Sample records for progenitor cell development

  1. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud

    PubMed Central

    Norrie, Jacqueline L.; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C.; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T.; Galli, Antonella; Ji, Hongkai

    2016-01-01

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4. Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. PMID:27827819

  2. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud.

    PubMed

    Norrie, Jacqueline L; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T; Galli, Antonella; Ji, Hongkai; Vokes, Steven A

    2016-12-15

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. © 2016. Published by The Company of Biologists Ltd.

  3. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon.

    PubMed

    Hutton, Scott R; Pevny, Larysa H

    2011-04-01

    The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The development of human mast cells. An historical reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribatti, Domenico, E-mail: domenico.ribatti@uniba.it

    2016-03-15

    The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34{sup +}/CD117{sup +}/CD13{sup +}multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, differentmore » MC phenotypes can develop in different tissues and organs. - Highlights: • Human mast cells originate from CD34/CD117/CD13 positive multipotent hematopoietic progenitors. • Stem cell factor is a major chemotactic factor for mast cells and their progenitors. • Different mast cell phenotypes can develop in different tissues and organs.« less

  5. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    PubMed

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  6. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.

    PubMed

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B

    2016-02-15

    The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  7. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations.

    PubMed

    Chicha, Laurie; Jarrossay, David; Manz, Markus G

    2004-12-06

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.

  8. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    PubMed Central

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    SUMMARY During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3+ progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3CreERT/+) and Neurog3-deficient (Neurog3CreERT/CreERT) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition endocrine progenitor cells arise from single bipotent progenitor already committed to the duct/endocrine lineages and not from domain of cells having both potentialities. PMID:22056785

  9. Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development.

    PubMed

    Georgescu, Adriana; Alexandru, Nicoleta; Andrei, Eugen; Dragan, Emanuel; Cochior, Daniel; Dias, Sérgio

    2016-08-01

    Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and relaxation; (6) reduced the protein expression of specific pro-inflammatory molecules in liver and arterial wall. Platelet microparticle transplantation aggravated the above-mentioned biomarkers and atherosclerosis process, which were partially reverted with co-inoculation of platelet microparticles and endothelial progenitor cells. With this study, we demonstrate in a hypertensive-hypercholesterolemic hamster model, that the endothelial progenitor cell-based therapy suppresses the development of atherosclerosis and reduces hepatic lipid and macrophage accumulation with the consequent alleviation of dyslipidaemia and hypertension. Our results support the notion that increasing the number of circulating endothelial progenitor cells by different ways could be a promising therapeutic tool for atherosclerosis. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  10. Thymus-autonomous T cell development in the absence of progenitor import.

    PubMed

    Martins, Vera C; Ruggiero, Eliana; Schlenner, Susan M; Madan, Vikas; Schmidt, Manfred; Fink, Pamela J; von Kalle, Christof; Rodewald, Hans-Reimer

    2012-07-30

    Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell-deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2(-/-)γ(c)(-/-)Kit(W/Wv) mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2(-/-)γ(c)(-/-)Kit(W/Wv) hosts, γ(c)-mediated signals alone played a key role in the competition between thymus-resident and bone marrow-derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.

  11. Clonal Analysis of Newborn Hippocampal Dentate Granule Cell Proliferation and Development in Temporal Lobe Epilepsy1,2,3

    PubMed Central

    LaSarge, Candi L.; McAuliffe, John J.

    2015-01-01

    Abstract Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented “basal” dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of “bad actor” progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with “basal” dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy. PMID:26756038

  12. KDR (VEGFR2) identifies a conserved human and murine hepatic progenitor and instructs early liver development

    PubMed Central

    Goldman, Orit; Han, Songyan; Sourrisseau, Marion; Dziedzic, Noelle; Hamou, Wissam; Corneo, Barbara; D’Souza, Sunita; Sato, Thomas; Kotton, Darrell N.; Bissig, Karl-Dimiter; Kalir, Tamara; Jacobs, Adam; Evans, Todd; Evans, Matthew J.; Gouon-Evans, Valerie

    2013-01-01

    SUMMARY Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like (hepatic) cells from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR, but when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells, and to support non-cell-autonomously the functional maturation of co-cultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts and subsequently adult hepatocytes and cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors, and a functional receptor instructing early liver development. PMID:23746980

  13. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-03-11

    following areas: (1) neural progenitor isolation from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic...from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic neurons, motoneurons and astrocytes using defined...progenitors from mixed populations, such as induced pluripotent stem cells (iPSCs). We also developed lentiviral based methods to generate iPSCs in

  14. Role of progenitor cell producing normal vagina by metaplasia in laparoscopic peritoneal vaginoplasty

    PubMed Central

    Mhatre, Pravin N.; Narkhede, Hemraj R.; Pawar, P. Amol; Mhatre, P. Jyoti; Kumar, Das Dhanjit

    2016-01-01

    CONTEXT: Host of vaginoplasty techniques have been described. None has been successful in developing normal vagina. Laparoscopic peritoneal vaginoplasty (LPV) is performed in Mayer–Rokitansky–Küster–Hauser syndrome (MRKHS) culminating in normal vagina. AIMS: This study aims to confirm normal development of neovagina by anatomical and functional parameters of histology, cytology, and ultrasonography (USG) in LPV. To identify peritoneal progenitor cell by OCT4/SOX2 markers. To demonstrate the metaplastic conversion of peritoneum to neovagina and the progenitor cell concentration, distribution pattern. SETTINGS AND DESIGN: This is prospective experimental study, conducted at teaching hospital and private hospital. SUBJECTS AND METHODS: Fifteen women of MRKHS underwent LPV followed by histology, cytology, two-/three-dimensional USG of neovagina. Four women underwent peritoneal biopsy for identification of progenitor cells with OCT4/SOX2 markers. One patient underwent serial biopsies for 4 weeks for histology and progenitor cell immunohistochemistry. RESULTS: Normal vaginal histology and cytology were apparent. USG of neovagina showed normal appearance and blood flow. Two peritoneal samples confirmed the presence of progenitor cells. Serial biopsies demonstrated the epithelial change from single to multilayer with stromal compaction and neoangiogenesis. The progenitor cells concentration and different distribution patterns were described using SOX2/OCT4 markers. CONCLUSIONS: We have shown successful peritoneal metaplastic conversion to normal vagina in LPV. The progenitor cell was identified in normal peritoneum using SOX2/OCT4 markers. The progenitor cell concentration and pattern were demonstrated at various stages of neovaginal development. PMID:28216908

  15. S‐phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex

    PubMed Central

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko

    2016-01-01

    ABSTRACT The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper‐layer neurons are produced. Based on cumulative 5‐ethynyl‐2′‐deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S‐phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self‐renewal to those of neuron production. Hence, S‐phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. J. Comp. Neurol. 524:456–470, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:25963823

  16. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    PubMed

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  17. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  18. Clonal Type I Interferon–producing and Dendritic Cell Precursors Are Contained in Both Human Lymphoid and Myeloid Progenitor Populations

    PubMed Central

    Chicha, Laurie; Jarrossay, David; Manz, Markus G.

    2004-01-01

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348

  19. Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation

    PubMed Central

    Liu, Congxiao; Chen, Benny J.; DeOliveira, Divinomar; Sempowski, Gregory D.; Chao, Nelson J.

    2010-01-01

    Two critical concerns in clinical cord blood transplantation are the initial time to engraftment and the subsequent restoration of immune function. These studies measured the impact of progenitor cell dose on both the pace and strength of hematopoietic reconstitution by transplanting nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor-gamma–null (NSγ) mice with lineage-depleted aldehyde dehydrogenase-bright CD34+ human cord blood progenitors. The progress of each transplant was monitored over an extended time course by repeatedly analyzing the peripheral blood for human hematopoietic cells. In vivo human hematopoietic development was complete. After long-term transplantation assays (≥ 19 weeks), human T-cell development was documented within multiple tissues in 16 of 32 NSγ mice. Human T-cell differentiation was active within NSγ thymuses, as documented by the presence of CD4+ CD8+ T-cell progenitors as well as T-cell receptor excision circles. It is important to note that although myeloid and B-cell engraftment was detected as early as 4 weeks after transplantation, human T-cell development was exclusively late onset. High progenitor cell doses were associated with a robust human hematopoietic chimerism that accelerated both initial time to engraftment and subsequent T-cell development. At lower progenitor cell doses, the chimerism was weak and the human hematopoietic lineage development was frequently incomplete. PMID:20833978

  20. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    pluripotent stem cells for osteoarthritis drug screening . Arthritis Rheumatol. 66, 3062–3072. Xia, Y., Zheng, S., Bidthanapally, A., 2008. Depth-dependent...the development of knee osteoarthritis (OA). New treatments centered on the stem /progenitor cell population resident within the adult meniscus will be...biology to develop a profile of repair cells in the adult meniscus, track meniscal stem /progenitor cell (MSPC) behavior within meniscus as function of

  1. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development.

    PubMed

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2012-01-15

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development

    PubMed Central

    Nagao, Yusuke; Suzuki, Takao; Shimizu, Atsushi; Kimura, Tetsuaki; Seki, Ryoko; Adachi, Tomoko; Inoue, Chikako; Omae, Yoshihiro; Kamei, Yasuhiro; Hara, Ikuyo; Taniguchi, Yoshihito; Naruse, Kiyoshi; Wakamatsu, Yuko; Kelsh, Robert N.; Hibi, Masahiko; Hashimoto, Hisashi

    2014-01-01

    Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor). PMID:24699463

  3. GATA-3 is required for early T lineage progenitor development

    PubMed Central

    Hosoya, Tomonori; Kuroha, Takashi; Moriguchi, Takashi; Cummings, Dustin; Maillard, Ivan; Lim, Kim-Chew

    2009-01-01

    Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors. PMID:19934022

  4. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    PubMed

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  5. Stem Cells in the Face: Tooth Regeneration and Beyond

    PubMed Central

    Mao, Jeremy J.; Robey, Pamela G.; Prockop, Darwin J.

    2014-01-01

    Postnatal orofacial tissues contain rare cells that exhibit stem/progenitor cell properties. Despite a tremendous unmet clinical need for regeneration of tissues lost in congenital anomalies, infections, trauma or tumor resection, how orofacial stem/progenitor cells contribute to tissue development, pathogenesis and regeneration is largely a mystery. This perspective article critically analyzes the current status of orofacial stem/progenitor cells, identifies gaps in our understanding and highlights pathways for the development of regenerative therapies. PMID:22958928

  6. Fetal programming in meat production.

    PubMed

    Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun

    2015-11-01

    Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    PubMed

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  8. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  9. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  10. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification

    PubMed Central

    Xu, Cheng-Ran; Li, Lin-Chen; Donahue, Greg; Ying, Lei; Zhang, Yu-Wei; Gadue, Paul; Zaret, Kenneth S

    2014-01-01

    Endoderm cells undergo sequential fate choices to generate insulin-secreting beta cells. Ezh2 of the PRC2 complex, which generates H3K27me3, modulates the transition from endoderm to pancreas progenitors, but the role of Ezh2 and H3K27me3 in the next transition to endocrine progenitors is unknown. We isolated endoderm cells, pancreas progenitors, and endocrine progenitors from different staged mouse embryos and analyzed H3K27me3 genome-wide. Unlike the decline in H3K27me3 domains reported during embryonic stem cell differentiation in vitro, we find that H3K27me3 domains increase in number during endocrine progenitor development in vivo. Genes that lose the H3K27me3 mark typically encode transcriptional regulators, including those for pro-endocrine fates, whereas genes that acquire the mark typically are involved in cell biology and morphogenesis. Deletion of Ezh2 at the pancreas progenitor stage enhanced the production of endocrine progenitors and beta cells. Inhibition of EZH2 in embryonic pancreas explants and in human embryonic stem cell cultures increased endocrine progenitors in vitro. Our studies reveal distinct dynamics in H3K27me3 targets in vivo and a means to modulate beta cell development from stem cells. PMID:25107471

  11. Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors

    PubMed Central

    Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.

    2017-01-01

    Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814

  12. Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder

    PubMed Central

    Satpathy, Ansuman T.; Briseño, Carlos G.; Cai, Xiongwei; Michael, Drew G.; Chou, Chun; Hsiung, Sunnie; Bhattacharya, Deepta; Speck, Nancy A.

    2014-01-01

    Runx1 and Cbfβ are critical for the establishment of definitive hematopoiesis and are implicated in leukemic transformation. Despite the absolute requirements for these factors in the development of hematopoietic stem cells and lymphocytes, their roles in the development of bone marrow progenitor subsets have not been defined. Here, we demonstrate that Cbfβ is essential for the development of Flt3+ macrophage-dendritic cell (DC) progenitors in the bone marrow and all DC subsets in the periphery. Besides the loss of DC progenitors, pan-hematopoietic Cbfb-deficient mice also lack CD105+ erythroid progenitors, leading to severe anemia at 3 to 4 months of age. Instead, Cbfb deficiency results in aberrant progenitor differentiation toward granulocyte-macrophage progenitors (GMPs), resulting in a myeloproliferative phenotype with accumulation of GMPs in the periphery and cellular infiltration of the liver. Expression of the transcription factor Irf8 is severely reduced in Cbfb-deficient progenitors, and overexpression of Irf8 restors DC differentiation. These results demonstrate that Runx proteins and Cbfβ restrict granulocyte lineage commitment to facilitate multilineage hematopoietic differentiation and thus identify their novel tumor suppressor function in myeloid leukemia. PMID:24677539

  13. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    PubMed

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  14. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    the development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be...cells, stem cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...changes that occur after injury. As a result, meniscal injuries are a common underlying cause of post-traumatic osteoarthritis . This is particularly

  15. Raman spectroscopy for discrimination of neural progenitor cells and their lineages (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Ong, William; Chew, Sing Yian; Liu, Quan

    2017-02-01

    Neurological diseases are one of the leading causes of adult disability and they are estimated to cause more deaths than cancer in the elderly population by 2040. Stem cell therapy has shown great potential in treating neurological diseases. However, before cell therapy can be widely adopted in the long term, a number of challenges need to be addressed, including the fundamental research about cellular development of neural progenitor cells. To facilitate the fundamental research of neural progenitor cells, many methods have been developed to identify neural progenitor cells. Although great progress has been made, there is still lack of an effective method to achieve fast, label-free and noninvasive differentiation of neural progenitor cells and their lineages. As a fast, label-free and noninvasive technique, spontaneous Raman spectroscopy has been conducted to characterize many types of stem cells including neural stem cells. However, to our best knowledge, it has not been studied for the discrimination of neural progenitor cells from specific lineages. Here we report the differentiation of neural progenitor cell from their lineages including astrocytes, oligodendrocytes and neurons using spontaneous Raman spectroscopy. Moreover, we also evaluate the influence of system parameters during spectral acquisition on the quality of measured Raman spectra and the accuracy of classification using the spectra, which yield a set of optimal system parameters facilitating future studies.

  16. Increased avidity for Dpp/BMP2 maintains the proliferation of progenitors-like cells in the Drosophila eye.

    PubMed

    Neto, Marta; Aguilar-Hidalgo, Daniel; Casares, Fernando

    2016-10-01

    During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2016-09-01

    development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be key to...cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...common underlying cause of post- traumatic osteoarthritis . This is particularly striking in young, healthy individuals such as military personnel

  18. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  19. Prospectively isolated NGN3-expressing progenitors from human embryonic stem cells give rise to pancreatic endocrine cells.

    PubMed

    Cai, Qing; Bonfanti, Paola; Sambathkumar, Rangarajan; Vanuytsel, Kim; Vanhove, Jolien; Gysemans, Conny; Debiec-Rychter, Maria; Raitano, Susanna; Heimberg, Harry; Ordovas, Laura; Verfaillie, Catherine M

    2014-04-01

    Pancreatic endocrine progenitors obtained from human embryonic stem cells (hESCs) represent a promising source to develop cell-based therapies for diabetes. Although endocrine pancreas progenitor cells have been isolated from mouse pancreata on the basis of Ngn3 expression, human endocrine progenitors have not been isolated yet. As substantial differences exist between human and murine pancreas biology, we investigated whether it is possible to isolate pancreatic endocrine progenitors from differentiating hESC cultures by lineage tracing of NGN3. We targeted the 3' end of NGN3 using zinc finger nuclease-mediated homologous recombination to allow selection of NGN3eGFP(+) cells without disrupting the coding sequence of the gene. Isolated NGN3eGFP(+) cells express PDX1, NKX6.1, and chromogranin A and differentiate in vivo toward insulin, glucagon, and somatostatin single hormone-expressing cells but not to ductal or exocrine pancreatic cells or other endodermal, mesodermal, or ectodermal lineages. This confirms that NGN3(+) cells represent pancreatic endocrine progenitors in humans. In addition, this hESC reporter line constitutes a unique tool that may aid in gaining insight into the developmental mechanisms underlying fate choices in human pancreas and in developing cell-based therapies.

  20. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.

    PubMed

    Reillo, Isabel; Borrell, Víctor

    2012-09-01

    Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.

  1. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  2. Reduced satellite cell density and myogenesis in Wagyu compared with Angus cattle as a possible explanation of its high marbling.

    PubMed

    Fu, X; Yang, Q; Wang, B; Zhao, J; Zhu, M; Parish, S M; Du, M

    2018-05-01

    Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.

  3. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors

    PubMed Central

    Becker, Amy M.; Michael, Drew G.; Satpathy, Ansuman T.; Sciammas, Roger; Singh, Harinder

    2012-01-01

    While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8−/− BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8−/− common myeloid progenitors and, unexpectedly, Irf8−/− ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. PMID:22238324

  4. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence

    PubMed Central

    Rodríguez-Seguel, Elisa; Mah, Nancy; Naumann, Heike; Pongrac, Igor M.; Cerdá-Esteban, Nuria; Fontaine, Jean-Fred; Wang, Yongbo; Chen, Wei; Andrade-Navarro, Miguel A.; Spagnoli, Francesca M.

    2013-01-01

    Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. PMID:24013505

  5. Characterization of Thymic Settling Progenitors in the Mouse Embryo Using In Vivo and In Vitro Assays

    PubMed Central

    Ramond, Cyrille; Bandeira, Antonio; Berthault, Claire; Pereira, Pablo; Cumano, Ana; Burlen-Defranoux, Odile

    2015-01-01

    Characterizing thymic settling progenitors is important to understand the pre-thymic stages of T cell development, essential to devise strategies for T cell replacement in lymphopenic patients. We studied thymic settling progenitors from murine embryonic day 13 and 18 thymi by two complementary in vitro and in vivo techniques, both based on the “hanging drop” method. This method allowed colonizing irradiated fetal thymic lobes with E13 and/or E18 thymic progenitors distinguished by CD45 allotypic markers and thus following their progeny. Colonization with mixed populations allows analyzing cell autonomous differences in biologic properties of the progenitors while colonization with either population removes possible competitive selective pressures. The colonized thymic lobes can also be grafted in immunodeficient male recipient mice allowing the analysis of the mature T cell progeny in vivo, such as population dynamics of the peripheral immune system and colonization of different tissues and organs. Fetal thymic organ cultures revealed that E13 progenitors developed rapidly into all mature CD3+ cells and gave rise to the canonical γδ T cell subset, known as dendritic epithelial T cells. In comparison, E18 progenitors have a delayed differentiation and were unable to generate dendritic epithelial T cells. The monitoring of peripheral blood of thymus-grafted CD3-/- mice further showed that E18 thymic settling progenitors generate, with time, larger numbers of mature T cells than their E13 counterparts, a feature that could not be appreciated in the short term fetal thymic organ cultures. PMID:26131754

  6. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

    PubMed Central

    Mora-Bermúdez, Felipe; Badsha, Farhath; Kanton, Sabina; Camp, J Gray; Vernot, Benjamin; Köhler, Kathrin; Voigt, Birger; Okita, Keisuke; Maricic, Tomislav; He, Zhisong; Lachmann, Robert; Pääbo, Svante; Treutlein, Barbara; Huttner, Wieland B

    2016-01-01

    Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution. DOI: http://dx.doi.org/10.7554/eLife.18683.001 PMID:27669147

  8. Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis.

    PubMed

    Deutsch, Marcus-André; Doppler, Stefanie A; Li, Xinghai; Lahm, Harald; Santamaria, Gianluca; Cuda, Giovanni; Eichhorn, Stefan; Ratschiller, Thomas; Dzilic, Elda; Dreßen, Martina; Eckart, Annekathrin; Stark, Konstantin; Massberg, Steffen; Bartels, Anna; Rischpler, Christoph; Gilsbach, Ralf; Hein, Lutz; Fleischmann, Bernd K; Wu, Sean M; Lange, Rüdiger; Krane, Markus

    2018-03-20

    The contribution of resident stem or progenitor cells to cardiomyocyte renewal after injury in adult mammalian hearts remains a matter of considerable debate. We evaluated a cell population in the adult mouse heart induced by myocardial infarction (MI) and characterized by an activated Nkx2.5 enhancer element that is specific for multipotent cardiac progenitor cells during embryonic development. We hypothesized that these MI induced cells (MICs) harbor cardiomyogenic properties similar to their embryonic counterparts. MICs reside in the heart and mainly localize to the infarction area and border zone. Interestingly, gene expression profiling of purified MICs one week after infarction revealed increased expression of stem cell markers and embryonic cardiac transcription factors in these cells as compared to the non-mycoyte cell fraction of adult hearts. A subsequent global transcriptome comparison with embryonic cardiac progenitor cells and fibroblasts and in vitro culture of MICs unveiled that (myo-) fibroblastic features predominated and that cardiac transcription factors were only expressed at background levels. Adult injury induced reactivation of a cardiac-specific Nkx2.5 enhancer element known to specifically mark myocardial progenitor cells during embryonic development does not reflect hypothesized embryonic cardiomyogenic properties. Our data suggest a decreasing plasticity of cardiac progenitor (-like) cell populations with increasing age. A re-expression of embryonic, stem or progenitor cell features in the adult heart must be interpreted very carefully with respect to the definition of cardiac resident progenitor cells. Albeit, the abundance of scar formation after cardiac injury suggests a potential to target predestinated activated profibrotic cells to push them towards cardiomyogenic differentiation to improve regeneration.

  9. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    PubMed

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  10. NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development.

    PubMed

    Piper, Michael; Barry, Guy; Harvey, Tracey J; McLeay, Robert; Smith, Aaron G; Harris, Lachlan; Mason, Sharon; Stringer, Brett W; Day, Bryan W; Wray, Naomi R; Gronostajski, Richard M; Bailey, Timothy L; Boyd, Andrew W; Richards, Linda J

    2014-02-19

    Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.

  11. Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors.

    PubMed

    Kobayashi, Michihiro; Nabinger, Sarah C; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro-Ohtani, Yumi; Pear, Warren S; Carlesso, Nadia; Yoder, Mervin C; Kapur, Reuben; Kaplan, Mark H; Daniel Lacorazza, Hugo; Zhang, Zhong-Yin; Liu, Yan

    2017-04-01

    The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064. © 2016 AlphaMed Press.

  12. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program

    PubMed Central

    Hamey, Fiona K.; Errami, Youssef

    2017-01-01

    Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro–B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell–programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation. PMID:28899870

  13. 6-mercaptopurine (6-MP) induces p53-mediated apoptosis of neural progenitor cells in the developing fetal rodent brain.

    PubMed

    Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H

    2009-01-01

    6-mercaptopurine (6-MP), a DNA-damaging agent, induces apoptosis of neural progenitor cells, and causes malformation in the fetal brain. The aim of the present study is to clarify the molecular pathway of 6-MP-induced apoptosis of neural progenitor cells in the fetal telencephalon of rats and mice. p53 protein is activated by DNA damage and induces apoptosis through either the intrinsic pathway involving the mitochondria or the extrinsic pathway triggered by death receptors. In this study, the expression of puma and cleaved caspase-9 proteins, which are specific intrinsic pathway factors, increased in the rat telencephalon after 6-MP treatment. 6-MP-induced apoptosis of neural progenitor cells was completely absent in p53-deficient mice. On the other hand, the expression of Fas protein, an extrinsic pathway factor, did not change throughout the experimental period in the rat telencephalon treated with 6-MP. The number of apoptotic neural progenitor cells was similar among Fas-mutated lpr/lpr and wild-type mice, suggesting that the Fas pathway does not play a significant role in 6-MP-induced apoptosis of neural progenitor cells. These results may suggest that the p53-mediated intrinsic pathway is essential for 6-MP-induced apoptosis of neural progenitor cells in the developing telencephalon of rats and mice.

  14. Transcriptome Profiles of Isolated Murine Achilles Tendon Proper- and Peritenon- Derived Progenitor Cells.

    PubMed

    Mienaltowski, Michael J; Cánovas, Angela; Fates, Valerie A; Hampton, Angela R; Pechanec, Monica Y; Islas-Trejo, Alma; Medrano, Juan F

    2018-06-21

    Progenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types. Transcriptome profiles were generated for pools of mouse Achilles tendon progenitor cells from both regions and catalogues of potential markers were generated. Moreover, common (e.g., glycoprotein, signaling, and proteinaceous extracellular matrix) and unique (e.g., cartilage development versus angiogenesis and muscle contraction) biological processes and molecular functions were described for progenitors from each region. Real-time quantitative PCR of a subset of genes was used to gain insight into the heterogeneity amongst individual progenitor colonies from each region. Markers like Scx, Mkx, Thbs4, and Wnt10a were consistently able to distinguish tendon proper progenitors from peritenon progenitors; expression variability for other genes suggested greater cell type complexity for potential peritenon progenitor markers. This is the first effort to define Achilles tendon progenitor markers by region. Further efforts to investigate the value of these catalogued markers are required by screening more individual colonies of progenitors for more markers. Findings from this study advance efforts in the discernment of cell type specific markers for tendon proper and peritenon progenitor cells; insight into marker sets could improve tracking and sorting strategies for these cells for future therapeutic strategies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    PubMed Central

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  16. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytesmore » and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.« less

  17. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    PubMed

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  19. In vitro haematopoiesis of a novel dendritic-like cell present in murine spleen.

    PubMed

    Tan, Jonathan K H; O'Neill, Helen C

    2010-12-01

    Dendritic cells (DC) are important antigen presenting cells (APC) which induce and control the adaptive immune response. In spleen alone, multiple DC subsets can be distinguished by cell surface marker phenotype. Most of these have been shown to develop from progenitors in bone marrow and to seed lymphoid and tissue sites during development. This study advances in vitro methodology for haematopoiesis of dendritic-like cells from progenitors in spleen. Since spleen progenitors undergo differentiation in vitro to produce these cells, the possibility exists that spleen represents a specific niche for differentiation of this subset. The fact that an equivalent cell subset has been shown to exist in spleen also supports that hypothesis. Studies have been directed at investigating the specific functional role of this novel subset as an APC accessible to blood-borne antigen, as well as the conditions under which haematopoiesis is initiated in spleen, and the type of progenitor involved.

  20. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation

    PubMed Central

    Maillard, Ivan; Schwarz, Benjamin A.; Sambandam, Arivazhagan; Fang, Terry; Shestova, Olga; Xu, Lanwei; Bhandoola, Avinash; Pear, Warren S.

    2006-01-01

    Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage–restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage–committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage–committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT. PMID:16397133

  1. Role of medullary progenitor cells in epithelial cell migration and proliferation

    PubMed Central

    Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed

    2014-01-01

    This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539

  2. Effects of topography on the functional development of human neural progenitor cells.

    PubMed

    Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L

    2010-07-01

    We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.

  3. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development.

    PubMed

    Barker, Nick; Rookmaaker, Maarten B; Kujala, Pekka; Ng, Annie; Leushacke, Marc; Snippert, Hugo; van de Wetering, Marc; Tan, Shawna; Van Es, Johan H; Huch, Meritxell; Poulsom, Richard; Verhaar, Marianne C; Peters, Peter J; Clevers, Hans

    2012-09-27

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appearance and localization of Lgr5(+ve) cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle's loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Differential effects of c-fms and c-kit ligands on the lineage development of the lymphohematopoietic cell line EML C1.

    PubMed

    Tsai, S

    1996-01-01

    The lymphohematopoietic progenitors represent < 0.01% of nucleated marrow cells. We have shown that murine lymphohematopoietic progenitors can be immortalized by a recombinant retroviral vector harboring a dominant-negative retinoic acid (RA) receptor. The immortalized progenitors proliferate as a stem-cell factor-dependent clonal line designated EML C1. The EML C1 cell line spontaneously generates prepro-B-lymphocytes and erythroid and myeloid progenitors. Upon stimulation with interleukin 7 and marrow stromal cells, the prepro-B-lymphocytes express recombination-activating gene 1 (RAG-1) and undergo D-J rearrangements of the immunoglobulin heavy-chain genes. With erythropoietin, the erythroid progenitors proliferate and differentiate into red cells. Generation of the common progenitors for neutrophils and macrophages [colony-forming units-granulocyte-macrophage (CFU-GM)] is suppressed in EML C1 cells but is inducible by high concentrations of RA. An additional block in neutrophil differentiation occurs at the promyelocyte stage, but this can also be overcome by high concentrations of RA. Although c-fms is homologous to c-kit, which encodes the receptor for stem-cell factor (SCF), EML C1 cells neither express c-fms nor respond to macrophage colony-stimulating factor (M-CSF), the ligand for c-fms. Transduction and expression of c-fms cDNA in EML C1 cells confers responsiveness to M-CSF. This finding indicates that c-kit and c-fms share substantially overlapping signal-transduction pathways. However, c-fms-transduced EML C1 cells (EML C1/c-fms cells) exhibit different development patterns when stimulated by SCF alone or by M-CSF alone. When stimulated by SCF alone, EML C1/c-fms cells show mostly erythroid and B-lymphoid development. When stimulated by M-CSF alone, development switches to mostly myeloid (neutrophil and macrophage) development. This observation suggests that c-kit and c-fms must have unique signal-transduction pathways in addition to the common ones.

  5. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation

    PubMed Central

    Middelbeek, Jeroen; Kamermans, Alwin; Kuipers, Arthur J.; Hoogerbrugge, Peter M.; Jalink, Kees; van Leeuwen, Frank N.

    2015-01-01

    Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features. PMID:25797249

  6. Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium

    PubMed Central

    Hong, Kyung U.; Reynolds, Susan D.; Watkins, Simon; Fuchs, Elaine; Stripp, Barry R.

    2004-01-01

    Commitment of the pulmonary epithelium to bronchial and bronchiolar airway lineages occurs during the transition from pseudoglandular to cannalicular phases of lung development, suggesting that regional differences exist with respect to the identity of stem and progenitor cells that contribute to epithelial maintenance in adulthood. We previously defined a critical role for Clara cell secretory protein-expressing (CE) cells in renewal of bronchiolar airway epithelium following injury. Even though CE cells are also the principal progenitor for maintenance of the bronchial airway epithelium, CE cell injury is resolved through a mechanism involving recruitment of a second progenitor cell population that we now identify as a GSI-B4 reactive, cytokeratin-14-expressing basal cell. These cells exhibit multipotent differentiation capacity as assessed by analysis of cellular phenotype within clones of LacZ-tagged cells. Clones were derived from K14-expressing cells tagged in a cell-type-specific fashion by ligand-regulable Cre recombinase-mediated genomic rearrangement of the ROSA26 recombination substrate allele. We conclude that basal cells represent an alternative multipotent progenitor cell population of bronchial airways and that progenitor cell selection is dictated by the type of airway injury. PMID:14742263

  7. Erythro-Myeloid Progenitors: “definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells

    PubMed Central

    Frame, Jenna M.; McGrath, Kathleen E.; Palis, James

    2013-01-01

    Erythro-myeloid progenitors (EMP) serve as a major source of hematopoiesis in the developing conceptus prior to the formation of a permanent blood system. In this review, we summarize the current knowledge regarding the emergence, fate, and potential of this hematopoietic stem cell (HSC)-independent wave of hematopoietic progenitors, focusing on the murine embryo as a model system. A better understanding of the temporal and spatial control of hematopoietic emergence in the embryo will ultimately improve our ability to derive hematopoietic stem and progenitor cells from embryonic stem cells and induced pluripotent stem cells to serve therapeutic purposes. PMID:24095199

  8. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.

    PubMed

    Brown, Aaron C; Adams, Derek; de Caestecker, Mark; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif

    2011-12-01

    Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.

  9. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    PubMed

    Cebola, Inês; Rodríguez-Seguí, Santiago A; Cho, Candy H-H; Bessa, José; Rovira, Meritxell; Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge

    2015-05-01

    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.

  10. Osteoclast Progenitors Reside in the Peroxisome Proliferator-Activated Receptor γ-Expressing Bone Marrow Cell Population ▿

    PubMed Central

    Wei, Wei; Zeve, Daniel; Wang, Xueqian; Du, Yang; Tang, Wei; Dechow, Paul C.; Graff, Jonathan M.; Wan, Yihong

    2011-01-01

    Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ+ cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ+ cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ+ cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ+ cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation. PMID:21947280

  11. Compensatory Response by Late Embryonic Tubular Epithelium to the Reduction in Pancreatic Progenitors

    PubMed Central

    Nishimura, Wataru; Kapoor, Archana; El Khattabi, Ilham; Jin, Wanzhu; Yasuda, Kazuki; Bonner-Weir, Susan; Sharma, Arun

    2015-01-01

    Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1 tTA/+ ;tetO MafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation. PMID:26540252

  12. Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye.

    PubMed

    Kim, Jin Young; Park, Raehee; Lee, Jin Hwan J; Shin, Jinyeon; Nickas, Jenna; Kim, Seonhee; Cho, Seo-Hee

    2016-11-15

    Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  14. Sox2 promotes tamoxifen resistance in breast cancer cells

    PubMed Central

    Piva, Marco; Domenici, Giacomo; Iriondo, Oihana; Rábano, Miriam; Simões, Bruno M; Comaills, Valentine; Barredo, Inmaculada; López-Ruiz, Jose A; Zabalza, Ignacio; Kypta, Robert; Vivanco, Maria d M

    2014-01-01

    Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo- and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen-resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely, ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2-expressing cells, and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure, and also in the primary tumours of these patients, compared to those of responders. Together, these results suggest that development of tamoxifen resistance is driven by Sox2-dependent activation of Wnt signalling in cancer stem/progenitor cells. PMID:24178749

  15. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  16. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  17. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation

    PubMed Central

    Chua, Chee Wai; Epsi, Nusrat J; Leung, Eva Y; Xuan, Shouhong; Lei, Ming; Li, Bo I; Bergren, Sarah K; Hibshoosh, Hanina; Mitrofanova, Antonina

    2018-01-01

    Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer. PMID:29334357

  18. Recent progress on normal and malignant pancreatic stem/progenitor cell research: therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer

    PubMed Central

    Mimeault, M; Batra, S K

    2010-01-01

    Recent progress on pancreatic stem/progenitor cell research has revealed that the putative multipotent pancreatic stem/progenitor cells and/or more committed beta cell precursors may persist in the pancreatic gland in adult life. The presence of immature pancreatic cells with stem cell-like properties offers the possibility of stimulating their in vivo expansion and differentiation or to use their ex vivo expanded progenies for beta cell replacement-based therapies for type 1 or 2 diabetes mellitus in humans. In addition, the transplantation of either insulin-producing beta cells derived from embryonic, fetal and other tissue-resident adult stem/progenitor cells or genetically modified adult stem/progenitor cells may also constitute alternative promising therapies for treating diabetic patients. The genetic and/or epigenetic alterations in putative pancreatic adult stem/progenitor cells and/or their early progenies may, however, contribute to their acquisition of a dysfunctional behaviour as well as their malignant transformation into pancreatic cancer stem/progenitor cells. More particularly, the activation of distinct tumorigenic signalling cascades, including the hedgehog, epidermal growth factor–epidermal growth factor receptor (EGF–EGFR) system, wingless ligand (Wnt)/β-catenin and/or stromal cell-derived factor-1 (SDF-1)–CXC chemokine receptor 4 (CXCR4) pathways may play a major role in the sustained growth, survival, metastasis and/or drug resistance of pancreatic cancer stem/progenitor cells and their further differentiated progenies. The combination of drugs that target the oncogenic elements in pancreatic cancer stem/progenitor cells and their microenvironment, with the conventional chemotherapeutic regimens, could represent promising therapeutic strategies. These novel targeted therapies should lead to the development of more effective treatments of locally advanced and metastatic pancreatic cancers, which remain incurable with current therapies. PMID:18791122

  19. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy.

    PubMed

    Lüer, Karin; Technau, Gerhard M

    2009-08-03

    The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once specified in the neuroectoderm, exhibit a higher degree of autonomy regarding generation of their lineages compared to mesectodermal midline progenitors.

  20. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice

    PubMed Central

    Wright, Margaret C.; Reed-Geaghan, Erin G.; Bolock, Alexa M.; Fujiyama, Tomoyuki; Hoshino, Mikio

    2015-01-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1+ skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood. PMID:25624394

  1. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    PubMed

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  2. Hmga2 regulates self-renewal of retinal progenitors.

    PubMed

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  3. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development

    PubMed Central

    Inlay, Matthew A.; Bhattacharya, Deepta; Sahoo, Debashis; Serwold, Thomas; Seita, Jun; Karsunky, Holger; Plevritis, Sylvia K.; Dill, David L.; Weissman, Irving L.

    2009-01-01

    Common lymphoid progenitors (CLPs) clonally produce both B- and T-cell lineages, but have little myeloid potential in vivo. However, some studies claim that the upstream lymphoid-primed multipotent progenitor (LMPP) is the thymic seeding population, and suggest that CLPs are primarily B-cell-restricted. To identify surface proteins that distinguish functional CLPs from B-cell progenitors, we used a new computational method of Mining Developmentally Regulated Genes (MiDReG). We identified Ly6d, which divides CLPs into two distinct populations: one that retains full in vivo lymphoid potential and produces more thymocytes at early timepoints than LMPP, and another that behaves essentially as a B-cell progenitor. PMID:19833765

  4. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.

    PubMed

    Florio, Marta; Heide, Michael; Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline; Huttner, Wieland B; Hiller, Michael

    2018-03-21

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL , demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. © 2018, Florio et al.

  5. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex

    PubMed Central

    Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline

    2018-01-01

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. PMID:29561261

  6. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. PMID:22034951

  7. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    PubMed

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  8. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    PubMed

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  9. Migration of Drosophila intestinal stem cells across organ boundaries

    PubMed Central

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  10. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development

    PubMed Central

    Camp, J. Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A.; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B.; Treutlein, Barbara

    2015-01-01

    Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. PMID:26644564

  11. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice.

    PubMed

    Bruin, Jennifer E; Rezania, Alireza; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-09-01

    Islet transplantation is a promising cell therapy for patients with diabetes, but it is currently limited by the reliance upon cadaveric donor tissue. We previously demonstrated that human embryonic stem cell (hESC)-derived pancreatic progenitor cells matured under the kidney capsule in a mouse model of diabetes into glucose-responsive insulin-secreting cells capable of reversing diabetes. However, the formation of cells resembling bone and cartilage was a major limitation of that study. Therefore, we developed an improved differentiation protocol that aimed to prevent the formation of off-target mesoderm tissue following transplantation. We also examined how variation within the complex host environment influenced the development of pancreatic progenitors in vivo. The hESCs were differentiated for 14 days into pancreatic progenitor cells and transplanted either under the kidney capsule or within Theracyte (TheraCyte, Laguna Hills, CA, USA) devices into diabetic mice. Our revised differentiation protocol successfully eliminated the formation of non-endodermal cell populations in 99% of transplanted mice and generated grafts containing >80% endocrine cells. Progenitor cells developed efficiently into pancreatic endocrine tissue within macroencapsulation devices, despite lacking direct contact with the host environment, and reversed diabetes within 3 months. The preparation of cell aggregates pre-transplant was critical for the formation of insulin-producing cells in vivo and endocrine cell development was accelerated within a diabetic host environment compared with healthy mice. Neither insulin nor exendin-4 therapy post-transplant affected the maturation of macroencapsulated cells. Efficient differentiation of hESC-derived pancreatic endocrine cells can occur in a macroencapsulation device, yielding glucose-responsive insulin-producing cells capable of reversing diabetes.

  12. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.

  13. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells.

    PubMed

    Gorrepati, Lakshmi; Eisenmann, David M

    2015-01-01

    In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.

  14. Eya1 Interacts with Six2 and Myc to Regulate Expansion of the Nephron Progenitor Pool during Nephrogenesis

    PubMed Central

    Xu, Jinshu; Wong, Elaine Y.M.; Cheng, Chunming; Li, Jun; Sharkar, Mohammad T.K.; Xu, Chelsea Y.; Chen, Binglai; Sun, Jianbo; Jing, Dongzhu; Xu, Pin-Xian

    2014-01-01

    SUMMARY Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1+ population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis. PMID:25458011

  15. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis.

    PubMed

    Xu, Jinshu; Wong, Elaine Y M; Cheng, Chunming; Li, Jun; Sharkar, Mohammad T K; Xu, Chelsea Y; Chen, Binglai; Sun, Jianbo; Jing, Dongzhu; Xu, Pin-Xian

    2014-11-24

    Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1(+) population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development

    PubMed Central

    Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei

    2016-01-01

    Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760

  17. Whole-organism clone tracing using single-cell sequencing.

    PubMed

    Alemany, Anna; Florescu, Maria; Baron, Chloé S; Peterson-Maduro, Josi; van Oudenaarden, Alexander

    2018-04-05

    Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.

  18. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  19. Hematopoietic progenitor migration to the adult thymus

    PubMed Central

    Zlotoff, Daniel A.; Bhandoola, Avinash

    2010-01-01

    While most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the bone marrow, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and post-irradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function. PMID:21251013

  20. Distribution and Characterization of Progenitor Cells within the Human Filum Terminale

    PubMed Central

    Jaff, Nasren; Ossoinak, Amina; Jansson, Katarina; Hägerstrand, Anders; Johansson, Clas B.; Brundin, Lou; Svensson, Mikael

    2011-01-01

    Background Filum terminale (FT) is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage. Methodology/Principal Findings We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP) and neurons (β-III-tubulin). Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors. Conclusion/Significance The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes. Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord. PMID:22096566

  1. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.

    PubMed

    Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko

    2015-01-01

    Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.

  2. Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas.

    PubMed

    Yoshida, Tetsu; Shiraki, Nobuaki; Baba, Hideo; Goto, Mizuki; Fujiwara, Sakuhei; Kume, Kazuhiko; Kume, Shoen

    2008-07-01

    Epiplakin1 (Eppk1) is a plakin family gene with its function remains largely unknown, although the plakin genes are known to function in interconnecting cytoskeletal filaments and anchoring them at plasma membrane-associated adhesive junction. Here we analyzed the expression patterns of Eppk1 in the developing and adult pancreas in the mice. In the embryonic pancreas, Eppk1+/Pdx1+ and Eppk1+/Sox9+ pancreatic progenitor cells were observed in early pancreatic epithelium. Since Pdx1 expression overlapped with that of Sox9 at this stage, these multipotent progenitor cells are Eppk1+/Pdx1+/Sox9+ cells. Then Eppk1 expression becomes confined to Ngn3+ or Sox9+ endocrine progenitor cells, and p48+ exocrine progenitor cells, and then restricted to the duct cells and a cells at birth. In the adult pancreas, Eppk1 is expressed in centroacinar cells (CACs) and in duct cells. Eppk1 is observed in pancreatic intraepithelial neoplasia (PanIN), previously identified as pancreatic ductal adenocarcinoma (PDAC) precursor lesions. In addition, the expansion of Eppk1-positive cells occurs in a caerulein-induced acute pancreatitis, an acinar cell regeneration model. Furthermore, in the partial pancreatectomy (Px) regeneration model using mice, Eppk1 is expressed in "ducts in foci", a tubular structure transiently induced. These results suggest that Eppk1 serves as a useful marker for detecting pancreatic progenitor cells in developing and regenerating pancreas.

  3. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  4. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    PubMed

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Paracrine Met signaling triggers epithelial–mesenchymal transition in mammary luminal progenitors, affecting their fate

    PubMed Central

    Di-Cicco, Amandine; Petit, Valérie; Chiche, Aurélie; Bresson, Laura; Romagnoli, Mathilde; Orian-Rousseau, Véronique; Vivanco, Maria dM; Medina, Daniel; Faraldo, Marisa M; Glukhova, Marina A; Deugnier, Marie-Ange

    2015-01-01

    HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.06104.001 PMID:26165517

  7. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    PubMed

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  8. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Conversion of immortal liver progenitor cells into pancreatic endocrine progenitor cells by persistent expression of Pdx-1.

    PubMed

    Jin, Cai-Xia; Li, Wen-Lin; Xu, Fang; Geng, Zhen H; He, Zhi-Ying; Su, Juan; Tao, Xin-Rong; Ding, Xiao-Yan; Wang, Xin; Hu, Yi-Ping

    2008-05-01

    The conversion of expandable liver progenitor cells into pancreatic beta cells would provide a renewable cell source for diabetes cell therapy. Previously, we reported the establishment of liver epithelial progenitor cells (LEPCs). In this work, LEPCs were modified into EGFP/Pdx-1 LEPCs, cells with stable expression of both Pdx-1 and EGFP. Unlike previous work, with persistent expression of Pdx-1, EGFP/Pdx-1 LEPCs acquired the phenotype of pancreatic endocrine progenitor cells rather than giving rise to insulin-producing cells directly. EGFP/Pdx-1 LEPCs proliferated vigorously and expressed the crucial transcription factors involved in beta cell development, including Ngn3, NeuroD, Nkx2.2, Nkx6.1, Pax4, Pax6, Isl1, MafA and endogenous Pdx-1, but did not secrete insulin. When cultured in high glucose/low serum medium supplemented with cytokines, EGFP/Pdx-1 LEPCs stopped proliferating and gave rise to functional beta cells without any evidence of exocrine or other islet cell lineage differentiation. When transplanted into diabetic SCID mice, EGFP/Pdx-1 LEPCs ameliorated hyperglycemia by secreting insulin in a glucose regulated manner. Considering the limited availability of beta cells, we propose that our experiments will provide a framework for utilizing the immortal liver progenitor cells as a renewable cell source for the generation of functional pancreatic beta cells.

  10. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    PubMed

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice.

    PubMed

    Lew, D; Brady, H; Klausing, K; Yaginuma, K; Theill, L E; Stauber, C; Karin, M; Mellon, P L

    1993-04-01

    During pituitary development, the homeo domain protein GHF-1 is required for generation of somatotropes and lactotropes and for growth hormone (GH) and prolactin (PRL) gene expression. GHF-1 mRNA is detectable several days before the emergence of GH- or PRL-expressing cells, suggesting the existence of a somatotropic progenitor cell in which GHF-1 transcription is first activated. We have immortalized this cell type by using the GHF-1 regulatory region to target SV40 T-antigen (Tag) tumorigenesis in transgenic mice. The GHF-Tag transgene caused developmental entrapment of somatotropic progenitor cells that express GHF-1 but not GH or PRL, resulting in dwarfism. Immortalized cell lines derived from a transgenic pituitary tumor maintain the characteristics of the somato/lactotropic progenitor in that they express GHF-1 mRNA and protein yet fail to activate GH or PRL transcription. Using these cells, we identified an enhancer that activates GHF-1 transcription at this early stage of development yet is inactive in cells representing later developmental stages of the somatotropic lineage or in other cell types. These experiments not only demonstrate the potential for immortalization of developmental progenitor cells using the regulatory regions from cell type-specific transcription factor genes but illustrate the power of such model systems in the study of developmental control.

  12. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice.

    PubMed

    Sakabe, Tomoya; Sakai, Keiko; Maeda, Toru; Sunaga, Ataru; Furuta, Nao; Schweitzer, Ronen; Sasaki, Takako; Sakai, Takao

    2018-04-20

    Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP -tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)-positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor β (TGF-β) signaling. scx -deficient mice had migration of Sca-1-positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx -null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro , and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx -null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body. © 2018 Sakabe et al.

  13. Global expression analysis of gene regulatory pathways during endocrine pancreatic development.

    PubMed

    Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A

    2004-01-01

    To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.

  14. Functional blockade of α5β1 integrin induces scattering and genomic landscape remodeling of hepatic progenitor cells

    PubMed Central

    2010-01-01

    Background Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells. Results Cells treated with a specific antibody against α5β1 integrin exhibited cell spreading and scattering, over-expression of liver stem/progenitor cell markers and activation of the ERK1/2 and p38 MAPKs signaling cascades, in a similar manner to the process triggered by HGF/SF1 stimulation. Gene expression profiling revealed marked transcriptional changes of genes involved in cell adhesion and migration, as well as genes encoding chromatin remodeling factors. These responses were accompanied by conspicuous spatial reorganization of centromeres, while integrin genes conserved their spatial positioning in the interphase nucleus. Conclusion Collectively, our results demonstrate that α5β1 integrin functional blockade induces cell migration of hepatic progenitor cells, and that this involves a dramatic remodeling of the nuclear landscape. PMID:20958983

  15. Interleukin-7-induced Stat-5 acts in synergy with Flt-3 signaling to stimulate expansion of hematopoietic progenitor cells.

    PubMed

    Åhsberg, Josefine; Tsapogas, Panagiotis; Qian, Hong; Zetterblad, Jenny; Zandi, Sasan; Månsson, Robert; Jönsson, Jan-Ingvar; Sigvardsson, Mikael

    2010-11-19

    The development of lymphoid cells from bone marrow progenitors is dictated by interplay between internal cues such as transcription factors and external signals like the cytokines Flt-3 ligand and Il-7. These proteins are both of large importance for normal lymphoid development; however, it is unclear if they act in direct synergy to expand a transient Il-7R(+)Flt-3(+) population or if the collaboration is created through sequential activities. We report here that Flt-3L and Il-7 synergistically stimulated the expansion of primary Il-7R(+)Flt-3(+) progenitor cells and a hematopoietic progenitor cell line ectopically expressing the receptors. The stimulation resulted in a reduced expression of pro-apoptotic genes and also mediated survival of primary progenitor cells in vitro. However, functional analysis of single cells suggested that the anti-apoptotic effect was additive indicating that the synergy observed mainly depends on stimulation of proliferation. Analysis of downstream signaling events suggested that although Il-7 induced Stat-5 phosphorylation, Flt-3L caused activation of the ERK and AKT signaling pathways. Flt-3L could also drive proliferation in synergy with ectopically expressed constitutively active Stat-5. This synergy could be inhibited with either receptor tyrosine kinase or MAPK inhibitors suggesting that Flt-3L and Il-7 act in synergy by activation of independent signaling pathways to expand early hematopoietic progenitors.

  16. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney.

    PubMed

    Lindström, Nils O; Guo, Jinjin; Kim, Albert D; Tran, Tracy; Guo, Qiuyu; De Sena Brandine, Guilherme; Ransick, Andrew; Parvez, Riana K; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-03-01

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2 + nephron progenitor cells (NPCs) and Foxd1 + interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1 , were readily detected within SIX2 + NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2 + NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2 , are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs. Copyright © 2018 by the American Society of Nephrology.

  17. Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis.

    PubMed

    Lindström, Nils O; De Sena Brandine, Guilherme; Tran, Tracy; Ransick, Andrew; Suh, Gio; Guo, Jinjin; Kim, Albert D; Parvez, Riana K; Ruffins, Seth W; Rutledge, Elisabeth A; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-06-04

    Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Clones of cells switch from reduction to enhancement of size variability in Arabidopsis sepals

    PubMed Central

    Tsugawa, Satoru; Hervieux, Nathan; Kierzkowski, Daniel; Routier-Kierzkowska, Anne-Lise; Sapala, Aleksandra; Hamant, Olivier; Smith, Richard S.; Boudaoud, Arezki

    2017-01-01

    Organs form with remarkably consistent sizes and shapes during development, whereas a high variability in growth is observed at the cell level. Given this contrast, it is unclear how such consistency in organ scale can emerge from cellular behavior. Here, we examine an intermediate scale, the growth of clones of cells in Arabidopsis sepals. Each clone consists of the progeny of a single progenitor cell. At early stages, we find that clones derived from a small progenitor cell grow faster than those derived from a large progenitor cell. This results in a reduction in clone size variability, a phenomenon we refer to as size uniformization. By contrast, at later stages of clone growth, clones change their growth pattern to enhance size variability, when clones derived from larger progenitor cells grow faster than those derived from smaller progenitor cells. Finally, we find that, at early stages, fast growing clones exhibit greater cell growth heterogeneity. Thus, cellular variability in growth might contribute to a decrease in the variability of clones throughout the sepal. PMID:29183944

  19. Breast Cancer Subtypes: Two decades of Journey from Cell Culture to Patients

    PubMed Central

    Zhao, Xiangshan; Gurumurthy, Channabasavaiah Basavaraju; Malhotra, Gautam; Mirza, Sameer; Mohibi, Shakur; Bele, Aditya; Quinn, Meghan G; Band, Hamid; Band, Vimla

    2014-01-01

    Breast cancer remains the second leading cause of cancer-related deaths among women. Clinically breast cancer patients present with distinct diseases with vastly different outcomes. Recent molecular profiling has identified five major subtypes of breast cancers. Importantly, survival analyses have shown significantly different outcomes for patients belonging to various subgroups. These studies strongly support the idea that breast tumor subtypes may represent malignancies of biologically distinct cell types producing distinct disease entities that may also require different treatment strategies. Alternatively, different types of breast cancers may arise from a common precursor based on oncogene-driven reprogramming. Experimental systems that clearly define cancer cell heterogeneity and link this process to cancer stem/progenitor cells have not been developed. It is also unclear if oncogenic transformation of committed progenitors drives them along their committed pathway, and hence the cell of origin determines the histological features of breast cancer, or if different oncogenic pathways can transform the same precursor along distinct phenotypes. One major hurdle to addressing these fundamental questions about the origin and heterogeneity of human breast cancer is the lack of immortal human stem/progenitor cells that could be interrogated with breast cancer-relevant oncogenesis protocols. We have now identified, isolated and immortalized (using hTERT) such mammary stem/progenitor cells that are immortal and still maintain their progenitor/stem cell properties (self-renewal and differentiation into myoepithelial and luminal cells). Our research using these progenitor/stem cells that are highly susceptible to oncogenesis and various models of mammary cell immortalization has allowed us to define several novel cellular pathways and demonstration of their involvement in oncogenesis and breast cancer progression. Given the emerging evidence that stem/progenitor cells are precursors of cancers and distinct subtypes of breast cancer have different survival outcome, these studies are timely and carry the potential of developing novel therapeutics in the future as well as provide potentially novel markers for diagnostic/prognostic use in breast cancer. PMID:21901624

  20. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status.

    PubMed

    Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang

    2016-05-10

    Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Ordering human CD34+CD10−CD19+ pre/pro-B-cell and CD19− common lymphoid progenitor stages in two pro-B-cell development pathways

    PubMed Central

    Sanz, Eva; Muñoz-A., Norman; Monserrat, Jorge; Van-Den-Rym, Ana; Escoll, Pedro; Ranz, Ismael; Álvarez-Mon, Melchor; de-la-Hera, Antonio

    2010-01-01

    Studies here respond to two long-standing questions: Are human “pre/pro-B” CD34+CD10−CD19+ and “common lymphoid progenitor (CLP)/early-B” CD34+CD10+CD19− alternate precursors to “pro-B” CD34+CD19+CD10+ cells, and do the pro-B cells that arise from these progenitors belong to the same or distinct B-cell development pathways? Using flow cytometry, gene expression profiling, and Ig VH-D-JH sequencing, we monitor the initial 10 generations of development of sorted cord blood CD34highLineage− pluripotential progenitors growing in bone marrow S17 stroma cocultures. We show that (i) multipotent progenitors (CD34+CD45RA+CD10−CD19−) directly generate an initial wave of Pax5+TdT− “unilineage” pre/pro-B cells and a later wave of “multilineage” CLP/early-B cells and (ii) the cells generated in these successive stages act as precursors for distinct pro-B cells through two independent layered pathways. Studies by others have tracked the origin of B-lineage leukemias in elderly mice to the mouse B-1a pre/pro-B lineage, which lacks the TdT activity that diversifies the VH-D-JH Ig heavy chain joints found in the early-B or B-2 lineage. Here, we show a similar divergence in human B-cell development pathways between the Pax5+TdT− pre/pro-B differentiation pathway that gives rise to infant B-lineage leukemias and the early-B pathway. PMID:20231472

  2. EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors.

    PubMed

    Zjablovskaja, Polina; Kardosova, Miroslava; Danek, Petr; Angelisova, Pavla; Benoukraf, Touati; Wurm, Alexander A; Kalina, Tomas; Sian, Stephanie; Balastik, Martin; Delwel, Ruud; Brdicka, Tomas; Tenen, Daniel G; Behre, Gerhard; Fiore, Fréderic; Malissen, Bernard; Horejsi, Vaclav; Alberich-Jorda, Meritxell

    2017-04-01

    Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.

  3. Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo

    PubMed Central

    Moon, Jisook; Schwarz, Sigrid C.; Lee, Hyun‐Seob; Kang, Jun Mo; Lee, Young‐Eun; Kim, Bona; Sung, Mi‐Young; Höglinger, Günter; Wegner, Florian; Kim, Jin Su; Chung, Hyung‐Min; Chang, Sung Woon; Cha, Kwang Yul; Kim, Kwang‐Soo

    2016-01-01

    Abstract We have developed a good manufacturing practice for long‐term cultivation of fetal human midbrain‐derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region‐specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum‐free conditions and standardized operating protocols under clean‐room conditions. Long‐term‐cultivated midbrain‐derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9‐specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain‐derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain‐derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long‐term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high‐content or high‐throughput screening. Stem Cells Translational Medicine 2017;6:576–588 PMID:28191758

  4. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  5. Characteristics of hepatic stem/progenitor cells in the fetal and adult liver.

    PubMed

    Koike, Hiroyuki; Taniguchi, Hideki

    2012-11-01

    The liver is an essential organ that maintains vital activity through its numerous important functions. It has a unique capability of fully regenerating after injury. Regulating a balance between self-renewal and differentiation of hepatic stem cells that are resources for functional mature liver cells is required for maintenance of tissue homeostasis. This review describes the characteristics of hepatic stem/progenitor cells and the regulatory mechanism of their self-renewal and differentiation capacity. In liver organogenesis, undifferentiated hepatic stem/progenitor cells expand their pool by repeated self-renewal in the early stage of liver development and then differentiate into two different types of cell lineage, namely hepatocytes and cholangiocytes. Liver development is regulated by expression of stem cell transcription factors in a complex multistep process. Recent studies suggest that stem cells are maintained by integrative regulation of gene expression patterns related to self-renewal and differentiation by epigenetic mechanisms such as histone modification and DNA methylation. Analysis of the proper regulatory mechanism of hepatic stem/progenitor cells is important for regenerative medicine that utilizes hepatic stem cells and for preventing liver cancer through clarification of the carcinogenetic mechanism involved in stem cell system failure.

  6. The Roles and Regulation of Polycomb Complexes in Neural Development

    PubMed Central

    Corley, Matthew; Kroll, Kristen L.

    2014-01-01

    In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb Repressive Complexes, effectively limiting the expression of fate-determining genes. Here, we review distinct roles that the Polycomb Repressive Complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of how Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation, facilitating the efficient generation of specific neuronal and glial cell types for many biological applications. PMID:25367430

  7. Defective Hematopoietic Stem Cell and Lymphoid Progenitor Development in the Ts65Dn Mouse Model of Down Syndrome: Potential Role of Oxidative Stress

    PubMed Central

    Lorenzo, Laureanne Pilar E.; Chen, Haiyan; Shatynski, Kristen E.; Clark, Sarah; Yuan, Rong; Harrison, David E.; Yarowsky, Paul J.

    2011-01-01

    Abstract Aims Down Syndrome (DS), a genetic disease caused by a triplication of chromosome 21, is characterized by increased markers of oxidative stress. In addition to cognitive defects, patients with DS also display hematologic disorders and increased incidence of infections and leukemia. Using the Ts65Dn mouse model of DS, the goal of this study was to examine hematopoietic stem and lymphoid progenitor cell function in DS. Results Analysis of hematopoietic progenitor populations showed that Ts65Dn mice possessed fewer functional hematopoietic stem cells and a significantly decreased percentage of bone marrow lymphoid progenitors. Increased reactive oxygen species and markers of oxidative stress were detected in hematopoietic stem cell populations and were associated with a loss of quiescence. Bone marrow progenitor populations expressed diminished levels of the IL-7Rα chain, which was associated with decreased proliferation and increased apoptosis. Modulating oxidative stress in vitro suggested that oxidative stress selectively leads to decreased IL-7Rα expression, and inhibits the survival of IL-7Rα-expressing hematopoietic progenitors, potentially linking increased reactive oxygen species and immunopathology. Innovation The study results identify a link between oxidative stress and diminished IL-7Rα expression and function. Further, the data suggest that this decrease in IL-7Rα is associated with defective hematopoietic development in Down Syndrome. Conclusion The data suggest that hematopoietic stem and lymphoid progenitor cell defects underlie immune dysfunction in DS and that increased oxidative stress and reduced cytokine signaling may alter hematologic development in Ts65Dn mice. Antioxid. Redox Signal. 15, 2083–2094. PMID:21504363

  8. Sertoli Cell Wt1 Regulates Peritubular Myoid Cell and Fetal Leydig Cell Differentiation during Fetal Testis Development.

    PubMed

    Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun

    2016-01-01

    Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.

  9. Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition.

    PubMed

    Nemati, Shiva; Abbasalizadeh, Saeed; Baharvand, Hossein

    2016-01-01

    Recent advances in neural differentiation technology have paved the way to generate clinical grade neural progenitor populations from human pluripotent stem cells. These cells are an excellent source for the production of neural cell-based therapeutic products to treat incurable central nervous system disorders such as Parkinson's disease and spinal cord injuries. This progress can be complemented by the development of robust bioprocessing technologies for large scale expansion of clinical grade neural progenitors under GMP conditions for promising clinical use and drug discovery applications. Here, we describe a protocol for a robust, scalable expansion of human neural progenitor cells from pluripotent stem cells as 3D aggregates in a stirred suspension bioreactor. The use of this platform has resulted in easily expansion of neural progenitor cells for several passages with a fold increase of up to 4.2 over a period of 5 days compared to a maximum 1.5-2-fold increase in the adherent static culture over a 1 week period. In the bioreactor culture, these cells maintained self-renewal, karyotype stability, and cloning efficiency capabilities. This approach can be also used for human neural progenitor cells derived from other sources such as the human fetal brain.

  10. Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors

    PubMed Central

    Lehar, Sophie M.; Dooley, James; Farr, Andrew G.; Bevan, Michael J.

    2009-01-01

    Signaling through the Notch pathway plays an essential role in inducing T-lineage commitment and promoting the maturation of immature thymocytes. Using an in vitro culture system, we show that 2 different classes of Notch ligands, Jagged1 or Delta1, transmit distinct signals to T-cell progenitors. OP9 stromal cells expressing either Jagged1 or Delta1 inhibit the differentiation of DN1 thymocytes into the B-cell lineage, but only the Delta1-expressing stromal cells promote the proliferation and maturation of T-cell progenitors through the early double-negative (DN) stages of thymocyte development. Whereas the majority of bone marrow-derived stem cells do not respond to Jagged1 signals, T-cell progenitors respond to Jagged1 signals during a brief window of their development between the DN1 and DN3 stages of thymic development. During these stages, Jagged1 signals can influence the differentiation of immature thymocytes along the natural killer (NK) and γδ T-cell lineages. PMID:15486060

  11. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency.

    PubMed

    Tuckett, Andrea Z; Thornton, Raymond H; O'Reilly, Richard J; van den Brink, Marcel R M; Zakrzewski, Johannes L

    2017-05-16

    Even though hematopoietic stem cell transplantation can be curative in patients with severe combined immunodeficiency, there is a need for additional strategies boosting T cell immunity in individuals suffering from genetic disorders of lymphoid development. Here we show that image-guided intrathymic injection of hematopoietic stem and progenitor cells in NOD-scid IL2rγ null mice is feasible and facilitates the generation of functional T cells conferring protective immunity. Hematopoietic stem and progenitor cells were isolated from the bone marrow of healthy C57BL/6 mice (wild-type, Luciferase + , CD45.1 + ) and injected intravenously or intrathymically into both male and female, young or aged NOD-scid IL2rγ null recipients. The in vivo fate of injected cells was analyzed by bioluminescence imaging and flow cytometry of thymus- and spleen-derived T cell populations. In addition to T cell reconstitution, we evaluated mice for evidence of immune dysregulation based on diabetes development and graft-versus-host disease. T cell immunity following intrathymic injection of hematopoietic stem and progenitor cells in NOD-scid IL2rγ null mice was assessed in a B cell lymphoma model. Despite the small size of the thymic remnant in NOD-scid IL2rγ null mice, we were able to accomplish precise intrathymic delivery of hematopoietic stem and progenitor cells by ultrasound-guided injection. Thymic reconstitution following intrathymic injection of healthy allogeneic hematopoietic cells was most effective in young male recipients, indicating that even in the setting of severe immunodeficiency, sex and age are important variables for thymic function. Allogeneic T cells generated in intrathymically injected NOD-scid IL2rγ null mice displayed anti-lymphoma activity in vivo, but we found no evidence for severe auto/alloreactivity in T cell-producing NOD-scid IL2rγ null mice, suggesting that immune dysregulation is not a major concern. Our findings suggest that intrathymic injection of donor hematopoietic stem and progenitor cells is a safe and effective strategy to establish protective T cell immunity in a mouse model of severe combined immunodeficiency.

  12. Breast cancer subtypes: two decades of journey from cell culture to patients.

    PubMed

    Zhao, Xiangshan; Gurumurthy, Channabasavaiah Basavaraju; Malhotra, Gautam; Mirza, Sameer; Mohibi, Shakur; Bele, Aditya; Quinn, Meghan G; Band, Hamid; Band, Vimla

    2011-01-01

    Recent molecular profiling has identified six major subtypes of breast cancers that exhibit different survival outcomes for patients. To address the origin of different subtypes of breast cancers, we have now identified, isolated, and immortalized (using hTERT) mammary stem/progenitor cells which maintain their stem/progenitor properties even after immortalization. Our decade long research has shown that these stem/progenitor cells are highly susceptible to oncogenesis. Given the emerging evidence that stem/progenitor cells are precursors of cancers and that distinct subtypes of breast cancer have different survival outcome, these cellular models provide novel tools to understand the oncogenic process leading to various subtypes of breast cancers and for future development of novel therapeutic strategies to treat different subtypes of breast cancers.

  13. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    PubMed

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a dissociated monolayer and feeder-free culture system have the potential to generate oligodendrocyte progenitor cells and mature oligodendrocytes in vitro and in vivo. This culture method could be applied to prepare large amounts of oligodendrocyte progenitor cells and mature oligodendrocytes in a relatively short amount of time.

  14. An In Vitro Expansion System for Generation of Human iPS Cell-Derived Hepatic Progenitor-Like Cells Exhibiting a Bipotent Differentiation Potential

    PubMed Central

    Yanagida, Ayaka; Ito, Keiichi; Chikada, Hiromi; Nakauchi, Hiromitsu; Kamiya, Akihide

    2013-01-01

    Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13highCD133+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development. PMID:23935837

  15. An in vitro expansion system for generation of human iPS cell-derived hepatic progenitor-like cells exhibiting a bipotent differentiation potential.

    PubMed

    Yanagida, Ayaka; Ito, Keiichi; Chikada, Hiromi; Nakauchi, Hiromitsu; Kamiya, Akihide

    2013-01-01

    Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(high)CD133(+) cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.

  16. MYCN Promotes the Expansion of Phox2B-Positive Neuronal Progenitors to Drive Neuroblastoma Development

    PubMed Central

    Alam, Goleeta; Cui, Hongjuan; Shi, Huilin; Yang, Liqun; Ding, Jane; Mao, Ling; Maltese, William A.; Ding, Han-Fei

    2009-01-01

    Amplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined. Here we examine the cell types that drive neuroblastoma development in TH-MYCN transgenic mice, an animal model of the human disease. Neuroblastoma development in these mice begins with hyperplastic lesions in early postnatal sympathetic ganglia. We show that both hyperplasia and primary tumors are composed predominantly of highly proliferative Phox2B+ neuronal progenitors. MYCN induces the expansion of these progenitors by both promoting their proliferation and preventing their differentiation. We further identify a minor population of undifferentiated nestin+ cells in both hyperplastic lesions and primary tumors that may serve as precursors of Phox2B+ neuronal progenitors. These findings establish the identity of neuroblasts that characterize the tumor phenotype and suggest a cellular pathway by which MYCN can promote neuroblastoma development. PMID:19608868

  17. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  18. NMDA receptor mediates proliferation and CREB phosphorylation in postnatal Müller glia-derived retinal progenitors

    PubMed Central

    Ramírez, Mónica

    2009-01-01

    Purpose Postnatal retinal Müller glia are considered to be retinal progenitors as they retain the ability to dedifferentiate, proliferate, and differentiate to new retinal glia and neurons after injury. The proliferation and differentiation processes are coordinated by several extrinsic factors and neurotransmitters, including glutamate. Thus, the appropriate numbers and proportions of the different cell types are generated to form a functional retina during development and during injury repair. Here we analyze the changes in the proliferation of postnatal Müller glia-derived progenitors after activation of the N-methyl-D-aspartate (NMDA) glutamate receptors. Methods Müller glia-derived progenitor cell cultures were characterized by immunocytochemistry with antibodies against the NR1 subunit of the NMDA receptor and the progenitor cell marker nestin. The effect of glutamate receptor agonists and antagonists on cell proliferation was analyzed by BrdU incorporation or Ki67 immunostaining, cell counting, and by immunolabeling of phosphorylated cAMP response element binding protein (P-CREB) transcription factor. The effect of NMDA receptor activation was analyzed in vivo by P-CREB immunohistochemistry in retinal sections of Long-Evans NMDA injected rats. Results We show that NMDA receptor activation significantly increases the proliferation rate of Müller-glia derived progenitor cells and that this increase can be blocked by NMDA receptor antagonists. Furthermore, we show that CREB phosphorylation is induced in NMDA-treated Müller-glia derived progenitor cells in culture and that specific pharmacological inhibition of CREB phosphorylation results in a decreased number of proliferating cells. We confirmed the relevance of these observations by the analysis of retinal sections after NMDA injection in vivo where immunoreactivity to phosphorylated CREB is also increased after treatment. Conclusions In the present study we show that NMDA receptor activation induces postnatal Müller glia-derived retinal cell progenitor proliferation and transcription factor CREB phosphorylation both in culture and in vivo. The identification of the molecular determinants of mature retinal progenitors such as transcription factor CREB and NMDA receptor-induced players should facilitate the control of growth and manipulation of progenitor cell cultures and the possible identification of the molecular mechanisms involved in progenitor self-renewal. PMID:19365572

  19. Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review.

    PubMed

    Satthenapalli, Venkata R; Lamberts, Regis R; Katare, Rajesh G

    2017-09-01

    Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026. © 2017 AlphaMed Press.

  20. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    PubMed

    Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E

    2008-02-13

    Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  1. BCAP inhibits proliferation and differentiation of myeloid progenitors in the steady state and during demand situations.

    PubMed

    Duggan, Jeffrey M; Buechler, Matthew B; Olson, Rebecca M; Hohl, Tobias M; Hamerman, Jessica A

    2017-03-16

    B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) is a signaling adaptor expressed in mature hematopoietic cells, including monocytes and neutrophils. Here we investigated the role of BCAP in the homeostasis and development of these myeloid lineages. BCAP -/- mice had more bone marrow (BM) monocytes than wild-type (WT) mice, and in mixed WT:BCAP -/- BM chimeras, monocytes and neutrophils skewed toward BCAP -/- origin, showing a competitive advantage for BCAP -/- myeloid cells. BCAP was expressed in BM hematopoietic progenitors, including lineage - Sca-1 + c-kit + (LSK), common myeloid progenitor, and granulocyte/macrophage progenitor (GMP) cells. At the steady state, BCAP -/- GMP cells expressed more IRF8 and less C/EBPα than did WT GMP cells, which correlated with an increase in monocyte progenitors and a decrease in granulocyte progenitors among GMP cells. Strikingly, BCAP -/- progenitors proliferated and produced more myeloid cells of both neutrophil and monocyte/macrophage lineages than did WT progenitors in myeloid colony-forming unit assays, supporting a cell-intrinsic role of BCAP in inhibiting myeloid proliferation and differentiation. Consistent with these findings, during cyclophosphamide-induced myeloablation or specific monocyte depletion, BCAP -/- mice replenished circulating monocytes and neutrophils earlier than WT mice. During myeloid replenishment after cyclophosphamide-induced myeloablation, BCAP -/- mice had increased LSK proliferation and increased numbers of LSK and GMP cells compared with WT mice. Furthermore, BCAP -/- mice accumulated more monocytes and neutrophils in the spleen than did WT mice during Listeria monocytogenes infection. Together, these data identify BCAP as a novel inhibitor of myelopoiesis in the steady state and of emergency myelopoiesis during demand conditions. © 2017 by The American Society of Hematology.

  2. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  3. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms.

    PubMed

    Cechmanek, Paula Bernice; McFarlane, Sarah

    2017-08-01

    The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  5. Progenitors of Secondary Crest Myofibroblasts are Developmentally Committed in Early Lung Mesoderm

    PubMed Central

    Li, Changgong; Li, Min; Li, Sha; Xing, Yiming; Yang, Chang-Yo; Li, Aimin; Borok, Zea; De Langhe, Stijn; Minoo, Parviz

    2015-01-01

    Development of the mammalian lung is predicated on cross-communications between two highly interactive tissues, the endodermally-derived epithelium and the mesodermally-derived pulmonary mesenchyme. While much attention has been paid the lung epithelium, the pulmonary mesenchyme, partly due to lack of specific tractable markers remains under-investigated. The lung mesenchyme is derived from the lateral plate mesoderm and is the principal recipient of Hedgehog (Hh) signaling, a morphogenetic network that regulates multiple aspects of embryonic development. Using the Hh-responsive Gli1-creERT2 mouse line, we identified the mesodermal targets of Hh signaling at various time points during embryonic and postnatal lung development. Cell lineage analysis showed these cells serve as progenitors to contribute to multiple lineages of mesodermally-derived differentiated cell types that include parenchymal or interstitial myofibroblasts, parabronchial and perivascular smooth muscle as well as rare populations of cells within the mesothelium. Most importantly, Gli1-creERT2 identified the progenitors of secondary crest myofibroblasts, a hitherto intractable cell type that plays a key role in alveolar formation, a vital process about which little is currently known. Transcriptome analysis of Hh-targeted progenitor cells transitioning from the pseudoglandular to the saccular phase of lung development revealed important modulations of key signaling pathways. Amongst these, there was significant down-regulation of canonical WNT signaling. Ectopic stabilization of β-Catenin via inactivation of Apc by Gli1-creERT2 expanded the Hh-targeted progenitor pools, which caused the formation of fibroblastic masses within the lung parenchyma. The Gli1-creERT2 mouse line represents a novel tool in the analysis of mesenchymal cell biology and alveolar formation during lung development. PMID:25448080

  6. Molecular and Functional Characterization of Lymphoid Progenitor Subsets Reveals a Bipartite Architecture of Human Lymphopoiesis.

    PubMed

    Alhaj Hussen, Kutaiba; Vu Manh, Thien-Phong; Guimiot, Fabien; Nelson, Elisabeth; Chabaane, Emna; Delord, Marc; Barbier, Maxime; Berthault, Claire; Dulphy, Nicolas; Alberdi, Antonio José; Burlen-Defranoux, Odile; Socié, Gerard; Bories, Jean Christophe; Larghero, Jerôme; Vanneaux, Valérie; Verhoeyen, Els; Wirth, Thierry; Dalod, Marc; Gluckman, Jean Claude; Cumano, Ana; Canque, Bruno

    2017-10-17

    The classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127 - and CD127 + early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127 - and CD127 + ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127 - ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127 + ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Threshold-dependent cooperativity of Pdx1 and Oc1 in pancreatic progenitors establishes competency for endocrine differentiation and β-cell function

    PubMed Central

    Wright, Christopher V.E.; Won, Kyoung-Jae

    2016-01-01

    Summary Pdx1 and Oc1 are co-expressed in multipotent pancreatic progenitors and regulate the pro-endocrine gene Neurog3. Their expression diverges in later organogenesis, with Oc1 absent from hormone+ cells and Pdx1 maintained in mature β cells. In a classical genetic test for cooperative functional interactions, we derived mice with combined Pdx1 and Oc1 heterozygosity. Endocrine development in double-heterozygous pancreata was normal at embryonic day (e)13.5, but defects in specification and differentiation were apparent at e15.5, the height of the second wave of differentiation. Pancreata from double heterozygotes showed alterations in the expression of genes crucial for β-cell development and function, decreased numbers and altered allocation of Neurog3-expressing endocrine progenitors, and defective endocrine differentiation. Defects in islet gene expression and β-cell function persisted in double heterozygous neonates. These results suggest that Oc1 and Pdx1 cooperate prior to their divergence, in pancreatic progenitors, to allow for proper differentiation and functional maturation of β cells. PMID:27292642

  8. Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics

    PubMed Central

    2003-01-01

    Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair. PMID:12975533

  9. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    PubMed

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  10. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    PubMed

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.

    PubMed

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting; Paulson, Robert F

    2015-03-12

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. © 2015 by The American Society of Hematology.

  12. Niche players

    PubMed Central

    Seandel, Marco; Falciatori, Ilaria; Shmelkov, Sergey V.; Kim, Jiyeon; James, Daylon; Rafii, Shahin

    2010-01-01

    The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines. PMID:18256534

  13. Cancer Stem Cells: Dynamic Entities in an Ever-Evolving Paradigm.

    PubMed

    Lopez-Bertoni, Hernando; Li, Yunqing; Laterra, John

    2015-11-01

    The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.

  14. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  15. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues.

    PubMed

    Tremblay, Kimberly D; Zaret, Kenneth S

    2005-04-01

    The location and movement of mammalian gut tissue progenitors, prior to the expression of tissue-specific genes, has been unknown, but this knowledge is essential to identify transitions that lead to cell type specification. To address this, we used vital dyes to label exposed anterior endoderm cells of early somite stage mouse embryos, cultured the embryos into the tissue bud phase of development, and determined the tissue fate of the dye labeled cells. This approach was performed at three embryonic stages that are prior to, or coincident with, foregut tissue patterning (1-3 somites, 4-6 somites, and 7-10 somites). Short-term labeling experiments tracked the movement of tissue progenitor cells during foregut closure. Surprisingly, we found that two distinct types of endoderm-progenitor cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud. Whereas the lateral endoderm-progenitors give rise to descendants that are constrained in tissue fate and position along the anterior-posterior axis of the gut, the medial gut endoderm-progenitors give rise to descendants that stream along the anterior-posterior axis at the ventral midline and contribute to multiple gut tissues. The fate map reveals extensive morphogenetic movement of progenitors prior to tissue specification, it permits a detailed analysis of endoderm tissue patterning, and it illustrates that diverse progenitor domains can give rise to individual tissue cell types.

  16. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex

    PubMed Central

    Stevens, Hanna E.; Su, Tina; Yanagawa, Yuchio; Vaccarino, Flora M.

    2012-01-01

    Summary Prenatal stress has been widely demonstrated to have links with behavioral problems in clinical populations and animal models, however, few investigations have examined the immediate developmental events that are affected by prenatal stress. Here, we utilize GAD67GFP transgenic mice in which GABAergic progenitors express green fluorescent protein (GFP) to examine the impact of prenatal stress on the development of these precursors to inhibitory neurons. Pregnant female mice were exposed to restraint stress three times daily from embryonic day 12 (E12) onwards. Their offspring demonstrated changes in the distribution of GFP-positive (GFP+) GABAergic progenitors in the telencephalon as early as E13 and persisting until postnatal day 0. Changes in distribution reflected alterations in tangential migration and radial integration of GFP+ cells into the developing cortical plate. Fate mapping of GAD67GFP+progenitors with bromodeoxyuridine injected at E13 demonstrated a significant increase of these cells at P0 in anterior white matter. An overall decrease in GAD67GFP+ progenitors at P0 in medial frontal cortex could not be attributed to a reduction in cell proliferation. Significant changes in dlx2, nkx2.1 and their downstream target erbb4, transcription factors which regulate interneuron migration, were found within the prenatally-stressed developing forebrain, while no differences were seen in mash1, a determinant of interneuron fate, bdnf, a maturation factor for GABAergic cells or fgf2, an early growth/differentiation factor. These results demonstrate that early disruption in GABAergic progenitor migration caused by prenatal stress may be responsible for neuronal defects in disorders with GABAergic abnormalities like schizophrenia. PMID:22910687

  17. Progranulin regulates neurogenesis in the developing vertebrate retina.

    PubMed

    Walsh, Caroline E; Hitchcock, Peter F

    2017-09-01

    We evaluated the expression and function of the microglia-specific growth factor, Progranulin-a (Pgrn-a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn-a is expressed throughout the forebrain, but by 48 hpf pgrn-a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn-a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed-retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn-a knockdown. Depleting Pgrn-a results in a significant lengthening of the cell cycle. These data suggest that Pgrn-a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn-a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114-1129, 2017. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.

  18. mTOR regulates brain morphogenesis by mediating GSK3 signaling

    PubMed Central

    Ka, Minhan; Condorelli, Gianluigi; Woodgett, James R.; Kim, Woo-Yang

    2014-01-01

    Balanced control of neural progenitor maintenance and neuron production is crucial in establishing functional neural circuits during brain development, and abnormalities in this process are implicated in many neurological diseases. However, the regulatory mechanisms of neural progenitor homeostasis remain poorly understood. Here, we show that mammalian target of rapamycin (mTOR) is required for maintaining neural progenitor pools and plays a key role in mediating glycogen synthase kinase 3 (GSK3) signaling during brain development. First, we generated and characterized conditional mutant mice exhibiting deletion of mTOR in neural progenitors and neurons in the developing brain using Nestin-cre and Nex-cre lines, respectively. The elimination of mTOR resulted in abnormal cell cycle progression of neural progenitors in the developing brain and thereby disruption of progenitor self-renewal. Accordingly, production of intermediate progenitors and postmitotic neurons were markedly suppressed. Next, we discovered that GSK3, a master regulator of neural progenitors, interacts with mTOR and controls its activity in cortical progenitors. Finally, we found that inactivation of mTOR activity suppresses the abnormal proliferation of neural progenitors induced by GSK3 deletion. Our findings reveal that the interaction between mTOR and GSK3 signaling plays an essential role in dynamic homeostasis of neural progenitors during brain development. PMID:25273085

  19. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells

    PubMed Central

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. DOI: http://dx.doi.org/10.7554/eLife.08413.001 PMID:26554899

  20. Cell fate control in the developing central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatmentsmore » of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.« less

  1. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hematopoietic progenitor cell deficiency in fetuses and children affected by Down's syndrome.

    PubMed

    Holmes, Denise K; Bates, Nicola; Murray, Mary; Ladusans, E J; Morabito, Antonino; Bolton-Maggs, Paula H B; Johnston, Tracey A; Walkenshaw, Steve; Wynn, Robert F; Bellantuono, Ilaria

    2006-12-01

    There is an increased risk of myeloid malignancy in individuals with Down's syndrome (DS), which is associated with a mutation in exon 2 of the transcription factor GATA-1. It is recognized that there is accelerated telomere shortening in blood cells of children with DS similar to that in conditions such as Fanconi anemia and dyskeratosis congenita. The latter conditions are associated with stem cell deficiency and clonal change, including acute myeloid leukemia. In this study we address the questions 1) whether the accelerated telomere shortening is associated with progenitor/stem cell deficiency in individuals with DS, predisposing to clonal change and 2) whether the occurrence of reduced numbers of stem/progenitor cells precede the incidence of mutations in exon 2 of GATA-1. Peripheral blood from fetuses (23-35 weeks gestation) and/or bone marrow from children affected by DS and age-matched hematologically healthy controls were analyzed for telomere length, content of stem/progenitor cells, and mutations in exon 2 of GATA-1. We found that hematopoietic stem/progenitor cell deficiency and telomere shortening occurs in individuals with DS in fetal life. Moreover, the presence of a low number of progenitor cells was not associated with mutations in exon 2 of GATA-1. We propose that stem cell deficiency may be a primary predisposing event to DS leukemia development.

  3. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT.

    PubMed

    Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan

    2016-04-05

    The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.

  4. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT

    PubMed Central

    Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan

    2016-01-01

    The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial–mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers. PMID:27006501

  5. Formation and regeneration of the urothelium.

    PubMed

    Yamany, Tammer; Van Batavia, Jason; Mendelsohn, Cathy

    2014-06-01

    This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.

  6. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.

    PubMed

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D Wade; Yang, Feng-Chun

    2017-06-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. Copyright© Ferrata Storti Foundation.

  7. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia

    PubMed Central

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun

    2017-01-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. PMID:28341737

  8. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Astrocyte-Secreted Factors Selectively Alter Neural Stem and Progenitor Cell Proliferation in the Fragile X Mouse

    PubMed Central

    Sourial, Mary; Doering, Laurie C.

    2016-01-01

    An increasing body of evidence indicates that astrocytes contribute to the governance and fine tuning of stem and progenitor cell production during brain development. The effect of astrocyte function in cell production in neurodevelopmental disorders is unknown. We used the Neural Colony Forming Cell assay to determine the effect of astrocyte conditioned media (ACM) on the generation of neurospheres originating from either progenitor cells or functional stem cells in the knock out (KO) Fragile X mouse model. ACM from both normal and Fmr1-KO mice generated higher percentages of smaller neurospheres indicative of restricted proliferation of the progenitor cell population in Fmr1-KO brains. Wild type (WT) neurospheres, but not KO neurospheres, showed enhanced responses to ACM from the Fmr1-KO mice. In particular, Fmr1-KO ACM increased the percentage of large neurospheres generated, representative of spheres produced from neural stem cells. We also used 2D DIGE to initiate identification of the astrocyte-secreted proteins with differential expression between Fmr1-KO and WT cortices and hippocampi. The results further support the critical role of astrocytes in governing neural cell production in brain development and point to significant alterations in neural cell proliferation due to astrocyte secreted factors from the Fragile X brain. Highlights: • We studied the proliferation of neural stem and progenitor cells in Fragile X. • We examined the role of astrocyte-secreted factors in neural precursor cell biology. • Astrocyte-secreted factors with differential expression in Fragile X identified. PMID:27242437

  10. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  11. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    PubMed

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  12. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    PubMed

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural stem cells or progenitor diversity and population sizes in physiological or experimental paradigms.

  13. Epigenome profiling and editing of neocortical progenitor cells during development.

    PubMed

    Albert, Mareike; Kalebic, Nereo; Florio, Marta; Lakshmanaperumal, Naharajan; Haffner, Christiane; Brandl, Holger; Henry, Ian; Huttner, Wieland B

    2017-09-01

    The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo , which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development. © 2017 The Authors.

  14. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex.

    PubMed

    Hill, Matthew J; Killick, Richard; Navarrete, Katherinne; Maruszak, Aleksandra; McLaughlin, Gemma M; Williams, Brenda P; Bray, Nicholas J

    2017-05-01

    Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.

  15. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    PubMed

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

    PubMed Central

    Jiang, Ming; Ku, Wei-Yao; Zhou, Zhongren; Dellon, Evan S.; Falk, Gary W.; Nakagawa, Hiroshi; Wang, Mei-Lun; Liu, Kuancan; Wang, Jun; Katzka, David A.; Peters, Jeffrey H.; Lan, Xiaopeng; Que, Jianwen

    2015-01-01

    Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE. PMID:25774506

  17. Characterizing PCDH19 in human induced pluripotent stem cells (iPSCs) and iPSC-derived developing neurons: emerging role of a protein involved in controlling polarity during neurogenesis

    PubMed Central

    Compagnucci, Claudia; Petrini, Stefania; Higuraschi, Norimichi; Trivisano, Marina; Specchio, Nicola; Hirose, Shinichi; Bertini, Enrico; Terracciano, Alessandra

    2015-01-01

    PCDH19 (Protocadherin 19), a member of the cadherin superfamily, is involved in the pathogenic mechanism of an X-linked model of neurological disease. The biological function of PCHD19 in human neurons and during neurogenesis is currently unknown. Therefore, we decided to use the model of the induced pluripotent stem cells (iPSCs) to characterize the location and timing of expression of PCDH19 during cortical neuronal differentiation. Our data show that PCDH19 is expressed in pluripotent cells before differentiation in a homogeneous pattern, despite its localization is often limited to one pole of the cell. During neuronal differentiation, positional information on the progenitor cells assumes an important role in acquiring polarization. The proper control of the cell orientation ensures a fine balancing between symmetric (giving rise to two progenitor sister cells) versus asymmetric (giving rise to one progenitor cell and one newborn neuron) division. This process results in the polar organization of the neural tube with a lumen indicating the basal part of the polarized neuronal progenitor cell; in the iPSC model the cells are organized in the ‘neural rosette’ and interestingly, PCDH19 is located at the center of the rosette, with other well-known markers of the lumen (N-cadherin and ZO-1). These data suggest that PCDH19 has a role in instructing the apico-basal polarity of the progenitor cells, thus regulating the development of a properly organized human brain. PMID:26450854

  18. Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver.

    PubMed

    Suzuki, A; Zheng, Y; Kondo, R; Kusakabe, M; Takada, Y; Fukao, K; Nakauchi, H; Taniguchi, H

    2000-12-01

    Stem cells responsible for tissue maintenance and repair are found in a number of organs. However, hepatic stem cells assumed to play a key role in liver development and regeneration remain to be well characterized. To address this issue, we set up a culture system in which primitive hepatic progenitor cells formed colonies. By combining this culture system with fluorescence-activated cell sorting (FACS), cells forming colonies containing distinct hepatocytes and cholangiocytes were identified in the fetal mouse liver. These cells express both CD49f and CD29 (alpha6 and beta1 integrin subunits), but do not mark for hematopoietic antigens such as CD45, TER119, and c-Kit. When transplanted into the spleen, these cells migrated to the recipient liver and differentiated into liver parenchymal cells. Our data demonstrate that hepatic progenitor cells are enriched by FACS and suggest approaches to supplanting organ allografting and improving artificial-organ hepatic support.

  19. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes

    PubMed Central

    Zhao, Xiangshan; Malhotra, Gautam K.; Band, Hamid; Band, Vimla

    2011-01-01

    Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers. PMID:22279424

  20. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes.

    PubMed

    Zhao, Xiangshan; Malhotra, Gautam K; Band, Hamid; Band, Vimla

    2011-01-01

    Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.

  1. Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus

    PubMed Central

    Kelava, Iva; Reillo, Isabel; Murayama, Ayako Y.; Kalinka, Alex T.; Stenzel, Denise; Tomancak, Pavel; Matsuzaki, Fumio; Lebrand, Cécile; Sasaki, Erika; Schwamborn, Jens C.; Okano, Hideyuki; Borrell, Víctor

    2012-01-01

    Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type. PMID:22114084

  2. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    PubMed

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  3. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures

    PubMed Central

    Davari, Maliheh; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Purpose Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. Methods RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2–7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid–binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Results Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum–treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. Conclusions This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases. PMID:24265548

  4. Noninvasive Imaging of Administered Progenitor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R Bergmann, M.D., Ph.D.

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusionmore » and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90-99% pure population of leukocytes. Viability was assessed using Trypan blue histological analysis. We successfully isolated and labeled ~25-30 x 10{sup 7} CD34+ lymphocytes in cytokine mobilized progenitor cell apharesis harvests. Cells were also subjected to a stat gram stain to look for bacterial contamination, stat endotoxin LAL to look for endotoxin contamination, flow cytometry for evaluation of the purity of the cells and 14-day sterility culture. Colony forming assays confirm the capacity of these cells to proliferate and function ex-vivo with CFU-GM values of 26 colonies/ 1 x 10{sup 4} cells plated and 97% viability in cytokine augmented methylcellulose at 10-14 days in CO{sub 2} incubation. We developed a closed-processing system for the product labeling prior to infusion to maintain autologous cell integrity and sterility. Release criteria for the labeled product were documented for viability, cell count and differential, and measured radiolabel. We were successful in labeling the cells with up to 500 uCi/10{sup 8} cells, with viability of >98%. However, due to delays in getting the protocol approved by the FDA, the cells were not infused in humans in this location (although we did successfully use CD34+ cells in humans in a study in Australia). The approach developed should permit labeling of progenitor cells that can be administered to human subjects for tracking. The labeling approach should be useful for all progenitor cell types, although this would need to be verified since different cell lines may have differential radiosensitivity.« less

  5. The PI3K Pathway Balances Self-Renewal and Differentiation of Nephron Progenitor Cells through β-Catenin Signaling

    PubMed Central

    Lindström, Nils Olof; Carragher, Neil Oliver; Hohenstein, Peter

    2015-01-01

    Summary Nephron progenitor cells differentiate to form nephrons during embryonic kidney development. In contrast, self-renewal maintains progenitor numbers and premature depletion leads to impaired kidney function. Here we analyze the PI3K pathway as a point of convergence for the multiple pathways that are known to control self-renewal in the kidney. We demonstrate that a reduction in PI3K signaling triggers premature differentiation of the progenitors and activates a differentiation program that precedes the mesenchymal-to-epithelial transition through ectopic activation of the β-catenin pathway. Therefore, the combined output of PI3K and other pathways fine-tunes the balance between self-renewal and differentiation in nephron progenitors. PMID:25754203

  6. Preclinical development of a bridging therapy for radiation casualties: appropriate for high risk personnel.

    PubMed

    Singh, Vijay K; Wise, Stephen Y; Fatanmi, Oluseyi O; Beattie, Lindsay A; Seed, Thomas M

    2014-06-01

    The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised individuals exposed to acute, high-dose ionizing irradiation to recover and to survive. CD2F1 mice were irradiated acutely with high doses causing severe, potentially fatal hematopoietic or gastrointestinal injuries and then transfused intravenously with progenitor-enriched, whole blood, or peripheral blood mononuclear cells from mice injected with tocopherol succinate- and AMD3100- (a chemokine receptor anatogonist used to improve the yield of mobilized progenitors). Survival of these mice over a 30-d period was used as the primary measured endpoint of therapeutic effectiveness. The authors demonstrate that tocopherol succinate and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor enriched blood or mononuclear cells acts as a bridging therapy for lymphohematopoietic system recovery in mice exposed to whole-body ionizing irradiation. The results demonstrate that infusion of whole blood or blood mononuclear cells from tocopherol succinate (TS)- and AMD3100-injected mice improved the survival of mice receiving high radiation doses significantly. The efficacy of TS-injected donor mice blood or mononuclear cells was comparable to that of blood or cells obtained from mice injected with granulocyte colony-stimulating factor. Donor origin-mobilized progenitors were found to localize in various tissues. The authors suggest that tocopherol succinate is an optimal agent for mobilizing progenitors with significant therapeutic potential. The extent of progenitor mobilization that tocopherol succinate elicits in experimental mice is comparable quantitatively to clinically used drugs such as granulocyte-colony stimulating factor and AMD3100. Therefore, it is proposed that tocopherol succinate be considered for further translational development and ultimately for use in humans.

  7. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  8. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.

    PubMed

    Song, Dongzhe; Zhang, Fugui; Reid, Russell R; Ye, Jixing; Wei, Qiang; Liao, Junyi; Zou, Yulong; Fan, Jiaming; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Li, Li; Yu, Yichun; Yu, Xinyi; Zhang, Zhicai; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Wang, Jia; Lee, Michael J; Wolf, Jennifer Moriatis; Huang, Dingming; He, Tong-Chuan

    2017-11-01

    The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Differential Regulation of Mouse B Cell Development by Transforming Growth Factor β1

    PubMed Central

    Kaminski, Denise A.; Letterio, John J.; Burrows, Peter D.

    2002-01-01

    Transforming growth factor β (TGFβ) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/- mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation. PMID:12739785

  10. The "Yin" and "Yang" of Cell Cycle Progression and Differentiation in the Oligodendroglial Lineage

    ERIC Educational Resources Information Center

    Nguyen, Laurent; Borgs, Laurence; Vandenbosch, Renaud; Mangin, Jean-Marie; Beukelaers, Pierre; Moonen, Gustave; Gallo, Vittorio; Malgrange, Brigitte; Belachew, Shibeshih

    2006-01-01

    In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white…

  11. Evidence of In Vitro Preservation of Human Nephrogenesis at the Single-Cell Level.

    PubMed

    Pode-Shakked, Naomi; Gershon, Rotem; Tam, Gal; Omer, Dorit; Gnatek, Yehudit; Kanter, Itamar; Oriel, Sarit; Katz, Guy; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin

    2017-07-11

    During nephrogenesis, stem/progenitor cells differentiate and give rise to early nephron structures that segment to proximal and distal nephron cell types. Previously, we prospectively isolated progenitors from human fetal kidney (hFK) utilizing a combination of surface markers. However, upon culture nephron progenitors differentiated and could not be robustly maintained in vitro. Here, by culturing hFK in a modified medium used for in vitro growth of mouse nephron progenitors, and by dissection of NCAM + /CD133 - progenitor cells according to EpCAM expression (NCAM + /CD133 - /EpCAM - , NCAM + /CD133 - /EpCAM dim , NCAM + /CD133 - /EpCAM bright ), we show at single-cell resolution a preservation of uninduced and induced cap mesenchyme as well as a transitioning mesenchymal-epithelial state. Concomitantly, differentiating and differentiated epithelial lineages are also maintained. In vitro expansion of discrete stages of early human nephrogenesis in nephron stem cell cultures may be used for drug screening on a full repertoire of developing kidney cells and for prospective isolation of mesenchymal or epithelial renal lineages for regenerative medicine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages

    PubMed Central

    Laugwitz, Karl-Ludwig; Moretti, Alessandra; Lam, Jason; Gruber, Peter; Chen, Yinhong; Woodard, Sarah; Lin, Li-Zhu; Cai, Chen-Leng; Lu, Min Min; Reth, Michael; Platoshyn, Oleksandr; Yuan, Jason X.-J.; Evans, Sylvia; Chien, Kenneth R.

    2017-01-01

    The purification, renewal and differentiation of native cardiac progenitors would form a mechanistic underpinning for unravelling steps for cardiac cell lineage formation, and their links to forms of congenital and adult cardiac diseases1–3. Until now there has been little evidence for native cardiac precursor cells in the postnatal heart4. Herein, we report the identification of isl1+ cardiac progenitors in postnatal rat, mouse and human myocardium. A cardiac mesenchymal feeder layer allows renewal of the isolated progenitor cells with maintenance of their capability to adopt a fully differentiated cardiomyocyte phenotype. Tamoxifen-inducible Cre/lox technology enables selective marking of this progenitor cell population including its progeny, at a defined time, and purification to relative homogeneity. Co-culture studies with neonatal myocytes indicate that isl1+ cells represent authentic, endogenous cardiac progenitors (cardioblasts) that display highly efficient conversion to a mature cardiac phenotype with stable expression of myocytic markers (25%) in the absence of cell fusion, intact Ca2+-cycling, and the generation of action potentials. The discovery of native cardioblasts represents a genetically based system to identify steps in cardiac cell lineage formation and maturation in development and disease. PMID:15703750

  13. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.

    PubMed

    Zhang, Yalin; Kim, Min Soo; Jia, Baosen; Yan, Jingqi; Zuniga-Hertz, Juan Pablo; Han, Cheng; Cai, Dongsheng

    2017-08-03

    It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan. Conversely, ageing retardation and lifespan extension were achieved in mid-aged mice that were locally implanted with healthy hypothalamic stem/progenitor cells that had been genetically engineered to survive in the ageing-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells contributed greatly to exosomal microRNAs (miRNAs) in the cerebrospinal fluid, and these exosomal miRNAs declined during ageing, whereas central treatment with healthy hypothalamic stem/progenitor cell-secreted exosomes led to the slowing of ageing. In conclusion, ageing speed is substantially controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs.

  14. Retinoid signaling in progenitors controls specification and regeneration of the urothelium.

    PubMed

    Gandhi, Devangini; Molotkov, Andrei; Batourina, Ekatherina; Schneider, Kerry; Dan, Hanbin; Reiley, Maia; Laufer, Ed; Metzger, Daniel; Liang, Fengxia; Liao, Yi; Sun, Tung-Tien; Aronow, Bruce; Rosen, Roni; Mauney, Josh; Adam, Rosalyn; Rosselot, Carolina; Van Batavia, Jason; McMahon, Andrew; McMahon, Jill; Guo, Jin-Jin; Mendelsohn, Cathy

    2013-09-16

    The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Rat Stem-Cell Factor Induces Splenocytes Capable Of Regenerating The Thymus

    PubMed Central

    Migita, Russell T.; Trebasky, Lisa D.; Housman, Jerry M.; Elliott, Gary S.; Hendren, R. Wayne; Deprince, Randolph B.; Greiner, Dale L.

    1992-01-01

    Cytokine regulation of prethymic T-lymphoid progenitor-cell proliferation and/or differentiation has not been well-defined, although much is known of cytokine regulation of hemopoietic stem- and progenitor-cell development. Here we use a recently identified hemopoietic growth factor, stem-cell factor (SCF) (a form of the c-kit ligand), and a transplant model of thymocyte regeneration to assess the effect of SCF on the in vivo generation of prethymic, thymocyte progenitor-cell activity. We show that recombinant rat SCF (rrSCF164 administered to weanling rats selectively induces an increase in thymocyte progenitor activity in the spleens of treated rats as compared to rats treated with vehicle, polyethylene glycol (PEG)-conjugated rat albumin, or recombinant human granulocyte colony-stimulating factor (rhG-CSF). These data demonstrate that administration of SCF in vivo affects extrathymic-origin thymocyte regenerating cells and may influence, directly or indirectly, early prethymic stages of T-cell lymphopoiesis in addition to its known effect on early stages of myelopoiesis and erythropoiesis. PMID:1285280

  16. A new subtype of progenitor cell in the mouse embryonic neocortex

    PubMed Central

    Wang, Xiaoqun; Tsai, Jin-Wu; LaMonica, Bridget; Kriegstein, Arnold R.

    2011-01-01

    A hallmark of mammalian brain evolution is cortical expansion, which reflects an increase in the number of cortical neurons established by the progenitor cell subtypes present and the number of their neurogenic divisions. Recent studies have revealed a new class of radial glia-like (oRG) progenitor cells in the human brain, which reside in the outer subventricular zone. Expansion of the subventricular zone and appearance of oRG cells may have been essential evolutionary steps leading from lissencephalic to gyrencephalic neocortex. Here we show that oRG-like progenitor cells are present in the mouse embryonic neocortex. They arise from asymmetric divisions of radial glia and undergo self-renewing asymmetric divisions to generate neurons. Moreover, mouse oRG cells undergo mitotic somal translocation whereby centrosome movement into the basal process during interphase preceeds nuclear translocation. Our finding of oRG cells in the developing rodent brain fills a gap in our understanding of neocortical expansion. PMID:21478886

  17. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers

    PubMed Central

    2013-01-01

    Background Accumulating evidence supports cancer to initiate and develop from a small population of stem-like cells termed as cancer stem cells (CSC). The exact phenotype of CSC and their counterparts in normal mammary gland is not well characterized. In this study our aim was to evaluate the phenotype and function of stem/progenitor cells in normal mammary epithelial cell populations and their malignant counterparts. Methods Freshly isolated cells from both normal and malignant human breasts were sorted using 13 widely used stem/progenitor cell markers individually or in combination by multi-parametric (up to 9 colors) cell sorting. The sorted populations were functionally evaluated by their ability to form colonies and mammospheres, in vitro. Results We have compared, for the first time, the stem/progenitor markers of normal and malignant breasts side-by-side. Amongst all markers tested, we found CD44high/CD24low cell surface marker combination to be the most efficient at selecting normal epithelial progenitors. Further fractionation of CD44high/CD24low positive cells showed that this phenotype selects for luminal progenitors within Ep-CAMhigh/CD49f + cells, and enriches for basal progenitors within Ep-CAM-/low/CD49f + cells. On the other hand, primary breast cancer samples, which were mainly luminal Ep-CAMhigh, had CD44high/CD24low cells among both CD49fneg and CD49f + cancer cell fractions. However, functionally, CSC were predominantly CD49f + proposing the use of CD44high/CD24low in combination with Ep-CAM/CD49f cell surface markers to further enrich for CSC. Conclusion Our study clearly demonstrates that both normal and malignant breast cells with the CD44high/CD24low phenotype have the highest stem/progenitor cell ability when used in combination with Ep-CAM/CD49f reference markers. We believe that this extensive characterization study will help in understanding breast cancer carcinogenesis, heterogeneity and drug resistance. PMID:23768049

  18. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector

    PubMed Central

    2013-01-01

    Introduction The development of an appropriate procedure for lentiviral gene transduction into keratinocyte stem cells is crucial for stem cell biology and regenerative medicine for genetic disorders of the skin. However, there is little information available on the efficiency of lentiviral transduction into human keratinocyte stem/progenitor cells and the effects of gene transduction procedures on growth potential of the stem cells by systematic assessment. Methods In this study, we explored the conditions for efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with a lentiviral vector, by using the culture of keratinocytes on a feeder layer of 3 T3 mouse fibroblasts. The gene transduction and expansion of keratinocytes carrying a transgene were analyzed by Western blotting, quantitative PCR, and flow cytometry. Results Polybrene (hexadiamine bromide) markedly enhanced the efficiency of lentiviral gene transduction, but negatively affected the maintenance of the keratinocyte stem/progenitor cells at a concentration higher than 5 μg/ml. Rho-assiciated kinase (ROCK) inhibitor Y-27632, a small molecule which enhanced keratinocyte proliferation, significantly interfered with the lentiviral transduction into cultured human keratinocytes. However, a suitable combination of polybrene and Y-27632 effectively expanded keratinocytes carrying a transgene. Conclusions This study provides information for effective expansion of cultured human keratinocyte stem/progenitor cells carrying a transgene. This point is particularly significant for the application of genetically modified keratinocyte stem/progenitor stem cells in regenerative medicine. PMID:24406242

  19. Improving Soldier Recovery from Catastrophic Bone Injuries: Developing an Animal Model for Standardizing the Bone Reparative Potential of Emerging Progenitor Cell Therapies

    DTIC Science & Technology

    2011-08-01

    phase hydrogel or nanofiber mesh structures as a weight bearing scaffold for skeletal repair. This biocompatibility of this design will be first... delivery . If BMP is delivered into a site that is being filled with SMAA+ progenitors, it may hault the further inward migration by inducing...differentiation of the front wave of progenitor cells. This would predict that a shell of bone would be observed surrounding the delivery vehicle, but

  20. Reduced survival in patients with early-stage non-small-cell lung cancer is associated with high pleural endothelial progenitor cell levels.

    PubMed

    Pirro, Matteo; Cagini, Lucio; Mannarino, Massimo R; Andolfi, Marco; Potenza, Rossella; Paciullo, Francesco; Bianconi, Vanessa; Frangione, Maria Rosaria; Bagaglia, Francesco; Puma, Francesco; Mannarino, Elmo

    2016-12-01

    Endothelial progenitor cells are capable of contributing to neovascularization in tumours. In patients with either malignant or transudative pleural effusion, we tested the presence of pleural endothelial progenitor cells. We also measured the number of endothelial progenitor cells in post-surgery pleural drainage of either patients with early non-small-cell lung cancer or control patients with benign lung disease undergoing pulmonary resection. The prospective influence of post-surgery pleural-drainage endothelial progenitor cells on cancer recurrence/survival was investigated. Pleural endothelial progenitor cell levels were quantified by fluorescence-activated cell sorting analysis in pleural effusion of 15 patients with late-stage non-small-cell lung cancer with pleural involvement and in 15 control patients with congestive heart failure. Also, pleural-drainage endothelial progenitor cells were measured in pleural-drainage fluid 48 h after surgery in 64 patients with early-stage non-small-cell lung cancer and 20 benign lung disease patients undergoing pulmonary resection. Cancer recurrence and survival was evaluated in patients with high pleural-drainage endothelial progenitor cell levels. The number of pleural endothelial progenitor cells was higher in non-small-cell lung cancer pleural effusion than in transudative pleural effusion. Also, pleural-drainage endothelial progenitor cell levels were higher in patients with non-small-cell lung cancer than in patients with benign lung disease undergoing pulmonary resection (P < 0.05). Non-small-cell lung cancer patients with high pleural-drainage endothelial progenitor cell levels had a significantly 4.9 higher rate of cancer recurrence/death than patients with lower pleural-drainage endothelial progenitor cell levels, irrespective of confounders. Endothelial progenitor cells are present in the pleural effusion and are higher in patients with late-stage non-small-cell lung cancer with pleural involvement than in congestive heart failure patients. Endothelial progenitor cell levels are higher in the post-surgery pleural drainage of patients with non-small-cell lung cancer than in non-neoplastic pleural-drainage fluid. High pleural-drainage endothelial progenitor cell levels in patients undergoing pulmonary resection for early non-small-cell lung cancer predict an increased risk of cancer recurrence and death. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Regulation of mononuclear phagocyte development by IRF8.

    PubMed

    Tamura, Tomohiko

    2017-01-01

    Mononuclear phagocytes, such as monocytes and dendritic cells (DCs), are essential for tissue homeostasis and immunity. In adults, these cells develop from hematopoietic stem cells via a common progenitor population. We have been investigating the mechanism underlying the development of mononuclear phagocytes from the viewpoint of gene expression control by transcription factors. Particularly, IRF8, the loss of which causes immunodeficiency and chronic myeloid leukemia-like neutrophilia in mice and humans, promotes the development of monocytes and DCs, while it limits neutrophil differentiation. IRF8 cooperates with the myeloid master transcription factor, PU.1, in mononuclear phagocyte progenitors. KLF4 and BATF3 serve as critical transcription factors downstream of IRF8 to induce the differentiation of monocytes and DCs, respectively. Conversely, IRF8 blocks the activity of the transcription factor C/EBPα to suppress the neutrophil differentiation program. Indeed, Irf8 -/- mononuclear phagocyte progenitors do not efficiently generate monocytes and DCs and, instead, aberrantly give rise to a large number of neutrophils. Our recent data have begun to uncover the vital role of IRF8 in the establishment of distal enhancers in mononuclear phagocyte progenitors. These results place IRF8 as a central regulator of the development of monocytes and DCs.

  2. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  3. Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors.

    PubMed Central

    Migita, M; Medin, J A; Pawliuk, R; Jacobson, S; Nagle, J W; Anderson, S; Amiri, M; Humphries, R K; Karlsson, S

    1995-01-01

    The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected. Images Fig. 2 Fig. 3 PMID:8618847

  4. A Population of Progenitor Cells in the Basal and Intermediate Layers of the Murine Bladder Urothelium Contributes to Urothelial Development and Regeneration

    PubMed Central

    Colopy, Sara A.; Bjorling, Dale E.; Mulligan, William A.; Bushman, Wade

    2014-01-01

    Background Homeostatic maintenance and repair of the bladder urothelium has been attributed to proliferation of keratin 5-expressing basal cells (K5-BC) with subsequent differentiation into superficial cells. Recent evidence, however, suggests that the intermediate cell layer harbors a population of progenitor cells. We use label-retaining cell (LRC) methodology in conjunction with a clinically relevant model of uropathogenic Escherichia coli (UPEC)-induced injury to characterize urothelial ontogeny during development and in response to diffuse urothelial injury. Results In the developing urothelium, proliferating cells were dispersed throughout the K5-BC and intermediate cells layers, becoming progressively concentrated in the K5-BC layer with age. When 5-bromo-2-deoxyuridine (BrdU) was administered during urothelial development, LRCs in the adult were found within the K5-BC, intermediate, and superficial cell layers, the location dependent upon time of labeling. UPEC inoculation resulted in loss of the superficial cell layer followed by robust proliferation of K5-BCs and intermediate cells. LRCs within the K5-BC and intermediate cell layers proliferated in response to injury. Conclusions Urothelial development and regeneration following injury relies on proliferation of K5-BC and intermediate cells. The existence and proliferation of LRCs within both the K5-BC and intermediate cell layers suggests the presence of two populations of urothelial progenitor cells. PMID:24796293

  5. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells.

    PubMed

    Du, Zhong-Wei; Chen, Hong; Liu, Huisheng; Lu, Jianfeng; Qian, Kun; Huang, CindyTzu-Ling; Zhong, Xiaofen; Fan, Frank; Zhang, Su-Chun

    2015-03-25

    Human pluripotent stem cells (hPSCs) have opened new opportunities for understanding human development, modelling disease processes and developing new therapeutics. However, these applications are hindered by the low efficiency and heterogeneity of cell types, such as motorneurons (MNs), differentiated from hPSCs as well as our inability to maintain the potency of lineage-committed progenitors. Here by using a combination of small molecules that regulate multiple signalling pathways, we develop a method to guide human embryonic stem cells to a near-pure population (>95%) of motor neuron progenitors (MNPs) in 12 days, and an enriched population (>90%) of functionally mature MNs in an additional 16 days. More importantly, the MNPs can be expanded for at least five passages so that a single MNP can be amplified to 1 × 10(4). This method is reproducible in human-induced pluripotent stem cells and is applied to model MN-degenerative diseases and in proof-of-principle drug-screening assays.

  6. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.

    PubMed

    Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan

    2018-01-01

    Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.

  7. VEGF is a chemoattractant for FGF-2–stimulated neural progenitors

    PubMed Central

    Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.

    2003-01-01

    Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144

  8. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors

    PubMed Central

    Mori, Munemasa; Mahoney, John E.; Stupnikov, Maria R.; Paez-Cortez, Jesus R.; Szymaniak, Aleksander D.; Varelas, Xaralabos; Herrick, Dan B.; Schwob, James; Zhang, Hong; Cardoso, Wellington V.

    2015-01-01

    Basal cells are multipotent airway progenitors that generate distinct epithelial cell phenotypes crucial for homeostasis and repair of the conducting airways. Little is known about how these progenitor cells expand and transition to differentiation to form the pseudostratified airway epithelium in the developing and adult lung. Here, we show by genetic and pharmacological approaches that endogenous activation of Notch3 signaling selectively controls the pool of undifferentiated progenitors of upper airways available for differentiation. This mechanism depends on the availability of Jag1 and Jag2, and is key to generating a population of parabasal cells that later activates Notch1 and Notch2 for secretory-multiciliated cell fate selection. Disruption of this mechanism resulted in aberrant expansion of basal cells and altered pseudostratification. Analysis of human lungs showing similar abnormalities and decreased NOTCH3 expression in subjects with chronic obstructive pulmonary disease suggests an involvement of NOTCH3-dependent events in the pathogenesis of this condition. PMID:25564622

  9. Detection of abnormal extracellular matrix in the interstitium of regenerating renal tubules.

    PubMed

    Minuth, Will W; Denk, Lucia

    2014-12-15

    Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progenitor cells were mounted in a polyester interstitium for perfusion culture. During generation of tubules, chemically defined CO2 Independent Medium or Leibovitz's L-15 Medium was applied. Specimens were then fixed for transmission electron microscopy to analyze morphological features in generated tubules. Fixation in conventional glutaraldehyde (GA) solution shows development of tubules each exhibiting a polarized epithelium, an intact basal lamina and an inconspicuous interstitium. In contrast, special fixation of specimens in GA solution containing cupromeronic blue, ruthenium red or tannic acid unveils previously not visible extracellular matrix. Control experiments elucidate that a comparable extracellular matrix is not present in the interstitium of the matured kidney. Thus, generation of renal tubules in combination with advanced fixation of specimens for electron microscopy demonstrates that development of abnormal features in the newly developed interstitium has to be considered, when repair of renal parenchyma is performed by implantation of stem/progenitor cells.

  10. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  11. Identification and isolation of adult liver stem/progenitor cells.

    PubMed

    Tanaka, Minoru; Miyajima, Atsushi

    2012-01-01

    Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.

  12. Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters.

    PubMed

    Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro

    2018-04-02

    In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.

  13. Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    PubMed Central

    Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi

    2011-01-01

    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376

  14. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells

    PubMed Central

    Alhaider, Ibrahim A.; Mohamed, Maged E.; Ahmed, K. K. M.; Kumar, Arun H. S.

    2017-01-01

    Context: Date palms, along with their fruits’ dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury. PMID:28928656

  15. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells.

    PubMed

    Alhaider, Ibrahim A; Mohamed, Maged E; Ahmed, K K M; Kumar, Arun H S

    2017-01-01

    Context: Date palms, along with their fruits' dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury.

  16. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood–derived hematopoietic progenitor cells

    PubMed Central

    Martin, Colin H.; Woll, Petter S.; Ni, Zhenya; Zúñiga-Pflücker, Juan Carlos

    2008-01-01

    Hematopoietic progenitor cells derived from human embryonic stem cells (hESCs) develop into diverse mature hematopoietic lineages, including lymphocytes. Whereas functional natural killer (NK) cells can be efficiently generated in vitro from hESC-derived CD34+ cells, studies of T- and B-cell development from hESCs have been much more limited. Here, we demonstrate that despite expressing functional Notch-1, CD34+ cells from hESCs did not derive T cells when cocultured with OP9 cells expressing Delta-like 1, or in fetal thymus organ culture. hESC-derived CD34+ cells also did not produce B cells in vitro. In contrast, CD34+ cells isolated from UCB routinely generated T and B cells when cultured in the same conditions. Notably, both undifferentiated hESCs, and sorted hESC-derived populations with hematopoietic developmental potential exhibited constitutive expression of ID family genes and of transcriptional targets of stem cell factor–induced signaling. These pathways both inhibit T-cell development and promote NK-cell development. Together, these results demonstrate fundamental differences between hESC-derived hematopoietic progenitors and analogous primary human cells. Therefore, hESCs can be more readily supported to differentiate into certain cell types than others, findings that have important implications for derivation of defined lineage-committed populations from hESCs. PMID:18621931

  17. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells.

    PubMed

    Martin, Colin H; Woll, Petter S; Ni, Zhenya; Zúñiga-Pflücker, Juan Carlos; Kaufman, Dan S

    2008-10-01

    Hematopoietic progenitor cells derived from human embryonic stem cells (hESCs) develop into diverse mature hematopoietic lineages, including lymphocytes. Whereas functional natural killer (NK) cells can be efficiently generated in vitro from hESC-derived CD34(+) cells, studies of T- and B-cell development from hESCs have been much more limited. Here, we demonstrate that despite expressing functional Notch-1, CD34(+) cells from hESCs did not derive T cells when cocultured with OP9 cells expressing Delta-like 1, or in fetal thymus organ culture. hESC-derived CD34(+) cells also did not produce B cells in vitro. In contrast, CD34(+) cells isolated from UCB routinely generated T and B cells when cultured in the same conditions. Notably, both undifferentiated hESCs, and sorted hESC-derived populations with hematopoietic developmental potential exhibited constitutive expression of ID family genes and of transcriptional targets of stem cell factor-induced signaling. These pathways both inhibit T-cell development and promote NK-cell development. Together, these results demonstrate fundamental differences between hESC-derived hematopoietic progenitors and analogous primary human cells. Therefore, hESCs can be more readily supported to differentiate into certain cell types than others, findings that have important implications for derivation of defined lineage-committed populations from hESCs.

  18. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    PubMed

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  19. Progenitor cell domains in the developing and adult pancreas

    PubMed Central

    Kopp, Janel L; Dubois, Claire L; Hao, Ergeng; Thorel, Fabrizio; Herrera, Pedro L

    2011-01-01

    Unlike organs with defined stem cell compartments, such as the intestine, the pancreas has limited capacity to regenerate. The question of whether the adult pancreas harbors facultative stem/progenitor cells has been a prime subject of debate. Cumulative evidence from recent genetic lineage tracing studies, in which specific cell populations were marked and traced in adult mice, suggests that endocrine and acinar cells are no longer generated from progenitors in the adult pancreas. These studies further indicate that adult pancreatic ductal cells are not a source for endocrine cells following pancreatic injury, as previously suggested. Our own studies have shown that adult ductal cells reinitiate expression of some endocrine progenitor markers, including Ngn3, after injury by partial duct ligation (PDL), but that these cells do not undergo endocrine cell differentiation. Here, we present additional evidence that endocrine cells do not arise from ducts following β-cell ablation by streptozotocin or by a diphtheria toxin-expressing transgene or when β-cell ablation is combined with PDL. In this review, we discuss findings from recent lineage tracing studies of embryonic and adult pancreatic ductal cells. Based upon the combined evidence from these studies, we propose that multipotency is associated with a specific transcriptional signature. PMID:21558806

  20. Functional Dicer Is Necessary for Appropriate Specification of Radial Glia during Early Development of Mouse Telencephalon

    PubMed Central

    Nowakowski, Tomasz Jan; Mysiak, Karolina Sandra; Pratt, Thomas; Price, David Jonathan

    2011-01-01

    Early telencephalic development involves transformation of neuroepithelial stem cells into radial glia, which are themselves neuronal progenitors, around the time when the tissue begins to generate postmitotic neurons. To achieve this transformation, radial precursors express a specific combination of proteins. We investigate the hypothesis that micro RNAs regulate the ability of the early telencephalic progenitors to establish radial glia. We ablate functional Dicer, which is required for the generation of mature micro RNAs, by conditionally mutating the Dicer1 gene in the early embryonic telencephalon and analyse the molecular specification of radial glia as well as their progeny, namely postmitotic neurons and basal progenitors. Conditional mutation of Dicer1 from the telencephalon at around embryonic day 8 does not prevent morphological development of radial glia, but their expression of Nestin, Sox9, and ErbB2 is abnormally low. The population of basal progenitors, which are generated by the radial glia, is disorganised and expanded in Dicer1-/- dorsal telencephalon. While the proportion of cells expressing markers of postmitotic neurons is unchanged, their laminar organisation in the telencephalic wall is disrupted suggesting a defect in radial glial guided migration. We found that the laminar disruption could not be accounted for by a reduction of the population of Cajal Retzius neurons. Together, our data suggest novel roles for micro RNAs during early development of progenitor cells in the embryonic telencephalon. PMID:21826226

  1. Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon.

    PubMed

    Nowakowski, Tomasz Jan; Mysiak, Karolina Sandra; Pratt, Thomas; Price, David Jonathan

    2011-01-01

    Early telencephalic development involves transformation of neuroepithelial stem cells into radial glia, which are themselves neuronal progenitors, around the time when the tissue begins to generate postmitotic neurons. To achieve this transformation, radial precursors express a specific combination of proteins. We investigate the hypothesis that micro RNAs regulate the ability of the early telencephalic progenitors to establish radial glia. We ablate functional Dicer, which is required for the generation of mature micro RNAs, by conditionally mutating the Dicer1 gene in the early embryonic telencephalon and analyse the molecular specification of radial glia as well as their progeny, namely postmitotic neurons and basal progenitors. Conditional mutation of Dicer1 from the telencephalon at around embryonic day 8 does not prevent morphological development of radial glia, but their expression of Nestin, Sox9, and ErbB2 is abnormally low. The population of basal progenitors, which are generated by the radial glia, is disorganised and expanded in Dicer1⁻/⁻ dorsal telencephalon. While the proportion of cells expressing markers of postmitotic neurons is unchanged, their laminar organisation in the telencephalic wall is disrupted suggesting a defect in radial glial guided migration. We found that the laminar disruption could not be accounted for by a reduction of the population of Cajal Retzius neurons. Together, our data suggest novel roles for micro RNAs during early development of progenitor cells in the embryonic telencephalon.

  2. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    PubMed

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  3. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis

    PubMed Central

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B.

    2009-01-01

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5–E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1–independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis. PMID:19416849

  4. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome.

    PubMed

    Achuta, Venkat Swaroop; Grym, Heli; Putkonen, Noora; Louhivuori, Verna; Kärkkäinen, Virve; Koistinaho, Jari; Roybon, Laurent; Castrén, Maija L

    2017-04-01

    Disrupted metabotropic glutamate receptor 5 (mGluR5) signaling is implicated in many neuropsychiatric disorders, including autism spectrum disorder, found in fragile X syndrome (FXS). Here we report that intracellular calcium responses to the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) are augmented, and calcium-dependent mGluR5-mediated mechanisms alter the differentiation of neural progenitors in neurospheres derived from human induced pluripotent FXS stem cells and the brains of mouse model of FXS. Treatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) prevents an abnormal clustering of DHPG-responsive cells that are responsive to activation of ionotropic receptors in mouse FXS neurospheres. MPEP also corrects morphological defects of differentiated cells and enhanced migration of neuron-like cells in mouse FXS neurospheres. Unlike in mouse neurospheres, MPEP increases the differentiation of DHPG-responsive radial glial cells as well as the subpopulation of cells responsive to both DHPG and activation of ionotropic receptors in human neurospheres. However, MPEP normalizes the FXS-specific increase in the differentiation of cells responsive only to N-methyl-d-aspartate (NMDA) present in human neurospheres. Exposure to MPEP prevents the accumulation of intermediate basal progenitors in embryonic FXS mouse brain suggesting that rescue effects of GluR5 antagonist are progenitor type-dependent and species-specific differences of basal progenitors may modify effects of MPEP on the cortical development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  5. Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice.

    PubMed

    Takeda, Hiroki; Hosoya, Makoto; Fujioka, Masato; Saegusa, Chika; Saeki, Tsubasa; Miwa, Toru; Okano, Hideyuki; Minoda, Ryosei

    2018-01-31

    There is, at present, no curative treatment for genetic hearing loss. We have previously reported that transuterine gene transfer of wild type CONNEXIN30 (CX30) genes into otocysts in CX30-deleted mice could restore hearing. Cell transplantation therapy might be another therapeutic option, although it is still unknown whether stem cell-derived progenitor cells could migrate into mouse otocysts. Here, we show successful cell transplantation of progenitors of outer sulcus cell-like cells derived from human-derived induced pluripotent stem cells into mouse otocysts on embryonic day 11.5. The delivered cells engrafted more frequently in the non-sensory region in the inner ear of CX30-deleted mice than in wild type mice and survived for up to 1 week after transplantation. Some of the engrafted cells expressed CX30 proteins in the non-sensory region. This is the first report that demonstrates successful engraftment of exogenous cells in prenatal developing otocysts in mice. Future studies using this mouse otocystic injection model in vivo will provide further clues for developing treatment modalities for congenital hearing loss in humans.

  6. β-Catenin Is Required for Hair-Cell Differentiation in the Cochlea

    PubMed Central

    Hu, Lingxiang; Jacques, Bonnie E.; Mulvaney, Joanna F.; Dabdoub, Alain

    2014-01-01

    The development of hair cells in the auditory system can be separated into steps; first, the establishment of progenitors for the sensory epithelium, and second, the differentiation of hair cells. Although the differentiation of hair cells is known to require the expression of basic helix-loop-helix transcription factor, Atoh1, the control of cell proliferation in the region of the developing cochlea that will ultimately become the sensory epithelium and the cues that initiate Atoh1 expression remain obscure. We assessed the role of Wnt/β-catenin in both steps in gain- and loss-of-function models in mice. The canonical Wnt pathway mediator, β-catenin, controls the expression of Atoh1. Knock-out of β-catenin inhibited hair-cell, as well as pillar-cell, differentiation from sensory progenitors but was not required to maintain a hair-cell fate once specified. Constitutive activation of β-catenin expanded sensory progenitors by inducing additional cell division and resulted in the differentiation of extra hair cells. Our data demonstrate that β-catenin plays a role in cell division and differentiation in the cochlear sensory epithelium. PMID:24806673

  7. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals.

    PubMed

    Bélanger, Marie-Claude; Robert, Benoit; Cayouette, Michel

    2017-01-23

    In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields

    PubMed Central

    Mandal, Amrita; Holowiecki, Andrew; Song, Yuntao Charlie; Waxman, Joshua S.

    2017-01-01

    Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos. PMID:28087459

  9. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    PubMed Central

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  10. In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles

    PubMed Central

    Bestman, Jennifer E.; Lee-Osbourne, Jane; Cline, Hollis T.

    2012-01-01

    We analyzed the function of neural progenitors in the developing CNS of Xenopus laevis tadpoles using in vivo time-lapse confocal microscopy to collect images through the tectum at intervals of 2 to 24 hours over 3 days. Neural progenitor cells were labeled with fluorescent protein reporters based on expression of endogenous Sox2 transcription factor. With this construct, we identified Sox2-expressing cells as radial glia and as a component of the progenitor pool of cells in the developing tectum that gives rise to neurons and other radial glia. Lineage analysis of individual radial glia and their progeny demonstrated that less than 10% of radial glia undergo symmetric divisions resulting in two radial glia, while the majority of radial glia divide asymmetrically to generate neurons and radial glia. Time-lapse imaging revealed the direct differentiation of radial glia into neurons. Although radial glia may guide axons as they navigate to superficial tectum, we find no evidence that radial glia function as a scaffold for neuronal migration at early stages of tectal development. Over three days, the number of labeled cells increased 20%, as the fraction of radial glia dropped and the proportion of neuronal progeny increased to approximately 60% of the labeled cells. Tadpoles provided with short-term visual enhancement generated significantly more neurons, with a corresponding decrease in cell proliferation. Together these results demonstrate that radial glial cells are neural progenitors in the developing optic tectum and reveal that visual experience increases the proportion of neurons generated in an intact animal. PMID:22113462

  11. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture.

    PubMed

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-06-23

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.

  12. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas.

    PubMed

    May, Randal; Sureban, Sripathi M; Lightfoot, Stan A; Hoskins, Aimee B; Brackett, Daniel J; Postier, Russell G; Ramanujam, Rama; Rao, Chinthalapally V; Wyche, James H; Anant, Shrikant; Houchen, Courtney W

    2010-08-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.

  13. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas

    PubMed Central

    May, Randal; Sureban, Sripathi M.; Lightfoot, Stan A.; Hoskins, Aimee B.; Brackett, Daniel J.; Postier, Russell G.; Ramanujam, Rama; Rao, Chinthalapally V.; Wyche, James H.; Anant, Shrikant

    2010-01-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer. PMID:20522640

  14. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d.

    PubMed

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna

    2017-10-02

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  15. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells.

    PubMed

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2017-05-01

    During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co-cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self-assembled on top of CC-laden agarose gels (structured co-culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co-culture). Porcine infrapatellar fat pad-derived stem cells (FPSCs) and bone marrow-derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co-culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co-culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co-culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co-culture for both MSC sources. In conclusion, assembling MSCs onto CC-laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter.

    PubMed

    Shinoda, Tomoyasu; Nagasaka, Arata; Inoue, Yasuhiro; Higuchi, Ryo; Minami, Yoshiaki; Kato, Kagayaki; Suzuki, Makoto; Kondo, Takefumi; Kawaue, Takumi; Saito, Kanako; Ueno, Naoto; Fukazawa, Yugo; Nagayama, Masaharu; Miura, Takashi; Adachi, Taiji; Miyata, Takaki

    2018-04-01

    Neural progenitor cells (NPCs), which are apicobasally elongated and densely packed in the developing brain, systematically move their nuclei/somata in a cell cycle-dependent manner, called interkinetic nuclear migration (IKNM): apical during G2 and basal during G1. Although intracellular molecular mechanisms of individual IKNM have been explored, how heterogeneous IKNMs are collectively coordinated is unknown. Our quantitative cell-biological and in silico analyses revealed that tissue elasticity mechanically assists an initial step of basalward IKNM. When the soma of an M-phase progenitor cell rounds up using actomyosin within the subapical space, a microzone within 10 μm from the surface, which is compressed and elastic because of the apical surface's contractility, laterally pushes the densely neighboring processes of non-M-phase cells. The pressed processes then recoil centripetally and basally to propel the nuclei/somata of the progenitor's daughter cells. Thus, indirect neighbor-assisted transfer of mechanical energy from mother to daughter helps efficient brain development.

  17. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    PubMed

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  18. Notch3 marks clonogenic mammary luminal progenitor cells in vivo

    PubMed Central

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis

    2013-01-01

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive “triple negative” human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2SAT transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells. PMID:24100291

  19. Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells.

    PubMed

    Benavente, Claudia A; Sierralta, Walter D; Conget, Paulette A; Minguell, José J

    2003-06-01

    Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.

  20. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells

    PubMed Central

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-01-01

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells. PMID:27806344

  1. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells.

    PubMed

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-12-06

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells.

  2. APLP2 regulates neuronal stem cell differentiation during cortical development.

    PubMed

    Shariati, S Ali M; Lau, Pierre; Hassan, Bassem A; Müller, Ulrike; Dotti, Carlos G; De Strooper, Bart; Gärtner, Annette

    2013-03-01

    Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.

  3. IL-7Rα and E47: independent pathways required for development of multipotent lymphoid progenitors

    PubMed Central

    Kee, Barbara L.; Bain, Gretchen; Murre, Cornelis

    2002-01-01

    Mice that lack the transcription factors encoded by the E2A gene or the receptor for interleukin 7 (IL-7R) have severe overlapping defects in lymphocyte development. Here, we show that E2A proteins are required for the survival of early T-lineage cells; however, they function through a pathway that is distinct from the survival pathway initiated by IL-7R signaling. While E2A proteins are required to suppress caspase 3 activation, ectopic expression of the anti-apoptotic protein Bcl-2 is not sufficient to overcome the lymphopoietic defects observed in the absence of E2A. Remarkably, mice that lack both IL-7Rα and E47 display a synergistic decrease in the number of T-cell, NK-cell and multipotent progenitors in the thymus, indicating that these distinct survival pathways converge to promote the development of multipotent lymphoid progenitors. PMID:11782430

  4. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2012-01-01

    Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27KIP1 and p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse. PMID:21396984

  5. Transcription factors in pancreatic development. Animal models.

    PubMed

    Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard

    2007-01-01

    Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.

  6. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors.

    PubMed

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe; Zhang, Chang Xian

    2015-10-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a(+) and neurogenin 3-expressing (Ngn3(+)) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors

    PubMed Central

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F.; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe

    2015-01-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a+ and neurogenin 3-expressing (Ngn3+) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors. PMID:26169832

  8. Progenitor Epithelium

    PubMed Central

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  9. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  10. In vitro analysis of age-related changes in the developmental potential of bone marrow thymocyte progenitors.

    PubMed

    Sharp, A; Kukulansky, T; Globerson, A

    1990-12-01

    Mechanisms underlying the age-related decrease in the developmental capacity of thymocyte progenitors from the bone marrow (BM) were analyzed, focussing on interaction of these cells with the thymic microenvironment. We employed the experimental model in which mixtures of young and old mouse BM cells, congenic for the Thy-1 marker, were seeded onto fetal thymus (FT) explains depleted of self lymphocytes and the levels of Thy-1+ cells developing from each of the two donor types were measured. When cells from young and old BM donors were seeded simultaneously, in saturating quantities, a higher level of T cells developed from the young donors. To find out whether there were originally more thymocyte progenitors in the young BM, we carried out the competitive colonization under limiting dilution conditions and found that the advantage of the young had diminished under these conditions, thus suggesting that the age-related changes could not be related solely to quantitative differences. We then incubated the FT sequentially with old donor cells for 24 h, followed by young for an additional 48 h and found that the advantage of the young progenitors was eliminated. We thus established that the initial stage of colonization of the FT was important in determining the outcome of the subsequent development. The kinetics of simultaneous competition within the FT, however, revealed that the advantage of the young BM-derived cells became significant only from day 7 in organ culture, thus suggesting that sequential divisions of these cells were at a higher level than those of the old. Recolonization of FT explants by young or old BM-derived thymocytes obtained from the first colonization of the FT stroma showed a reduced, but still significant advantage for the young BM-derived cells over the old. Thus, we concluded that the old BM thymocyte progenitors manifested a qualitative disadvantage which became apparent during competitive colonization of the FT.

  11. Poised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells.

    PubMed

    Iyengar, Sharanya; Kasheta, Melissa; Ceol, Craig J

    2015-06-22

    Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A lineage CLOUD for neoblasts.

    PubMed

    Tran, Thao Anh; Gentile, Luca

    2018-05-10

    In planarians, pluripotency can be studied in vivo in the adult animal, making these animals a unique model system where pluripotency-based regeneration (PBR)-and its therapeutic potential-can be investigated. This review focuses on recent findings to build a cloud model of fate restriction likelihood for planarian stem and progenitor cells. Recently, a computational approach based on functional and molecular profiling at the single cell level was proposed for human hematopoietic stem cells. Based on data generated both in vivo and ex vivo, we hypothesized that planarian stem cells could acquire multiple direction lineage biases, following a "badlands" landscape. Instead of a discrete tree-like hierarchy, where the potency of stem/progenitor cells reduces stepwise, we propose a Continuum of LOw-primed UnDifferentiated Planarian Stem/Progenitor Cells (CLOUD-PSPCs). Every subclass of neoblast/progenitor cells is a cloud of likelihood, as the single cell transcriptomics data indicate. The CLOUD-HSPCs concept was substantiated by in vitro data from cell culture; therefore, to confirm the CLOUD-PSPCs model, the planarian community needs to develop new tools, like live cell tracking. Future studies will allow a deeper understanding of PBR in planarian, and the possible implications for regenerative therapies in human. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.

    PubMed

    Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu

    2009-07-01

    Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.

  14. Separation of plasmacytoid dendritic cells from B-cell-biased lymphoid progenitor (BLP) and Pre-pro B cells using PDCA-1.

    PubMed

    Medina, Kay L; Tangen, Sarah N; Seaburg, Lauren M; Thapa, Puspa; Gwin, Kimberly A; Shapiro, Virginia Smith

    2013-01-01

    B-cell-biased lymphoid progenitors (BLPs) and Pre-pro B cells lie at a critical juncture between B cell specification and commitment. However, both of these populations are heterogenous, which hampers investigation into the molecular changes that occur as lymphoid progenitors commit to the B cell lineage. Here, we demonstrate that there are PDCA-1(+)Siglec H(+) plasmacytoid dendritic cells (pDCs) that co-purify with BLPs and Pre-pro B cells, which express little or no CD11c or Ly6C. Removal of PDCA-1(+) pDCs separates B cell progenitors that express high levels of a Rag1-GFP reporter from Rag1-GFP(low/neg) pDCs within the BLP and Pre-pro B populations. Analysis of Flt3-ligand knockout and IL-7Rα knockout mice revealed that there is a block in B cell development at the all-lymphoid progenitor (ALP) stage, as the majority of cells within the BLP or Pre-pro B gates were PDCA-1(+) pDCs. Thus, removal of PDCA-1(+) pDCs is critical for analysis of BLP and Pre-pro B cell populations. Analysis of B cell potential within the B220(+)CD19(-) fraction demonstrated that AA4.1(+)Ly6D(+)PDCA-1(-) Pre-pro B cells gave rise to CD19(+) B cells at high frequency, while PDCA-1(+) pDCs in this fraction did not. Interestingly, the presence of PDCA-1(+) pDCs within CLPs may help to explain the conflicting results regarding the origin of these cells.

  15. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    PubMed

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  16. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes

    PubMed Central

    Yovchev, Mladen I.; Xue, Yuhua; Shafritz, David A.; Locker, Joseph; Oertel, Michael

    2013-01-01

    Background & Aim Considerable progress has been made in developing anti-fibrotic agents and other strategies to treat liver fibrosis; however, significant long-term restoration of functional liver mass has not yet been achieved. Therefore, we investigated whether transplanted hepatic stem/progenitor cells can effectively repopulate the liver with advanced fibrosis/cirrhosis. Methods Stem/progenitor cells derived from fetal livers or mature hepatocytes from DPPIV+ F344 rats were transplanted into DPPIV− rats with thioacetamide (TAA)-induced fibrosis/cirrhosis; rats were sacrificed 1, 2, or 4 months later. Liver tissues were analyzed by histochemistry, hydroxyproline determination, RT-PCR, and immunohistochemistry. Results After chronic TAA administration, DPPIV− F344 rats exhibited progressive fibrosis, cirrhosis and severe hepatocyte damage. Besides stellate cell activation, increased numbers of stem/progenitor cells (Dlk-1+, AFP+, CD133+, Sox-9+, FoxJ1+) were observed. In conjunction with partial hepatectomy (PH), transplanted stem/progenitor cells engrafted, proliferated competitively compared to host hepatocytes, differentiated into hepatocytic and biliary epithelial cells, and generated new liver mass with extensive long-term liver repopulation (40.8 ± 10.3%). Remarkably, more than 20% liver repopulation was achieved in the absence of PH, associated with reduced fibrogenic activity (e.g., expression of α-SMA, PDGFRβ, desmin, vimentin, TIMP1) and fibrosis (reduced collagen). Furthermore, hepatocytes can also replace liver mass with advanced fibrosis/cirrhosis, but to a lesser extent than FLSPCs. Conclusions This study is a Proof of Principle demonstration that transplanted epithelial stem/progenitor cells can restore injured parenchyma in a liver environment with advanced fibrosis/cirrhosis and exhibit anti-fibrotic effects. PMID:23840008

  17. Natural and lesion-induced decrease in cell proliferation in the medial nucleus of the trapezoid body during hearing development.

    PubMed

    Saliu, Aminat; Adise, Shana; Xian, Sandy; Kudelska, Kamila; Rodríguez-Contreras, Adrián

    2014-04-01

    The functional interactions between neurons and glial cells that are important for nervous system function are presumably established during development from the activity of progenitor cells. In this study we examined proliferation of progenitor cells in the medial nucleus of the trapezoid body (MNTB) located in the rat auditory brainstem. We performed DNA synthesis labeling experiments to demonstrate changes in cell proliferation activity during postnatal stages of development. An increase in cell proliferation correlated with MNTB growth and the presence of S100β-positive astrocytes among MNTB neurons. In additional experiments we analyzed the fate of newly born cells. At perinatal ages, newly born cells colabeled with the astrocyte marker S100β in higher numbers than when cells were generated at postnatal day 6. Furthermore, we identified newly born cells that were colabeled with caspase-3 immunohistochemistry and performed comparative experiments to demonstrate that there is a natural decrease in cell proliferation activity during postnatal development in rats, mice, gerbils, and ferrets. Lastly, we found that there is a stronger decrease in MNTB cell proliferation after performing bilateral lesions of the auditory periphery in rats. Altogether, these results identify important stages in the development of astrocytes in the MNTB and provide evidence that the proliferative activity of the progenitor cells is developmentally regulated. We propose that the developmental reduction in cell proliferation may reflect coordinated signaling between the auditory brainstem and the auditory periphery. Copyright © 2013 The Authors. Wiley Periodicals, Inc.

  18. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    PubMed

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  19. Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors

    PubMed Central

    García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto

    2012-01-01

    During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293

  20. Increased Cardiac Myocyte Progenitors in Failing Human Hearts

    PubMed Central

    Kubo, Hajime; Jaleel, Naser; Kumarapeli, Asangi; Berretta, Remus M.; Bratinov, George; Shan, Xiaoyin; Wang, Hongmei; Houser, Steven R.; Margulies, Kenneth B.

    2009-01-01

    Background Increasing evidence, derived mainly from animal models, supports the existence of endogenous cardiac renewal and repair mechanisms in adult mammalian hearts that could contribute to normal homeostasis and the responses to pathological insults. Methods and Results Translating these results, we isolated small c-kit+ cells from 36 of 37 human hearts using primary cell isolation techniques and magnetic cell sorting techniques. The abundance of these cardiac progenitor cells was increased nearly 4-fold in patients with heart failure requiring transplantation compared with nonfailing controls. Polychromatic flow cytometry of primary cell isolates (<30 μm) without antecedent c-kit enrichment confirmed the increased abundance of c-kit+ cells in failing hearts and demonstrated frequent coexpression of CD45 in these cells. Immunocytochemical characterization of freshly isolated, c-kit–enriched human cardiac progenitor cells confirmed frequent coexpression of c-kit and CD45. Primary cardiac progenitor cells formed new human cardiac myocytes at a relatively high frequency after coculture with neonatal rat ventricular myocytes. These contracting new cardiac myocytes exhibited an immature phenotype and frequent electric coupling with the rat myocytes that induced their myogenic differentiation. Conclusions Despite the increased abundance and cardiac myogenic capacity of cardiac progenitor cells in failing human hearts, the need to replace these organs via transplantation implies that adverse features of the local myocardial environment overwhelm endogenous cardiac repair capacity. Developing strategies to improve the success of endogenous cardiac regenerative processes may permit therapeutic myocardial repair without cell delivery per se. PMID:18645055

  1. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    PubMed

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  2. Transplantation and differentiation of donor cells in the cloned pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro

    2006-06-02

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigsmore » without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.« less

  3. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    PubMed

    Kurita, Ryo; Suda, Noriko; Sudo, Kazuhiro; Miharada, Kenichi; Hiroyama, Takashi; Miyoshi, Hiroyuki; Tani, Kenzaburo; Nakamura, Yukio

    2013-01-01

    Transfusion of red blood cells (RBCs) is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  4. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  5. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    NASA Astrophysics Data System (ADS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  6. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less

  7. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  8. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.

    PubMed

    Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna

    2016-07-01

    Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis.

    PubMed

    Esteves de Lima, Joana; Bonnin, Marie-Ange; Birchmeier, Carmen; Duprez, Delphine

    2016-08-24

    The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner.

  10. JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation

    PubMed Central

    Zhan, H; Ma, Y; Lin, CHS; Kaushansky, K

    2016-01-01

    The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs, but the mechanism(s) responsible for MPN stem cell expansion remain incomplete. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. We report here that mice bearing a human JAK2V617F gene restricted exclusively to the MK lineage develop many of the features of a MPN. Specifically, these mice exhibit thrombocytosis, splenomegaly, increased numbers of marrow and splenic hematopoietic progenitors and a substantial expansion of HSPCs. In addition, wild-type mice transplanted with cells from JAK2V617F-bearing MK marrow develop a myeloproliferative syndrome with thrombocytosis and erythrocytosis as well as pan-hematopoietic progenitor and stem cell expansion. As marrow histology in this murine model of myeloproliferation reveals a preferentially perivascular localization of JAK2V617F-mutant MKs and an increased marrow sinusoid vascular density, it adds to accumulating data that MKs are an important component of the marrow HSPC niche, and that MK expansion might indirectly contribute to the critical role of the thrombopoietin/c-Mpl signaling pathway in HSPC maintenance and expansion. PMID:27133820

  11. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    PubMed

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  12. Defining pancreatic endocrine precursors and their descendants.

    PubMed

    White, Peter; May, Catherine Lee; Lamounier, Rodrigo N; Brestelli, John E; Kaestner, Klaus H

    2008-03-01

    The global incidence of diabetes continues to increase. Cell replacement therapy and islet transplantation offer hope, especially for severely affected patients. Efforts to differentiate insulin-producing beta-cells from progenitor or stem cells require knowledge of the transcriptional programs that regulate the development of the endocrine pancreas. Differentiation toward the endocrine lineage is dependent on the transcription factor Neurogenin 3 (Neurog3, Ngn3). We utilize a Neurog3-enhanced green fluorescent protein knock-in mouse model to isolate endocrine progenitor cells from embryonic pancreata (embryonic day [E]13.5 through E17.5). Using advanced genomic approaches, we generate a comprehensive gene expression profile of these progenitors and their immediate descendants. A total of 1,029 genes were identified as being temporally regulated in the endocrine lineage during fetal development, 237 of which are transcriptional regulators. Through pathway analysis, we have modeled regulatory networks involving these proteins that highlight the complex transcriptional hierarchy governing endocrine differentiation. We have been able to accurately capture the gene expression profile of the pancreatic endocrine progenitors and their descendants. The list of temporally regulated genes identified in fetal endocrine precursors and their immediate descendants provides a novel and important resource for developmental biologists and diabetes researchers alike.

  13. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting.

    PubMed

    Suzuki, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2004-08-01

    During pancreatic development, neogenesis, and regeneration, stem cells might act as a central player to generate endocrine, acinar, and duct cells. Although these cells are well known as pancreatic stem cells (PSCs), indisputable proof of their existence has not been reported. Identification of phenotypic markers for PSCs leads to their prospective isolation and precise characterization to clear whether stem cells exist in the pancreas. By combining flow cytometry and clonal analysis, we show here that a possible pancreatic stem or progenitor cell candidate that resides in the developing and adult mouse pancreas expresses the receptor for the hepatocyte growth factor (HGF) c-Met, but does not express hematopoietic and vascular endothelial antigens such as CD45, TER119, c-Kit, and Flk-1. These cells formed clonal colonies in vitro and differentiated into multiple pancreatic lineage cells from single cells. Some of them could largely expand with self-renewing cell divisions in culture, and, following cell transplantation, they differentiated into pancreatic endocrine and acinar cells in vivo. Furthermore, they produced cells expressing multiple markers of nonpancreatic organs including liver, stomach, and intestine in vitro. Our data strongly suggest that c-Met/HGF signaling plays an important role in stem/progenitor cell function in both developing and adult pancreas. By using this antigen, PSCs could be isolated prospectively, enabling a detailed investigation of stem cell markers and application toward regenerative therapies for diabetes.

  14. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    PubMed

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.

  15. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.

    PubMed

    Mundell, Nathan A; Plank, Jennifer L; LeGrone, Alison W; Frist, Audrey Y; Zhu, Lei; Shin, Myung K; Southard-Smith, E Michelle; Labosky, Patricia A

    2012-03-15

    The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial differentiation and may help delineate distinct molecular programs controlling vagal versus sacral neural crest development. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. GLI1+ progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue.

    PubMed

    Dörner, Julia; Martinez Rodriguez, Verena; Ziegler, Ricarda; Röhrig, Theresa; Cochran, Rebecca S; Götz, Ronni M; Levin, Mark D; Pihlajoki, Marjut; Heikinheimo, Markku; Wilson, David B

    2017-02-05

    As certain strains of mice age, hyperplastic lesions resembling gonadal tissue accumulate beneath the adrenal capsule. Gonadectomy (GDX) accelerates this heterotopic differentiation, resulting in the formation of wedge-shaped adrenocortical neoplasms that produce sex steroids. Stem/progenitor cells that reside in the adrenal capsule and retain properties of the adrenogonadal primordium are thought to be the source of this heterotopic tissue. Here, we demonstrate that GLI1 + progenitors in the adrenal capsule give rise to gonadal-like cells that accumulate in the subcapsular region. A tamoxifen-inducible Cre driver (Gli1-creER T2 ) and two reporters (R26R-lacZ, R26R-confetti) were used to track the fate of GLI1 + cells in the adrenal glands of B6D2F2 mice, a strain that develops both GDX-induced adrenocortical neoplasms and age-dependent subcapsular cell hyperplasia. In gonadectomized B6D2F2 mice GLI1 + progenitors contributed to long-lived adrenal capsule cells and to adrenocortical neoplasms that expressed Gata4 and Foxl2, two prototypical gonadal markers. Pdgfra, a gene expressed in adrenocortical stromal cells, was upregulated in the GDX-induced neoplasms. In aged non-gonadectomized B6D2F2 mice GLI1 + progenitors gave rise to patches of subcapsular cell hyperplasia. Treatment with GANT61, a small-molecule GLI antagonist, attenuated the upregulation of gonadal-like markers (Gata4, Amhr2, Foxl2) in response to GDX. These findings support the premise that GLI1 + progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic tissue. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Direct and indirect requirements of Shh/Gli signaling in early pituitary development.

    PubMed

    Wang, Yiwei; Martin, James F; Bai, C Brian

    2010-12-15

    Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Targeting human oligodendrocyte progenitors for myelin repair☆

    PubMed Central

    Dietz, Karen C.; Polanco, Jessie J.; Pol, Suyog U.; Sim, Fraser J.

    2017-01-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair. PMID:27001544

  19. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    PubMed

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  1. Competent for commitment: you've got to have heart!

    PubMed

    Jain, Rajan; Epstein, Jonathan A

    2018-01-01

    The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. © 2018 Jain and Epstein; Published by Cold Spring Harbor Laboratory Press.

  2. The Role of TOX in the Development of Innate Lymphoid Cells.

    PubMed

    Seehus, Corey R; Kaye, Jonathan

    2015-01-01

    TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  3. A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres).

    PubMed

    Di Costanzo, Ezio; Giacomello, Alessandro; Messina, Elisa; Natalini, Roberto; Pontrelli, Giuseppe; Rossi, Fabrizio; Smits, Robert; Twarogowska, Monika

    2018-03-14

    We propose a discrete in continuous mathematical model describing the in vitro growth process of biophsy-derived mammalian cardiac progenitor cells growing as clusters in the form of spheres (Cardiospheres). The approach is hybrid: discrete at cellular scale and continuous at molecular level. In the present model, cells are subject to the self-organizing collective dynamics mechanism and, additionally, they can proliferate and differentiate, also depending on stochastic processes. The two latter processes are triggered and regulated by chemical signals present in the environment. Numerical simulations show the structure and the development of the clustered progenitors and are in a good agreement with the results obtained from in vitro experiments.

  4. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  5. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    PubMed

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, J.K.; Correll, P.H.; Perry, L.K.

    1990-03-01

    Retroviral gene transfer has been used successfully to correct the glucocerebrosidase (GCase) deficiency in primary hematopoietic cells from patients with Gaucher disease. For this model of somatic gene therapy, the authors developed a high-titer, amphotropic retroviral vector designated NTG in which the human GCase gene was driven by the mutant polyoma virus enhancer/herpesvirus thymidine kinase gene (tk) promoter (Py{sup +}/Htk). NTG normalized GCase activity in transduced Gaucher fibroblasts and efficiently infected human monocytic and erythroleukemic cell lines. RNA blot-hybridization (Northern blot) analysis of these hemaptopoietic cell lines showed unexpectedly high-level expression from the Moloney murine leukemia virus long terminal repeatmore » (Mo-MLV LTR) and levels of Py{sup +}/Htk enhancer/promoter-initiated human GCase RNA that approximated endogenous GCase RNA levels. Furthermore, NTG efficiently infected human hematopoietic progenitor cells. Detection of the provirus in approximately one-third of NTG-infected progenitor colonies that had not been selected in G418-containing medium indicates that relative resistance to G418 underestimated the actual gene transfer efficiency. Northern blot analysis of NTG-infected, progenitor-derived cells showed expression from both the Mo-MLV LTR and the Py{sup +}/Htk enhancer/promoter. NTG-transduced hematopoietic progenitor cells from patients with Gaucher disease generated progeny in which GCase activity has been normalized.« less

  7. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest.

    PubMed

    Zalc, Antoine; Hayashi, Shinichiro; Auradé, Frédéric; Bröhl, Dominique; Chang, Ted; Mademtzoglou, Despoina; Mourikis, Philippos; Yao, Zizhen; Cao, Yi; Birchmeier, Carmen; Relaix, Frédéric

    2014-07-01

    A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation. © 2014. Published by The Company of Biologists Ltd.

  8. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain.

    PubMed

    Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander

    2015-09-01

    The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.

  9. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum.

    PubMed

    Kawanami, Aya; Matsushita, Takehiko; Chan, Yuk Yu; Murakami, Shunichi

    2009-08-28

    We generated Prx1CreER-GFP transgenic mice that express tamoxifen-inducible Cre recombinase and GFP under the control of a 2.4 kb Prx1 promoter. The transgene is expressed in osteochondro progenitor cells in the developing limb buds and in a subpopulation of periosteal cells that is closely associated with the cortical bone. GFP-expressing cells isolated from the diaphyses of long bones by cell sorting express multiple markers of periosteal cells, including Prx1, Fgf18, Tenascin-W, Periostin, and Thrombospondin 2. In addition, these cells undergo chondrogenic and osteogenic differentiation in culture upon induction. Cell fate analysis using the Rosa26 LacZ reporter indicated that transgene-expressing cells give rise to some of the chondrocytes and osteoblasts in the fracture callus. Collectively, these observations strongly suggest that the transgene-expressing cells are osteochondro progenitor cells in the periosteum. The established Prx1CreER-GFP mice would offer novel approaches for analyzing the functions of periosteal cells in vitro and in vivo.

  10. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    PubMed Central

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  11. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal.

    PubMed

    McNeill, Brian; Mazerolle, Chantal; Bassett, Erin A; Mears, Alan J; Ringuette, Randy; Lagali, Pamela; Picketts, David J; Paes, Kim; Rice, Dennis; Wallace, Valerie A

    2013-03-01

    Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.

  12. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  13. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    PubMed

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  14. Differential MMP-9 activity in CD34⁺progenitor cell-derived foam cells from diabetic and normoglycemic patients.

    PubMed

    Schmohl, J U; Daub, K; von Ungern-Sternberg, S N I; Lindemann, S; Schönberger, T; Geisler, T; Gawaz, M; Seizer, P

    2015-05-01

    Upon coincubation with platelet aggregates, CD34(+) progenitor cells have the potential to differentiate into foam cells. There is evidence that progenitor cells from diabetic and nondiabetic patients have different properties, which may affect the patients' prognosis. In this study we investigated an in vitro model of foam cell formation based on patient-derived CD34(+) progenitor cells. We analyzed the growth characteristics as well as the M-CSF-release and matrix metalloproteinase (MMP) synthesis from CD34(+) progenitor cell-derived foam cells originating from diabetic and nondiabetic patients. Bone marrow samples were obtained from 38 patients who were elected for thoracic surgery. CD34(+) progenitor cells from diabetic and nondiabetic patients were isolated and incubated with platelets from healthy volunteers. Foam cell formation was confirmed by immunostaining (CD68) and quantified by light microscopy. Whereas the absolute number of foam cells was not affected, the negative slope in the growth curve was seen significantly later in the diabetic group. In supernatants derived from"diabetic" CD34(+) progenitor cells, MMP-9 was significantly enhanced, whereas MMP-2 activity or M-CSF-release was not affected significantly. In a coculture model of CD34(+) progenitor cells with platelets, we show for the first time that"diabetic" CD34(+) progenitor cells exhibit functional differences in their differentiation to foam cells concerning growth characteristics and release of MMP-9.

  15. Cell Fate Decision as High-Dimensional Critical State Transition

    PubMed Central

    Zhou, Joseph; Castaño, Ivan G.; Leong-Quong, Rebecca Y. Y.; Chang, Hannah; Trachana, Kalliopi; Giuliani, Alessandro; Huang, Sui

    2016-01-01

    Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requires broad changes of their gene expression profile. But how progenitor cells overcome the stability of their gene expression configuration (attractor) to exit the attractor in one direction remains elusive. Here we show that commitment of blood progenitor cells to the erythroid or myeloid lineage is preceded by the destabilization of their high-dimensional attractor state, such that differentiating cells undergo a critical state transition. Single-cell resolution analysis of gene expression in populations of differentiating cells affords a new quantitative index for predicting critical transitions in a high-dimensional state space based on decrease of correlation between cells and concomitant increase of correlation between genes as cells approach a tipping point. The detection of “rebellious cells” that enter the fate opposite to the one intended corroborates the model of preceding destabilization of a progenitor attractor. Thus, early warning signals associated with critical transitions can be detected in statistical ensembles of high-dimensional systems, offering a formal theory-based approach for analyzing single-cell molecular profiles that goes beyond current computational pattern recognition, does not require knowledge of specific pathways, and could be used to predict impending major shifts in development and disease. PMID:28027308

  16. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors.

    PubMed

    Katsukawa, Mitsuko; Nakajima, Yusuke; Fukumoto, Akiko; Doi, Daisuke; Takahashi, Jun

    2016-06-01

    Cell replacement therapy holds great promise for Parkinson's disease (PD), but residual undifferentiated cells and immature neural progenitors in the therapy may cause tumor formation. Although cell sorting could effectively exclude these proliferative cells, from the viewpoint of clinical application, there exists no adequate coping strategy in the case of their contamination. In this study, we analyzed a component of proliferative cells in the grafts of human-induced pluripotent stem cell-derived neural progenitors and investigated the effect of radiation therapy on tumor formation. In our differentiating protocol, analyses of neural progenitors (day 19) revealed that the proliferating cells expressed early neural markers (SOX1, PAX6) or a dopaminergic neuron progenitor marker (FOXA2). When grafted into the rat striatum, these immature neurons gradually became postmitotic in the brain, and the rosette structures disappeared at 14 weeks. However, at 4-8 weeks, the SOX1(+)PAX6(+) cells formed rosette structures in the grafts, suggesting their tumorigenic potential. Therefore, to develop a fail-safe therapy against tumor formation, we investigated the effect of radiation therapy. At 4 weeks posttransplantation, when KI67(+) cells comprised the highest ratio, radiation therapy with (137)Cs Gammacell Exactor for tumor-bearing immunodeficient rats showed a significant decrease in graft volume and percentage of SOX1(+)KI67(+) cells in the graft, thus demonstrating the preventive effect of gamma-ray irradiation against tumorigenicity. These results give us critical criteria for the safety of future cell replacement therapy for PD.

  17. Concise Review: Kidney Stem/Progenitor Cells: Differentiate, Sort Out, or Reprogram?

    PubMed Central

    Pleniceanu, Oren; Harari-Steinberg, Orit; Dekel, Benjamin

    2010-01-01

    End-stage renal disease (ESRD) is defined as the inability of the kidneys to remove waste products and excess fluid from the blood. ESRD progresses from earlier stages of chronic kidney disease (CKD) and occurs when the glomerular filtration rate (GFR) is below 15 ml/minute/1.73 m2. CKD and ESRD are dramatically rising due to increasing aging population, population demographics, and the growing rate of diabetes and hypertension. Identification of multipotential stem/progenitor populations in mammalian tissues is important for therapeutic applications and for understanding developmental processes and tissue homeostasis. Progenitor populations are ideal targets for gene therapy, cell transplantation, and tissue engineering. The demand for kidney progenitors is increasing due to severe shortage of donor organs. Because dialysis and transplantation are currently the only successful therapies for ESRD, cell therapy offers an alternative approach for kidney diseases. However, this approach may be relevant only in earlier stages of CKD, when kidney function and histology are still preserved, allowing for the integration of cells and/or for their paracrine effects, but not when small and fibrotic end-stage kidneys develop. Although blood- and bone marrow-derived stem cells hold a therapeutic promise, they are devoid of nephrogenic potential, emphasizing the need to seek kidney stem cells beyond known extrarenal sources. Moreover, controversies regarding the existence of a true adult kidney stem cell highlight the importance of studying cell-based therapies using pluripotent cells, progenitor cells from fetal kidney, or dedifferentiated/reprogrammed adult kidney cells. Stem Cells 2010; 28:1649–1660. PMID:20652959

  18. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    PubMed

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  19. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACLmore » in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice.« less

  1. Genetic and epigenetic mechanisms of gene regulation during lens development

    PubMed Central

    Cvekl, Ales; Duncan, Melinda K.

    2007-01-01

    Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed due to a complex exchange of extracellular signals between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2α, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling. PMID:17905638

  2. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    PubMed Central

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  3. The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye.

    PubMed

    Raji, B; Dansault, A; Leemput, J; de la Houssaye, G; Vieira, V; Kobetz, A; Arbogast, L; Masson, C; Menasche, M; Abitbol, M

    2007-08-10

    Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve. Msi1 expression was detected in the outer plexiform layer, the inner plexiform layer, and the nerve fiber layer of fully differentiated adult retina. We provide here the first demonstration that the RNA-binding protein, Msi1, is produced in mouse eyes from embryonic stages until adulthood. The relationship between the presence of Msi1 in developing ocular compartments and the possible stem/progenitor cell characteristics of these compartments remains unclear. Finally, the expression of Msi1 in several different cell types in the adult eye is extremely intriguing and should lead to further attempts to unravel the role of Msi1 in cellular and subcellular RNA metabolism and in the control of translational processes in adult eye cells particularly in adult neuronal dendrites, axons, and synapses.

  4. Adaptive remodeling of the biliary tree: the essence of liver progenitor cell expansion.

    PubMed

    Kok, Cindy Yuet-Yin; Miyajima, Atsushi; Itoh, Tohru

    2015-07-01

    The liver progenitor cell population has long been thought to exist within the liver. However, there are no standardized criteria for defining the liver progenitor cells, and there has been intense debate about the origin of these cells in the adult liver. The characteristics of such cells vary depending on the disease model used and also on the method of analysis. Visualization of three-dimensional biliary structures has revealed that the emergence of liver progenitor cells essentially reflects the adaptive remodeling of the hepatic biliary network in response to liver injury. We propose that the progenitor cell exists as a subpopulation in the biliary tree and show that the appearance of liver progenitor cells in injured parenchyma is reflective of extensive remodeling of the biliary structure. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  5. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  6. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor

    PubMed Central

    Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1+ were large in size, had oval nuclei, and merged with CD34+ cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1−/− mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1−/− and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1. PMID:26925806

  7. Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo

    PubMed Central

    Isern, Joan; He, Zhiyong; Fraser, Stuart T.; Nowotschin, Sonja; Ferrer-Vaquer, Anna; Moore, Rebecca; Hadjantonakis, Anna-Katerina; Schulz, Vincent; Tuck, David; Gallagher, Patrick G.

    2011-01-01

    Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-β1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation. PMID:21263157

  8. Pax6 Exerts Regional Control of Cortical Progenitor Proliferation via Direct Repression of Cdk6 and Hypophosphorylation of pRb

    PubMed Central

    Mi, Da; Carr, Catherine B.; Georgala, Petrina A.; Huang, Yu-Ting; Manuel, Martine N.; Jeanes, Emily; Niisato, Emi; Sansom, Stephen N.; Livesey, Frederick J.; Theil, Thomas; Hasenpusch-Theil, Kerstin; Simpson, T. Ian; Mason, John O.; Price, David J.

    2013-01-01

    Summary The mechanisms by which early spatiotemporal expression patterns of transcription factors such as Pax6 regulate cortical progenitors in a region-specific manner are poorly understood. Pax6 is expressed in a gradient across the developing cortex and is essential for normal corticogenesis. We found that constitutive or conditional loss of Pax6 increases cortical progenitor proliferation by amounts that vary regionally with normal Pax6 levels. We compared the gene expression profiles of equivalent Pax6-expressing progenitors isolated from Pax6+/+ and Pax6−/− cortices and identified many negatively regulated cell-cycle genes, including Cyclins and Cdks. Biochemical assays indicated that Pax6 directly represses Cdk6 expression. Cyclin/Cdk repression inhibits retinoblastoma protein (pRb) phosphorylation, thereby limiting the transcription of genes that directly promote the mechanics of the cell cycle, and we found that Pax6 inhibits pRb phosphorylation and represses genes involved in DNA replication. Our results indicate that Pax6’s modulation of cortical progenitor cell cycles is regional and direct. PMID:23622063

  9. Heterogeneity of Clonal Expansion and Maturation-Linked Mutation Acquisition in Hematopoietic Progenitors in Human Acute Myeloid Leukemia

    PubMed Central

    Walter, Roland B.; Laszlo, George S.; Lionberger, Jack M.; Pollard, Jessica A.; Harrington, Kimberly H.; Gudgeon, Chelsea J.; Othus, Megan; Rafii, Shahin; Meshinchi, Soheil; Appelbaum, Frederick R.; Bernstein, Irwin D.

    2014-01-01

    Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML) but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition, and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34+/CD33− cells revealed polyclonal growth in highly curable AMLs, suggesting mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34+/CD33− cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications. PMID:24721792

  10. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth.

  11. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration

    PubMed Central

    Delaspre, Fabien; Beer, Rebecca L.; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J.

    2015-01-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  12. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    PubMed

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Ptf1a determines horizontal and amacrine cell fates during mouse retinal development.

    PubMed

    Fujitani, Yoshio; Fujitani, Shuko; Luo, Huijun; Qiu, Feng; Burlison, Jared; Long, Qiaoming; Kawaguchi, Yoshiya; Edlund, Helena; MacDonald, Raymond J; Furukawa, Takahisa; Fujikado, Takashi; Magnuson, Mark A; Xiang, Mengqing; Wright, Christopher V E

    2006-11-01

    The vertebrate neural retina comprises six classes of neurons and one class of glial cells, all derived from a population of multipotent progenitors. There is little information on the molecular mechanisms governing the specification of cell type identity from multipotent progenitors in the developing retina. We report that Ptf1a, a basic-helix-loop-helix (bHLH) transcription factor, is transiently expressed by post-mitotic precursors in the developing mouse retina. Recombination-based lineage tracing analysis in vivo revealed that Ptf1a expression marks retinal precursors with competence to exclusively produce horizontal and amacrine neurons. Inactivation of Ptf1a leads to a fate-switch in these precursors that causes them to adopt a ganglion cell fate. This mis-specification of neurons results in a complete loss of horizontal cells, a profound decrease of amacrine cells and an increase in ganglion cells. Furthermore, we identify Ptf1a as a primary downstream target for Foxn4, a forkhead transcription factor involved in the genesis of horizontal and amacrine neurons. These data, together with the previous findings on Foxn4, provide a model in which the Foxn4-Ptf1a pathway plays a central role in directing the differentiation of retinal progenitors towards horizontal and amacrine cell fates.

  14. Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    PubMed Central

    Attardo, Alessio; Calegari, Federico; Haubensak, Wulf; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.

    2008-01-01

    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors. PMID:18545663

  15. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    PubMed

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  16. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    PubMed

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid.

    PubMed

    Sanie-Jahromi, Fatemeh; Ahmadieh, Hamid; Soheili, Zahra-Soheila; Davari, Maliheh; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Deezagi, Abdolkhalegh; Pakravesh, Jalil; Bagheri, Abouzar

    2012-04-10

    Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  18. Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells.

    PubMed

    Jaleco, A C; Blom, B; Res, P; Weijer, K; Lanier, L L; Phillips, J H; Spits, H

    1997-07-15

    The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.

  19. Development and maintenance of the brain's immune toolkit: Microglia and non-parenchymal brain macrophages.

    PubMed

    Lopez-Atalaya, Jose P; Askew, Katharine E; Sierra, Amanda; Gomez-Nicola, Diego

    2018-06-01

    Microglia and non-parenchymal macrophages located in the perivascular space, the meninges and the choroid plexus are independent immune populations that play vital roles in brain development, homeostasis, and tissue healing. Resident macrophages account for a significant proportion of cells in the brain and their density remains stable throughout the lifespan thanks to constant turnover. Microglia develop from yolk sac progenitors, later evolving through intermediate progenitors in a fine-tuned process in which intrinsic factors and external stimuli combine to progressively sculpt their cell type-specific transcriptional profiles. Recent evidence demonstrates that non-parenchymal macrophages are also generated during early embryonic development. In recent years, the development of powerful fate mapping approaches combined with novel genomic and transcriptomic methodologies have greatly expanded our understanding of how brain macrophages develop and acquire specialized functions, and how cell population dynamics are regulated. Here, we review the transcription factors, epigenetic remodeling, and signaling pathways orchestrating the embryonic development of microglia and non-parenchymal macrophages. Next, we describe the dynamics of the macrophage populations of the brain and discuss the role of progenitor cells, to gain a better understanding of their functions in the healthy and diseased brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 561-579, 2018. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.

  20. P21 cip-Overexpression in the Mouse β Cells Leads to the Improved Recovery from Streptozotocin-Induced Diabetes

    PubMed Central

    Jiang, Wei; Sun, Xiaoning; Han, Yuhua; Ding, Mingxiao; Shi, Yan; Deng, Hongkui

    2009-01-01

    Under normal conditions, the regeneration of mouse β cells is mainly dependent on their own duplication. Although there is evidence that pancreatic progenitor cells exist around duct, whether non-β cells in the islet could also potentially contribute to β cell regeneration in vivo is still controversial. Here, we developed a novel transgenic mouse model to study the pancreatic β cell regeneration, which could specifically inhibit β cell proliferation by overexpressing p21 cip in β cells via regulation of the Tet-on system. We discovered that p21 overexpression could inhibit β-cell duplication in the transgenic mice and these mice would gradually suffer from hyperglycemia. Importantly, the recovery efficiency of the p21-overexpressing mice from streptozotocin-induced diabetes was significantly higher than control mice, which is embodied by better physiological quality and earlier emergence of insulin expressing cells. Furthermore, in the islets of these streptozotocin-treated transgenic mice, we found a large population of proliferating cells which expressed pancreatic duodenal homeobox 1 (PDX1) but not markers of terminally differentiated cells. Transcription factors characteristic of early pancreatic development, such as Nkx2.2 and NeuroD1, and pancreatic progenitor markers, such as Ngn3 and c-Met, could also be detected in these islets. Thus, our work showed for the first time that when β cell self-duplication is repressed by p21 overexpression, the markers for embryonic pancreatic progenitor cells could be detected in islets, which might contribute to the recovery of these transgenic mice from streptozotocin-induced diabetes. These discoveries could be important for exploring new diabetes therapies that directly promote the regeneration of pancreatic progenitors to differentiate into islet β cells in vivo. PMID:20020058

  1. Hyperforin promotes mitochondrial function and development of oligodendrocytes.

    PubMed

    Wang, Yanlin; Zhang, Yanbo; He, Jue; Zhang, Handi; Xiao, Lan; Nazarali, Adil; Zhang, Zhijun; Zhang, Dai; Tan, Qingrong; Kong, Jiming; Li, Xin-Min

    2011-11-01

    St. John's wort has been found to be an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. In this study, we evaluated the effects of hyperforin, a major active component of St. John's wort, on the proliferation, development and mitochondrial function of oligodendrocytes. The study results revealed that hyperforin promotes maturation of oligodendrocytes and increases mitochondrial function without affecting proliferation of an oligodendrocyte progenitor cell line and neural stem/progenitor cells. Hyperforin also prevented mitochondrial toxin-induced cytotoxicity in an oligodendrocyte progenitor cell line. These findings suggest that hyperforin may stimulate the development and function of oligodendrocytes, which could be a mechanism of its effect in depression. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  2. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.

    PubMed

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2006-05-15

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.

  3. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis

    PubMed Central

    Aldiri, Issam; Xu, Beisi; Wang, Lu; Chen, Xiang; Hiler, Daniel; Griffiths, Lyra; Valentine, Marc; Shirinifard, Abbas; Thiagarajan, Suresh; Sablauer, Andras; Barabas, Marie-Elizabeth; Zhang, Jiakun; Johnson, Dianna; Frase, Sharon; Zhou, Xin; Easton, John; Zhang, Jinghui; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Dyer, Michael A.

    2017-01-01

    SUMMARY In the developing retina, multipotent neural progenitors undergo unidirectional differentiation in a precise spatiotemporal order. Here we profile the epigenetic and transcriptional changes that occur during retinogenesis in mice and humans. Although some progenitor genes and cell cycle genes were epigenetically silenced during retinogenesis, the most dramatic change was derepression of cell type–specific differentiation programs. We identified developmental stage–specific super-enhancers and showed that most epigenetic changes are conserved in humans and mice. To determine how the epigenome changes during tumorigenesis and reprogramming, we performed integrated epigenetic analysis of murine and human retinoblastomas and induced pluripotent stem cells (iPSCs) derived from murine rod photoreceptors. The retinoblastoma epigenome mapped to the developmental stage when retinal progenitors switch from neurogenic to a terminal patterns of cell division. The epigenome of retinoblastomas was more similar to that of normal retina than was that of retina-derived iPSCs, and we identified retina-specific epigenetic memory. PMID:28472656

  4. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Hedgehog-induced medulloblastoma

    PubMed Central

    Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.

    2008-01-01

    Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547

  5. Embryonic mescencephalon derived neurospheres contain progenitors as well as differentiated neurons and glia.

    PubMed

    Khaing, Zin Z; Roberts, James L

    2009-01-01

    Stem cells and progenitor cells in the central nervous system may have potential for therapeutic use in patients with degenerative diseases or after injury. Neural precursor cells can be grown in culture in the presence of mitogens as aggregates termed neurospheres (NSs), as a source of proliferating progenitor cells. Withdrawal of mitogen and allowing the NSs to adhere to a substrate is the conventional way to study the differentiation potential of the progenitor cells propagated in NSs form. Here we asked if differentiation occurs within NSs cultured in the normal manner, in the presence of mitogen. We used non-passaged NSs derived from E13.5 mouse ventral mesencephalon. The NSs contained not only progenitor cells but also phenotypically-differentiated neurons and glia, in the presence of mitogen. Extracellular matrix molecules (fibronectin, laminin and collagen type IV) were also detected within these NSs, which may aid in the differentiation of progenitors inside the NSs. The cell types within NSs were also organized in a way that the differentiated cells were found in the inner cell mass while progenitors were found in the outer region. Additionally, the proportion of differentiated cell types within the NSs was also affected by exposure to different mitogens. Moreover, when placed together in to co-culture, dissociated embryonic striatal and mesencephalic cells aggregated spontaneously to form mixed NSs, enhancing the eventual differentiation into dopaminergic neurons from progenitors within these NSs. Therefore, the NSs contained progenitor cells and differentiated neurons and glial cells. In addition, NS culture system can be used to study cellular differentiation in vitro in non-adherent conditions.

  6. Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System

    PubMed Central

    Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A.; Newgreen, Donald F.; Pera, Martin F.

    2015-01-01

    Abstract The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named “caudal neural progenitors” (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube. Stem Cells 2015;33:1759–1770 PMID:25753817

  7. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  8. Characterization of cell types during rat liver development.

    PubMed

    Fiegel, Henning C; Park, Jonas J h; Lioznov, Michael V; Martin, Andreas; Jaeschke-Melli, Stefan; Kaufmann, Peter M; Fehse, Boris; Zander, Axel R; Kluth, Dietrich

    2003-01-01

    Hepatic stem cells have been identified in adult liver. Recently, the origin of hepatic progenitors and hepatocytes from bone marrow was demonstrated. Hematopoietic and hepatic stem cells share the markers CD 34, c-kit, and Thy1. Little is known about liver stem cells during liver development. In this study, we investigated the potential stem cell marker Thy1 and hepatocytic marker CK-18 during liver development to identify putative fetal liver stem cell candidates. Livers were harvested from embryonic and fetal day (ED) 16, ED 18, ED 20, and neonatal ED 22 stage rat fetuses from Sprague-Dawley rats. Fetal livers were digested by collagenase-DNAse solution and purified by percoll centrifugation. Magnetic cell sorting (MACS) depletion of fetal liver cells was performed using OX43 and OX44 antibodies. Cells were characterized by immunocytochemistry for Thy1, CK-18, and proliferating cell antigen Ki-67 and double labeling for Thy1 and CK-18. Thy1 expression was found at all stages of liver development before and after MACS in immunocytochemistry. Thy1 positive cells were enriched after MACS only in early developmental stages. An enrichment of CK-18 positive cells was found after MACS at all developmental stages. Cells coexpressing Thy1 and CK-18 were identified by double labeling of fetal liver cell isolates. In conclusion, hepatic progenitor cells (CK-18 positive) in fetal rat liver express Thy1. Other progenitors express only CK-18. This indicates the coexistence of different hepatic cell compartments. Isolation and further characterization of such cells is needed to demonstrate their biologic properties.

  9. Transfusion Support for ABO-Incompatible Progenitor Cell Transplantation

    PubMed Central

    Kopko, Patricia M.

    2016-01-01

    Summary ABO-incompatible transplants comprise up to 50% of allogeneic progenitor cell transplants. Major, minor and bidirectional ABO-incompatible transplants each have unique complications that can occur, including hemolysis at the time of progenitor cell infusion, hemolysis during donor engraftment, passenger lymphocyte syndrome, delayed red blood cell engraftment, and pure red cell aplasia. Appropriate transfusion support during the different phases of the allogeneic progenitor cell transplant process is an important part of ABO-incompatible transplantation. PMID:27022318

  10. Single dose of filgrastim (rhG-CSF) increases the number of hematopoietic progenitors in the peripheral blood of adult volunteers.

    PubMed

    Schwinger, W; Mache, C; Urban, C; Beaufort, F; Töglhofer, W

    1993-06-01

    Hematopoietic progenitor cell levels were monitored in the peripheral blood of ten healthy adults receiving a single dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF). The objective was to determine the time and number of progenitor cells released into the peripheral blood, induced by a single dose of 15 micrograms/kg rhG-CSF administered intravenously. In all cases the absolute number of circulating progenitor cells including granulocyte-macrophage and erythroid lineages increased up to 12-fold (median 9.4-fold) 4 days after treatment. These findings were based on flow cytometric quantification of CD34+ cells and on progenitor assays. The relative distribution of granulocyte/macrophage and erythroid progenitors remained unchanged. rhG-CSF was well tolerated; mild to moderate bone pain was the most common side-effect and was noted in 6 of 10 subjects. Thus a single dose of rhG-CSF is effective in mobilizing progenitor cells into the peripheral blood in healthy adults. If these progenitors are capable of reconstituting bone marrow, peripheral progenitor cell separation following rhG-CSF administration could be a reasonable alternative to conventional bone marrow harvest in healthy adults.

  11. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.

  12. Neighbor of Punc E 11: expression pattern of the new hepatic stem/progenitor cell marker during murine liver development.

    PubMed

    Schievenbusch, Stephanie; Sauer, Elisabeth; Curth, Harald-Morten; Schulte, Sigrid; Demir, Münevver; Toex, Ulrich; Goeser, Tobias; Nierhoff, Dirk

    2012-09-20

    We have previously identified Neighbor of Punc E 11 (Nope) as a specific cell surface marker of stem/progenitor cells in the murine fetal liver that is also expressed in hepatocellular carcinoma. Here, we focus on the differential expression pattern of Nope during murine fetal and postnatal liver development as well as in a normal and regenerating adult liver including oval cell activation. In the fetal liver, Nope shows a constantly high expression level and is a useful surface marker for the identification of Dlk, E-cadherin, and CD133-positive hepatoblasts by flow cytometry. Postnatally, Nope expression declines rapidly and remains barely detectable in the adult liver as shown by quantitative real-time reverse-transcriptase polymerase chain reaction and western blot analyses. Immunohistochemically, costainings for Nope- and epithelial-specific markers (E-cadherin), markers of early hepatoblasts (alpha-fetoprotein), and biliary marker proteins (CK19) demonstrate that Nope is initially expressed on bipotent hepatoblasts and persists thereafter on commited hepatocytic as well as cholangiocytic progenitor cells during late fetal liver development. Postnatally, Nope loses its circular expression pattern and is specifically directed to the sinusoidal membrane of early hepatocytes. While Nope is only weakly expressed on cholangiocytes in the normal adult liver, activated stem/progenitor (oval) cells clearly coexpress Nope together with the common markers A6, EpCAM, and CD24 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model. In conclusion, Nope should be most useful in future research to define the differentiation stage of hepatic-specified cells of various sources and is a promising candidate to identify and isolate hepatic stem cells from the adult liver.

  13. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    PubMed

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells.

    PubMed

    Sakai, Daisuke; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2012-01-01

    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/-) mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.

  15. Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    PubMed Central

    Sakai, Daisuke; Dixon, Jill; Dixon, Michael J.; Trainor, Paul A.

    2012-01-01

    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1 +/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly. PMID:22479190

  16. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Meifang; Ai, Hongmei; Li, Tao

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreasesmore » Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.« less

  17. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation.

    PubMed

    Franco, Bénédicte; Malgrange, Brigitte

    2017-03-01

    It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556. © 2017 AlphaMed Press.

  18. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yandong; Yu, Xinchun

    The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors,more » the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.« less

  19. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice.

    PubMed

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-03-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.

  20. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice

    PubMed Central

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-01-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex. PMID:29257130

  1. Uneven colonization of the lymphoid periphery by T cells that undergo early TCR{alpha} rearrangements.

    PubMed

    Hendricks, Deborah W; Fink, Pamela J

    2009-04-01

    A sparse population of thymocytes undergoes TCRalpha gene rearrangement early in development, before the double-positive stage. The potential of these cells to contribute to the peripheral T cell pool is unknown. To examine the peripheral T cell compartment expressing a repertoire biased to early TCR gene rearrangements, we developed a mouse model in which TCRalpha rearrangements are restricted to the double-negative stage of thymocyte development. These mice carry floxed RAG2 alleles and a Cre transgene driven by the CD4 promoter. As expected, conventional T cell development is compromised in such Cre(+) RAG2(fl/fl) mice, and the TCRalphabeta(+) T cells that develop are limited in their TCRalpha repertoire, preferentially using early rearranging Valpha genes. In the gut, the Thy-1(+)TCRalphabeta(+) intraepithelial lymphocyte (IEL) compartment is surprisingly intact, whereas the Thy-1(-)TCRalphabeta(+) subset is almost completely absent. Thus, T cells expressing a TCRalpha repertoire that is the product of early gene rearrangements can preferentially populate distinct IEL compartments. Despite this capacity, Cre(+) RAG2(fl/fl) T cell progenitors cannot compete with wild-type T cell progenitors in mixed bone marrow chimeras, suggesting that in normal mice, there is only a small contribution to the peripheral T cell pool by cells that have undergone early TCRalpha rearrangements. In the absence of wild-type competitors, aggressive homeostatic proliferation in the IEL compartment can promote a relatively normal Thy-1(+) TCRalphabeta(+) T cell pool from the limited population derived from Cre(+) RAG2(fl/fl) progenitors.

  2. Uneven colonization of the lymphoid periphery by T cells that undergo early TCRα rearrangements1

    PubMed Central

    Hendricks, Deborah W.; Fink, Pamela J.

    2009-01-01

    A sparse population of thymocytes undergoes TCRα gene rearrangement early in development, before the double positive stage. The potential of these cells to contribute to the peripheral T cell pool is unknown. To examine the peripheral T cell compartment expressing a repertoire biased to early TCR gene rearrangements, we developed a mouse model in which TCRα rearrangements are restricted to the double negative stage of thymocyte development. These mice carry floxed RAG2 alleles and a Cre transgene driven by the CD4 promoter. As expected, conventional T cell development is compromised in such Cre(+) RAG2fl/fl mice, and the TCRαβ+ T cells that develop are limited in their TCRα repertoire, preferentially utilizing early-rearranging Vα genes. In the gut, the Thy-1+TCRαβ+ intraepithelial lymphocyte (IEL) compartment is surprisingly intact, while the Thy-1−TCRαβ+ subset is almost completely absent. Thus, T cells expressing a TCRα repertoire that is the product of early gene rearrangements can preferentially populate distinct IEL compartments. Despite this capacity, Cre(+) RAG2fl/fl T cell progenitors cannot compete with wild-type (WT) T cell progenitors in mixed bone marrow chimeras, suggesting that in normal mice, there is only a small contribution to the peripheral T cell pool by cells that have undergone early TCRα rearrangements. In the absence of WT competitors, aggressive homeostatic proliferation in the IEL compartment can promote a relatively normal Thy-1+ TCRαβ+ T cell pool from the limited population derived from Cre(+) RAG2fl/fl progenitors. PMID:19299725

  3. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. © 2015. Published by The Company of Biologists Ltd.

  4. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish

    PubMed Central

    Allodi, Ilary; Hedlund, Eva

    2014-01-01

    Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish. PMID:24904255

  5. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish.

    PubMed

    Allodi, Ilary; Hedlund, Eva

    2014-01-01

    Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.

  6. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  7. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less

  8. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis

    PubMed Central

    Esteves de Lima, Joana; Bonnin, Marie-Ange; Birchmeier, Carmen; Duprez, Delphine

    2016-01-01

    The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner. DOI: http://dx.doi.org/10.7554/eLife.15593.001 PMID:27554485

  9. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    PubMed

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  10. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF

    PubMed Central

    Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons. PMID:29590115

  11. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  12. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    PubMed Central

    2012-01-01

    Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells. PMID:22490806

  13. Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic.

    PubMed

    Rosenbaum, Jason N; Duggan, Anne; García-Añoveros, Jaime

    2011-02-01

    Insm1 is a zinc-finger transcription factor transiently expressed throughout the developing nervous system in late progenitors and nascent neurons. Insm1 is also highly expressed in medulloblastomas and other neuroendocrine tumors. We generated mice lacking the Insm1 gene and used them to elucidate its role in neurogenic proliferation of the embryonic olfactory epithelium. We found that deletion of Insm1 results in more apical cells and fewer nascent and mature neurons. In the embryonic olfactory epithelium of Insm1 mutants we detect fewer basal progenitors, which produce neurons, and more apical progenitors, which at this stage produce additional progenitors. Furthermore, in the mutants we detect fewer progenitors expressing NEUROD1, a marker of terminally dividing, neuronogenic (neuron-producing) progenitors (immediate neuronal precursors), and more progenitors expressing ASCL1, a marker of the transit amplifying progenitors that migrate from the apical to the basal edges of the epithelium while dividing to generate the terminal, neuronogenic progenitors. Finally, with timed administration of nucleoside analogs we demonstrate that the Insm1 mutants contain fewer terminally dividing progenitors at embryonic day 12.5. Altogether, these results suggest a role for Insm1 in promoting the transition of progenitors from apical and proliferative to basal, terminal and neuronogenic. This role appears partially conserved with that of its nematode ortholog, egl-46. The similar effects of Insm1 deletion on progenitors of embryonic olfactory epithelium and cortex point to striking parallels in the development of these neuroepithelia, and particularly between the basal progenitors of olfactory epithelium and the subventricular zone progenitors of cortex.

  14. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.

    PubMed

    Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen

    2008-07-01

    Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.

  15. Tracing the fate of limbal epithelial progenitor cells in the murine cornea.

    PubMed

    Di Girolamo, N; Bobba, S; Raviraj, V; Delic, N C; Slapetova, I; Nicovich, P R; Halliday, G M; Wakefield, D; Whan, R; Lyons, J G

    2015-01-01

    Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreER(T2)-Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K-14(+) progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound-healing, disease, and following transplantation. © 2014 AlphaMed Press.

  16. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    PubMed

    Zhao, Dongxin; Chen, Song; Cai, Jun; Guo, Yushan; Song, Zhihua; Che, Jie; Liu, Chun; Wu, Chen; Ding, Mingxiao; Deng, Hongkui

    2009-07-31

    The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  17. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis.

    PubMed

    Zhou, Beiyun; Flodby, Per; Luo, Jiao; Castillo, Dan R; Liu, Yixin; Yu, Fa-Xing; McConnell, Alicia; Varghese, Bino; Li, Guanglei; Chimge, Nyam-Osor; Sunohara, Mitsuhiro; Koss, Michael N; Elatre, Wafaa; Conti, Peter; Liebler, Janice M; Yang, Chenchen; Marconett, Crystal N; Laird-Offringa, Ite A; Minoo, Parviz; Guan, Kunliang; Stripp, Barry R; Crandall, Edward D; Borok, Zea

    2018-03-01

    Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.

  18. Comparison of direct and indirect radiation effects on osteoclast formation from progenitor cells derived from different hemopoietic sources.

    PubMed

    Scheven, B A; Wassenaar, A M; Kawilarang-de Haas, E W; Nijweide, P J

    1987-07-01

    Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.

  19. Maternal diabetes and high glucose in vitro trigger Sca1+ cardiac progenitor cell apoptosis through FoxO3a.

    PubMed

    Yang, Penghua; Yang, Wendy W; Chen, Xi; Kaushal, Sunjay; Dong, Daoyin; Shen, Wei-Bin

    2017-01-22

    Recent controversies surrounding the authenticity of c-kit + cardiac progenitor cells significantly push back the advance in regenerative therapies for cardiovascular diseases. There is an urgent need for research in characterizing alternative types of cardiac progenitor cells. Towards this goal, in the present study, we determined the effect of maternal diabetes on Sca1 + cardiac progenitor cells. Maternal diabetes induced caspase 3-dependent apoptosis in Sca1 + cardiac progenitor cells derived from embryonic day 17.5 (E17.5). Similarly, high glucose in vitro but not the glucose osmotic control mannitol triggered Sca1 + cardiac progenitor cell apoptosis in a dose- and time-dependent manner. Both maternal diabetes and high glucose in vitro activated the pro-apoptotic transcription factor, Forkhead O 3a (FoxO3a) via dephosphorylation at threonine 32 (Thr-32) residue. foxo3a gene deletion abolished maternal diabetes-induced Sca1 + cardiac progenitor cell apoptosis. The dominant negative FoxO3a mutant without the transactivation domain from the C terminus blocked high glucose-induced Sca1 + cardiac progenitor cell apoptosis, whereas the constitutively active FoxO3a mutant with the three phosphorylation sites, Thr-32, Ser-253, and Ser-315, being replaced by alanine residues mimicked the pro-apoptotic effect of high glucose. Thus, maternal diabetes and high glucose in vitro may limit the regenerative potential of Sca1 + cardiac progenitor cells by inducing apoptosis through FoxO3a activation. These findings will serve as the guide in optimizing the autologous therapy using Sca1 + cardiac progenitor cells in cardiac defect babies born exposed to maternal diabetes. Copyright © 2016. Published by Elsevier Inc.

  20. Mature Hepatocytes Exhibit Unexpected Plasticity by Direct Dedifferentiation into Liver Progenitor Cells in Culture

    PubMed Central

    Chen, Yixin; Wong, Philip P.; Sjeklocha, Lucas; Steer, Clifford J.; Sahin, M. Behnan

    2011-01-01

    Although there have been numerous reports describing the isolation of liver progenitor cells from adult liver, their exact origin has not been clearly defined; and the role played by mature hepatocytes as direct contributors to the hepatic progenitor cell pool has remained largely unknown. Here we report strong evidence that mature hepatocytes in culture have the capacity to dedifferentiate into a population of adult liver progenitors without genetic or epigenetic manipulations. By using highly-purified mature hepatocytes, which were obtained from untreated, healthy rat liver and labeled with fluorescent dye PKH2, we found that hepatocytes in culture gave rise to a population of PKH2-positive liver progenitor cells. These cells, Liver Derived Progenitor Cells or LDPCS, which share phenotypic similarities with oval cells, were previously reported to be capable of forming mature hepatocytes both in culture and in animals. Studies done at various time points during the course of dedifferentiation cultures revealed that hepatocytes rapidly transformed into liver progenitors within one week through a transient oval cell-like stage. This finding was supported by lineage-tracing studies involving double-transgenic AlbuminCreXRosa26 mice expressing β-galactosidase exclusively in hepatocytes. Cultures set up with hepatocytes obtained from these mice resulted in generation of β-galactosidase-positive liver progenitor cells demonstrating that they were a direct dedifferentiation product of mature hepatocytes. Additionally, these progenitors differentiated into hepatocytes in vivo when transplanted into rats that had undergone retrorsine pretreatment and partial hepatectomy. Conclusion Our studies provide strong evidence for the unexpected plasticity of mature hepatocytes to dedifferentiate into progenitor cells in culture; and this may potentially have a significant impact on the treatment of liver diseases requiring liver or hepatocyte transplantation. PMID:21953633

  1. Intranasal epidermal growth factor treatment rescues neonatal brain injury.

    PubMed

    Scafidi, Joseph; Hammond, Timothy R; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J; Hyder, Fahmeed; Horvath, Tamas L; Gallo, Vittorio

    2014-02-13

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  2. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  3. Determination of the Fate and Function of Innate Lymphoid Cells Following Adoptive Transfer of Innate Lymphoid Cell Precursors.

    PubMed

    O'Sullivan, Timothy E; Sun, Joseph C

    2018-01-01

    Innate lymphoid cells are a heterogeneous family of tissue-resident and circulating lymphocytes that play an important role in host immunity. Recent studies have profiled the developmental pathways of mature ILCs and have identified ILC progenitors in the bone marrow through the use of transcription factor reporter mice. Here we describe methodology to identify and isolate bone marrow CHILP and ILC2 progenitor (ILC2P) cells based on cell surface marker expression for adoptive transfer into lymphopenic mice to track the fate of developing ILCs.

  4. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells.

    PubMed

    Sánchez, Mario; Ceci, Maria Laura; Gutiérrez, Daniela; Anguita-Salinas, Consuelo; Allende, Miguel L

    2016-04-07

    Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. The potential to regenerate a neuromast after damage requires that progenitor cells (INCs) be temporarily released from an inhibitory signal produced by nearby Schwann cells. This simple yet highly effective two-component niche offers the animal robust mechanisms for organ growth and regeneration, which can be sustained throughout life.

  5. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    PubMed

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    PubMed

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  8. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  9. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs

    PubMed Central

    McLean, Will J.; McLean, Dalton T.; Eatock, Ruth Anne

    2016-01-01

    Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear – the vestibular and cochlear sensory epithelia and the spiral ganglion – by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin. PMID:27789624

  10. Hhex Regulates Hematopoietic Stem Cell Self-Renewal and Stress Hematopoiesis via Repression of Cdkn2a.

    PubMed

    Jackson, Jacob T; Shields, Benjamin J; Shi, Wei; Di Rago, Ladina; Metcalf, Donald; Nicola, Nicos A; McCormack, Matthew P

    2017-08-01

    The hematopoietically expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of common lymphoid progenitors (CLPs) to lymphoid lineages. Here, we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal. Moreover, Hhex-deleted mice show markedly impaired hematopoietic recovery following myeloablation, due to a failure of progenitor expansion. In vitro, Hhex-null blast colonies were incapable of replating, implying a specific requirement for Hhex in immature progenitors. Transcriptome analysis of Hhex-null Lin - Sca + Kit + cells showed that Hhex deletion leads to derepression of polycomb repressive complex 2 (PRC2) and PRC1 target genes, including the Cdkn2a locus encoding the tumor suppressors p16 Ink 4 a and p19 Arf . Indeed, loss of Cdkn2a restored the capacity of Hhex-null blast colonies to generate myeloid progenitors in vitro, as well as hematopoietic reconstitution following myeloablation in vivo. Thus, HSCs require Hhex to promote PRC2-mediated Cdkn2a repression to enable continued self-renewal and response to hematopoietic stress. Stem Cells 2017;35:1948-1957. © 2017 AlphaMed Press.

  11. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro.

    PubMed

    Deng, W; McKinnon, R D; Poretz, R D

    2001-08-01

    Lead (Pb) is an environmental neurotoxicant that can cause hypo- and demyelination. Oligodendrocytes (OLs), the myelin-forming cells in the central nervous system, may be a possible target for Pb toxicity. The present study describes the effect of Pb on the maturation of rat OL progenitor (OP) cells and the developmental expression of myelin-specific galactolipids. Dose-response studies showed that OP cultures were more sensitive to Pb than mature OLs. Pb delayed the differentiation of OL progenitors, as demonstrated by cell morphology and immunostaining with a panel of stage-specific differentiation markers. Pb given prior to and during differentiation caused a decrease in the biosynthesis of galactolipids in both undifferentiated and differentiated OLs, as detected by metabolic radiolabeling with 3H-D-galactose. While the ratios of galacto/gluco-cerebrosides, hydroxy fatty acid/nonhydroxy fatty acid galactolipids, and galactocerebrosides/sulfatides increased in control cultures during cell differentiation, Pb treatment prevented these changes. The results suggest that chronic Pb exposure may impact brain development by interfering with the timely developmental maturation of OL progenitors. Copyright 2001 Academic Press.

  12. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis.

    PubMed

    Sánchez-Aguilera, Abel; Arranz, Lorena; Martín-Pérez, Daniel; García-García, Andrés; Stavropoulou, Vaia; Kubovcakova, Lucia; Isern, Joan; Martín-Salamanca, Sandra; Langa, Xavier; Skoda, Radek C; Schwaller, Jürg; Méndez-Ferrer, Simón

    2014-12-04

    Estrogens are potent regulators of mature hematopoietic cells; however, their effects on primitive and malignant hematopoietic cells remain unclear. Using genetic and pharmacological approaches, we observed differential expression and function of estrogen receptors (ERs) in hematopoietic stem cell (HSC) and progenitor subsets. ERα activation with the selective ER modulator (SERM) tamoxifen induced apoptosis in short-term HSCs and multipotent progenitors. In contrast, tamoxifen induced proliferation of quiescent long-term HSCs, altered the expression of self-renewal genes, and compromised hematopoietic reconstitution after myelotoxic stress, which was reversible. In mice, tamoxifen treatment blocked development of JAK2(V617F)-induced myeloproliferative neoplasm in vivo, induced apoptosis of human JAK2(V617F+) HSPCs in a xenograft model, and sensitized MLL-AF9(+) leukemias to chemotherapy. Apoptosis was selectively observed in mutant cells, and tamoxifen treatment only had a minor impact on steady-state hematopoiesis in disease-free animals. Together, these results uncover specific regulation of hematopoietic progenitors by estrogens and potential antileukemic properties of SERMs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Imparting regenerative capacity to limbs by progenitor cell transplantation

    PubMed Central

    Lin, Gufa; Chen, Ying; Slack, Jonathan M.W.

    2012-01-01

    Summary The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β -catenin signaling in the cells, and to add Sonic hedgehog, FGF10 and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration-competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals. PMID:23273877

  14. Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.

    PubMed

    Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G

    2011-12-23

    Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.

  15. Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors.

    PubMed

    Levaot, Noam; Ottolenghi, Aner; Mann, Mati; Guterman-Ram, Gali; Kam, Zvi; Geiger, Benjamin

    2015-10-01

    Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors.

    PubMed

    Motamedi, Fariba Jian; Badro, Danielle A; Clarkson, Michael; Lecca, M Rita; Bradford, Stephen T; Buske, Fabian A; Saar, Kathrin; Hübner, Norbert; Brändli, André W; Schedl, Andreas

    2014-07-17

    Kidney organogenesis requires the tight control of proliferation, differentiation and apoptosis of renal progenitor cells. How the balance between these cellular decisions is achieved remains elusive. The Wilms' tumour suppressor Wt1 is required for progenitor survival, but the molecular cause for renal agenesis in mutants is poorly understood. Here we demonstrate that lack of Wt1 abolishes fibroblast growth factor (FGF) and induces BMP/pSMAD signalling within the metanephric mesenchyme. Addition of recombinant FGFs or inhibition of pSMAD signalling rescues progenitor cell apoptosis induced by the loss of Wt1. We further show that recombinant BMP4, but not BMP7, induces an apoptotic response within the early kidney that can be suppressed by simultaneous addition of FGFs. These data reveal a hitherto unknown sensitivity of early renal progenitors to pSMAD signalling, establishes FGF and pSMAD signalling as antagonistic forces in early kidney development and places WT1 as a key regulator of pro-survival FGF signalling pathway genes.

  17. Early patterning and specification of cardiac progenitors in gastrulating mesoderm

    PubMed Central

    Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G

    2014-01-01

    Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024

  18. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.

    PubMed

    Decotto, Eva; Spradling, Allan C

    2005-10-01

    The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.

  19. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

    PubMed Central

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante

    2016-01-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Significance Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair. PMID:27130221

  20. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

    PubMed

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante; Tuan, Rocky S; Ouyang, Hong Wei

    2016-06-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair. ©AlphaMed Press.

  1. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    PubMed

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  2. Engraftment of enteric neural progenitor cells into the injured adult brain.

    PubMed

    Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan M; Dietrich, Jorg

    2016-01-25

    A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.

  3. Pak3 promotes cell cycle exit and differentiation of β-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice.

    PubMed

    Piccand, Julie; Meunier, Aline; Merle, Carole; Jia, Zhengping; Barnier, Jean-Vianney; Gradwohl, Gérard

    2014-01-01

    The transcription factor neurogenin3 (Ngn3) triggers islet cell differentiation in the developing pancreas. However, little is known about the molecular mechanisms coupling cell cycle exit and differentiation in Ngn3(+) islet progenitors. We identified a novel effector of Ngn3 endocrinogenic function, the p21 protein-activated kinase Pak3, known to control neuronal differentiation and implicated in X-linked intellectual disability in humans. We show that Pak3 expression is initiated in Ngn3(+) endocrine progenitor cells and next maintained in maturing hormone-expressing cells during pancreas development as well as in adult islet cells. In Pak3-deficient embryos, the proliferation of Ngn3(+) progenitors and β-cells is transiently increased concomitantly with an upregulation of Ccnd1. β-Cell differentiation is impaired at E15.5 but resumes at later stages. Pak3-deficient mice do not develop overt diabetes but are glucose intolerant under high-fat diet (HFD). In the intestine, Pak3 is expressed in enteroendocrine cells but is not necessary for their differentiation. Our results indicate that Pak3 is a novel regulator of β-cell differentiation and function. Pak3 acts downstream of Ngn3 to promote cell cycle exit and differentiation in the embryo by a mechanism that might involve repression of Ccnd1. In the adult, Pak3 is required for the proper control of glucose homeostasis under challenging HFD.

  4. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective

    PubMed Central

    Sonnaert, Maarten; Luyten, Frank P.; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion. PMID:26313143

  5. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective.

    PubMed

    Sonnaert, Maarten; Luyten, Frank P; Schrooten, Jan; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.

  6. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development

    PubMed Central

    Jiang, Jihong; Kuan, Chia-Wei; Fotovati, Abbas; Chu, Tony LH; He, Zhengcheng; Lengyell, Tess C; Li, Huaibiao; Kroll, Torsten; Li, Amanda M; Goldowitz, Daniel; Frappart, Lucien; Ploubidou, Aspasia; Patel, Millan S; Pilarski, Linda M; Simpson, Elizabeth M; Lange, Philipp F; Allan, Douglas W

    2017-01-01

    Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development. PMID:28994651

  7. Smad4 is essential for directional progression from committed neural progenitor cells through neuronal differentiation in the postnatal mouse brain.

    PubMed

    Kawaguchi-Niida, Motoko; Shibata, Noriyuki; Furuta, Yasuhide

    2017-09-01

    Signaling by the TGFβ super-family, consisting of TGFβ/activin- and bone morphogenetic protein (BMP) branch pathways, is involved in the central nervous system patterning, growth, and differentiation during embryogenesis. Neural progenitor cells are implicated in various pathological conditions, such as brain injury, infarction, Parkinson's disease and Alzheimer's disease. However, the roles of TGFβ/BMP signaling in the postnatal neural progenitor cells in the brain are still poorly understood. We examined the functional contribution of Smad4, a key integrator of TGFβ/BMP signaling pathways, to the regulation of neural progenitor cells in the subventricular zone (SVZ). Conditional loss of Smad4 in neural progenitor cells caused an increase in the number of neural stem like cells in the SVZ. Smad4 conditional mutants also exhibited attenuation in neuronal lineage differentiation in the adult brain that led to a deficit in olfactory bulb neurons as well as to a reduction of brain parenchymal volume. SVZ-derived neural stem/progenitor cells from the Smad4 mutant brains yielded increased growth of neurospheres, elevated self-renewal capacity and resistance to differentiation. These results indicate that loss of Smad4 in neural progenitor cells causes defects in progression of neural progenitor cell commitment within the SVZ and subsequent neuronal differentiation in the postnatal mouse brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  9. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  10. Prenatal Organophosphates Exposure Alternates the Cleavage Plane Orientation of Apical Neural Progenitor in Developing Neocortex

    PubMed Central

    Chen, Xiao-Ping; Chen, Wei-Feng; Wang, Da-Wei

    2014-01-01

    Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN) and chlorpyrifos (CPF) pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP), another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors. PMID:24740262

  11. Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors.

    PubMed

    Bar-Nur, Ori; Gerli, Mattia F M; Di Stefano, Bruno; Almada, Albert E; Galvin, Amy; Coffey, Amy; Huebner, Aaron J; Feige, Peter; Verheul, Cassandra; Cheung, Priscilla; Payzin-Dogru, Duygu; Paisant, Sylvain; Anselmo, Anthony; Sadreyev, Ruslan I; Ott, Harald C; Tajbakhsh, Shahragim; Rudnicki, Michael A; Wagers, Amy J; Hochedlinger, Konrad

    2018-05-08

    Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7 + cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Improving and accelerating the differentiation and functional maturation of human stem cell-derived neurons: role of extracellular calcium and GABA.

    PubMed

    Kemp, Paul J; Rushton, David J; Yarova, Polina L; Schnell, Christian; Geater, Charlene; Hancock, Jane M; Wieland, Annalena; Hughes, Alis; Badder, Luned; Cope, Emma; Riccardi, Daniela; Randall, Andrew D; Brown, Jonathan T; Allen, Nicholas D; Telezhkin, Vsevolod

    2016-11-15

    Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines. Such enhanced rate and extent of synchronized maturation of pluripotent stem cell-derived neural progenitor cells generates neurons which are characterized by a relatively hyperpolarized resting membrane potential, higher spontaneous and induced action potential activity, enhanced synaptic activity, more complete development of a mature inhibitory GABA A receptor phenotype and faster production of electrical network activity when compared to standard differentiation media. This entire process - from pre-patterned neural progenitor to active neuron - takes 3 weeks or less, making it an ideal platform for drug discovery and disease modelling in the fields of human neurodegenerative and neuropsychiatric disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease and Schizophrenia. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Biomimetics in thin film design: Niche-like wrinkles designed for i-cell progenitor cell differentiation.

    PubMed

    Major, Roman; Lackner, Juergen M; Sanak, Marek; Major, Boguslaw

    2017-11-01

    The future and development of science are in interdisciplinary areas, such as biomedical engineering. Self-assembled structures, similar to stem cell niches, inhibit rapid cellular division processes and enable the capture of stem cells from blood flow. By modifying the surface topography and stiffness properties, progenitor cells were differentiated towards the formation of endothelial cell monolayers to effectively inhibit the coagulation cascade. Wrinkled material layers in the form of thin polymeric coatings were prepared. An optimized surface topography led to proper cell differentiation and influenced the appropriate formation of endothelial cell monolayers. Blood activation was decelerated by the formed endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.

    PubMed

    Mellott, Dan O; Thisdelle, Jordan; Burke, Robert D

    2017-10-01

    We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell. © 2017. Published by The Company of Biologists Ltd.

  15. Demonstration of early functional compromise of bone marrow derived hematopoietic progenitor cells during bovine neonatal pancytopenia through in vitro culture of bone marrow biopsies.

    PubMed

    Laming, Eleanor; Melzi, Eleonora; Scholes, Sandra F E; Connelly, Maira; Bell, Charlotte R; Ballingall, Keith T; Dagleish, Mark P; Rocchi, Mara S; Willoughby, Kim

    2012-10-30

    Bovine neonatal pancytopenia (BNP) is a syndrome characterised by thrombocytopenia associated with marked bone marrow destruction in calves, widely reported since 2007 in several European countries and since 2011 in New Zealand. The disease is epidemiologically associated with the use of an inactivated bovine virus diarrhoea (BVD) vaccine and is currently considered to be caused by absorption of colostral antibody produced by some vaccinated cows ("BNP dams"). Alloantibodies capable of binding to the leukocyte surface have been detected in BNP dams and antibodies recognising bovine MHC class I and β-2-microglobulin have been detected in vaccinated cattle. In this study, calves were challenged with pooled colostrum collected from BNP dams or from non-BNP dams and their bone marrow hematopoietic progenitor cells (HPC) cultured in vitro from sternal biopsies taken at 24 hours and 6 days post-challenge. Clonogenic assay demonstrated that CFU-GEMM (colony forming unit-granulocyte/erythroid/macrophage/megakaryocyte; pluripotential progenitor cell) colony development was compromised from HPCs harvested as early as 24 hour post-challenge. By 6 days post challenge, HPCs harvested from challenged calves failed to develop CFU-E (erythroid) colonies and the development of both CFU-GEMM and CFU-GM (granulocyte/macrophage) was markedly reduced. This study suggests that the bone marrow pathology and clinical signs associated with BNP are related to an insult which compromises the pluripotential progenitor cell within the first 24 hours of life but that this does not initially include all cell types.

  16. Selective In Vitro Propagation of Nephron Progenitors Derived from Embryos and Pluripotent Stem Cells.

    PubMed

    Tanigawa, Shunsuke; Taguchi, Atsuhiro; Sharma, Nirmala; Perantoni, Alan O; Nishinakamura, Ryuichi

    2016-04-26

    Nephron progenitors in the embryonic kidney propagate while generating differentiated nephrons. However, in mice, the progenitors terminally differentiate shortly after birth. Here, we report a method for selectively expanding nephron progenitors in vitro in an undifferentiated state. Combinatorial and concentration-dependent stimulation with LIF, FGF2/9, BMP7, and a WNT agonist is critical for expansion. The purified progenitors proliferated beyond the physiological limits observed in vivo, both for cell numbers and lifespan. Neonatal progenitors were maintained for a week, while progenitors from embryonic day 11.5 expanded 1,800-fold for nearly 20 days and still reconstituted 3D nephrons containing glomeruli and renal tubules. Furthermore, progenitors generated from mouse embryonic stem cells and human induced pluripotent cells could be expanded with retained nephron-forming potential. Thus, we have established in vitro conditions for promoting the propagation of nephron progenitors, which will be essential for dissecting the mechanisms of kidney organogenesis and for regenerative medicine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. From sauropsids to mammals and back: New approaches to comparative cortical development

    PubMed Central

    Montiel, Juan F.; Vasistha, Navneet A.; Garcia‐Moreno, Fernando

    2015-01-01

    Abstract Evolution of the mammalian neocortex (isocortex) has been a persisting problem in neurobiology. While recent studies have attempted to understand the evolutionary expansion of the human neocortex from rodents, similar approaches have been used to study the changes between reptiles, birds, and mammals. We review here findings from the past decades on the development, organization, and gene expression patterns in various extant species. This review aims to compare cortical cell numbers and neuronal cell types to the elaboration of progenitor populations and their proliferation in these species. Several progenitors, such as the ventricular radial glia, the subventricular intermediate progenitors, and the subventricular (outer) radial glia, have been identified but the contribution of each to cortical layers and cell types through specific lineages, their possible roles in determining brain size or cortical folding, are not yet understood. Across species, larger, more diverse progenitors relate to cortical size and cell diversity. The challenge is to relate the radial and tangential expansion of the neocortex to the changes in the proliferative compartments during mammalian evolution and with the changes in gene expression and lineages evident in various sectors of the developing brain. We also review the use of recent lineage tracing and transcriptomic approaches to revisit theories and to provide novel understanding of molecular processes involved in specification of cortical regions. J. Comp. Neurol. 524:630–645, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26234252

  18. Cytomegalovirus infection of the BS-1 human stroma cell line: effect on murine hemopoiesis.

    PubMed

    Steinberg, H N; Anderson, J; Lim, B; Chatis, P A

    1993-10-01

    BS-1, a stromal cell line derived from human bone marrow, can support the growth of murine erythroid (BFU-E), granulocyte-macrophage (CFU-GM), and megakaryocyte (CFU-M) progenitor cells in a short term in vitro coculture system. Exposure of BS-1 cells to cytomegalovirus (CMV) for 3 hr prior to coculture results in a marked reduction in the stroma cell's ability to support murine hemopoiesis. CMV's effect on the BS-1 cell's hematopoietic support function is dependent on the multiplicity of infection with total suppression of BFU-E observed at a 1:1 ratio of virus to bone marrow cells. A 50% loss in the ability of BS-1 cells to support BFU-E is observed at a 0.1:1 ratio. No effect of CMV is observed with further log dilutions of virus. CMV infection of BS-1 cells affects its support of erythroid progenitor cell growth to a greater extent than its influence on the development of granulocyte-macrophage colonies. Antibody to CMV or heat inactivation of the virus reverses the inhibitory affect on BS-1 cells. The results suggest that CMV can infect a cell that constitutes one of the cellular elements of the normal bone marrow microenvironment causing a decrease in the stroma's ability to support the growth and development of normal progenitor cells.

  19. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb.

    PubMed

    Maurer, Martin H; Feldmann, Robert E; Bürgers, Heinrich F; Kuschinsky, Wolfgang

    2008-01-16

    Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time. We found significant differences in the protein expression patterns between subventricular zone and olfactory bulb neural progenitor cells. Of the differentially expressed protein spots, 105 were exclusively expressed in the subventricular zone, 23 showed a lower expression and 51 a higher expression in the olfactory bulb. The proteomic data showed that more proteins are differentially expressed in olfactory bulb progenitors with regard to proteins involved in differentiation and microenvironmental integration, as compared to the subventricular zone progenitors. Compared to 94% of all progenitors of the subventricular zone expressed GFAP, nearly none in the olfactory bulb cultures expressed GFAP. Both GFAP-positive subpopulations differed also in morphology, with the olfactory bulb cells showing more branching. No differences in growth characteristics such as doubling time, and passage lengths could be found over 26 consecutive passages in the two cultures. In this study, we describe differences in protein expression of neural progenitor populations isolated from two forebrain regions, the subventricular zone and the olfactory bulb. These subpopulations can be characterized by differential expression of marker proteins. We isolated fractions of progenitor cells with GFAP expression from both regions, but the GFAP-positive cells differed in number and morphology. Whereas in vitro growth characteristics of neural progenitors are preserved in both regions, our proteomic and immunohistochemical data suggest that progenitor cells from the two regions differ in morphology and functionality, but not in their proliferative capacity.

  20. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.

    PubMed

    Ju, Peijun; Zhang, Si; Yeap, Yeeshan; Feng, Zhiwei

    2012-11-01

    Besides neural stem cells, some glial cells, such as GFAP+ cells, radial glia, and oligodendrocyte progenitor cells can produce neuronal cells. Attractively, NG2+ glial progenitors exhibit lineage plasticity, and they rapidly proliferate and differentiate in response to central nervous system (CNS) injuries. These attributes of NG2+ glial progenitors make them a promising source of neurons. However, the potential of neuronal regeneration from NG2+ glial progenitors in CNS pathologies remains to be investigated. In this study, we showed that antagonizing epidermal growth factor receptor (EGFR) function with EGFR inhibitor caused a significant number of proliferative NG2+ glial progenitors to acquire neuronal phenotypes in contusive spinal cord injury (SCI), which presumably led to an accumulation of newly generated neurons and contributed to the improved neural behavioral performance of animals. In addition, the neuronal differentiation of glial progenitors induced by EGFR inhibitor was further confirmed with two different cell lines either in vitro or through ex vivo transplantation experiment. The inhibition of EGFR signaling pathway under the gliogenic conditions could induce these cells to acquire neuronal phenotypes. Furthermore, we find that the Ras-ERK axis played a key role in neuronal differentiation of NG2+ glial progenitors upon EGFR inhibition. Taken together, our studies suggest that the EGFR inhibitor could promote neurogenesis post SCI, mainly from the NG2+ glial progenitors. These findings support the possibility of evoking endogenous neuronal replacement from NG2+ glial progenitors and suggest that EGFR inhibition may be beneficial to CNS trauma. Copyright © 2012 Wiley Periodicals, Inc.

  1. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  2. In vitro regeneration of kidney from pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp; PRESTO, Japan Science and Technology Agency; JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitromore » is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.« less

  3. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    PubMed

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic screens are discussed, demonstrating the value of this biologically relevant and reproducible technology. In addition, this assay system was able to identify novel and potent inducers of differentiation and proliferation of induced pluripotent stem cell-derived cardiac progenitor cells. ©AlphaMed Press.

  4. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2015-12-01

    cells (HSCs) are multipotent cells that differentiate into myeloid, lymphoid and erythroid lineages, and have short-term or long-term regenerative...All rights reserved Nature Reviews | Rheumatology a b MPP CMP CLP Lymphoid cells NK cellB cell T cell Megakaryocyte and erythrocytes Macrophage and...into other cell types. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MPP, multipotent progenitor; NK cell , natural killer cell . R E

  5. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells

    PubMed Central

    Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro

    2013-01-01

    Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720

  6. Carbonic anhydrase enzymes regulate mast cell–mediated inflammation

    PubMed Central

    Soteropoulos, Patricia

    2016-01-01

    Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine–mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2–associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy–like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell–mediated inflammation. PMID:27526715

  7. Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo

    PubMed Central

    Abranches, Elsa; Silva, Margarida; Pradier, Laurent; Schulz, Herbert; Hummel, Oliver; Henrique, Domingos; Bekman, Evguenia

    2009-01-01

    Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an early stage that follows neural induction to a final stage preceding terminal differentiation. Conclusions/Significance Overall, our work confirms and extends the cellular and molecular parallels between monolayer ES cell neural differentiation and embryonic neural development, revealing in addition novel aspects of the genetic network underlying the multistep process that leads from uncommitted cells to differentiated neurons. PMID:19621087

  8. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1

    PubMed Central

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.

    2006-01-01

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx−/− mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx−/− mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration. PMID:16702404

  9. The Bicoid Class Homeodomain Factors ceh-36/OTX and unc-30/PITX Cooperate in C. elegans Embryonic Progenitor Cells to Regulate Robust Development

    PubMed Central

    Walton, Travis; Preston, Elicia; Nair, Gautham; Zacharias, Amanda L.; Raj, Arjun; Murray, John Isaac

    2015-01-01

    While many transcriptional regulators of pluripotent and terminally differentiated states have been identified, regulation of intermediate progenitor states is less well understood. Previous high throughput cellular resolution expression studies identified dozens of transcription factors with lineage-specific expression patterns in C. elegans embryos that could regulate progenitor identity. In this study we identified a broad embryonic role for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons. ceh-36 is expressed in progenitors of over 30% of embryonic cells, yet is not required for embryonic viability. Quantitative phenotyping by computational analysis of time-lapse movies of ceh-36 mutant embryos identified cell cycle or cell migration defects in over 100 of these cells, but most defects were low-penetrance, suggesting redundancy. Expression of ceh-36 partially overlaps with that of the PITX transcription factor unc-30. unc-30 single mutants are viable but loss of both ceh-36 and unc-30 causes 100% lethality, and double mutants have significantly higher frequencies of cellular developmental defects in the cells where their expression normally overlaps. These factors are also required for robust expression of the downstream developmental regulator mls-2/HMX. This work provides the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors and demonstrates the power of quantitative developmental phenotyping in C. elegans to identify developmental regulators acting in progenitor cells. PMID:25738873

  10. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    PubMed Central

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-01-01

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics. PMID:24152442

  11. A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    PubMed Central

    Schulz, Thomas C.; Young, Holly Y.; Agulnick, Alan D.; Babin, M. Josephine; Baetge, Emmanuel E.; Bang, Anne G.; Bhoumik, Anindita; Cepa, Igor; Cesario, Rosemary M.; Haakmeester, Carl; Kadoya, Kuniko; Kelly, Jonathan R.; Kerr, Justin; Martinson, Laura A.; McLean, Amanda B.; Moorman, Mark A.; Payne, Janice K.; Richardson, Mike; Ross, Kelly G.; Sherrer, Eric S.; Song, Xuehong; Wilson, Alistair Z.; Brandon, Eugene P.; Green, Chad E.; Kroon, Evert J.; Kelly, Olivia G.; D’Amour, Kevin A.; Robins, Allan J.

    2012-01-01

    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry. PMID:22623968

  12. Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast.

    PubMed

    Sen, Namita; Weingarten, Mark; Peter, Yakov

    2014-11-01

    Fibrotic disease is associated with abrogated stromal cell proliferation and activity. The precise identity of the cells that drive fibrosis remains obscure, in part because of a lack of information on their lineage development. To investigate the role of an early stromal progenitor cell (SPC) on the fibrotic process, we selected for, and monitored the stages of, fibroblast development from a previously reported free-floating anchorage-independent cell (AIC) progenitor population. Our findings demonstrate that organotypic pulmonary, cardiac, and renal fibroblast commitment follows a two-step process of attachment and remodeling in culture. Cell differentiation was confirmed by the inability of SPCs to revert to the free-floating state and functional mesenchymal stem/stromal cell (MSC) differentiation into osteoblast, adipocyte, chondrocyte, and fibroblastic lineages. The myofibroblastic phenotype was reflected by actin stress-fiber formation, α-smooth muscle production, and a greater than threefold increase in proliferative activity compared with that of the progenitors. SPC-derived pulmonary myofibroblasts demonstrated a more than 300-fold increase in fibronectin-1 (Fn1), collagen, type 1, α1, integrin α-5 (Itga5), and integrin β-1 (Itgb1) transcript levels. Very late antigen-5 (ITGA5/ITGB1) protein cluster formations were also prevalent on the differentiated cells. Normalized SPC-derived myofibroblast expression patterns reflected those of primary cultured lung myofibroblasts. Intratracheal implantation of pulmonary AICs into recipient mouse lungs resulted in donor cell FN1 production and evidence of epithelial derivation. SPC derivation into stromal tissue in vitro and in vivo and the observation that MSC and fibroblast lineages share a common ancestor could potentially lead to personalized antifibrotic therapies. ©AlphaMed Press.

  13. Cotransplantation of ex vivo expanded progenitors with nonexpanded cord blood cells improves platelet recovery.

    PubMed

    Émond, Hélène; Boyer, Lucie; Roy, Denis-Claude; Pineault, Nicolas

    2012-11-20

    Umbilical cord blood (UCB) transplantation is associated with prolonged periods of cytopenia. Ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) is currently investigated as a mean to accelerate hematological recovery. Contrary to neutrophils, platelet recovery remains problematic. For this reason, we have developed a culture protocol promoting the expansion of megakaryocyte (Mk) progenitors. The objective of this work was to determine whether the expanded (E) UCB HSPCs could accelerate platelet recovery in vivo using a murine HSPC transplantation model. The thrombopoietic activity of UCB and mobilized peripheral blood CD34(+) cells expanded under mild hyperthermia (MH, ie, 39°C) with the optimized megakaryocyte progenitor cocktail (OMPC) diverged significantly from the nonexpanded (NE) cells of origin; E cells provided rapid platelet release, while NE cells strongly contributed to platelet production past 10 days of transplantation. Consequently, the complementary of both cell sources was investigated. Cotransplantation of NE with E UCB cells significantly improved the recovery of human platelets (hPLTs) in vivo due to their complementary and synergistic thrombopoietic activities. Moreover, short-term human bone marrow (BM) reconstitution was also improved. Finally, we show that early hPLT release is dependent on Mk-primed cells and that E cells do not act as accessory cells, but have a more active role. In conclusion, hPLT recovery and short-term BM engraftment can be efficiently improved by the cotransplantation of Mk-primed UCB cells with NE HSPCs in a murine transplantation model.

  14. Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development

    PubMed Central

    Stengel, Kristy R.; Barnett, Kelly R.; Wang, Jing; Liu, Qi; Hodges, Emily; Hiebert, Scott W.; Bhaskara, Srividya

    2017-01-01

    Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/−Mb1-Cre+/− mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/− bone marrow. For Hdac3Δ/− B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/− progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells. PMID:28739911

  15. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma

    PubMed Central

    Tseng, William W.; Chopra, Shefali; Engleman, Edgar G.; Pollock, Raphael E.

    2016-01-01

    Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin (“fat cancer”). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers. PMID:27376027

  16. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea.

    PubMed

    Cheng, Cheng; Guo, Luo; Lu, Ling; Xu, Xiaochen; Zhang, ShaSha; Gao, Junyan; Waqas, Muhammad; Zhu, Chengwen; Chen, Yan; Zhang, Xiaoli; Xuan, Chuanying; Gao, Xia; Tang, Mingliang; Chen, Fangyi; Shi, Haibo; Li, Huawei; Chai, Renjie

    2017-01-01

    Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein-protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.

  17. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    PubMed

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Circulating endothelial progenitor cells and cardiovascular outcomes.

    PubMed

    Werner, Nikos; Kosiol, Sonja; Schiegl, Tobias; Ahlers, Patrick; Walenta, Katrin; Link, Andreas; Böhm, Michael; Nickenig, Georg

    2005-09-08

    Endothelial progenitor cells derived from bone marrow are believed to support the integrity of the vascular endothelium. The number and function of endothelial progenitor cells correlate inversely with cardiovascular risk factors, but the prognostic value associated with circulating endothelial progenitor cells has not been defined. The number of endothelial progenitor cells positive for CD34 and kinase insert domain receptor (KDR) was determined with the use of flow cytometry in 519 patients with coronary artery disease as confirmed on angiography. After 12 months, we evaluated the association between baseline levels of endothelial progenitor cells and death from cardiovascular causes, the occurrence of a first major cardiovascular event (myocardial infarction, hospitalization, revascularization, or death from cardiovascular causes), revascularization, hospitalization, and death from all causes. A total of 43 participants died, 23 from cardiovascular causes. A first major cardiovascular event occurred in 214 patients. The cumulative event-free survival rate increased stepwise across three increasing baseline levels of endothelial progenitor cells in an analysis of death from cardiovascular causes, a first major cardiovascular event, revascularization, and hospitalization. After adjustment for age, sex, vascular risk factors, and other relevant variables, increased levels of endothelial progenitor cells were associated with a reduced risk of death from cardiovascular causes (hazard ratio, 0.31; 95 percent confidence interval, 0.16 to 0.63; P=0.001), a first major cardiovascular event (hazard ratio, 0.74; 95 percent confidence interval, 0.62 to 0.89; P=0.002), revascularization (hazard ratio, 0.77; 95 percent confidence interval, 0.62 to 0.95; P=0.02), and hospitalization (hazard ratio, 0.76; 95 percent confidence interval, 0.63 to 0.94; P=0.01). Endothelial progenitor-cell levels were not predictive of myocardial infarction or of death from all causes. The level of circulating CD34+KDR+ endothelial progenitor cells predicts the occurrence of cardiovascular events and death from cardiovascular causes and may help to identify patients at increased cardiovascular risk. Copyright 2005 Massachusetts Medical Society.

  19. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland.

    PubMed

    Horiguchi, Kotaro; Yako, Hideji; Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio

    2016-01-01

    The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.

  20. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland

    PubMed Central

    Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio

    2016-01-01

    The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis. PMID:27695124

  1. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time

    PubMed Central

    Razy-Krajka, Florian; Gravez, Basile; Kaplan, Nicole; Racioppi, Claudia; Wang, Wei

    2018-01-01

    In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors. PMID:29431097

  2. Single cell transcriptome profiling of developing chick retinal cells.

    PubMed

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  3. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors.

    PubMed

    Sakai-Takemura, Fusako; Narita, Asako; Masuda, Satoru; Wakamatsu, Toshifumi; Watanabe, Nobuharu; Nishiyama, Takashi; Nogami, Ken'ichiro; Blanc, Matthias; Takeda, Shin'ichi; Miyagoe-Suzuki, Yuko

    2018-04-26

    Human induced pluripotent stem cells (hiPSCs) are a potential source for cell therapy of Duchenne muscular dystrophy. To reliably obtain skeletal muscle progenitors from hiPSCs, we treated hiPS cells with a Wnt activator, CHIR-99021 and a BMP receptor inhibitor, LDN-193189, and then induced skeletal muscle cells using a previously reported sphere-based culture. This protocol greatly improved sphere formation efficiency and stably induced the differentiation of myogenic cells from hiPS cells generated from both healthy donors and a patient with congenital myasthenic syndrome. hiPSC-derived myogenic progenitors were enriched in the CD57(-) CD108(-) CD271(+) ERBB3(+) cell fraction, and their differentiation was greatly promoted by TGF-β inhibitors. TGF-β inhibitors down-regulated the NFIX transcription factor, and NFIX short hairpin RNA (shRNA) improved the differentiation of iPS cell-derived myogenic progenitors. These results suggest that NFIX inhibited differentiation of myogenic progenitors. hiPSC-derived myogenic cells differentiated into myofibers in muscles of NSG-mdx 4Cv mice after direct transplantation. Our results indicate that our new muscle induction protocol is useful for cell therapy of muscular dystrophies.

  4. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice.

    PubMed

    Grinenko, Tatyana; Eugster, Anne; Thielecke, Lars; Ramasz, Beáta; Krüger, Anja; Dietz, Sevina; Glauche, Ingmar; Gerbaulet, Alexander; von Bonin, Malte; Basak, Onur; Clevers, Hans; Chavakis, Triantafyllos; Wielockx, Ben

    2018-05-15

    Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67 RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.

  5. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation.

    PubMed

    Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adult Mouse Subventricular Zone Stem and Progenitor Cells Are Sessile and Epidermal Growth Factor Receptor Negatively Regulates Neuroblast Migration

    PubMed Central

    Kim, Yongsoo; Comte, Isabelle; Szabo, Gabor; Hockberger, Philip; Szele, Francis G.

    2009-01-01

    Background The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair. Methodology/Principal Findings We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS). In our search for motile progenitor cells, we uncovered a population of motile βIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFrlow neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-α), an EGFr-selective agonist. Indeed, acute exposure to TGF-α decreased the percentage of motile cells by approximately 40%. Conclusions/Significance In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ. PMID:19956583

  7. The supply of choline is important for fetal progenitor cells

    PubMed Central

    Zeisel, Steven H.

    2011-01-01

    Fetal progenitor cells proliferate, migrate, differentiate and undergo apoptosis at specific times during fetal development. Choline is needed by these cells for membrane synthesis and for methylation. There is growing evidence that this nutrient also modulates epigenetic regulation of gene expression in both neuronal and endothelial progenitor cells, thereby modifying brain development. It is likely that these mechanisms explain why, in rodent models, maternal dietary intake of choline influences both angiogenesis and neurogenesis in fetal hippocampus, and results in life-long changes in memory function. This also may explain why women eating diets low in choline have a greater risk of having a baby with a birth defect. Choline is mainly found in foods that contain fat and cholesterol, and intake of such foods has diminished in response dietary advice from nutritionists and physicians. Forty years ago, diets commonly contained choline-rich foods but now women in the USA tend to eat diets low in choline content. Premenopausal women normally may require less choline in their diet than do men and postmenopausal women, because estrogen induces the gene for the enzyme catalyzing endogenous biosynthesis of the choline-containing phospholipid phosphatidylcholine. However, many women have a single nucleotide polymorphism (SNP) that blocks the induction of endogenous biosynthesis, thereby making them require more dietary choline. When these women eat diets low in choline, the supply of this nutrient to the fetus is likely to be inadequate, and may perturb progenitor cell proliferation, migration, differentiation and apoptosis. PMID:21693194

  8. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    PubMed Central

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  9. Imaging retinal progenitor lineages in developing zebrafish embryos.

    PubMed

    Jusuf, Patricia; Harris, William A; Poggi, Lucia

    2013-03-01

    In this protocol, we describe how to make and analyze four dimensional (4D) movies of retinal lineage in the zebrafish embryo in vivo. 4D consists of three spatial dimensions (3D) reconstructed from stacks of confocal planes plus one time dimension. Our imaging is performed on transgenic cells that express fluorescent proteins under the control of cell-specific promoters or on cells that transiently express such reporters in specific retinal cell progenitors. An important aspect of lineage tracing is the ability to follow individual cells as they undergo multiple cell divisions, final migration, and differentiation. This may mean many hours of 4D imaging, requiring that cells be kept healthy and maintained under conditions suitable for normal development. The longest movies we have made are ∼50 h. By analyzing these movies, we can see when a specific cell was born and who its sister was, allowing us to reconstruct its retinal lineages in vivo.

  10. Heterogeneity of adult masseter muscle satellite cells with cardiomyocyte differentiation potential.

    PubMed

    Huang, Wei; Liang, Jialiang; Feng, Yuliang; Jia, Zhanfeng; Jiang, Lin; Cai, Wenfeng; Paul, Christian; Gu, Jianguo G; Stambrook, Peter J; Millard, Ronald W; Zhu, Xiao-Lan; Zhu, Ping; Wang, Yigang

    2018-05-26

    Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1 + MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1 - MMSCs with Pax7 expression. Sca1 + MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement. Copyright © 2018. Published by Elsevier Inc.

  11. Versatility and nuances of the architecture of haematopoiesis - Implications for the nature of leukaemia.

    PubMed

    Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri; Michell, Robert H

    2012-01-01

    For many years there was a widely accepted picture of how a haematopoietic stem cell (HSC) gives rise to the multiple types of blood and immune cells. This described the general nature of stem and progenitor cells and the pathways of cell development. Recent years have seen many attempts to re-draw the map of haematopoiesis. These have become increasingly complex, and they often envisage multiples routes to some cell types. The 'established' view that self-renewal in haematopoiesis only occurs in HSCs has been challenged by the recognition of self-renewing HSC-derived progenitor cells that display at least some fate restriction. This evolution of how normal haematopoiesis is viewed has inevitable implications for understanding the origins, disease progression and classification of the leukaemias. In essence, some progenitor cells are now seen as possessing a larger repertoire of routes to end-fates than was previously thought. This leads one to ask whether leukaemia stem cells are equally or less versatile than their normal counterparts? Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors.

    PubMed

    Rosu-Myles, Michael; Taylor, Barbara J; Wolff, Linda

    2007-03-01

    The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.

  13. Atherosclerosis as a disease of failed endogenous repair

    PubMed Central

    Zenovich, Andrey G.; Taylor, Doris A.

    2009-01-01

    As coronary artery disease (CAD) continues to be the primary cause of mortality, a more in-depth understanding of pathophysiology and novel treatments are being sought. The past two decades have established inflammation as a driving force behind CAD – from endothelial dysfunction to heart failure. Recent advances in stem/progenitor cell biology have led to initial applications of progenitor cells in CAD continuum and have revealed that atherosclerosis is, at least in part, a disease of failed endogenous vascular repair. Several key progenitor cell populations including endothelial progenitor cells (AC133+/CD34+ population), vascular progenitors (CD31+/CD45low population), KDR+ cells and other bone marrow subtypes are mobilized for vascular repair. However, age and risk factors negatively impact these cells even prior to clinical CAD. Sex-based differences in progenitor cell capacity for repair have emerged as a new research focus that may offer mechanistic insights into clinical CAD discrepancies between men and women. Quantifying injury and cell-based repair and better defining their interactions should enable us to halt or even prevent CAD by enhancing the repair side of the repair/injury equation. PMID:18508460

  14. Manipulating cell fate in the cochlea: a feasible therapy for hearing loss

    PubMed Central

    Fujioka, Masato; Okano, Hideyuki; Edge, Albert SB

    2015-01-01

    Mammalian auditory hair cells do not spontaneously regenerate, unlike hair cells in lower vertebrates including fish and birds. In mammals, hearing loss due to the loss of hair cells is thus permanent and intractable. Recent studies in the mouse have demonstrated spontaneous hair cell regeneration during a short postnatal period, but this regenerative capacity is lost in the adult cochlea. Reduced regeneration coincides with a transition that results in a decreased pool of progenitor cells in the cochlear sensory epithelium. Here, we review the signaling cascades involved in hair cell formation and morphogenesis of the organ of Corti in developing mammals, the changing status of progenitor cells in the cochlea, and the regeneration of auditory hair cells in adult mammals. PMID:25593106

  15. Basics and applications of stem cells in the pancreas.

    PubMed

    Sekine, Keisuke; Taniguchi, Hideki

    2012-11-01

    Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin(+) cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.

  16. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development.

    PubMed

    ten Berge, Derk; Brugmann, Samantha A; Helms, Jill A; Nusse, Roel

    2008-10-01

    A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.

  17. In Vitro Expanded Stem Cells from the Developing Retina Fail to Generate Photoreceptors but Differentiate into Myelinating Oligodendrocytes

    PubMed Central

    Czekaj, Magdalena; Haas, Jochen; Gebhardt, Marlen; Müller-Reichert, Thomas; Humphries, Peter; Farrar, Jane; Bartsch, Udo; Ader, Marius

    2012-01-01

    Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive ‘retinal stem cells’ (‘RSCs’) can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, ‘RSCs’, by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, ‘RSCs’ can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that ‘RSCs’ expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina. PMID:22848612

  18. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Sebastián L.; Liu, Er; Arvind, Varun

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regionsmore » of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image informatics. • Textural metrics of the nuclear structural protein NuMA are sufficient to parse emergent cell phenotypes.« less

  19. The Ets transcription factor Elf5 specifies mammary alveolar cell fate

    PubMed Central

    Oakes, Samantha R.; Naylor, Matthew J.; Asselin-Labat, Marie-Liesse; Blazek, Katrina D.; Gardiner-Garden, Margaret; Hilton, Heidi N.; Kazlauskas, Michael; Pritchard, Melanie A.; Chodosh, Lewis A.; Pfeffer, Peter L.; Lindeman, Geoffrey J.; Visvader, Jane E.; Ormandy, Christopher J.

    2008-01-01

    Hormonal cues regulate mammary development, but the consequent transcriptional changes and cell fate decisions are largely undefined. We show that knockout of the prolactin-regulated Ets transcription factor Elf5 prevented formation of the secretory epithelium during pregnancy. Conversely, overexpression of Elf5 in an inducible transgenic model caused alveolar differentiation and milk secretion in virgin mice, disrupting ductal morphogenesis. CD61+ luminal progenitor cells accumulated in Elf5-deficient mammary glands and were diminished in glands with Elf5 overexpression. Thus Elf5 specifies the differentiation of CD61+ progenitors to establish the secretory alveolar lineage during pregnancy, providing a link between prolactin, transcriptional events, and alveolar development. PMID:18316476

  20. Mammary stem cells: angels or demons in mammary gland?

    PubMed

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the 'seeds' of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).

  1. Mammary stem cells: angels or demons in mammary gland?

    PubMed Central

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa). PMID:29263909

  2. Conserved Genetic Pathways Controlling the Development of the Diffuse Endocrine System in Vertebrates and Drosophila

    PubMed Central

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina

    2014-01-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. PMID:20005229

  3. Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Elizabeth-sharon

    2008-01-01

    Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-I (TCF-1) (gene name Tcli). To identify additional regulators of T cell specification, a cDNA libnlrY from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were identified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expressionmore » of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin{sup -}Sca-1{sup +}Kit{sup +}CD27{sup -}) and multipotent progenitors (Lin{sup -}Sca-l{sup +}Kit{sup +}CD27{sup +}), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bclllb, TCF-I (Tcli), and HEBalt, Notch target Deltexl, Deltex3L, Fkbp5, Eval, and Tmem13l. Like GATA3 and Deltexl, Bclllb, Fkbp5, and Eval were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only BcIlI band HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative I and double negative 2) corresponding to T lineage specification. Bclllb was uniquely T lineage restricted and induced by NotchlDelta signaling specifically upon entry into the T lineage differentiation pathway.« less

  4. Persistent injury-associated anemia: the role of the bone marrow microenvironment.

    PubMed

    Millar, Jessica K; Kannan, Kolenkode B; Loftus, Tyler J; Alamo, Ines G; Plazas, Jessica; Efron, Philip A; Mohr, Alicia M

    2017-06-15

    The regulation of erythropoiesis involves hematopoietic progenitor cells, bone marrow stroma, and the microenvironment. Following severe injury, a hypercatecholamine state develops that is associated with increased mobilization of hematopoietic progenitor cells to peripheral blood and decreased growth of bone marrow erythroid progenitor cells that manifests clinically as a persistent injury-associated anemia. Changes within the bone marrow microenvironment influence the development of erythroid progenitor cells. Therefore, we sought to determine the effects of lung contusion, hemorrhagic shock, and chronic stress on the hematopoietic cytokine response. Bone marrow was obtained from male Sprague-Dawley rats (n = 6/group) killed 7 d after lung contusion followed by hemorrhagic shock (LCHS) or LCHS followed by daily chronic restraint stress (LCHS/CS). End point polymerase chain reaction was performed for interleukin-1β, interleukin-10, stem cell factor, transforming growth factor-β, high-mobility group box-1 (HMGB-1), and B-cell lymphoma-extra large. Seven days following LCHS and LCHS/CS, bone marrow expression of prohematopoietic cytokines (interleukin-1β, interleukin-10, stem cell factor, and transforming growth factor-β) was significantly decreased, and bone marrow expression of HMGB-1 was significantly increased. B-cell lymphoma-extra large bone marrow expression was not affected by LCHS or LCHS/CS (naïve: 44 ± 12, LCHS: 44 ± 12, LCHS/CS: 37 ± 1, all P > 0.05). The bone marrow microenvironment was significantly altered following severe trauma in a rodent model. Prohematopoietic cytokines were downregulated, and the proinflammatory cytokine HMGB-1 had increased bone marrow expression. Modulation of the bone marrow microenvironment may represent a therapeutic strategy following severe trauma to alleviate persistent injury-associated anemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Colony-Forming Progenitor Cells in the Postnatal Mouse Liver and Pancreas Give Rise to Morphologically Distinct Insulin-Expressing Colonies in 3D Cultures

    PubMed Central

    Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A.; Riggs, Arthur D.; Ku, Hsun Teresa

    2014-01-01

    In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133+CD49flowCD107blow phenotype, while pancreatic CFU-Dark are CD133-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth. PMID:25148366

  6. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  7. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    DOEpatents

    Colucci, M. Gabriella; Chrispeels, Maarten J.; Moore, Jeffrey G.

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  8. IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    PubMed Central

    Dahlin, Joakim S.; Ivarsson, Martin A.; Heyman, Birgitta; Hallgren, Jenny

    2011-01-01

    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma. PMID:21625525

  9. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, R.R.; Alves, A.S.; Britto, L.R.G

    2008-04-15

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) via calcium influx through nAChR channels whereasmore » intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G{alpha}{sub q/11}-coupled M{sub 1}, M{sub 3} and M{sub 5} receptors and intracellular calcium stores, whereas G{alpha}{sub i/o}-protein coupled M{sub 2} receptor activity mediated neuronal differentiation.« less

  10. Polyglycolic Acid–Polylactic Acid Scaffold Response to Different Progenitor Cell In Vitro Cultures: A Demonstrative and Comparative X-Ray Synchrotron Radiation Phase-Contrast Microtomography Study

    PubMed Central

    Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia

    2014-01-01

    Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid–polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold. PMID:23879738

  11. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  12. A novel function for Foxm1 in interkinetic nuclear migration in the developing telencephalon and anxiety-related behavior.

    PubMed

    Wu, Xiaojing; Gu, Xiaochun; Han, Xiaoning; Du, Ailing; Jiang, Yan; Zhang, Xiaoyun; Wang, Yanjie; Cao, Guangliang; Zhao, Chunjie

    2014-01-22

    Interkinetic nuclear migration (INM) is a key feature of cortical neurogenesis. INM functions to maximize the output of the neuroepithelium, and more importantly, balance the self-renewal and differentiation of the progenitors. Although INM has been reported to be highly correlated with the cell cycle, little is known about the effects of cell cycle regulators on INM. In this study, by crossing Foxm1(fl/fl) mice with Emx1-Cre line, we report that a conditional disruption of forkhead transcription factor M1 (Foxm1) in dorsal telencephalon results in abnormal cell cycle progression, leading to impaired INM through the downregulation of Cyclin b1 and Cdc25b. The impairment of INM disturbs the synchronization of apical progenitors (APs) and promotes the transition from APs to basal progenitors (BPs) in a cell-autonomous fashion. Moreover, ablation of Foxm1 causes anxiety-related behaviors in adulthood. Thus, this study provides evidence of linkages among the cell cycle regulator Foxm1, INM, and adult behavior.

  13. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    PubMed

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  14. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    PubMed

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  15. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar

    2009-12-01

    Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.

  16. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    PubMed

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  17. Retinoid-signaling in progenitors controls specification and regeneration of the urothelium

    PubMed Central

    Reiley, Maia; Laufer, Ed; Metzger, Daniel; Liang, Fengxia; Liao, Yi; Sun, Tung-Tien; Aronow, Bruce; Rosen, Roni; Mauney, Josh; Adam, Rosalyn; Rosselot, Carolina; Van Batavia, Jason; McMahon, Andrew; McMahon, Jill; Guo, Jin-Jin; Mendelsohn, Cathy

    2013-01-01

    The urothelium is a stratified epithelium that prevents exchange of water and toxic substances between the urinary tract and blood. It is composed of Keratin-5-expressing-basal-cells (K5-BCs), intermediate cells and superficial cells specialized for synthesis and transport of uroplakins that assemble into the apical barrier. K5-BCs are considered to be a progenitor cell type in the urothelium and other stratified epithelia. Fate mapping studies however, reveal that P-cells, a transient population, are urothelial progenitors in the embryo, intermediate cells are superficial cell progenitors in the adult regenerating urothelium, and K5-BCs are a distinct lineage. Our studies indicate that retinoids, potent regulators of ES cells and other progenitors, are also required in P-cells and intermediate cells for their specification. These observations have important implications for tissue engineering and repair, and ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome. PMID:23993789

  18. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea

    PubMed Central

    Cheng, Cheng; Guo, Luo; Lu, Ling; Xu, Xiaochen; Zhang, ShaSha; Gao, Junyan; Waqas, Muhammad; Zhu, Chengwen; Chen, Yan; Zhang, Xiaoli; Xuan, Chuanying; Gao, Xia; Tang, Mingliang; Chen, Fangyi; Shi, Haibo; Li, Huawei; Chai, Renjie

    2017-01-01

    Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein–protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration. PMID:28491023

  19. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice.

    PubMed

    Li, Dan; Cen, Jin; Chen, Xiaotao; Conway, Edward M; Ji, Yuan; Hui, Lijian

    2013-12-01

    Hepatocytes possess a remarkable capacity to regenerate and reconstitute the parenchyma after liver damage. However, in the case of chronic injury, their proliferative potential is impaired and hepatic progenitor cells (HPCs) are activated, resulting in a ductular reaction known as oval cell response. Proapoptotic and survival signals maintain a precise balance to spare hepatocytes and progenitors from hyperplasia and cell death during regeneration. Survivin, a member of the family of inhibitor of apoptosis proteins (IAPs), plays key roles in the proliferation and apoptosis of various cell types. Here, we characterized the in vivo function of Survivin in regulating postnatal liver development and homeostasis using mice carrying conditional Survivin alleles. Hepatic perinatal loss of Survivin causes impaired mitosis, increased genome ploidy, and enlarged cell size in postnatal livers, which eventually leads to hepatocyte apoptosis and triggers tissue damage and inflammation. Subsequently, HPCs that retain genomic Survivin alleles are activated, which finally differentiate into hepatocytes and reconstitute the whole liver. By contrast, inducible ablation of Survivin in adult hepatocytes does not affect HPC activation and liver homeostasis during a long-life period. Perinatal Survivin deletion impairs hepatic mitosis in postnatal liver development, which induces HPC activation and reconstitution in the liver, therefore providing a novel HPC induction model. Copyright © 2013 by the American Association for the Study of Liver Diseases.

  20. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells

    PubMed Central

    Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya

    2015-01-01

    Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356

  1. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells.

    PubMed

    Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide

    2015-07-15

    Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.

  2. Generation of mature T cells from human hematopoietic stem/progenitor cells in artificial thymic organoids

    PubMed Central

    Seet, Christopher S.; He, Chongbin; Bethune, Michael T.; Li, Suwen; Chick, Brent; Gschweng, Eric H.; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B.; Baltimore, David; Crooks, Gay M.; Montel-Hagen, Amélie

    2017-01-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCRab+ single positive (SP) CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports highly efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naïve phenotypes, a diverse TCR repertoire, and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen specific cytotoxicity and near complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ loci. ATOs provide a robust tool for studying human T cell development and stem cell based approaches to engineered T cell therapies. PMID:28369043

  3. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina

    PubMed Central

    2012-01-01

    Background Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. Results The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. Conclusions These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins. PMID:23111152

  4. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina.

    PubMed

    Luo, Jing; Uribe, Rosa A; Hayton, Sarah; Calinescu, Anda-Alexandra; Gross, Jeffrey M; Hitchcock, Peter F

    2012-10-30

    Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina's stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.

  5. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells.

    PubMed

    Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won

    2016-02-20

    Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.

  6. Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles

    PubMed Central

    Martin, Kyle J.; Rasch, Liam J.; Cooper, Rory L.; Johanson, Zerina; Fraser, Gareth J.

    2016-01-01

    Teeth and denticles belong to a specialized class of mineralizing epithelial appendages called odontodes. Although homology of oral teeth in jawed vertebrates is well supported, the evolutionary origin of teeth and their relationship with other odontode types is less clear. We compared the cellular and molecular mechanisms directing development of teeth and skin denticles in sharks, where both odontode types are retained. We show that teeth and denticles are deeply homologous developmental modules with equivalent underlying odontode gene regulatory networks (GRNs). Notably, the expression of the epithelial progenitor and stem cell marker sex-determining region Y-related box 2 (sox2) was tooth-specific and this correlates with notable differences in odontode regenerative ability. Whereas shark teeth retain the ancestral gnathostome character of continuous successional regeneration, new denticles arise only asynchronously with growth or after wounding. Sox2+ putative stem cells associated with the shark dental lamina (DL) emerge from a field of epithelial progenitors shared with anteriormost taste buds, before establishing within slow-cycling cell niches at the (i) superficial taste/tooth junction (T/TJ), and (ii) deep successional lamina (SL) where tooth regeneration initiates. Furthermore, during regeneration, cells from the superficial T/TJ migrate into the SL and contribute to new teeth, demonstrating persistent contribution of taste-associated progenitors to tooth regeneration in vivo. This data suggests a trajectory for tooth evolution involving cooption of the odontode GRN from nonregenerating denticles by sox2+ progenitors native to the oral taste epithelium, facilitating the evolution of a novel regenerative module of odontodes in the mouth of early jawed vertebrates: the teeth. PMID:27930309

  7. Gα13 Mediates a Signal That Is Essential for Proliferation and Survival of Thymocyte Progenitors

    PubMed Central

    McNeil Coffield, V.; Helms, Whitney S.; Jiang, Qi; Su, Lishan

    2004-01-01

    G protein signaling via the Gα12 family (Gα12 and Gα13) has not been well studied in T cells. To investigate whether Gα12 and Gα13 are involved in thymopoiesis, we expressed the regulator of G protein signaling domain of p115RhoGEF to inhibit Gα12 and Gα13 during thymopoiesis. Fetal thymus organ cultures seeded with p115ΔDH-expressing progenitor cells showed impaired thymopoiesis with a block at the CD4−CD8−CD44−CD25+ (DN3) stage. Using Gα13 or Gα12 minigenes, we demonstrated that Gα13, but not Gα12, is required for thymopoiesis. T progenitor cells expressing p115ΔDH showed reduced proliferation and increased cell death. T cell receptor stimulation of the fetal thymus organ cultures did not rescue the block. Overexpression of the antiapoptotic gene Bcl2 rescued the defect in DN3 cells and partially rescued T cell development. Therefore, Gα13-mediated signaling is necessary in early thymocyte proliferation and survival. PMID:15534370

  8. dMyc is required in retinal progenitors to prevent JNK-mediated retinal glial activation

    PubMed Central

    Correia, Andreia; Santos, Marília A.; Relvas, João B.; Pereira, Paulo S.

    2017-01-01

    In the nervous system, glial cells provide crucial insulation and trophic support to neurons and are important for neuronal survival. In reaction to a wide variety of insults, glial cells respond with changes in cell morphology and metabolism to allow repair. Additionally, these cells can acquire migratory and proliferative potential. In particular, after axonal damage or pruning the clearance of axonal debris by glial cells is key for a healthy nervous system. Thus, bidirectional neuron-glial interactions are crucial in development, but little is known about the cellular sensors and signalling pathways involved. In here, we show that decreased cellular fitness in retinal progenitors caused by reduced Drosophila Myc expression triggers non cell-autonomous activation of retinal glia proliferation and overmigration. Glia migration occurs beyond its normal limit near the boundary between differentiated photoreceptors and precursor cells, extending into the progenitor domain. This overmigration is stimulated by JNK activation (and the function of its target Mmp1), while proliferative responses are mediated by Dpp/TGF-β signalling activation. PMID:28267791

  9. Pathological Left Ventricular Hypertrophy and Stem Cells: Current Evidence and New Perspectives.

    PubMed

    Marketou, Maria E; Parthenakis, Fragiskos; Vardas, Panos E

    2016-01-01

    Left ventricular hypertrophy (LVH) is a strong predictor of adverse cardiovascular outcomes. It is the result of complex mechanisms that include not only an increase in protein synthesis and cell size but also proliferating cardiac progenitor cells and the influx of bone marrow-derived cells developing into cardiomyocytes. Stem and progenitor cells are known to contribute to the renewal of adult mammalian cardiomyocytes in case of myocardial injury or pressure and volume overload. They are activated in LVH and play a regulatory role in myocardial repair. They have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs that play important roles in cell differentiation, cardiac remodeling, and neovascularization. They are mobilized in response to either mechanical or chemical stimuli, hormones, or pharmacologic agents. Another important source of progenitor cells is the epicardial layer. It appears that precursor cells migrate from the epicardium to the myocardium in order to interact with myocardial cells. In addition, migratory cells participate in the formation of almost all cardiac structures in myocardial hypertrophy. Although the pathophysiological mechanisms are still obscure and further studies are required, their properties may open the door to regenerative cell therapy for the prevention of adverse remodeling.

  10. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.

    PubMed

    Magella, Bliss; Adam, Mike; Potter, Andrew S; Venkatasubramanian, Meenakshi; Chetal, Kashish; Hay, Stuart B; Salomonis, Nathan; Potter, S Steven

    2018-02-01

    The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery

    PubMed Central

    Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector

    2012-01-01

    Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930

  12. High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies.

    PubMed

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Laplanche, Agnès; Hartmann, Olivier; Vassal, Gilles; Farace, Françoise

    2009-07-15

    Pediatric solid malignancies display important angiogenic potential, and blocking tumor angiogenesis represents a new therapeutic approach for these patients. Recent studies have evidenced rare circulating cells with endothelial features contributing to tumor neovascularization and have shown the pivotal role of bone marrow-derived (BMD) progenitor cells in metastatic disease progression. We measured these cells in patients with pediatric solid malignancies as a prerequisite to clinical trials with antiangiogenic therapy. Peripheral blood was drawn from 45 patients with localized (n = 23) or metastatic (n = 22) disease, and 20 healthy subjects. Subsets of circulating vascular endothelial growth factor receptor (VEGFR)2+-BMD progenitor cells, defined as CD45-CD34+VEGFR2(KDR)+7AAD- and CD45(dim)CD34+VEGFR2+7AAD- events, were measured in progenitor-enriched fractions by flow cytometry. Mature circulating endothelial cells (CEC) were measured in whole blood as CD31+CD146+CD45-7AAD- viable events. Data were correlated with VEGF and sVEGFR2 plasma levels. The CD45-CD34+VEGFR2(KDR)+7AAD- subset represented <0.003% of circulating BMD progenitor cells (< or =0.05 cells/mL). However, the median level (range) of the CD45(dim)CD34+VEGFR2+7AAD- subset was higher in patients compared with healthy subjects, 1.5% (0%-10.3%) versus 0.3% (0%-1.6%) of circulating BMD progenitors (P < 0.0001), and differed significantly between patients with localized and metastatic disease, 0.7% (0%-8.6%) versus 2.9% (0.6%-10.3%) of circulating BMD progenitors (P < 0.001). Median CEC value was 7 cells/mL (0-152 cells/mL) and similar in all groups. Unlike VEGFR2+-BMD progenitors, neither CECs, VEGF, or sVEGFR2 plasma levels correlated with disease status. High levels of circulating VEGFR2+-BMD progenitor cells correlated with metastatic disease. Our study provides novel insights for angiogenesis mechanisms in pediatric solid malignancies for which antiangiogenic targeting of VEGFR2+-BMD progenitors could be of interest.

  13. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA.

    PubMed

    Lu, Song; Chow, Christie C; Zhou, Junwei; Leung, Po Sing; Tsui, Stephen K; Lui, Kathy O

    2016-01-01

    In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.

  14. Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Woods, Brittany A.; LaFave, Lindsay M.; Bastian, Lennart; Kleppe, Maria; Bhagwat, Neha; Marubayashi, Sachie

    2014-01-01

    JAK inhibitor treatment is limited by the variable development of anemia and thrombocytopenia thought to be due to on-target JAK2 inhibition. We evaluated the impact of Jak2 deletion in platelets (PLTs) and megakaryocytes (MKs) on blood counts, stem/progenitor cells, and Jak-Stat signaling. Pf4-Cre–mediated Jak2 deletion in PLTs and MKs did not compromise PLT formation but caused thrombocytosis, and resulted in expansion of MK progenitors and Lin−Sca1+Kit+ cells. Serum thrombopoietin (TPO) was maintained at normal levels in Pf4-Cre–positive Jak2f/f mice, consistent with reduced internalization/turnover by Jak2-deficient PLTs. These data demonstrate that Jak2 in terminal megakaryopoiesis is not required for PLT production, and that Jak2 loss in PLTs and MKs results in non-autonomous expansion of stem/progenitors and of MKs and PLTs via dysregulated TPO turnover. This suggests that the thrombocytopenia frequently seen with JAK inhibitor treatment is not due to JAK2 inhibition in PLTs and MKs, but rather due to JAK2 inhibition in stem/progenitor cells. PMID:25115888

  15. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    PubMed

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  16. Identification of hair shaft progenitors that create a niche for hair pigmentation

    PubMed Central

    Liao, Chung-Ping; Booker, Reid C.; Morrison, Sean J.; Le, Lu Q.

    2017-01-01

    Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20+ cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. PMID:28465357

  17. Identification of hair shaft progenitors that create a niche for hair pigmentation.

    PubMed

    Liao, Chung-Ping; Booker, Reid C; Morrison, Sean J; Le, Lu Q

    2017-04-15

    Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20 + cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. © 2017 Liao et al.; Published by Cold Spring Harbor Laboratory Press.

  18. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?

    PubMed

    Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri

    2012-01-01

    Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.

  19. Stem cells in nephrology: present status and future.

    PubMed

    Watorek, Ewa; Klinger, Marian

    2006-01-01

    Stem cell biology is currently developing rapidly because of the potential therapeutic utility of stem cells. The ability to acquire any desired phenotype raises hope for regenerative therapies. Manipulation of these cells is a potentially valuable tool; however, the mechanisms of stem cell differentiation and plasticity are currently beyond our control. In the field of nephrology, the presence of adult kidney stem cells has been debated. Renal adult stem cells may be descendants of some early kidney progenitors, or may be derived from bone marrow. Evidence of a hematopoietic stem-cell contribution to renal repair encourages the possibility of bone marrow or stem cell transplantation as a means of treating autoimmune glomerulopathies. The transplantation of fetal kidney tissue containing renal progenitors, which then develop into functional nephrons, is a step towards renal regeneration. According to recent reports, the development of functional nephrons from human mesenchymal stem cells in rodent whole-embryo culture is possible. Establishing in vitro self organs from autologous stem cells would be a promising therapeutic solution in light of the shortage of allogenic organs and the unresolved problem of chronic allograft rejection.

  20. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies.

    PubMed

    Dinh, Phuong-Uyen C; Cores, Jhon; Hensley, M Taylor; Vandergriff, Adam C; Tang, Junnan; Allen, Tyler A; Caranasos, Thomas G; Adler, Kenneth B; Lobo, Leonard J; Cheng, Ke

    2017-06-30

    Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).

  1. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro.

    PubMed

    Jaeger, Alexandra; Fröhlich, Michael; Klum, Susanne; Lantow, Margareta; Viergutz, Torsten; Weiss, Dieter G; Kriehuber, Ralf

    2015-11-01

    Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.

  2. Marrow stromal cells from patients affected by MPS I differentially support haematopoietic progenitor cell development.

    PubMed

    Baxter, M A; Wynn, R F; Schyma, L; Holmes, D K; Wraith, J E; Fairbairn, L J; Bellantuono, I

    2005-01-01

    Bone marrow transplantation is the therapy of choice in patients affected by MPS I (Hurler syndrome), but a high incidence of rejection limits the success of this treatment. The deficiency of alpha-L-iduronidase (EC 1.2.3.76), one of the enzymes responsible for the degradation of glycosaminoglycans, results in accumulation of heparan and dermatan sulphate in these patients. Heparan sulphate and dermatan sulphate are known to be important components of the bone marrow microenvironment and critical for haematopoietic cell development. In this study we compared the ability of marrow stromal cells from MPS I patients and healthy donors to support normal haematopoiesis in Dexter-type long term culture. We found an inverse stroma/supernatant ratio in the number of clonogenic progenitors, particularly the colony-forming unit granulocyte-machrophage in MPS I cultures when compared to normal controls. No alteration in the adhesion of haematopoietic cells to the stroma of MPS I patients was found, suggesting that the altered distribution in the number of clonogenic progenitors is probably the result of an accelerated process of differentiation and maturation. The use of alpha-L-iduronidase gene-corrected marrow stromal cells re-established normal haematopoiesis in culture, suggesting that correction of the bone marrow microenvironment with competent enzyme prior to transplantation might help establishment of donor haematopoiesis.

  3. Circulating hematopoietic progenitor cells in patients affected by Chornobyl accident.

    PubMed

    Bilko, N M; Dyagil, I S; Russu, I Z; Bilko, D I

    2016-12-01

    High radiation sensitivity of stem cells and their ability to accumulate sublethal radiation damage provides the basis for investigation of hematopoietic progenitors using in vivo culture methodology. Unique samples of peripheral blood and bone marrow were derived from the patients affected by Chornobyl accident during liquidation campaign. To investigate functional activity of circulating hematopoietic progenitor cells from peripheral blood and bone marrow of cleanup workers in early and remote periods after the accident at Chornobyl nuclear power plant (CNPP). The assessment of the functional activity of circulating hematopoietic progenitor cells was performed in samples of peripheral blood and bone marrow of 46 cleanup workers, who were treated in the National Scientific Center for Radiation Medicine of the Academy of Medical Sciences of Ukraine alongside with 35 non radiated patients, who served as a control. Work was performed by culturing peripheral blood and bone marrow mononuclear cells in the original gel diffusion capsules, implanted into the peritoneal cavity of CBA mice. It was shown that hematopoietic progenitor cells could be identified in the peripheral blood of liquidators of CNPP accident. At the same time the number of functionally active progenitor cells of the bone marrow was significantly decreased and during the next 10 years after the accident, counts of circulating progenitor cells in the peripheral blood as well as functionally active hematopoietic cells in bone marrow returned to normal levels. It was shown that hematopoietic progenitor cells are detected not only in the bone marrow but also in the peripheral blood of liquidators as a consequence of radiation exposure associated with CNPP accident. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  4. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain.

    PubMed

    Tochitani, Shiro; Kondo, Shigeaki

    2013-01-01

    Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11-E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.

  5. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the Meninges and the Choroid Plexus: Implications for Non-Neuronal Sources for GABA in the Developing Mouse Brain

    PubMed Central

    Tochitani, Shiro; Kondo, Shigeaki

    2013-01-01

    Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development. PMID:23437266

  6. Enhancing Therapeutic Cellular Prostate Cancer Vaccines

    DTIC Science & Technology

    2012-06-01

    oxygen -mediated mobilization of mesenchymal stem cell and progenitors (MSCs)”, Division of Preventive, Occupational, And Aerospace Medicine...postdoctoral fellow Completed: Tittle: Hyperbaric oxygen as mobilizer of stem cells and progenitors in senescent mice (Stanimir Vuk-Pavlovic, P.I.). Co... stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) from bone marrow into circulation of old mice were explored. Specific Aims:

  7. Widespread Non-Hematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity

    PubMed Central

    Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.

    2011-01-01

    Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447

  8. Mesenchymal Progenitors Residing Close to the Bone Surface Are Functionally Distinct from Those in the Central Bone Marrow

    PubMed Central

    Siclari, Valerie A.; Zhu, Ji; Akiyama, Kentaro; Liu, Fei; Zhang, Xianrong; Chandra, Abhishek; Nah-Cederquist, Hyun-Duck; Shi, Songtao; Qin, Ling

    2013-01-01

    Long bone is an anatomically complicated tissue with trabecular-rich metaphyses at two ends and cortical-rich diaphysis at the center. The traditional flushing method only isolates mesenchymal progenitor cells from the central region of long bones and these cells are distant from the bone surface. We propose that mesenchymal progenitors residing in endosteal bone marrow that is close to the sites of bone formation, such as trabecular bone and endosteum, behave differently from those in the central bone marrow. In this report, we separately isolated endosteal bone marrow using a unique enzymatic digestion approach and demonstrated that it contained a much higher frequency of mesenchymal progenitors than the central bone marrow. Endosteal mesenchymal progenitors express traditional mesenchymal stem cell markers and are capable of multi-lineage differentiation. However, we found that mesenchymal progenitors isolated from different anatomical regions of the marrow did exhibit important functional differences. Compared to their central marrow counterparts, endosteal mesenchymal progenitors have superior proliferative ability with reduced expression of cell cycle inhibitors. They showed greater immunosuppressive activity in culture and in a mouse model of inflammatory bowel disease. Aging is a major contributing factor for trabecular bone loss. We found that old mice have a dramatically decreased number of endosteal mesenchymal progenitors compared to young mice. Parathyroid hormone (PTH) treatment potently stimulates bone formation. A single PTH injection greatly increased the number of endosteal mesenchymal progenitors, particularly those located at the metaphyseal bone, but had no effect on their central counterparts. In summary, endosteal mesenchymal progenitors are more metabolically active and relevant to physiological bone formation than central mesenchymal progenitors. Hence, they represent a biologically important target for future mesenchymal stem cell studies. PMID:23274348

  9. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells

    PubMed Central

    Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL

    2009-01-01

    Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721

  10. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    PubMed

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  11. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  12. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    PubMed

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  13. Development of an In Vitro Assay to Quantitate Hematopoietic Stem and Progenitor Cells (HSPCs) in Developing Zebrafish Embryos.

    PubMed

    Berrun, A C; Stachura, D L

    2017-11-30

    Hematopoiesis is an essential cellular process in which hematopoietic stem and progenitor cells (HSPCs) differentiate into the multitude of different cell lineages that comprise mature blood. Isolation and identification of these HSPCs is difficult because they are defined ex post facto; they can only be defined after their differentiation into specific cell lineages. Over the past few decades, the zebrafish (Danio rerio) has become a model organism to study hematopoiesis. Zebrafish embryos develop ex utero, and by 48 h post-fertilization (hpf) have generated definitive HSPCs. Assays to assess HSPC differentiation and proliferation capabilities have been developed, utilizing transplantation and subsequent reconstitution of the hematopoietic system in addition to visualizing specialized transgenic lines with confocal microscopy. However, these assays are cost prohibitive, technically difficult, and time consuming for many laboratories. Development of an in vitro model to assess HSPCs would be cost effective, quicker, and present fewer difficulties compared to previously described methods, allowing laboratories to quickly assess mutagenesis and drug screens that affect HSPC biology. This novel in vitro assay to assess HSPCs is performed by plating dissociated whole zebrafish embryos and adding exogenous factors that promote only HSPC differentiation and proliferation. Embryos are dissociated into single cells and plated with HSPC-supportive colony stimulating factors that cause them to generate colony forming units (CFUs) that arise from a single progenitor cell. These assays should allow more careful examination of the molecular pathways responsible for HSPC proliferation, differentiation, and regulation, which will allow researchers to understand the underpinnings of vertebrate hematopoiesis and its dysregulation during disease.

  14. Gravity and animal embryos

    NASA Technical Reports Server (NTRS)

    Wiley, Lynn M.

    1989-01-01

    Out of more than 4,500 rat hours in space there was only one experimental attempt (Cosmos 1129) at mating with an apparent absence of fertilization, implantation and subsequent development to term and partuition. Portions of this process were successfully flown, however, including the major portion of organogenesis in the rat (Cosmos 1524). These observations show that the cellular and molecular events underlying morphogenesis and differentiation in a small mammal can proceed normally in-utero under microgravity and other conditions encountered during short-duration flight. However, it is not known whether this situation will hold for larger mammals over several generations during extended missions that venture outside of near Earth. Furthermore, it is not understood why the previous attempt at obtaining copulation, fertilization and implantation in orbit failed but may be related to limitations of the rat habitat for meeting the preconditions for reproductive behavior. With respect to mammalian development it is important to appreciate that fertilization and development occur internally within the female and take a long time to complete and their success will, therefore, be contingent upon the maternal response to the space environment. One process central to development (the establishment of cell lines) is initiated prior to implantation by environmental asymmetries preceived by progenitor cells. These asymmetries appear to result from the formation of asymmetric cell-cell contacts and the concommitant development of an electrical axis across the progenitor cells. Other asymmetries were also documented. It is not known whether any of the known asymmetries perceived by progenitor cells are influenced by gravity vectors and/or by the maternal response to microgravity and other conditions encountered in space.

  15. Isolation and animal serum free expansion of human umbilical cord derived mesenchymal stromal cells (MSCs) and endothelial colony forming progenitor cells (ECFCs).

    PubMed

    Reinisch, Andreas; Strunk, Dirk

    2009-10-08

    The umbilical cord is a rich source for progenitor cells with high proliferative potential including mesenchymal stromal cells (also termed mesenchymal stem cells, MSCs) and endothelial colony forming progenitor cells (ECFCs). Both cell types are key players in maintaining the integrity of tissue and are probably also involved in regenerative processes and tumor formation. To study their biology and function in a comparative manner it is important to have both cells types available from the same donor. It may also be beneficial for regenerative purposes to derive MSCs and ECFCs from the same tissue. Because cellular therapeutics should eventually find their way from bench to bedside we established a new method to isolate and further expand progenitor cells without the use of animal protein. Pooled human platelet lysate (pHPL) replaced fetal bovine serum in all steps of our protocol to completely avoid contact of the cells to xenogeneic proteins. This video demonstrates a methodology for the isolation and expansion of progenitor cells from one umbilical cord. All materials and procedures will be described.

  16. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity

    PubMed Central

    Capoccia, Benjamin J.; Robson, Debra L.; Levac, Krysta D.; Maxwell, Dustin J.; Hohm, Sarah A.; Neelamkavil, Marian J.; Bell, Gillian I.; Xenocostas, Anargyros; Link, Daniel C.; Piwnica-Worms, David; Nolta, Jan A.

    2009-01-01

    The development of cell therapies to treat peripheral vascular disease has proven difficult because of the contribution of multiple cell types that coordinate revascularization. We characterized the vascular regenerative potential of transplanted human bone marrow (BM) cells purified by high aldehyde dehydrogenase (ALDHhi) activity, a progenitor cell function conserved between several lineages. BM ALDHhi cells were enriched for myelo-erythroid progenitors that produced multipotent hematopoietic reconstitution after transplantation and contained nonhematopoietic precursors that established colonies in mesenchymal-stromal and endothelial culture conditions. The regenerative capacity of human ALDHhi cells was assessed by intravenous transplantation into immune-deficient mice with limb ischemia induced by femoral artery ligation/transection. Compared with recipients injected with unpurified nucleated cells containing the equivalent of 2- to 4-fold more ALDHhi cells, mice transplanted with purified ALDHhi cells showed augmented recovery of perfusion and increased blood vessel density in ischemic limbs. ALDHhi cells transiently recruited to ischemic regions but did not significantly integrate into ischemic tissue, suggesting that transient ALDHhi cell engraftment stimulated endogenous revascularization. Thus, human BM ALDHhi cells represent a progenitor-enriched population of several cell lineages that improves perfusion in ischemic limbs after transplantation. These clinically relevant cells may prove useful in the treatment of critical ischemia in humans. PMID:19324906

  17. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles

    PubMed Central

    Hamey, Fiona K.; Nestorowa, Sonia; Kinston, Sarah J.; Kent, David G.; Wilson, Nicola K.

    2017-01-01

    Adult blood contains a mixture of mature cell types, each with specialized functions. Single hematopoietic stem cells (HSCs) have been functionally shown to generate all mature cell types for the lifetime of the organism. Differentiation of HSCs toward alternative lineages must be balanced at the population level by the fate decisions made by individual cells. Transcription factors play a key role in regulating these decisions and operate within organized regulatory programs that can be modeled as transcriptional regulatory networks. As dysregulation of single HSC fate decisions is linked to fatal malignancies such as leukemia, it is important to understand how these decisions are controlled on a cell-by-cell basis. Here we developed and applied a network inference method, exploiting the ability to infer dynamic information from single-cell snapshot expression data based on expression profiles of 48 genes in 2,167 blood stem and progenitor cells. This approach allowed us to infer transcriptional regulatory network models that recapitulated differentiation of HSCs into progenitor cell types, focusing on trajectories toward megakaryocyte–erythrocyte progenitors and lymphoid-primed multipotent progenitors. By comparing these two models, we identified and subsequently experimentally validated a difference in the regulation of nuclear factor, erythroid 2 (Nfe2) and core-binding factor, runt domain, alpha subunit 2, translocated to, 3 homolog (Cbfa2t3h) by the transcription factor Gata2. Our approach confirms known aspects of hematopoiesis, provides hypotheses about regulation of HSC differentiation, and is widely applicable to other hierarchical biological systems to uncover regulatory relationships. PMID:28584094

  18. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu; Wang, Kai; Gong, Yun Guo

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, canmore » be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and EOMES may play critical roles in human iTP cell generation.« less

  19. Proliferative defects and formation of a double cortex in mice lacking Mltt4 and Cdh2 in the dorsal telencephalon.

    PubMed

    Gil-Sanz, Cristina; Landeira, Bruna; Ramos, Cynthia; Costa, Marcos R; Müller, Ulrich

    2014-08-06

    Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype. Copyright © 2014 the authors 0270-6474/14/3410475-13$15.00/0.

  20. Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

    PubMed Central

    Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.

    2010-01-01

    Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696

Top