp central peak and sidelobes.
Personality Patterns Among Correctional Officer Applicants
ERIC Educational Resources Information Center
Holland, Terrill R.; And Others
1976-01-01
The MMPI profiles of 359 correctional officer applicants were cluster analyzed, which resulted in the identification of five relatively homogeneous subgroups. The implications of the findings for occupationally adaptive and maladaptive correctional officer behavior were discussed. (Editor)
EUV lines observed with EIS/Hinode in a solar prominence
NASA Astrophysics Data System (ADS)
Labrosse, N.; Schmieder, B.; Heinzel, P.; Watanabe, T.
2011-07-01
Context. During a multi-wavelength observation campaign with Hinode and ground-based instruments, a solar prominence was observed for three consecutive days as it crossed the western limb of the Sun in April 2007. Aims: We report on observations obtained on 26 April 2007 using EIS (Extreme ultraviolet Imaging Spectrometer) on Hinode. They are analysed to provide a qualitative diagnostic of the plasma in different parts of the prominence. Methods: After correcting for instrumental effects, the rasters at different wavelengths are presented. Several regions within the same prominence are identified for further analysis. Selected profiles for lines with formation temperatures between log (T) = 4.7 and log (T) = 6.3, as well as their integrated intensities, are given. The profiles of coronal, transition region, and He ii lines are discussed. We pay special attention to the He ii line, which is blended with coronal lines. Results: Some quantitative results are obtained by analysing the line profiles. They confirm that depression in EUV lines can be interpreted in terms of two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He ii line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking to the coronal lines blended with the He ii line. We estimate the contribution of the He ii 256.32 Å line to the He ii raster image to vary between ~44% and 70% of the raster's total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He ii 256 Å line are consistent with the theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate of the central temperature of 8700 K, a central pressure of 0.33 dyn cm-2, and a column mass of 2.5 × 10-4 g cm-2. The corresponding theoretical hydrogen column density (1020 cm-2) is about two orders of magnitude higher than those inferred from the opacity estimates at 195 Å. The non-LTE calculations indicate that the He ii 256.32 Å line is essentially formed in the prominence-to-corona transition region by resonant scattering of the incident radiation. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, A; Peterson, T; Johnson, L
2015-06-15
Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter correction, reducing uncertainties introduced by scatter correction algorithms. Funding provided by NIH/NIBIB grant R01EB013677; Todd Peterson, Ph.D., has had a research contract with PHDs Co., Knoxville, TN.« less
WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, V; Gu, X; Chen, S
2014-06-15
Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints inmore » the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.« less
Border Hunter Research Technical Report
2010-07-31
pretest score was 27% correct, and the mean posttest score was 76% correct. This result represents a statisti- cally significant increase in scores between... pretest and posttest (p < .01), indicating an increase in declarative knowledge following the tracking instruction. Similar- ly, the combat...tween pretest and posttest (p < .01), indicating an in- crease in declarative knowledge following the profiling instruction. The mean profiling pretest
Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.
1999-07-28
As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effectmore » desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.« less
NASA Astrophysics Data System (ADS)
Morozov, A.; Krücken, R.; Ulrich, A.; Wieser, J.
2006-11-01
Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12keV electron beams at gas pressures from 250to1400hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.
Elementary review of electron microprobe techniques and correction requirements
NASA Technical Reports Server (NTRS)
Hart, R. K.
1968-01-01
Report contains requirements for correction of instrumented data on the chemical composition of a specimen, obtained by electron microprobe analysis. A condensed review of electron microprobe techniques is presented, including background material for obtaining X ray intensity data corrections and absorption, atomic number, and fluorescence corrections.
Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.; ...
2017-11-06
We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.
The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can easily cause problems if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In thismore » method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases with highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.
We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less
Tls Field Data Based Intensity Correction for Forest Environments
NASA Astrophysics Data System (ADS)
Heinzel, J.; Huber, M. O.
2016-06-01
Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.
Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi
2014-02-01
We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.
Zhang, You; Ma, Jianhua; Iyengar, Puneeth; Zhong, Yuncheng; Wang, Jing
2017-01-01
Purpose Sequential same-patient CT images may involve deformation-induced and non-deformation-induced voxel intensity changes. An adaptive deformation recovery and intensity correction (ADRIC) technique was developed to improve the CT reconstruction accuracy, and to separate deformation from non-deformation-induced voxel intensity changes between sequential CT images. Materials and Methods ADRIC views the new CT volume as a deformation of a prior high-quality CT volume, but with additional non-deformation-induced voxel intensity changes. ADRIC first applies the 2D-3D deformation technique to recover the deformation field between the prior CT volume and the new, to-be-reconstructed CT volume. Using the deformation-recovered new CT volume, ADRIC further corrects the non-deformation-induced voxel intensity changes with an updated algebraic reconstruction technique (‘ART-dTV’). The resulting intensity-corrected new CT volume is subsequently fed back into the 2D-3D deformation process to further correct the residual deformation errors, which forms an iterative loop. By ADRIC, the deformation field and the non-deformation voxel intensity corrections are optimized separately and alternately to reconstruct the final CT. CT myocardial perfusion imaging scenarios were employed to evaluate the efficacy of ADRIC, using both simulated data of the extended-cardiac-torso (XCAT) digital phantom and experimentally acquired porcine data. The reconstruction accuracy of the ADRIC technique was compared to the technique using ART-dTV alone, and to the technique using 2D-3D deformation alone. The relative error metric and the universal quality index metric are calculated between the images for quantitative analysis. The relative error is defined as the square root of the sum of squared voxel intensity differences between the reconstructed volume and the ‘ground-truth’ volume, normalized by the square root of the sum of squared ‘ground-truth’ voxel intensities. In addition to the XCAT and porcine studies, a physical lung phantom measurement study was also conducted. Water-filled balloons with various shapes/volumes and concentrations of iodinated contrasts were put inside the phantom to simulate both deformations and non-deformation-induced intensity changes for ADRIC reconstruction. The ADRIC-solved deformations and intensity changes from limited-view projections were compared to those of the ‘gold-standard’ volumes reconstructed from fully-sampled projections. Results For the XCAT simulation study, the relative errors of the reconstructed CT volume by the 2D-3D deformation technique, the ART-dTV technique and the ADRIC technique were 14.64%, 19.21% and 11.90% respectively, by using 20 projections for reconstruction. Using 60 projections for reconstruction reduced the relative errors to 12.33%, 11.04% and 7.92% for the three techniques, respectively. For the porcine study, the corresponding results were 13.61%, 8.78%, 6.80% by using 20 projections; and 12.14%, 6.91% and 5.29% by using 60 projections. The ADRIC technique also demonstrated robustness to varying projection exposure levels. For the physical phantom study, the average DICE coefficient between the initial prior balloon volume and the new ‘gold-standard’ balloon volumes was 0.460. ADRIC reconstruction by 21 projections increased the average DICE coefficient to 0.954. Conclusion The ADRIC technique outperformed both the 2D-3D deformation technique and the ART-dTV technique in reconstruction accuracy. The alternately solved deformation field and non-deformation voxel intensity corrections can benefit multiple clinical applications, including tumor tracking, radiotherapy dose accumulation and treatment outcome analysis. PMID:28380247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igarashi, Noriyuki, E-mail: noriyuki.igarashi@kek.jp; Nitani, Hiroaki; Takeichi, Yasuo
BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance ismore » promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.« less
NASA Technical Reports Server (NTRS)
Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.
1983-01-01
A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.
Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa
2015-04-15
An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (Vmore » × H) was achieved at an X-ray energy of 10 keV.« less
Stonawski, Valeska; Vollmer, Laura; Köhler-Jonas, Nicola; Rohleder, Nicolas; Golub, Yulia; Purbojo, Ariawan; Moll, Gunther H; Heinrich, Hartmut; Cesnjevar, Robert A; Kratz, Oliver; Eichler, Anna
2017-01-01
Ventricular septal defect (VSD) is the most common congenital heart defect, with larger VSDs typically being corrected with an open-heart surgery during infancy. Long-term consequences of a VSD-corrective surgery on stress systems of child and mother are still unknown. The aim of the present study is to investigate the associations of an early corrected VSD and diurnal cortisol release of child and mother. 26 children (12 boys) between 6 and 9 years old, who underwent surgery for an isolated VSD within the first 3 years of life, and their mothers participated in the study. Their diurnal cortisol profiles were compared to a sex-, age-, and socioeconomic status-matched healthy control group. Within the VSD group, associations between cortisol and characteristics of surgery and hospitalization were investigated. Child and mother psychopathological symptoms were considered as a possible interfering mechanism of altered cortisol profiles. Diurnal cortisol profiles of children with an early corrected VSD did not differ from those of controls. However, mothers of affected children exhibited higher cortisol levels in the morning ( p < 0.001, [Formula: see text]) and a steeper diurnal cortisol slope ( p = 0.016, [Formula: see text]) than mothers of healthy children. Results indicate a favorable development of children with an early corrected VSD, in terms of comparable diurnal cortisol profiles with healthy controls, according to a comparable mother-rated psychopathology. Mothers of affected children reveal altered diurnal cortisol levels, without differences in self-rated psychopathology. This divergence should be clarified in future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filipuzzi, M; Garrigo, E; Venencia, C
2014-06-01
Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculatemore » the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the acquisition.« less
Radiation camera motion correction system
Hoffer, P.B.
1973-12-18
The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.
2018-06-01
The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Pilewskie, P.; Gore, Warren J.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.
2001-01-01
Several groups have recently been working to improve the near-infrared spectrum of water vapor on HITRAN. The unit-conversion errors found by Giver, et al have now been corrected on the recently released HITRAN-2000. The most important aspect of this article for atmospheric absorption was increasing all the HITRAN-1996 intensities of the 940 nm band by nearly 15%. New intensity measurements of this band by Brown, et al (submitted to J. Mol. Spec.) have now been included in the latest HITRAN. However, Belmiloud, et al discuss new data in the 633-1175 nm region which they expect will substantially increase the calculated absorption of solar radiation by water vapor. They suggest the 4 bands at 725, 820, 940, and 1130 nm are all stronger than the sum of the line intensities currently on HITRAN. For the 725 and 820 nm bands, their recommended intensity increases are 10% and 15%, about the same as previously noted by Grossmann and Browell and Ponsardin and Browell. Belmiloud, et al only suggest a 6% increase for the 940 nm. band over the corrected HITRAN-1996 intensities, but a large 38% increase for the 1130 nm band. The new data discussed by Belmiloud, et al have now been published in greater detail by Schermaul, et al. The intensity increase for the 1130 nm band discussed by Belmiloud, et al is very substantial; it is important to quickly determine if the HITRAN intensity values are in error by as much as they claim. Only intensity errors for the strong lines could result in the total band intensity being in error by such a large amount. To quickly get a number of spectra of the entire near-infrared region from 650 to 1650 nm, we used the Solar Spectral Flux Radiometer with our 25-meter base path White absorption cell. This moderate resolution spectrometer is a flight instrument that has flown on the Sandia Twin Otter for the ARESE 11 experiment. The measured band profiles were then compared to calculated spectra using the latest HITRAN line intensities, convolved with the instrumental resolution. Our spectra for the 725 and 820 nm bands show somewhat more absorption than the HITRAN simulations, about as expected by Belmiloud, el al. The total absorption for our spectra of the 940 nm band agrees well with the HITRAN simulations; this HITRAN spectral region now has the new measurements of Brown, et al. Our spectra of the 1130 nm band have somewhat more absorption than the HITRAN simulations, but not as much as the 38% intensity increase for this band suggested by Belmiloud, et al. An intensity increase of about 20% on average would be more compatible with our data. Finally, our spectra of the 1370 nm band are fairly well modeled by the HITRAN simulations, despite the known problems of the older HITRAN data in this region.
Saotome, Kousaku; Matsushita, Akira; Matsumoto, Koji; Kato, Yoshiaki; Nakai, Kei; Murata, Koichi; Yamamoto, Tetsuya; Sankai, Yoshiyuki; Matsumura, Akira
2017-02-01
A fast spin-echo sequence based on the Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) technique is a magnetic resonance (MR) imaging data acquisition and reconstruction method for correcting motion during scans. Previous studies attempted to verify the in vivo capabilities of motion-corrected PROPELLER in real clinical situations. However, such experiments are limited by repeated, stray head motion by research participants during the prescribed and precise head motion protocol of a PROPELLER acquisition. Therefore, our purpose was to develop a brain phantom set for motion-corrected PROPELLER. The profile curves of the signal intensities on the in vivo T 2 -weighted image (T 2 WI) and 3-D rapid prototyping technology were used to produce the phantom. In addition, we used a homemade driver system to achieve in-plane motion at the intended timing. We calculated the Pearson's correlation coefficient (R 2 ) between the signal intensities of the in vivo T 2 WI and the phantom T 2 WI and clarified the rotation precision of the driver system. In addition, we used the phantom set to perform initial experiments to show the rotational angle and frequency dependences of PROPELLER. The in vivo and phantom T 2 WIs were visually congruent, with a significant correlation (R 2 ) of 0.955 (p<.001). The rotational precision of the driver system was within 1 degree of tolerance. The experiment on the rotational angle dependency showed image discrepancies between the rotational angles. The experiment on the rotational frequency dependency showed that the reconstructed images became increasingly blurred by the corruption of the blades as the number of motions increased. In this study, we developed a phantom that showed image contrasts and construction similar to the in vivo T 2 WI. In addition, our homemade driver system achieved precise in-plane motion at the intended timing. Our proposed phantom set could perform systematic experiments with a real clinical MR image, which to date has not been possible in in vivo studies. Further investigation should focus on the improvement of the motion-correction algorithm in PROPELLER using our phantom set for what would traditionally be considered problematic patients (children, emergency patients, elderly, those with dementia, and so on). Copyright © 2016 Elsevier Inc. All rights reserved.
Generation of electron vortex states in ionization by intense and short laser pulses
NASA Astrophysics Data System (ADS)
Vélez, F. Cajiao; Krajewska, K.; Kamiński, J. Z.
2018-04-01
The generation of electron vortex states in ionization by intense and short laser pulses is analyzed under the scope of the lowest-order Born approximation. For near-infrared laser fields and nonrelativistic intensities of the order of 1016 W /cm2 , we show that one has to modify the nonrelativistic treatment of ionization by accounting for recoil and relativistic mass corrections. By using the corrected quasirelativistic theory, the requirements for the observation of electron vortex states with non-negligible probability and large topological charge are determined.
VizieR Online Data Catalog: Herschel nearby isolated low-mass clouds maps (Sadavoy+, 2018)
NASA Astrophysics Data System (ADS)
Sadavoy, S. I.; Keto, E.; Bourke, T. L.; Dunham, M. M.; Myers, P. C.; Stephens, I. W.; di, Francesco J.; Webb, K.; Stutz, A. M.; Launhardt, R.; Tobin, J. J.
2018-05-01
For all the sources listed in table1, maps of dust temperature and optical depth at 353GHz for all globules as fits files. For all the sources listed in table1, maps of dust temperature, optical depth at 353GHz, and corrected Herschel intensities are available as fits files. The intensity maps contain labels to indicate the reliability of their intensity corrections with Group A as the most reliable, Group B as somewhat reliable, and Group C as least reliable. See paper for details. (3 data files).
A less intensive bracing protocol for pectus carinatum.
Wahba, George; Nasr, Ahmed; Bettolli, Marcos
2017-11-01
Despite the widespread use of bracing to correct Pectus carinatum (PC) there is no consensus in the number of hours per day patients are instructed to wear the brace. In our practice, we use a less rigorous protocol of 8-12h/day. We sought to evaluate our results and those in the literature to determine whether more intensive usage is necessary. We reviewed the outcomes of patients with PC treated at our institution between 2012 and 2015. We searched MEDLINE, EMBASE and Web of Science for studies describing the use of bracing to correct PC. Seventy-five patients presented with PC at our institution. Among those who were offered bracing and had adequate follow-up (n=32), the success rate (full correction or improvement) was 90.6%. The compliance rate was 93.8%. Fifteen studies met our inclusion criteria. Our pooled data combining our results with those of other published data showed that less intensive brace usage (<12h/day), when compared to more intensive usage (≥12h/day), is associated with higher patient compliance (89.6% vs. 81.1%) with a similar time to correction (7.3 vs 7.1months) and success rate (85.3% vs. 83.5%). Implementing a less intensive bracing protocol for PC is successful, efficient and improves compliance. Clinical Research. Oxford Centre for Evidence-Based Medicine Level-of-Evidence rating: Level IV. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2015-01-01
The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries
Palmer, Andrew J; Roze, Stéphane; Valentine, William J; Minshall, Michael E; Lammert, Morten; Nicklasson, Lars; Spinas, Giatgen A
2004-08-01
Weight gain is an unwanted side effect of improved glycaemic control in type 1 diabetes, associated with increased blood pressure (BP) and worsening lipid profiles. While improved glycaemic control per se should improve long-term patient outcomes, increases in BP and worsening lipid profiles may counteract these benefits. The aim of this modelling study was to assess whether the increased body weight and associated worsening of lipid profile and blood pressure would negate the improvements in glycaemic control seen with intensive therapy in patients with type 1 diabetes. A validated diabetes model projected life expectancy (LE), quality-adjusted LE (QALE) and total lifetime costs of complications in type 1 diabetes cohorts with the characteristics of patients from the Diabetes Control and Complications Trial (DCCT). The following four cohorts (A-D) were created based on increased body weight under either conventional or intensive therapy: A) conventional glycaemic control in the subgroup with lowest weight-gain quartile after 6.5 years (HbA1c increased by 11% from baseline); B) conventional control in the highest weight-gain quartile (no change in HbA1c from baseline); C) intensive control in the lowest quartile of weight gain (with 16.1% decrease in HbA1c, but no increase in weight or associated BP, and improved lipid profile); D) intensive control in the highest quartile of weight gain (with 21% decrease in HbA1c, increased systolic BP of 6 mmHg, and worsened lipid profile). Data were derived from DCCT and other published sources. Intensive control, even with weight gain, led to major improvements in LE and QALE, and reduction in costs of complications versus conventional therapy. Intensive therapy with no weight increase led to a higher LE (increased by 0.57 years) and higher QALE (increased by 0.28 years) and lower costs of complications (reduced by 523 dollars/patient), compared to intensive therapy with the highest quartile of weight gain. Concerns about weight gain should not deter intensive insulin therapy. However, the value of improving glycaemic control without increasing body weight (and associated increased BP and worsening of lipid profile) has been confirmed.
Combined orthodontic and surgical correction of adult skeletal class II with hyperdivergent jaws.
Abraham, Jiku; Bagchi, Paulami; Gupta, Swati; Gupta, Hemant; Autar, Ram
2012-01-01
A case of severe Class II skeletal malocclusion with anterior open bite having vertical growth pattern and matching soft tissue profile is presented. Considering age of the patient and the severity of the malocclusion, it was decided to combine orthodontic treatment with surgery. A 0.022 Roth Pre-adjusted Edgewise Appliance was chosen for the orthodontic correction and Le-Fort 1 differential vertical impaction of maxilla with mandibular autorotation and augmentation genioplasty was considered as the treatment plan. The main aim was to reduce the gummy smile and correct the class II profile.
A simple and robust method for artifacts correction on X-ray microtomography images
NASA Astrophysics Data System (ADS)
Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Irina, Bayuk; Kirill, Gerke
2017-04-01
X-ray microtomography images of rock material often have some kinds of distortion due to different reasons such as X-ray attenuation, beam hardening, irregularity of distribution of liquid/solid phases. Several kinds of distortion can arise from further image processing and stitching of images from different measurements. Beam-hardening is a well-known and studied distortion which is relative easy to be described, fitted and corrected using a number of equations. However, this is not the case for other grey scale intensity distortions. Shading by irregularity of distribution of liquid phases, incorrect scanner operating/parameters choosing, as well as numerous artefacts from mathematical reconstructions from projections, including stitching from separate scans cannot be described using single mathematical model. To correct grey scale intensities on large 3D images we developed a package Traditional method for removing the beam hardening [1] has been modified in order to find the center of distortion. The main contribution of this work is in development of a method for arbitrary image correction. This method is based on fitting the distortion by Bezier curve using image histogram. The distortion along the image is represented by a number of Bezier curves and one base line that characterizes the natural distribution of gray value along the image. All of these curves are set manually by the operator. We have tested our approaches on different X-ray microtomography images of porous media. Arbitrary correction removes all principal distortion. After correction the images has been binarized with subsequent pore-network extracted. Equal distribution of pore-network elements along the image was the criteria to verify the proposed technique to correct grey scale intensities. [1] Iassonov, P. and Tuller, M., 2010. Application of segmentation for correction of intensity bias in X-ray computed tomography images. Vadose Zone Journal, 9(1), pp.187-191.
Zhang, Yuzhong; Zhang, Yan
2016-07-01
In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.
Intensity non-uniformity correction in MRI: existing methods and their validation.
Belaroussi, Boubakeur; Milles, Julien; Carme, Sabin; Zhu, Yue Min; Benoit-Cattin, Hugues
2006-04-01
Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity non-uniformity consists in anatomically irrelevant intensity variation throughout data. It can be induced by the choice of the radio-frequency coil, the acquisition pulse sequence and by the nature and geometry of the sample itself. Numerous methods have been proposed to correct this artifact. In this paper, we propose an overview of existing methods. We first sort them according to their location in the acquisition/processing pipeline. Sorting is then refined based on the assumptions those methods rely on. Next, we present the validation protocols used to evaluate these different correction schemes both from a qualitative and a quantitative point of view. Finally, availability and usability of the presented methods is discussed.
Extracting the Data From the LCM vk4 Formatted Output File
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
These are slides about extracting the data from the LCM vk4 formatted output file. The following is covered: vk4 file produced by Keyence VK Software, custom analysis, no off the shelf way to read the file, reading the binary data in a vk4 file, various offsets in decimal lines, finding the height image data, directly in MATLAB, binary output beginning of height image data, color image information, color image binary data, color image decimal and binary data, MATLAB code to read vk4 file (choose a file, read the file, compute offsets, read optical image, laser optical image, read and computemore » laser intensity image, read height image, timing, display height image, display laser intensity image, display RGB laser optical images, display RGB optical images, display beginning data and save images to workspace, gamma correction subroutine), reading intensity form the vk4 file, linear in the low range, linear in the high range, gamma correction for vk4 files, computing the gamma intensity correction, observations.« less
Biochemical composition and protein profile of alpaca (Vicugna pacos) oviductal fluid.
Apichela, S A; Argañaraz, M E; Zampini, R; Vencato, J; Miceli, D C; Stelletta, C
2015-03-01
Knowledge and assessment of the constituents of the oviductal fluid (OF) in camelids is necessary for a correct formulation of specific culture media for the development of reproductive biotechnology. This study is the first describing the biochemical composition and SDS-PAGE protein profile of alpaca oviductal fluid in non-pregnant animals and animals that have completed the first month and second month of gestation. Samples were also classified into oviducts that were ipsilateral or contralateral to the ovary with corpus luteum. No differences were found between both oviducts, whereas pregnant and non-pregnant females displayed significant differences in the biochemical composition and protein profile of the oviductal fluid. Relative albumin content was higher in non-pregnant females. Relative creatinine content in OF from females that have completed the second month of gestation was lower than non-pregnant females and females that have completed the first month of gestation. Ion Na(+) concentration was higher in OF from non-pregnant females when compared with pregnant ones. The protein profile of non-pregnant females showed five protein bands of 70, 42, 25, 24 and 19kDa that were significantly more intense compared with pregnant animals. Bands were identified as moesin, actin cytoplasmic 2, hydroxypyruvate isomerase, ferritin light chain and peroxiredoxin-6 with MALDI/MS. Our results encourage more thorough future studies, in order to unravel the complex reproductive processes of the South American camelid oviduct. Copyright © 2015 Elsevier B.V. All rights reserved.
Warren, Nicholas; Dussetschleger, Jeffrey; Punnett, Laura; Cherniack, Martin G
2015-03-01
In this study, we sought to explain the rapid musculoskeletal symptomatology increase in correction officers (COs). COs are exposed to levels of biomechanical and psychosocial stressors that have strong associations with musculoskeletal disorders (MSDs) in other occupations, possibly contributing to their rapid health deterioration. Baseline survey data from a longitudinal study of COs and manufacturing line workers were used to model musculoskeletal symptom prevalence and intensity in the upper (UE) and lower (LE) extremity. Outcomes were regressed on demographics and biomechanical and psychosocial exposures. COs reported significantly higher prevalence and intensity of LE symptoms compared to the industrial workers. In regression models, job tenure was a primary driver of CO musculoskeletal outcomes. In CO models, a single biomechanical exposure, head and arms in awkward positions, explained variance in both UE and LE prevalence (β of 0.338 and 0.357, respectively), and low decision latitude was associated with increased LE prevalence and intensity (β of 0.229 and 0.233, respectively). Manufacturing models were less explanatory. Examining demographic associations with exposure intensity, we found none to be significant in manufacturing, but in CO models, important psychosocial exposure levels increased with job tenure. Symptom prevalence and intensity increased more rapidly with job tenure in corrections, compared to manufacturing, and were related to both biomechanical and psychosocial exposures. Tenure-related increases in psychosocial exposure levels may help explain the CO symptom increase. Although exposure assessment improvements are proposed, findings suggest focusing on improving the psychosocial work environment to reduce MSD prevalence and intensity in corrections. © 2014, Human Factors and Ergonomics Society.
Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms
Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.
2016-04-12
Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less
Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.
Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less
Time-of-day effects on voice range profile performance in young, vocally untrained adult females.
van Mersbergen, M R; Verdolini, K; Titze, I R
1999-12-01
Time-of-day effects on voice range profile performance were investigated in 20 vocally healthy untrained women between the ages of 18 and 35 years. Each subject produced two complete voice range profiles: one in the morning and one in the evening, about 36 hours apart. The order of morning and evening trials was counterbalanced across subjects. Dependent variables were (1) average minimum and average maximum intensity, (2) Voice range profile area and (3) center of gravity (median semitone pitch and median intensity). In this study, the results failed to reveal any clear evidence of time-of-day effects on voice range profile performance, for any of the dependent variables. However, a reliable interaction of time-of-day and trial order was obtained for average minimum intensity. Investigation of other subject populations, in particular trained vocalists or those with laryngeal lesions, is required for any generalization of the results.
Seurinck, Sylvie; Deschepper, Ellen; Deboch, Bishaw; Verstraete, Willy; Siciliano, Steven
2006-03-01
Microbial source tracking (MST) methods need to be rapid, inexpensive and accurate. Unfortunately, many MST methods provide a wealth of information that is difficult to interpret by the regulators who use this information to make decisions. This paper describes the use of classification tree analysis to interpret the results of a MST method based on fatty acid methyl ester (FAME) profiles of Escherichia coli isolates, and to present results in a format readily interpretable by water quality managers. Raw sewage E. coli isolates and animal E. coli isolates from cow, dog, gull, and horse were isolated and their FAME profiles collected. Correct classification rates determined with leaveone-out cross-validation resulted in an overall low correct classification rate of 61%. A higher overall correct classification rate of 85% was obtained when the animal isolates were pooled together and compared to the raw sewage isolates. Bootstrap aggregation or adaptive resampling and combining of the FAME profile data increased correct classification rates substantially. Other MST methods may be better suited to differentiate between different fecal sources but classification tree analysis has enabled us to distinguish raw sewage from animal E. coli isolates, which previously had not been possible with other multivariate methods such as principal component analysis and cluster analysis.
NASA Astrophysics Data System (ADS)
Hink, R.
2015-09-01
The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The k- ω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the k- ω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.
NASA Astrophysics Data System (ADS)
Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang
2013-02-01
The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P < 0.05) in nutrient profile and lipid related molecular spectral intensity (CH2 asymmetric stretching peak height, CH2 symmetric stretching peak height, ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.
Design of the OMPS limb sensor correction algorithm
NASA Astrophysics Data System (ADS)
Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark
The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
Improving Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less
Aerosol Correction for Improving OMPS/LP Ozone Retrieval
NASA Technical Reports Server (NTRS)
Chen, Zhong; Bhartia, Pawan K.; Loughman, Robert
2015-01-01
The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on Oct. 28, 2011. Limb profilers measures the radiance scattered from the Earth's atmospheric in limb viewing mode from 290 to 1000 nm and infer ozone profiles from tropopause to 60 km. The recently released OMPS-LP Version 2 data product contains the first publicly released ozone profiles retrievals, and these are now available for the entire OMPS mission, which extends from April, 2012. The Version 2 data product retrievals incorporate several important improvements to the algorithm. One of the primary changes is to turn off the aerosol retrieval module. The aerosol profiles retrieved inside the ozone code was not helping the ozone retrieval and was adding noise and other artifacts. Aerosols including polar stratospheric cloud (PSC) and polar mesospheric clouds (PMC) have a detectable effect on OMPS-LP data. Our results show that ignoring the aerosol contribution would produce an ozone density bias of up to 10 percent in the region of maximum aerosol extinction. Therefore, aerosol correction is needed to improve the quality of the retrieved ozone concentration profile. We provide Aerosol Scattering Index (ASI) for detecting aerosols-PMC-PSC, defined as ln(Im-Ic) normalized at 45km, where Im is the measured radiance and Ic is the calculated radiance assuming no aerosols. Since ASI varies with wavelengths, latitude and altitude, we can start by assuming no aerosol profiles in calculating the ASIs and then use the aerosol profile to see if it significantly reduces the residuals. We also discuss the effect of aerosol size distribution on the ozone profile retrieval process. Finally, we present an aerosol-PMC-PSC correction scheme.
Sarkar, Biplab; Ghosh, Bhaswar; Sriramprasath; Mahendramohan, Sukumaran; Basu, Ayan; Goswami, Jyotirup; Ray, Amitabh
2010-01-01
The study was aimed to compare accuracy of monitor unit verification in intensity modulated radiation therapy (IMRT) using 6 MV photons by three different methodologies with different detector phantom combinations. Sixty patients were randomly chosen. Zero degree couch and gantry angle plans were generated in a plastic universal IMRT verification phantom and 30×30×30 cc water phantom and measured using 0.125 cc and 0.6 cc chambers, respectively. Actual gantry and couch angle plans were also measured in water phantom using 0.6 cc chamber. A suitable point of measurement was chosen from the beam profile for each field. When the zero-degree gantry, couch angle plans and actual gantry, couch angle plans were measured by 0.6 cc chamber in water phantom, the percentage mean difference (MD) was 1.35%, 2.94 % and Standard Deviation (SD) was 2.99%, 5.22%, respectively. The plastic phantom measurements with 0.125 cc chamber Semiflex ionisation chamber (SIC) showed an MD=4.21% and SD=2.73 %, but when corrected for chamber-medium response, they showed an improvement, with MD=3.38 % and SD=2.59 %. It was found that measurements with water phantom and 0.6cc chamber at gantry angle zero degree showed better conformity than other measurements of medium-detector combinations. Correction in plastic phantom measurement improved the result only marginally, and actual gantry angle measurement in a flat- water phantom showed higher deviation. PMID:20927221
Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes
NASA Astrophysics Data System (ADS)
Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme
2017-04-01
In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM, considered better altimetric surfaces when compared to the ECMWF orography, can be used. When using the model orography, systematic errors up to 3-5 cm are found in the DTC for most of the selected regions, which can induce significant errors in e.g. the determination of mean river profiles or lake level time series. For the Danube River, larger DTC errors up to 10 cm, due to terrain characteristics, can appear. For the WTC, with higher spatial variability, model errors of magnitude 1-3 cm are expected over inland waters. In the Danube region, the comparison of GNSS- and ECMWF-derived WTC has shown that the error in the WTC computed at orography level can be up to 3 cm. WTC errors with this magnitude have been found for all ROI. Although globally small, these errors are systematic and must be corrected prior to the generation of CS-2 Level 2 products. Once computed at the mean profile and mean lake level, the results show that tropospheric corrections have accuracy better than 1 cm. This analysis is currently being extended to S3 data and the first results are shown.
Taxman, Faye S; Kitsantas, Panagiota
2009-08-01
OBJECTIVE TO BE ADDRESSED: The purpose of this study was to investigate the structural and organizational factors that contribute to the availability and increased capacity for substance abuse treatment programs in correctional settings. We used classification and regression tree statistical procedures to identify how multi-level data can explain the variability in availability and capacity of substance abuse treatment programs in jails and probation/parole offices. The data for this study combined the National Criminal Justice Treatment Practices (NCJTP) Survey and the 2000 Census. The NCJTP survey was a nationally representative sample of correctional administrators for jails and probation/parole agencies. The sample size included 295 substance abuse treatment programs that were classified according to the intensity of their services: high, medium, and low. The independent variables included jurisdictional-level structural variables, attributes of the correctional administrators, and program and service delivery characteristics of the correctional agency. The two most important variables in predicting the availability of all three types of services were stronger working relationships with other organizations and the adoption of a standardized substance abuse screening tool by correctional agencies. For high and medium intensive programs, the capacity increased when an organizational learning strategy was used by administrators and the organization used a substance abuse screening tool. Implications on advancing treatment practices in correctional settings are discussed, including further work to test theories on how to better understand access to intensive treatment services. This study presents the first phase of understanding capacity-related issues regarding treatment programs offered in correctional settings.
Influence of signal intensity non-uniformity on brain volumetry using an atlas-based method.
Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni
2012-01-01
Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.
Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method
Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni
2012-01-01
Objective Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials. PMID:22778560
Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses
NASA Astrophysics Data System (ADS)
Sayenko, D. G.; Miller, T. F.; Melnik, K. A.; Netreba, A. I.; Khusnutdinova, D. R.; Kitov, V. V.; Tomilovskaya, E. S.; Reschke, M. F.; Gerasimenko, Y. P.; Kozlovskaya, I. B.
2016-04-01
Impairments in balance control are inevitable following exposure to microgravity. However, the role of particular sensory system in postural disorders at different stages of the exposure to microgravity still remains unknown. We used a method called Dry Immersion (DI), as a ground-based model of microgravity, to elucidate the effects of 6-h of load-related afferent inputs on kinematic characteristics of postural corrective responses evoked by pushes to the chest of different intensities during upright standing. The structure of postural corrective responses was altered following exposure to DI, which was manifested by: (1) an increase of the ankle and knee flexion during perturbations of medium intensity, (2) the lack of the compensatory hip extension, as well as diminished knee and ankle flexion with a further increase of the perturbation intensity to submaximal level. We suggest that the lack of weight-bearing increases the reactivity of the balance control system, whereas the ability to scale the responses proportionally to the perturbation intensity decreases. Disrupted neuromuscular coordination of postural corrective responses following DI can be attributed to adaptive neural modifications on the spinal and cortical levels. The present study provides evidence that even a short-term lack of load-related afferent inputs alters kinematic patterns of postural corrective responses, and can result in decreased balance control. Because vestibular input is not primarily affected during the DI exposure, our results indicate that activity and the state of the load-related afferents play critical roles in balance control following real or simulated microgravity.
Qing, Zhao-shen; Ji, Bao-ping; Shi, Bo-lin; Zhu, Da-zhou; Tu, Zhen-hua; Zude, Manuela
2008-06-01
In the present study, improved laser-induced light backscattering imaging was studied regarding its potential for analyzing apple SSC and fruit flesh firmness. Images of the diffuse reflection of light on the fruit surface were obtained from Fuji apples using laser diodes emitting at five wavelength bands (680, 780, 880, 940 and 980 nm). Image processing algorithms were tested to correct for dissimilar equator and shape of fruit, and partial least squares (PLS) regression analysis was applied to calibrate on the fruit quality parameter. In comparison to the calibration based on corrected frequency with the models built by raw data, the former improved r from 0. 78 to 0.80 and from 0.87 to 0.89 for predicting SSC and firmness, respectively. Comparing models based on mean value of intensities with results obtained by frequency of intensities, the latter gave higher performance for predicting Fuji SSC and firmness. Comparing calibration for predicting SSC based on the corrected frequency of intensities and the results obtained from raw data set, the former improved root mean of standard error of prediction (RMSEP) from 1.28 degrees to 0.84 degrees Brix. On the other hand, in comparison to models for analyzing flesh firmness built by means of corrected frequency of intensities with the calibrations based on raw data, the former gave the improvement in RMSEP from 8.23 to 6.17 N x cm(-2).
"Hook"-calibration of GeneChip-microarrays: theory and algorithm.
Binder, Hans; Preibisch, Stephan
2008-08-29
: The improvement of microarray calibration methods is an essential prerequisite for quantitative expression analysis. This issue requires the formulation of an appropriate model describing the basic relationship between the probe intensity and the specific transcript concentration in a complex environment of competing interactions, the estimation of the magnitude these effects and their correction using the intensity information of a given chip and, finally the development of practicable algorithms which judge the quality of a particular hybridization and estimate the expression degree from the intensity values. : We present the so-called hook-calibration method which co-processes the log-difference (delta) and -sum (sigma) of the perfect match (PM) and mismatch (MM) probe-intensities. The MM probes are utilized as an internal reference which is subjected to the same hybridization law as the PM, however with modified characteristics. After sequence-specific affinity correction the method fits the Langmuir-adsorption model to the smoothed delta-versus-sigma plot. The geometrical dimensions of this so-called hook-curve characterize the particular hybridization in terms of simple geometric parameters which provide information about the mean non-specific background intensity, the saturation value, the mean PM/MM-sensitivity gain and the fraction of absent probes. This graphical summary spans a metrics system for expression estimates in natural units such as the mean binding constants and the occupancy of the probe spots. The method is single-chip based, i.e. it separately uses the intensities for each selected chip. : The hook-method corrects the raw intensities for the non-specific background hybridization in a sequence-specific manner, for the potential saturation of the probe-spots with bound transcripts and for the sequence-specific binding of specific transcripts. The obtained chip characteristics in combination with the sensitivity corrected probe-intensity values provide expression estimates scaled in natural units which are given by the binding constants of the particular hybridization.
Measurement of the profile and intensity of the solar He I lambda 584-A resonance line
NASA Technical Reports Server (NTRS)
Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.
1978-01-01
The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.
R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonehara, K.; Backfish, M.; Moretti, A.
We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.
Efficient color correction method for smartphone camera-based health monitoring application.
Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong
2017-07-01
Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.
Roggemann, M C; Welsh, B M; Montera, D; Rhoadarmer, T A
1995-07-10
Simulating the effects of atmospheric turbulence on optical imaging systems is an important aspect of understanding the performance of these systems. Simulations are particularly important for understanding the statistics of some adaptive-optics system performance measures, such as the mean and variance of the compensated optical transfer function, and for understanding the statistics of estimators used to reconstruct intensity distributions from turbulence-corrupted image measurements. Current methods of simulating the performance of these systems typically make use of random phase screens placed in the system pupil. Methods exist for making random draws of phase screens that have the correct spatial statistics. However, simulating temporal effects and anisoplanatism requires one or more phase screens at different distances from the aperture, possibly moving with different velocities. We describe and demonstrate a method for creating random draws of phase screens with the correct space-time statistics for a bitrary turbulence and wind-velocity profiles, which can be placed in the telescope pupil in simulations. Results are provided for both the von Kármán and the Kolmogorov turbulence spectra. We also show how to simulate anisoplanatic effects with this technique.
An error reduction algorithm to improve lidar turbulence estimates for wind energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Newman, Jennifer F.; Clifton, Andrew
2017-02-10
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
Effect of signal intensity and camera quantization on laser speckle contrast analysis
Song, Lipei; Elson, Daniel S.
2012-01-01
Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view. PMID:23304650
Meyer, Annabel; Focks, Andreas; Radl, Viviane; Welzl, Gerhard; Schöning, Ingo; Schloter, Michael
2014-01-01
In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.
Development of a drift-correction procedure for a direct-reading spectrometer
NASA Technical Reports Server (NTRS)
Chapman, G. B., II; Gordon, W. A.
1977-01-01
A procedure which provides automatic correction for drifts in the radiometric sensitivity of each detector channel in a direct-reading emission spectrometer is described. Such drifts are customarily controlled by the regular analyses of standards, which provide corrections for changes in the excitational, optical, and electronic components of the instrument. This standardization procedure, however, corrects for the optical and electronic drifts. It is a step that must be taken if the time, effort, and cost of processing standards is to be minimized. This method of radiometric drift correction uses a 1,000-W tungsten-halogen reference lamp to illuminate each detector through the same optical path as that traversed during sample analysis. The responses of the detector channels to this reference light are regularly compared with channel response to the same light intensity at the time of analytical calibration in order to determine and correct for drift. Except for placing the lamp in position, the procedure is fully automated and compensates for changes in spectral intensity due to variations in lamp current. A discussion of the implementation of this drift-correction system is included.
Excimer laser system Profile-500
NASA Astrophysics Data System (ADS)
Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.
1999-07-01
The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.
RLE (Research Laboratory of Electronics) Progress Report Number 125.
1983-01-01
Optical Communications 32 7.3 Picosecond Optics 35 7.4 Ultrashort Pulse Formation 37 7.5 Femtosecond Laser System 37 7.6 Parametric Scattering with...Figure 3-2: The cross section for 4 photon ionization of atomic hydrogen as calculated by 10 Reinhardt for a single frequency laser . To facilitate...profiles produced by laser intensity I* and at five times that intensity 11 510. As the laser intensity is increased, the ionization profile becomes
NASA Astrophysics Data System (ADS)
Goldring, Nicholas
The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the <0.1 microrad regime represent a given mirror length over which incident x-ray beams from modern sources can be reflected without significant loss of quality. This study assumes a perfectly flat mirror surface and does not account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3 mrad grazing angle on the flat mirror surface for both cases. The first power density profile is the most extreme case created by the undulator at it's closest gap with a critical energy of 3 keV (k y=2.459); the second profile is generated for the case in which the undulator is tuned to emit at 8 keV (ky=1.026). The 3 keV case is of particular interest as it represents one of the most intense peak heat loads predicted to be incident on first optics at the APS-U. The FEA results revealed that the deflection due to the 3 keV heat load yields a 10.9 microrad rms slope error over the full mirror length. The projected correction via the elastic bending of the substrate yields a 0.10 microrad sigma rms within the center longitudinal 300 mm. The FEA also predicts that the 8 keV heat load deflection can be corrected to a sigma rms of 0.11 microrad within the center 300 mm from 1.50 microrad over the entire length. Attempts to optimize the end couple to correct over the entire 400 mm mirror length were unable to resolve the heat load deflection rms slope error to within a <0.1 microrad value for either case. However, if a larger corrected surface is required, a longer mirror can be implemented so as to absorb the heat load of a larger beam than necessary which can then be cut by an aperture to the desired size and energy range.
Activity Profiles in International Women's Team Handball Using PlayerLoad.
Wik, Eirik H; Luteberget, Live S; Spencer, Matt
2017-08-01
Team handball matches place diverse physical demands on players, which may result in fatigue and decreased activity levels. However, previous speed-based methods of quantifying player activity may not be sensitive for capturing short-lasting team-handball-specific movements. To examine activity profiles of a women's team handball team and individual player profiles, using inertial measurement units. Match data were obtained from 1 women's national team in 9 international matches (N = 85 individual player samples), using the Catapult OptimEye S5. PlayerLoad/min was used as a measure of intensity in 5- and 10-min periods. Team profiles were presented as relative to the player's match means, and individual profiles were presented as relative to the mean of the 5-min periods with >60% field time. A high initial intensity was observed for team profiles and for players with ≥2 consecutive periods of play. Substantial declines in PlayerLoad/min were observed throughout matches for the team and for players with several consecutive periods of field time. These trends were found for all positional categories. Intensity increased substantially in the final 5 min of the first half for team profiles. Activity levels were substantially lower in the 5 min after a player's most intense period and were partly restored in the subsequent 5-min period. Possible explanations for the observed declines in activity profiles for the team and individual players include fatigue, situational factors, and pacing. However, underlying mechanisms were not accounted for, and these assumptions are therefore based on previous team-sport studies.
Intensity/time profiles of solar particle events at one astronomical unit
NASA Technical Reports Server (NTRS)
Shea, M. A.
1988-01-01
A description of the intensity-time profiles of solar proton events observed at the orbit of the earth is presented. The discussion, which includes descriptive figures, presents a general overview of the subject without the detailed mathematical description of the physical processes which usually accompany most reviews.
IRIS Observations of Spicules and Structures Near the Solar Limb
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Vial, J.-C.; Koukras, A.; Buchlin, E.; Chane-Yook, M.
2018-02-01
We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of 2''. We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O i and fast-moving bright features in C ii. Finally, we compare the Mg ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d' Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of {˜} 8000 K at small heights to {˜} 20 000 K at large heights, electron densities from 1.1× 10^{11} to 4× 10^{10} cm^{-3} and a turbulent velocity of {˜} 24 km s^{-1}.
Expression Profiling of Nonpolar Lipids in Meibum From Patients With Dry Eye: A Pilot Study
Chen, Jianzhong; Keirsey, Jeremy K.; Green, Kari B.; Nichols, Kelly K.
2017-01-01
Purpose The purpose of this investigation was to characterize differentially expressed lipids in meibum samples from patients with dry eye disease (DED) in order to better understand the underlying pathologic mechanisms. Methods Meibum samples were collected from postmenopausal women with DED (PW-DED; n = 5) and a control group of postmenopausal women without DED (n = 4). Lipid profiles were analyzed by direct infusion full-scan electrospray ionization mass spectrometry (ESI-MS). An initial analysis of 145 representative peaks from four classes of lipids in PW-DED samples revealed that additional manual corrections for peak overlap and isotopes only slightly affected the statistical analysis. Therefore, analysis of uncorrected data, which can be applied to a greater number of peaks, was used to compare more than 500 lipid peaks common to PW-DED and control samples. Statistical analysis of peak intensities identified several lipid species that differed significantly between the two groups. Data from contact lens wearers with DED (CL-DED; n = 5) were also analyzed. Results Many species of the two types of diesters (DE) and very long chain wax esters (WE) were decreased by ∼20% in PW-DED, whereas levels of triacylglycerols were increased by an average of 39% ± 3% in meibum from PW-DED compared to that in the control group. Approximately the same reduction (20%) of similar DE and WE was observed for CL-DED. Conclusions Statistical analysis of peak intensities from direct infusion ESI-MS results identified differentially expressed lipids in meibum from dry eye patients. Further studies are warranted to support these findings. PMID:28426869
Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G
2018-06-01
Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.
Automating dicentric chromosome detection from cytogenetic biodosimetry data
Rogan, Peter K.; Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Caminsky, Natasha; Khan, Wahab; Samarabandu, Jagath; Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.
2014-01-01
We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was recoded in C++/OpenCV; image processing was accelerated by data and task parallelisation with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. PMID:24757176
Lee, Hun Ju; Muindi, Josephia R.; Tan, Wei; Hu, Qiang; Wang, Dan; Liu, Song; Wilding, Gregory E.; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Adjei, Araba A.; Barcos, Maurice; Griffiths, Elizabeth A; Thompson, James E.; Wang, Eunice S.; Johnson, Candace S; Trump, Donald L.; Wetzler, Meir
2013-01-01
Background Several studies suggest that low 25(OH) vitamin D3 levels may be prognostic in some malignancies, but no studies have evaluated their impact on treatment outcome in acute myeloid leukemia (AML). Methods VD levels were evaluated in 97 consecutive newly diagnosed, intensively-treated AML patients. MicroRNA-expression profiles and single nucleotide polymorphisms (SNPs) in the 25(OH) vitamin D3 pathway genes were evaluated and correlated with 25(OH) vitamin D3 levels and treatment outcome. Results Thirty-four (35%) patients had normal 25(OH) vitamin D3 levels (32–100 ng/ml), 34 (35%) insufficient (20–31.9 ng/ml) and 29 (30%) deficient levels (<20 ng/ml). Insufficient/deficient 25(OH) vitamin D3 levels were associated with worse relapse-free survival (RFS) compared to normal vitamin D3 levels. In multivariate analyses, deficient 25(OH) vitamin D3, smoking, European LeukemiaNet Genetic Groups and white blood cell count retained their statistical significance for RFS. A number of microRNAs and SNPs were found to be associated with 25(OH) vitamin D3 level, although none remained significant after multiple test corrections; one 25(OH) vitamin D3 receptor SNP, rs10783219, was associated with lower complete remission rate (p=0.0442), shorter RFS (p=0.0058) and overall survival (p=0.0011). Conclusions It remains to be determined what role microRNA and SNP profiles play in contributing to low 25(OH) vitamin D3 level and/or outcome and whether supplementation will improve AML outcome. PMID:24166051
Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang
2013-02-01
The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...
2017-02-12
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
NASA Astrophysics Data System (ADS)
Eto, Shuzo; Matsuo, Toyofumi; Matsumura, Takuro; Fujii, Takashi; Tanaka, Masayoshi Y.
2014-11-01
The penetration profile of chlorine in a reinforced concrete (RC) specimen was determined by laser-induced breakdown spectroscopy (LIBS). The concrete core was prepared from RC beams with cracking damage induced by bending load and salt water spraying. LIBS was performed using a specimen that was obtained by splitting the concrete core, and the line scan of laser pulses gave the two-dimensional emission intensity profiles of 100 × 80 mm2 within one hour. The two-dimensional profile of the emission intensity suggests that the presence of the crack had less effect on the emission intensity when the measurement interval was larger than the crack width. The chlorine emission spectrum was measured without using the buffer gas, which is usually used for chlorine measurement, by collinear double-pulse LIBS. The apparent diffusion coefficient, which is one of the most important parameters for chloride penetration in concrete, was estimated using the depth profile of chlorine emission intensity and Fick's law. The carbonation depth was estimated on the basis of the relationship between carbon and calcium emission intensities. When the carbon emission intensity was statistically higher than the calcium emission intensity at the measurement point, we determined that the point was carbonated. The estimation results were consistent with the spraying test results using phenolphthalein solution. These results suggest that the quantitative estimation by LIBS of carbonation depth and chloride penetration can be performed simultaneously.
Photofragment image analysis using the Onion-Peeling Algorithm
NASA Astrophysics Data System (ADS)
Manzhos, Sergei; Loock, Hans-Peter
2003-07-01
With the growing popularity of the velocity map imaging technique, a need for the analysis of photoion and photoelectron images arose. Here, a computer program is presented that allows for the analysis of cylindrically symmetric images. It permits the inversion of the projection of the 3D charged particle distribution using the Onion Peeling Algorithm. Further analysis includes the determination of radial and angular distributions, from which velocity distributions and spatial anisotropy parameters are obtained. Identification and quantification of the different photolysis channels is therefore straightforward. In addition, the program features geometry correction, centering, and multi-Gaussian fitting routines, as well as a user-friendly graphical interface and the possibility of generating synthetic images using either the fitted or user-defined parameters. Program summaryTitle of program: Glass Onion Catalogue identifier: ADRY Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer: IBM PC Operating system under which the program has been tested: Windows 98, Windows 2000, Windows NT Programming language used: Delphi 4.0 Memory required to execute with typical data: 18 Mwords No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 9 911 434 Distribution format: zip file Keywords: Photofragment image, onion peeling, anisotropy parameters Nature of physical problem: Information about velocity and angular distributions of photofragments is the basis on which the analysis of the photolysis process resides. Reconstructing the three-dimensional distribution from the photofragment image is the first step, further processing involving angular and radial integration of the inverted image to obtain velocity and angular distributions. Provisions have to be made to correct for slight distortions of the image, and to verify the accuracy of the analysis process. Method of solution: The "Onion Peeling" algorithm described by Helm [Rev. Sci. Instrum. 67 (6) (1996)] is used to perform the image reconstruction. Angular integration with a subsequent multi-Gaussian fit supplies information about the velocity distribution of the photofragments, whereas radial integration with subsequent expansion of the angular distributions over Legendre Polynomials gives the spatial anisotropy parameters. Fitting algorithms have been developed to centre the image and to correct for image distortion. Restrictions on the complexity of the problem: The maximum image size (1280×1280) and resolution (16 bit) are restricted by available memory and can be changed in the source code. Initial centre coordinates within 5 pixels may be required for the correction and the centering algorithm to converge. Peaks on the velocity profile separated by less then the peak width may not be deconvolved. In the charged particle image reconstruction, it is assumed that the kinetic energy released in the dissociation process is small compared to the energy acquired in the electric field. For the fitting parameters to be physically meaningful, cylindrical symmetry of the image has to be assumed but the actual inversion algorithm is stable to distortions of such symmetry in experimental images. Typical running time: The analysis procedure can be divided into three parts: inversion, fitting, and geometry correction. The inversion time grows approx. as R3, where R is the radius of the region of interest: for R=200 pixels it is less than a minute, for R=400 pixels less then 6 min on a 400 MHz IBM personal computer. The time for the velocity fitting procedure to converge depends strongly on the number of peaks in the velocity profile and the convergence criterion. It ranges between less then a second for simple curves and a few minutes for profiles with up to twenty peaks. The time taken for the image correction scales as R2 and depends on the curve profile. It is on the order of a few minutes for images with R=500 pixels. Unusual features of the program: Our centering and image correction algorithm is based on Fourier analysis of the radial distribution to insure the sharpest velocity profile and is insensitive to an uneven intensity distribution. There exists an angular averaging option to stabilize the inversion algorithm and not to loose the resolution at the same time.
NASA Astrophysics Data System (ADS)
McElroy, Kenneth L., Jr.
1992-12-01
A method is presented for the determination of neutral gas densities in the ionosphere from rocket-borne measurements of UV atmospheric emissions. Computer models were used to calculate an initial guess for the neutral atmosphere. Using this neutral atmosphere, intensity profiles for the N2 (0,5) Vegard-Kaplan band, the N2 Lyman-Birge-Hopfield band system, and the OI2972 A line were calculated and compared with the March 1990 NPS MUSTANG data. The neutral atmospheric model was modified and the intensity profiles recalculated until a fit with the data was obtained. The neutral atmosphere corresponding to the intensity profile that fit the data was assumed to be the atmospheric composition prevailing at the time of the observation. The ion densities were then calculated from the neutral atmosphere using a photochemical model. The electron density profile calculated by this model was compared with the electron density profile measured by the U.S. Air Force Geophysics Laboratory at a nearby site.
Kaye, Elena A; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts
2012-10-01
To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat et al., "MR-guided adaptive focusing of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734-1747 (2010)] was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients' phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy.
Kaye, Elena A.; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts
2012-01-01
Purpose: To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. Methods: The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat , “MR-guided adaptive focusing of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734–1747 (2010)]10.1109/TUFFC.2010.1612 was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients’ phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Results: Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. Conclusions: The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy. PMID:23039661
Shellan, Jeffrey B
2004-08-01
The propagation of an optical beam through atmospheric turbulence produces wave-front aberrations that can reduce the power incident on an illuminated target or degrade the image of a distant target. The purpose of the work described here was to determine by computer simulation the statistical properties of the normalized on-axis intensity--defined as (D/r0)2 SR--as a function of D/r0 and the level of adaptive optics (AO) correction, where D is the telescope diameter, r0 is the Fried coherence diameter, and SR is the Strehl ratio. Plots were generated of (D/r0)2 (SR) and sigmaSR/(SR), where (SR) and sigma(SR) are the mean and standard deviation, respectively, of the SR versus D/r0 for a wide range of both modal and zonal AO correction. The level of modal correction was characterized by the number of Zernike radial modes that were corrected. The amount of zonal AO correction was quantified by the number of actuators on the deformable mirror and the resolution of the Hartmann wave-front sensor. These results can be used to determine the optimum telescope diameter, in units of r0, as a function of the AO design. For the zonal AO model, we found that maximum on-axis intensity was achieved when the telescope diameter was sized so that the actuator spacing was equal to approximately 2r0. For modal correction, we found that the optimum value of D/r0 (maximum mean on-axis intensity) was equal to 1.79Nr + 2.86, where Nr is the highest Zernike radial mode corrected.
Proposed rocket experiments to measure the profile and intensity of the solar He1584A resonance line
NASA Technical Reports Server (NTRS)
Judge, D. L.
1978-01-01
The intensity and profile of the helium resonance line at 584 A from the entire disc of the sun was investigated using a rocket-borne helium-filled spectrometer and a curve of growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 plus or minus 10m A while the integrated intensity was measured to be (2.6 plus or minus 1.3) x 10 to the 9th power/photons sec sq cm at solar levels of F sub 10.7 = 90.8 x 10 to the minus 22th power/sq m H sub z and R sub z = 27. The measured linewidth is in good agreement with previous spectrographic measurement but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of (2.0 plus or minus 1.0) x 10 to the 10th power/photons sec sq cm A is in good agreement with values inferred from airglow measurements.
Freitas, B C B; Cassuriaga, A P A; Morais, M G; Costa, J A V
2017-08-01
High concentrations of carbon, which is considered a necessary element, are required for microalgal growth. Therefore, the identification of alternative carbon sources available in large quantities is increasingly important. This study evaluated the effects of light variation and pentose addition on the carbohydrate content and protein profile of Chlorella minutissima grown in a raceway photobioreactor. The kinetic parameters, carbohydrate content, and protein profile of Chlorella minutissima and its theoretical potential for ethanol production were estimated. The highest cellular concentrations were obtained with a light intensity of 33.75µmol.m -2 .s -1 . Arabinose addition combined with a light intensity of 33.75µmol.m -2 .s -1 increased the carbohydrate content by 53.8% and theoretically produced 39.1mL·100g -1 ethanol. All of the assays showed that a lower light availability altered the protein profile. The luminous intensity affects xylose and arabinose assimilation and augments the carbohydrate content in C. minutissima, making this microalga appropriate for bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Shun-chun; Chen, Jian-chao; Lu, Ji-dong; Shen, Yue-liang; Pan, Gang
2015-06-01
In coal-fired plants, Unburned carbon (UC) in fly ash is the major determinant of combustion efficiency in coal-fired boiler. The balance between unburned carbon and NO(x) emissions stresses the need for rapid and accurate methods for the measurement of unburned carbon. Laser-induced breakdown spectroscopy (LIBS) is employed to measure the unburned carbon content in fly ash. In this case, it is found that the C line interference with Fe line at about 248 nm. The interference leads to C could not be quantified independently from Fe. A correction approach for extracting C integrated intensity from the overlapping peak is proposed. The Fe 248.33 nm, Fe 254.60 nm and Fe 272.36 nm lines are used to correct the Fe 247.98 nm line which interference with C 247.86 nm, respectively. Then, the corrected C integrated intensity is compared with the uncorrected C integrated intensity for constructing calibration curves of unburned carbon, and also for the precision and accuracy of repeat measurements. The analysis results show that the regression coefficients of the calibration curves and the precision and accuracy of repeat measurements are improved by correcting C-Fe interference, especially for the fly ash samples with low level unburned carbon content. However, the choice of the Fe line need to avoid a over-correction for C line. Obviously, Fe 254.60 nm is the best
Velocity Profile Characterization for the 5-CM Agent Fate Wind Tunnels
2008-01-01
denominator in the turbulence intensity) decreases near the floor. As can be see , the turbulence intensity ranges from about 0.5 to 2% for the low...Profiles The friction velocity calculated by the above procedure is a factor of two larger than the operational profile. It is difficult to see how the...the toolbar, see Figure 5. 2. Connect appropriate length co-axial cable and probe holder to desired input channel on the IFA300 mainframe. 3. Install
Beam shaping in high-power laser systems with using refractive beam shapers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim
2012-06-01
Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.
Joormann, Jutta; Gotlib, Ian H
2006-11-01
The present study was designed to examine the operation of depression-specific biases in the identification or labeling of facial expression of emotions. Participants diagnosed with major depression and social phobia and control participants were presented with faces that expressed increasing degrees of emotional intensity, slowly changing from a neutral to a full-intensity happy, sad, or angry expression. The authors assessed individual differences in the intensity of facial expression of emotion that was required for the participants to accurately identify the emotion being expressed. The depressed participants required significantly greater intensity of emotion than did the social phobic and the control participants to correctly identify happy expressions and less intensity to identify sad than angry expressions. In contrast, social phobic participants needed less intensity to correctly identify the angry expressions than did the depressed and control participants and less intensity to identify angry than sad expressions. Implications of these results for interpersonal functioning in depression and social phobia are discussed. (c) 2006 APA, all rights reserved.
Photometry of the 'Seyfert Sextet' /VV 115/ and the anonymous galaxy 1558.2 + 2100
NASA Technical Reports Server (NTRS)
Martins, D. H.; Chincarini, G.
1976-01-01
Photometric observations of the Seyfert Sextet (VV 115) are analyzed. Apparent integrated magnitudes are derived relative to the sky brightness, and isophotal maps are given for the field. No evidence for interaction between NGC 6027 and d is found. Luminosity profiles are given for NGC 6027, a, b, and d, with the d profile having been corrected for seeing effects in one dimension. The corrected profile parameters favor the interpretation of d as a highly luminous background galaxy at its cosmological distance. The nearby anonymous galaxy 1558.2 + 2100 is similarly studied, with no clear evidence of photometric peculiarities detected. Its interaction with the Seyfert Sextet appears to be excluded.
Inter-Calibration of EIS, XRT and AIA using Active Region and Bright Point Data
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana M.; Winebarger, Amy R.; Winebarger, Amy R.; Farid, Samaiyah I.
2012-01-01
Certain limitations in our solar instruments have created the need to use several instruments together for long term and/or large field of view studies. We will, therefore, present an intercalibration study of the EIS, XRT and AIA instruments using active region and bright point data. We will use the DEMs calculated from EIS bright point observations to determine the expected AIA and XRT intensities. We will them compare to the observed intensities and calculate a correction factor. We will consider data taken over a year to see if there is a time dependence to the correction factor. We will then determine if the correction factors are valid for active region observations.
NASA Astrophysics Data System (ADS)
Kurugol, Sila; Dy, Jennifer G.; Rajadhyaksha, Milind; Gossage, Kirk W.; Weissmann, Jesse; Brooks, Dana H.
2011-03-01
The examination of the dermis/epidermis junction (DEJ) is clinically important for skin cancer diagnosis. Reflectance confocal microscopy (RCM) is an emerging tool for detection of skin cancers in vivo. However, visual localization of the DEJ in RCM images, with high accuracy and repeatability, is challenging, especially in fair skin, due to low contrast, heterogeneous structure and high inter- and intra-subject variability. We recently proposed a semi-automated algorithm to localize the DEJ in z-stacks of RCM images of fair skin, based on feature segmentation and classification. Here we extend the algorithm to dark skin. The extended algorithm first decides the skin type and then applies the appropriate DEJ localization method. In dark skin, strong backscatter from the pigment melanin causes the basal cells above the DEJ to appear with high contrast. To locate those high contrast regions, the algorithm operates on small tiles (regions) and finds the peaks of the smoothed average intensity depth profile of each tile. However, for some tiles, due to heterogeneity, multiple peaks in the depth profile exist and the strongest peak might not be the basal layer peak. To select the correct peak, basal cells are represented with a vector of texture features. The peak with most similar features to this feature vector is selected. The results show that the algorithm detected the skin types correctly for all 17 stacks tested (8 fair, 9 dark). The DEJ detection algorithm achieved an average distance from the ground truth DEJ surface of around 4.7μm for dark skin and around 7-14μm for fair skin.
Comparison of Aberrations After Standard and Customized Refractive Surgery
NASA Astrophysics Data System (ADS)
Fang, L.; He, X.; Wang, Y.
2013-09-01
To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.
Improving excellence in scoliosis rehabilitation: a controlled study of matched pairs.
Weiss, H-R; Klein, R
2006-01-01
Physiotherapy programmes so far mainly address the lateral deformity of scoliosis, a few aim at the correction of rotation and only very few address the sagittal profile. Meanwhile, there is evidence that correction forces applied in the sagittal plane are also able to correct the scoliotic deformity in the coronal and frontal planes. So it should be possible to improve excellence in scoliosis rehabilitation by the implementation of exercises to correct the sagittal deformity in scoliosis patients. An exercise programme (physio-logic exercises) aiming at a physiologic sagittal profile was developed to add to the programme applied at the centre or to replace certain exercises or exercising positions. To test the hypothesis that physio-logic exercises improve the outcome of Scoliosis Intensive Rehabilitation (SIR), the following study design was chosen: Prospective controlled trial of pairs of patients with idiopathic scoliosis matched by sex, age, Cobb angle and curve pattern. There were 18 patients in the treatment group (SIR + physio-logic exercises) and 18 patients in the control group (SIR only), all in matched pairs. Average Cobb angle in the treatment group was 34.5 degrees (SD 7.8) Cobb angle in the control group was 31.6 degrees (SD 5.8). Age in the treatment group was at average 15.3 years (SD 1.1) and in the control group 14.7 years (SD 1.3). Thirteen of the 18 patients in either group had a brace. Outcome parameter: average lateral deviation (mm), average surface rotation ( degrees ) and maximum Kyphosis angle ( degrees ) as evaluated with the help of surface topography (Formetric-system). Lateral deviation (mm) decreased significantly after the performance of the physio-logic programme and highly significantly in the physio-logic ADL posture; however, it was not significant after completion of the whole rehabilitation programme (2.3 vs 0.3 mm in the controls). Surface rotation improved at average 1.2 degrees in the treatment group and 0.8 degrees in the controls while Kyphosis angle did not improve in both groups. The physio-logic programme has to be regarded as a useful 'add on' to Scoliosis Rehabilitation with regards to the lateral deviation of the scoliotic trunk. A longitudinal controlled study is necessary to evaluate the long-term effect of the the physio-logic programme also with the help of X-rays.
Bavrina, A P; Monich, V A; Malinovskaya, S L; Yakovleva, E I; Bugrova, M L; Lazukin, V F
2015-05-01
Effects of successive exposure to ionizing irradiation and low-intensity broadband red light on electrical activity of the heart and myocardium microstructure were studied in rats. Lowintensity red light corrected some ECG parameters, in particular, it normalized QT and QTc intervals and voltage of R and T waves. Changes in ECG parameters were followed by alterations in microstructure of muscle fi laments in the myocardium of treatment group animals comparing to control group.
Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-10-15
By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Y. X.; Jin, X. L., E-mail: jinxiaolin@uestc.edu.cn; Yan, W. Z.
The model of photon and pair production in strong field quantum electrodynamics is implemented into our 1D3V particle-in-cell code with Monte Carlo algorithm. Using this code, the evolution of the particles in ultrahigh intensity laser (∼10{sup 23} W/cm{sup 2}) interaction with aluminum foil target is observed. Four different initial plasma profiles are considered in the simulations. The effects of initial plasma profiles on photon and pair production, energy spectra, and energy evolution are analyzed. The results imply that one can set an optimal initial plasma profile to obtain the desired photon distributions.
VizieR Online Data Catalog: PACS photometry of FIR faint stars (Klaas+, 2018)
NASA Astrophysics Data System (ADS)
Klaas, U.; Balog, Z.; Nielbock, M.; Mueller, T. G.; Linz, H.; Kiss, Cs.
2018-01-01
70, 100 and 160um photometry of FIR faint stars from PACS scan map and chop/nod measurements. For scan maps also the photometry of the combined scan and cross-scan maps (at 160um there are usually two scan and cross-scan maps each as complements to the 70 and 100um maps) is given. Note: Not all stars have measured fluxes in all three filters. Scan maps: The main observing mode was the point-source mini-scan-map mode; selected scan map parameters are given in column mparam. An outline of the data processing using the high-pass filter (HPF) method is presented in Balog et al. (2014ExA....37..129B). Processing proceeded from Herschel Science Archive SPG v13.1.0 level 1 products with HIPE version 15 build 165 for 70 and 100um maps and from Herschel Science Archive SPG v14.2.0 level 1 products with HIPE version 15 build 1480 for 160um maps. Fluxes faper were obtained by aperture photometry with aperture radii of 5.6, 6.8 and 10.7 arcsec for the 70, 100 and 160um filter, respectively. Noise per pixel sigpix was determined with the histogram method, described in this paper, for coverage values greater than or equal to 0.5*maximum coverage. The number of map pixels (1.1, 1.4, and 2.1 arcsec pixel size, respectively) inside the photometric aperture is Naper = 81.42, 74.12, and 81.56, respectively. The corresponding correction factors for correlated noise are fcorr = 3.13, 2.76, and 4.12, respectively. The noise for the photometric aperture is calculated as sig_aper=sqrt(Naper)*fcorr*sigpix. Signal-to-noise ratios are determined as S/N=faper/sigaper. Aperture-correction factors to derive the total flux are caper = 1.61, 1.56 and 1.56 for the 70, 100 and 160um filter, respectively. Applied colour-correction factors for a 5000K black-body SED are cc = 1.016, 1.033, and 1.074 for the 70, 100, and 160um filter, respectively. The final stellar flux is derived as fstar=faper*caper/cc. Maximum and minimum FWHM of the star PSF are determined by an elliptical fit of the intensity profile. Chop/nod observations: The chop/nod point-source mode is described in this paper. An outline of the data processing is presented in Nielbock et al. (2013ExA....36..631N). Processing proceeded from Herschel Science Archive SPG v11.1.0 level 1 products with HIPE version 13 build 2768. Gyro correction was applied for most of the cases to improve the pointing reconstruction performance. Fluxes faper were obtained by aperture photometry with aperture radii of 5.6, 6.8 and 10.7 arcsec for the 70, 100 and 160um filter, respectively. Noise per pixel sigpix was determined with the histogram method, described in this paper, for coverage values greater than or equal to 0.5*maximum coverage. The number of map pixels (1.1, 1.4, and 2.1 arcsec pixel size, respectively) inside the photometric aperture is Naper = 81.42, 74.12, and 81.56, respectively. The corresponding correction factors for correlated noise are fcorr = 6.33, 4.22, and 7.81, respectively. The noise for the photometric aperture is calculated as sigaper=sqrt(Naper)*fcorr*sigpix. Signal-to-noise ratios are determined as S/N=faper/sigaper. Aperture-correction factors to derive the total flux are caper = 1.61, 1.56 and 1.56 for the 70, 100 and 160um filter, respectively. Applied colour-correction factors for a 5000K black-body SED are cc = 1.016, 1.033, and 1.074 for the 70, 100, and 160um filter, respectively. Maximum and minimum FWHM of the star PSF are determined by an elliptical fit of the intensity profile. (7 data files).
Lee, Dong-Hoon; Lee, Do-Wan; Henry, David; Park, Hae-Jin; Han, Bong-Soo; Woo, Dong-Cheol
2018-04-12
To evaluate the effects of signal intensity differences between the b0 image and diffusion tensor imaging (DTI) in the image registration process. To correct signal intensity differences between the b0 image and DTI data, a simple image intensity compensation (SIMIC) method, which is a b0 image re-calculation process from DTI data, was applied before the image registration. The re-calculated b0 image (b0 ext ) from each diffusion direction was registered to the b0 image acquired through the MR scanning (b0 nd ) with two types of cost functions and their transformation matrices were acquired. These transformation matrices were then used to register the DTI data. For quantifications, the dice similarity coefficient (DSC) values, diffusion scalar matrix, and quantified fibre numbers and lengths were calculated. The combined SIMIC method with two cost functions showed the highest DSC value (0.802 ± 0.007). Regarding diffusion scalar values and numbers and lengths of fibres from the corpus callosum, superior longitudinal fasciculus, and cortico-spinal tract, only using normalised cross correlation (NCC) showed a specific tendency toward lower values in the brain regions. Image-based distortion correction with SIMIC for DTI data would help in image analysis by accounting for signal intensity differences as one additional option for DTI analysis. • We evaluated the effects of signal intensity differences at DTI registration. • The non-diffusion-weighted image re-calculation process from DTI data was applied. • SIMIC can minimise the signal intensity differences at DTI registration.
Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Arthur J; Joergensen, Mads; Wang, Xiaoping
2014-01-01
The intensity of single crystal Bragg peaks obtained by mapping neutron time-of-flight event data into reciprocal space and integrating in various ways are compared. These include spherical integration with a fixed radius, ellipsoid fitting and integrating of the peak intensity and one-dimensional peak profile fitting. In comparison to intensities obtained by integrating in real detector histogram space, the data integrated in reciprocal space results in better agreement factors and more accurate atomic parameters. Furthermore, structure refinement using integrated intensities from one-dimensional profile fitting is demonstrated to be more accurate than simple peak-minus-background integration.
Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas
2015-11-06
In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.
Investigation of the feasibility of CARS measurements in scramjet combustion
NASA Technical Reports Server (NTRS)
Shirley, J. A.; Hall, R. J.; Eckbreth, A. C.
1980-01-01
Results are presented of analytical and experimental investigations to determine the feasibility of using coherent anti-Stokes Raman Spectroscopy (CARS) to measure temperature and species concentration in supersonic combustion experiments. The CARS spectra of H2O, O2 and H2 were measured in laboratory flames. Computer code calculated spectra agree very well with the measured spectra. Temperature, and O2 and H2 concentration profiles have been determined from CARS spectra in a laboratory H2 air flat diffusion flame. Temperature measurements agree with radiation corrected thermocouple measurements within 5 to 10 percent, depending on species concentration. The feasibility of measuring O2 concentrations up to 10 percent, from the spectral shape was demonstrated. H2 concentrations determined from CARS intensities agree with spontaneous Raman measurements within a factor of two. Finally, a conceptual design was formulated for diagnostics in the Langley Research Center scramjet combustion facility.
NASA Technical Reports Server (NTRS)
Levasseur, A.-C.; Meier, R. R.; Tinsley, B. A.
1976-01-01
New satellite Balmer alpha measurements and solar Lyman beta flux and line profile measurements, together with new measurements of the zodiacal light intensity used in correcting both ground and satellite Balmer alpha measurements for the effects of the Fraunhofer line in the zodiacal light, have been used in a reevaluation of the long-standing discrepancy between ground-based Balmer alpha emission rates and other geocoronal hydrogen parameters. The solar Lyman beta line center flux is found to be (4.1 plus or minus 1.3) billion photons per sq cm per sec per angstrom at S(10.7) equals 110 and, together with a current hydrogen model which has 92,000 atoms per cu cm at 650 km for T(inf) equals 950 K, gives good agreement between calculated Balmer alpha emission rates and the ground-based and satellite measurements.
The Energetics of Transient Eddies in the Martian Northern Hemisphere
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael; Szunyogh, Istvan; Lemmon, Mark T.
2016-10-01
The energetics of northern hemisphere transient waves in the Mars Analysis Correction Data Assimilation is analyzed. Three periods between the fall and spring equinoxes (Ls=200°-230°, 255°-285°, and 330°-360°) during three Mars Years are selected to exemplify the fall, winter, and spring wave activity. Fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the solsticial pause in eddy activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout the northern hemisphere eddy period with little reduction in amplitude during the solsticial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical shear profile of the westerly jet around winter solstice.
MR-guided adaptive focusing of therapeutic ultrasound beams in the human head
Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël
2012-01-01
Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. PMID:22320825
A Multidimensional B-Spline Correction for Accurate Modeling Sugar Puckering in QM/MM Simulations.
Huang, Ming; Dissanayake, Thakshila; Kuechler, Erich; Radak, Brian K; Lee, Tai-Sung; Giese, Timothy J; York, Darrin M
2017-09-12
The computational efficiency of approximate quantum mechanical methods allows their use for the construction of multidimensional reaction free energy profiles. It has recently been demonstrated that quantum models based on the neglect of diatomic differential overlap (NNDO) approximation have difficulty modeling deoxyribose and ribose sugar ring puckers and thus limit their predictive value in the study of RNA and DNA systems. A method has been introduced in our previous work to improve the description of the sugar puckering conformational landscape that uses a multidimensional B-spline correction map (BMAP correction) for systems involving intrinsically coupled torsion angles. This method greatly improved the adiabatic potential energy surface profiles of DNA and RNA sugar rings relative to high-level ab initio methods even for highly problematic NDDO-based models. In the present work, a BMAP correction is developed, implemented, and tested in molecular dynamics simulations using the AM1/d-PhoT semiempirical Hamiltonian for biological phosphoryl transfer reactions. Results are presented for gas-phase adiabatic potential energy surfaces of RNA transesterification model reactions and condensed-phase QM/MM free energy surfaces for nonenzymatic and RNase A-catalyzed transesterification reactions. The results show that the BMAP correction is stable, efficient, and leads to improvement in both the potential energy and free energy profiles for the reactions studied, as compared with ab initio and experimental reference data. Exploration of the effect of the size of the quantum mechanical region indicates the best agreement with experimental reaction barriers occurs when the full CpA dinucleotide substrate is treated quantum mechanically with the sugar pucker correction.
One-dimensional scanning of moisture in heated porous building materials with NMR.
van der Heijden, G H A; Huinink, H P; Pel, L; Kopinga, K
2011-02-01
In this paper we present a new dedicated NMR setup which is capable of measuring one-dimensional moisture profiles in heated porous materials. The setup, which is placed in the bore of a 1.5 T whole-body scanner, is capable of reaching temperatures up to 500 °C. Moisture and temperature profiles can be measured quasi simultaneously with a typical time resolution of 2-5 min. A methodology is introduced for correcting temperature effects on NMR measurements at these elevated temperatures. The corrections are based on the Curie law for paramagnetism and the observed temperature dependence of the relaxation mechanisms occurring in porous materials. Both these corrections are used to obtain a moisture content profile from the raw NMR signal profile. To illustrate the methodology, a one-sided heating experiment of concrete with a moisture content in equilibrium with 97% RH is presented. This kind of heating experiment is of particular interest in the research on fire spalling of concrete, since it directly reveals the moisture and heat transport occurring inside the concrete. The obtained moisture profiles reveal a moisture peak building up behind the boiling front, resulting in a saturated layer. To our knowledge the direct proof of the formation of a moisture peak and subsequent moisture clogging has not been reported before. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jimenez, Jose Ramón; González Anera, Rosario; Jiménez del Barco, Luis; Hita, Enrique; Pérez-Ocón, Francisco
2005-01-01
We provide a correction factor to be added in ablation algorithms when a Gaussian beam is used in photorefractive laser surgery. This factor, which quantifies the effect of pulse overlapping, depends on beam radius and spot size. We also deduce the expected post-surgical corneal radius and asphericity when considering this factor. Data on 141 eyes operated on LASIK (laser in situ keratomileusis) with a Gaussian profile show that the discrepancy between experimental and expected data on corneal power is significantly lower when using the correction factor. For an effective improvement of post-surgical visual quality, this factor should be applied in ablation algorithms that do not consider the effects of pulse overlapping with a Gaussian beam.
Flat-top beam for laser-stimulated pain
NASA Astrophysics Data System (ADS)
McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark
2005-04-01
One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.
Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.
1992-01-01
The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.
NASA Astrophysics Data System (ADS)
Borys, Damian; Serafin, Wojciech; Gorczewski, Kamil; Kijonka, Marek; Frackiewicz, Mariusz; Palus, Henryk
2018-04-01
The aim of this work was to test the most popular and essential algorithms of the intensity nonuniformity correction of the breast MRI imaging. In this type of MRI imaging, especially in the proximity of the coil, the signal is strong but also can produce some inhomogeneities. Evaluated methods of signal correction were: N3, N3FCM, N4, Nonparametric, and SPM. For testing purposes, a uniform phantom object was used to obtain test images using breast imaging MRI coil. To quantify the results, two measures were used: integral uniformity and standard deviation. For each algorithm minimum, average and maximum values of both evaluation factors have been calculated using the binary mask created for the phantom. In the result, two methods obtained the lowest values in these measures: N3FCM and N4, however, for the second method visually phantom was the most uniform after correction.
An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.
Yuan, Xueyin; Mayanovic, Robert A
2017-10-01
Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman bands having unnormalized intensity/FWHM ratios lower than 200 counts/cm -1 .
NASA Astrophysics Data System (ADS)
Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2016-05-01
Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.
Hsu, Shu-Hui; Cao, Yue; Lawrence, Theodore S.; Tsien, Christina; Feng, Mary; Grodzki, David M.; Balter, James M.
2015-01-01
Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus “true” regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1-mm air mask expansion yielded AUC increases of 1% and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the discriminatory power of air from bone for both UTE and PETRA images, and reduced the difference between the two imaging sequences. Both postprocessed UTE and PETRA images demonstrated sufficient power to discriminate air from bone to support synthetic CT generation from MRI data. PMID:25776205
Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils
Boyes, Richard G.; Gunter, Jeff L.; Frost, Chris; Janke, Andrew L.; Yeatman, Thomas; Hill, Derek L.G.; Bernstein, Matt A.; Thompson, Paul M.; Weiner, Michael W.; Schuff, Norbert; Alexander, Gene E.; Killiany, Ronald J.; DeCarli, Charles; Jack, Clifford R.; Fox, Nick C.
2008-01-01
Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n = 18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d = 50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p < 0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391
Nishikawa, Tomofumi; Okamura, Tomonori; Nakayama, Hirofumi; Miyamatsu, Naomi; Morimoto, Akiko; Toyoda, Kazunori; Suzuki, Kazuo; Toyota, Akihiro; Hata, Takashi; Yamaguchi, Takenori
2016-01-01
Background An immediate ambulance call offers the greatest opportunity for acute stroke therapy. Effectively using ambulance services requires strengthening the association between knowledge of early stroke symptoms and intention to call an ambulance at stroke onset, and encouraging the public to use ambulance services. Methods The present study utilized data from the Acquisition of Stroke Knowledge (ASK) study, which administered multiple-choice, mail-in surveys regarding awareness of early stroke symptoms and response to a stroke attack before and after a 2-year stroke education campaign in two areas subject to intensive and moderate intervention, as well as in a control area, in Japan. In these three areas, 3833 individuals (1680, 1088 and 1065 participants in intensive intervention, moderate intervention, and control areas, respectively), aged 40 to 74 years, who responded appropriately to each survey were included in the present study. Results After the intervention, the number of correctly identified symptoms significantly associated with intention to call an ambulance (P < 0.05) increased (eg, from 4 to 5 correctly identified symptoms), without increasing choice of decoy symptoms in the intensive intervention area. Meanwhile, in other areas, rate of identification of not only correct symptoms but also decoy symptoms associated with intention to call an ambulance increased. Furthermore, the association between improvement in the knowledge of stroke symptoms and intention to call an ambulance was observed only in the intensive intervention area (P = 0.009). Conclusions Our results indicate that intensive interventions are useful for strengthening the association between correct knowledge of early stroke symptoms and intention to call an ambulance, without strengthening the association between incorrect knowledge and intention to call an ambulance. PMID:26441211
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
Carr, Lucas J; Mahar, Matthew T
2012-01-01
Purpose. To examine the accuracy of intensity and inclinometer output of three physical activity monitors during various sedentary and light-intensity activities. Methods. Thirty-six participants wore three physical activity monitors (ActiGraph GT1M, ActiGraph GT3X+, and StepWatch) while completing sedentary (lying, sitting watching television, sitting using computer, and standing still) light (walking 1.0 mph, pedaling 7.0 mph, pedaling 15.0 mph) intensity activities under controlled settings. Accuracy for correctly categorizing intensity was assessed for each monitor and threshold. Accuracy of the GT3X+ inclinometer function (GT3X+Incl) for correctly identifying anatomical position was also assessed. Percentage agreement between direct observation and the monitor recorded time spent in sedentary behavior and light intensity was examined. Results. All monitors using all thresholds accurately identified over 80% of sedentary behaviors and 60% of light-intensity walking time based on intensity output. The StepWatch was the most accurate in detecting pedaling time but unable to detect pedal workload. The GT3X+Incl accurately identified anatomical position during 70% of all activities but demonstrated limitations in discriminating between activities of differing intensity. Conclusions. Our findings suggest that all three monitors accurately measure most sedentary and light-intensity activities although choice of monitors should be based on study-specific needs.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Derived Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
Profiles of turbulence dissipation rate for 15-minute intervals, time-stamped at the beginning of the 15-minute period, during the final 30 minutes of each hour. During that time, the 915-MHz wind profiling radar was in an optimized configuration with a vertically pointing beam only for measuring accurate spectral widths of vertical velocity. A bias-corrected dissipation rate also was profiled (described in McCaffrey et al. 2017). Hourly files contain two 15-minute profiles.
Gammel, George M.; Kugel, Henry W.
1992-10-06
A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.
Work-function calculations for a symmetrical total-charge-density profile at the metallic surface
NASA Astrophysics Data System (ADS)
Wojciechowski, K. F.; Sobańska-Nowotnik, M.
1983-07-01
It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.
Erny, Guillaume L; Acunha, Tanize; Simó, Carolina; Cifuentes, Alejandro; Alves, Arminda
2017-04-07
Separation techniques hyphenated with high-resolution mass spectrometry have been a true revolution in analytical separation techniques. Such instruments not only provide unmatched resolution, but they also allow measuring the peaks accurate masses that permit identifying monoisotopic formulae. However, data files can be large, with a major contribution from background noise and background ions. Such unnecessary contribution to the overall signal can hide important features as well as decrease the accuracy of the centroid determination, especially with minor features. Thus, noise and baseline correction can be a valuable pre-processing step. The methodology that is described here, unlike any other approach, is used to correct the original dataset with the MS scans recorded as profiles spectrum. Using urine metabolic studies as examples, we demonstrate that this thorough correction reduces the data complexity by more than 90%. Such correction not only permits an improved visualisation of secondary peaks in the chromatographic domain, but it also facilitates the complete assignment of each MS scan which is invaluable to detect possible comigration/coeluting species. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental generation of Laguerre-Gaussian beam using digital micromirror device.
Ren, Yu-Xuan; Li, Ming; Huang, Kun; Wu, Jian-Guang; Gao, Hong-Fang; Wang, Zi-Qiang; Li, Yin-Mei
2010-04-01
A digital micromirror device (DMD) modulates laser intensity through computer control of the device. We experimentally investigate the performance of the modulation property of a DMD and optimize the modulation procedure through image correction. Furthermore, Laguerre-Gaussian (LG) beams with different topological charges are generated by projecting a series of forklike gratings onto the DMD. We measure the field distribution with and without correction, the energy of LG beams with different topological charges, and the polarization property in sequence. Experimental results demonstrate that it is possible to generate LG beams with a DMD that allows the use of a high-intensity laser with proper correction to the input images, and that the polarization state of the LG beam differs from that of the input beam.
NASA Astrophysics Data System (ADS)
Ciptadi, G.; Rahayu, S.; Fatchiyah; Wahyuningsih, S.; Budiarto, A.; Nasich, M.; Putri, A. R. I.; Mudawamah, M.; Ihsan, M. N.
2018-02-01
This research aims were to study the effect of the oocyte and sperms cryopreservation of Indonesian local goat on the post-thawing quality and profile or characters of Calcium+2 intensity in relating with their fertility capacity. A study was conducted to test the freezing method and post-thawing viability both stock cells stored in the deep freezer and liquid nitrogen (-80°C of vs -196°C). A fertility test of sperms has been conducted through in vitro of sperm quality, while the oocytes cryopreserved test was done by in vitro maturation (IVM) rate (%). The profile of Calcium 2+ was performed and analysis by Confocal Laser Scanned Microscope (CLSM). The result showed that IVM rate of goat oocyte is considered lower when cryopreserved in -80°C than in -196°C. Meanwhile, sperm is considered having a good quality in 2 methods of cryopreservation with post-thawing motility > 40 % (SNI 2014). There is an important difference between Calcium intensity of fresh and post-thawing both for oocyte and spermatozoa. Calcium +2 profiles is varied individually on the peak of intensity, but it considered expressed the same profile of each fresh and post-thawing cell. In vitro fertilization test need to be performed to complete the viability and fertility competence of these sperm and oocyte freezing stocks.
Cold pulse and rotation reversals with turbulence spreading and residual stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariri, F.; Naulin, V.; Juul Rasmussen, J.
2016-05-15
Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition.more » Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here.« less
Automating dicentric chromosome detection from cytogenetic biodosimetry data.
Rogan, Peter K; Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Caminsky, Natasha; Khan, Wahab; Samarabandu, Jagath; Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H
2014-06-01
We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was recoded in C++/OpenCV; image processing was accelerated by data and task parallelisation with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor
2013-01-01
Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.
Frankfort, Suzanne V; van Campen, Jos P C M; Tulner, Linda R; Beijnen, Jos H
2008-09-01
By using surface enhanced laser desorption/ionisation- time of flight mass spectrometry (SELDI-TOF MS) an amyloid beta (Abeta) profile was shown in cerebrospinal fluid (CSF) of patients with dementia. To investigate the Abeta-profile in serum with SELDI-TOF MS, to evaluate if this profile resembles CSF profiles and to investigate the correlation between intensity of Abeta-peptide-peaks in serum and clinical, demographical and genetic variables. Duplicate profiling of Abeta by an SELDI-TOF MS immunocapture assay was performed in 106 patients, suffering from Alzheimer's Disease or Vascular Dementia and age-matched non-demented control patients. Linear regression analyses were performed to investigate the intensities of four selected Abeta peaks as dependent variables in relation to the independent clinical, demographic or genetic variables. Abeta37, Abeta38 and Abeta40 were found among additional unidentified Abeta peptides, with the most pronounced Abeta peak at a molecular mass of 7752. This profile partly resembled the CSF profile. The clinical diagnosis was not a predictive independent variable, however ABCB1 genotypes C1236T, G2677T/A, age and creatinine level showed to be related to Abeta peak intensities in multivariate analyses. We found an Abeta profile in serum that partly resembled the CSF profile in demented patients. Age, creatinine levels, presence of the APOE epsilon4 allele and ABCB1 genotypes (C1236T and G2677T/A) were correlated with the Abeta serum profile. The role of P-gp as an Abeta transporter and the role of ABCB1 genotypes deserves further research. The investigated serum Abeta profile is probably not useful in the diagnosis of dementia.
Slice profile and B1 corrections in 2D magnetic resonance fingerprinting.
Ma, Dan; Coppo, Simone; Chen, Yong; McGivney, Debra F; Jiang, Yun; Pahwa, Shivani; Gulani, Vikas; Griswold, Mark A
2017-11-01
The goal of this study is to characterize and improve the accuracy of 2D magnetic resonance fingerprinting (MRF) scans in the presence of slice profile (SP) and B 1 imperfections, which are two main factors that affect quantitative results in MRF. The SP and B 1 imperfections are characterized and corrected separately. The SP effect is corrected by simulating the radiofrequency pulse in the dictionary, and the B 1 is corrected by acquiring a B 1 map using the Bloch-Siegert method before each scan. The accuracy, precision, and repeatability of the proposed method are evaluated in phantom studies. The effects of both SP and B 1 imperfections are also illustrated and corrected in the in vivo studies. The SP and B 1 corrections improve the accuracy of the T 1 and T 2 values, independent of the shape of the radiofrequency pulse. The T 1 and T 2 values obtained from different excitation patterns become more consistent after corrections, which leads to an improvement of the robustness of the MRF design. This study demonstrates that MRF is sensitive to both SP and B 1 effects, and that corrections can be made to improve the accuracy of MRF with only a 2-s increase in acquisition time. Magn Reson Med 78:1781-1789, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Tautenhahn, Hans-Michael; Brückner, Sandra; Uder, Christiane; Erler, Silvio; Hempel, Madlen; von Bergen, Martin; Brach, Janine; Winkler, Sandra; Pankow, Franziska; Gittel, Claudia; Baunack, Manja; Lange, Undine; Broschewitz, Johannes; Dollinger, Matthias; Bartels, Michael; Pietsch, Uta; Amann, Kerstin; Christ, Bruno
2017-06-01
In patients, acute kidney injury (AKI) is often due to haemodynamic impairment associated with hepatic decompensation following extended liver surgery. Mesenchymal stem cells (MSCs) supported tissue protection in a variety of acute and chronic diseases, and might hence ameliorate AKI induced by extended liver resection. Here, 70% liver resection was performed in male pigs. MSCs were infused through a central venous catheter and haemodynamic parameters as well as markers of acute kidney damage were monitored under intensive care conditions for 24 h post-surgery. Cytokine profiles were established to anticipate the MSCs' potential mode of action. After extended liver resection, hyperdynamic circulation, associated with hyponatraemia, hyperkalaemia, an increase in serum aldosterone and low urine production developed. These signs of hepatorenal dysfunction and haemodynamic impairment were corrected by MSC treatment. MSCs elevated PDGF levels in the serum, possibly contributing to circulatory homeostasis. Another 14 cytokines were increased in the kidney, most of which are known to support tissue regeneration. In conclusion, MSCs supported kidney and liver function after extended liver resection. They probably acted through paracrine mechanisms improving haemodynamics and tissue homeostasis. They might thus provide a promising strategy to prevent acute kidney injury in the context of post-surgery acute liver failure.
Brookes, Emre; Vachette, Patrice; Rocco, Mattia; Pérez, Javier
2016-01-01
Size-exclusion chromatography coupled with SAXS (small-angle X-ray scattering), often performed using a flow-through capillary, should allow direct collection of monodisperse sample data. However, capillary fouling issues and non-baseline-resolved peaks can hamper its efficacy. The UltraScan solution modeler (US-SOMO) HPLC-SAXS (high-performance liquid chromatography coupled with SAXS) module provides a comprehensive framework to analyze such data, starting with a simple linear baseline correction and symmetrical Gaussian decomposition tools [Brookes, Pérez, Cardinali, Profumo, Vachette & Rocco (2013 ▸). J. Appl. Cryst. 46, 1823–1833]. In addition to several new features, substantial improvements to both routines have now been implemented, comprising the evaluation of outcomes by advanced statistical tools. The novel integral baseline-correction procedure is based on the more sound assumption that the effect of capillary fouling on scattering increases monotonically with the intensity scattered by the material within the X-ray beam. Overlapping peaks, often skewed because of sample interaction with the column matrix, can now be accurately decomposed using non-symmetrical modified Gaussian functions. As an example, the case of a polydisperse solution of aldolase is analyzed: from heavily convoluted peaks, individual SAXS profiles of tetramers, octamers and dodecamers are extracted and reliably modeled. PMID:27738419
Current results from AlRS/AMSU/HSB
NASA Technical Reports Server (NTRS)
Susskind, Joel; Atlas, Robert; Barnet, Christopher; Blaisdell, Jon; Iredell, Lena; Bri, Genia; Jusem, Juan Carlos; Keita, Fricky; Kouvaris, Louis; Molnar, Gyula
2004-01-01
AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correction coefficients and the prediction of location and intensity of cyclones.
Magnetic and Velocity Field Changes Related to the Solar Flares of 28 and 29 October 2003
NASA Astrophysics Data System (ADS)
Maurya, R. A.; Ambastha, A.
Magnetic and velocity field measurements of solar active regions suffer from ambiguities caused by the change in spectral line profiles that occur during the impulsive phase of a major flare. This leads to difficulties in correct interpretation of any flare-related changes. Using magnetic and Doppler movies taken with GONG and MDI, we have detected transient, "moving" features around the peak phases of the X17.2/4B flare observed on 28 October 2003 and the X10/2B flare observed on 29 October 2003 in super-active region NOAA 10486. These features were located near the compact acoustic sources reported earlier by Donea and Lindsey (2005) and the seismic sources reported by Zharkova and Zharkov (2007).We find a moving feature, spatially and temporally associated with the flare ribbons, that separates away at speeds ranging from 30 to 50 km s-1 as observed in photospheric white light and in temperature-minimum (1600 Å), chromospheric (Hα), and transition-region (284Å ) intensities.We suggest that such moving features arise from the line-profile changes attributed to downward electron jets associated with the flare, and do not reflect real changes in the photospheric magnetic and velocity fields. However, abrupt and persistent changes in the pre- and post-flare phases were also found, which do not seem to be affected by line-profile changes. The detailed results have been appeared in Maurya and Ambastha (2009).
Profile of hepatitis B and C virus infection in prisoners in Lubuk Pakam correctional facilities
NASA Astrophysics Data System (ADS)
Rey, I.; Saragih, R. H.; Effendi-YS, R.; Sembiring, J.; Siregar, G. A.; Zain, L. H.
2018-03-01
Prisoners in correctional facilities are predisposed to chronic viral infections because of their high-risk behaviors or unsafe lifestyle. The economic and public health burden of chronic hepatitis B and C and its sequelae need to be addressed, such as by finding the risk factors and therefore reducing the spread of HCV and HBV infection in prisons. This study aimed to see the profile of Hepatitis B and C Virus Infection in prisoners in Lubuk Pakam Correctional Facilities. This cross-sectional study was in Lubuk Pakam Correctional Facilities in 2016. From 1114 prisoners in Lubuk Pakam correctional facility, we randomly examined 120 prisoners for HBV and HCV serology markers. From 120 prisoners, six prisoners were HBV positive, 21 prisoners were HCV positive and one prisoner positive for both HCV and HBV infection. The most common risk factors for prisoners getting HBV infection are tattoos and free sex (36.4% and 36.4%, respectively). The most common risk factors for HCV infection in prisoners are tattoos and free sex (40% and 35%, respectively).
AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.
Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia
2017-03-14
Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.
Beam profile measurement on HITU transducers using a thermal intensity sensor technique
NASA Astrophysics Data System (ADS)
Wilkens, V.; Sonntag, S.; Jenderka, K.-V.
2011-02-01
Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.
Hacki, T
1996-01-01
The Voice Range Profile (VRP) measurement offers a method for the investigation of voice modalities i.e. speaking voice, shouting voice and singing voice in their mutual pitch and intensity relations. The parameters FO and SPL are evaluated by means of automatic pitch and SPL measurements from (1) sustained phonation /a:/ in the speaker's natural pitch and intensity range, (2) the continuous speaking voice beginning with Pianissimo up to Fortissimo, (3) the shouting voice. Vocal intensity is plotted vertically, vocal pitch horizontally. The displays of the vocal intensity versus fundamental frequency are defined as singing voice range profile (VRP), speaking VRP and shouting VRP. The VRPs are superimposed on the same plot. Their form, their shape and their position to each other are analysed. The physiological relationships between the VRPs of the different voice modalities to each other are defined. The pathological relationships between the VRPs (i.e. reduction, shifting) give information about etiology and pathomechanism of voice disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina
Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less
Jensen, Gordon L.; Koletzko, Berthold V.; Singer, Pierre; Wanten, Geert J. A.
2010-01-01
Background Energy deficit is a common and serious problem in intensive care units and is associated with increased rates of complications, length of stay, and mortality. Parenteral nutrition (PN), either alone or in combination with enteral nutrition, can improve nutrient delivery to critically ill patients. Lipids provide a key source of calories within PN formulations, preventing or correcting energy deficits and improving outcomes. Discussion In this article, we review the role of parenteral lipid emulsions (LEs) in the management of critically ill patients and highlight important biologic activities associated with lipids. Soybean-oil-based LEs with high contents of polyunsaturated fatty acids (PUFA) were the first widely used formulations in the intensive care setting. However, they may be associated with increased rates of infection and lipid peroxidation, which can exacerbate oxidative stress. More recently developed parenteral LEs employ partial substitution of soybean oil with oils providing medium-chain triglycerides, ω-9 monounsaturated fatty acids or ω-3 PUFA. Many of these LEs have demonstrated reduced effects on oxidative stress, immune responses, and inflammation. However, the effects of these LEs on clinical outcomes have not been extensively evaluated. Conclusions Ongoing research using adequately designed and well-controlled studies that characterize the biologic properties of LEs should assist clinicians in selecting LEs within the critical care setting. Prescription of PN containing LEs should be based on available clinical data, while considering the individual patient’s physiologic profile and therapeutic requirements. PMID:20072779
NASA Astrophysics Data System (ADS)
Haider, Shahid A.; Kazemzadeh, Farnoud; Wong, Alexander
2017-03-01
An ideal laser is a useful tool for the analysis of biological systems. In particular, the polarization property of lasers can allow for the concentration of important organic molecules in the human body, such as proteins, amino acids, lipids, and carbohydrates, to be estimated. However, lasers do not always work as intended and there can be effects such as mode hopping and thermal drift that can cause time-varying intensity fluctuations. The causes of these effects can be from the surrounding environment, where either an unstable current source is used or the temperature of the surrounding environment is not temporally stable. This intensity fluctuation can cause bias and error in typical organic molecule concentration estimation techniques. In a low-resource setting where cost must be limited and where environmental factors, like unregulated power supplies and temperature, cannot be controlled, the hardware required to correct for these intensity fluctuations can be prohibitive. We propose a method for computational laser intensity stabilisation that uses Bayesian state estimation to correct for the time-varying intensity fluctuations from electrical and thermal instabilities without the use of additional hardware. This method will allow for consistent intensities across all polarization measurements for accurate estimates of organic molecule concentrations.
NASA Astrophysics Data System (ADS)
Brinkman-Traverse, Casey; Rankin, Joanna M.; Mitra, Dipanjan
2017-01-01
In this paper, we analyze the quirky polarization behavior across different profile modes for the pulsar B0329+54. We have multi-frequency observations in both the normal and abnormal profile modes, and have identified a non-RVM polarization kink in the core component of the emission. Mitra et al initially identified this kink in the normal profile mode of the pulsar in 2007, and a mirror analysis has been done here for abnormal profile modes at three different frequencies. This kink is intensity dependent, showing up only in the abberated/retarded high intensity pulses, and is frequency independent. This parallel between profile modes shows that the same geometric phenomenon—a height dependent amplifier—is responsible for the non-RVM polarization behavior in each. The question then arises: what can be the source of the profile change, which does not change the polarization characteristics of the pulsar. This pulsar gives us a unique opportunity to study the process of pulsar emission by showing what cannot be responsible for switches in profile mode, and thus profile shape.
ERIC Educational Resources Information Center
Killoren, Sarah E.; De Jesús, Sue A. Rodríguez; Updegraff, Kimberly A.; Wheeler, Lorey A.
2017-01-01
We examined profiles of sibling relationship qualities in 246 Mexican-origin families living in the United States using latent profile analyses. Three profiles were identified: "Positive," "Negative," and "Affect-Intense." Links between profiles and youths' familism values and adjustment were assessed using…
Detection of defects on apple using B-spline lighting correction method
NASA Astrophysics Data System (ADS)
Li, Jiangbo; Huang, Wenqian; Guo, Zhiming
To effectively extract defective areas in fruits, the uneven intensity distribution that was produced by the lighting system or by part of the vision system in the image must be corrected. A methodology was used to convert non-uniform intensity distribution on spherical objects into a uniform intensity distribution. A basically plane image with the defective area having a lower gray level than this plane was obtained by using proposed algorithms. Then, the defective areas can be easily extracted by a global threshold value. The experimental results with a 94.0% classification rate based on 100 apple images showed that the proposed algorithm was simple and effective. This proposed method can be applied to other spherical fruits.
Sports Specialization and Intensive Training in Young Athletes.
Brenner, Joel S
2016-09-01
Sports specialization is becoming the norm in youth sports for a variety of reasons. When sports specialization occurs too early, detrimental effects may occur, both physically and psychologically. If the timing is correct and sports specialization is performed under the correct conditions, the athlete may be successful in reaching specific goals. Young athletes who train intensively, whether specialized or not, can also be at risk of adverse effects on the mind and body. The purpose of this clinical report is to assist pediatricians in counseling their young athlete patients and their parents regarding sports specialization and intensive training. This report supports the American Academy of Pediatrics clinical report "Overuse Injuries, Overtraining, and Burnout in Child and Adolescent Athletes." Copyright © 2016 by the American Academy of Pediatrics.
Experimental Validation of Thermal Retinal Models of Damage from Laser Radiation
1979-08-01
for measuring relative intensity profile with a thermocouple or fiber-optic sensor .............................................. 72 B-2 Calculated...relative intensity profiles meas- ured by 5- and 10-pm-radius sensors of a Gaussian beam, with standard deviation of 10 Pm...the Air Force de - veloped a model for the mathematical prediction of thermal ef- fects of laser radiation on the eye (8). Given the characteris- tics
NASA Astrophysics Data System (ADS)
Niu, Chaojun; Han, Xiang'e.
2015-10-01
Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.
Raicher, Irina; Stump, Patrick Raymond Nicolas Andre Ghislain; Harnik, Simone Bega; de Oliveira, Rodrigo Alves; Baccarelli, Rosemari; Marciano, Lucia H S C; Ura, Somei; Virmond, Marcos C L; Teixeira, Manoel Jacobsen; de Andrade, Daniel Ciampi
2018-03-01
Previous studies reported a high prevalence of neuropathic pain in leprosy, being especially present in "pharmacologically cured" patients. The presence of neuropathic pain in leprosy poses a supplementary burden in patient's quality of life, daily activities, and mood. The aim of this study was to assess whether neuropathic pain in leprosy has similar symptom profile as neuropathic pain of other etiologies and to retrospectively assess the efficacy of neuropathic pain medications regularly prescribed to leprosy. Leprosy and nonleprosy patients had their neuropathic pain characterized by the neuropathic pain symptom inventory (NPSI, ranges from 0 to 100, with 100 being the maximal neuropathic pain intensity) in a first visit. In a second visit, leprosy patients who had significant pain and received pharmacological treatment in the first evaluation were reassessed (NPSI) and had their pain profile and treatment response further characterized, including information on drugs prescribed for neuropathic pain and their respective pain relief. The pain characteristics based on NPSI did not significantly differ between leprosy and nonleprosy neuropathic pain patients in visit 1 after correction for multiple analyses, and cluster analyses confirmed these findings (ie, no discrimination between leprosy and nonleprosy groups; Pearson χ2 = 0.072, P = 0.788). The assessment of pain relief response and the drugs taken by each patient, linear regression analysis showed that amitriptyline, when effective, had the highest percentage of analgesic relief. Neuropathic pain in leprosy is as heterogeneous as neuropathic pain of other etiologies, further supporting the concept that neuropathic pain is a transetiological entity. Neuropathic pain in leprosy may respond to drugs usually used to control pain of neuropathic profile in general, and amitriptiline may constitute a potential candidate drug for future formal clinical trials aimed at controlling neuropathic pain in leprosy.
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Brock, Kristy K; Daly, Michael J; Chan, Harley; Irish, Jonathan C; Siewerdsen, Jeffrey H
2011-04-01
A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.
Scatter and veiling glare corrections for quantitative digital subtraction angiography
NASA Astrophysics Data System (ADS)
Ersahin, Atila; Molloi, Sabee Y.; Qian, Yao-Jin
1994-05-01
In order to quantitate anatomical and physiological parameters such as vessel dimensions and volumetric blood flow, it is necessary to make corrections for scatter and veiling glare (SVG), which are the major sources of nonlinearities in videodensitometric digital subtraction angiography (DSA). A convolution filtering technique has been investigated to estimate SVG distribution in DSA images without the need to sample the SVG for each patient. This technique utilizes exposure parameters and image gray levels to estimate SVG intensity by predicting the total thickness for every pixel in the image. At this point, corrections were also made for variation of SVG fraction with beam energy and field size. To test its ability to estimate SVG intensity, the correction technique was applied to images of a Lucite step phantom, anthropomorphic chest phantom, head phantom, and animal models at different thicknesses, projections, and beam energies. The root-mean-square (rms) percentage error of these estimates were obtained by comparison with direct SVG measurements made behind a lead strip. The average rms percentage errors in the SVG estimate for the 25 phantom studies and for the 17 animal studies were 6.22% and 7.96%, respectively. These results indicate that the SVG intensity can be estimated for a wide range of thicknesses, projections, and beam energies.
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo
2011-04-01
In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.
Intensity Biased PSP Measurement
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.
2000-01-01
The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.
Intensity Biased PSP Measurement
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.
2000-01-01
The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub o)/I) and pressure ratio (P/P(sub o)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an insitu intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.
Wan, Li; Baldridge, Robyn M; Colby, Amanda M; Stanford, Matthew S
2009-11-13
Intensity dependence is an electrophysiological measure of intra-individual stability of the augmenting/reducing characteristic of N1/ P2 event-related potential amplitudes in response to stimuli of varying intensities. Abstinent ecstasy users typically show enhanced intensity dependence and higher levels of impulsivity and aggression. Enhanced intensity dependence and high impulsivity and aggression levels may be due to damage in the brain's serotonergic neurons as a result of ecstasy use. The present study investigated whether intensity dependence, impulsivity and aggression history can be used as indicators of previous chronic ecstasy usage. Forty-four abstinent polydrug users (8 women; age 19 to 61 years old) were recruited. All participants were currently residents at a local substance abuse facility receiving treatment and had been free of all drugs for a minimum of 21 days. The study found significantly enhanced intensity dependence of tangential dipole source activity and a history of more aggressive behavior in those who had previously been involved in chronic ecstasy use. Intensity dependence of the tangential dipole source and aggressive behavior history correctly identified 73.3% of those who had been regular ecstasy users and 78.3% of those who had not. Overall, 76.3% of the participants were correctly classified.
NASA Astrophysics Data System (ADS)
Zhu, Xinjian; Wu, Ruoyu; Li, Tao; Zhao, Dawei; Shan, Xin; Wang, Puling; Peng, Song; Li, Faqi; Wu, Baoming
2016-12-01
The time-intensity curve (TIC) from contrast-enhanced ultrasound (CEUS) image sequence of uterine fibroids provides important parameter information for qualitative and quantitative evaluation of efficacy of treatment such as high-intensity focused ultrasound surgery. However, respiration and other physiological movements inevitably affect the process of CEUS imaging, and this reduces the accuracy of TIC calculation. In this study, a method of TIC calculation for vascular perfusion of uterine fibroids based on subtraction imaging with motion correction is proposed. First, the fibroid CEUS recording video was decoded into frame images based on the record frame rate. Next, the Brox optical flow algorithm was used to estimate the displacement field and correct the motion between two frames based on warp technique. Then, subtraction imaging was performed to extract the positional distribution of vascular perfusion (PDOVP). Finally, the average gray of all pixels in the PDOVP from each image was determined, and this was considered the TIC of CEUS image sequence. Both the correlation coefficient and mutual information of the results with proposed method were larger than those determined using the original method. PDOVP extraction results have been improved significantly after motion correction. The variance reduction rates were all positive, indicating that the fluctuations of TIC had become less pronounced, and the calculation accuracy has been improved after motion correction. This proposed method can effectively overcome the influence of motion mainly caused by respiration and allows precise calculation of TIC.
NASA Astrophysics Data System (ADS)
Park, Kyungjeen
This study aims to develop an objective hurricane initialization scheme which incorporates not only forecast model constraints but also observed features such as the initial intensity and size. It is based on the four-dimensional variational (4D-Var) bogus data assimilation (BDA) scheme originally proposed by Zou and Xiao (1999). The 4D-Var BDA consists of two steps: (i) specifying a bogus sea level pressure (SLP) field based on parameters observed by the Tropical Prediction Center (TPC) and (ii) assimilating the bogus SLP field under a forecast model constraint to adjust all model variables. This research focuses on improving the specification of the bogus SLP indicated in the first step. Numerical experiments are carried out for Hurricane Bonnie (1998) and Hurricane Gordon (2000) to test the sensitivity of hurricane track and intensity forecasts to specification of initial vortex. Major results are listed below: (1) A linear regression model is developed for determining the size of initial vortex based on the TPC observed radius of 34kt. (2) A method is proposed to derive a radial profile of SLP from QuikSCAT surface winds. This profile is shown to be more realistic than ideal profiles derived from Fujita's and Holland's formulae. (3) It is found that it takes about 1 h for hurricane prediction model to develop a conceptually correct hurricane structure, featuring a dominant role of hydrostatic balance at the initial time and a dynamic adjustment in less than 30 minutes. (4) Numerical experiments suggest that track prediction is less sensitive to the specification of initial vortex structure than intensity forecast. (5) Hurricane initialization using QuikSCAT-derived initial vortex produced a reasonably good forecast for hurricane landfall, with a position error of 25 km and a 4-h delay at landfalling. (6) Numerical experiments using the linear regression model for the size specification considerably outperforms all the other formulations tested in terms of the intensity prediction for both Hurricanes. For examples, the maximum track error is less than 110 km during the entire three-day forecasts for both hurricanes. The simulated Hurricane Gordon using the linear regression model made a nearly perfect landfall, with no position error and only 1-h error in landfalling time. (7) Diagnosis of model output indicates that the initial vortex specified by the linear regression model produces larger surface fluxes of sensible heat, latent heat and moisture, as well as stronger downward angular momentum transport than all the other schemes do. These enhanced energy supplies offset the energy lost caused by friction and gravity wave propagation, allowing for the model to maintain a strong and realistic hurricane during the entire forward model integration.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2016-01-01
The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.
Maruščáková, Iva L; Linhart, Pavel; Ratcliffe, Victoria F; Tallet, Céline; Reby, David; Špinka, Marek
2015-05-01
The vocal expression of emotion is likely driven by shared physiological principles among species. However, which acoustic features promote decoding of emotional state and how the decoding is affected by their listener's psychology remain poorly understood. Here we tested how acoustic features of piglet vocalizations interact with psychological profiles of human listeners to affect judgments of emotional content of heterospecific vocalizations. We played back 48 piglet call sequences recorded in four different contexts (castration, isolation, reunion, nursing) to 60 listeners. Listeners judged the emotional intensity and valence of the recordings and were further asked to attribute a context of emission from four proposed contexts. Furthermore, listeners completed a series of questionnaires assessing their personality (NEO-FFI personality inventory), empathy [Interpersonal Reactivity Index (IRI)] and attitudes to animals (Animal Attitudes Scale). None of the listeners' psychological traits affected the judgments. On the contrary, acoustic properties of recordings had a substantial effect on ratings. Recordings were rated as more intense with increasing pitch (mean fundamental frequency) and increasing proportion of vocalized sound within each stimulus recording and more negative with increasing pitch and increasing duration of the calls within the recording. More complex acoustic properties (jitter, harmonic-to-noise ratio, and presence of subharmonics) did not seem to affect the judgments. The probability of correct context recognition correlated positively with the assessed emotion intensity for castration and reunion calls, and negatively for nursing calls. In conclusion, listeners judged emotions from pig calls using simple acoustic properties and the perceived emotional intensity might guide the identification of the context. (c) 2015 APA, all rights reserved).
Synchrotron radiation based beam diagnostics at the Fermilab Tevatron
Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...
2011-09-16
Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less
CORRECTING PHOTOLYSIS RATES ON THE BASIS OF SATELLITE OBSERVED CLOUDS
Clouds can significantly affect photochemical activities in the boundary layer by altering radiation intensity, and therefore their correct specification in the air quality models is of outmost importance. In this study we introduce a technique for using the satellite observed c...
Lyman alpha SMM/UVSP absolute calibration and geocoronal correction
NASA Technical Reports Server (NTRS)
Fontenla, Juan M.; Reichmann, Edwin J.
1987-01-01
Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Gu, Chun; Xu, Lixin, E-mail: xulixin@ustc.edu.cn
The self-adapting algorithms are improved to optimize a beam configuration in the direct drive laser fusion system with the solid state lasers. A configuration of 32 laser beams is proposed for achieving a high uniformity illumination, with a root-mean-square deviation at 10{sup −4} level. In our optimization, the parameters such as beam number, beam arrangement, and beam intensity profile are taken into account. The illumination uniformity robustness versus the parameters such as intensity profile deviations, power imbalance, intensity profile noise, the pointing error, and the target position error is also discussed. In this study, the model is assumed a solid-spheremore » illumination, and refraction effects of incident light on the corona are not considered. Our results may have a potential application in the design of the direct-drive laser fusion of the Shen Guang-II Upgrading facility (SG-II-U, China).« less
Scientific author names: errors, corrections, and identity profiles
Gasparyan, Armen Yuri; Yessirkepov, Marlen; Gerasimov, Alexey N.; Kostyukova, Elena I.; Kitas, George D.
2016-01-01
Authorship problems are deep-rooted in the field of science communication. Some of these relate to lack of specific journal instructions. For decades, experts in journal editing and publishing have been exploring the authorship criteria and contributions deserving either co-authorship or acknowledgment. The issue of inconsistencies of listing and abbreviating author names has come to the fore lately. There are reports on the difficulties of figuring out Chinese surnames and given names of South Indians in scholarly articles. However, it seems that problems with correct listing and abbreviating author names are global. This article presents an example of swapping second (father’s) name with surname in a ‘predatory’ journal, where numerous instances of incorrectly identifying and crediting authors passed unnoticed for the journal editors, and no correction has been published. Possible solutions are discussed in relation to identifying author profiles and adjusting editorial policies to the emerging problems. Correcting mistakes with author names post-publication and integrating with the Open Researcher and Contributor ID (ORCID) platform are among them. PMID:27346960
Scientific author names: errors, corrections, and identity profiles.
Gasparyan, Armen Yuri; Yessirkepov, Marlen; Gerasimov, Alexey N; Kostyukova, Elena I; Kitas, George D
2016-01-01
Authorship problems are deep-rooted in the field of science communication. Some of these relate to lack of specific journal instructions. For decades, experts in journal editing and publishing have been exploring the authorship criteria and contributions deserving either co-authorship or acknowledgment. The issue of inconsistencies of listing and abbreviating author names has come to the fore lately. There are reports on the difficulties of figuring out Chinese surnames and given names of South Indians in scholarly articles. However, it seems that problems with correct listing and abbreviating author names are global. This article presents an example of swapping second (father's) name with surname in a 'predatory' journal, where numerous instances of incorrectly identifying and crediting authors passed unnoticed for the journal editors, and no correction has been published. Possible solutions are discussed in relation to identifying author profiles and adjusting editorial policies to the emerging problems. Correcting mistakes with author names post-publication and integrating with the Open Researcher and Contributor ID (ORCID) platform are among them.
NASA Astrophysics Data System (ADS)
Petrov, L.
2017-12-01
Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.
NASA Astrophysics Data System (ADS)
Hering, Julian; Waller, Erik H.; von Freymann, Georg
2017-02-01
Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF's quality is crucial for the application's performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1-3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. of Microscopy 216(1), 32-48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). 3. A. Jesacher and M. J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction," Opt. Express 18(20), 21090-21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35(2), 237-246 (1972).
BPM CALIBRATION INDEPENDENT LHC OPTICS CORRECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
CALAGA,R.; TOMAS, R.; GIOVANNOZZI, M.
2007-06-25
The tight mechanical aperture for the LHC imposes severe constraints on both the beta and dispersion beating. Robust techniques to compensate these errors are critical for operation of high intensity beams in the LHC. We present simulations using realistic errors from magnet measurements and alignment tolerances in the presence of BPM noise. Correction reveals that the use of BPM calibration and model independent observables are key ingredients to accomplish optics correction. Experiments at RHIC to verify the algorithms for optics correction are also presented.
Rapid diagnostic tests for malaria at sites of varying transmission intensity in Uganda.
Hopkins, Heidi; Bebell, Lisa; Kambale, Wilson; Dokomajilar, Christian; Rosenthal, Philip J; Dorsey, Grant
2008-02-15
In Africa, fever is often treated presumptively as malaria, resulting in misdiagnosis and the overuse of antimalarial drugs. Rapid diagnostic tests (RDTs) for malaria may allow improved fever management. We compared RDTs based on histidine-rich protein 2 (HRP2) and RDTs based on Plasmodium lactate dehydrogenase (pLDH) with expert microscopy and PCR-corrected microscopy for 7000 patients at sites of varying malaria transmission intensity across Uganda. When all sites were considered, the sensitivity of the HRP2-based test was 97% when compared with microscopy and 98% when corrected by PCR; the sensitivity of the pLDH-based test was 88% when compared with microscopy and 77% when corrected by PCR. The specificity of the HRP2-based test was 71% when compared with microscopy and 88% when corrected by PCR; the specificity of the pLDH-based test was 92% when compared with microscopy and >98% when corrected by PCR. Based on Plasmodium falciparum PCR-corrected microscopy, the positive predictive value (PPV) of the HRP2-based test was high (93%) at all but the site with the lowest transmission rate; the pLDH-based test and expert microscopy offered excellent PPVs (98%) for all sites. The negative predictive value (NPV) of the HRP2-based test was consistently high (>97%); in contrast, the NPV for the pLDH-based test dropped significantly (from 98% to 66%) as transmission intensity increased, and the NPV for expert microscopy decreased significantly (99% to 54%) because of increasing failure to detect subpatent parasitemia. Based on the high PPV and NPV, HRP2-based RDTs are likely to be the best diagnostic choice for areas with medium-to-high malaria transmission rates in Africa.
Atmospheric constituent density profiles from full disk solar occultation experiments
NASA Technical Reports Server (NTRS)
Lumpe, J. D.; Chang, C. S.; Strickland, D. J.
1991-01-01
Mathematical methods are described which permit the derivation of the number of density profiles of atmospheric constituents from solar occultation measurements. The algorithm is first applied to measurements corresponding to an arbitrary solar-intensity distribution to calculate the normalized absorption profile. The application of Fourier transform to the integral equation yields a precise expression for the corresponding number density, and the solution is employed with the data given in the form of Laguerre polynomials. The algorithm is employed to calculate the results for the case of uniform distribution of solar intensity, and the results demonstrate the convergence properties of the method. The algorithm can be used to effectively model representative model-density profiles with constant and altitude-dependent scale heights.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Diagnosis of meningioma by time-resolved fluorescence spectroscopy.
Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura
2005-01-01
We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors.
Diagnosis of meningioma by time-resolved fluorescence spectroscopy
Butte, Pramod V.; Pikul, Brian K.; Hever, Aviv; Yong, William H.; Black, Keith L.; Marcu, Laura
2010-01-01
We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091
Calculation of the Raman intensity in graphene and carbon nanotubes
NASA Astrophysics Data System (ADS)
Moutinho, Marcus; Venezuela, Pedro
2014-03-01
Raman spectroscopy is one of the most important experimental techniques for characterization of carbon materials because it can give a lot of information about electronic and phonon structure in a non destructive way. We use a third-order quantum field model to obtain the theoretical Raman intensity for graphene and carbon nanotubes (CNT). The most important Raman peaks in graphitic materials comes from to the iLo and iTo phonon branches near to Γ and K points and, in this work, we focus our attention on some of these peaks, like the G, D and 2D bands, as a function of laser energy. The electronic and phonon dispersion used in our calculations reproduces the graphene ab initio results with GW corrections and the zone folding method is used to obtain the CNT ones. Our results show that the experimental G band Raman excitation profile for CNT can be reproduced if we use the proper electronic and phonon dispersions. We also show that the phonon dispersion may influence the shape of the graphene D band and the dispersive behavior of the 2D band for graphene and CNT. This work was supported by the Brazilian Nanocarbon Institute of Science and Technology (INCT/Nanocarbono), the Brazilian Network on Carbon Nanotube Research and the Brazilian agency CAPES
Herrera, Carolina; Navarro, Diego; Täger, Marlis
2014-12-01
Since initial antibiotic treatment in patients with urinary tract infection (UTI) is empiric, is very important to know the local epidemiology to make the correct therapeutical decisions. Determinate local features of antimicrobial resistance in pediatric patients with UTI. Retrospective review of urine culture tests of children under 15 years old, obtained in a pediatric emergency department in Valdivia, between february and december 2012. Escherichia coli showed high percentage of resistance to ampicillin (44,8%) and first generation cephalosporin (36%). A well understanding of local antimicrobial resistance profile is useful to a correct empiric treatment.
Chen, Sheng-Bo; Wang, Jing-Ran; Guo, Peng-Ju; Wang, Ming-Chang
2014-09-01
The Moon may be considered as the frontier base for the deep space exploration. The spectral analysis is one of the key techniques to determine the lunar surface rock and mineral compositions. But the lunar topographic relief is more remarkable than that of the Earth. It is necessary to conduct the topographic correction for lunar spectral data before they are used to retrieve the compositions. In the present paper, a lunar Sandmeier model was proposed by considering the radiance effect from the macro and ambient topographic relief. And the reflectance correction model was also reduced based on the Sandmeier model. The Spectral Profile (SP) data from KAGUYA satellite in the Sinus Iridum quadrangle was taken as an example. And the digital elevation data from Lunar Orbiter Laser Altimeter are used to calculate the slope, aspect, incidence and emergence angles, and terrain-viewing factor for the topographic correction Thus, the lunar surface reflectance from the SP data was corrected by the proposed model after the direct component of irradiance on a horizontal surface was derived. As a result, the high spectral reflectance facing the sun is decreased and low spectral reflectance back to the sun is compensated. The statistical histogram of reflectance-corrected pixel numbers presents Gaussian distribution Therefore, the model is robust to correct lunar topographic effect and estimate lunar surface reflectance.
46 CFR 161.013-5 - Intensity requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of the light corrected for the length of the flash and is determined by the formula: EFI = I × (tc − ti) / 0.2 + (tc − ti) Where: I is the measured intensity of the fixed beam, tc is the contact closure...
46 CFR 161.013-5 - Intensity requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the light corrected for the length of the flash and is determined by the formula: EFI = I × (tc − ti) / 0.2 + (tc − ti) Where: I is the measured intensity of the fixed beam, tc is the contact closure...
Correction of the wavefront using the irradiance transport equation
NASA Astrophysics Data System (ADS)
García, M.; Granados, F.; Cornejo, A.
2008-07-01
The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)
3D non-LTE corrections for the 6Li/7Li isotopic ratio in solar-type stars
NASA Astrophysics Data System (ADS)
Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; González Hernández, J. I.; Strassmeier, K. G.
Doppler shifts induced by convective motions in stellar atmospheres affect the shape of spectral absorption lines and create slightly asymmetric line profiles. It is important to take this effect into account in modeling the subtle depression created by the 6Li isotope which lies on the red wing of the Li I 670.8 nm resonance doublet line, since convective motions in stellar atmospheres can mimic a presence of 6Li when intrinsically symmetric theoretical line profiles are presumed for the analysis of the 7Li doublet \\citep{cayrel2007}. Based on CO5BOLD hydrodynamical model atmospheres, we compute 3D non-local thermodynamic equilibrium (NLTE) corrections for the 6Li/7Li isotopic ratio by using a grid of 3D NLTE and 1D LTE synthetic spectra. These corrections must be added to the results of the 1D LTE analysis to correct them for the combined 3D non-LTE effects. As one would expect, the resulting corrections are always negative and they range between 0 and -5 %, depending on effective temperature, surface gravity, and metallicity. For each metallicity we derive an analytic expression approximating the 3D NLTE corrections as a function of effective temperature, surface gravity and projected rotational velocity.
National Survey of Reading Programs for Incarcerated Juvenile Offenders.
ERIC Educational Resources Information Center
Brunner, Michael S.
A survey was undertaken to provide a profile of current reading programs in juvenile correctional facilities. Data were gathered to determine whether "illiterates" exist in the juvenile correctional facilities; if oral comprehension is better than reading comprehension; what approaches and strategies are used for teaching word…
Lee, Soon Li; Kim, Jung-Ae; Golden, Karen Jennifer; Kim, Jae-Hwi; Park, Miriam Sang-Ah
2016-01-01
Perception of the autonomy and relatedness of the self may be influenced by one's experiences and social expectations within a particular cultural setting. The present research examined the role of culture and the Autonomous-Related self-construal in predicting for different aspects of Social Networking Sites (SNS) usage in three Asian countries, especially focusing on those aspects serving interpersonal goals. Participants in this cross-cultural study included 305 university students from Malaysia (n = 105), South Korea (n = 113), and China (n = 87). The study explored specific social and interpersonal behaviors on SNS, such as browsing the contacts' profiles, checking for updates, and improving contact with SNS contacts, as well as the intensity of SNS use, hypothesizing that those with high intensity of use in the Asian context may be doing so to achieve the social goal of maintaining contact and keeping updated with friends. Two scales measuring activities on other users' profiles and contact with friends' profiles were developed and validated. As predicted, some cross-cultural differences were found. Koreans were more likely to use SNS to increase contact but tended to spend less time browsing contacts' profiles than the Malaysians and Chinese. The intensity of SNS use differed between the countries as well, where Malaysians reported higher intensity than Koreans and Chinese. Consistent with study predictions, Koreans were found with the highest Autonomous-Related self-construal scores. The Autonomous-Related self-construal predicted SNS intensity. The findings suggest that cultural contexts, along with the way the self is construed in different cultures, may encourage different types of SNS usage. The authors discuss study implications and suggest future research directions.
Lee, Soon Li; Kim, Jung-Ae; Golden, Karen Jennifer; Kim, Jae-Hwi; Park, Miriam Sang-Ah
2016-01-01
Perception of the autonomy and relatedness of the self may be influenced by one's experiences and social expectations within a particular cultural setting. The present research examined the role of culture and the Autonomous-Related self-construal in predicting for different aspects of Social Networking Sites (SNS) usage in three Asian countries, especially focusing on those aspects serving interpersonal goals. Participants in this cross-cultural study included 305 university students from Malaysia (n = 105), South Korea (n = 113), and China (n = 87). The study explored specific social and interpersonal behaviors on SNS, such as browsing the contacts' profiles, checking for updates, and improving contact with SNS contacts, as well as the intensity of SNS use, hypothesizing that those with high intensity of use in the Asian context may be doing so to achieve the social goal of maintaining contact and keeping updated with friends. Two scales measuring activities on other users' profiles and contact with friends' profiles were developed and validated. As predicted, some cross-cultural differences were found. Koreans were more likely to use SNS to increase contact but tended to spend less time browsing contacts' profiles than the Malaysians and Chinese. The intensity of SNS use differed between the countries as well, where Malaysians reported higher intensity than Koreans and Chinese. Consistent with study predictions, Koreans were found with the highest Autonomous-Related self-construal scores. The Autonomous-Related self-construal predicted SNS intensity. The findings suggest that cultural contexts, along with the way the self is construed in different cultures, may encourage different types of SNS usage. The authors discuss study implications and suggest future research directions. PMID:27148100
Bidra, Avinash S; Nguyen, Viensuong; Manzotti, Anna; Kuo, Chia-Ling
2018-01-01
To study the subjective differences in direct lip support assessments and to determine if dentists and laypeople are able to discern and correctly identify direct changes in lip support between flange and flangeless dentures. A random sample of 20 maxillary edentulous patients described in part 2 of the study was used for analysis. A total of 60 judges comprising 15 general dentists, 15 prosthodontists, and 30 laypeople, the majority of who were distinct from part 2 of the study, were recruited. All images used in this study were cropped at the infraorbital level and converted to black and white tone, to encourage the judges to focus on lip support. The judges were un-blinded to the study objectives and told what to look for, and were asked to rate the lip support of each of the 80 images on a 100 mm visual analog scale (VAS). The judges then took a discriminatory sensory analysis test (triangle test) where they were required to correctly identify the image with a flangeless denture out of a set of 3 images. Both the VAS and triangle test ratings were conducted twice in a random order, and mean ratings were used for all analyses. The overall VAS ratings of lip support for images with flangeless dentures were slightly lower compared to images with labial flanges, and this difference was statistically significant (p < 0.0001). This was true for both profile and frontal images. However, the magnitude of these differences was too small (no greater than 5 mm on a 100-mm scale) to be clinically significant or meaningful. The differences in VAS ratings were not significant between the judges. For the triangle test, judges overall correctly identified the flangeless denture image in 55% of frontal image sets and 60% of profile image sets. The difference in correct identification rate between frontal and profile images was statistically significant (p < 0.0001). For frontal and profile images, prosthodontists had the highest correct identification rate (61% and 69%), followed by general dentists (53% and 68%) and by laypeople (53% and 50%). The difference in correct identification rate was statistically significant between various judges (p = 0.012). For all judges, the likelihood of correctly identifying images with flangeless dentures was significantly greater than 1/3, which was the minimum chance for correct identification (p < 0.0001). Removal of a labial flange in a maxillary denture resulted in slightly lower ratings of lip support compared to images with a labial flange, but the differences were clinically insignificant. When judges were forced to look for differences, flangeless dentures were detected more often in profile images. Prosthodontists detected the flangeless dentures more often than general dentists and laypeople. © 2017 by the American College of Prosthodontists.
Drift correction of the dissolved signal in single particle ICPMS.
Cornelis, Geert; Rauch, Sebastien
2016-07-01
A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.
NASA Technical Reports Server (NTRS)
Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)
2009-01-01
Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.
NASA Astrophysics Data System (ADS)
Litt, Maxime; Sicart, Jean-Emmanuel; Six, Delphine; Wagnon, Patrick; Helgason, Warren D.
2017-04-01
Over Saint-Sorlin Glacier in the French Alps (45° N, 6.1° E; ˜ 3 km2) in summer, we study the atmospheric surface-layer dynamics, turbulent fluxes, their uncertainties and their impact on surface energy balance (SEB) melt estimates. Results are classified with regard to large-scale forcing. We use high-frequency eddy-covariance data and mean air-temperature and wind-speed vertical profiles, collected in 2006 and 2009 in the glacier's atmospheric surface layer. We evaluate the turbulent fluxes with the eddy-covariance (sonic) and the profile method, and random errors and parametric uncertainties are evaluated by including different stability corrections and assuming different values for surface roughness lengths. For weak synoptic forcing, local thermal effects dominate the wind circulation. On the glacier, weak katabatic flows with a wind-speed maximum at low height (2-3 m) are detected 71 % of the time and are generally associated with small turbulent kinetic energy (TKE) and small net turbulent fluxes. Radiative fluxes dominate the SEB. When the large-scale forcing is strong, the wind in the valley aligns with the glacier flow, intense downslope flows are observed, no wind-speed maximum is visible below 5 m, and TKE and net turbulent fluxes are often intense. The net turbulent fluxes contribute significantly to the SEB. The surface-layer turbulence production is probably not at equilibrium with dissipation because of interactions of large-scale orographic disturbances with the flow when the forcing is strong or low-frequency oscillations of the katabatic flow when the forcing is weak. In weak forcing when TKE is low, all turbulent fluxes calculation methods provide similar fluxes. In strong forcing when TKE is large, the choice of roughness lengths impacts strongly the net turbulent fluxes from the profile method fluxes and their uncertainties. However, the uncertainty on the total SEB remains too high with regard to the net observed melt to be able to recommend one turbulent flux calculation method over another.
An Investigation and Analysis of the Vestibulo-Ocular Reflex (VOR) in a Vibration Environment
2013-03-01
could not have had breast implants. Participants with corrective vision through LASIK , PRK or soft contacts were qualified but individuals requiring...corrective lenses (glasses/contact lenses)? YES/NO Have you had corrective eye surgery ( PRK / LASIK )? YES/NO Have you been diagnosed or...Figure 6. Relative Intensity vs . Forward Current for Everlight 5mm Infrared LED ........ 30 Figure 7. IR LED Circuit
Sodar - Vaisala Triton Wind Profiler, AON8 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON2 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON9 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON1 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON3 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON8 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON5 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON5 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON7 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON2 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON8 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON1 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON6 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON7 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON4 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON9 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON4 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON2 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON4 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON9 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON7 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON6 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON5 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON6 - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON3 - Processed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Sodar - Vaisala Triton Wind Profiler, AON1 - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
2018-01-26
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
Approximate Stokes Drift Profiles in Deep Water
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond
2014-09-01
A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.
Nonlinear model for offline correction of pulmonary waveform generators.
Reynolds, Jeffrey S; Stemple, Kimberly J; Petsko, Raymond A; Ebeling, Thomas R; Frazer, David G
2002-12-01
Pulmonary waveform generators consisting of motor-driven piston pumps are frequently used to test respiratory-function equipment such as spirometers and peak expiratory flow (PEF) meters. Gas compression within these generators can produce significant distortion of the output flow-time profile. A nonlinear model of the generator was developed along with a method to compensate for gas compression when testing pulmonary function equipment. The model and correction procedure were tested on an Assess Full Range PEF meter and a Micro DiaryCard PEF meter. The tests were performed using the 26 American Thoracic Society standard flow-time waveforms as the target flow profiles. Without correction, the pump loaded with the higher resistance Assess meter resulted in ten waveforms having a mean square error (MSE) higher than 0.001 L2/s2. Correction of the pump for these ten waveforms resulted in a mean decrease in MSE of 87.0%. When loaded with the Micro DiaryCard meter, the uncorrected pump outputs included six waveforms with MSE higher than 0.001 L2/s2. Pump corrections for these six waveforms resulted in a mean decrease in MSE of 58.4%.
The relation between rumination and temporal features of emotion intensity.
Résibois, Maxime; Kalokerinos, Elise K; Verleysen, Gregory; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe; Verduyn, Philippe
2018-03-01
Intensity profiles of emotional experience over time have been found to differ primarily in explosiveness (i.e. whether the profile has a steep vs. a gentle start) and accumulation (i.e. whether intensity increases over time vs. goes back to baseline). However, the determinants of these temporal features remain poorly understood. In two studies, we examined whether emotion regulation strategies are predictive of the degree of explosiveness and accumulation of negative emotional episodes. Participants were asked to draw profiles reflecting changes in the intensity of emotions elicited either by negative social feedback in the lab (Study 1) or by negative events in daily life (Study 2). In addition, trait (Study 1 & 2), and state (Study 2) usage of a set of emotion regulation strategies was assessed. Multilevel analyses revealed that trait rumination (especially the brooding component) was positively associated with emotion accumulation (Study 1 & 2). State rumination was also positively associated with emotion accumulation and, to a lesser extent, with emotion explosiveness (Study 2). These results provide support for emotion regulation theories, which hypothesise that rumination is a central mechanism underlying the maintenance of negative emotions.
Implications of the focal beam profile in serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter
The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less
Comparing internal migration across the countries of Latin America: A multidimensional approach
Bernard, Aude; Rowe, Francisco; Bell, Martin; Ueffing, Philipp; Charles-Edwards, Elin
2017-01-01
While considerable progress has been made in understanding the way particular aspects of internal migration, such as its intensity, age profile and spatial impact, vary between countries around the world, little attention to date has been given to establishing how these dimensions of migration interact in different national settings. We use recently developed measures of internal migration that are scale-independent to compare the overall intensity, age composition, spatial impact, and distance profile of internal migration in 19 Latin American countries. Comparisons reveal substantial cross-national variation but cluster analysis suggests the different dimensions of migration evolve systematically to form a broad sequence characterised by low intensities, young ages at migration, unbalanced flows and high friction of distance at lower levels of development, trending to high intensities, an older age profile of migration, more closely balanced flows and lower friction of distance at later stages of development. However, the transition is not linear and local contingencies, such as international migration and political control, often distort the migration-development nexus, leading to unique migration patterns in individual national contexts. PMID:28328932
NASA Astrophysics Data System (ADS)
Yusufzai, Mohd Zaheer Khan; Vashista, M.
2018-04-01
Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.
Many observations of temperature and wind speed profiles have been taken over "ideal" terrain and analyzed to develop the stability correction terms which are commonly used in the application of similarity theory. Fewer observations have been taken and analyzed in this manner ov...
Analysis of intensity variability in multislice and cone beam computed tomography.
Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde
2011-08-01
The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Yoon, Jinsik; Kim, Kibeom; Park, Wook
2017-07-01
We present an essential method for generating microparticles uniformly in a single ultraviolet (UV) light exposure area for optofluidic maskless lithography. In the optofluidic maskless lithography process, the productivity of monodisperse microparticles depends on the size of the UV exposure area. An effective fabrication area is determined by the size of the UV intensity profile map, satisfying the required uniformity of UV intensity. To increase the productivity of monodisperse microparticles in optofluidic maskless lithography, we expanded the effective UV exposure area by modulating the intensity of the desired UV light pattern based on the premeasured UV intensity profile map. We verified the improvement of the uniformity of the microparticles generated by the proposed modulation technique, providing histogram analyses of the conjugated fluorescent intensities and the sizes of the microparticles. Additionally, we demonstrated the generation of DNA uniformly encapsulated in microparticles.
Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang
2017-08-01
The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact correction in region of interest- and mask-based analyses (P < 0.05 each). Iteratively reweighted linear least squares and iRESTORE showed equivalent results, but WMSI was faster than iRESTORE. Muscle delineation and artifact load significantly improved after correction (P < 0.05 each). Weighted mean of signal intensity correction significantly improved STEAM-based quantitative DTI analyses and fiber tracking of lower-limb muscles, providing a robust tool for musculoskeletal applications.
NASA Astrophysics Data System (ADS)
Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.
2016-12-01
Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.
Martins, Thomas B.
2002-01-01
The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument’s ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument’s multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay. PMID:11777827
Martins, Thomas B
2002-01-01
The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument's ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument's multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, D; Anderson, C; Mayo, C
Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less
Method for changing the cross section of a laser beam
Sweatt, W.C.; Seppala, L.
1995-12-05
A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.
Method for changing the cross section of a laser beam
Sweatt, William C.; Seppala, Lynn
1995-01-01
A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.
Design of system calibration for effective imaging
NASA Astrophysics Data System (ADS)
Varaprasad Babu, G.; Rao, K. M. M.
2006-12-01
A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.
Rodbard, David; Zanella, Maria Teresa
2011-01-01
Abstract Background We evaluated intensive intervention in poorly controlled patients with type 2 diabetes mellitus involving weekly clinic visits and adjustment of therapy with analysis of three seven-point glucose profiles and intervention from an interdisciplinary staff. Methods Sixty-three patients were randomized to an intensive treatment group that obtained self-monitoring of blood glucose (SMBG) profiles (six or seven values per day, 3 days/week) and were seen in the clinic at Weeks 1–6 and 12. SMBG results were downloaded, analyzed using Accu-Chek® 360° software (Roche Diagnostics, Indianapolis, IN), and used to adjust therapy. Control group subjects obtained glucose profiles and had clinic visits only at Weeks 0, 6, and 12. Results There were highly statistically significant improvements in the intensive treatment group compared with the control group between Weeks 0 and 6 with greater reductions in weekly mean glycemia (WMG) (−76.7±8.9 mg/dL vs. −20.5±8.1 mg/dL), glycemic variability (SD) (−16.3±3.1 mg/dL vs. −5.0±3.1 mg/dL), and glycated hemoglobin (−1.82±0.16% vs. −0.66±0.22%) without significant changes in frequency of hypoglycemia or weight. Improvements were sustained in the intensive treatment group through Week 12. A minimal but statistically significant degree of improvement was seen in the control group at Week 12. Conclusions This short-term pilot study of an intensive monitoring, educational, and pharmacological interventions program resulted in dramatic improvement of glycemic control within 6 weeks, and these effects are sustained through Week 12. SMBG glucose profiles, calculation of WMG and SD, and graphical displays of glucose data can improve the effectiveness of adjustment of therapy at weekly clinic visits when combined with intensive support from a multidisciplinary team. PMID:21751888
Image-guided regularization level set evolution for MR image segmentation and bias field correction.
Wang, Lingfeng; Pan, Chunhong
2014-01-01
Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Method and apparatus for detecting flaws and defects in heat seals
NASA Technical Reports Server (NTRS)
Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)
1993-01-01
Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.
Drug treatment services for adult offenders: The state of the state
Taxman, Faye S.; Perdoni, Matthew L.; Harrison, Lana D.
2007-01-01
We conducted a national survey of prisons, jails, and community correctional agencies to estimate the prevalence of entry into and accessibility of correctional programs and drug treatment services for adult offenders. Substance abuse education and awareness is the most prevalent form of service provided, being offered in 74% of prisons, 61% of jails, and 53% of community correctional agencies; at the same time, remedial education is the most frequently available correctional program in prisons (89%) and jails (59.5%), whereas sex offender therapy (57.2%) and intensive supervision (41.9%) dominate in community correctional programs. Most substance abuse services provided to offenders are offered through correctional programs such as intensive supervision, day reporting, vocational education, and work release, among others. Although agencies report a high frequency of providing substance abuse services, the prevalence rates are misleading because less than a quarter of the offenders in prisons and jails and less than 10% of those in community correctional agencies have access to these services through correctional agencies; in addition, these are predominantly drug treatment services that offer few clinical services. Given that drug-involved offenders are likely to have dependence rates that are four times greater than those among the general public, the drug treatment services and correctional programs available to offenders do not appear to be appropriate for the needs of this population. The National Criminal Justice Treatment Practices survey provides a better understanding of the distribution of services and programs across prisons, jails, and community correctional agencies and allows researchers and policymakers to understand some of the gaps in services and programs that may negatively affect recidivism reduction efforts. PMID:17383549
NASA Astrophysics Data System (ADS)
Holmes, Timothy W.
2001-01-01
A detailed tomotherapy inverse treatment planning method is described which incorporates leakage and head scatter corrections during each iteration of the optimization process, allowing these effects to be directly accounted for in the optimized dose distribution. It is shown that the conventional inverse planning method for optimizing incident intensity can be extended to include a `concurrent' leaf sequencing operation from which the leakage and head scatter corrections are determined. The method is demonstrated using the steepest-descent optimization technique with constant step size and a least-squared error objective. The method was implemented using the MATLAB scientific programming environment and its feasibility demonstrated for 2D test cases simulating treatment delivery using a single coplanar rotation. The results indicate that this modification does not significantly affect convergence of the intensity optimization method when exposure times of individual leaves are stratified to a large number of levels (>100) during leaf sequencing. In general, the addition of aperture dependent corrections, especially `head scatter', reduces incident fluence in local regions of the modulated fan beam, resulting in increased exposure times for individual collimator leaves. These local variations can result in 5% or greater local variation in the optimized dose distribution compared to the uncorrected case. The overall efficiency of the modified intensity optimization algorithm is comparable to that of the original unmodified case.
Arnold, J B; Liow, J S; Schaper, K A; Stern, J J; Sled, J G; Shattuck, D W; Worth, A J; Cohen, M S; Leahy, R M; Mazziotta, J C; Rottenberg, D A
2001-05-01
The desire to correct intensity nonuniformity in magnetic resonance images has led to the proliferation of nonuniformity-correction (NUC) algorithms with different theoretical underpinnings. In order to provide end users with a rational basis for selecting a given algorithm for a specific neuroscientific application, we evaluated the performance of six NUC algorithms. We used simulated and real MRI data volumes, including six repeat scans of the same subject, in order to rank the accuracy, precision, and stability of the nonuniformity corrections. We also compared algorithms using data volumes from different subjects and different (1.5T and 3.0T) MRI scanners in order to relate differences in algorithmic performance to intersubject variability and/or differences in scanner performance. In phantom studies, the correlation of the extracted with the applied nonuniformity was highest in the transaxial (left-to-right) direction and lowest in the axial (top-to-bottom) direction. Two of the six algorithms demonstrated a high degree of stability, as measured by the iterative application of the algorithm to its corrected output. While none of the algorithms performed ideally under all circumstances, locally adaptive methods generally outperformed nonadaptive methods. Copyright 2001 Academic Press.
Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M
2006-03-01
We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.
Bouchard, Jessica; Wong, Jennifer S
2018-05-01
Community correctional sentences are administered to more juvenile offenders in North America than any other judicial sentence. Particularly prominent in juvenile corrections is intensive supervision probation and aftercare/reentry, yet the effects of these supervision-oriented interventions on recidivism are mixed. The purpose of this meta-analysis is to determine the effects of intensive supervision probation and aftercare/reentry on juvenile recidivism. An extensive search of the literature and application of strict inclusion criteria resulted in the selection of 27 studies that contributed 55 individual effect sizes. Studies were pooled based on intervention type (intensive supervision probation or aftercare/reentry) and outcome measure (alleged or convicted offenses). The pooled analyses yielded contradictory results with respect to outcome measure; in both cases, supervision had a beneficial effect on alleged offenses and negatively affected convicted offenses. These patterns across intervention type and outcome measure, as well as recommendations for future research, are discussed.
Hamy, Valentin; Dikaios, Nikolaos; Punwani, Shonit; Melbourne, Andrew; Latifoltojar, Arash; Makanyanga, Jesica; Chouhan, Manil; Helbren, Emma; Menys, Alex; Taylor, Stuart; Atkinson, David
2014-02-01
Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Measurement of bow tie profiles in CT scanners using a real-time dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, Bruce R., E-mail: whitingbrucer@gmail.com; Evans, Joshua D.; Williamson, Jeffrey F.
2014-10-15
Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as themore » x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%–6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors. Conclusions: A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.« less
Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao
2016-01-01
According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method. PMID:27294936
Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao
2016-06-10
According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method.
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali
2011-04-15
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specificmore » intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.« less
SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, J; Lin, H; Chow, J
Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beammore » profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less
Improving satellite retrievals of NO2 in biomass burning regions
NASA Astrophysics Data System (ADS)
Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.
2010-12-01
The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the shape factor correction alone (without the aerosol correction), indicating that a shape factor-only correction is a good approximation of the total AMF correction associated with fire emissions. We use this result to define a measurement-based correction of the AMF based on the relationship between the slant column variability and the variability of the shape factor in the lower troposphere. This method may be generalized to other types of emission sources.
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua; Tao, Ling-Jiang; Gao, Chuan
2017-09-01
Large uncertainties exist in real-time predictions of the 2015 El Niño event, which have systematic intensity biases that are strongly model-dependent. It is critically important to characterize those model biases so they can be reduced appropriately. In this study, the conditional nonlinear optimal perturbation (CNOP)-based approach was applied to an intermediate coupled model (ICM) equipped with a four-dimensional variational data assimilation technique. The CNOP-based approach was used to quantify prediction errors that can be attributed to initial conditions (ICs) and model parameters (MPs). Two key MPs were considered in the ICM: one represents the intensity of the thermocline effect, and the other represents the relative coupling intensity between the ocean and atmosphere. Two experiments were performed to illustrate the effects of error corrections, one with a standard simulation and another with an optimized simulation in which errors in the ICs and MPs derived from the CNOP-based approach were optimally corrected. The results indicate that simulations of the 2015 El Niño event can be effectively improved by using CNOP-derived error correcting. In particular, the El Niño intensity in late 2015 was adequately captured when simulations were started from early 2015. Quantitatively, the Niño3.4 SST index simulated in Dec. 2015 increased to 2.8 °C in the optimized simulation, compared with only 1.5 °C in the standard simulation. The feasibility and effectiveness of using the CNOP-based technique to improve ENSO simulations are demonstrated in the context of the 2015 El Niño event. The limitations and further applications are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, R.; Kanter, H.J.; Sladkovic, R.
The balance of the tropospheric ozone is investigated considering the ozone sources with emphasis on tropospheric pollutants and stratospheric-tropospheric exchange processes. The measuring series of ozone concentration from the years 1977 to 1979 obtained at three different levels of the boundary layer (700, 1800, and 3000 m a.s.1.) have been analyzed. In the course of this work the data have been evaluated in correlation with relevant meteorological parameters, for instance solar radiation. It became evident that for the different levels various types of ozone sources must be assumed. At the mountain stations prevails influx of stratospheric ozone. In the valley,more » however, photochemical production must be regarded as main source. Experiences with a New Zealand filter photospectrometer are discussed. A systematic study of ozone profiles obtained by balloon sondes revealed that as a rule after solar flares associated with Forbush effect drastic changes of the ozone profile take place in the lower stratosphere. Then, extremely high maxima of the ozone partial pressure are observed immediately above the tropopause and also intensive influxes of tropospheric air into the stratosphere between 200 and 100 mb. At mountain stations just above the timberline the amplitude of the CO/sub 2/ daily variation due to vegetation is now balanced to such an extent that these measurements can be regarded as representative of the free atmosphere and thus seem to be sited for trend analyses. Effects of a modified lidar system on measurements of stratospheric aerosol layers and necessary corrections in evaluating the backscatter profiles are disucussed and most recent measuring results presented.« less
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...
2016-07-28
Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.
Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less
Grin, Andrea; O'Malley, Frances P; Mulligan, Anna Marie
2009-11-01
The presence of atypical or usual epithelial proliferations within papillary breast lesions complicates their interpretation on core biopsy. We evaluated the combination of estrogen receptor (ER) and cytokeratin 5 (CK5) as an aid in the distinction of usual duct hyperplasia from atypical proliferations in this setting. Core biopsies from 185 papillary lesions were reviewed and of these, 82 cases were selected for immunohistochemical study based on the presence of an epithelial proliferation between the fibrovascular cores. Fifty-two cases were used as the test set and 30 cases, with subsequent surgical excision, were used as the validation set. The epithelial proliferation was evaluated for staining intensity and percentage of positive cells using CK5 and ER. Expression of both CK5 and ER was significantly different in nonatypical lesions when compared with atypical lesions (P<0.0001). Nonatypical lesions typically showed an ER-low/CK5-high profile and atypical lesions showed an ER-high/CK5-low profile with ER-high expression defined as diffuse strong staining in >90% of cells. CK5-high expression was defined as a mosaic pattern of staining in >20% of cells and CK5-low as absent or staining in <20% of cells. On the basis of their staining profile, 29 of the 30 validation cases were correctly classified using the excision specimen as the gold standard. Patterns and extent of ER and CK5 staining, when used together, are valuable adjunct stains to differentiate usual duct hyperplasia from atypical proliferations within papillary lesions on core biopsy.
Technology Transfer/A Case Study: Target Strength
1974-03-01
Computer, 1 972] are both correct . The first man, a former newspaper writer, credits the intense rate of change now being experienced in society to a...inasmuch as it fails to account for certain diffrac- L tion phenomena; and it will give correct results only for cases where these diffraction...mentioned above, the Luneburg -iline result of Eq. (2,2-49) should be correct as the paraboloid represents an infinite body which does not support
Removing inter-subject technical variability in magnetic resonance imaging studies.
Fortin, Jean-Philippe; Sweeney, Elizabeth M; Muschelli, John; Crainiceanu, Ciprian M; Shinohara, Russell T
2016-05-15
Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities. Published by Elsevier Inc.
Souki, Marcelo Quiroga
2016-01-01
ABSTRACT The present case report describes the orthodontic treatment of a young adult patient (18y / 1m), Class III skeletal malocclusion, with mandibular prognathism and significant dental compensation. The canine relation was Class III, incisors with tendency to crossbite and open bite, moderate inferior crowding, and concave profile. Skeletal correction of malocclusion, facial profile harmony with satisfactory labial relationship, correction of tooth compensation and normal occlusal relationship were obtained with orthodontic treatment associated to orthognathic surgery. This case was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO), as part of the requirements to become a BBO diplomate. PMID:28125146
Ophthalmic applications of the digital micromirror device (DMD)
NASA Astrophysics Data System (ADS)
Reiley, Daniel J.; Sandstedt, Chris
2009-02-01
Cataract surgery with IOL implantation is performed on millions of patients every year. Despite 25 years of technological innovation, post-surgical refractive errors have remained a problem. Now these errors can be corrected using Calhoun Vision, Inc's light adjustable lens (LAL). The correction is accomplished by implanting a light-sensitive lens, then illuminating it with a spatially varying irradiance profile during a postoperative treatment. This irradiance profile is provided by a Light Delivery Device (LDD), which projects an image of a Texas Instruments DMD onto the implanted lens. Commercial sales of this system began in the summer of 2008 in Europe; US clinical trials began in January 2009.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.
2006-01-01
This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric TRANsmittance) radiative transport software to separate out the atmospheric component of measured top of atmosphere radiance. Simulated water bodies across a variety of MODTRAN model atmospheres including desert, mid-latitude, tropical and sub-artic conditions provide test bed conditions. Atmospherically corrected radiance and surface temperature results were compared to those obtained using traditional radiosonde balloon data and models. In general, differences between the different techniques were less than 2 percent indicating the potential value satellite derived atmospheric profiles have to atmospherically correct thermal imagery.
NASA Astrophysics Data System (ADS)
Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong
2017-12-01
Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelinga, Mark
This dataset contains measurements from eight different Vaisala Triton Wind Profiler instruments. The Triton Wind Profiler is a sodar wind profiler that measures wind speed, direction, and turbulence intensity at heights from 30 m to 200 m above ground every 10 minutes. The eight Tritons are located at various sites around the WFIP2 study area.
NASA Astrophysics Data System (ADS)
Joseph, E.; Nalli, N. R.; Oyola, M. I.; Morris, V. R.; Sakai, R.
2014-12-01
An overview is given of research to validate or improve the retrieval of environmental data records (EDRs) from recently deployed hyperspectral IR satellite sensors such as Suomi NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS). The effort centers around several surface field intensive campaigns that are designed or leveraged for EDR validation. These data include ship-based observations of upper air ozone, pressure, temperature and relative humidity soundings; aerosol and cloud properties; and sea surface temperature. Similar intensive data from two land-based sites are also utilized as well. One site, the Howard University Beltsville site, is at a single point location but has a comprehensive array of observations for an extended period of time. The other land site, presently being deployed by the University at Albany, is under development with limited upper air soundings but will have regionally distributed surface based microwave profiling of temperature and relative humidity on the scale of 10 - 50 km and other standard meteorological observations. Combined these observations provide data that are unique in their wide range including, a variety of meteorological conditions and atmospheric compositions over the ocean and urban-suburban environments. With the distributed surface sites the variability of atmospheric conditions are captured concurrently across a regional spatial scale. Some specific examples are given of comparisons of moisture and temperature correlative EDRs from the satellite sensors and surface based observations. An additional example is given of the use of this data to correct sea surface temperature (SST) retrieval biases from the hyperspectral IR satellite observations due to aerosol contamination.
Resiliency Scales for Children and Adolescents: Profiles of Juvenile Offenders
ERIC Educational Resources Information Center
Mowder, Melissa H.; Cummings, Jack A.; McKinney, Robert
2010-01-01
An exploratory study of resiliency profiles of male and female juvenile offenders committed to a juvenile correctional facility was conducted. The goal of the present study was to examine juvenile offenders' positive characteristics (e.g., adaptability, optimism, self-efficacy, tolerance of differences). To assess positive characteristics and…
El Dia y Mi Libertad (The Day and My Liberty).
ERIC Educational Resources Information Center
Pinton, Giorgio Alberto, Ed.
A collection of 99 writings in Spanish, predominantly poetry, by Puerto Ricans in a correctional institution, is presented here. The introduction gives the following information: (1) a "quantitative profile," including information on the education, age, and scores on selected tests of the inmates; and (2) a "qualitative profile," including…
Interrater Reliability of the Supports Intensity Scale (SIS)
ERIC Educational Resources Information Center
Thompson, James R.; Tasse, Marc J.; McLaughlin, Colleen A.
2008-01-01
The interrater reliability of the Supports Intensity Scale (SIS) was investigated under the condition that interviewers had to have been trained and/or experienced in its administration and scoring. Both corrected and noncorrected Pearson's product-moment coefficients were generated to assess interinterviewer, interrespondent, and mixed interrater…
Aprigliano, Federica; Martelli, Dario; Tropea, Peppino; Pasquini, Guido; Micera, Silvestro; Monaco, Vito
2017-09-01
This study was aimed at verifying whether aging modifies intralimb coordination strategy during corrective responses elicited by unexpected slip-like perturbations delivered during steady walking on a treadmill. To this end, 10 young and 10 elderly subjects were asked to manage unexpected slippages of different intensities. We analyzed the planar covariation law of the lower limb segments, using the principal component analysis, to verify whether elevation angles of older subjects covaried along a plan before and after the perturbation. Results showed that segments related to the perturbed limbs of both younger and older people do not covary after all perturbations. Conversely, the planar covariation law of the unperturbed limb was systematically held for younger and older subjects. These results occurred despite differences in spatio-temporal and kinematic parameters being observed among groups and perturbation intensities. Overall, our analysis revealed that aging does not affect intralimb coordination during corrective responses induced by slip-like perturbation, suggesting that both younger and older subjects adopt this control strategy while managing sudden and unexpected postural transitions of increasing intensities. Accordingly, results corroborate the hypothesis that balance control emerges from a governing set of biomechanical invariants, that is, suitable control schemes (e.g., planar covariation law) shared across voluntary and corrective motor behaviors, and across different sensory contexts due to different perturbation intensities, in both younger and older subjects. In this respect, our findings provide further support to investigate the effects of specific task training programs to counteract the risk of fall. NEW & NOTEWORTHY This study was aimed at investigating how aging affects the intralimb coordination of lower limb segments, described by the planar covariation law, during unexpected slip-like perturbations of increasing intensity. Results revealed that neither the aging nor the perturbation intensity affects this coordination strategy. Accordingly, we proposed that the balance control emerges from an invariant set of control schemes shared across different sensory motor contexts and despite age-related neuromuscular adaptations. Copyright © 2017 the American Physiological Society.
Takayanagi, Taisuke; Nihongi, Hideaki; Nishiuchi, Hideaki; Tadokoro, Masahiro; Ito, Yuki; Nakashima, Chihiro; Fujitaka, Shinichiro; Umezawa, Masumi; Matsuda, Koji; Sakae, Takeji; Terunuma, Toshiyuki
2016-07-01
To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. The authors distinguish between a calibration procedure and an additional correction: 1-the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2-the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical model tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm(2) were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow region, but 94.5% of the points satisfied the 1%/1 mm criterion. The 90% ranges, defined at the 90% dose position in distal fall off, were in good agreement with those in the water phantom, and the range differences from the water phantom were less than ±0.3 mm. The PDDs measured with the DRMLIC were also consistent with those that of the water phantom; 97% of the points passed the 1%/1 mm criterion. It was demonstrated that the new correction technique suppresses the difference between the depth dose profiles obtained with the MLIC and those obtained from a water phantom, and a DRMLIC enabling fast measurements of both IDD and PDD was developed. The IDDs and PDDs measured with the DRMLIC and using the correction technique were in good agreement with those that of the water phantom, and it was concluded that the correction technique and DRMLIC are useful for depth dose profile measurements in pencil beam scanning proton therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayanagi, Taisuke, E-mail: taisuke.takayanagi.wd
2016-07-15
Purpose: To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. Methods: The authors distinguish between a calibration procedure and an additional correction: 1—the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2—the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical modelmore » tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. Results: IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm{sup 2} were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow region, but 94.5% of the points satisfied the 1%/1 mm criterion. The 90% ranges, defined at the 90% dose position in distal fall off, were in good agreement with those in the water phantom, and the range differences from the water phantom were less than ±0.3 mm. The PDDs measured with the DRMLIC were also consistent with those that of the water phantom; 97% of the points passed the 1%/1 mm criterion. Conclusions: It was demonstrated that the new correction technique suppresses the difference between the depth dose profiles obtained with the MLIC and those obtained from a water phantom, and a DRMLIC enabling fast measurements of both IDD and PDD was developed. The IDDs and PDDs measured with the DRMLIC and using the correction technique were in good agreement with those that of the water phantom, and it was concluded that the correction technique and DRMLIC are useful for depth dose profile measurements in pencil beam scanning proton therapy.« less
Surface Glycosylation Profiles of Urine Extracellular Vesicles
Gerlach, Jared Q.; Krüger, Anja; Gallogly, Susan; Hanley, Shirley A.; Hogan, Marie C.; Ward, Christopher J.
2013-01-01
Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. PMID:24069349
Watkins, J. M.; Weidel, Brian M.; Rudstam, L. G.; Holek, K. T.
2014-01-01
Increasing water clarity in Lake Ontario has led to a vertical redistribution of phytoplankton and an increased importance of the deep chlorophyll layer in overall primary productivity. We used in situ fluorometer profiles collected in lakewide surveys of Lake Ontario in 2008 to assess the spatial extent and intensity of the deep chlorophyll layer. In situ fluorometer data were corrected with extracted chlorophyll data using paired samples from Lake Ontario collected in August 2008. The deep chlorophyll layer was present offshore during the stratified conditions of late July 2008 with maximum values from 4-13 μg l-1 corrected chlorophyll a at 10 to 17 m depth within the metalimnion. Deep chlorophyll layer was closely associated with the base of the thermocline and a subsurface maximum of dissolved oxygen, indicating the feature's importance as a growth and productivity maximum. Crucial to the deep chlorophyll layer formation, the photic zone extended deeper than the surface mixed layer in mid-summer. The layer extended through most of the offshore in July 2008, but was not present in the easternmost transect that had a deeper surface mixed layer. By early September 2008, the lakewide deep chlorophyll layer had dissipated. A similar formation and dissipation was observed in the lakewide survey of Lake Ontario in 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Motoshi; Morita, Shigeru
Emission lines in the visible/UV wavelength ranges are observed with 80 lines of sight which cover an entire poloidal cross section of the plasma in the Large Helical Device. The emitted light is received with optical fibers having 100 {mu}m diameter and is guided into a 1.33 m Czerny-Turner-type spectrometer based on spherical mirrors for collimating and focusing. A charge-coupled device having 13.3x13.3 mm{sup 2} area size is used as the detector and the spectra from all the lines of sight are recorded perpendicularly to the wavelength dispersion. The spectrometer is equipped with optics located in front of the entrancemore » slit to correct the difference between the meridional and sagittal focal points, and thus the astigmatism, which otherwise causes severe cross talk between adjacent optical fiber images on the detector, is corrected. Consequently, simultaneous spectral measurement with 80 lines of sight is realized. The Zeeman splitting of a neutral helium line, {lambda}667.8 nm (2 {sup 1}P-3 {sup 1}D), which is caused by the magnetic field for plasma confinement, is measured with the spectrometer. Though the obtained line profile is in general a superposition of several components on the same line of sight, they can be separated according to their different splitting widths. The two-dimensional poloidal distribution of the helium line intensity is obtained with the help of a tomographic technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Sun, B; Grantham, K
2016-06-15
Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less
ERIC Educational Resources Information Center
Cusick, Gretchen Ruth; Goerge, Robert M.; Bell, Katie Claussen
2009-01-01
This Chapin Hall report describes findings on the extent of system involvement among Illinois youth released from correctional facilities, tracking a population of youth under age 18 in Illinois following their release. Using administrative records, researchers develop profiles of reentry experiences across the many systems that serve youth and…
Vector spherical quasi-Gaussian vortex beams
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2014-02-01
Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.
An occultation satellite system for determining pressure levels in the atmosphere
NASA Technical Reports Server (NTRS)
Morrison, A. R.; Vngar, S. G.; Lusignan, B. B.
1974-01-01
A two-satellite microwave occultation system is described that will fix, as an absolute function of altitude, the pressure-temperature profile generated by a passive infrared sounder. The 300 mb pressure level is determined to within 24 m rms, assuming the temperture errors produced by the infrared sensor are not greater than 2 K rms. Error caused by water vapor in the radio path is corrected by climatological adjustments. A ground test of the proposed system is described. A microwave signal propagating between two mountain tops was found to be subject to periods of intense fading. Computer analysis of the raypath between the transmitting and receiving stations indicates that multipath and defocusing were responsible for this fading. It is unlikely that an operational pressure-reference-level system will be subject to the deep fades observed in the ground test, because the phenomena are associated with lower altitudes than the closest approach altitude of an occultation-system raypath.
Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V
2006-01-01
Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.
Release 2 data products from the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler
NASA Astrophysics Data System (ADS)
Xu, Philippe Q.; Bhartia, Pawan K.; Jaross, Glen R.; DeLand, Matthew T.; Larsen, Jack C.; Fleig, Albert; Kahn, Daniel; Zhu, Tong; Chen, Zhong; Gorkavyi, Nick; Warner, Jeremy; Linda, Michael; Chen, Hong G.; Kowitt, Mark; Haken, Michael; Hall, Peter
2014-10-01
The OMPS Limb Profiler (LP) was launched on board the NASA Suomi National Polar-orbiting Partnership (SNPP) satellite in October 2011. OMPS-LP is a limb-scattering hyperspectral sensor that provides ozone profiling capability at 1.8 km vertical resolution from cloud top to 60 km altitude. The use of three parallel slits allows global coverage in approximately four days. We have recently completed a full reprocessing of all LP data products, designated as Release 2, that improves the accuracy and quality of these products. Level 1 gridded radiance (L1G) changes include intra-orbit and seasonal correction of variations in wavelength registration, revised static and intra-orbit tangent height adjustments, and simplified pixel selection from multiple images. Ozone profile retrieval changes include removal of the explicit aerosol correction, exclusion of channels contaminated by stratospheric OH emission, a revised instrument noise characterization, improved synthetic solar spectrum, improved pressure and temperature ancillary data, and a revised ozone climatology. Release 2 data products also include aerosol extinction coefficient profiles derived with the prelaunch retrieval algorithm. Our evaluation of OMPS LP Release 2 data quality is good. Zonal average ozone profile comparisons with Aura MLS data typically show good agreement, within 5-10% over the altitude range 20-50 km between 60°S and 60°N. The aerosol profiles agree well with concurrent satellite measurements such as CALIPSO and OSIRIS, and clearly detect exceptional events such as volcanic eruptions and the Chelyabinsk bolide in February 2013.
Release 2 data products from the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler
NASA Technical Reports Server (NTRS)
Xu, Q. Philippe; Bhartia, Pawan K.; Jaross, Glen R.; Deland, Matthew T.; Larsen, Jack C.; Fleig, Albert; Kahn, Daniel; Zhu, Tong; Chen, Zhong; Gorkavyi, Nick;
2014-01-01
The OMPS Limb Profiler (LP) was launched on board the NASA Suomi National Polar-orbiting Partnership (SNPP) satellite in October 2011. OMPS-LP is a limb-scattering hyperspectral sensor that provides ozone profiling capability at 1.5 km vertical resolution from cloud top to 60 km altitude. The use of three parallel slits allows global coverage in approximately four days. We have recently completed a full reprocessing of all LP data products, designated as Release 2, that improves the accuracy and quality of these products. Level 1 gridded radiance (L1G) changes include intra-orbit and seasonal correction of variations in wavelength registration, revised static and intra-orbit tangent height adjustments, and simplified pixel selection from multiple images. Ozone profile retrieval changes include removal of the explicit aerosol correction, exclusion of channels contaminated by stratospheric OH emission, a revised instrument noise characterization, improved synthetic solar spectrum, improved pressure and temperature ancillary data, and a revised ozone climatology. Release 2 data products also include aerosol extinction coefficient profiles derived with the prelaunch retrieval algorithm. Our evaluation of OMPS LP Release 2 data quality is good. Zonal average ozone profile comparisons with Aura MLS data typically show good agreement, within 5-10% over the altitude range 20-50 km between 60 deg S and 60 deg N. The aerosol profiles agree well with concurrent satellite measurements such as CALIPSO and OSIRIS, and clearly detect exceptional events such as volcanic eruptions and the Chelyabinsk bolide in February 2013.
NASA Astrophysics Data System (ADS)
Shah, Sweta; Tuinder, Olaf N. E.; van Peet, Jacob C. A.; de Laat, Adrianus T. J.; Stammes, Piet
2018-04-01
Ozone profile retrieval from nadir-viewing satellite instruments operating in the ultraviolet-visible range requires accurate calibration of Level-1 (L1) radiance data. Here we study the effects of calibration on the derived Level-2 (L2) ozone profiles for three versions of SCanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY (SCIAMACHY) L1 data: version 7 (v7), version 7 with m-factors (v7mfac) and version 8 (v8). We retrieve nadir ozone profiles from the SCIAMACHY instrument that flew on board Envisat using the Ozone ProfilE Retrieval Algorithm (OPERA) developed at KNMI with a focus on stratospheric ozone. We study and assess the quality of these profiles and compare retrieved L2 products from L1 SCIAMACHY data versions from the years 2003 to 2011 without further radiometric correction. From validation of the profiles against ozone sonde measurements, we find that the v8 performs better than v7 and v7mfac due to correction for the scan-angle dependency of the instrument's optical degradation. Validation for the years 2003 and 2009 with ozone sondes shows deviations of SCIAMACHY ozone profiles of 0.8-15 % in the stratosphere (corresponding to pressure range ˜ 100-10 hPa) and 2.5-100 % in the troposphere (corresponding to pressure range ˜ 1000-100 hPa), depending on the latitude and the L1 version used. Using L1 v8 for the years 2003-2011 leads to deviations of ˜ 1-11 % in stratospheric ozone and ˜ 1-45 % in tropospheric ozone. The SCIAMACHY L1 v8 data can still be improved upon in the 265-330 nm range used for ozone profile retrieval. The slit function can be improved with a spectral shift and squeeze, which leads to a few percent residue reduction compared to reference solar irradiance spectra. Furthermore, studies of the ratio of measured to simulated reflectance spectra show that a bias correction in the reflectance for wavelengths below 300 nm appears to be necessary.
Auger, T A; Turley, P K
1999-01-01
Numerous studies have emphasized the importance of the facial profile in orthodontic treatment planning, with some arguing that the esthetic ideal has remained unchanged for thousands of years. To evaluate changes in the white female facial profile, we measured 14 soft tissue variables on profile photographs presented in fashion magazines during the 1900s. Five time frames were studied, with a sample of 25 photographs from each period corrected for size and orientation. Between-group differences were examined by use of analysis of variance, using a P value corrected for a multivariable analysis. Significant between-group differences (P < 0.0001) were found for anteroposterior lip position, amount of visible lip tissue, and interlabial angle, with the more recent groups displaying fuller and more anteriorly positioned lips. No significant differences were found for measurements calculated superior to subnasale (frontonasal angle, nasal tip angle, and nasolabial angle) or in the relationship of the chin to the upper face (total facial angle). The results of this study suggest that standards for the esthetic white female facial profile are not static and show a trend in this century toward fuller and more anteriorly positioned lips.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-01-01
Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Brock, Kristy K.; Daly, Michael J.; Chan, Harley; Irish, Jonathan C.; Siewerdsen, Jeffrey H.
2011-01-01
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (“intensity”). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and∕or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5±2.8) mm compared to (3.5±3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance. PMID:21626913
Tokuda, Junichi; Mamata, Hatsuho; Gill, Ritu R; Hata, Nobuhiko; Kikinis, Ron; Padera, Robert F; Lenkinski, Robert E; Sugarbaker, David J; Hatabu, Hiroto
2011-04-01
To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared. The percentage of reliable pixels in the motion-corrected DCE-MRI was significantly larger than the original DCE-MRI (P = 4 × 10(-7) ). Both K(trans) and k(ep) derived from the motion-corrected DCE-MRI showed significant differences between benign and malignant SPNs (P = 0.024, 0.015). The study demonstrated the impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in SPNs. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Xiao, Peng; Fink, Mathias; Boccara, A. Claude
2016-03-01
A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.
Tensor voting for image correction by global and local intensity alignment.
Jia, Jiaya; Tang, Chi-Keung
2005-01-01
This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.
Calibration results for the GEOS-3 altimeter
NASA Technical Reports Server (NTRS)
Martin, C. F.; Butler, M. L.
1977-01-01
Data from the GEOS-3 altimeter were analyzed, for both the intensive and global modes, to determine the altitude bias levels for each mode and to verify the accuracy of the time tags which have been applied to the data. The best estimates of the biases are -5.30 + or - .2 m (intensive mode) and -3.55 m + or - .4 m (global mode). These values include the approximately 1.6 m offset of the altimeter antenna focal point from the GEOS-3 spacecraft center-of-mass. The negative signs indicate that the measured altitudes are too short. The data is corrected by subtracting the above bias numbers for the respective modes. Timing corrections which should be applied to the altimeter data were calculated theoretically, and subsequently confirmed through crossover analysis for passes 6-8 revolutions apart. The time tag correction that should be applied consists of -20.8 msec + 1 interpulse period (10.240512 msec).
Development of an algorithm for corneal reshaping with a scanning laser beam
NASA Astrophysics Data System (ADS)
Shen, Jin-Hui; Söderberg, Per; Matsui, Takaaki; Manns, Fabrice; Parel, Jean-Marie
1995-07-01
The corneal-ablation rate, the beam-intensity distribution, and the initial and the desired corneal topographies are used to calculate a spatial distribution map of laser pulses. The optimal values of the parameters are determined with a computer model, for a system that produces 213-nm radiation with a Gaussian beam-intensity distribution and a peak radiant exposure of 400 mJ/cm2. The model shows that with a beam diameter of 0.5 mm, an overlap of 80%, and a 5-mm treatment zone, the roughness is less than 6% of the central ablation depth, the refractive error after correction is less than 0.1 D for corrections of myopia of 1, 3, and 6 D and less than 0.4 D for a correction of myopia of 10 D, and the number of pulses per diopter of
Installation Status of the Electron Beam Profiler for the Fermilab Main Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.
2015-11-06
The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will bemore » discussed together with some simulations and test stand results.« less
NASA Astrophysics Data System (ADS)
Olafsen, L. J.; Olafsen, J. S.; Eaves, I. K.
2018-06-01
We report on an experimental investigation of the time-dependent spatial intensity distribution of near-infrared idler pulses from an optical parametric oscillator measured using an infrared (IR) camera, in contrast to beam profiles obtained using traditional knife-edge techniques. Comparisons show the information gained by utilizing the thermal camera provides more detail than the spatially- or time-averaged measurements from a knife-edge profile. Synchronization, averaging, and thresholding techniques are applied to enhance the images acquired. The additional information obtained can improve the process by which semiconductor devices and other IR lasers are characterized for their beam quality and output response and thereby result in IR devices with higher performance.
Generalized expression for optical source fields
NASA Astrophysics Data System (ADS)
Kamacıoğlu, Canan; Baykal, Yahya
2012-09-01
A generalized optical beam expression is developed that presents the majority of the existing optical source fields such as Bessel, Laguerre-Gaussian, dark hollow, bottle, super Gaussian, Lorentz, super-Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, annular, Gauss-Legendre, vortex, also their higher order modes with their truncated, elegant and elliptical versions. Source intensity profiles derived from the generalized optical source beam fields are checked to match the intensity profiles of many individual known beam types. Source intensities for several interesting beam combinations are presented. Our generalized optical source beam field expression can be used to examine both the source characteristics and the propagation properties of many different optical beams in a single formulation.
A Revised Embedded Planning Tool for Intensive Reading Instruction
ERIC Educational Resources Information Center
Wei, Yan; Lombardi, Allison; Simonsen, Brandi; Coyne, Michael; Faggella-Luby, Michael; Freeman, Jennifer; Kearns, Devin
2017-01-01
A single-subject AB multiple-baseline design across participants was utilized to investigate the effectiveness of the Revised Tier Three Instructional Planning (T-TIP) tool on teacher lesson planning, with a focus on corrective and elaborative feedback within intensive literacy instructional settings in secondary schools. Findings revealed that…
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.;
2002-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Pai, H.; Tyler, S.
2017-12-01
Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.
LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.; Edstrom, D.; Halavanau, A.
2017-07-16
The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.
A method for removing arm backscatter from EPID images
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308
2013-07-15
Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less
Bunch mode specific rate corrections for PILATUS3 detectors
Trueb, P.; Dejoie, C.; Kobas, M.; ...
2015-04-09
PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less
Allen, Robert C; John, Mallory G; Rutan, Sarah C; Filgueira, Marcelo R; Carr, Peter W
2012-09-07
A singular value decomposition-based background correction (SVD-BC) technique is proposed for the reduction of background contributions in online comprehensive two-dimensional liquid chromatography (LC×LC) data. The SVD-BC technique was compared to simply subtracting a blank chromatogram from a sample chromatogram and to a previously reported background correction technique for one dimensional chromatography, which uses an asymmetric weighted least squares (AWLS) approach. AWLS was the only background correction technique to completely remove the background artifacts from the samples as evaluated by visual inspection. However, the SVD-BC technique greatly reduced or eliminated the background artifacts as well and preserved the peak intensity better than AWLS. The loss in peak intensity by AWLS resulted in lower peak counts at the detection thresholds established using standards samples. However, the SVD-BC technique was found to introduce noise which led to detection of false peaks at the lower detection thresholds. As a result, the AWLS technique gave more precise peak counts than the SVD-BC technique, particularly at the lower detection thresholds. While the AWLS technique resulted in more consistent percent residual standard deviation values, a statistical improvement in peak quantification after background correction was not found regardless of the background correction technique used. Copyright © 2012 Elsevier B.V. All rights reserved.
Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array.
Pardo, J; Roselló, J V; Sánchez-Doblado, F; Gómez, F
2006-06-07
A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the gamma test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the gamma test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one ( approximately 3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.
Individuals underestimate moderate and vigorous intensity physical activity.
Canning, Karissa L; Brown, Ruth E; Jamnik, Veronica K; Salmon, Art; Ardern, Chris I; Kuk, Jennifer L
2014-01-01
It is unclear whether the common physical activity (PA) intensity descriptors used in PA guidelines worldwide align with the associated percent heart rate maximum method used for prescribing relative PA intensities consistently between sexes, ethnicities, age categories and across body mass index (BMI) classifications. The objectives of this study were to determine whether individuals properly select light, moderate and vigorous intensity PA using the intensity descriptions in PA guidelines and determine if there are differences in estimation across sex, ethnicity, age and BMI classifications. 129 adults were instructed to walk/jog at a "light," "moderate" and "vigorous effort" in a randomized order. The PA intensities were categorized as being below, at or above the following %HRmax ranges of: 50-63% for light, 64-76% for moderate and 77-93% for vigorous effort. On average, people correctly estimated light effort as 51.5±8.3%HRmax but underestimated moderate effort as 58.7±10.7%HRmax and vigorous effort as 69.9±11.9%HRmax. Participants walked at a light intensity (57.4±10.5%HRmax) when asked to walk at a pace that provided health benefits, wherein 52% of participants walked at a light effort pace, 19% walked at a moderate effort and 5% walked at a vigorous effort pace. These results did not differ by sex, ethnicity or BMI class. However, younger adults underestimated moderate and vigorous intensity more so than middle-aged adults (P<0.05). When the common PA guideline descriptors were aligned with the associated %HRmax ranges, the majority of participants underestimated the intensity of PA that is needed to obtain health benefits. Thus, new subjective descriptions for moderate and vigorous intensity may be warranted to aid individuals in correctly interpreting PA intensities.
NASA Astrophysics Data System (ADS)
Dagen, Aaron J.
1985-12-01
The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.
NASA Astrophysics Data System (ADS)
Dagen, A. J.
1985-12-01
The fluorescence decay profiles, relative quantum yield and transmission of the alpha, beta and (alpha beta) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated (approx. 4x10 to the 13th power to 4x10 to the 15th power photons/sq cm per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the alpha subunit, 666 ps in the beta subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f beta chromophore, an apparent result of aggregation effects.
Tepsic, Jasna; Vucic, Vesna; Arsic, Aleksandra; Blazencic-Mladenovic, Vera; Mazic, Sanja; Glibetic, Marija
2009-10-01
The effect of intensive long-term physical activity on phospholipid fatty acid (FA) composition has not been studied thoroughly. We determined plasma and erythrocyte phospholipid FA status of professional basketball and football players. Our results showed differences in plasma FA profile not only between sportsmen and sedentary subjects, but also between two groups of sportsmen. Plasma FA profile in basketball players showed significantly higher proportion of n-6 FA (20:3, 20:4, and 22:4) and total polyunsaturated FA (PUFA) than controls, while football players had higher palmitoleic acid (16:1) than basketball players and controls. Total PUFA and 22:4 were also higher in basketball than in football players. Erythrocyte FA profile showed no differences between football players and controls. However, basketball players had higher proportion of 18:0 than controls, higher saturated FA and lower 18:2 than two other groups, and higher 22:4 than football players. These findings suggest that long-term intensive exercise and type of sport influence FA profile.
NASA Astrophysics Data System (ADS)
Meyer, Michael; Kalender, Willi A.; Kyriakou, Yiannis
2010-01-01
Scattered radiation is a major source of artifacts in flat detector computed tomography (FDCT) due to the increased irradiated volumes. We propose a fast projection-based algorithm for correction of scatter artifacts. The presented algorithm combines a convolution method to determine the spatial distribution of the scatter intensity distribution with an object-size-dependent scaling of the scatter intensity distributions using a priori information generated by Monte Carlo simulations. A projection-based (PBSE) and an image-based (IBSE) strategy for size estimation of the scanned object are presented. Both strategies provide good correction and comparable results; the faster PBSE strategy is recommended. Even with such a fast and simple algorithm that in the PBSE variant does not rely on reconstructed volumes or scatter measurements, it is possible to provide a reasonable scatter correction even for truncated scans. For both simulations and measurements, scatter artifacts were significantly reduced and the algorithm showed stable behavior in the z-direction. For simulated voxelized head, hip and thorax phantoms, a figure of merit Q of 0.82, 0.76 and 0.77 was reached, respectively (Q = 0 for uncorrected, Q = 1 for ideal). For a water phantom with 15 cm diameter, for example, a cupping reduction from 10.8% down to 2.1% was achieved. The performance of the correction method has limitations in the case of measurements using non-ideal detectors, intensity calibration, etc. An iterative approach to overcome most of these limitations was proposed. This approach is based on root finding of a cupping metric and may be useful for other scatter correction methods as well. By this optimization, cupping of the measured water phantom was further reduced down to 0.9%. The algorithm was evaluated on a commercial system including truncated and non-homogeneous clinically relevant objects.
Assessment of Cracks in Stress Concentration Regions with Localized Plastic Zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, E.
1998-11-25
Marty brittle fracture evaluation procedures include plasticity corrections to elastically computed stress intensity factors. These corrections, which are based on the existence of a plastic zone in the vicinity of the crack tip, can overestimate the plasticity effect for a crack embedded in a stress concentration region in which the elastically computed stress exceeds the yield strength of the material in a localized zone. The interactions between the crack, which acts to relieve the high stresses driving the crack, plasticity effects in the stress concentration region, and the nature and source of the loading are examined by formulating explicit flawmore » finite element models for a crack emanating from the root of a notch located in a panel subject to an applied tensile stress. The results of these calculations provide conditions under which a crack-tip plasticity correction based on the Irwin plastic zone size overestimates the plasticity effect. A failure assessment diagram (FAD) curve is used to characterize the effect of plasticity on the crack driving force and to define a less restrictive plasticity correction for cracks at notch roots when load-controlled boundary conditions are imposed. The explicit flaw finite element results also demonstrate that stress intensity factors associated with load-controlled boundary conditions, such as those inherent in the ASME Boiler and Pressure Vessel Code as well as in most handbooks of stress intensity factors, can be much higher than those associated with displacement-controlled conditions, such as those that produce residual or thermal stresses. Under certain conditions, the inclusion of plasticity effects for cracks loaded by displacement-controlled boundary conditions reduces the crack driving force thus justifying the elimination of a plasticity correction for such loadings. The results of this study form the basis for removing unnecessary conservatism from flaw evaluation procedures that utilize plasticity corrections.« less
NASA Astrophysics Data System (ADS)
Gao, R.; Li, W.; Guo, X.; Li, H.; Lu, Z.; He, R.; Zeng, L.; Klemperer, S. L.; Huang, X.
2016-12-01
The Tibetan plateau was created by continental collision between India and Eurasia and their ongoing convergence. The extent of subduction of Indian crust is central to our understanding the geodynamics of continental collision. However, owing to the lack of high-resolution data on the crustal-scale geometry of the Himalayan collision zone, the thickness of Indian crust subducting beneath the Yarlung-Zangbo Suture has been poorly known. Here we present two new deep seismic reflection profiles, respectively 100-km and 60-km long, across the central part of the Yarlung-Zangbo suture at c. 88°E (Figure 1). Seismic data processing used the CGG, ProMAX, and GeoEast systems. Processing included tomographic static correction, true-amplitude recovery, frequency analysis, filter-parameter tests, surface-consistent-amplitude corrections, surface-consistent deconvolution, coherent noise suppression, random noise attenuation, human-computer interactive velocity analysis, residual statics correction, Kirchhoff pre-stack time migration incorporating the rugged topography, and post-stack polynomial fitting to remove noise. Our two profiles both trace the Main Himalayan Thrust continuously from the mid-crust to deep beneath southern Tibet. Together with prominent Moho reflections at the base of the double-normal-thickness crust, the geometry of the subducting Indian crust is well defined. Both profiles image a limited extent of the Indian crust beneath southern Tibet and indicate that north-dipping Indian crust and south-dipping Lhasa crust converge beneath the Xietongmen region, above the remnant mantle suture. Figure 1. Geological map of the Xietongmen Region, south Tibet. The deep seismic reflection profile is shown as a solid red line, the location of big shots are shown as black stars.
Vullo, Carlos M; Romero, Magdalena; Catelli, Laura; Šakić, Mustafa; Saragoni, Victor G; Jimenez Pleguezuelos, María Jose; Romanini, Carola; Anjos Porto, Maria João; Puente Prieto, Jorge; Bofarull Castro, Alicia; Hernandez, Alexis; Farfán, María José; Prieto, Victoria; Alvarez, David; Penacino, Gustavo; Zabalza, Santiago; Hernández Bolaños, Alejandro; Miguel Manterola, Irati; Prieto, Lourdes; Parsons, Thomas
2016-03-01
The GHEP-ISFG Working Group has recognized the importance of assisting DNA laboratories to gain expertise in handling DVI or missing persons identification (MPI) projects which involve the need for large-scale genetic profile comparisons. Eleven laboratories participated in a DNA matching exercise to identify victims from a hypothetical conflict with 193 missing persons. The post mortem database was comprised of 87 skeletal remain profiles from a secondary mass grave displaying a minimal number of 58 individuals with evidence of commingling. The reference database was represented by 286 family reference profiles with diverse pedigrees. The goal of the exercise was to correctly discover re-associations and family matches. The results of direct matching for commingled remains re-associations were correct and fully concordant among all laboratories. However, the kinship analysis for missing persons identifications showed variable results among the participants. There was a group of laboratories with correct, concordant results but nearly half of the others showed discrepant results exhibiting likelihood ratio differences of several degrees of magnitude in some cases. Three main errors were detected: (a) some laboratories did not use the complete reference family genetic data to report the match with the remains, (b) the identity and/or non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, and (c) many laboratories did not properly evaluate the prior odds for the event. The results suggest that large-scale profile comparisons for DVI or MPI is a challenge for forensic genetics laboratories and the statistical treatment of DNA matching and the Bayesian framework should be better standardized among laboratories. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.
2003-01-01
The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained without the need for horizontal measurements. A review of both overlap methods is presented, including a discussion of the impact on reducing the uncertainty and bias error in MPLNET aerosol profiles.
Route profile analysis system and method
Mullenhoff, Donald J.; Wilson, Stephen W.
1986-01-01
A system for recording terrain profile information is disclosed. The system accurately senses incremental distances traveled by a vehicle along with vehicle inclination, recording both with elapsed time. The incremental distances can subsequently be differentiated with respect to time to obtain acceleration. The acceleration can then be used by the computer to correct the sensed inclination.
Route profile analysis system and method
Mullenhoff, D.J.; Wilson, S.W.
1982-07-29
A system for recording terrain profile information is disclosed. The system accurately senses incremental distances traveled by a vehicle along with vehicle inclination, recording both with elapsed time. The incremental distances can subsequently be differentiated with respect to time to obtain acceleration. The computer acceleration can then be used to correct the sensed inclination.
Cady, John W.
1977-01-01
A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.
State Education Finance and Governance Profile: Virginia
ERIC Educational Resources Information Center
Smith, Matthew
2010-01-01
This article presents the state education finance and governance profile of Virginia. The state allocates K-12 education funds on a biennial basis. Supplements and rescissions to the original funding amount are made on an annual basis in order to correct for revenue growth or deficit. The state budget currently provides more than $5 billion to…
Some Innovative Methods to Improve Profiles Derivation
ERIC Educational Resources Information Center
Pei, Lai Kwan
2008-01-01
As the government aimed to provide appropriate education to all children (No Child Left Behind Act), it is important that the education providers can assess the performance of the students correctly so that they can provide the appropriate education for the students. Profile analysis is a very useful tool to interpret test scores and measure…
Vertical structure of radar reflectivity in deep intense convective clouds over the tropics
NASA Astrophysics Data System (ADS)
Kumar, Shailendra; Bhat, G. S.
2015-04-01
This study is based on 10 years of radar reflectivity factor (Z) data derived from the TRMM Precipitation Radar (PR) measurements. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective clouds (ICCs), essentially following the methodology used in deriving the vertical profiles of radar reflectivity (VPRR). CbT contains Z≥ 20 dBZ at 12 km height with its base height below 3 km. ICCs belong to the top 5% reflectivity population at 3 km and 8 km altitude. Regional differences in the vertical structure of convective cells have been explored for two periods, namely, JJAS (June, July, August and September) and JFM (January, February and March) months. Frequency of occurrences of CbTs and ICCs depend on the region. Africa and Latin America are the most productive regions for the CbTs while the foothills of Western Himalaya contain the most intense profiles. Among the oceanic areas, the Bay of Bengal has the strongest vertical profile, whereas Atlantic Ocean has the weakest profile during JJAS. During JFM months, maritime continent has the strongest vertical profile whereas western equatorial Indian Ocean has the weakest. Monsoon clouds lie between the continental and oceanic cases. The maximum heights of 30 and 40 dBZ reflectivities (denoted by MH30 and MH40, respectively) are also studied. MH40 shows a single mode and peaks around 5.5 km during both JJAS and JFM months. MH30 shows two modes, around 5 km and between 8 km and 10 km, respectively. It is also shown that certain conclusions such as the area/region with the most intense convective cells, depend of the reference height used in defining a convective cell.
NASA Astrophysics Data System (ADS)
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan
2018-04-01
Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.
Decoding power-spectral profiles from FMRI brain activities during naturalistic auditory experience.
Hu, Xintao; Guo, Lei; Han, Junwei; Liu, Tianming
2017-02-01
Recent studies have demonstrated a close relationship between computational acoustic features and neural brain activities, and have largely advanced our understanding of auditory information processing in the human brain. Along this line, we proposed a multidisciplinary study to examine whether power spectral density (PSD) profiles can be decoded from brain activities during naturalistic auditory experience. The study was performed on a high resolution functional magnetic resonance imaging (fMRI) dataset acquired when participants freely listened to the audio-description of the movie "Forrest Gump". Representative PSD profiles existing in the audio-movie were identified by clustering the audio samples according to their PSD descriptors. Support vector machine (SVM) classifiers were trained to differentiate the representative PSD profiles using corresponding fMRI brain activities. Based on PSD profile decoding, we explored how the neural decodability correlated to power intensity and frequency deviants. Our experimental results demonstrated that PSD profiles can be reliably decoded from brain activities. We also suggested a sigmoidal relationship between the neural decodability and power intensity deviants of PSD profiles. Our study in addition substantiates the feasibility and advantage of naturalistic paradigm for studying neural encoding of complex auditory information.
Uribe-Patarroyo, Néstor; Bouma, Brett E.
2015-01-01
We present a new technique for the correction of nonuniform rotation distortion in catheter-based optical coherence tomography (OCT), based on the statistics of speckle between A-lines using intensity-based dynamic light scattering. This technique does not rely on tissue features and can be performed on single frames of data, thereby enabling real-time image correction. We demonstrate its suitability in a gastrointestinal balloon-catheter OCT system, determining the actual rotational speed with high temporal resolution, and present corrected cross-sectional and en face views showing significant enhancement of image quality. PMID:26625040
Finding the bottom and using it
Sandoval, Ruben M.; Wang, Exing; Molitoris, Bruce A.
2014-01-01
Maximizing 2-photon parameters used in acquiring images for quantitative intravital microscopy, especially when high sensitivity is required, remains an open area of investigation. Here we present data on correctly setting the black level of the photomultiplier tube amplifier by adjusting the offset to allow for accurate quantitation of low intensity processes. When the black level is set too high some low intensity pixel values become zero and a nonlinear degradation in sensitivity occurs rendering otherwise quantifiable low intensity values virtually undetectable. Initial studies using a series of increasing offsets for a sequence of concentrations of fluorescent albumin in vitro revealed a loss of sensitivity for higher offsets at lower albumin concentrations. A similar decrease in sensitivity, and therefore the ability to correctly determine the glomerular permeability coefficient of albumin, occurred in vivo at higher offset. Finding the offset that yields accurate and linear data are essential for quantitative analysis when high sensitivity is required. PMID:25313346
Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.
Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David
2017-09-01
The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
NASA Astrophysics Data System (ADS)
Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson
2014-12-01
Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.
NASA Astrophysics Data System (ADS)
Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.
2013-12-01
Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are demagnetized by hydrothermal circulation. The low magnetization zones around the off-axis vent sites are about ten times wider than those surrounding the on-axis sites, possibly reflecting the longer duration of hydrothermal circulation at these sites. Another interesting result is that the absolute magnetization shows extremely high intensities (>80 A/m) at the neo volcanic zones (NVZ) and relatively low intensities (<10 A/m) two to five kilometers away from the NVZ. These variations are quite consistent with those of the Natural Remanent Magnetization measured on basalt samples, suggesting that the low-temperature oxidation of host rock due to the reaction with seawater has completed within a few kilometers distance from the spreading axis. We conclude that the magnetization of the uppermost oceanic crust decreases with age due to the combination of the both hydrothermal rapid alteration and the low-temperature gradual alteration processes.
SU-E-I-20: Dead Time Count Loss Compensation in SPECT/CT: Projection Versus Global Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siman, W; Kappadath, S
Purpose: To compare projection-based versus global correction that compensate for deadtime count loss in SPECT/CT images. Methods: SPECT/CT images of an IEC phantom (2.3GBq 99mTc) with ∼10% deadtime loss containing the 37mm (uptake 3), 28 and 22mm (uptake 6) spheres were acquired using a 2 detector SPECT/CT system with 64 projections/detector and 15 s/projection. The deadtime, Ti and the true count rate, Ni at each projection, i was calculated using the monitor-source method. Deadtime corrected SPECT were reconstructed twice: (1) with projections that were individually-corrected for deadtime-losses; and (2) with original projections with losses and then correcting the reconstructed SPECTmore » images using a scaling factor equal to the inverse of the average fractional loss for 5 projections/detector. For both cases, the SPECT images were reconstructed using OSEM with attenuation and scatter corrections. The two SPECT datasets were assessed by comparing line profiles in xyplane and z-axis, evaluating the count recoveries, and comparing ROI statistics. Higher deadtime losses (up to 50%) were also simulated to the individually corrected projections by multiplying each projection i by exp(-a*Ni*Ti), where a is a scalar. Additionally, deadtime corrections in phantoms with different geometries and deadtime losses were also explored. The same two correction methods were carried for all these data sets. Results: Averaging the deadtime losses in 5 projections/detector suffices to recover >99% of the loss counts in most clinical cases. The line profiles (xyplane and z-axis) and the statistics in the ROIs drawn in the SPECT images corrected using both methods showed agreement within the statistical noise. The count-loss recoveries in the two methods also agree within >99%. Conclusion: The projection-based and the global correction yield visually indistinguishable SPECT images. The global correction based on sparse sampling of projections losses allows for accurate SPECT deadtime loss correction while keeping the study duration reasonable.« less
Treatment of hypophosphatemia in the intensive care unit: a review
2010-01-01
Introduction Currently no evidence-based guideline exists for the approach to hypophosphatemia in critically ill patients. Methods We performed a narrative review of the medical literature to identify the incidence, symptoms, and treatment of hypophosphatemia in critically ill patients. Specifically, we searched for answers to the questions whether correction of hypophosphatemia is associated with improved outcome, and whether a certain treatment strategy is superior. Results Incidence: hypophosphatemia is frequently encountered in the intensive care unit; and critically ill patients are at increased risk for developing hypophosphatemia due to the presence of multiple causal factors. Symptoms: hypophosphatemia may lead to a multitude of symptoms, including cardiac and respiratory failure. Treatment: hypophosphatemia is generally corrected when it is symptomatic or severe. However, although multiple studies confirm the efficacy and safety of intravenous phosphate administration, it remains uncertain when and how to correct hypophosphatemia. Outcome: in some studies, hypophosphatemia was associated with higher mortality; a paucity of randomized controlled evidence exists for whether correction of hypophosphatemia improves the outcome in critically ill patients. Conclusions Additional studies addressing the current approach to hypophosphatemia in critically ill patients are required. Studies should focus on the association between hypophosphatemia and morbidity and/or mortality, as well as the effect of correction of this electrolyte disorder. PMID:20682049
Liu, L; Kan, A; Leckie, C; Hodgkin, P D
2017-04-01
Time-lapse fluorescence microscopy is a valuable technology in cell biology, but it suffers from the inherent problem of intensity inhomogeneity due to uneven illumination or camera nonlinearity, known as shading artefacts. This will lead to inaccurate estimates of single-cell features such as average and total intensity. Numerous shading correction methods have been proposed to remove this effect. In order to compare the performance of different methods, many quantitative performance measures have been developed. However, there is little discussion about which performance measure should be generally applied for evaluation on real data, where the ground truth is absent. In this paper, the state-of-the-art shading correction methods and performance evaluation methods are reviewed. We implement 10 popular shading correction methods on two artificial datasets and four real ones. In order to make an objective comparison between those methods, we employ a number of quantitative performance measures. Extensive validation demonstrates that the coefficient of joint variation (CJV) is the most applicable measure in time-lapse fluorescence images. Based on this measure, we have proposed a novel shading correction method that performs better compared to well-established methods for a range of real data tested. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping
2014-10-20
A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.
NASA Astrophysics Data System (ADS)
Pintado, O. I.; Santillán, L.; Marquetti, M. E.
All images obtained with a telescope are distorted by the instrument. This distorsion is known as instrumental profile or instrumental broadening. The deformations in the spectra could introduce large errors in the determination of different parameters, especially in those dependent on the spectral lines shapes, such as chemical abundances, winds, microturbulence, etc. To correct this distortion, in some cases, the spectral lines are convolved with a Gaussian function and in others the lines are widened with a fixed value. Some codes used to calculate synthetic spectra, as SYNTHE, include this corrections. We present results obtained for the spectrograph REOSC and EBASIM of CASLEO.
Shannon, H.D.; Young, G.S.; Yates, M.; Fuller, Mark R.; Seegar, W.
2003-01-01
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.
Face in profile view reduces perceived facial expression intensity: an eye-tracking study.
Guo, Kun; Shaw, Heather
2015-02-01
Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. Copyright © 2014 Elsevier B.V. All rights reserved.
Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.
2003-01-01
Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.
ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaoying; Jin, Ke; Zhang, Yanwen
2014-11-01
Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases aremore » presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.« less
Efficient thermal noise removal of Sentinel-1 image and its impacts on sea ice applications
NASA Astrophysics Data System (ADS)
Park, Jeong-Won; Korosov, Anton; Babiker, Mohamed
2017-04-01
Wide swath SAR observation from several spaceborne SAR missions played an important role in studying sea ice in the polar region. Sentinel 1A and 1B are producing dual-polarization observation data with the highest temporal resolution ever. For a proper use of dense time-series, radiometric properties must be qualified. Thermal noise is often neglected in many sea ice applications, but is impacting seriously the utility of dual-polarization SAR data. Sentinel-1 TOPSAR image intensity is disturbed by additive thermal noise particularly in cross-polarization channel. Although ESA provides calibrated noise vectors for noise power subtraction, residual noise contribution is significant considering relatively narrow backscattering distribution of cross-polarization channel. In this study, we investigate the noise characteristics and propose an efficient method for noise reduction based on three types of correction: azimuth de-scalloping, noise scaling, and inter-swath power balancing. The core idea is to find optimum correction coefficients resulting in the most noise-uncorrelated gentle backscatter profile over homogeneous region and to combine them with scalloping gain for reconstruction of complete two-dimensional noise field. Denoising is accomplished by subtracting the reconstructed noise field from the original image. The resulting correction coefficients determined by extensive experiments showed different noise characteristics for different Instrument Processing Facility (IPF) versions of Level 1 product generation. Even after thermal noise subtraction, the image still suffers from residual noise, which distorts local statistics. Since this residual noise depends on local signal-to-noise ratio, it can be compensated by variance normalization with coefficients determined from an empirical model. Denoising improved not only visual interpretability but also performances in SAR intensity-based sea ice applications. Results from two applications showed the effectiveness of the proposed method: feature tracking based sea ice drift and texture analysis based sea ice classification. For feature tracking, large spatial asymmetry of keypoint distribution caused by higher noise level in the nearest subswath was decresed so that the matched features to be selected evenly in space. For texture analysis, inter-subswath texture differences caused by different noise equivalent sigma zero were normalized so that the texture features estimated in any subswath have similar value with those in other subswaths.
A helium P-Cygni profile in RR Lyrae stars?
NASA Astrophysics Data System (ADS)
Gillet, D.; Sefyani, F. L.; Benhida, A.; Fabas, N.; Mathias, P.; Benkhaldoun, Z.; Daassou, A.
2016-03-01
Context. Until 2006, helium emission lines had never been observed in RR Lyrae stars. For the first time, a pre-maximum helium emission in 11 RRab stars was observed during rising light (around the pulsation phase 0.92) and the reappearance of helium emission near maximum light (phase 0.0) in one RRab star: RV Oct. This post-maximum emission has been only observed in the He I λ5875.66 (D3) line. Its intensity is very weak, and its profile mimics a P-Cygni profile with the emission peak centered at the laboratory wavelength. The physical explanation for this unexpected line profile has not been proposed yet. Aims: Using new observations of RR Lyr, we investigate the physical origin of the presence of a P-Cygni profile in the He I λ5875.66 (D3) line. Methods: High-resolution spectra of RR Lyr, collected with a spectrograph eShel/C14 at the Oukaïmeden Observatory (Morocco) in 2013, were analyzed to understand the origin of the observed P-Cygni profile at D3. Results: When the shock intensity is moderate, helium emission cannot be produced in the shock wake, and consequently, the two consecutive helium emissions (pre- and post-maximum light emissions) are not observed. This is the most frequent case. When the shock intensity becomes high enough, a pre-maximum He I emission first occurs, which can be followed by the appearance of a P-Cygni profile if the shock intensity is still strong in the high atmosphere. The observation of a P-Cygni profile means that the shock wave is already detached from the photosphere. It is shown that the shock strongly first decelerates between the pulsation phases 0.90 and 1.04 from 130 km s-1 to 60 km s-1, probably before accelerating again to 80 km s-1 near phase 1.30. Conclusions: The presence of the P-Cygni profile seems to be a natural consequence of the large extension of the expanding atmosphere, which is induced by strong (radiative) shock waves propagating toward the high atmosphere. This kind of P-Cygni profile has already been observed in the Hα line of some RR Lyrae stars and long-period Cepheids. Based on observations obtained at the Oukaïmeden Observatory in the High Atlas mountains, 78 km south of Marrakech and operated by the Faculté des Sciences Semlalia, Département de Physique, LPHEA, Marrakech, Morocco.
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J
2012-09-01
The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
What Effect Does Reading Academic Articles on Oral Corrective Feedback Have on ESL Teachers?
ERIC Educational Resources Information Center
Kamiya, Nobuhiro
2016-01-01
This study focuses on four teachers teaching a speaking and listening class at an intensive English program in the United States who read three academic articles on oral corrective feedback (CF). The researcher investigated their stated beliefs and classroom practices of CF as well as their responses to the readings through three classroom…
Saudi EFL Preparatory Year Students' Perception about Corrective Feedback in Oral Communication
ERIC Educational Resources Information Center
Alhaysony, Maha
2016-01-01
This study sought to investigate the attitudes of Saudi EFL students towards corrective feedback (henceforth CF) on classroom oral errors. The subjects were 3200 (1223 male and 1977 female) students enrolled in an intensive English language programme in the preparatory year at the University of Ha'il. A questionnaire was the main instrument. This…