Sample records for prognostic chromosome instability

  1. Chromosomal instability in the lymphocytes of breast cancer patients

    PubMed Central

    Harsimran, Kaur; Kaur, Monga Gaganpreet; Nitika, Setia; Meena, Sudan; M. S., Uppal; Yamini; A. P. S., Batra; Vasudha, Sambyal

    2009-01-01

    Genomic instability in the tumor tissue has been correlated with tumor progression. In the present study, chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) of breast tumor patients were studied to assess whether chromosomal instability (CIN) in PBLs correlates with aggressiveness of breast tumor (i.e., disease stage) and has any prognostic utility. Cultured blood lymphocyte metaphases were scored for aberrations in 31 breast cancer patients and 20 healthy age and sex-matched controls. A variety of CAs, including aneuploidy, polyploidy, terminal deletions, acentric fragments, double minutes, chromatid separations, ring chromosome, marker chromosome, chromatid gaps, and breaks were seen in PBLs of the patients. The CAs in patients were higher than in controls. A comparison of the frequency of metaphases with aberrations by grouping the patients according to the stage of advancement of disease did not reveal any consistent pattern of variation in lymphocytic CIN. Neither was any specific chromosomal abnormality found to be associated with the stage of cancer. This might be indicative of the fact that cancer patients have constitutional CIN, which predisposes them to the disease, and this inherent difference in the level of genomic instability might play a role in disease progression and response to treatment. PMID:20407644

  2. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  3. Chromosomal instability drives metastasis through a cytosolic DNA response.

    PubMed

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  4. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  5. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  6. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  7. Characteristics of chromosome instability in the human lymphoblast cell line WTK1

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Evans, H. H.

    2001-01-01

    The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.

  8. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    NASA Technical Reports Server (NTRS)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  9. Genetic instability in urinary bladder cancer: An evolving hallmark.

    PubMed

    Wadhwa, N; Mathew, B B; Jatawa, S K; Tiwari, A

    2013-01-01

    Bladder cancer is a major health-care concern. A successful treatment of bladder cancer depends on its early diagnosis at the initial stage. Genetic instability is an essential early step toward the development of bladder cancer. This instability is found more often at the chromosomal level than at the nucleotide level. Microsatellite and chromosomal instability markers can be used as a prognostic marker for screening bladder cancer. Bladder cancer can be distinguished in two different categories according to genetic instability: Cancers with chromosomal level instability and cancers with nucleotide level instability. Deoxyribonucleic acid (DNA) mismatch repair (MMR) system and its correlation with other biologic pathway, both are essential to understand the basic mechanisms of cancer development. Microsatellite instability occurs due to defects in DNA MMR genes, including human mutL homolog 1 and human mutL homolog 2. Chromosomal alterations including deletions on chromosome 3, 8, 9, 11, 13, 17 have been detected in bladder cancer. In the current review, the most recent literature of genetic instability in urinary bladder cancer has been summarized.

  10. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability

    PubMed Central

    Sansregret, Laurent; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J.; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R.; Medema, René H.; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-01-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. Significance We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. PMID:28069571

  11. Characterization and prognostic implication of 17 chromosome abnormalities in myelodysplastic syndrome.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; Arenillas, Leonor; Valcarcel, David; Vallespí, Teresa; Costa, Dolors; Nomdedeu, Benet; Jimenez, María José; Granada, Isabel; Grau, Javier; Ardanaz, María T; de la Serna, Javier; Carbonell, Félix; Cervera, José; Sierra, Adriana; Luño, Elisa; Cervero, Carlos J; Falantes, José; Calasanz, María J; González-Porrás, José R; Bailén, Alicia; Amigo, M Luz; Sanz, Guillermo; Solé, Francesc

    2013-07-01

    The prognosis of chromosome 17 (chr17) abnormalities in patients with primary myelodysplastic syndrome (MDS) remains unclear. The revised International Prognostic Scoring System (IPSS-R) includes these abnormalities within the intermediate cytogenetic risk group. This study assessed the impact on overall survival (OS) and risk of acute myeloid leukemia transformation (AMLt) of chr17 abnormalities in 88 patients with primary MDS. We have compared this group with 1346 patients with primary MDS and abnormal karyotype without chr17 involved. The alterations of chr17 should be considered within group of poor prognosis. The different types of alterations of chromosome 17 behave different prognosis. The study confirms the intermediate prognostic impact of the i(17q), as stated in IPSS-R. The results of the study, however, provide valuable new information on the prognostic impact of alterations of chromosome 17 in complex karyotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Role of Chromosomal Instability in Cancer and Therapeutic Responses

    PubMed Central

    Vargas-Rondón, Natalia

    2017-01-01

    Cancer is one of the leading causes of death, and despite increased research in recent years, control of advanced-stage disease and optimal therapeutic responses remain elusive. Recent technological improvements have increased our understanding of human cancer as a heterogeneous disease. For instance, four hallmarks of cancer have recently been included, which in addition to being involved in cancer development, could be involved in therapeutic responses and resistance. One of these hallmarks is chromosome instability (CIN), a source of genetic variation in either altered chromosome number or structure. CIN has become a hot topic in recent years, not only for its implications in cancer diagnostics and prognostics, but also for its role in therapeutic responses. Chromosomal alterations are mainly used to determine genetic heterogeneity in tumors, but CIN could also reveal treatment efficacy, as many therapies are based on increasing CIN, which causes aberrant cells to undergo apoptosis. However, it should be noted that contradictory findings on the implications of CIN for the therapeutic response have been reported, with some studies associating high CIN with a better therapeutic response and others associating it with therapeutic resistance. Considering these observations, it is necessary to increase our understanding of the role CIN plays not only in tumor development, but also in therapeutic responses. This review focuses on recent studies that suggest possible mechanisms and consequences of CIN in different disease types, with a primary focus on cancer outcomes and therapeutic responses. PMID:29283387

  13. The evolution of chromosomal instability in Chinese hamster cells: a changing picture?

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    1998-01-01

    PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.

  14. Evidence of chromosomal instability in neurofibromatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafez, M.; Sharaf, L.; Abd el-Nabi, S.M.

    Blood lymphocytes from six unrelated patients with neurofibromatosis and three normal controls were examined for their response to different doses (0, 75, 150, 300, 400 rad) of x-radiation, as measured by chromosome aberrations (gaps, breaks, dicentrics, centric rings, acentric ring, fragments, and minutes). Cytogenetic studies on phytohemagglutinin-stimulated cells revealed chromosomal instability in the neurofibromatosis lymphocytes as shown by the significant increase in the in the incidence of gaps, breaks and dicentrics. This increase paralleled the increase in the dose of irradiation. The significance of these findings is discussed.

  15. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    PubMed Central

    2010-01-01

    Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two

  16. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    PubMed

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  17. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  18. Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells

    PubMed Central

    Godek, Kristina M.; Venere, Monica; Wu, Quilian; Mills, Kevin D.; Hickey, William F.; Rich, Jeremy N.; Compton, Duane A.

    2016-01-01

    Tumors are dynamic organs that evolve during disease progression with genetic, epigenetic, and environmental differences among tumor cells serving as the foundation for selection and evolution in tumors. Tumor-initiating cells (TICs) that are responsible for tumorigenesis are a source of functional cellular heterogeneity while chromosomal instability (CIN) is a source of karyotypic genetic diversity. However, the extent that CIN contributes to TIC genetic diversity and its relationship to TIC function remains unclear. Here we demonstrate that glioblastoma TICs display chromosomal instability with lagging chromosomes at anaphase and extensive non-clonal chromosome copy number variations. Elevating the basal chromosome mis-segregation rate in TICs both decreases proliferation and the stem-like phenotype of TICs in vitro. Consequently tumor formation is abolished in an orthotopic mouse model. These results demonstrate that TICs generate genetic heterogeneity within tumors but that TIC function is impaired if the rate of genetic change is elevated above a tolerable threshold. PMID:27001151

  19. Evaluation of Chromosomal Instability in Diabetic Rats Treated with Naringin

    PubMed Central

    A. Bakheet, Saleh; M. Attia, Sabry

    2011-01-01

    We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients. PMID:21941606

  20. A role for chromosomal instability in the development of and selection for radioresistant cell variants

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Jordan, R.; Morgan, W. F.; Schwartz, J. L.

    2001-01-01

    Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human-hamster hybrid cells. There was a broader distribution of radiosensitivity and a higher mean SF(2)in chromosomally unstable clones. Cytogenetic and DNA double-strand break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant variants. Copyright 2001 Cancer Research Campaign.

  1. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  2. Association between genomic instability and evolutionary chromosomal rearrangements in Neotropical Primates.

    PubMed

    Puntieri, Fiona; Andrioli, Nancy B; Nieves, Mariela

    2018-06-14

    During the last decades the mammalian genome has been proposed to have regions prone to breakage and reorganization concentrated in certain chromosomal bands that seem to correspond to evolutionary breakpoints. These bands are likely to be involved in chromosome fragility or instability. In Primates, some biomarkers of genetic damage may be associated with various degrees of genomic instability. Here, we investigated the usefulness of Sister Chromatid Exchange (SCE) as a biomarker of potential sites of frequent chromosome breakage and rearrangement in Alouatta caraya, Ateles chamek, Ateles paniscus and Cebus cay. These Neotropical species have particular genomic and chromosomal features allowing the analysis of genomic instability for comparative purposes. We determined the frequency of spontaneous induction of SCEs and assessed the relationship between these and structural rearrangements implicated in the evolution of the primates of interest. Overall, A. caraya and C. cay presented a low proportion of statistically significant unstable bands, suggesting fairly stable genomes and the existence of some kind of protection against endogenous damage. In contrast, Ateles showed a highly significant proportion of unstable bands; these were mainly found in the rearranged regions, which is consistent with the numerous genomic reorganizations that might have occurred during the evolution of this genus.

  3. Chromosomal instability in women with primary ovarian insufficiency.

    PubMed

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  4. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less

  5. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.

    PubMed

    Lamm, Noa; Ben-David, Uri; Golan-Lev, Tamar; Storchová, Zuzana; Benvenisty, Nissim; Kerem, Batsheva

    2016-02-04

    Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations such as aneuploidy in culture. These aberrations progressively increase over time and may compromise the properties and clinical utility of the cells. The underlying mechanisms that drive initial genomic instability and its continued progression are largely unknown. Here, we show that aneuploid hPSCs undergo DNA replication stress, resulting in defective chromosome condensation and segregation. Aneuploid hPSCs show altered levels of actin cytoskeletal genes controlled by the transcription factor SRF, and overexpression of SRF rescues impaired chromosome condensation and segregation defects in aneuploid hPSCs. Furthermore, SRF downregulation in diploid hPSCs induces replication stress and perturbed condensation similar to that seen in aneuploid cells. Together, these results suggest that decreased SRF expression induces replicative stress and chromosomal condensation defects that underlie the ongoing chromosomal instability seen in aneuploid hPSCs. A similar mechanism may also operate during initiation of instability in diploid cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability.

    PubMed

    Kontou, Maria; Adelfalk, Caroline; Ramirez, Maria Helena; Ruppitsch, Werner; Hirsch-Kauffmann, Monica; Schweiger, Manfred

    2002-04-04

    The cause of the molecular defect of Fanconi anemia (FA) remains unknown. Cells from patients with FA exert an elevated spontaneous chromosomal instability which is further triggered by mitomycin C. The induced lability is reduced by overexpression of thioredoxin which is not the case for spontaneous instability. However, both are eliminated by overexpression of thioredoxin cDNA with an added nuclear localization signal. This implies that thioredoxin is lacking in the nuclei of FA cells. The total thioredoxin content in all FA cells tested is reduced. The resultant lack of nuclear thioredoxin can be the explanation for the major symptomatology in FA. Since thioredoxin is known to be the reactive cofactor of ribonucleotid reductase its shortcoming reduces the supply of deoxyribonucleotides thus hindering the DNA and replication repair with resultant chromosomal breaks. Furthermore, depression of tyrosine hydroxylase, the key enzyme of melanine synthesis, could be the basis for the pathognomotic 'café au lait' spots of FA. The observation of thioredoxin reduction in FA cells permits insight into the molecular phathophysiology of FA.

  7. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution.

    PubMed

    Bolzán, Alejandro D

    2017-07-01

    By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma1

    PubMed Central

    Yang, Hong Wei; Kim, Tae-Min; Song, Sydney S; Shrinath, Nihal; Park, Richard; Kalamarides, Michel; Park, Peter J; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2012-01-01

    Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas. PMID:22355270

  9. Chromosomal Instability in Gastric Cancer Biology.

    PubMed

    Maleki, Saffiyeh Saboor; Röcken, Christoph

    2017-05-01

    Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus-positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus-positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus-positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications.

    PubMed

    Zaccaria, Alfonso; Testoni, Nicoletta; Valenti, Anna Maria; Luatti, Simona; Tonelli, Michela; Marzocchi, Giulia; Cipriani, Raffaella; Baldazzi, Carmen; Giannini, Barbara; Stacchini, Monica; Gamberini, Carla; Castagnetti, Fausto; Rosti, Gianantonio; Azzena, Annalisa; Cavazzini, Francesco; Cianciulli, Anna Maria; Dalsass, Alessia; Donti, Emilio; Giugliano, Emilia; Gozzetti, Alessandro; Grimoldi, Maria Grazia; Ronconi, Sonia; Santoro, Alessandra; Spedicato, Francesco; Zanatta, Lucia; Baccarani, Michele

    2010-06-01

    Additional chromosome abnormalities (ACAs) occur in less than 10% of cases at diagnosis of Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia (CML). In some cases, on the basis of the persistence of the ACAs in Ph-negative cells after response to imatinib, a secondary origin of the Ph chromosome has been demonstrated. In this study, the possible prognostic value of this phenomenon was evaluated. Thirty-six Ph-positive CML patients were included in the study. In six patients, ACAs persisted after the disappearance of the Ph. A complete cytogenetic response (CCR) was obtained in five of these six patients, and five of six also had a high Sokal score. In all the other cases, ACAs disappeared together (in cases of response to therapy with imatinib) or persisted with the Ph (in cases of no response to imatinib). In the former cases, the primary origin of the Ph was demonstrated. CCR was obtained in 22 cases (17 with low to intermediate Sokal scores), while no response was observed in 8 patients (5 with a high Sokal score). Sokal score seems to maintain its prognostic value for patients in whom the Ph occurs as a primary event, but not in those in whom it occurs as a secondary one. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström's macroglobulinemia.

    PubMed

    Nguyen-Khac, Florence; Lambert, Jerome; Chapiro, Elise; Grelier, Aurore; Mould, Sarah; Barin, Carole; Daudignon, Agnes; Gachard, Nathalie; Struski, Stéphanie; Henry, Catherine; Penther, Dominique; Mossafa, Hossein; Andrieux, Joris; Eclache, Virginie; Bilhou-Nabera, Chrystèle; Luquet, Isabelle; Terre, Christine; Baranger, Laurence; Mugneret, Francine; Chiesa, Jean; Mozziconacci, Marie-Joelle; Callet-Bauchu, Evelyne; Veronese, Lauren; Blons, Hélène; Owen, Roger; Lejeune, Julie; Chevret, Sylvie; Merle-Beral, Hélène; Leblondon, Véronique

    2013-04-01

    Waldenström's macroglobulinemia is a disease of mature B cells, the genetic basis of which is poorly understood. Few recurrent chromosomal abnormalities have been reported, and their prognostic value is not known. We conducted a prospective cytogenetic study of Waldenström's macroglobulinemia and examined the prognostic value of chromosomal aberrations in an international randomized trial. The main aberrations were 6q deletions (30%), trisomy 18 (15%), 13q deletions (13%), 17p (TP53) deletions (8%), trisomy 4 (8%), and 11q (ATM) deletions (7%). There was a significant association between trisomy of chromosome 4 and trisomy of chromosome 18. Translocations involving the IGH genes were rare (<5%). Deletion of 6q and 11q, and trisomy 4, were significantly associated with adverse clinical and biological parameters. Patients with TP53 deletion had short progression-free survival and short disease-free survival. Although rare (<5%), trisomy 12 was associated with short progression-free survival. In conclusion, the cytogenetic profile of Waldenström's macroglobulinemia appears to differ from that of other B-cell lymphomas. Chromosomal abnormalities may help with diagnosis and prognostication, in conjunction with other clinical and biological characteristics.

  12. Mechanisms of ring chromosome formation, ring instability and clinical consequences.

    PubMed

    Guilherme, Roberta S; Meloni, Vera F Ayres; Kim, Chong A; Pellegrino, Renata; Takeno, Sylvia S; Spinner, Nancy B; Conlin, Laura K; Christofolini, Denise M; Kulikowski, Leslie D; Melaragno, Maria I

    2011-12-21

    The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients. Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization). The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV). We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).

  13. TP53-dependent chromosome instability is associated with transient reductions in telomere length in immortal telomerase-positive cell lines

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.

    2001-01-01

    Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.

  14. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström's macroglobulinemia

    PubMed Central

    Nguyen-Khac, Florence; Lambert, Jerome; Chapiro, Elise; Grelier, Aurore; Mould, Sarah; Barin, Carole; Daudignon, Agnes; Gachard, Nathalie; Struski, Stéphanie; Henry, Catherine; Penther, Dominique; Mossafa, Hossein; Andrieux, Joris; Eclache, Virginie; Bilhou-Nabera, Chrystèle; Luquet, Isabelle; Terre, Christine; Baranger, Laurence; Mugneret, Francine; Chiesa, Jean; Mozziconacci, Marie-Joelle; Callet-Bauchu, Evelyne; Veronese, Lauren; Blons, Hélène; Owen, Roger; Lejeune, Julie; Chevret, Sylvie; Merle-Beral, Hélène; Leblondon, Véronique

    2013-01-01

    Waldenström's macroglobulinemia is a disease of mature B cells, the genetic basis of which is poorly understood. Few recurrent chromosomal abnormalities have been reported, and their prognostic value is not known. We conducted a prospective cytogenetic study of Waldenström's macroglobulinemia and examined the prognostic value of chromosomal aberrations in an international randomized trial. The main aberrations were 6q deletions (30%), trisomy 18 (15%), 13q deletions (13%), 17p (TP53) deletions (8%), trisomy 4 (8%), and 11q (ATM) deletions (7%). There was a significant association between trisomy of chromosome 4 and trisomy of chromosome 18. Translocations involving the IGH genes were rare (<5%). Deletion of 6q and 11q, and trisomy 4, were significantly associated with adverse clinical and biological parameters. Patients with TP53 deletion had short progression-free survival and short disease-free survival. Although rare (<5%), trisomy 12 was associated with short progression-free survival. In conclusion, the cytogenetic profile of Waldenström's macroglobulinemia appears to differ from that of other B-cell lymphomas. Chromosomal abnormalities may help with diagnosis and prognostication, in conjunction with other clinical and biological characteristics. This trial is registered with Clinicaltrials.gov, numbers NCT00566332 and NCT00608374. PMID:23065509

  15. Are chromosomal instabilities induced by exposure of cultured normal human cells to low- or high-LET radiation?

    NASA Technical Reports Server (NTRS)

    Dugan, Lawrence C.; Bedford, Joel S.

    2003-01-01

    Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.

  16. Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer.

    PubMed

    Weiler, Sofia M E; Pinna, Federico; Wolf, Thomas; Lutz, Teresa; Geldiyev, Aman; Sticht, Carsten; Knaub, Maria; Thomann, Stefan; Bissinger, Michaela; Wan, Shan; Rössler, Stephanie; Becker, Diana; Gretz, Norbert; Lang, Hauke; Bergmann, Frank; Ustiyan, Vladimir; Kalin, Tatiana V; Singer, Stephan; Lee, Ju-Seog; Marquardt, Jens U; Schirmacher, Peter; Kalinichenko, Vladimir V; Breuhahn, Kai

    2017-06-01

    Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan-Meier curves. We analyzed changes in expression of these signature genes, at mRNA and protein levels, after small interfering RNA-mediated silencing of YAP in Sk-Hep1, SNU182, HepG2, or pancreatic cancer cells, as well as incubation with thiostrepton (an inhibitor of forkhead box M1 [FOXM1]) or verteporfin (inhibitor of the interaction between YAP and TEA domain transcription factor 4 [TEAD4]). We performed co-immunoprecipitation and chromatin immunoprecipitation experiments. We collected liver tissues from mice that express a constitutively active form of YAP (YAP S127A ) and analyzed gene expression signatures and histomorphologic parameters associated with chromosomal instability. Mice were given injections of thiostrepton and livers were collected and analyzed by immunoblotting, immunohistochemistry, histology, and real-time polymerase chain reaction. We performed immunohistochemical analyses on tissue microarrays of 105 HCCs and 7 nontumor liver tissues. Gene expression patterns associated with chromosome instability, called CIN25 and CIN70, were detected in HCCs from patients with shorter survival time or early cancer recurrence. TEAD4 and YAP were required for CIN25 and CIN70 signature expression via induction and binding of FOXM1. Disrupting the interaction between YAP and TEAD4 with verteporfin, or inhibiting FOXM1

  17. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmfeldt, Per; Sellin, Mikael E.; Gullberg, Martin, E-mail: Martin.Gullberg@molbiol.umu.se

    2010-07-15

    Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis,more » conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.« less

  18. Comparison of DNA aneuploidy, chromosome 1 abnormalities, MYCN amplification and CD44 expression as prognostic factors in neuroblastoma.

    PubMed

    Christiansen, H; Sahin, K; Berthold, F; Hero, B; Terpe, H J; Lampert, F

    1995-01-01

    A comparison of the prognostic impact of five molecular variables in a large series was made, including tests of their nonrandom association and multivariate analysis. Molecular data were available for 377 patients and MYCN amplification, cytogenetic chromosome 1p deletion, loss of chromosome 1p heterozygosity, DNA ploidy and CD44 expression were investigated. Their interdependence and influence on event-free survival was tested uni- and multivariately using Pearson's chi 2-test, Kaplan-Meier estimates, log rank tests and the Cox's regression model. MYCN amplification was present in 18% (58/322) of cases and predicted poorer prognosis in localised (P < 0.001), metastatic (P = 0.002) and even 4S (P = 0.040) disease. CD44 expression was found in 86% (127/148) of cases, and was a marker for favourable outcome in patients with neuroblastoma stages 1-3 (P = 0.003) and 4 (P = 0.017). Chromosome 1p deletion was cytogenetically detected in 51% (28/55), and indicated reduced event-free survival in localised neuroblastoma (P = 0.020). DNA ploidy and loss of heterozygosity on chromosome 1p were of less prognostic value. Most factors of prognostic significance were associated with each other. By multivariate analysis, MYCN was selected as the only relevant factor. Risk estimation of high discriminating power is, therefore, possible for patients with localised and metastatic neuroblastoma using stage and MYCN.

  19. Immortal, telomerase-negative cell lines derived from a Li-Fraumeni syndrome patient exhibit telomere length variability and chromosomal and minisatellite instabilities.

    PubMed

    Tsutsui, Takeki; Kumakura, Shin-Ichi; Tamura, Yukiko; Tsutsui, Takeo W; Sekiguchi, Mizuki; Higuchi, Tokihiro; Barrett, J Carl

    2003-05-01

    Five immortal cell lines derived from a Li-Fraumeni syndrome patient (MDAH 087) with a germline mutant p53 allele were characterized with respect to telomere length and genomic instability. The remaining wild-type p53 allele is lost in the cell lines. Telomerase activity was undetectable in all immortal cell lines. Five subclones of each cell line and five re-subclones of each of the subclones also showed undetectable telomerase activity. All five immortal cell lines exhibited variability in the mean length of terminal restriction fragments (TRFs). Subclones of each cell line, and re-subclones of the subclones also showed TRF variability, indicating that the variability is owing to clonal heterogeneity. Chromosome aberrations were observed at high frequencies in these cell lines including the subclones and re-subclones, and the principal types of aberrations were breaks, double minute chromosomes and dicentric chromosomes. In addition, minisatellite instability detected by DNA fingerprints was observed in the immortal cell lines. However, all of the cell lines were negative for microsatellite instability. As minisatellite sequences are considered recombinogenic in mammalian cells, these results suggest that recombination rates can be increased in these cell lines. Tumor-derived human cell lines, HT1080 cells and HeLa cells that also lack p53 function, exhibited little genomic instability involving chromosomal and minisatellite instabilities, indicating that chromosomal and minisatellite instabilities observed in the immortal cell lines lacking telomerase activity could not result from loss of p53 function.

  20. Chromosomal instability: A common feature and a therapeutic target of cancer.

    PubMed

    Tanaka, Kozo; Hirota, Toru

    2016-08-01

    Most cancer cells are aneuploid, containing abnormal numbers of chromosomes, mainly caused by elevated levels of chromosome missegregation, known as chromosomal instability (CIN). These well-recognized, but poorly understood, features of cancers have recently been studied extensively, unraveling causal relationships between CIN and cancer. Here we review recent findings regarding how CIN and aneuploidy occur, how they affect cellular functions, how cells respond to them, and their relevance to diseases, especially cancer. Aneuploid cells are under various kinds of stresses that result in reduced cellular fitness. Nevertheless, genetic heterogeneity derived from CIN allows the selection of cells better adapted to their environment, which supposedly facilitates generation and progression of cancer. We also discuss how we can exploit the properties of cancer cells exhibiting CIN for effective cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A study of directional instability during mitotic chromosome movement

    NASA Astrophysics Data System (ADS)

    Joglekar, Ajit P.

    Mitotic chromosome movements are responsible for the correct segregation of duplicated chromosomes into the daughter cells. Errors in this process are known to play a role in some of the serious diseases such as cancer, and the little understood process of aging. A thorough comprehension of the physical basis of this process is therefore necessary. An intriguing aspect of chromosome movements during mitosis is "directional instability": runs with approximately constant speed punctuated by abrupt reversal in direction of motion. I have constructed a mechanistic model that views chromosome movement as a result of interplay between poleward and antipoleward or polar ejection forces (PEF) on a chromosome; and microtubule (MT) depolymerization-coupled movement of the chromosome. Computer simulations based on this model using a single set of parameters accurately and quantitatively predict: the force, character, speed, and duration of chromosome movements, oscillations of chromosomes associated with only one spindle pole, the larger force during anaphase, the effect of MT-depolymerizing drugs on chromosome movements, and the decreased turnover of kinetochore-MTs during anaphase. The model also predicts how chromosome behavior should respond to perturbations of the PEF. These predictions could be unequivocally tested if it were possible to destroy structures smaller than the light resolution limit with minimal collateral damage. To address these requirements, I developed a methodology for ultrahigh resolution microsurgery with tightly-focused, ultrafast lasers pulses. This entailed an in-depth study of optical breakdown in dielectrics. Characterization of the single pulse damage in test dielectric materials ranging from silicon and glass to cell walls and membranes has shown that in the target regions where the laser intensity exceeds critical intensity, optical breakdown proceeds by tunneling ionization followed by a runaway avalanche ionization that ends with the

  2. Hexavalent Chromium Induces Chromosome Instability in Human Urothelial Cells

    PubMed Central

    Wise, Sandra S.; Holmes, Amie L.; Liou, Louis; Adam, Rosalyn M.; Wise, John Pierce

    2016-01-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of Cr(VI) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Hexavalent chromium (Cr(VI)) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer specifically and may be a mechanism for metal-induced bladder cancer in general. PMID:26908176

  3. Chromosomal Instability Affects the Tumorigenicity of Glioblastoma Tumor-Initiating Cells.

    PubMed

    Godek, Kristina M; Venere, Monica; Wu, Quilian; Mills, Kevin D; Hickey, William F; Rich, Jeremy N; Compton, Duane A

    2016-05-01

    Tumors are dynamic organs that evolve during disease progression with genetic, epigenetic, and environmental differences among tumor cells serving as the foundation for selection and evolution in tumors. Tumor-initiating cells (TIC) that are responsible for tumorigenesis are a source of functional cellular heterogeneity, whereas chromosomal instability (CIN) is a source of karyotypic genetic diversity. However, the extent that CIN contributes to TIC genetic diversity and its relationship to TIC function remains unclear. Here, we demonstrate that glioblastoma TICs display CIN with lagging chromosomes at anaphase and extensive nonclonal chromosome copy-number variations. Elevating the basal chromosome missegregation rate in TICs decreases both proliferation and the stem-like phenotype of TICs in vitro Consequently, tumor formation is abolished in an orthotopic mouse model. These results demonstrate that TICs generate genetic heterogeneity within tumors, but that TIC function is impaired if the rate of genetic change is elevated above a tolerable threshold. Genetic heterogeneity among TICs may produce advantageous karyotypes that lead to therapy resistance and relapse; however, we found that TICs have an upper tolerable limit for CIN. Thus, increasing the chromosome missegregation rate offers a new therapeutic strategy to eliminate TICs from tumors. Cancer Discov; 6(5); 532-45. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 461. ©2016 American Association for Cancer Research.

  4. Increased microtubule assembly rates mediate chromosomal instability in colorectal cancer cells

    PubMed Central

    Ertych, Norman; Stolz, Ailine; Stenzinger, Albrecht; Weichert, Wilko; Kaulfuß, Silke; Burfeind, Peter; Aigner, Achim; Wordeman, Linda

    2015-01-01

    Chromosomal instability (CIN) is defined as the perpetual missegregation of whole chromosomes during mitosis and represents a hallmark of human cancer. However, the mechanisms causing CIN and its consequences on tumor growth are largely unknown. We identify an increase in microtubule plus end assembly rates as a fundamental trigger for CIN in CRC cells. This trigger is mediated by overexpression of the oncogene AURKA or by loss of the tumor suppressor gene CHK2, a genetic constitution found in 73% of human colorectal cancers. Increased microtubule assembly rates are associated with transient abnormalities in mitotic spindle geometry promoting the generation of lagging chromosomes and resulting in CIN. Reconstitution of proper microtubule assembly rates by chemical or genetic means suppresses CIN and thereby, unexpectedly, accelerates tumor growth in vitro and in vivo. Thus, we identify a fundamental mechanism triggering CIN in cancer cells and reveal its adverse consequence on tumor growth. PMID:24976383

  5. Cytokinesis Failure Leading to Chromosome Instability in v-Src-Induced Oncogenesis.

    PubMed

    Nakayama, Yuji; Soeda, Shuhei; Ikeuchi, Masayoshi; Kakae, Keiko; Yamaguchi, Naoto

    2017-04-12

    v-Src, an oncogene found in Rous sarcoma virus, is a constitutively active variant of c-Src. Activation of Src is observed frequently in colorectal and breast cancers, and is critical in tumor progression through multiple processes. However, in some experimental conditions, v-Src causes growth suppression and apoptosis. In this review, we highlight recent progress in our understanding of cytokinesis failure and the attenuation of the tetraploidy checkpoint in v-Src-expressing cells. v-Src induces cell cycle changes-such as the accumulation of the 4N cell population-and increases the number of binucleated cells, which is accompanied by an excess number of centrosomes. Time-lapse analysis of v-Src-expressing cells showed that cytokinesis failure is caused by cleavage furrow regression. Microscopic analysis revealed that v-Src induces delocalization of cytokinesis regulators including Aurora B and Mklp1. Tetraploid cell formation is one of the causes of chromosome instability; however, tetraploid cells can be eliminated at the tetraploidy checkpoint. Interestingly, v-Src weakens the tetraploidy checkpoint by inhibiting the nuclear exclusion of the transcription coactivator YAP, which is downstream of the Hippo pathway and its nuclear exclusion is critical in the tetraploidy checkpoint. We also discuss the relationship between v-Src-induced chromosome instability and growth suppression in v-Src-induced oncogenesis.

  6. Chromosome instability of HPRT-mutant subclones induced by ionising radiation of various LET.

    PubMed

    Govorun, R D; Koshlan, I V; Koshlan, N A; Krasavin, E A; Shmakova, N L

    2002-01-01

    The induction of HPRT-mutations and survival of Chinese hamster cells (line B11ii-FAF28, clone 431) were studied after irradiation by 4He and 12C-ions of various LET (20-360 keV/micrometers), produced by the U-200 heavy ion accelerator. The RBE increases with LET up to the maximum at 100-200 keV/micrometers and then decreases. Cytogenetic analysis was performed on the HPRT-mutant subclones selected from unirradiated Chinese hamster V-79 cells and from HPRT-mutant subclones that arose after exposure to gamma-rays, 1 GeV protons and 14N-ions (LET-77 keV/micrometers), produced by the synchrophasotron and the U-400M heavy ion accelerator. Slow growing mutant subclones were observed. The cytogenetic properties of individual clones were highly heterogeneous and chromosome instability was observed in both spontaneous and radiation-induced mutants. Chromosome instability was highest among spontaneous mutants and decreased with increasing LET. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  7. Prognostication in Philadelphia Chromosome Negative Myeloproliferative Neoplasms: a Review of the Recent Literature.

    PubMed

    Zhou, Amy; Afzal, Amber; Oh, Stephen T

    2017-10-01

    The prognosis for patients with Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is highly variable. All Ph-negative MPNs carry an increased risk for thrombotic complications, bleeding, and leukemic transformation. Several clinical, biological, and molecular prognostic factors have been identified in recent years, which provide important information in guiding management of patients with Ph-negative MPNs. In this review, we critically evaluate the recent published literature and discuss important new developments in clinical and molecular factors that impact survival, disease transformation, and thrombosis in patients with polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have identified several clinical factors and non-driver mutations to have prognostic impact on Ph-negative MPNs independent of conventional risk stratification and prognostic models. In polycythemia vera (PV), leukocytosis, abnormal karyotype, phlebotomy requirement on hydroxyurea, increased bone marrow fibrosis, and mutations in ASXL1, SRSF2, and IDH2 were identified as additional adverse prognostic factors. In essential thrombocythemia (ET), JAK2 V617F mutation, splenomegaly, and mutations in SH2B3, SF3B1, U2AF1, TP53, IDH2, and EZH2 were found to be additional negative prognostic factors. Bone marrow fibrosis and mutations in ASXL1, SRSF2, EZH2, and IDH1/2 have been found to be additional prognostic factors in primary myelofibrosis (PMF). CALR mutations appear to be a favorable prognostic factor in PMF, which has not been clearly demonstrated in ET. The prognosis for patients with PV, ET, and PMF is dependent upon the presence or absence of several clinical, biological, and molecular risk factors. The significance of additional risk factors identified in these recent studies will need further validation in prospective studies to determine how they may be best utilized in the management of these disorders.

  8. Loss of centrioles causes chromosomal instability in vertebrate somatic cells.

    PubMed

    Sir, Joo-Hee; Pütz, Monika; Daly, Owen; Morrison, Ciaran G; Dunning, Mark; Kilmartin, John V; Gergely, Fanni

    2013-12-09

    Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore-MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity.

  9. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.

    PubMed

    Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.

  10. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain

    PubMed Central

    Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377

  11. Hexavalent chromium induces chromosome instability in human urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less

  12. New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response

    PubMed Central

    Rangel, Nelson; Forero-Castro, Maribel; Rondón-Lagos, Milena

    2017-01-01

    Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers. PMID:28587191

  13. Frequency and prognostic significance of additional cytogenetic abnormalities to the Philadelphia chromosome in young and older adults with acute lymphoblastic leukemia.

    PubMed

    Motlló, Cristina; Ribera, Josep-Maria; Morgades, Mireia; Granada, Isabel; Montesinos, Pau; Mercadal, Santiago; González-Campos, José; Moreno, María-José; Barba, Pere; Cervera, Marta; Barrios, Manuel; Novo, Andrés; Bernal, Teresa; Hernández-Rivas, Jesús-María; Abella, Eugenia; Amigo, María-Luz; Tormo, Mar; Martino, Rodrigo; Lavilla, Esperanza; Bergua, Juan; Serrano, Alfons; García-Belmonte, Daniel; Guàrdia, Ramon; Grau, Javier; Feliu, Evarist

    2018-01-01

    About 25-35% of adult patients with acute lymphoblastic leukemia show the Philadelphia (Ph) chromosome. Few series have evaluated the prognosis of additional cytogenetic alterations (ACA) to the Ph chromosome. We analyzed the frequency, type and prognostic significance ofACA in adults (18-60 years) treated in the ALL-Ph-08 trial. Fifty-two out of 74 patients (70%) showed ACA and 19 (26%) presented monosomies associated with t(9;22) (monosomal karyotype, MK). Similar complete response (CR) rate, CR duration, overall survival and event-free survival (EFS) were observed in patients with or without ACA, but patients with MK showed shorter CR duration and EFS than the remaining. On multivariate analysis, the only variable with prognostic impact for CR duration and EFS was the presence of MK (p = .003 and p = .036, respectively). Although ACA associated with the Ph chromosome are frequent, only monosomies were associated with poor prognosis in this group of patients.

  14. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  15. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  16. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  17. Chromosomal instability and telomere shortening in long-term culture of hematopoietic stem cells: insights from a cell culture model of RPS14 haploinsufficiency.

    PubMed

    Thomay, K; Schienke, A; Vajen, B; Modlich, U; Schambach, A; Hofmann, W; Schlegelberger, B; Göhring, G

    2014-01-01

    The fate of cultivated primary hematopoietic stem cells (HSCs) with respect to genetic instability and telomere attrition has not yet been described in great detail. Thus, knowledge of the genetic constitution of HSCs is important when interpreting results of HSCs in culture. While establishing a cell culture model for myelodysplastic syndrome with a deletion in 5q by performing RPS14 knockdown, we found surprising data that may be of importance for any CD34+ cell culture experiments. We performed cytogenetic analyses and telomere length measurement on transduced CD34+ cells and untransduced control cells to observe the effects of long-term culturing. Initially, CD34+ cells had a normal median telomere length of about 12 kb and showed no signs of chromosomal instability. During follow-up, the median telomere length seemed to decrease and, simultaneously, increased chromosomal instability could be observed - in modified and control cells. One culture showed a clonal monosomy 7 - independent of prior RPS14 knockdown. During further culturing, it seemed that the telomeres re-elongated, and chromosomes stabilized, while TERT expression was not elevated. In summary, irrespective of our results of RPS14 knockdown in the long-term culture of CD34+ cells, it becomes clear that cell culture artefacts inducing telomere shortening and chromosomal instability have to be taken into account and regular cytogenetic analyses should always be performed. © 2013 S. Karger AG, Basel.

  18. [The dynamics of chromosomal instability of welsh onion (Allium fistulosum L.): the influence of seed storage temperature].

    PubMed

    Lazarenko, L M; Bezrukov, V F

    2008-01-01

    The age-related dynamics of chromosomal instability and germination capacity of welsh onion (Allium fistulosum L.) seeds have been studied under two different storage temperatures during six years after harvesting. Seeds that were kept at the room temperature (14-28 degrees C) during 6 years of storage have lost their germination capacity. The frequencies of aberrant anaphases grew from 2% on the first month of storage up to 80% on the 75th month of storage. The germination capacity of seeds kept at the lower temperature (4-9 degrees C) was 73-77% on the 6th year of storage and the frequency of aberrant anaphases remained within the limits of 2-4%. Thus, storage of welsh onion seeds during 6 years at the lower temperature allows to retain germination capacity and restrains the augmentation of chromosomal instability in root meristem cells of seedlings during this period.

  19. Growth, progression and chromosome instability of Neuroblastoma: a new scenario of tumorigenesis?

    PubMed

    Tonini, Gian Paolo

    2017-01-05

    Neuroblastoma is a pediatric cancer with a low survival rate of patients with metastatic stage 4 disease. Tumor aggressiveness and progression have been associated with structural copy number variations (CNVs) that are observed in malignant cells. In contrast, localized Neuroblastomas, which are associated with a low number of structural CNVs but frequent numerical CNVs, are less aggressive, and patients have good outcomes. Finally, whole-genome and whole-exome sequencing of Neuroblastoma tissues have shown few damaging mutations in these tumors. In the present report it is proposed that chromosome instability (CIN) plays a major role in Neuroblastoma tumorigenesis and that CIN is already present in the early phases of tumor development. High CIN can promote several types of chromosomal damage including chromothripsis, gene deletion, amplification and rearrangements, which deregulate gene expression. Indeed, gene rearrangements have been reported as a new scenario in the development of Neuroblastoma, which supports the hypothesis that CIN is an early step preliminary to the late catastrophic events leading to tumor development.

  20. HPV16 integration probably contributes to cervical oncogenesis through interrupting tumor suppressor genes and inducing chromosome instability.

    PubMed

    Zhao, Jun-Wei; Fang, Fang; Guo, Yi; Zhu, Tai-Lin; Yu, Yun-Yun; Kong, Fan-Fei; Han, Ling-Fei; Chen, Dong-Sheng; Li, Fang

    2016-11-25

    The integration of human papilloma virus (HPV) into host genome is one of the critical steps that lead to the progression of precancerous lesion into cancer. However, the mechanisms and consequences of such integration events are poorly understood. This study aims to explore those questions by studying high risk HPV16 integration in women with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (SCC). Specifically, HPV integration status of 13 HPV16-infected patients were investigated by ligation-mediated PCR (DIPS-PCR) followed by DNA sequencing. In total, 8 HPV16 integration sites were identified inside or around genes associated with cancer development. In particular, the well-studied tumor suppressor genes SCAI was found to be integrated by HPV16, which would likely disrupt its expression and therefore facilitate the migration of tumor. On top of that, we observed several cases of chromosome translocation events coincide with HPV integration, which suggests the existence of chromosome instability. Additionally, short overlapping sequences were observed between viral derived and host derived fragments in viral-cellular junctions, indicating that integration was mediated by micro homology-mediated DNA repair pathway. Overall, our study suggests a model in which HPV16 might contribute to oncogenesis not only by disrupting tumor suppressor genes, but also by inducing chromosome instability.

  1. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability.

    PubMed

    Santos, Sara; Chaves, Raquel; Adega, Filomena; Bastos, Estela; Guedes-Pinto, Henrique

    2006-01-01

    Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.

  2. Prostate Cancer Cell Telomere Length Variability and Stromal Cell Telomere Length as Prognostic Markers for Metastasis and Death

    PubMed Central

    Heaphy, Christopher M.; Yoon, Ghil Suk; Peskoe, Sarah B.; Joshu, Corinne E.; Lee, Thomas K.; Giovannucci, Edward; Mucci, Lorelei A.; Kenfield, Stacey A.; Stampfer, Meir J.; Hicks, Jessica L.; De Marzo, Angelo M.; Platz, Elizabeth A.; Meeker, Alan K.

    2013-01-01

    Current prognostic indicators are imperfect predictors of outcome in men with clinicallylocalized prostate cancer. Thus, tissue-based markers are urgently needed to improve treatment and surveillance decision-making. Given that shortened telomeres enhance chromosomal instability and such instability is a hallmark of metastatic lesions, we hypothesized that alterations in telomere length in the primary cancer would predict risk of progression to metastasis and prostate cancer death. To test this hypothesis, we conducted a prospective cohort study of 596 surgically treated men who participated in the ongoing Health Professionals Follow-up Study. Men who had the combination of more variable telomere length among prostate cancer cells (cell-to-cell) and shorter telomere length in prostate cancer-associated stromal cells were substantially more likely to progress to metastasis or die of their prostate cancer. These findings point to the translational potential of this telomere biomarker for prognostication and risk stratification for individualized therapeutic and surveillance strategies. PMID:23779129

  3. PC3 (BTG2/TIS21) possible role in chromosome instability syndromes.

    PubMed

    Conti, Filippo; Ghigo, Eric

    2013-07-01

    Chromosome instability syndromes (CIS) are autosomal recessive genetic disorders associated with defects in cell cycle regulation following DNA damage. Although most of the proteins involved in these syndromes have been identified as part of the MRN complex, little is known about their physiological functions and their interactions with other molecules that might explain the wide clinical presentation found in CIS patients. Here we discuss several observations suggesting that PC3 (BTG2/TIS21) - a protein involved in G1-S checkpoint progression control - might play a role in these pathologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of Anticancer Drugs on Chromosome Instability and New Clinical Implications for Tumor-Suppressing Therapies.

    PubMed

    Lee, Hee-Sheung; Lee, Nicholas C O; Kouprina, Natalay; Kim, Jung-Hyun; Kagansky, Alex; Bates, Susan; Trepel, Jane B; Pommier, Yves; Sackett, Dan; Larionov, Vladimir

    2016-02-15

    Whole chromosomal instability (CIN), manifested as unequal chromosome distribution during cell division, is a distinguishing feature of most cancer types. CIN is generally considered to drive tumorigenesis, but a threshold level exists whereby further increases in CIN frequency in fact hinder tumor growth. While this attribute is appealing for therapeutic exploitation, drugs that increase CIN beyond this therapeutic threshold are currently limited. In our previous work, we developed a quantitative assay for measuring CIN based on the use of a nonessential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Here, we used this assay to rank 62 different anticancer drugs with respect to their effects on chromosome transmission fidelity. Drugs with various mechanisms of action, such as antimicrotubule activity, histone deacetylase inhibition, mitotic checkpoint inhibition, and targeting of DNA replication and damage responses, were included in the analysis. Ranking of the drugs based on their ability to induce HAC loss revealed that paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib, olaparib, peloruside A, GW843682, VX-680, and cisplatin were the top 10 drugs demonstrating HAC loss at a high frequency. Therefore, identification of currently used compounds that greatly increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target and leverage the CIN phenotype in cancer cells. ©2016 American Association for Cancer Research.

  5. [Chromosomal instability in carcinogenesis of cervical cancer.

    PubMed

    de Los Santos-Munive, Victoria; Alonso-Avelino, Juan Angel

    2013-01-01

    In order to spot common chromosomal imbalances in early and late lesions of cervical cancer that might be used as progression biomarkers, we made a search of literature in PubMed from 1996 to 2011. The medical subject headings employed were chromosomal alterations, loss of heterozygosis, cervical cancer, cervical tumorigenesis, chromosomal aberrations, cervical intraepithelial neoplasm and low-grade squamous intraepithelial lesion. The common chromosomal imbalances were gains in 8q24 (77.7 %), 20q13 (66.9 %), 3q26 (47.1 %), Xp22 (43.8 %), and 5p15 (60 %), principally. On the other hand, integration of the high-risk human papillomavirus genome into the host chromosome has been associated with the development of neoplasia, but the chromosomal imbalances seem to precede and promote such integration. Chromosomal imbalances in 8q24, 20q13, 3q21-26 and 5p15-Xp22, determined by fluorescent in situ hybridization assay or comparative genomic hybridization assay for early detection of the presence of high-risk human papillomavirus, are promising markers of cervical cancer progression.

  6. Loss of heterozygosity and microsatellite instability in chromosomal segments commonly deleted in squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyke, D.L.; Worsham, M.J.; Zarbo, R.J.

    1994-09-01

    To evaluate genetic loss in an unselected series of squamous cell carcinoma (SCC) of the head and neck region (SCCHN), including early stage tumors that do not proliferate aggressively in vitro, we have compared microsatellite repeat polymorphisms (MSRP) in normal blood DNA and tumor DNA from 44 patients with SCCHN, using nine MSRPs from 5q15-q21, proximal 8p, 9p21-p23, 18q21-qter, and 21q21. In previous cytogenetic studies, these chromosome segments were deleted in 40-60% of SCCHN and SCC of the female genital tract. Loss of heterozygosity (LOH) was observed from the ANK1 locus (8p21.1-p11.2) in 2/29 informative tumors. LOH was observed atmore » D5S98 (5q15-5q21) in 5/19, and at D21S11 (21q21) in 5/33 informative tumors. These LOH frequencies were lower than expected, which suggests that the critical region of deletion from these chromosome regions exludes the MSRPs studied here, especially for the 8p MSRP, which may reside in proximal 8p. Alternatively, the observed LOH rates may be appropriate for earlier pathologic stage tumors: total genetic loss increases with tumor stage, and the present study included more stage I and II tumors than did the cytogenetic studies. LOH was observed at D9S126, 1FN, and/or D9S199 (at 9p21, 9p22, & 9p23) in 16/38 informative tumors, and at D18S34 and/or MBP (at 18q21 & 18q22-qter) in 17/39 informative tumors. In addition, three tumors demonstrated microsatellite instability at the MBP locus, and one of these had an expansion at D9S199 as well. This tumor, HFH-SCC-20, also demonstrated microsatellite instability at many other MSRP loci. These results confirm that genetic loss from 9p and 18q is frequent in SCCHN, and demonstrate that microsatellite instability also occurs. Of 66 MSRP changes, 62 were LOH and 4 were microsatellite instabilities. These results also show the usefulness of analyses of MSRP LOH and microsatellite instability in squamous cell carcinoma.« less

  7. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH).

    PubMed

    Cortés-Gutiérrez, Elva I; Ortíz-Hernández, Brenda L; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-02-19

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  8. Independent prognostic importance of respiratory instability and sympathetic nerve activity in patients with chronic heart failure.

    PubMed

    Asanoi, Hidetsugu; Harada, Daisuke; Oda, Yoshitaka; Ueno, Hiroshi; Takagawa, Junya; Ishise, Hisanari; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2017-11-01

    Respiratory instability in chronic heart failure (CHF) is characterized by irregularly rapid respiration or non-periodic breathing rather than by Cheyne-Stokes respiration. We developed a new quantitative measure of respiratory instability (RSI) and examined its independent prognostic impact upon CHF. In 87 patients with stable CHF, respiratory flow and muscle sympathetic nerve activity (MSNA) were simultaneously recorded. RSI was calculated from the frequency distribution of respiratory spectral components and very low frequency components. During a mean follow-up of 85±38 months, 24 patients died. Sixteen patients who died of cardiac causes had a lower RSI (16±6 vs. 30±21, p<0.01), a lower specific activity scale (4.3±1.4 Mets vs. 5.7±1.4 Mets, p<0.005), a higher MSNA burst area (16±5% vs. 11±4%, p<0.001), and a higher brain natriuretic peptide (BNP) level (514±559pg/ml vs. 234±311pg/ml, p<0.05) than 71 patients who did not die of cardiac causes. Multivariate analysis revealed that RSI (p=0.015), followed by MSNA burst area (p=0.033), was an independent predictor of subsequent all-cause deaths and that RSI (p=0.026), MSNA burst area (p=0.001), and BNP (p=0.048) were independent predictors of cardiac deaths. Patients at very high risk of fatal outcome could be identified by an RSI<20. The daytime respiratory instability quantified by a new measure of RSI has prognostic importance independent of sympathetic nerve activation in patients with clinically stable CHF. An RSI of <20 identifies patients at very high risk for subsequent all-cause and cardiovascular death. Copyright © 2017. Published by Elsevier Ltd.

  9. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  10. Correction of both spontaneous and DEB-induced chromosome instability in Fanconi anemia FA-C cells by FACC cDNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavropoulos, D.J.; Tomkins, D.J.; Allingham-Hawkins, D.J.

    1994-09-01

    Cells from all four Fanconi anemia complementation groups show hypersensitivity to cell-killing by mitomycin C (MMC), diepoxybutane (DEB) and other DNA cross-linking agents, and increased spontaneous and DEB-induced chromosome aberrations (CA). The extent of these phenotypes varies between lymphoblastoid cell lines from different complementation groups. Our data showed that the difference in MMC hypersensitivity and DEB-CA was not always coupled. While 230N (FA-B) had higher DEB-induced CA/cell than 536N (FA-C) (7.42 vs. 4.46 respectively), that latter was much more sensitive to cell-killing by MMC (dose at 10% survival, D{sub 10}: 5.2 vs. 1.2 ng/ml respectively). Strathdes et al. (1992) clonedmore » a cDNA Fanconi anemia complementation group C (FACC) which complemented the hypersensitivity to MMC and DEB cell-killing of FA-C cells (536N) but not cells from the other three complementation groups. The present study was initiated to determine whether chromosome instability in 536N is also complemented by the FACC (FAC3) cDNA. The pREP4-FAC3 vector was transfected into 536N and transfectants selected with hygromycin B. The DEB D{sub 10} of 536N (1.0 {mu}M) was corrected to the control level (16.2 {mu}M for 3TO) by FACC (15.1 {mu}M for 536N-FACC), as previously demonstrated. Chromosome instability (cab, cse, ctb, cte) was determined without and with 0.1 {mu}g/ml DEB treatment. Spontaneous CA of 536N (0.30 aberrations/cell) was corrected to the control level (0.04 for 3TO) by FACC (0.06 for 536N-FACC). Similarly, the DEB-induced CA was corrected (2.74 for 536N vs. 0.06 and 0.02 for 3TO and 536N-FACC respectively). Thus, at least for FA complementation group C, hypersensitivity to cell-killing and chromosome instability are not dissociated and are most likely caused by the same gene defect.« less

  11. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski.

    PubMed

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2012-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski-/- mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei (MN) formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, spindle assembly checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of MN-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. Copyright © 2011 Wiley Periodicals, Inc.

  12. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    PubMed Central

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  13. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    PubMed

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  14. Clonal heterogeneity and chromosomal instability at disease presentation in high hyperdiploid acute lymphoblastic leukemia.

    PubMed

    Talamo, Anna; Chalandon, Yves; Marazzi, Alfio; Jotterand, Martine

    2010-12-01

    Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4%), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability.

    PubMed

    Choi, Minji; Min, Yoo Hong; Pyo, Jaehyuk; Lee, Chang-Woo; Jang, Chang-Young; Kim, Ja-Eun

    2017-06-01

    Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer. © 2017 The British Pharmacological Society.

  16. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability

    PubMed Central

    Choi, Minji; Min, Yoo Hong; Pyo, Jaehyuk; Lee, Chang‐Woo; Jang, Chang‐Young

    2017-01-01

    Background and Purpose Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. Experimental Approach The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. Key Results Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12‐treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1‐encoding TTK gene was associated with poor overall survival of HCC patients. Conclusion and Implications TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer. PMID:28299790

  17. Telomeric fusion and chromosome instability in multiple tissues of a patient with mosaic Ullrich-Turner syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, J.R.; North, P.E.; Hassed, S.J.

    1997-04-14

    We describe the cytogenetic evolution of multiple cell lines in the gonadal tissue of a 10-year-old girl with mosaic Ullrich-Turner syndrome (UTS) involving clonal telomeric associations (tas) of the Y chromosome. G-band analysis of all tissues showed at least 2 cell lines; 45,X and 46,X,tas(Y;21)(q12;p13). However, analysis of left gonadal tissue of this patient showed the evolution of 2 additional cell lines, one designated 45,X,tas(Y;21)(q12;p13),-22 and the other 46,X,tas(Y;21)(q12;p13),+tas(Y;14)(q12;p13),-22. Fluorescence in situ hybridization (FISH) analysis of interphase nuclei from uncultured gonadal tissue confirmed the findings of aneuploidy in the left gonadal tissue and extended the findings of aneuploidy to themore » tissue of the right gonad. The chromosome findings in the gonadal tissue of this patient suggest a preneoplastic karyotype relating to several distinct tumor associations. The clonal evolution of telomeric fusions indicates chromosome instability and suggests the extra copy of the Y chromosome may have resulted from a fusion-related malsegregation. In addition, the extra Y suggests low-level amplification of a putative gonadoblastoma gene, while the loss of chromosome 22 suggests the loss of heterozygosity for genes on chromosome 22. This case demonstrates the utility of the study of gonadal tissue in 45X46,XY UTS patients, and provides evidence that clonal telomeric fusions may, in rare cases, be associated with chromosomal malsegregation and with the subsequent evolution of unstable karyotypes. 27 refs., 3 figs.« less

  18. Computational model for chromosomal instabilty

    NASA Astrophysics Data System (ADS)

    Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina

    2015-03-01

    Faithful segregation of genetic material during cell division requires alignment of the chromosomes between the spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated into a coherent picture. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.

  19. DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation

    PubMed Central

    Hernández-Gómez, Mariana

    2017-01-01

    DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature. PMID:29238724

  20. The Spinal Instability Neoplastic Score: Impact on Oncologic Decision-Making.

    PubMed

    Versteeg, Anne L; Verlaan, Jorrit-Jan; Sahgal, Arjun; Mendel, Ehud; Quraishi, Nasir A; Fourney, Daryl R; Fisher, Charles G

    2016-10-15

    Systematic literature review. To address the following questions in a systematic literature review: 1. How is spinal neoplastic instability defined or classified in the literature before and after the introduction of the Spinal Instability Neoplastic Score (SINS)? 2. How has SINS affected daily clinical practice? 3. Can SINS be used as a prognostic tool? Spinal neoplastic-related instability was defined in 2010 and simultaneously SINS was introduced as a novel tool with criteria agreed upon by expert consensus to assess the degree of spinal stability. PubMed, Embase, and clinical trial databases were searched with the key words "spinal neoplasm," "spinal instability," "spinal instability neoplastic score," and synonyms. Studies describing spinal neoplastic-related instability were eligible for inclusion. Primary outcomes included studies describing and/or defining neoplastic-related instability, SINS, and studies using SINS as a prognostic factor. The search identified 1414 articles, of which 51 met the inclusion criteria. No precise definition or validated assessment tool was used specific to spinal neoplastic-related instability prior to the introduction of SINS. Since the publication of SINS in 2010, the vast majority of the literature regarding spinal instability has used SINS to assess or describe instability. Twelve studies specifically investigated the prognostic value of SINS in patients who underwent radiotherapy or surgery. No consensus could be determined regarding the definition, assessment, or reporting of neoplastic-related instability before introduction of SINS. Defining spinal neoplastic-related instability and the introduction of SINS have led to improved uniform reporting within the spinal neoplastic literature. Currently, the prognostic value of SINS is controversial. N/A.

  1. Immortalization capacity of HPV types is inversely related to chromosomal instability.

    PubMed

    Schütze, Denise M; Krijgsman, Oscar; Snijders, Peter J F; Ylstra, Bauke; Weischenfeldt, Joachim; Mardin, Balca R; Stütz, Adrian M; Korbel, Jan O; de Winter, Johan P; Meijer, Chris J L M; Quint, Wim G V; Bosch, Leontien; Wilting, Saskia M; Steenbergen, Renske D M

    2016-06-21

    High-risk human papillomavirus (hrHPV) types induce immortalization of primary human epithelial cells. Previously we demonstrated that immortalization of human foreskin keratinocytes (HFKs) is HPV type dependent, as reflected by the presence or absence of a crisis period before reaching immortality. This study determined how the immortalization capacity of ten hrHPV types relates to DNA damage induction and overall genomic instability in HFKs.Twenty five cell cultures obtained by transduction of ten hrHPV types (i.e. HPV16/18/31/33/35/45/51/59/66/70 E6E7) in two or three HFK donors each were studied.All hrHPV-transduced HFKs showed an increased number of double strand DNA breaks compared to controls, without exhibiting significant differences between types. However, immortal descendants of HPV-transduced HFKs that underwent a prior crisis period (HPV45/51/59/66/70-transduced HFKs) showed significantly more chromosomal aberrations compared to those without crisis (HPV16/18/31/33/35-transduced HFKs). Notably, the hTERT locus at 5p was exclusively gained in cells with a history of crisis and coincided with increased expression. Chromothripsis was detected in one cell line in which multiple rearrangements within chromosome 8 resulted in a gain of MYC.Together we demonstrated that upon HPV-induced immortalization, the number of chromosomal aberrations is inversely related to the viral immortalization capacity. We propose that hrHPV types with reduced immortalization capacity in vitro, reflected by a crisis period, require more genetic host cell aberrations to facilitate immortalization than types that can immortalize without crisis. This may in part explain the observed differences in HPV-type prevalence in cervical cancers and emphasizes that changes in the host cell genome contribute to HPV-induced carcinogenesis.

  2. Immortalization capacity of HPV types is inversely related to chromosomal instability

    PubMed Central

    Schütze, Denise M.; Krijgsman, Oscar; Snijders, Peter J.F.; Ylstra, Bauke; Weischenfeldt, Joachim; Mardin, Balca R.; Stütz, Adrian M.; Korbel, Jan O.; Meijer, Chris J.L.M.; Quint, Wim G.V.; Bosch, Leontien; Wilting, Saskia M.; Steenbergen, Renske D.M.

    2016-01-01

    High-risk human papillomavirus (hrHPV) types induce immortalization of primary human epithelial cells. Previously we demonstrated that immortalization of human foreskin keratinocytes (HFKs) is HPV type dependent, as reflected by the presence or absence of a crisis period before reaching immortality. This study determined how the immortalization capacity of ten hrHPV types relates to DNA damage induction and overall genomic instability in HFKs. Twenty five cell cultures obtained by transduction of ten hrHPV types (i.e. HPV16/18/31/33/35/45/51/59/66/70 E6E7) in two or three HFK donors each were studied. All hrHPV-transduced HFKs showed an increased number of double strand DNA breaks compared to controls, without exhibiting significant differences between types. However, immortal descendants of HPV-transduced HFKs that underwent a prior crisis period (HPV45/51/59/66/70-transduced HFKs) showed significantly more chromosomal aberrations compared to those without crisis (HPV16/18/31/33/35-transduced HFKs). Notably, the hTERT locus at 5p was exclusively gained in cells with a history of crisis and coincided with increased expression. Chromothripsis was detected in one cell line in which multiple rearrangements within chromosome 8 resulted in a gain of MYC. Together we demonstrated that upon HPV-induced immortalization, the number of chromosomal aberrations is inversely related to the viral immortalization capacity. We propose that hrHPV types with reduced immortalization capacity in vitro, reflected by a crisis period, require more genetic host cell aberrations to facilitate immortalization than types that can immortalize without crisis. This may in part explain the observed differences in HPV-type prevalence in cervical cancers and emphasizes that changes in the host cell genome contribute to HPV-induced carcinogenesis. PMID:26993771

  3. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    PubMed

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  4. Radiation-induced chromosomal instability in BALB/c and C57BL/6 mice: the difference is as clear as black and white

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Cornforth, M. N.; Ullrich, R. L.

    1997-01-01

    Genomic instability has been proposed to be the earliest step in radiation-induced tumorigenesis. It follows from this hypothesis that individuals highly susceptible to induction of tumors by radiation should exhibit enhanced radiation-induced instability. BALB/c white mice are considerably more sensitive to radiation-induced mammary cancer than C57BL/6 black mice. In this study, primary mammary epithelial cell cultures from these two strains were examined for the "delayed" appearance of chromosomal aberrations after exposure to 137Cs gamma radiation, as a measure of radiation-induced genomic instability. As expected, actively dividing cultures from both strains showed a rapid decline of initial asymmetrical aberrations with time postirradiation. However, after 16 population doublings, cells from BALB/c mice exhibited a marked increase in the frequency of chromatid-type breaks and gaps which remained elevated throughout the time course of the experiment (28 doublings). No such effect was observed for the cells of C57BL/6 mice; after the rapid clearance of initial aberrations, the frequency of chromatid-type aberrations in the irradiated population remained at or near those of nonirradiated controls. These results demonstrate a correlation between the latent expression of chromosomal damage in vitro and susceptibility for mammary tumors, and provide further support for the central role of radiation-induced instability in the process of tumorigenesis.

  5. The Relationship between the (In-)Stability of NORs and Their Chromosomal Location: The Example of Cercopithecidae and a Short Review of Other Primates.

    PubMed

    Gerbault-Seureau, Michèle; Cacheux, Lauriane; Dutrillaux, Bernard

    2017-01-01

    Amongst Cercopithecidae, the species of the Cercopithecini tribe underwent a very active chromosome evolution, principally by fissions, which increased their chromosome number up to 72. In contrast, all the species of Papionini have fairly similar karyotypes with 42 chromosomes. In animals, nucleolus organizer regions (NORs) are generally considered as instable structures, which frequently vary in size, number, and location at both infra- and interspecific levels. Although in Cercopithecinae the NORs, involved in breaks, exchanges, and translocations, behave like fragile sites in somatic cells, their number and location appear to be very stable between species. Fluorescence in situ hybridization of a 28S rDNA probe on metaphase chromosomes displayed a unique interstitial location in either an acrocentric pair (in 12 species of Cercopithecini) or a metacentric pair (in 6 species of Papionini). A non-exhaustive survey of literature data on NOR location in other primates shows that numerical variations of the NORs principally depend on their location: most multiple NORs are in terminal positions, while almost all unique NORs are in interstitial positions. We propose that this correlation is the consequence of the selection against gametic imbalances involving the chromosomal material distal to the NORs, which is effective when they are interstitially, but not terminally, located. Thus, the consequences of the interstitial NOR instability for reproduction are essentially limited to their size variations, as observed in Cercopithecidae. © 2018 S. Karger AG, Basel.

  6. Correlation of Chromosomal Instability, Telomere Length and Telomere Maintenance in Microsatellite Stable Rectal Cancer: A Molecular Subclass of Rectal Cancer

    PubMed Central

    Boardman, Lisa A.; Johnson, Ruth A.; Viker, Kimberly B.; Hafner, Kari A.; Jenkins, Robert B.; Riegert-Johnson, Douglas L.; Smyrk, Thomas C.; Litzelman, Kristin; Seo, Songwon; Gangnon, Ronald E.; Engelman, Corinne D.; Rider, David N.; Vanderboom, Russell J.; Thibodeau, Stephen N.; Petersen, Gloria M.; Skinner, Halcyon G.

    2013-01-01

    Introduction Colorectal cancer (CRC) tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN) and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS) and is historically considered to be chromosomally unstable (CIN+). However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-). MSS CIN- tumors have not been assessed for telomere attrition. Experimental Design MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher) or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]). Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH. Results Tumors were classified as chromosomally stable (CIN-) and chromosomally instable (CIN+) by degree of DNA copy number changes. CIN- tumors (35%; n=6) had fewer copy number changes (<17% of their clones with DNA copy number changes) than CIN+ tumors (65%; n=13) which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066) and in those in which telomerase was not activated (p=0.004). Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040); and tended to be CIN+ (p=0.0949). Conclusions MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase. PMID:24278232

  7. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells

    PubMed Central

    Shrestha, Roshan L.; Ahn, Grace S.; Staples, Mae I.; Sathyan, Kizhakke M.; Karpova, Tatiana S.; Foltz, Daniel R.; Basrai, Munira A.

    2017-01-01

    Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability. PMID:28596481

  8. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  9. Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells.

    PubMed

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C O; Goncharov, Nikolay V; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir

    2016-03-22

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene ("loss of signal" assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this "loss of signal" assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this "gain of signal" assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The "gain of signal" assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level.

  10. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  11. Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinomas.

    PubMed

    Blegen, H.; Einhorn, N.; Sjövall, K.; Roschke, A.; Ghadimi, B. M.; McShane, L. M.; Nilsson, B.; Shah, K.; Ried, T.; Auer, G.

    2000-11-01

    Disturbed cell cycle-regulating checkpoints and impairment of genomic stability are key events during the genesis and progression of malignant tumors. We analyzed 80 epithelial ovarian tumors of benign (n = 10) and borderline type (n = 18) in addition to carcinomas of early (n = 26) and advanced (n = 26) stages for the expression of Ki67, cyclin A and cyclin E, p21WAF-1, p27KIP-1 and p53 and correlated the results with the clinical course. Genomic instability was assessed by DNA ploidy measurements and, in 35 cases, by comparative genomic hybridization. Overexpression of cyclin A and cyclin E was observed in the majority of invasive carcinomas, only rarely in borderline tumors and in none of the benign tumors. Similarly, high expression of p53 together with undetectable p21 or loss of chromosome arm 17p were frequent events only in adenocarcinomas. Both borderline tumors and adenocarcinomas revealed a high number of chromosomal gains and losses. However, regional chromosomal amplifications were found to occur 13 times more frequently in the adenocarcinomas than in the borderline tumors. The expression pattern of low p27 together with high Ki67 was found to be an independent predictor of poor outcome in invasive carcinomas. The results provide a link between disturbed cell cycle regulatory proteins, chromosomal aberrations and survival in ovarian carcinomas.

  12. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cellsmore » has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.« less

  13. Chromosomal Abnormalities Are Major Prognostic Factors in Elderly Patients With Multiple Myeloma: The Intergroupe Francophone du Myélome Experience

    PubMed Central

    Avet-Loiseau, Hervé; Hulin, Cyrille; Campion, Loic; Rodon, Philippe; Marit, Gerald; Attal, Michel; Royer, Bruno; Dib, Mamoun; Voillat, Laurent; Bouscary, Didier; Caillot, Denis; Wetterwald, Marc; Pegourie, Brigitte; Lepeu, Gerard; Corront, Bernadette; Karlin, Lionel; Stoppa, Anne-Marie; Fuzibet, Jean-Gabriel; Delbrel, Xavier; Guilhot, Francois; Kolb, Brigitte; Decaux, Olivier; Lamy, Thierry; Garderet, Laurent; Allangba, Olivier; Lifermann, Francois; Anglaret, Bruno; Moreau, Philippe; Harousseau, Jean-Luc; Facon, Thierry

    2013-01-01

    Purpose Chromosomal abnormalities, especially t(4;14) and del(17p), are major prognostic factors in patients with multiple myeloma (MM). However, this has been especially demonstrated in patients age < 66 years treated with intensive approaches. The goal of this study was to address this issue in elderly patients treated with conventional-dose chemotherapy. Patients and Methods To answer this important question, we retrospectively analyzed a series of 1,890 patients (median age, 72 years; range, 66 to 94 years), including 1,095 with updated data on treatment modalities and survival. Results This large study first showed that the incidence of t(4;14) was not uniform over age, with a marked decrease in the oldest patients. Second, it showed that both t(4;14) and del(17p) retained their prognostic value in elderly patients treated with melphalan and prednisone–based chemotherapy. Conclusion t(4;14) and del(17p) are major prognostic factors in elderly patients with MM, both for progression-free and overall survival, indicating that these two abnormalities should be investigated at diagnosis of MM, regardless of age. PMID:23796999

  14. Evolutionary interaction between W/Y chromosome and transposable elements.

    PubMed

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.

  15. Identification of Prostate Cancer Prognostic Markers

    DTIC Science & Technology

    2015-10-01

    downregulation of GABARAPL2, a gene located in a chromosomal region deleted in PCa metastases, showed increase in autophagy in a PCa cell line and reduced...alteration, chromosome gain and deletion, fluorescence in situ hybridization (FISH), prognostic markers, biomarkers, tissue microarrays, autophagy 16...TMA), colony formation assay, cell growth, autophagy . 3. ACCOMPLISHMENTS: What were the major goals of the project? The hypothesis of the project is

  16. Prognostic Implications of Monosomies in Patients With Multiple Myeloma.

    PubMed

    Shin, Sang-Yong; Eom, Hyeon-Seok; Sohn, Ji Yeon; Lee, Hyewon; Park, Boram; Joo, Jungnam; Jang, Ja-Hyun; Lee, Mi-Na; Kim, Jung Kwon; Kong, Sun-Young

    2017-03-01

    Cytogenetic analysis aides in risk stratification for patients with multiple myeloma (MM). Although several cytogenetic aberrations have been reported to be prognostic, less is known about the association between the presence of monosomies and prognosis. The present study evaluated the prevalence and prognostic implications of monosomies in patients with MM. Karyotypes were determined using conventional cytogenetics and fluorescence in situ hybridization (FISH). The prognostic effect of monosomies was evaluated by comparison with the clinical factors in MM patients with normal karyotypes. Karyotypes were successfully determined in 167 of the 170 patients with MM. Of these 167 patients, 52 (31.1%) had abnormal karyotypes. Univariable analyses showed that a normal karyotype, hypodiploidy, monosomies of chromosomes 13 and 16, deletion or monosomy of 13q14, and loss of X detected by metaphase analysis were each associated with reduced progression-free survival (P < .05 for each). Univariable analyses showed that a normal karyotype, hypodiploidy, monosomies of chromosomes 13 and 16, deletion or monosomy of 13q14 detected by metaphase analysis and FISH-determined RB1 (13q)/TP53 (17p) deletion were each associated with reduced overall survival (P < .05 for each). Multivariable analysis showed that hypodiploidy detected by metaphase analysis was independently prognostic of shorter progression-free survival (P < .05 for each) and that hypodiploidy, monosomy 16, and loss of Y chromosome and FISH-determined TP53 (17p) deletion were associated with reduced overall survival (P < .05 for each). In addition to known cytogenetic abnormalities, such as monosomy 13, hypodiploidy, and TP53 (17p) deletion, monosomy 16 and loss of the Y chromosome have adverse prognostic implications in patients with MM. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level.

    PubMed

    Baik, Jong Youn; Lee, Kelvin H

    2017-05-01

    Chinese hamster ovary (CHO) cells, the major mammalian host cells for biomanufacturing of therapeutic proteins, have been extensively investigated to enhance productivity and product quality. However, cell line instability resulting in unexpected changes in productivity or product quality continues to be a challenge. Based on previous reports about causes and characteristics of production instability, we hypothesized that chromosomal rearrangements due to genomic instability are associated with production instability and that these events can be characterized. We developed a production instability model using secreted alkaline phosphatase (SEAP)-expressing CHO cells (CHO-SEAP) as well as a framework to quantify chromosomal rearrangements by karyotyping. In the absence of methotrexate (MTX), CHO-SEAP cells exhibited a slightly increased growth rate, a significantly decreased specific productivity, and changes in the chromosomal rearrangement ratio of seven chromosomes. In contrast, when MTX was re-introduced, the growth rate and SEAP productivity reversed to the initial values, demonstrating the reversibility of production instability in CHO-SEAP cells. Fluorescence in situ hybridization analysis identified that the SEAP genes were incorporated in the chromosomal rearrangement (insertion) part of the der(Z9) chromosome. Karyotype analysis indicated that the insertion ratio of the der(Z9) chromosome decreased in the CHO-SEAP cells grown without MTX, demonstrating a correlation between chromosomal rearrangement and production instability. Our results support a mechanism for production instability, wherein a randomly generated chromosomal rearrangement (or genotype) results in cells with a growth advantage that is also associated with non (or low)-producing traits. As a result, the non-producing cells grow faster and thereby outgrow the producing population. Biotechnol. Bioeng. 2017;114: 1045-1053. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells

    PubMed Central

    Varela, Christine; Denis, Jérôme Alexandre; Polentes, Jérôme; Feyeux, Maxime; Aubert, Sophie; Champon, Benoite; Piétu, Geneviève; Peschanski, Marc; Lefort, Nathalie

    2012-01-01

    Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. Neural derivatives of human embryonic stem cells (hESCs) are currently being used for cell therapy in 3 clinical trials. However, hESCs are prone to genomic instability, which could limit their clinical utility. Here, we report that neural differentiation of hESCs systematically produced a neural stem cell population that could be propagated for more than 50 passages without entering senescence; this was true for all 6 hESC lines tested. The apparent spontaneous loss of evolution toward normal senescence of somatic cells was associated with a jumping translocation of chromosome 1q. This chromosomal defect has previously been associated with hematologic malignancies and pediatric brain tumors with poor clinical outcome. Neural stem cells carrying the 1q defect implanted into the brains of rats failed to integrate and expand, whereas normal cells engrafted. Our results call for additional quality controls to be implemented to ensure genomic integrity not only of undifferentiated pluripotent stem cells, but also of hESC derivatives that form cell therapy end products, particularly neural lines. PMID:22269325

  19. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  20. In vitro and in silico modeling of chromosomal instability

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri; Krasavin, Eugene; Govorun, Raisa; Koshlan, Igor; Pyatenko, Valentina; Korovchuk, Olga; Khvostunov, Igor; Sevankaev, Alexander

    Exposure to ionizing radiation increases cancer risk in human population. Cancer is thought to originate from an altered expression of certain number of specific genes. It is widely recognized that chromosome aberrations (CA) are involved in stable change in expression of genes by gain or loss of their functions. Thus CA can contribute to initiation or progression of cancer. Radiation induces CA immediately after exposure (in first cell cycle) and results in formation of delayed CA in descendants of irradiated cells, or chromosomal instability phenotype (CI). Therefore quantification of CI is a prerequisite of any mechanistic model of radiation induced cancer risks. To quantify CI we designed a set of in vitr o and in silico experiments. Two experimental models for study of CI in vitro, CHO-K1 wild-type and V79 HPRT-mutant cells, were exploited. Chromosome and chromatid type aberrations (Giemsa staining) were scored following exposure to gamma-radiation and accelerated ions (protons, LET=0.22 keV/µm, 7 Li3+ , LET=20 keV/µm, 14 7+ N , LET=77 keV/µm). The obtained results suggested that slowly growing colonies of HPRT mutant cells originating from lowand high-LET irradiated wt V79 cells were formed. After 14 N7+ ions irradiation about 50-100% of colonies had the decreased growth rate and CI phenotype was observed mainly in slowly growing colonies. High, compared to control, level of unstable CA (dicentrics) was observed in the progeny of gamma-irradiated CHO-K1 cells at different time points up to 30 cell generations. CA frequency, the number of cells with aberrations and the shape of a CA-vs-time curve were found to be dependent on the cell culture state (stationary or logarithmic phase) in which they were irradiated. Inhibition of replication and repair DNA synthesis by ara-C and hydroxyurea resulted in small modification of CA dynamics for stat-phase cells. For log-phase cell culture, in contrast, DNA synthesis inhibitors drastically impacted CA dynamics. In

  1. A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells.

    PubMed

    Lee, Hee-Sheung; Lee, Nicholas C O; Grimes, Brenda R; Samoshkin, Alexander; Kononenko, Artem V; Bansal, Ruchi; Masumoto, Hiroshi; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir

    2013-05-22

    Aneuploidy is a feature of most cancer cells that is often accompanied by an elevated rate of chromosome mis-segregation termed chromosome instability (CIN). While CIN can act as a driver of cancer genome evolution and tumor progression, recent findings point to the existence of a threshold level beyond which CIN becomes a barrier to tumor growth and therefore can be exploited therapeutically. Drugs known to increase CIN beyond the therapeutic threshold are currently few in number, and the clinical promise of targeting the CIN phenotype warrants new screening efforts. However, none of the existing methods, including the in vitro micronuclei (MNi) assay, developed to quantify CIN, is entirely satisfactory. We have developed a new assay for measuring CIN. This quantitative assay for chromosome mis-segregation is based on the use of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Thus, cells that inherit the HAC display green fluorescence, while cells lacking the HAC do not. This allows the measurement of HAC loss rate by routine flow cytometry. Using the HAC-based chromosome loss assay, we have analyzed several well-known anti-mitotic, spindle-targeting compounds, all of which have been reported to induce micronuclei formation and chromosome loss. For each drug, the rate of HAC loss was accurately measured by flow cytometry as a proportion of non-fluorescent cells in the cell population which was verified by FISH analysis. Based on our estimates, despite their similar cytotoxicity, the analyzed drugs affect the rates of HAC mis-segregation during mitotic divisions differently. The highest rate of HAC mis-segregation was observed for the microtubule-stabilizing drugs, taxol and peloruside A. Thus, this new and simple assay allows for a quick and efficient screen of hundreds of drugs to identify those affecting chromosome mis-segregation. It also allows ranking of compounds with the same or similar mechanism of

  2. Development of a novel HAC-based “gain of signal” quantitative assay for measuring chromosome instability (CIN) in cancer cells

    PubMed Central

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C. O.; Goncharov, Nikolay V.; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C.; Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene (“loss of signal” assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this “loss of signal” assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this “gain of signal” assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The “gain of signal” assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level. PMID:26943579

  3. Telomere Shortening and Associated Chromosomal Instability in Peripheral Blood Lymphocytes of Patients With Hodgkin's Lymphoma Prior to Any Treatment Are Predictive of Second Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M'kacher, Radhia; Bennaceur-Griscelli, Annelise; Girinsky, Theodore

    Purpose: To investigate a potential link between telomere length, chromosomal instability, and the advent of a second cancer (SC) in patients with Hodgkin's lymphoma (HL), who are known to be at risk for SCs. This study was premised on the finding that telomere dysfunction and DNA repair pathways were related to many pathologic conditions. Methods and Materials: Three cohorts of patients with HL were studied: 73 who were prospectively followed >5 years after diagnosis (prospective HL cohort), 28 who developed a SC (SC HL cohort), and 18 long-term survivors with no evidence of disease or complication since their initial treatmentmore » (NED HL cohort). Telomere length was analyzed by a telomeric restriction fragment assay in peripheral blood lymphocytes. Thirty healthy donors and 70 patients with a newly diagnosed solid tumor were the control population. Results: Compared with controls, patients from the prospective HL cohort, before any treatment, showed age-independent shorter telomeres (mean, 8.3 vs. 11.7 kb in healthy donors; <6 kb in 18% in HL patients), increased spontaneous chromosomal abnormalities, and increased in vitro radiation sensitivity (p < 10{sup -4} each). After treatment, telomere shortening was associated with cytogenetic profiles characterized by the persistence of complex chromosomal rearrangement and clonal aberrations. Moreover, the two cases of SC in the prospective HL patients had short telomeres and CCR initially. In addition, the SC HL cohort was characterized by markedly short telomeres (6.6 vs. 9.7 kb in the NED HL cohort), the presence of complex chromosome rearrangements, and increased in vitro radiation sensitivity. Conclusions: An intimate relationship between pre-treatment telomere shortening, chromosomal instability, radiation sensitivity and occurrence of SC was found in HL patients.« less

  4. Alpha-Particle-Induced Complex Chromosome Exchanges Transmitted through Extra-Thymic Lymphopoiesis In Vitro Show Evidence of Emerging Genomic Instability

    PubMed Central

    Sumption, Natalia; Goodhead, Dudley T.; Anderson, Rhona M.

    2015-01-01

    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure. PMID:26252014

  5. Homologous Recombination Repair Protects Against Particulate Chromate-induced Chromosome Instability in Chinese Hamster Cells

    PubMed Central

    Stackpole, Megan M.; Wise, Sandra S.; Duzevik, Eliza Grlickova; Munroe, Ray C.; Thompson, W. Douglas; Thacker, John; Thompson, Larry H.; Hinz, John M.; Wise, John Pierce

    2008-01-01

    Particulate hexavalent chromium [Cr(VI)] compounds are well-established human carcinogens. Cr(VI)-induced tumors are characterized by chromosomal instability (CIN); however, the mechanisms of this effect are unknown. We investigated the hypothesis that homologous recombination (HR) repair of DNA double strand breaks protect cells from Cr(VI)-induced CIN by focusing on the XRCC3 and RAD51C genes, which play an important role in cellular resistance to DNA double strand breaks. We used Chinese hamster cells defective in each HR gene (irs3 for RAD51C and irs1SF for XRCC3) and compared with their wildtype parental and cDNA-complemented controls. We found that the intracellular Cr ion levels varied among the cell lines after particulate chromate treatment. Importantly, accounting for differences in Cr ion levels, we discovered that XRCC3 and RAD51C cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, relative to wild-type and cDNA-complimented cells. We also observed the emergence of high levels of chromatid exchanges in the two mutant cell lines. For example, 1 ug/cm2 lead chromate induced 20 and 32 exchanges in XRCC3- and RAD51C-deficient cells, respectively, whereas no exchanges were detected in the wildtype and cDNA-complemented cells. These observations suggest that HR protects cells from Cr(VI)-induced CIN, consistent with the ability of particulate Cr(VI) to induce double strand breaks. PMID:17662313

  6. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  7. Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells.

    PubMed

    Valeri, Antonio; Alonso-Ferrero, Maria Eugenia; Río, Paula; Pujol, María Roser; Casado, José A; Pérez, Laura; Jacome, Ariana; Agirre, Xabier; Calasanz, Maria José; Hanenberg, Helmut; Surrallés, Jordi; Prosper, Felipe; Albella, Beatriz; Bueren, Juan A

    2010-12-28

    Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.

  8. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis.

    PubMed

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna

    2017-07-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.

  9. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis

    PubMed Central

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O.; Jauch, Anna

    2017-01-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. PMID:28341732

  10. Chromosome number evolution in skippers (Lepidoptera, Hesperiidae)

    PubMed Central

    Lukhtanov, Vladimir A.

    2014-01-01

    Abstract Lepidoptera (butterflies and moths), as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae) based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (syn)apomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819]) and between-species (e.g. the genus Agathymus Freeman, 1959) levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution. PMID:25610542

  11. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement

    PubMed Central

    Ohno, Yuko; Ogiyama, Yuki; Kubota, Yoshino; Kubo, Takuya; Ishii, Kojiro

    2016-01-01

    The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR. PMID:26433224

  12. Chromosome instability on children with asthma.

    PubMed

    Lialiaris, Theodore; Polyzou, Aggeliki; Mpountoukas, Panagiotis; Tsiggene, Anthi; Kouskoukis, Alexandros; Pouliliou, Stamatia; Paraskakis, Emmanouil; Tentes, Ioannis; Trypsianis, Grigorios; Chatzimichail, Athanasios

    2009-10-01

    Asthma is a complex disease with multiple interactions between genetic and environmental factors. The aim of our study was to investigate the possible genetic instability in asthmatic patients (AP) with asthma in human cultured peripheral blood lymphocytes. Furthermore, the presence of either cytostaticity or cytotoxicity was demonstrated. Human peripheral blood lymphocytes were cultured from 18 admitted children to the Pediatric Clinic of the University Hospital of Alexandroupolis (average age 7.2 years), and 9 healthy blood donors were used as control subjects (average age 6.5 years), none of whom was receiving drugs for medical or other reasons. A significant (p < 0.05) increase in spontaneous sister chromatid exchanges (SCEs) frequency in asthmatic patients compared with control subjects was observed. No statistically significant modification in the spontaneous proliferation rate index (PRI) in AP compared with the controls was demonstrated. Finally, MMC induced a statistically significant increase in SCEs frequency both to controls and to AP, with the MMC-induced SCEs rates in AP being statistically (p < 0.01) higher compared to the MMC-induced SCEs in controls. We try to improve a new diagnostic process of possible genetic instability by a combination of genotoxic, cytostatic and cytotoxic effects of asthma on human peripheral lymphocytes.

  13. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  14. Prognostic relevance of CD163 and CD8 combined with EZH2 and gain of chromosome 18 in follicular lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium.

    PubMed

    Stevens, Wendy B C; Mendeville, Matias; Redd, Robert; Clear, Andrew J; Bladergroen, Reno; Calaminici, Maria; Rosenwald, Andreas; Hoster, Eva; Hiddemann, Wolfgang; Gaulard, Philippe; Xerri, Luc; Salles, Gilles; Klapper, Wolfram; Pfreundschuh, Michael; Jack, Andrew; Gascoyne, Randy D; Natkunam, Yasodha; Advani, Ranjana; Kimby, Eva; Sander, Birgitta; Sehn, Laurie H; Hagenbeek, Anton; Raemaekers, John; Gribben, John; Kersten, Marie José; Ylstra, Bauke; Weller, Edie; de Jong, Daphne

    2017-08-01

    In follicular lymphoma, studies addressing the prognostic value of microenvironment-related immunohistochemical markers and tumor cell-related genetic markers have yielded conflicting results, precluding implementation in practice. Therefore, the Lunenburg Lymphoma Biomarker Consortium performed a validation study evaluating published markers. To maximize sensitivity, an end of spectrum design was applied for 122 uniformly immunochemotherapy-treated follicular lymphoma patients retrieved from international trials and registries. The criteria were: early failure, progression or lymphoma-related death <2 years versus long remission, response duration of >5 years. Immunohistochemical staining for T cells and macrophages was performed on tissue microarrays from initial biopsies and scored with a validated computer-assisted protocol. Shallow whole-genome and deep targeted sequencing was performed on the same samples. The 96/122 cases with complete molecular and immunohistochemical data were included in the analysis. EZH2 wild-type ( P =0.006), gain of chromosome 18 ( P =0.002), low percentages of CD8+ cells ( P =0.011) and CD163+ areas ( P =0.038) were associated with early failure. No significant differences in other markers were observed, thereby refuting previous claims of their prognostic significance. Using an optimized study design, this Lunenburg Lymphoma Biomarker Consortium study substantiates wild-type EZH2 status, gain of chromosome 18, low percentages of CD8+ cells and CD163+ area as predictors of early failure to immunochemotherapy in follicular lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP [-like]), while refuting the prognostic impact of various other markers. Copyright© 2017 Ferrata Storti Foundation.

  15. Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice

    NASA Technical Reports Server (NTRS)

    Donoho, Greg; Brenneman, Mark A.; Cui, Tracy X.; Donoviel, Dorit; Vogel, Hannes; Goodwin, Edwin H.; Chen, David J.; Hasty, Paul

    2003-01-01

    The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27 encodes a single, distinct interaction domain. Deletion of all RAD51-interacting domains causes embryonic lethality in mice. A less severe phenotype is seen with BRAC2 truncations that preserve some, but not all, of the BRC motifs. These mice can survive beyond weaning, but are runted and infertile, and die very young from cancer. Cells from such mice show hypersensitivity to some genotoxic agents and chromosomal instability. Here, we have analyzed mice and cells with a deletion of only the RAD51-interacting region encoded by exon 27. Mice homozygous for this mutation (called brca2(lex1)) have a shorter life span than that of control littermates, possibly because of early onsets of cancer and sepsis. No other phenotype was observed in these animals; therefore, the brca2(lex1) mutation is less severe than truncations that delete some BRC motifs. However, at the cellular level, the brca2(lex1) mutation causes reduced viability, hypersensitivity to the DNA interstrand crosslinking agent mitomycin C, and gross chromosomal instability, much like more severe truncations. Thus, the extreme carboxy-terminal region encoded by exon 27 is important for BRCA2 function, probably because it is required for a fully functional interaction between BRCA2 and RAD51. Copyright 2003 Wiley-Liss, Inc.

  16. Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo Cooperativo Español de Citogenética Hematológica.

    PubMed

    Solé, F; Espinet, B; Sanz, G F; Cervera, J; Calasanz, M J; Luño, E; Prieto, F; Granada, I; Hernández, J M; Cigudosa, J C; Diez, J L; Bureo, E; Marqués, M L; Arranz, E; Ríos, R; Martínez Climent, J A; Vallespí, T; Florensa, L; Woessner, S

    2000-02-01

    Recently, a consensus International Prognostic Scoring System (IPSS) for predicting outcome and planning therapy in the myelodysplastic syndromes (MDS) has been developed. However, the intermediate-risk cytogenetic subgroup defined by the IPSS includes a miscellaneous number of different single abnormalities for which real prognosis at present is uncertain. The main aims of this study were to evaluate in an independent series the prognostic value of the IPSS and to identify chromosomal abnormalities with a previously unrecognized good or poor prognosis in 640 patients. In univariate analyses, cases with single 1q abnormalities experienced poor survival, whereas those with trisomy 8 had a higher risk of acute leukaemic transformation than the remaining patients (P = 0.004 and P = 0.009 respectively). Patients with single del(12p) had a similar survival to patients with a normal karyotype and showed some trend for a better survival than other cases belonging to the IPSS intermediate-risk cytogenetic subgroup (P = 0.045). Multivariate analyses demonstrated that IPSS cytogenetic prognostic subgroup, proportion of bone marrow blasts and haemoglobin level were the main prognostic factors for survival, and the first two characteristics and platelet count were the best predictors of acute leukaemic transformation risk. A large international co-operative study should be carried out to clarify these findings.

  17. Screening for specific chromosome involvement in hematological malignancies using a set of seven chromosome painting probes. An alternative approach for chromosome analysis using standard FISH instrumentation.

    PubMed

    Nacheva, E P; Gribble, S; Andrews, K; Wienberg, J; Grace, C D

    2000-10-15

    We report the application of multi-color fluorescence in situ hydribidization (FISH) for bone marrow metaphase cell analysis of hematological malignancies using a sub-set of the human karyotype for chromosome painting. A combination of chromosome probes labeled with three haptens enabled the construction of a "painting probe" which detects seven different chromosomes. The probe was used to screen three chronic myeloid leukemia (CML) derived cell lines and ten CML patient bone marrow samples for aberrations, additional to the Ph rearrangement, that are associated with the onset of blast crisis of CML. This approach was shown to identify karyotype changes commonly seen by conventional karyotyping, and in addition revealed chromosome changes unresolved or undetected by conventional cytogenetic analysis. The seven-color painting probe provides a useful, fast, and reliable complementary tool for chromosome analysis, especially in cases with poor chromosome morphology. This is a simple approach, since the probes can be displayed in a standard red/green/blue format accessible to standard fluorescence microscopes and image-processing software. The proposed approach using panels of locus-specific probes as well as chromosome paints will be useful in all diagnostic routine environments where analysis is directed towards screening for genetic rearrangements and/or specific patterns of chromosome involvement with diagnostic/prognostic value.

  18. Segmental Duplications in Euchromatic Regions of Human Chromosome 5: A Source of Evolutionary Instability and Transcriptional Innovation

    PubMed Central

    Courseaux, Anouk; Richard, Florence; Grosgeorge, Josiane; Ortola, Christine; Viale, Agnes; Turc-Carel, Claude; Dutrillaux, Bernard; Gaudray, Patrick; Nahon, Jean-Louis

    2003-01-01

    Recent analyses of the structure of pericentromeric and subtelomeric regions have revealed that these particular regions of human chromosomes are often composed of blocks of duplicated genomic segments that have been associated with rapid evolutionary turnover among the genomes of closely related primates. In the present study, we show that euchromatic regions of human chromosome 5—5p14, 5p13, 5q13, 5q15–5q21—also display such an accumulation of segmental duplications. The structure, organization and evolution of those primate-specific sequences were studied in detail by combining in silico and comparative FISH analyses on human, chimpanzee, gorilla, orangutang, macaca, and capuchin chromosomes. Our results lend support to a two-step model of transposition duplication in the euchromatic regions, with a founder insertional event at the time of divergence between Platyrrhini and Catarrhini (25–35 million years ago) and an apparent burst of inter- and intrachromosomal duplications in the Hominidae lineage. Furthermore, phylogenetic analysis suggests that the chronology and, likely, molecular mechanisms, differ regarding the region of primary insertion—euchromatic versus pericentromeric regions. Lastly, we show that as their counterparts located near the heterochromatic region, the euchromatic segmental duplications have consistently reshaped their region of insertion during primate evolution, creating putative mosaic genes, and they are obvious candidates for causing ectopic rearrangements that have contributed to evolutionary/genomic instability. [Supplemental material is available online at www.genome.org. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: D. Le Paslier, A. McKenzie, J. Melki, C. Sargent, J. Scharf and S. Selig.] PMID:12618367

  19. Tumor-Specific Chromosome Mis-Segregation Controls Cancer Plasticity by Maintaining Tumor Heterogeneity

    PubMed Central

    Hu, Yuanjie; Ru, Ning; Xiao, Huasheng; Chaturbedi, Abhishek; Hoa, Neil T.; Tian, Xiao-Jun; Zhang, Hang; Ke, Chao; Yan, Fengrong; Nelson, Jodi; Li, Zhenzhi; Gramer, Robert; Yu, Liping; Siegel, Eric; Zhang, Xiaona; Jia, Zhenyu; Jadus, Martin R.; Limoli, Charles L.; Linskey, Mark E.; Xing, Jianhua; Zhou, Yi-Hong

    2013-01-01

    Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7) copy number variation (CNV) in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers. PMID:24282558

  20. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Phosphorylation of Mps1 by BRAFV600E prevents Mps1 degradation and contributes to chromosome instability in melanoma.

    PubMed

    Liu, J; Cheng, X; Zhang, Y; Li, S; Cui, H; Zhang, L; Shi, R; Zhao, Z; He, C; Wang, C; Zhao, H; Zhang, C; Fisk, H A; Guadagno, T M; Cui, Y

    2013-02-07

    Activating BRAF mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. BRAF(V600E) induces centrosome amplification and spindle abnormalities that result in aneuploidy. We find modification of Mps1 is critical for contributing to centrosome amplification and chromosome instability induced by BRAF(V600E). Phosphorylation of Mps1 at residue S281 induced by BRAF(V600E) stabilizes Mps1 protein by preventing its ubiquitination by APC/C and subsequent degradation, allowing the non-degraded protein to accumulate at centrosomes. Cells in which endogenous Mps1 was replaced with a phospho-mimetic Mps1 mutant are viable but amplify centrosomes and missegregate chromosomes frequently. Importantly, analysis of tumor micro arrays revealed that phospho-MAPK and S281-phosphorylated Mps1 were highly correlated in human melanoma tissues, implying that MAPK contributes to defects in the degradation of Mps1 in situ. We propose that continuously activated BRAF(V600E) signaling may be a possible mechanism for the deregulation of Mps1 stability and kinase activity in human tumors, and that persistent phosphorylation of Mps1 through BRAF(V600E) signaling is a key event in disrupting the control of centrosome duplication and chromosome stability that may contribute to tumorigenesis. Our findings raise the possibility that targeting the oncogenic BRAF and S281-phosphorylated Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment.

  2. Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma

    PubMed Central

    McCabe, Martin G.; Bäcklund, L. Magnus; Leong, Hui Sun; Ichimura, Koichi; Collins, V. Peter

    2011-01-01

    Current risk stratification schemas for medulloblastoma, based on combinations of clinical variables and histotype, fail to accurately identify particularly good- and poor-risk tumors. Attempts have been made to improve discriminatory power by combining clinical variables with cytogenetic data. We report here a pooled analysis of all previous reports of chromosomal copy number related to survival data in medulloblastoma. We collated data from previous reports that explicitly quoted survival data and chromosomal copy number in medulloblastoma. We analyzed the relative prognostic significance of currently used clinical risk stratifiers and the chromosomal aberrations previously reported to correlate with survival. In the pooled dataset metastatic disease, incomplete tumor resection and severe anaplasia were associated with poor outcome, while young age at presentation was not prognostically significant. Of the chromosomal variables studied, isolated 17p loss and gain of 1q correlated with poor survival. Gain of 17q without associated loss of 17p showed a trend to improved outcome. The most commonly reported alteration, isodicentric chromosome 17, was not prognostically significant. Sequential multivariate models identified isolated 17p loss, isolated 17q gain, and 1q gain as independent prognostic factors. In a historical dataset, we have identified isolated 17p loss as a marker of poor outcome and 17q gain as a novel putative marker of good prognosis. Biological markers of poor-risk and good-risk tumors will be critical in stratifying treatment in future trials. Our findings should be prospectively validated independently in future clinical studies. PMID:21292688

  3. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review.

    PubMed

    Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Bjoern; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Itzhak, Avital; Nissan, Aviram

    2013-01-01

    The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research.Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC.The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC.

  4. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review

    PubMed Central

    Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Björn LDM; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Avital, Itzhak; Nissan, Aviram

    2013-01-01

    The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research. Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC. The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC. PMID:23459799

  5. TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes

    PubMed Central

    Shrestha, Roshan L.; Tamura, Naoka; Fries, Anna; Levin, Nicolas; Clark, Joanna; Draviam, Viji M.

    2014-01-01

    Chromosomal instability can arise from defects in chromosome–microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome–microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore–microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status. PMID:24898139

  6. A Dual Role for UVRAG in Maintaining Chromosomal Stability Independent of Autophagy

    PubMed Central

    Zhao, Zhen; Oh, Soohwan; Li, Dapeng; Ni, Duojiao; Pirooz, Sara Dolatshahi; Lee, Joo-Hyung; Yang, Shunhua; Lee, June-Yong; Ghozalli, Irene; Costanzo, Vincenzo; Stark, Jeremy M.; Liang, Chengyu

    2012-01-01

    SUMMARY Autophagy defects have been recently associated with chromosomal instability (CIN), a hallmark of human cancer. However, the functional specificity and mechanism of action of autophagy-related factors in genome stability remain elusive. Here we report that UVRAG, an autophagic tumor suppressor, plays a dual role in chromosomal stability, surprisingly independent of autophagy. We establish that UVRAG promotes DNA double-strand-breaks repair by directly binding and activating DNA-PK in non-homologous end-joining. Disruption of UVRAG increases genetic instability and sensitivity of cells to irradiation. Furthermore, UVRAG was found also localized at centrosomes and physically associated with CEP63, an integral component of centrosomes. Disruption of the association of UVRAG with centrosomes causes centrosome instability and aneuploidy. UVRAG thus represents an autophagy-related molecular factor that also has a convergent role in patrolling both the structural integrity and proper segregation of chromosomes, which may confer autophagy-independent tumor suppressor activity. PMID:22542840

  7. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation.

    PubMed

    Aghajanyan, Anna; Kuzmina, Nina; Sipyagyna, Alla; Baleva, Larisa; Suskov, Igor

    2011-08-01

    Transgenerational genomic instability was studied in nonirradiated children born from fathers who were irradiated with low doses of ionizing radiation while working as clean-up workers at the Chernobyl Nuclear Power Plant (liquidators) and nonirradiated mothers from nuclear families. Aberrant cell frequencies (ACFs), chromosomal type aberration frequencies, and chromatid break frequencies (CBFs) in the lymphocytes of fathers-liquidators, and their children were significantly higher when compared with the control group (P < 0.05). Individual ACFs, aberration frequencies, and CBFs were independent of the time between irradiation of the father and conception of the child (1 month to 18 years). Chromosomes were categorized into seven groups (A through G). Analysis of aberrant chromosomes within these groups showed no differences in the average frequency of aberrant chromosomes between children and fathers-liquidators. However, significant differences were observed in the average frequency of aberrant chromosomes in groups A, B, and C between children and mothers in the families of liquidators. These results suggest that low doses of radiation induce genomic instability in fathers. Moreover, low radiation doses might be responsible for individual peculiarities in transgenerational genomic instability in children (as a consequence of response to primary DNA damage). Thus, genomic instability may contribute to increased morbidity over the lifetime of these children. Copyright © 2011 Wiley-Liss, Inc.

  8. Shugoshins function as a guardian for chromosomal stability in nuclear division.

    PubMed

    Yao, Yixin; Dai, Wei

    2012-07-15

    Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.

  9. Characterization of genomic instability in Saccharomyces cerevisiae and engaging teaching strategies described in two curricula

    NASA Astrophysics Data System (ADS)

    Keller, Alexandra P.

    Cancer arises through an accumulation of mutations in the genome. In cancer cells, mutations are frequently caused by DNA rearrangements, which include chromosomal breakages, deletions, insertions, and translocations. Such events contribute to genomic instability, a known hallmark of cancer. To study cycles of chromosomal instability, we are using baker's yeast as a model organism. In yeast, a ChrVII system was previously developed (Admire et al., 2006), in which a disomic yeast strain was used to identify regions of instability on ChrVII. Using this system, a fragile site on the left arm of ChrVII (Admire et al., 2006) was identified and characterized. This study led to insight into mechanisms involved in chromosomal rearrangements and mutations that arise from them as well as to an understanding of mechanisms involved in genomic instability. To further our understanding of genomic instability, I devised a strategy to study instability on a different chromosome (ChrV) (Figure 3), so that we could determine whether lessons learned from the ChrVII system are applicable to other chromosomes, and/or whether other mechanisms of instability could be identified. A suitable strain was generated and analyzed, and our findings suggest that frequencies of instability on the right arm of ChrV are similar to those found in ChrVII. The results from the work in ChrV described in this paper support the idea that the instability found on ChrVII is not an isolated occurrence. My research was supported by an NSF GK-12 grant. The aim of this grant is to improve science education in middle schools, and as part of my participation in this program, I studied and practiced effective science communication methodologies. In attempts to explain my research to middle school students, I collaborated with others to develop methods for explaining genetics and the most important techniques I used in my research. While developing these methods, I learned more about what motivates people to learn

  10. A patient with polymerase E1 deficiency (POLE1): clinical features and overlap with DNA breakage/instability syndromes.

    PubMed

    Thiffault, Isabelle; Saunders, Carol; Jenkins, Janda; Raje, Nikita; Canty, Kristi; Sharma, Mukta; Grote, Lauren; Welsh, Holly I; Farrow, Emily; Twist, Greyson; Miller, Neil; Zwick, David; Zellmer, Lee; Kingsmore, Stephen F; Safina, Nicole P

    2015-05-07

    Chromosome instability syndromes are a group of inherited conditions associated with chromosomal instability and breakage, often leading to immunodeficiency, growth retardation and increased risk of malignancy. We performed exome sequencing on a girl with a suspected chromosome instability syndrome that manifested as growth retardation, microcephaly, developmental delay, dysmorphic features, poikiloderma, immune deficiency with pancytopenia, and myelodysplasia. She was homozygous for a previously reported splice variant, c.4444 + 3A > G in the POLE1 gene, which encodes the catalytic subunit of DNA polymerase E. This is the second family with POLE1-deficency, with the affected individual demonstrating a more severe phenotype than previously described.

  11. A single mutation in Securin induces chromosomal instability and enhances cell invasion.

    PubMed

    Mora-Santos, Mar; Castilla, Carolina; Herrero-Ruiz, Joaquín; Giráldez, Servando; Limón-Mortés, M Cristina; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2013-01-01

    Pituitary tumour transforming gene (pttg1) encodes Securin, a protein involved in the inhibition of sister chromatid separation binding to Separase until the onset of anaphase. Separase is a cysteine-protease that degrades cohesin to segregate the sister chromatids to opposite poles of the cell. The amount of Securin is strongly regulated because it should allow Separase activation when it is degraded by the anaphase promoting complex/cyclosome, should arrest the cell cycle after DNA damage, when it is degraded through SKP1-CUL1-βTrCP ubiquitin ligase, and its overexpression induces tumour formation and correlates with metastasis in multiple tumours. Securin is a phosphoprotein that contains 32 potentially phosphorylatable residues. We mutated and analysed most of them, and found a single mutant, hSecT60A, that showed enhanced oncogenic properties. Our fluorescence activated cell sorting analysis, fluorescence in situ hybridisation assays, tumour cell migration and invasion experiments and gene expression by microarrays analysis clearly involved hSecT60A in chromosomal instability and cell invasion. These results show, for the first time, that a single mutation in pttg1 is sufficient to trigger the oncogenic properties of Securin. The finding of this point mutation in patients might be used as an effective strategy for early detection of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes.

    PubMed

    Solé, Francesc; Luño, Elisa; Sanzo, Carmen; Espinet, Blanca; Sanz, Guillermo F; Cervera, José; Calasanz, María José; Cigudosa, Juan Cruz; Millà, Fuensanta; Ribera, Josep Maria; Bureo, Encarna; Marquez, Maria Luisa; Arranz, Eva; Florensa, Lourdes

    2005-09-01

    The main prognostic factors in myelodysplastic syndromes (MDS) are chromosomal abnormalities, the proportion of blasts in bone marrow and number and degree of cytopenias. A consensus-defined International Prognostic Scoring System (IPSS) for predicting outcome and planning therapy in MDS has been developed, but its prognostic value in a large and independent series remains unproven. Furthermore, the intermediate-risk cytogenetic subgroup defined by the IPSS includes a miscellaneous number of different single abnormalities of uncertain prognostic significance at present. The main aim of the present study was to identify chromosomal abnormalities with a previously unrecognized good or poor prognosis in order to find new cytogenetic markers with predictive value. We report the cytogenetic findings in a series of 968 patients with primary MDS from the Spanish Cytogenetics Working Group, Grupo Cooperativo Español de Citogenética Hematológica (GCECGH). In this series of 968 MDS patients, we found various cytogenetic aberrations with a new prognostic impact. Complex karyotype, -7/7q- and i(17q) had a poor prognosis; normal karyotype, loss of Y chromosome, deletion 11q, deletion 12p and deletion 20q as single alterations had a good prognosis. Intermediate prognosis aberrations were rearrangements of 3q21q26, trisomy 8, trisomy 9, translocations of 11q and del(17p). Finally, a new group of single or double cytogenetic abnormalities, most of which are considered rare cytogenetic events and are usually included in the intermediate category of the IPSS, showed a trend to poor prognosis. This study suggests that some specific chromosomal abnormalities could be segregated from the IPSS intermediate-risk cytogenetic prognostic subgroup and included in the low risk or in the poor risk groups.

  13. Instability of isochromosome 4p in a child with pure trisomy 4p syndrome features and entire 4q-arm translocation.

    PubMed

    Pota, Pruthvi; Grammatopoulou, Vasiliki; Torti, Erin; Braddock, Stephen; Batanian, Jacqueline R

    2014-01-01

    Constitutional chromosome instability so far has mainly been associated with ring formation. In addition, isochromosome formation involving the short arm with translocation of the entire long arm is rarely observed. This type of rearrangement has been reported for chromosomes 4, 5, 7, 9, 10, 12, and 20. Here, we present the third patient having an isochromosome 4p with 4q translocation, but showing for the first time chromosome instability detected by FISH following chromosome microarray analysis.

  14. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  15. The homologous recombination machinery modulates the formation of RNA–DNA hybrids and associated chromosome instability

    PubMed Central

    Wahba, Lamia; Gore, Steven K; Koshland, Douglas

    2013-01-01

    Genome instability in yeast and mammals is caused by RNA–DNA hybrids that form as a result of defects in different aspects of RNA biogenesis. We report that in yeast mutants defective for transcription repression and RNA degradation, hybrid formation requires Rad51p and Rad52p. These proteins normally promote DNA–DNA strand exchange in homologous recombination. We suggest they also directly promote the DNA–RNA strand exchange necessary for hybrid formation since we observed accumulation of Rad51p at a model hybrid-forming locus. Furthermore, we provide evidence that Rad51p mediates hybridization of transcripts to homologous chromosomal loci distinct from their site of synthesis. This hybrid formation in trans amplifies the genome-destabilizing potential of RNA and broadens the exclusive co-transcriptional models that pervade the field. The deleterious hybrid-forming activity of Rad51p is counteracted by Srs2p, a known Rad51p antagonist. Thus Srs2p serves as a novel anti-hybrid mechanism in vivo. DOI: http://dx.doi.org/10.7554/eLife.00505.001 PMID:23795288

  16. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK

    PubMed Central

    Bendre, Shweta; Hall, Conrad; Lin, Yu-Chih

    2016-01-01

    The dynamic regulation of microtubules (MTs) during mitosis is critical for accurate chromosome segregation and genome stability. Cancer cell lines with hyperstabilized kinetochore MTs have increased segregation errors and elevated chromosomal instability (CIN), but the genetic defects responsible remain largely unknown. The MT depolymerase MCAK (mitotic centromere-associated kinesin) can influence CIN through its impact on MT stability, but how its potent activity is controlled in cells remains unclear. In this study, we show that GTSE1, a protein found overexpressed in aneuploid cancer cell lines and tumors, regulates MT stability during mitosis by inhibiting MCAK MT depolymerase activity. Cells lacking GTSE1 have defects in chromosome alignment and spindle positioning as a result of MT instability caused by excess MCAK activity. Reducing GTSE1 levels in CIN cancer cell lines reduces chromosome missegregation defects, whereas artificially inducing GTSE1 levels in chromosomally stable cells elevates chromosome missegregation and CIN. Thus, GTSE1 inhibition of MCAK activity regulates the balance of MT stability that determines the fidelity of chromosome alignment, segregation, and chromosomal stability. PMID:27881713

  17. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae

    PubMed Central

    Putnam, Christopher D.; Kolodner, Richard D.

    2017-01-01

    Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. PMID:28684602

  18. Chromosomal instability in rodents caused by pollution from Baikonur cosmodrome.

    PubMed

    Kolumbayeva, Saule; Begimbetova, Dinara; Shalakhmetova, Tamara; Saliev, Timur; Lovinskaya, Anna; Zhunusbekova, Benazir

    2014-09-01

    An assessment of the health status of ecosystems exposed to man-made pollution is a vital issue for many countries. Particularly it concerns the consequences of contamination caused by the activity of the space industry. Each rocket launch is accompanied by the introduction of parts of the rocket propellant into the environment. This study aims to scrutinize the effect of the components of rocket fuel on the induction of lipid peroxidation and chromosomal aberrations on rodents inhabiting the area exposed to pollution from Baikonur cosmodrome. The results showed the increase of the level of lipid hydroperoxide and malondialdehyde in the livers of Citellus pygmaeus Pallas and Mus musculus L., which indicates an augmentation of free radical activity and DNA damage. The cytogenetic analysis of bone marrow cells revealed that the frequency of chromosomal aberrations was a few times higher in the rodents from contaminated territory. The signs of oxidative stress and high level of chromosomal aberrations indicate the environmental impact of the cosmodrome, and its possible toxic and mutagenic effects on ecosystems.

  19. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  20. DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease

    PubMed Central

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa

    2015-01-01

    DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814

  1. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells

    PubMed Central

    Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human–mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human–mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis. PMID:24608870

  2. Molecular Inversion Probe Analysis of Gene Copy Alterations Reveals Distinct Categories of Colorectal Carcinoma

    PubMed Central

    Ji, Hanlee; Kumm, Jochen; Zhang, Michael; Farnam, Kyle; Salari, Keyan; Faham, Malek; Ford, James M.; Davis, Ronald W.

    2006-01-01

    Genomic instability is a major feature of neoplastic development in colorectal carcinoma and other cancers. Specific genomic instability events, such as deletions in chromosomes and other alterations in gene copy number, have potential utility as biologically relevant prognostic biomarkers. For example, genomic deletions on chromosome arm 18q are an indicator of colorectal carcinoma behavior and potentially useful as a prognostic indicator. Adapting a novel genomic technology called molecular inversion probes which can determine gene copy alterations, such as genomic deletions, we designed a set of probes to interrogate several hundred individual exons of >200 cancer genes with an overall distribution covering all chromosome arms. In addition, >100 probes were designed in close proximity of microsatellite markers on chromosome arm 18q. We analyzed a set of colorectal carcinoma cell lines and primary colorectal tumor samples for gene copy alterations and deletion mutations in exons. Based on clustering analysis, we distinguished the different categories of genomic instability among the colorectal cancer cell lines. Our analysis of primary tumors uncovered several distinct categories of colorectal carcinoma, each with specific patterns of 18q deletions and deletion mutations in specific genes. This finding has potential clinical ramifications given the application of 18q loss of heterozygosity events as a potential indicator for adjuvant treatment in stage II colorectal carcinoma. PMID:16912164

  3. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities.

    PubMed

    Ferlin, A; Garolla, A; Foresta, C

    2005-01-01

    The most common type of karyotype abnormality detected in infertile subjects is represented by Klinefelter's syndrome, and the most frequent non-chromosomal alteration is represented by Y chromosome long arm microdeletions. Here we report our experience and a review of the literature on sperm sex chromosome aneuploidies in these two conditions. Non mosaic 47,XXY Klinefelter patients (12 subjects) show a significantly lower percentage of normal Y-bearing sperm and slightly higher percentage of normal X-bearing sperm. Consistent with the hypothesis that 47,XXY germ cells may undergo and complete meiosis, aneuploidy rate for XX- and XY-disomies is also increased with respect to controls, whereas the percentage of YY-disomies is normal. Aneuploidy rates in men with mosaic 47,XXY/46,XY (11 subjects) are lower than those observed in men with non-mosaic Klinefelter's syndrome, and only the frequency of XY-disomic sperm is significantly higher with respect to controls. Although the great majority of children born by intracytoplasmic sperm injection from Klinefelter subjects are chromosomally normal, the risk of producing offspring with chromosome aneuploidies is significant. Men with Y chromosome microdeletions (14 subjects) showed a reduction of normal Y-bearing sperm, and an increase in nullisomic and XY-disomic sperm, suggesting an instability of the deleted Y chromosome causing its loss in germ cells, and meiotic alterations leading to XY non-disjunction. Intracytoplasmic injection of sperm from Y-deleted men will therefore transmit the deletion to male children, and therefore the spermatogenic impairment, but raises also concerns of generating 45,X and 47,XXY embryos. Copyright 2005 S. Karger AG, Basel.

  4. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer.

    PubMed

    Pailler, E; Auger, N; Lindsay, C R; Vielh, P; Islas-Morris-Hernandez, A; Borget, I; Ngo-Camus, M; Planchard, D; Soria, J-C; Besse, B; Farace, F

    2015-07-01

    Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24-55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7-11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene

  5. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer

    PubMed Central

    Pailler, E.; Auger, N.; Lindsay, C. R.; Vielh, P.; Islas-Morris-Hernandez, A.; Borget, I.; Ngo-Camus, M.; Planchard, D.; Soria, J.-C.; Besse, B.; Farace, F.

    2015-01-01

    Background Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Patients and methods Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. Results ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24–55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7–11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. Conclusion We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged

  6. Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    2001-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  7. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    PubMed

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  8. Cytogenetic prognostication within medulloblastoma subgroups.

    PubMed

    Shih, David J H; Northcott, Paul A; Remke, Marc; Korshunov, Andrey; Ramaswamy, Vijay; Kool, Marcel; Luu, Betty; Yao, Yuan; Wang, Xin; Dubuc, Adrian M; Garzia, Livia; Peacock, John; Mack, Stephen C; Wu, Xiaochong; Rolider, Adi; Morrissy, A Sorana; Cavalli, Florence M G; Jones, David T W; Zitterbart, Karel; Faria, Claudia C; Schüller, Ulrich; Kren, Leos; Kumabe, Toshihiro; Tominaga, Teiji; Shin Ra, Young; Garami, Miklós; Hauser, Peter; Chan, Jennifer A; Robinson, Shenandoah; Bognár, László; Klekner, Almos; Saad, Ali G; Liau, Linda M; Albrecht, Steffen; Fontebasso, Adam; Cinalli, Giuseppe; De Antonellis, Pasqualino; Zollo, Massimo; Cooper, Michael K; Thompson, Reid C; Bailey, Simon; Lindsey, Janet C; Di Rocco, Concezio; Massimi, Luca; Michiels, Erna M C; Scherer, Stephen W; Phillips, Joanna J; Gupta, Nalin; Fan, Xing; Muraszko, Karin M; Vibhakar, Rajeev; Eberhart, Charles G; Fouladi, Maryam; Lach, Boleslaw; Jung, Shin; Wechsler-Reya, Robert J; Fèvre-Montange, Michelle; Jouvet, Anne; Jabado, Nada; Pollack, Ian F; Weiss, William A; Lee, Ji-Yeoun; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Leonard, Jeffrey R; Rubin, Joshua B; de Torres, Carmen; Lavarino, Cinzia; Mora, Jaume; Cho, Yoon-Jae; Tabori, Uri; Olson, James M; Gajjar, Amar; Packer, Roger J; Rutkowski, Stefan; Pomeroy, Scott L; French, Pim J; Kloosterhof, Nanne K; Kros, Johan M; Van Meir, Erwin G; Clifford, Steven C; Bourdeaut, Franck; Delattre, Olivier; Doz, François F; Hawkins, Cynthia E; Malkin, David; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Bouffet, Eric; Rutka, James T; Pfister, Stefan M; Taylor, Michael D

    2014-03-20

    Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.

  9. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-01-01

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.

  10. Cell division patterns and chromosomal segregation defects in oral cancer stem cells.

    PubMed

    Kaseb, Hatem O; Lewis, Dale W; Saunders, William S; Gollin, Susanne M

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is a serious public health problem caused primarily by smoking and alcohol consumption or human papillomavirus. The cancer stem cell (CSC) theory posits that CSCs show unique characteristics, including self-renewal and therapeutic resistance. Examining biomarkers and other features of CSCs is critical to better understanding their biology. To this end, the results show that cellular SOX2 immunostaining correlates with other CSC biomarkers in OSCC cell lines and marks the rare CSC population. To assess whether CSC division patterns are symmetrical, resulting in two CSC, or asymmetrical, leading to one CSC and one cancer cell, cell size and fluorescence intensity of mitotic cells stained with SOX2 were analyzed. Asymmetrical SOX2 distribution in ≈25% of the mitoses analyzed was detected. Chromosomal instability, some of which is caused by chromosome segregation defects (CSDs), is a feature of cancer cells that leads to altered gene copy numbers. We compare chromosomal instability (as measured by CSDs) between CSCs (SOX2+) and non-CSCs (SOX2-) from the same OSCC cell lines. CSDs were more common in non-CSCs (SOX2-) than CSCs (SOX2+) and in symmetrical CSC (SOX2+) mitotic pairs than asymmetrical CSC (SOX2+/SOX2-) mitotic pairs. CSCs showed fewer and different types of CSDs after ionizing radiation treatment than non-CSCs. Overall, these data are the first to demonstrate both symmetrical and asymmetrical cell divisions with CSDs in OSCC CSC. Further, the results suggest that CSCs may undergo altered behavior, including therapeutic resistance as a result of chromosomal instability due to chromosome segregation defects. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Genome instabilities arising from ribonucleotides in DNA.

    PubMed

    Klein, Hannah L

    2017-08-01

    Genomic DNA is transiently contaminated with ribonucleotide residues during the process of DNA replication through misincorporation by the replicative DNA polymerases α, δ and ε, and by the normal replication process on the lagging strand, which uses RNA primers. These ribonucleotides are efficiently removed during replication by RNase H enzymes and the lagging strand synthesis machinery. However, when ribonucleotides remain in DNA they can distort the DNA helix, affect machineries for DNA replication, transcription and repair, and can stimulate genomic instabilities which are manifest as increased mutation, recombination and chromosome alterations. The genomic instabilities associated with embedded ribonucleotides are considered here, along with a discussion of the origin of the lesions that stimulate particular classes of instabilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Philadelphia chromosome-positive lymphoblastic lymphoma-Is it rare or underdiagnosed?

    PubMed

    Alshomar, Ahmad; El Fakih, Riad

    2018-06-15

    Lymphoblastic lymphomas (LBLs) are neoplasms of precursor B and T cells; they are considered in the same spectrum as precursor B and T cell acute lymphoblastic leukemia (ALL). The World Health Organization classification classifies both LBL and ALL as one disease entity. While chromosome abnormalities are well defined with all of their therapeutic and prognostic implications in ALL, these are not well studied in LBL. Here, we describe a case of Philadelphia chromosome-positive LBL and review the available literature regarding this entity. Copyright © 2018. Published by Elsevier Ltd.

  13. Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells.

    PubMed

    Brianna Caddle, Lura; Grant, Jeremy L; Szatkiewicz, Jin; van Hase, Johann; Shirley, Bobbi-Jo; Bewersdorf, Joerg; Cremer, Christoph; Arneodo, Alain; Khalil, Andre; Mills, Kevin D

    2007-01-01

    Radiation exposure is an occupational hazard for military personnel, some health care professionals, airport security screeners, and medical patients, with some individuals at risk for acute, high-dose exposures. Therefore, the biological effects of radiation, especially the potential for chromosome damage, are major occupational and health concerns. However, the biophysical mechanisms of chromosome instability subsequent to radiation-induced DNA damage are poorly understood. It is clear that interphase chromosomes occupy discrete structural and functional subnuclear domains, termed chromosome territories (CT), which may be organized into 'neighborhoods' comprising groups of specific CTs. We directly evaluated the relationship between chromosome positioning, neighborhood composition, and translocation partner choice in primary lymphocytes, using a cell-based system in which we could induce multiple, concentrated DNA breaks via high-dose irradiation. We critically evaluated mis-rejoining profiles and tested whether breaks occurring nearby were more likely to fuse than breaks occurring at a distance. We show that CT neighborhoods comprise heterologous chromosomes, within which inter-CT distances directly relate to translocation partner choice. These findings demonstrate that interphase chromosome arrangement is a principal factor in genomic instability outcomes in primary lymphocytes, providing a structural context for understanding the biological effects of radiation exposure, and the molecular etiology of tumor-specific translocation patterns.

  14. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    PubMed

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  15. Cytogenetic Prognostication Within Medulloblastoma Subgroups

    PubMed Central

    Shih, David J.H.; Northcott, Paul A.; Remke, Marc; Korshunov, Andrey; Ramaswamy, Vijay; Kool, Marcel; Luu, Betty; Yao, Yuan; Wang, Xin; Dubuc, Adrian M.; Garzia, Livia; Peacock, John; Mack, Stephen C.; Wu, Xiaochong; Rolider, Adi; Morrissy, A. Sorana; Cavalli, Florence M.G.; Jones, David T.W.; Zitterbart, Karel; Faria, Claudia C.; Schüller, Ulrich; Kren, Leos; Kumabe, Toshihiro; Tominaga, Teiji; Shin Ra, Young; Garami, Miklós; Hauser, Peter; Chan, Jennifer A.; Robinson, Shenandoah; Bognár, László; Klekner, Almos; Saad, Ali G.; Liau, Linda M.; Albrecht, Steffen; Fontebasso, Adam; Cinalli, Giuseppe; De Antonellis, Pasqualino; Zollo, Massimo; Cooper, Michael K.; Thompson, Reid C.; Bailey, Simon; Lindsey, Janet C.; Di Rocco, Concezio; Massimi, Luca; Michiels, Erna M.C.; Scherer, Stephen W.; Phillips, Joanna J.; Gupta, Nalin; Fan, Xing; Muraszko, Karin M.; Vibhakar, Rajeev; Eberhart, Charles G.; Fouladi, Maryam; Lach, Boleslaw; Jung, Shin; Wechsler-Reya, Robert J.; Fèvre-Montange, Michelle; Jouvet, Anne; Jabado, Nada; Pollack, Ian F.; Weiss, William A.; Lee, Ji-Yeoun; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Leonard, Jeffrey R.; Rubin, Joshua B.; de Torres, Carmen; Lavarino, Cinzia; Mora, Jaume; Cho, Yoon-Jae; Tabori, Uri; Olson, James M.; Gajjar, Amar; Packer, Roger J.; Rutkowski, Stefan; Pomeroy, Scott L.; French, Pim J.; Kloosterhof, Nanne K.; Kros, Johan M.; Van Meir, Erwin G.; Clifford, Steven C.; Bourdeaut, Franck; Delattre, Olivier; Doz, François F.; Hawkins, Cynthia E.; Malkin, David; Grajkowska, Wieslawa A.; Perek-Polnik, Marta; Bouffet, Eric; Rutka, James T.; Pfister, Stefan M.; Taylor, Michael D.

    2014-01-01

    Purpose Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Patients and Methods Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Results Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Conclusion Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials. PMID

  16. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma

    PubMed Central

    Kassambara, Alboukadel; Hose, Dirk; Moreaux, Jérôme; Walker, Brian A.; Protopopov, Alexei; Reme, Thierry; Pellestor, Franck; Pantesco, Véronique; Jauch, Anna; Morgan, Gareth; Goldschmidt, Hartmut; Klein, Bernard

    2012-01-01

    Background Genetic abnormalities are common in patients with multiple myeloma, and may deregulate gene products involved in tumor survival, proliferation, metabolism and drug resistance. In particular, translocations may result in a high expression of targeted genes (termed spike expression) in tumor cells. We identified spike genes in multiple myeloma cells of patients with newly-diagnosed myeloma and investigated their prognostic value. Design and Methods Genes with a spike expression in multiple myeloma cells were picked up using box plot probe set signal distribution and two selection filters. Results In a cohort of 206 newly diagnosed patients with multiple myeloma, 2587 genes/expressed sequence tags with a spike expression were identified. Some spike genes were associated with some transcription factors such as MAF or MMSET and with known recurrent translocations as expected. Spike genes were not associated with increased DNA copy number and for a majority of them, involved unknown mechanisms. Of spiked genes, 36.7% clustered significantly in 149 out of 862 documented chromosome (sub)bands, of which 53 had prognostic value (35 bad, 18 good). Their prognostic value was summarized with a spike band score that delineated 23.8% of patients with a poor median overall survival (27.4 months versus not reached, P<0.001) using the training cohort of 206 patients. The spike band score was independent of other gene expression profiling-based risk scores, t(4;14), or del17p in an independent validation cohort of 345 patients. Conclusions We present a new approach to identify spike genes and their relationship to patients’ survival. PMID:22102711

  17. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    PubMed

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Amplifications of chromosomal region 20q13 as a prognostic indicator in breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    1998-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation.

    PubMed

    Hou, Sheng-Qi; Ouyang, Meng; Brandmaier, Andrew; Hao, Hongbo; Shen, Wen H

    2017-10-01

    Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment. © 2017 WILEY Periodicals, Inc.

  20. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones

  1. Morphology based scoring of chromosomal instability and its correlation with cell viability.

    PubMed

    Yadav, Shubhlata; Bhatia, Alka

    2017-09-01

    The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer.

    PubMed

    Chaligné, Ronan; Popova, Tatiana; Mendoza-Parra, Marco-Antonio; Saleem, Mohamed-Ashick M; Gentien, David; Ban, Kristen; Piolot, Tristan; Leroy, Olivier; Mariani, Odette; Gronemeyer, Hinrich; Vincent-Salomon, Anne; Stern, Marc-Henri; Heard, Edith

    2015-04-01

    Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome, including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chromosome as an epigenetic biomarker at the molecular and cytological levels in cancer. © 2015 Chaligné et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    PubMed Central

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  4. Tumor Environmental Factors Glucose Deprivation and Lactic Acidosis Induce Mitotic Chromosomal Instability – An Implication in Aneuploid Human Tumors

    PubMed Central

    Zhu, Chunpeng; Hu, Xun

    2013-01-01

    Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453

  5. Spontaneous and radiation-induced genomic instability in human cell lines differing in cellular TP53 status.

    PubMed

    Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J

    2005-10-01

    Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.

  6. Skewed X-chromosome inactivation in women affected by Alzheimer's disease.

    PubMed

    Bajic, Vladan; Mandusic, Vesna; Stefanova, Elka; Bozovic, Ana; Davidovic, Radoslav; Zivkovic, Lada; Cabarkapa, Andrea; Spremo-Potparevic, Biljana

    2015-01-01

    X-chromosome instability has been a long established feature in Alzheimer's disease (AD). Premature centromere division and aneuploidy of the X-chromosome has been found in peripheral blood lymphocytes and neuronal tissue in female AD patients. Interestingly, only one chromosome of the X pair has been affected. These results raised a question, "Is the X-chromosome inactivation pattern altered in peripheral blood lymphocytes of women affected by AD?" To address this question, we analyzed the methylation status of androgen receptor promoter which may show us any deviation from the 50 : 50% X inactivation status in peripheral blood lymphocytes of women with AD. Our results showed skewed inactivation patterns (>90%). These findings suggest that an epigenetic alteration on the inactivation centers of the X-chromosome (or skewing) relates not only to aging, by might be a novel property that could account for the higher incidence of AD in women.

  7. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    PubMed

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  8. Mitotic instability in triploid and tetraploid one-year-old eastern oyster, Crassostrea virginica, assessed by cytogenetic and flow cytometry techniques.

    PubMed

    de Sousa, Joana Teixeira; Allen, Standish K; Wolfe, Brittany M; Small, Jessica Moss

    2018-02-01

    For commercial oyster aquaculture, triploidy has significant advantages. To produce triploids, the principal technology uses diploid × tetraploid crosses. The development of tetraploid brood stock for this purpose has been successful, but as more is understood about tetraploids, it seems clear that chromosome instability is a principal feature in oysters. This paper is a continuation of work to investigate chromosome instability in polyploid Crassostrea virginica. We established families between tetraploids-apparently stable (non-mosaic) and unstable (mosaic)-and normal reference diploids, creating triploid groups, as well as tetraploids between mosaic and non-mosaic tetraploids. Chromosome loss was about the same for triploid juveniles produced from either mosaic or non-mosaic tetraploids or from either male or female tetraploids. However, there was a statistically significant difference in chromosome loss in tetraploid juveniles produced from mosaic versus non-mosaic parents, with mosaics producing more unstable progeny. These results confirm that chromosome instability, as manifested in mosaic tetraploids, is of little concern for producing triploids, but it is clearly problematic for tetraploid breeding. Concordance between the results from cytogenetics and flow cytometry was also tested for the first time in oysters, by assessing the ploidy of individuals using both techniques. Results between the two were non-concordant.

  9. Genetic and Epigenetic Changes in Chromosomally Stable and Unstable Progeny of Irradiated Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulch, Janet E.; Aypar, Umut; Waters, Katrina M.

    2014-09-24

    Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12, CS9) and decreased Alu element methylation was observedmore » for the other two unstable clones (115, Fe5.0-8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0-8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results of this study demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes almost equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature for and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive

  10. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.

    PubMed Central

    Counter, C M; Avilion, A A; LeFeuvre, C E; Stewart, N G; Greider, C W; Harley, C B; Bacchetti, S

    1992-01-01

    Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization. Images PMID:1582420

  11. Is early-onset microsatellite and chromosomally stable colorectal cancer a hallmark of a genetic susceptibility syndrome?

    PubMed

    Kets, C M; van Krieken, J H J M; van Erp, P E J; Feuth, T; Jacobs, Y H A; Brunner, H G; Ligtenberg, M J L; Hoogerbrugge, N

    2008-02-15

    Most colorectal cancers show either microsatellite or chromosomal instability. A subset of colorectal cancers, especially those diagnosed at young age, is known to show neither of these forms of genetic instability and thus might have a distinct pathogenesis. Colorectal cancers diagnosed at young age are suggestive for hereditary predisposition. We investigate whether such early-onset microsatellite and chromosomally stable colorectal cancers are a hallmark of a genetic susceptibility syndrome. The ploidy status of microsatellite stable (familial) colorectal cancers of patients diagnosed before age 50 (n = 127) was analyzed in relation to the histopathological characteristics and family history. As a control the ploidy status of sporadic colorectal cancer, with normal staining of mismatch repair proteins, diagnosed at the age of 69 years or above (n = 70) was determined. A diploid DNA content was used as a marker for chromosomal stability. Within the group of patients with (familial) early onset microsatellite stable colorectal cancer the chromosomally stable tumors did not differ from chromosomally unstable tumors with respect to mean age at diagnosis, fulfillment of Amsterdam criteria or pathological characteristics. Segregation analysis did not reveal any family with microsatellite and chromosomally stable colorectal cancer in 2 relatives. The prevalence of microsatellite and chromosomally stable colorectal cancer was not significantly different for the early and late onset group (28 and 21%, respectively). We find no evidence that early-onset microsatellite and chromosomally stable colorectal cancer is a hallmark of a hereditary colorectal cancer syndrome. (c) 2007 Wiley-Liss, Inc.

  12. Chromosome Aberrations in Cells Infected with Bovine Papillomavirus: Comparing Cutaneous Papilloma, Esophagus Papilloma, and Urinary Bladder Lesion Cells

    PubMed Central

    Campos, S. R. C.; Melo, T. C.; Assaf, S.; Araldi, R. P.; Mazzuchelli-de-Souza, J.; Sircili, M. P.; Carvalho, R. F.; Roperto, F.; Beçak, W.; Stocco, R. C.

    2013-01-01

    The majority of malignant cells present genetic instability with chromosome number changes plus segmental defects: these changes involve intact chromosomes and breakage-induced alterations. Some pathways of chromosomal instability have been proposed as random breakage, telomere fusion, and centromere fission. Chromosome alterations in tumor cells have been described in animal models and in vitro experiments. One important question is about possible discrepancies between animal models, in vitro studies, and the real events in cancer cells in vivo. Papillomaviruses are relevant agents in oncogenic processes related to action on host genome. Recently, many reports have discussed the presence of virus DNA in peripheral blood, in humans and in animals infected by papillomaviruses. The meaning of this event is of controversy: possible product of apoptosis occurring in cancer cells, metastasized cancer cells, or active DNA sequences circulating in bloodstream. This study compares chromosome aberrations detected in bovine cells, in peripheral blood cells, and in BPV lesion cells: the literature is poor in this type of study. Comparing chromosome aberrations described in the different cells, a common mechanism in their origin, can be suggested. Furthermore blood cells can be evaluated as an effective way of virus transmission. PMID:24298391

  13. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    PubMed

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  14. Chromosomal instability, telomere shortening, and inactivation of p21(WAF1/CIP1) in dysplastic nodules of hepatitis B virus-associated multistep hepatocarcinogenesis.

    PubMed

    Lee, Yoon Hee; Oh, Bong-Kyeong; Yoo, Jeong Eun; Yoon, So-Mi; Choi, Jinsub; Kim, Kyung Sik; Park, Young Nyun

    2009-08-01

    Systemic analysis for chromosomal instability and inactivation of cell cycle checkpoints are scarce during hepatocarcinogenesis. We studied 24 patients with chronic B viral cirrhosis including 30 cirrhotic regenerative nodules, 35 low-grade dysplastic nodules, 15 high-grade dysplastic nodules, 7 dysplastic nodules with hepatocellular carcinoma foci, and 18 hepatocellular carcinomas. Eight normal livers were studied as the control group. Telomere length and micronuclei were detected by Southern blot and Feulgen-fast green dyeing technique, respectively, and p21(WAF1/CIP1) expression was studied by immunohistochemistry. Micronuclei >1 per 3000 hepatocytes were found in 17% of low-grade dysplastic nodules, 87% of high-grade dysplastic nodules, and 100% of high-grade dysplastic nodules with hepatocellular carcinoma foci and hepatocellular carcinomas in contrast to those of all normal livers, and 90% of cirrhosis showed no micronuclei. The micronuclei index showed a gradual increase during hepatocarcinogenesis and there was a significant increase between cirrhosis and low-grade dysplastic nodules, low-grade dysplastic nodules and high-grade dysplastic nodules, and high-grade dysplastic nodules and hepatocellular carcinomas. Telomere length showed a gradual shortening during hepatocarcinogenesis and a significant reduction was found in high-grade dysplastic nodules (P=0.024) and hepatocellular carcinomas (P=0.031) compared with normal and cirrhotic livers. The micronuclei index was correlated with telomere shortening (P=0.016). The p21(WAF1/CIP1) labeling index was significantly higher in cirrhosis than in normal livers (P=0.024) and markedly decreased in low-grade dysplastic nodules, high-grade dysplastic nodules, and hepatocellular carcinomas compared with cirrhosis (P<0.05). The p21(WAF1/CIP1) labeling index was associated with telomere length (P<0.001) but not micronuclei index. This study shows that telomere shortening, chromosomal instability, and inactivation of p

  15. De novo balanced complex chromosome rearrangements involving chromosomes 1B and 3B of wheat and 1R of rye.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2016-12-01

    Complex chromosome rearrangements (CCRs) are defined as structural abnormalities involving more than two chromosome breaks, coupled with exchanges of chromosomal segments. Information on CCRs in plants is limited. In the present study, a plant (26-4) harboring translocation chromosomes 1RS.1BL and 4RS.4DL was selected from a double monosomic (1R and 4R) addition line, which was derived from the hybrid between wheat cultivar MY11 and a Chinese local rye variety. The genome of the plant with double alien translocation chromosomes in the monosomic form showed more instability than that harboring a single translocation. The CCRs involving chromosomes 1RS.1BL and 3B, which were generated de novo in this plant, showed double monosomic translocation chromosomes. A new CCR line with balanced reciprocal translocations 1RS.3BL and 3BS.1BL was developed, which presented normal morphological traits of wheat and underwent rapid growth in the field. A new 1RS.1BL translocation line was also selected from the progeny of plant 26-4. The CCRs and simple 1RS.1BL translocation lines showed significant improvement in grain yield, number of spikes per square meter, kernel number per spike, and resistance to stripe rust and powdery mildew. The CCR line exhibited better agronomic traits and adult plant resistance in the field than its sister line, which harbored a simple 1RS.1BL translocation. The CCRs are remarkable genetic resources for crop improvement.

  16. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  17. Multifocality of transitional cell carcinoma results from genetic instability of entire transitional epithelium.

    PubMed

    Pycha, A; Mian, C; Hofbauer, J; Brössner, C; Haitel, A; Wiener, H; Marberger, M

    1999-01-01

    Multifocality of transitional cell carcinoma (TCC) has been attributed to seeding of exfoliated tumor cells or to a general sensitivity of the entire urothelium to carcinogenic stimuli. By contrast, TCC has been shown to evolve as a consequence of genetic defects and chromosomal instability. We analyzed chromosomal patterns, total DNA content, and p53 and Ki67 expression in malignant and normal transitional cells to evaluate their relationship to the development of multifocal TCC. Included in the study were 47 patients, 16 women and 31 men, with a mean age of 70.04 years (range 37 to 83). Of 47 patients, 45 had TCC of the urinary bladder and 7 of those had synchronous ureteral involvement. Two patients had ureteral TCC and a history of TCC of the bladder. Using fluorescence in situ hybridization, numerical aberrations of chromosomes 7, 9, and 17 were detected in imprint specimens of histologically verified tumor and "normal" urothelium and were compared with static ploidy and p53 and Ki67 expression. Chromosome 7 was altered in 93.6%, chromosome 9 in 63.8% (including monosomy), and chromosome 17 in 87.2% of the 47 analyzed tumor and normal imprints. Differences between tumor and normal epithelium were observed in aberrational frequencies (number of cells showing chromosomal aberrations calculated on 200 cells counted, given in percentages). DNA content was aneuploid in all tumor specimens, but diploid in 20 (42.5%) of 47 normal specimens, according to lower aberration frequencies in these patients. p53 detection was positive in 82.9% of the tumor specimens and 76.6% of the normal specimens. Ki67 was positive in 87.2% of the tumor imprints and in 72.3% of the normal specimens. These data suggest a general genetic instability as a reason for multifocality in the entire transitional epithelium.

  18. Structure and Stability of Telocentric Chromosomes in Wheat

    PubMed Central

    Koo, Dal-Hoe; Sehgal, Sunish K.; Friebe, Bernd; Gill, Bikram S.

    2015-01-01

    In most eukaryotes, centromeres assemble at a single location per chromosome. Naturally occurring telocentric chromosomes (telosomes) with a terminal centromere are rare but do exist. Telosomes arise through misdivision of centromeres in normal chromosomes, and their cytological stability depends on the structure of their kinetochores. The instability of telosomes may be attributed to the relative centromere size and the degree of completeness of their kinetochore. Here we test this hypothesis by analyzing the cytogenetic structure of wheat telosomes. We used a population of 80 telosomes arising from the misdivision of the 21 chromosomes of wheat that have shown stable inheritance over many generations. We analyzed centromere size by probing with the centromere-specific histone H3 variant, CENH3. Comparing the signal intensity for CENH3 between the intact chromosome and derived telosomes showed that the telosomes had approximately half the signal intensity compared to that of normal chromosomes. Immunofluorescence of CENH3 in a wheat stock with 28 telosomes revealed that none of the telosomes received a complete CENH3 domain. Some of the telosomes lacked centromere specific retrotransposons of wheat in the CENH3 domain, indicating that the stability of telosomes depends on the presence of CENH3 chromatin and not on the presence of CRW repeats. In addition to providing evidence for centromere shift, we also observed chromosomal aberrations including inversions and deletions in the short arm telosomes of double ditelosomic 1D and 6D stocks. The role of centromere-flanking, pericentromeric heterochromatin in mitosis is discussed with respect to genome/chromosome integrity. PMID:26381743

  19. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  20. Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer

    PubMed Central

    Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J; Linden, Jere; Nyström, Minna

    2018-01-01

    Abstract Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC. PMID:29701748

  1. [Chromosomal instability parameters in the population affected by nuclear explosions at the Semipalatinsk nuclear test site].

    PubMed

    Abil'dinova, G Zh; Kuleshov, N P; Sviatova, G S

    2003-08-01

    A population genetic survey of 149 persons who were born and have permanently lived in the contaminated zones of the Semipalatinsk region has been performed. A cytogenetic study has demonstrated that the frequency of aberrant cells is 1.7-3 times higher than control parameters. The total frequencies of chromosome aberrations are 3.43 +/- 0.48, 3.1 +/- 0.3, 1.8 +/- 0.2, and 1.15 +/- 0.17 aberrations per 100 cells in the populations of the extreme radiation risk (ERR), maximum radiation risk (MaxRR), minimum radiation risk (MinRR), and control zones, respectively. The high chromosome aberration rate in all three zones of radiation risk has been detected mainly due to radiation-induced chromosome markers, including paired fragments (1.2 +/- 0.2, 0.94 +/- 0.13, and 0.43 +/- 0.06 per 100 cells, respectively), dicentric and ring chromosomes (0.44 +/- 0.04, 0.45 +/- 0.07, and 0.11 +/- 0.02 per 100 cells, respectively), and stable chromosome aberrations (0.74 +/- 0.16, 0.8 +/- 0.1, and 0.63 +/- 0.13 per 100 cells, respectively). The qualitative spectra of the cytogenetic lesions observed in these groups indicate a mutagenic effect of ionizing radiation on chromosomes in the populations studied.

  2. Chromosome and molecular abnormalities in myelodysplastic syndromes.

    PubMed

    Fenaux, Pierre

    2001-06-01

    Cytogenetic abnormalities are seen in approximately 50% of cases of myelodysplastic syndrome (MDS) and 80% of cases of secondary MDS (following chemotherapy or radiotherapy). These abnormalities generally consist of partial or complete chromosome deletion or addition (del5q, -7, +8, -Y, del20q), whereas balanced or unbalanced translocations are rarely found in MDS. Fluorescence hybridization techniques (fluorescence in situ hybridization [FISH], multiplex FISH, and spectral karyotyping) are useful in detecting chromosomal anomalies in cases in which few mitoses are obtained or rearrangements are complex. Ras mutations are the molecular abnormalities most frequently found in MDS, followed by p15 gene hypermethylation, FLT3 duplications, and p53 mutations, but none of these abnormalities are specific for MDS. The rare cases of balanced translocations in MDS have allowed the identification of genes whose rearrangements appear to play a role in the pathogenesis of some cases of MDS. These genes include MDS1-EVI1 in t(3;3) or t(3;21) translocations, TEL in t(5;12), HIP1 in t(5;7), MLF1 in t(3;5), and MEL1 in t(1;3). Genes more frequently implicated in the pathogenesis of MDS cases, such as those involving del5q, remain unknown, although some candidate genes are currently being studied. Cytogenetic and known molecular abnormalities generally carry a poor prognosis in MDS and can be incorporated into prognostic scoring systems such as the International Prognostic Scoring System.

  3. Distinct chromosome segregation roles for spindle checkpoint proteins.

    PubMed

    Warren, Cheryl D; Brady, D Michelle; Johnston, Raymond C; Hanna, Joseph S; Hardwick, Kevin G; Spencer, Forrest A

    2002-09-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage.

  4. Distinct Chromosome Segregation Roles for Spindle Checkpoint Proteins

    PubMed Central

    Warren, Cheryl D.; Brady, D. Michelle; Johnston, Raymond C.; Hanna, Joseph S.; Hardwick, Kevin G.; Spencer, Forrest A.

    2002-01-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage. PMID:12221113

  5. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2002-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  6. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2008-09-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  7. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W [San Francisco, CA; Pinkel, Daniel [Lafayette, CA; Kallioniemi, Olli-Pekka [Turku, FI; Kallioniemi, Anne [Tampere, FI; Sakamoto, Masaru [Tokyo, JP

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  8. Genetic instability in inherited and sporadic leukemias.

    PubMed

    Popp, Henning D; Bohlander, Stefan K

    2010-12-01

    Genetic instability due to increased DNA damage and altered DNA repair is of central significance in the initiation and progression of inherited and sporadic human leukemias. Although very rare, some inherited DNA repair insufficiency syndromes (e.g., Fanconi anemia, Bloom's syndrome) have added substantially to our understanding of crucial mechanisms of leukemogenesis in recent years. Conversely, sporadic leukemias account for the main proportion of leukemias and here DNA damaging reactive oxygen species (ROS) play a central role. Although the exact mechanisms of increased ROS production remain largely unknown and no single pathway has been detected thus far, some oncogenic proteins (e.g., the activated tyrosine kinases BCR-ABL1 and FLT3-ITD) seem to play a key role in driving genetic instability by increased ROS generation which influences the disease course (e.g., blast crisis in chronic myeloid leukemia or relapse in FLT3-ITD positive acute myeloid leukemia). Of course other mechanisms, which promote genetic instability in leukemia also exist. A newly emerging mechanism is the genome-wide alteration of epigenetic marks (e.g., hypomethylation of histone H3K79), which promotes chromosomal instability. Taken together genetic instability plays a critical role both in inherited and sporadic leukemias and emerges as a common theme in both inherited and sporadic leukemias. Beyond its theoretical impact, the analysis of genetic instability may lead the way to the development of innovative therapy strategies. © 2010 Wiley-Liss, Inc.

  9. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group.

    PubMed

    Braulke, Friederike; Platzbecker, Uwe; Müller-Thomas, Catharina; Götze, Katharina; Germing, Ulrich; Brümmendorf, Tim H; Nolte, Florian; Hofmann, Wolf-Karsten; Giagounidis, Aristoteles A N; Lübbert, Michael; Greenberg, Peter L; Bennett, John M; Solé, Francesc; Mallo, Mar; Slovak, Marilyn L; Ohyashiki, Kazuma; Le Beau, Michelle M; Tüchler, Heinz; Pfeilstöcker, Michael; Nösslinger, Thomas; Hildebrandt, Barbara; Shirneshan, Katayoon; Aul, Carlo; Stauder, Reinhard; Sperr, Wolfgang R; Valent, Peter; Fonatsch, Christa; Trümper, Lorenz; Haase, Detlef; Schanz, Julie

    2015-02-01

    International Prognostic Scoring Systems are used to determine the individual risk profile of myelodysplastic syndrome patients. For the assessment of International Prognostic Scoring Systems, an adequate chromosome banding analysis of the bone marrow is essential. Cytogenetic information is not available for a substantial number of patients (5%-20%) with dry marrow or an insufficient number of metaphase cells. For these patients, a valid risk classification is impossible. In the study presented here, the International Prognostic Scoring Systems were validated based on fluorescence in situ hybridization analyses using extended probe panels applied to cluster of differentiation 34 positive (CD34(+)) peripheral blood cells of 328 MDS patients of our prospective multicenter German diagnostic study and compared to chromosome banding results of 2902 previously published patients with myelodysplastic syndromes. For cytogenetic risk classification by fluorescence in situ hybridization analyses of CD34(+) peripheral blood cells, the groups differed significantly for overall and leukemia-free survival by uni- and multivariate analyses without discrepancies between treated and untreated patients. Including cytogenetic data of fluorescence in situ hybridization analyses of peripheral CD34(+) blood cells (instead of bone marrow banding analysis) into the complete International Prognostic Scoring System assessment, the prognostic risk groups separated significantly for overall and leukemia-free survival. Our data show that a reliable stratification to the risk groups of the International Prognostic Scoring Systems is possible from peripheral blood in patients with missing chromosome banding analysis by using a comprehensive probe panel (clinicaltrials.gov identifier:01355913). Copyright© Ferrata Storti Foundation.

  10. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group

    PubMed Central

    Braulke, Friederike; Platzbecker, Uwe; Müller-Thomas, Catharina; Götze, Katharina; Germing, Ulrich; Brümmendorf, Tim H.; Nolte, Florian; Hofmann, Wolf-Karsten; Giagounidis, Aristoteles A. N.; Lübbert, Michael; Greenberg, Peter L.; Bennett, John M.; Solé, Francesc; Mallo, Mar; Slovak, Marilyn L.; Ohyashiki, Kazuma; Le Beau, Michelle M.; Tüchler, Heinz; Pfeilstöcker, Michael; Nösslinger, Thomas; Hildebrandt, Barbara; Shirneshan, Katayoon; Aul, Carlo; Stauder, Reinhard; Sperr, Wolfgang R.; Valent, Peter; Fonatsch, Christa; Trümper, Lorenz; Haase, Detlef; Schanz, Julie

    2015-01-01

    International Prognostic Scoring Systems are used to determine the individual risk profile of myelodysplastic syndrome patients. For the assessment of International Prognostic Scoring Systems, an adequate chromosome banding analysis of the bone marrow is essential. Cytogenetic information is not available for a substantial number of patients (5%–20%) with dry marrow or an insufficient number of metaphase cells. For these patients, a valid risk classification is impossible. In the study presented here, the International Prognostic Scoring Systems were validated based on fluorescence in situ hybridization analyses using extended probe panels applied to cluster of differentiation 34 positive (CD34+) peripheral blood cells of 328 MDS patients of our prospective multicenter German diagnostic study and compared to chromosome banding results of 2902 previously published patients with myelodysplastic syndromes. For cytogenetic risk classification by fluorescence in situ hybridization analyses of CD34+ peripheral blood cells, the groups differed significantly for overall and leukemia-free survival by uni- and multivariate analyses without discrepancies between treated and untreated patients. Including cytogenetic data of fluorescence in situ hybridization analyses of peripheral CD34+ blood cells (instead of bone marrow banding analysis) into the complete International Prognostic Scoring System assessment, the prognostic risk groups separated significantly for overall and leukemia-free survival. Our data show that a reliable stratification to the risk groups of the International Prognostic Scoring Systems is possible from peripheral blood in patients with missing chromosome banding analysis by using a comprehensive probe panel (clinicaltrials.gov identifier:01355913). PMID:25344522

  11. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer

    PubMed Central

    Ling, Hui; Spizzo, Riccardo; Atlasi, Yaser; Nicoloso, Milena; Shimizu, Masayoshi; Redis, Roxana S.; Nishida, Naohiro; Gafà, Roberta; Song, Jian; Guo, Zhiyi; Ivan, Cristina; Barbarotto, Elisa; De Vries, Ingrid; Zhang, Xinna; Ferracin, Manuela; Churchman, Mike; van Galen, Janneke F.; Beverloo, Berna H.; Shariati, Maryam; Haderk, Franziska; Estecio, Marcos R.; Garcia-Manero, Guillermo; Patijn, Gijs A.; Gotley, David C.; Bhardwaj, Vikas; Shureiqi, Imad; Sen, Subrata; Multani, Asha S.; Welsh, James; Yamamoto, Ken; Taniguchi, Itsuki; Song, Min-Ae; Gallinger, Steven; Casey, Graham; Thibodeau, Stephen N.; Le Marchand, Loïc; Tiirikainen, Maarit; Mani, Sendurai A.; Zhang, Wei; Davuluri, Ramana V.; Mimori, Koshi; Mori, Masaki; Sieuwerts, Anieta M.; Martens, John W.M.; Tomlinson, Ian; Negrini, Massimo; Berindan-Neagoe, Ioana; Foekens, John A.; Hamilton, Stanley R.; Lanza, Giovanni; Kopetz, Scott; Fodde, Riccardo; Calin, George A.

    2013-01-01

    The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR–17–5p, and miR–20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk. PMID:23796952

  12. Relationship of Chromosome Changes to Neoplastic Cell Transformation

    PubMed Central

    DiPaolo, Joseph A.; Popescu, Nicolae C.

    1976-01-01

    chromosome number or structure. Our studies indicate that chromosome changes are not essential for establishment of neoplasms but that karyotypic instability may result in response to selective growth pressures. ImagesFigure 2Figure 11Figure 3Figure 12Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 1Figure 10 PMID:826168

  13. Mammalian pre-implantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations.

    PubMed

    Carbone, Lucia; Chavez, Shawn L

    2015-01-01

    Pre-implantation embryo development in mammals begins at fertilization with the migration and fusion of the maternal and paternal pro-nuclei, followed by the degradation of inherited factors involved in germ cell specification and the activation of embryonic genes required for subsequent cell divisions, compaction, and blastulation. The majority of studies on early embryogenesis have been conducted in the mouse or non-mammalian species, often requiring extrapolation of the findings to human development. Given both conserved similarities and species-specific differences, however, even comparison between closely related mammalian species may be challenging as certain aspects, including susceptibility to chromosomal aberrations, varies considerably across mammals. Moreover, most human embryo studies are limited to patient samples obtained from in vitro fertilization (IVF) clinics and donated for research, which are generally of poorer quality and produced with germ cells that may be sub-optimal. Recent technical advances in genetic, epigenetic, chromosomal, and time-lapse imaging analyses of high quality whole human embryos have greatly improved our understanding of early human embryogenesis, particularly at the single embryo and cell level. This review summarizes the major characteristics of mammalian pre-implantation development from a chromosomal perspective, in addition to discussing the technological achievements that have recently been developed to obtain this data. We also discuss potential translation to clinical applications in reproductive medicine and conclude by examining the broader implications of these findings for the evolution of mammalian species and cancer pathology in somatic cells.

  14. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions

    PubMed Central

    Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria

    2008-01-01

    We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 (∼75 Mb position) and 3q21.3-q22.1 (∼130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large (∼250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and “instability elements,” including satellite repeats and retroviral sequences. PMID:18230801

  15. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions.

    PubMed

    Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria

    2008-03-01

    We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.

  16. Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing three-dimensional nuclear remodeling and breakage-bridge-fusion cycles.

    PubMed

    Guffei, Amanda; Sarkar, Rahul; Klewes, Ludger; Righolt, Christiaan; Knecht, Hans; Mai, Sabine

    2010-12-01

    Hodgkin's lymphoma is characterized by the presence of mono-nucleated Hodgkin cells and bi- to multi-nucleated Reed-Sternberg cells. We have recently shown telomere dysfunction and aberrant synchronous/asynchronous cell divisions during the transition of Hodgkin cells to Reed-Sternberg cells.1 To determine whether overall changes in nuclear architecture affect genomic instability during the transition of Hodgkin cells to Reed-Sternberg cells, we investigated the nuclear organization of chromosomes in these cells. Three-dimensional fluorescent in situ hybridization revealed irregular nuclear positioning of individual chromosomes in Hodgkin cells and, more so, in Reed-Sternberg cells. We characterized an increasingly unequal distribution of chromosomes as mono-nucleated cells became multi-nucleated cells, some of which also contained chromosome-poor 'ghost' cell nuclei. Measurements of nuclear chromosome positions suggested chromosome overlaps in both types of cells. Spectral karyotyping then revealed both aneuploidy and complex chromosomal rearrangements: multiple breakage-bridge-fusion cycles were at the origin of the multiple rearranged chromosomes. This conclusion was challenged by super resolution three-dimensional structured illumination imaging of Hodgkin and Reed-Sternberg nuclei. Three-dimensional super resolution microscopy data documented inter-nuclear DNA bridges in multi-nucleated cells but not in mono-nucleated cells. These bridges consisted of chromatids and chromosomes shared by two Reed-Sternberg nuclei. The complexity of chromosomal rearrangements increased as Hodgkin cells developed into multi-nucleated cells, thus indicating tumor progression and evolution in Hodgkin's lymphoma, with Reed-Sternberg cells representing the highest complexity in chromosomal rearrangements in this disease. This is the first study to demonstrate nuclear remodeling and associated genomic instability leading to the generation of Reed-Sternberg cells of Hodgkin's lymphoma

  17. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice

    PubMed Central

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma—caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc+/flox, abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apcflox/flox and CDX2P9.5-G22Cre;Apcflox/flox) instability, respectively—were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apcflox/flox and CDX2P9.5-G22Cre;Apcflox/flox mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences in

  18. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    PubMed

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences

  19. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  20. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma.

    PubMed

    Dijkman, Remco; Tensen, Cornelis P; Jordanova, Ekaterina S; Knijnenburg, Jeroen; Hoefnagel, Juliette J; Mulder, Aat A; Rosenberg, Carla; Raap, Anton K; Willemze, Rein; Szuhai, Károly; Vermeer, Maarten H

    2006-01-10

    To evaluate the clinical relevance of genomic aberrations in primary cutaneous large B-cell lymphoma (PCLBCL). Skin biopsy samples of 31 patients with a PCLBCL classified as either primary cutaneous follicle center lymphoma (PCFCL; n = 19) or PCLBCL, leg type (n = 12), according to the WHO-European Organisation for Research and Treatment of Cancer (EORTC) classification, were investigated using array-based comparative genomic hybridization, fluorescence in situ hybridization (FISH), and examination of promoter hypermethylation. The most recurrent alterations in PCFCL were high-level DNA amplifications at 2p16.1 (63%) and deletion of chromosome 14q32.33 (68%). FISH analysis confirmed c-REL amplification in patients with gains at 2p16.1. In PCLBCL, leg type, most prominent aberrations were a high-level DNA amplification of 18q21.31-q21.33 (67%), including the BCL-2 and MALT1 genes as confirmed by FISH, and deletions of a small region within 9p21.3 containing the CDKN2A, CDKN2B, and NSG-x genes. Homozygous deletion of 9p21.3 was detected in five of 12 patients with PCLBCL, leg type, but in zero of 19 patients with PCFCL. Complete methylation of the promoter region of the CDKN2A gene was demonstrated in one PCLBCL, leg type, patient with hemizygous deletion, in one patient without deletion, but in zero of 19 patients with PCFCL. Seven of seven PCLBCL, leg type, patients with deletion of 9p21.3 and/or complete methylation of CDKN2A died as a result of their lymphoma. Our results demonstrate prominent differences in chromosomal alterations between PCFCL and PCLBCL, leg type, that support their classification as separate entities within the WHO-EORTC scheme. Inactivation of CDKN2A by either deletion or methylation of its promoter could be an important prognostic parameter for the group of PCLBCL, leg type.

  1. Trisomy 21 and facial developmental instability.

    PubMed

    Starbuck, John M; Cole, Theodore M; Reeves, Roger H; Richtsmeier, Joan T

    2013-05-01

    The most common live-born human aneuploidy is trisomy 21, which causes Down syndrome (DS). Dosage imbalance of genes on chromosome 21 (Hsa21) affects complex gene-regulatory interactions and alters development to produce a wide range of phenotypes, including characteristic facial dysmorphology. Little is known about how trisomy 21 alters craniofacial morphogenesis to create this characteristic appearance. Proponents of the "amplified developmental instability" hypothesis argue that trisomy 21 causes a generalized genetic imbalance that disrupts evolutionarily conserved developmental pathways by decreasing developmental homeostasis and precision throughout development. Based on this model, we test the hypothesis that DS faces exhibit increased developmental instability relative to euploid individuals. Developmental instability was assessed by a statistical analysis of fluctuating asymmetry. We compared the magnitude and patterns of fluctuating asymmetry among siblings using three-dimensional coordinate locations of 20 anatomic landmarks collected from facial surface reconstructions in four age-matched samples ranging from 4 to 12 years: (1) DS individuals (n = 55); (2) biological siblings of DS individuals (n = 55); 3) and 4) two samples of typically developing individuals (n = 55 for each sample), who are euploid siblings and age-matched to the DS individuals and their euploid siblings (samples 1 and 2). Identification in the DS sample of facial prominences exhibiting increased fluctuating asymmetry during facial morphogenesis provides evidence for increased developmental instability in DS faces. We found the highest developmental instability in facial structures derived from the mandibular prominence and lowest in facial regions derived from the frontal prominence. Copyright © 2013 Wiley Periodicals, Inc.

  2. Chromosomal rearrangements involving telomeric DNA sequences in Balb/3T3 cells transfected with the Ha-ras oncogene.

    PubMed

    Peitl, Paulo; Mello, Stephano S; Camparoto, Marjori L; Passos, Geraldo A S; Hande, Manoor P; Cardoso, Renato S; Sakamoto-Hojo, Elza T

    2002-01-01

    Chromosomal instability involving telomeric DNA sequences was studied in mouse Balb/3T3 fibroblasts transfected with a mutated human c-Ha-ras-1 gene (B61 cells) and spontaneously immortalized normal parental cells (A31 cells), using fluorescence in situ hybridization (FISH). FISH analysis with a telomeric probe revealed high frequencies of chromosome alterations involving telomeric regions, mainly stable and unstable Robertsonian fusion-like configurations (RLC) (0.25 and 1.95/cell in A31 and B61 cells, respectively) and chromosome ends lacking telomeric signals in one (LTS') or both chromatids (LTS") (5.9 and 17.5/cell for A31 and B61 cells, respectively). Interstitial telomeric sequences (ITS) were also detected at both non-telomeric sites and in the centromeres of RLC. The frequencies of RLCs with ITS located in the centromeres were 3-fold higher in B61 compared with A31 cells. We demonstrated a high level of chromosome instability involving telomeric DNA sequences in ras-transfected cells overexpressing ras mRNA, which could be a consequence of rapid cell cycle progression associated with a deficient telomere capping mechanism.

  3. Effects of hepatitis B virus infection on human sperm chromosomes.

    PubMed

    Huang, Jian-Min; Huang, Tian-Hua; Qiu, Huan-Ying; Fang, Xiao-Wu; Zhuang, Tian-Gang; Liu, Hong-Xi; Wang, Yong-Hua; Deng, Li-Zhi; Qiu, Jie-Wen

    2003-04-01

    To evaluate the level of sperm chromosome aberrations in male patients with hepatitis B, and to directly detect whether there are HBV DNA integrations in sperm chromosomes of hepatitis B patients. Sperm chromosomes of 14 tested subjects (5 healthy controls, 9 patients with HBV infection, including 1 with acute hepatitis B, 2 with chronic active hepatitis B, 4 with chronic persistent hepatitis B, 2 chronic HBsAg carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free golden hamster ova and human spermatozoa, and the frequencies of aberration spermatozoa were compared between subjects of HBV infection and controls. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes. The total frequency of sperm chromosome aberrations in HBV infection group (14.8 %, 33/223) was significantly higher than that in the control group (4.3 %, 5/116). Moreover, the sperm chromosomes in HBV infection patients commonly presented stickiness, clumping, failure to staining, etc, which would affect the analysis of sperm chromosomes. Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis. In 9 (9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots, others presented 2 to 4 signals. There was significant difference of fluorescence intensity among the signal spots. The distribution of signal sites among chromosomes was random. HBV infection can bring about mutagenic effects on sperm chromosomes. Integrations of viral DNA into sperm chromosomes which are multisites and nonspecific, can further increase the instability of sperm chromosomes. This study suggested that HBV infection can create extensively hereditary effects by alteration genetic constituent and/or induction chromosome

  4. Prognostic and predictive factors in colorectal cancer.

    PubMed

    Bolocan, A; Ion, D; Ciocan, D N; Paduraru, D N

    2012-01-01

    Colorectal cancer (CRC) is an important public health problem; it is a leading cause of cancer mortality in the industrialized world, second to lung cancer: each year there are nearly one million new cases of CRC diagnosed worldwide and half a million deaths (1). This review aims to summarise the most important currently available markers for CRC that provide prognostic or predictive information. Amongst others, it covers serum markers such as CEA and CA19-9, markers expressed by tumour tissues, such as thymidylate synthase, and also the expression/loss of expression of certain oncogenes and tumour suppressor genes such as K-ras and p53. The prognostic value of genomic instability, angiogenesis and proliferative indices, such as the apoptotic index, are discussed. The advent of new therapies created the pathway for a personalized approach of the patient. This will take into consideration the complex genetic mechanisms involved in tumorigenesis, besides the classical clinical and pathological stagings. The growing number of therapeutic agents and known molecular targets in oncology lead to a compulsory study of the clinical use of biomarkers with role in improving response and survival, as well as in reducing toxicity and establishing economic stability. The potential predictive and prognostic biomarkers which have arisen from the study of the genetic basis of colorectal cancer and their therapeutical significance are discussed. RevistaChirurgia.

  5. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability

    PubMed Central

    Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.

    2016-01-01

    Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961

  6. Nitric oxide coordinates development of genomic instability in realization of combined effect with ionizing radiation.

    PubMed

    Mikhailenko, V M; Diomina, E A; Muzalov, I I; Gerashchenko, B I

    2013-03-01

    The aim of this study was to investigate the ability of environmental nitrogen oxides or natural nitric oxide (NO) donors to modify free radicals ba-lance and development of genomic instability alone or in combination with ionizing radiation. Genotoxicity and cytogenetic abnormalities were assessed in vitro in peripheral blood lymphocytes (PBL) isolated from healthy humans or in vivo in rats PBL. Human PBL were treated with physiologically relevant NO donor - S-Nitrosoglutathione and X-ray irradiation. The inhalation treatment of animals with NO was carried out in chamber with purified gaseous NO mixed inside with air. Levels of S-Nitrosohemoglobin and methemoglobin in the blood were assessed with electron paramagnetic resonance. The total level of reactive oxygen and nitrogen species in PBL was determined fluorometrically, and serum levels of reactive oxygen species was determined by spectrophotometric assay. DNA damages were assessed by alkaline single-cell gel electrophoresis. The frequency of chromosomal aberrations in human PBL measured with the conventional cytogenetic assay in metaphase cells on short-term (52 h) and long-term (72 h) cultures. Environmental nitrogen oxides or release of NO from stable complexes with biomolecules (such as S-Nitrosothiols) intensified generation of free radicals, DNA damage and development of genomic instability alone or in combination with ionizing radiation. Treatment of PBL by S-Nitrosoglutathione caused prevalent induction of chromatid type but irradiation - chromosome aberrations. The dose dependence of chromatid-type aberrations observed in human PBL after combined influence of S-Nitrosoglutathione and ionizing radiation indicates a crucial role of NO in the formation of chromosomal instability. NO can deregulate free radicals balance resulted in genotoxic effect, posttranslational modification of repair enzymes and thus coordinated development of genomic instability and increase of cancer risk.

  7. SPOP mutation leads to genomic instability in prostate cancer

    PubMed Central

    Boysen, Gunther; Barbieri, Christopher E; Prandi, Davide; Blattner, Mirjam; Chae, Sung-Suk; Dahija, Arun; Nataraj, Srilakshmi; Huang, Dennis; Marotz, Clarisse; Xu, Limei; Huang, Julie; Lecca, Paola; Chhangawala, Sagar; Liu, Deli; Zhou, Pengbo; Sboner, Andrea; de Bono, Johann S

    2015-01-01

    Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09207.001 PMID:26374986

  8. Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma.

    PubMed

    Mariño-Enríquez, Adrián; Bovée, Judith V M G

    2016-09-01

    Sarcomas are infrequent mesenchymal neoplasms characterized by notable morphological and molecular heterogeneity. Molecular studies in sarcoma provide refinements to morphologic classification, and contribute diagnostic information (frequently), prognostic stratification (rarely) and predict therapeutic response (occasionally). Herein, we summarize the major molecular mechanisms underlying sarcoma pathogenesis and present clinically useful diagnostic, prognostic and predictive molecular markers for sarcoma. Five major molecular alterations are discussed, illustrated with representative sarcoma types, including 1. the presence of chimeric transcription factors, in vascular tumors; 2. abnormal kinase signaling, in gastrointestinal stromal tumor; 3. epigenetic deregulation, in chondrosarcoma, chondroblastoma, and other tumors; 4. deregulated cell survival and proliferation, due to focal copy number alterations, in dedifferentiated liposarcoma; 5. extreme genomic instability, in conventional osteosarcoma as a representative example of sarcomas with highly complex karyotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Analytical cytology applied to detection of prognostically important cytogenetic aberrations: Current status and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Pinkel, D.; Trask, B.

    1987-07-24

    This paper discusses the application of analytical cytology to the detection of clinically important chromosome abnormalities in human tumors. Flow cytometric measurements of DNA distributions have revealed that many human tumors have abnormal (usually elevated) DNA contents and that the occurrence of DNA abnormality may be diagnostically or prognostically important. However, DNA indices (ratio of tumor DNA content to normal DNA content) provide little information about the specific chromosome(s) involved in the DNA content abnormality. Fluorescence in situ hybridization with chromosome specific probes is suggested as a technique to facilitate detection of specific chromosome aneuploidy in interphase and metaphase humanmore » tumor cells. Fluorescence hybridization to nuclei on slides allows enumeration of brightly fluorescent nuclear domains as an estimate of the number of copies of the chromosome type for which the hybridization probe is specific. Fluorescence hybridization can also be made to nuclei in suspension. The fluorescence intensity can then be measured flow cytometrically as an indication of the number of chromosomes in each nucleus carrying the DNA sequence homologous to the probe. In addition, quantitative image analysis may be used to explore the position of chromosomes in interphase nuclei and to look for changes in the order that may eventually permit detection of clinicaly important conditions. 55 refs., 8 figs., 1 tab.« less

  10. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  11. Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells

    PubMed Central

    Silkworth, William T.; Nardi, Isaac K.; Scholl, Lindsey M.; Cimini, Daniela

    2009-01-01

    Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells. PMID:19668340

  12. Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.

    PubMed

    Gonzalez-Vasconcellos, Iria; Anastasov, Natasa; Sanli-Bonazzi, Bahar; Klymenko, Olena; Atkinson, Michael J; Rosemann, Michael

    2013-07-15

    Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damage-induced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cell-cycle control. ©2013 AACR.

  13. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.

    PubMed

    Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard

    2017-09-01

    Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation.

    PubMed

    Kiefer, Yvonne; Schulte, Christoph; Tiemann, Markus; Bullerdiek, Joern

    2012-01-01

    Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM) in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH). Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL.

  15. A Genome-Wide Survey of Genetic Instability by Transposition in Drosophila Hybrids

    PubMed Central

    Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2014-01-01

    Hybridization between species is a genomic instability factor involved in increasing mutation rate and new chromosomal rearrangements. Evidence of a relationship between interspecific hybridization and transposable element mobilization has been reported in different organisms, but most studies are usually performed with particular TEs and do not discuss the real effect of hybridization on the whole genome. We have therefore studied whole genome instability of Drosophila interspecific hybrids, looking for the presence of new AFLP markers in hybrids. A high percentage (27–90%) of the instability markers detected corresponds to TEs belonging to classes I and II. Moreover, three transposable elements (Osvaldo, Helena and Galileo) representative of different families, showed an overall increase of transposition rate in hybrids compared to parental species. This research confirms the hypothesis that hybridization induces genomic instability by transposition bursts and suggests that genomic stress by transposition could contribute to a relaxation of mechanisms controlling TEs in the Drosophila genome. PMID:24586475

  16. Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection.

    PubMed

    Van Steen, Kristel; Curran, Desmond; Kramer, Jocelyn; Molenberghs, Geert; Van Vreckem, Ann; Bottomley, Andrew; Sylvester, Richard

    2002-12-30

    Clinical and quality of life (QL) variables from an EORTC clinical trial of first line chemotherapy in advanced breast cancer were used in a prognostic factor analysis of survival and response to chemotherapy. For response, different final multivariate models were obtained from forward and backward selection methods, suggesting a disconcerting instability. Quality of life was measured using the EORTC QLQ-C30 questionnaire completed by patients. Subscales on the questionnaire are known to be highly correlated, and therefore it was hypothesized that multicollinearity contributed to model instability. A correlation matrix indicated that global QL was highly correlated with 7 out of 11 variables. In a first attempt to explore multicollinearity, we used global QL as dependent variable in a regression model with other QL subscales as predictors. Afterwards, standard diagnostic tests for multicollinearity were performed. An exploratory principal components analysis and factor analysis of the QL subscales identified at most three important components and indicated that inclusion of global QL made minimal difference to the loadings on each component, suggesting that it is redundant in the model. In a second approach, we advocate a bootstrap technique to assess the stability of the models. Based on these analyses and since global QL exacerbates problems of multicollinearity, we therefore recommend that global QL be excluded from prognostic factor analyses using the QLQ-C30. The prognostic factor analysis was rerun without global QL in the model, and selected the same significant prognostic factors as before. Copyright 2002 John Wiley & Sons, Ltd.

  17. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  18. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.

    PubMed

    Kabeche, Lilian; Nguyen, Hai Dang; Buisson, Rémi; Zou, Lee

    2018-01-05

    The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is crucial for DNA damage and replication stress responses. Here, we describe an unexpected role of ATR in mitosis. Acute inhibition or degradation of ATR in mitosis induces whole-chromosome missegregation. The effect of ATR ablation is not due to altered cyclin-dependent kinase 1 (CDK1) activity, DNA damage responses, or unscheduled DNA synthesis but to loss of an ATR function at centromeres. In mitosis, ATR localizes to centromeres through Aurora A-regulated association with centromere protein F (CENP-F), allowing ATR to engage replication protein A (RPA)-coated centromeric R loops. As ATR is activated at centromeres, it stimulates Aurora B through Chk1, preventing formation of lagging chromosomes. Thus, a mitosis-specific and R loop-driven ATR pathway acts at centromeres to promote faithful chromosome segregation, revealing functions of R loops and ATR in suppressing chromosome instability. Copyright © 2018, American Association for the Advancement of Science.

  19. TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends

    PubMed Central

    Pfeiffer, Verena; Lingner, Joachim

    2012-01-01

    The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities. PMID:22719262

  20. TMAP/CKAP2 is essential for proper chromosome segregation.

    PubMed

    Hong, Kyung Uk; Kim, Eunhee; Bae, Chang-Dae; Park, Joobae

    2009-01-15

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), is a novel mitotic spindle-associated protein which is frequently up-regulated in various malignances. However, its cellular functions remain unknown. Previous reports suggested that the cellular functions of TMAP/CKAP2 pertain to regulation of the dynamics and assembly of the mitotic spindle. To investigate its role in mitosis, we studied the effects of siRNA-mediated depletion of TMAP/CKAP2 in cultured mammalian cells. Unexpectedly, TMAP/CKAP2 knockdown did not result in significant alterations of the spindle apparatus. However, TMAP/CKAP2-depleted cells often exhibited abnormal nuclear morphologies, which were accompanied by abnormal organization of the nuclear lamina, and chromatin bridge formation between two daughter cell nuclei. Time lapse video microscopy revealed that the changes in nuclear morphology and chromatin bridge formations observed in TMAP/CKAP2-depleted cells are the result of defects in chromosome segregation. Consistent with this, the spindle checkpoint activity was significantly reduced in TMAP/CKAP2-depleted cells. Moreover, chromosome missegregation induced by depletion of TMAP/CKAP2 ultimately resulted in reduced cell viability and increased chromosomal instability. Our present findings demonstrate that TMAP/CKAP2 is essential for proper chromosome segregation and for maintaining genomic stability.

  1. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    PubMed

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  2. Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.

    PubMed

    Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi

    2018-04-01

    Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.

  3. Chromosomal analysis of myelodysplastic syndromes among atomic bomb survivors in Nagasaki.

    PubMed

    Horai, Makiko; Satoh, Shinya; Matsuo, Masatoshi; Iwanaga, Masako; Horio, Kensuke; Jo, Tatsuro; Takasaki, Yumi; Kawaguchi, Yasuhisa; Tsushima, Hideki; Yoshida, Shinichiro; Taguchi, Masataka; Itonaga, Hidehiro; Sawayama, Yasushi; Taguchi, Jun; Imaizumi, Yoshitaka; Hata, Tomoko; Moriuchi, Yukiyoshi; Haase, Detlef; Yoshiura, Koh-Ichiro; Miyazaki, Yasushi

    2018-02-01

    The myelodysplastic syndromes (MDS) are clonal haematopoietic disorders that develop de novo and also secondary to chemotherapy and/or radiation therapy. We previously demonstrated that the risk of MDS is increased among atomic bomb survivors with significant correlation to radiation dose; however, the clinical characteristics of these survivors have not been well analysed. In this study, we investigated chromosomal abnormalities of MDS among survivors. The frequency of abnormal karyotypes was significantly higher, with more very poor risk karyotypes, according to the revised International Prognostic Scoring System, among those exposed close to the hypocentre compared with unexposed cases. However, abnormal karyotype frequency did not reflect the prognosis of exposed cases with respect to distance from the hypocentre. In addition, there was no difference in prognosis between exposed and unexposed cases. Among proximally exposed cases (<1·5 km from the hypocentre), chromosomal translocations and inversions were more frequent, and the frequency of structural alterations in chromosomes 3, 8, and 11 was significantly increased compared with unexposed cases. These results suggest that chromosomal alterations in MDS among survivors have different features compared with those in de novo or therapy-related MDS. Detailed molecular study is warranted. © 2017 John Wiley & Sons Ltd.

  4. Plasma ultrafiltrates from Fanconi Anemia patients induces chromosomal breakages in donor lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerit, I.; Levy, A.; Pagano, G.

    1994-09-01

    The present study investigated the occurrence, if any, of transferable clastogenic activity in the plasma from Fanconi Anemia (FA) patients and their families. A total of 13 FA homozygotes, 25 parents, and 12 siblings were studied for their: (a) spontaneous and DEB-induced chromosomal instability, and (b) induction of chromosomal breaks in peripheral blood lymphocytes (PBL) from healthy donors, following exposure to plasma ultrafiltrates from FA subjects, their parents or siblings. Plasma was ultrafiltered through membranes with a cutoff at 10,000 daltons (YM 10 Amicon) and 0.25 ml-aliquote added to PBL from 14 healthy donors. DEB test provided FA confirmatory diagnosis.more » The occurrence of clastogenic factors (CF) was evident in all FA patients, except for one. In two out of three patients, who died during this study, very high CF levels were observed. Clastogenic activity was significantly higher in male than in female patients (p<0.05). No correlation was observed between CF data and spontaneous or DEB-induced chromosomal instability. Ultrafiltrates from parents and siblings showed less CF than FA homozygotes; however, concentration by ultrafiltration through YM 2 (3x to 5x) led to excess clastogenic activity. The control plasmas were lacking CF even after an 8x concentration. The present data suggest that CF formation in the plasma of FA patients is consistent with an in vivo prooxident state in FA.« less

  5. Trisomy 21 and Facial Developmental Instability

    PubMed Central

    Starbuck, John M.; Cole, Theodore M.; Reeves, Roger H.; Richtsmeier, Joan T.

    2013-01-01

    The most common live-born human aneuploidy is trisomy 21, which causes Down syndrome (DS). Dosage imbalance of genes on chromosome 21 (Hsa21) affects complex gene-regulatory interactions and alters development to produce a wide range of phenotypes, including characteristic facial dysmorphology. Little is known about how trisomy 21 alters craniofacial morphogenesis to create this characteristic appearance. Proponents of the “amplified developmental instability” hypothesis argue that trisomy 21 causes a generalized genetic imbalance that disrupts evolutionarily conserved developmental pathways by decreasing developmental homeostasis and precision throughout development. Based on this model, we test the hypothesis that DS faces exhibit increased developmental instability relative to euploid individuals. Developmental instability was assessed by a statistical analysis of fluctuating asymmetry. We compared the magnitude and patterns of fluctuating asymmetry among siblings using three-dimensional coordinate locations of 20 anatomic landmarks collected from facial surface reconstructions in four age-matched samples ranging from 4 to 12 years: 1) DS individuals (n=55); 2) biological siblings of DS individuals (n=55); 3) and 4) two samples of typically developing individuals (n=55 for each sample), who are euploid siblings and age-matched to the DS individuals and their euploid siblings (samples 1 and 2). Identification in the DS sample of facial prominences exhibiting increased fluctuating asymmetry during facial morphogenesis provides evidence for increased developmental instability in DS faces. We found the highest developmental instability in facial structures derived from the mandibular prominence and lowest in facial regions derived from the frontal prominence. PMID:23505010

  6. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  7. The effect of first chromosome long arm duplication on survival of endometrial carcinoma.

    PubMed

    Sever, Erman; Doğer, Emek; Çakıroğlu, Yiğit; Sünnetçi, Deniz; Çine, Naci; Savlı, Hakan; Yücesoy, İzzet

    2014-12-01

    The aim of this study is to investigate the effect of first chromosome long arm duplication (dup(1q)) in cases with endometrial carcinoma detected with array based comperative genomic hybridization (aCGH) on survival from the cancer. A total of 53 patients with the diagnosis of endometrial carcinom due to endometrial biopsy and who have been operated for this reason have been allocated in the study. Frozen section biopsy and staging surgery have been performed for all the cases. Samples obtained from the tumoral mass have been investigated for chromosomal aberrations with aCGH method. Kaplan-Meier and Cox-regression analysis have been performed for survival analysis. Among 53 cases with endometrial carcinomas, dup(1q) was diagnosed in 14 (26.4%) of the cases. For the patient group that has been followed-up for 24 months (3-33 months), dup(1q) (p=.01), optimal cytoreduction (p<.001), lymph node positivity (p=.006), tumor stage >1 (p=.006) and presence of high risk tumor were the factors that were associated with survival. Cox-regression analysis has revealed that optimal cytoreduction was the most important prognostic factor (p=.02). Presence of 1q duplication can be used as a prognostic factor in the preoperative period.

  8. The effect of first chromosome long arm duplication on survival of endometrial carcinoma

    PubMed Central

    Sever, Erman; Doğer, Emek; Çakıroğlu, Yiğit; Sünnetçi, Deniz; Çine, Naci; Savlı, Hakan; Yücesoy, İzzet

    2014-01-01

    Objective: The aim of this study is to investigate the effect of first chromosome long arm duplication (dup(1q)) in cases with endometrial carcinoma detected with array based comperative genomic hybridization (aCGH) on survival from the cancer. Materials and Methods: A total of 53 patients with the diagnosis of endometrial carcinom due to endometrial biopsy and who have been operated for this reason have been allocated in the study. Frozen section biopsy and staging surgery have been performed for all the cases. Samples obtained from the tumoral mass have been investigated for chromosomal aberrations with aCGH method. Kaplan-Meier and Cox-regression analysis have been performed for survival analysis. Results: Among 53 cases with endometrial carcinomas, dup(1q) was diagnosed in 14 (26.4%) of the cases. For the patient group that has been followed-up for 24 months (3-33 months), dup(1q) (p=.01), optimal cytoreduction (p<.001), lymph node positivity (p=.006), tumor stage >1 (p=.006) and presence of high risk tumor were the factors that were associated with survival. Cox-regression analysis has revealed that optimal cytoreduction was the most important prognostic factor (p=.02). Conclusion: Presence of 1q duplication can be used as a prognostic factor in the preoperative period. PMID:28913021

  9. The relationship of transversus abdominis and lumbar multifidus activation and prognostic factors for clinical success with a stabilization exercise program: a cross-sectional study.

    PubMed

    Hebert, Jeffrey J; Koppenhaver, Shane L; Magel, John S; Fritz, Julie M

    2010-01-01

    Hebert JJ, Koppenhaver SL, Magel JS, Fritz JM. The relationship of transversus abdominis and lumbar multifidus activation and prognostic factors for clinical success with a stabilization exercise program: a cross-sectional study. To examine the relationship between prognostic factors for clinical success with a stabilization exercise program and lumbar multifidus (LM) and transversus abdominis (TrA) muscle activation assessed using rehabilitative ultrasound imaging (RUSI). Cross-sectional study. Outpatient physical therapy clinic. Volunteers with current low back pain (N=40). Not applicable. We examined the relationship between prognostic factors associated with clinical success with a stabilization exercise program (positive prone instability test, age <40y, aberrant movements, straight leg raise >91 degrees , presence of lumbar hypermobility) and degree of TrA and LM muscle activation assessed by RUSI. Significant univariate relationships were identified between LM muscle activation and the number of prognostic factors present (Pearson correlation coefficient [r] =-.558, P=.001), as well as the individual factors of a positive prone instability test (point biserial correlation coefficient [r(pbis)]=.376, P=.018) and segmental hypermobility (r(pbis)=.358, P=.025). The multivariate analyses indicated that after controlling for other variables, the addition of the variable "number of prognostic factors present" resulted in a significant increase in R(2) (P=.006). No significant univariate or multivariate relationships were observed between the prognostic factors and TrA muscle activation. Decreased LM muscle activation, but not TrA muscle activation, is associated with the presence of factors predictive of clinical success with a stabilization exercise program. Our findings provide researchers and clinicians with evidence regarding the construct validity of the prognostic factors examined in this study, as well as the potential clinical importance of the LM muscle

  10. Sporophytic nondisjunction of the maize B chromosome at high copy numbers.

    PubMed

    Masonbrink, Rick E; Birchler, James A

    2010-01-01

    It has been known for decades that the maize B chromosome undergoes nondisjunction at the second pollen mitosis. Fluorescence in-situ hybridization (FISH) was used to undertake a quantitative study of maize plants with differing numbers of B chromosomes to observe if instability increases by increasing B dosage in root tip tissue. B chromosome nondisjunction was basically absent at low copy number, but increased at higher B numbers. Thus, B nondisjunction rates are dependent on the dosage of B's in the sporophyte. Differences in nondisjunction were also documented between odd and even doses of the B. In plants that have inherited odd numbered doses of the B chromosome, B loss is nearly twice as likely as B gain in a somatic division. When comparing plants with even doses of B's to plants with odd doses of B's, plants with even numbers had a significantly higher chance to increase in number. Therefore, the B's non-disjunctive capacity, previously thought to be primarily restricted to the gametophyte, is present in sporophytic cells. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. Tetrasomy and pentasomy of the X chromosome.

    PubMed

    Schoubben, Edith; Decaestecker, Karin; Quaegebeur, Koen; Danneels, Lode; Mortier, Geert; Cornette, Luc

    2011-10-01

    We describe a newborn girl with a life-threatening laryngomalacia and extreme hypotonia. Genetic analysis revealed the very rare genetic condition mosaicism of 48,XXXX and 49,XXXXX (50/50). We here state that the degree of early hypotonia constitutes an important early prognostic feature in this syndrome. The timely insertion of a gastrostomy is warranted in order to prevent aspiration. A karyotype is mandatory in female newborns with moderate to severe hypotonia in order to exclude polyploid mosaicism of the X chromosome. An 'overall prognosis' for 48,XXXX and 49,XXXXX girls is difficult to provide towards parents in line with a well-known, substantial variability in outcome for all polysomy X infants.

  12. Chromosomal bands affected by acute oil exposure and DNA repair errors.

    PubMed

    Monyarch, Gemma; de Castro Reis, Fernanda; Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P; Antó, Josep M; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure.

  13. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  14. Tissue expression of MLH1, PMS2, MSH2, and MSH6 proteins and prognostic value of microsatellite instability in Wilms tumor: experience of 45 cases.

    PubMed

    Diniz, Gulden; Aktas, Safiye; Cubuk, Cankut; Ortac, Ragip; Vergin, Canan; Olgun, Nur

    2013-05-01

    Although the importance of microsatellite instability (MSI) and mismatch repair genes (MMR) is strongly established in colorectal cancer seen in the Lynch syndrome, its significance has not been fully established in Wilms tumor (WT). The aim of this study was to determine the prognostic value of MSI and MMR proteins in WT. This study included 45 pediatric cases with nephroblastoma. Protein expression was analyzed by immunohistochemistry of archival tissue sections. Real-time PCR melting analysis and fluorescence capillary electrophoresis (FCE) were performed to evaluate the MSI markers BAT25, BAT26, NR21, NR24, MONO27, penta D, and penta C in DNA extracted from tumor and normal tissues. Lower levels of MSI were observed in six cases (13.3%). There were no statistically significant correlations between MSI and some clinical prognostic factors such as stage of the tumors, and survival rates. Nineteen tumors (42.2%) showed loss of protein expression of MLH1, PMS2, MSH2, or MSH6. MMR protein defects were correlated with size (P = .021), and stage (P = .019) of the tumor, and survival rates (P < .01).Similarly MSI was also correlated with the size of the tumor (P = .046). This study showed that a small proportion of WT might be associated with the presence of MSI, as is the case with defects of DNA mismatch repair genes in the pathogenesis of WT. However, there was no concordance with the frequency of tissue expression of MMR proteins and MSI. These findings suggest that MMR genes may play an important role in the development of WT via different pathways.

  15. Chromosomal mutagenesis in human somatic cells: 30-year cytogenetic monitoring after Chornobyl accident.

    PubMed

    Pilinska, M A; Shemetun, G M; Shemetun, O V; Dybsky, S S; Dybska, O B; Talan, O O; Pedan, L R; Kurinnyi, D А

    2016-12-01

    In the lecture we have generalized and analyzed the data of cytogenetic laboratory of National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine on 30-year selective cytogenetic monitoring among the priority contingents of different ages exposed to radiation after Chornobyl accident in Ukraine. It is highlighted that not only targeted but also untargeted radiation-induced cytogenetic effects should be explored, especially in delayed terms following radiation exposure. The new methodical approaches for studying "bystander effect", individual radiosensitivity, and various forms of radiation-induced chromosomal instability (delayed, hidden, transmissible) have been proposed. These approaches proved to be advantageous for analyzing cytogenetic patterns of induction and persistence of chromosomal instability in human somatic cells because of "bystander effect" and "bystander type effect". The phenomenon of positive "reverse" bystander effect has been found. The possibility of modifying the inherited individual human susceptibility to mutagenic exposure by ionizing radiation has been estimated. Finally, the association between hypersensitivity to radiation exposure and realization of oncopathology in exposed individuals has been revealed. The increased intensity of human somatic chromosomal mutagenesis was confirmed not only in the nearest but in the delayed terms following Chornobyl accident as a result of radiation-induced both targeted and untargeted cytogenetic effects. Such effects can be considered as risk factors for malignant transformation of cells, hereditary diseases, birth defects, and multifactorial somatic pathology. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  16. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  17. Rad52 function prevents chromosome loss and truncation in Candida albicans

    PubMed Central

    Andaluz, E.; Bellido, A.; Gómez-Raja, J.; Selmecki, A.; Bouchonville, K.; Calderone, R.; Berman, J.; Larriba, G.

    2013-01-01

    Summary RAD52 is required for almost all recombination events in S. cerevisiae. We took advantage of the heterozygosity of HIS4 in the C. albicans SC5314 lineage to study the role of Rad52 in the genomic stability of this important fungal pathogen. The rate of loss of heterozygosity (LOH) at HIS4 in rad52-ΔΔ strains was ~10−3, at least 100-fold higher than in Rad52+ strains. LOH of whole chromosome 4 or truncation of the homologue that carries the functional HIS4 allele was detected in all 80 rad52-ΔΔ His auxotrophs (GLH –GL lab His−) obtained from six independent experiments. Isolates that had undergone whole chromosome LOH, presumably due to loss of chromosome, carried two copies of the remaining homolog. Isolates with truncations carried centric fragments of broken chromosomes healed by de novo telomere addition. GLH strains exhibited variable degrees of LOH across the genome, including two strains that became homozygous for all the heterozygous markers tested. In addition, GLH strains exhibited increased chromosomal instability (CIN), which was abolished by reintroduction of RAD52. CIN of GLH isolates is reminiscent of genomic alterations leading to cancer in human cells, and support the mutator hypothesis in which a mutator mutation or CIN phenotype facilitate more mutations/aneuploidies. PMID:21272099

  18. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements

    PubMed Central

    Kurahashi, H; Inagaki, H; Ohye, T; Kogo, H; Tsutsumi, M; Kato, T; Tong, M; Emanuel, BS

    2012-01-01

    The constitutional t(11;22)(q23;q11) is the most common recurrent non-Robertsonian translocation in humans. The breakpoint sequences of both chromosomes are characterized by several hundred base pairs of palindromic AT-rich repeats (PATRRs). Similar PATRRs have also been identified at the breakpoints of other nonrecurrent translocations, suggesting that PATRR-mediated chromosomal translocation represents one of the universal pathways for gross chromosomal rearrangement in the human genome. We propose that PATRRs have the potential to form cruciform structures through intrastrand-base pairing in single-stranded DNA, creating a source of genomic instability and leading to translocations. Indeed, de novo examples of the t(11;22) are detected at a high frequency in sperm from normal healthy males. This review synthesizes recent data illustrating a novel paradigm for an apparent spermatogenesis-specific translocation mechanism. This observation has important implications pertaining to the predominantly paternal origin of de novo gross chromosomal rearrangements in humans. PMID:20507342

  19. Genetic signatures of HPV-related and unrelated oropharyngeal carcinoma and their prognostic implications.

    PubMed

    Klussmann, Jens P; Mooren, Jeroen J; Lehnen, Martin; Claessen, Sandra M H; Stenner, Markus; Huebbers, Christian U; Weissenborn, Soenke J; Wedemeyer, Inga; Preuss, Simon F; Straetmans, Jos M J A A; Manni, Johannes J; Hopman, Anton H N; Speel, Ernst-Jan M

    2009-03-01

    Patients with human papillomavirus (HPV)-containing oropharyngeal squamous cell carcinomas (OSCC) have a better prognosis than patients with HPV-negative OSCC. This may be attributed to different genetic pathways promoting cancer. We used comparative genomic hybridization to identify critical genetic changes in 60 selected OSCC, 28 of which were associated with HPV-16 as determined by HPV-specific PCR and fluorescence in situ hybridization analysis and positive p16(INK4A) immunostaining. The results were correlated with HPV status and clinical data from patients. Two thirds of OSCC harbored gain at 3q26.3-qter irrespective of HPV status. In HPV-negative tumors this alteration was associated with advanced tumor stage (P=0.013). In comparison with HPV-related OSCC, the HPV-negative tumors harbored: (a) a higher number of chromosomal alterations and amplifications (P=0.03 and 0.039, respectively); (b) significantly more losses at 3p, 5q, 9p, 15q, and 18q, and gains/amplifications at 11q13 (P=0.002, 0.03; <0.001, 0.02, 0.004, and 0.001, respectively); and (c) less often 16q losses and Xp gains (P=0.02 and 0.03). Survival analysis revealed a significantly better disease-free survival for HPV-related OSCC (P=0.02), whereas chromosome amplification was an unfavorable prognostic indicator for disease-free and overall survival (P=0.01 and 0.05, respectively). Interestingly, 16q loss, predominantly identified in HPV-related OSCC, was a strong indicator of favorable outcome (overall survival, P=0.008; disease-free survival, P=0.01) and none of these patients had a tumor recurrence. Genetic signatures of HPV-related and HPV-unrelated OSCC are different and most likely underlie differences in tumor development and progression. In addition, distinct chromosomal alterations have prognostic significance.

  20. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung.

    PubMed

    Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V

    2016-08-15

    Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung.

  1. Genomic Instability Associated with p53 Knockdown in the Generation of Huntington’s Disease Human Induced Pluripotent Stem Cells

    PubMed Central

    Tidball, Andrew M.; Neely, M. Diana; Chamberlin, Reed; Aboud, Asad A.; Kumar, Kevin K.; Han, Bingying; Bryan, Miles R.; Aschner, Michael; Ess, Kevin C.; Bowman, Aaron B.

    2016-01-01

    Alterations in DNA damage response and repair have been observed in Huntington’s disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown. PMID:26982737

  2. Chromosome Instability Underlies Hematopoietic Stem Cell Dysfunction and Lymphoid Neoplasia Associated with Impaired Fbw7-Mediated Cyclin E Regulation

    PubMed Central

    Siu, Ka Tat; Xu, Yanfei; Swartz, Kelsey L.; Bhattacharyya, Mitra; Gurbuxani, Sandeep; Hua, Youjia

    2014-01-01

    The Fbw7 ubiquitin ligase critically regulates hematopoietic stem cell (HSC) function, though the precise contribution of individual substrate ubiquitination pathways to HSC homeostasis is unknown. In the work reported here, we used a mouse model in which we introduced two knock-in mutations (T74A and T393A [changes of T to A at positions 74 and 393]) to disrupt Fbw7-dependent regulation of cyclin E, its prototypic substrate, and to examine the consequences of cyclin E dysregulation for HSC function. Serial transplantation revealed that cyclin ET74A T393A HSCs self-renewed normally; however, we identified defects in their multilineage reconstituting capacity. By inducing hematologic stress, we exposed an impaired self-renewal phenotype in cyclin E knock-in HSCs that was associated with defective cell cycle exit and the emergence of chromosome instability (CIN). Importantly, p53 deletion induced both defects in self-renewal and multilineage reconstitution in cyclin E knock-in HSCs with serial transplantation and CIN in hematopoietic stem and progenitor cells. Moreover, CIN was a feature of fatal T-cell malignancies that ultimately developed in recipients of cyclin ET74A T393A; p53-null HSCs. Together, our findings demonstrate the importance of Fbw7-dependent cyclin E control to the hematopoietic system and highlight CIN as a characteristic feature of HSC dysfunction and malignancy induced by deregulated cyclin E. PMID:24958101

  3. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?

    PubMed

    Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2017-04-15

    Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture.

    PubMed

    Blackwell, Robert; Sweezy-Schindler, Oliver; Edelmaier, Christopher; Gergely, Zachary R; Flynn, Patrick J; Montes, Salvador; Crapo, Ammon; Doostan, Alireza; McIntosh, J Richard; Glaser, Matthew A; Betterton, Meredith D

    2017-02-07

    Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism for typical conditions in fission yeast. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  6. Chromosome

    MedlinePlus

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  7. Chromosome 17 aneusomy detected by fluorescence in situ hybridization in vulvar squamous cell carcinomas and synchronous vulvar skin.

    PubMed

    Carlson, J A; Healy, K; Tran, T A; Malfetano, J; Wilson, V L; Rohwedder, A; Ross, J S

    2000-09-01

    Vulvar squamous cell carcinoma (SCC) affects a spectrum of women with granulomatous vulvar diseases, human papillomavirus (HPV) infections, and chronic inflammatory vulvar dermatoses. To determine whether there is evidence of chromosomal instability occurring in synchronous skin surrounding vulvar SCCs, we investigated abnormalities in chromosome 17 copy number. Samples of SCC, vulvar intraepithelial neoplasia (VIN), and surrounding vulvar skin were obtained from all vulvar excisions performed for squamous neoplasia at Albany Medical College from 1996 to 1997. Histological categorization, fluorescent in situ hybridization (FISH) for the alpha satellite region of chromosome 17, DNA content by image analysis, and Ki-67 labeling were evaluated. Controls of normal vulvar skin not associated with cancer were used for comparison. One hundred ten specimens were obtained from 33 patients with either SCC or VIN 3 and consisted of 49 neoplastic, 52 nonneoplastic, and 9 histologically normal vulvar skin samples. The majority of SCCs (88%) and a minority (18%) of VIN 3 excisions were associated with lichen sclerosus. Normal vulvar skin controls did not exhibit chromosome 17 polysomy (cells with more than four FISH signals), whereas 56% of normal vulvar skin associated with cancer did. Moreover, the frequency of polysomy significantly increased as the histological classification progressed from normal to inflammatory to neoplastic lesions. The largest mean value and variance for chromosome 17 copy number was identified in SCCs (2.4 +/- 1.0) with intermediate values identified, in decreasing order, for SCC in situ (2.1 +/- 1.0), VIN 2 (2.1 +/- 0.8), lichen sclerosus (2.0 +/- 0.5), lichen simplex chronicus (1.9 +/- 0.4), and normal skin associated with SCC (1.8 +/- 0.4) compared with control vulvar skin (1.5 +/- 0. 05). Concordance of chromosome 17 aneusomy between cancers and synchronous skin lesions was found in 48% of patients. Loss of chromosome 17 was identified 5% of all

  8. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  9. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse

    PubMed Central

    Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.

    2003-01-01

    Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035

  10. Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosone 17

    DOEpatents

    Gray; Joe W.; Pinkel; Daniel; Kallioniemi; Olli-Pekka; Kallioniemi; Anne; Sakamoto; Masaru

    2002-02-05

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  11. Therapeutic and prognostic value of modal number of chromosomes at the blastic phase of Philadelphia-chromosome-positive chronic myeloid leukemia: comparison based on the same criteria between Nagasaki University and Roswell Park Memorial Institute.

    PubMed

    Sadamori, N; Yao, E; Mine, M; Tokunaga, S; Matsunaga, M; Nakamura, H; Sasagawa, I; Itoyama, T; Hayashibara, T; Sandberg, A A

    1992-01-01

    In a comparison of 47 patients with Philadelphia-chromosome (Ph)-positive chronic myeloid leukemia (CML) in the Nagasaki University School of Medicine and 64 patients with the same disease in the Roswell Park Memorial Institute, the correlation between the modal number of chromosomes and the therapeutic response and/or survival after the onset of the blastic phase (BP) was evaluated. The patients were divided into four groups on the basis of the modal number of chromosomes of the cells in the bone marrow: those with hypodiploidy (group 1), those with pseudodiploidy carrying a Ph chromosome (group 2), those with 47 chromosomes (group 3), and those with 48 or more chromosomes (group 4). The results revealed similar trends in the two institutes. Namely, the therapeutic response and the survival after the onset of the BP in groups 1 and 4 were more unfavorable and shorter than those in groups 2 and 3, although the former (group 2) had a better prognosis than the latter (group 3). Thus, the statistical analysis revealed that the numerical chromosome findings at the BP are useful parameters for assessing the therapeutic response and survival after the onset of the BP of CML.

  12. Prognostic significance of FAM83D gene expression across human cancer types

    DOE PAGES

    Walian, Peter J.; Hang, Bo; Mao, Jian-Hua

    2015-12-15

    The family with sequence similarity 83, member D (FAM83D) gene has been proposed as a new prognostic marker for breast cancer. In this work, we further evaluate the prognostic significance of FAM83D expression in different breast cancer subtypes using a meta-analysis. Patients with higher FAM83D mRNA levels have significantly decreased overall and metastatic relapse-free survival, particularly in the group of patients with ER-positive, or luminal subtype tumors. We also assessed FAM83D alterations and its prognostic significance across 22 human cancer types using The Cancer Genome Atlas (TCGA). FAM83D is frequently gained in the majority of human cancer types, resulting inmore » the elevated expression of FAM83D. Higher levels of FAM83D mRNA expression are significantly associated with decreased overall survival in several cancer types. Finally, we demonstrate that TP53 mutation in human cancers is coupled to a significant increase in the expression of FAM83D, and that a higher level of FAM83D expression is positively correlated with an increase in genome instability in many cancer types. These results identify FAM83D as a potential novel oncogene across multiple human cancer types.« less

  13. Repetitive DNAs and shrink genomes: A chromosomal analysis in nine Columbidae species (Aves, Columbiformes).

    PubMed

    Kretschmer, Rafael; de Oliveira, Thays Duarte; de Oliveira Furo, Ivanete; Oliveira Silva, Fabio Augusto; Gunski, Ricardo José; Del Valle Garnero, Analía; de Bello Cioffi, Marcelo; de Oliveira, Edivaldo Herculano Corrêa; de Freitas, Thales Renato Ochotorena

    2018-01-01

    An extensive karyotype variation is found among species belonging to the Columbidae family of birds (Columbiformes), both in diploid number and chromosomal morphology. Although clusters of repetitive DNA sequences play an important role in chromosomal instability, and therefore in chromosomal rearrangements, little is known about their distribution and amount in avian genomes. The aim of this study was to analyze the distribution of 11 distinct microsatellite sequences, as well as clusters of 18S rDNA, in nine different Columbidae species, correlating their distribution with the occurrence of chromosomal rearrangements. We found 2n values ranging from 76 to 86 and nine out of 11 microsatellite sequences showed distinct hybridization signals among the analyzed species. The accumulation of microsatellite repeats was found preferentially in the centromeric region of macro and microchromosomes, and in the W chromosome. Additionally, pair 2 showed the accumulation of several microsatellites in different combinations and locations in the distinct species, suggesting the occurrence of intrachromosomal rearrangements, as well as a possible fission of this pair in Geotrygon species. Therefore, although birds have a smaller amount of repetitive sequences when compared to other Tetrapoda, these seem to play an important role in the karyotype evolution of these species.

  14. Repetitive DNAs and shrink genomes: A chromosomal analysis in nine Columbidae species (Aves, Columbiformes)

    PubMed Central

    Kretschmer, Rafael; de Oliveira, Thays Duarte; de Oliveira Furo, Ivanete; Oliveira Silva, Fabio Augusto; Gunski, Ricardo José; del Valle Garnero, Analía; de Bello Cioffi, Marcelo; de Oliveira, Edivaldo Herculano Corrêa; de Freitas, Thales Renato Ochotorena

    2018-01-01

    Abstract An extensive karyotype variation is found among species belonging to the Columbidae family of birds (Columbiformes), both in diploid number and chromosomal morphology. Although clusters of repetitive DNA sequences play an important role in chromosomal instability, and therefore in chromosomal rearrangements, little is known about their distribution and amount in avian genomes. The aim of this study was to analyze the distribution of 11 distinct microsatellite sequences, as well as clusters of 18S rDNA, in nine different Columbidae species, correlating their distribution with the occurrence of chromosomal rearrangements. We found 2n values ranging from 76 to 86 and nine out of 11 microsatellite sequences showed distinct hybridization signals among the analyzed species. The accumulation of microsatellite repeats was found preferentially in the centromeric region of macro and microchromosomes, and in the W chromosome. Additionally, pair 2 showed the accumulation of several microsatellites in different combinations and locations in the distinct species, suggesting the occurrence of intrachromosomal rearrangements, as well as a possible fission of this pair in Geotrygon species. Therefore, although birds have a smaller amount of repetitive sequences when compared to other Tetrapoda, these seem to play an important role in the karyotype evolution of these species. PMID:29473932

  15. A9 region in EPHB2 mutation is frequent in tumors with microsatellite instability. Analysis of prognosis.

    PubMed

    Rafael, Sara; Vidaurreta, Marta; Veganzones, Silvia; De La Orden, Virgnia; Mediero, Beatriz; Gutierrez, Maria Luisa; Maestro, Maria Luisa

    2013-11-01

    The aim of the present study was to determine the relation of EPH tyrosine kinase receptor B2 (EPHB2) A9 region mutation and microsatellite instability (MSI); and to analyze their influence in prognosis of patients with sporadic colorectal cancer (CRC). A total of 481 patients with CRC were examined. MSI (NCI criteria) and EPHB2 were analyzed using PCR and fragment analysis software. EPHB2 mutation was detected in 3.1% of patients. Mutation of EPHB2 was associated with location and with MSI status. We considered low instability (L-MSI) when only one marker showed instability, high instability (H-MSI) when two or more markers were positive and microsatelllite stable (MSS) when no instability was detected. The stratified analysis of overall survival (OS) and disease-free survival (DFS) in MSI according to EPHB2 status revealed no statistically significant differences. However, the risk of recurrence of H-MSI tumors with EPHB2 mutation carriers was 3.6-times higher than in non-mutation carriers. The frequency of EPHB2 mutation is higher in patients with H-MSI than MSS tumors. Promising results were found regarding the prognostic influence of EPHB2 in H-MSI.

  16. Diet-related telomere shortening and chromosome stability

    PubMed Central

    Marcon, Francesca; Siniscalchi, Ester; Crebelli, Riccardo; Saieva, Calogero; Sera, Francesco; Fortini, Paola; Simonelli, Valeria; Palli, Domenico

    2012-01-01

    Recent evidences have highlighted an influence of micronutrients in the maintenance of telomere length (TL). In order to explore whether diet-related telomere shortening had any physiological relevance and was accompanied by significant damage in the genome, in the present study, TL was assessed by terminal restriction fragment (TRF) analysis in peripheral blood lymphocytes of 56 healthy subjects for which detailed information on dietary habits was available and data were compared \\with the incidence of nucleoplasmic bridges (NPBs), a marker of chromosomal instability related to telomere dysfunction visualised with the cytokinesis-blocked micronucleus assay. To increase the capability to detect even slight impairment of telomere function, the incidence of NPBs was also evaluated on cells exposed in vitro to ionising radiation. Care was taken to control for potential confounding factors that might influence TL, viz. age, hTERT genotype and smoking status. Data showed that higher consumption of vegetables was related with significantly higher mean TL (P = 0.013); in particular, the analysis of the association between micronutrients and mean TL highlighted a significant role of antioxidant intake, especially beta-carotene, on telomere maintenance (P = 0.004). However, the diet-related telomere shortening did not result in associated increased spontaneous or radiation-induced NPBs. The distribution of TRFs was also analysed and a slight prevalence of radiation-induced NPBs (P = 0.03) was observed in subjects with higher amount of very short TRFs (<2 kb). The relative incidence of very short TRFs was positively associate with ageing (P = 0.008) but unrelated to vegetables consumption and daily intake of micronutrients, suggesting that the degree of telomere erosion related with low dietary intake of antioxidants observed in this study was not so extensive to lead to chromosome instability. PMID:21857007

  17. Antagonizing pathways leading to differential dynamics in colon carcinogenesis in Shugoshin1 (Sgo1)-haploinsufficient chromosome instability model.

    PubMed

    Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting; Biddick, Laura; Reddy, Arun; Lightfoot, Stan; Dai, Wei; Yamada, Hiroshi Y

    2016-05-01

    Colon cancer is the second most lethal cancer. It is predicted to claim 50,310 lives in 2014. Chromosome Instability (CIN) is observed in 80-90% of colon cancers, and is thought to contribute to colon cancer progression and recurrence. However, there are no animal models of CIN that have been validated for studies of colon cancer development or drug testing. In this study, we sought to validate a mitotic error-induced CIN model mouse, the Shugoshin1 (Sgo1) haploinsufficient mouse, as a colon cancer study model. Wild-type and Sgo1(-/+) mice were treated with the colonic carcinogen, azoxymethane (AOM). We tracked colon tumor development 12, 24, and 36 wk after treatment to assess progression of colon tumorigenesis. Initially, more precancerous lesions, Aberrant Crypt Foci (ACF), developed in Sgo1(-/+) mice. However, the ACF did not develop straightforwardly into larger tumors. At the 36-wk endpoint, the number of gross tumors in Sgo1(-/+) mice was no different from that in wild-type controls. However, Copy Number Variation (CNV) analysis indicated that fully developed colon tumor in Sgo1(-/+) mice carried 13.75 times more CNV. Immunohistological analyses indicated that Sgo1(-/+) mice differentially expressed IL-6, Bcl2, and p16(INK4A) . We propose that formation of ACF in Sgo1(-/+) mice is facilitated by the IL6-STAT3-SOCS3 oncogenic pathway and by the Bcl2-anti-apoptotic pathway, yet further development of the ACF to tumors is inhibited by the p16(INK4A) tumor suppressor pathway. Manipulating these pathways would be beneficial for inhibiting development of colon cancer with CIN. © 2015 Wiley Periodicals, Inc.

  18. The infiltration, and prognostic importance, of Th1 lymphocytes vary in molecular subgroups of colorectal cancer

    PubMed Central

    Ling, Agnes; Lundberg, Ida V; Eklöf, Vincy; Wikberg, Maria L; Öberg, Åke; Palmqvist, Richard

    2015-01-01

    Abstract Giving strong prognostic information, T‐cell infiltration is on the verge of becoming an additional component in the routine clinical setting for classification of colorectal cancer (CRC). With a view to further improving the tools for prognostic evaluation, we have studied how Th1 lymphocyte infiltration correlates with prognosis not only by quantity, but also by subsite, within CRCs with different molecular characteristics (microsatellite instability, CpG island methylator phenotype status, and BRAF and KRAS mutational status). We evaluated the Th1 marker T‐bet by immunohistochemistry in 418 archival tumour tissue samples from patients who underwent surgical resection for CRC. We found that a high number of infiltrating Th1 lymphocytes is strongly associated with an improved prognosis in patients with CRC, irrespective of intratumoural subsite, and that both extent of infiltration and patient outcome differ according to molecular subgroup. In brief, microsatellite instability, CpG island methylator phenotype‐high and BRAF mutated tumours showed increased infiltration of Th1 lymphocytes, and the most pronounced prognostic effect of Th1 infiltration was found in these tumours. Interestingly, BRAF mutated tumours were found to be more highly infiltrated by Th1 lymphocytes than BRAF wild‐type tumours whereas the opposite was seen for KRAS mutated tumours. These differences could be explained at least partly by our finding that BRAF mutated, in contrast to KRAS mutated, CRC cell lines and tumour specimens expressed higher levels of the Th1‐attracting chemokine CXCL10, and reduced levels of CCL22 and TGFB1, stimulating Th2/Treg recruitment and polarisation. In conclusion, the strong prognostic importance of Th1 lymphocyte infiltration in CRC was found at all subsites evaluated, and it remained significant in multivariable analyses, indicating that T‐bet may be a valuable marker in the clinical setting. Our results also indicate that T‐bet is of

  19. Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1-/+ Mice.

    PubMed

    Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting; Biddick, Laura; Reddy, Arun; Lightfoot, Stan; Janakiram, Naveena B; Mohammed, Altaf; Dai, Wei; Yamada, Hiroshi Y

    2016-02-01

    Colon cancer is the second most lethal cancer and is predicted to claim 49,700 lives in the United States this year. Chromosome instability (CIN) is observed in 80% to 90% of colon cancers and is thought to contribute to colon cancer progression and recurrence. To investigate the impact of CIN on colon cancer development, we developed shugoshin-1 (Sgo1) haploinsufficient (-/+) mice, an animal model focusing on mitotic error-induced CIN. In this study, we analyzed signature changes in the colonic transcriptome of Sgo1(-/+) mice to examine the molecular events underlying the altered carcinogenesis profiles in Sgo1(-/+) mice. We performed next-generation sequencing of normal-looking colonic mucosal tissue from mice treated with the carcinogen azoxymethane after 24 weeks. Transcriptome profiling revealed 349 hits with a 2-fold expression difference threshold (217 upregulated genes, 132 downregulated genes, P < 0.05). Pathway analyses indicated that the Sgo1-CIN tissues upregulated pathways known to be activated in colon cancer, including lipid metabolism (z score 4.47), Notch signaling (4.47), insulin signaling (3.81), and PPAR pathways (3.75), and downregulated pathways involved in immune responses including allograft rejection (6.69) and graft-versus-host disease (6.54). Notably, stem cell markers were also misregulated. Collectively, our findings demonstrate that systemic CIN results in transcriptomic changes in metabolism, proliferation, cell fate, and immune responses in the colon, which may foster a microenvironment amenable to cancer development. Therefore, therapeutic approaches focusing on these identified pathways may be valuable for colon cancer prevention and treatment. ©2016 American Association for Cancer Research.

  20. Prognostic, predictive and pharmacogenomic assessments of CDX2 refine stratification of colorectal cancer.

    PubMed

    Bruun, Jarle; Sveen, Anita; Barros, Rita; Eide, Peter W; Eilertsen, Ina; Kolberg, Matthias; Pellinen, Teijo; David, Leonor; Svindland, Aud; Kallioniemi, Olli; Guren, Marianne G; Nesbakken, Arild; Almeida, Raquel; Lothe, Ragnhild A

    2018-06-14

    We aimed to refine the value of CDX2 as an independent prognostic and predictive biomarker in colorectal cancer (CRC) according to disease stage and chemotherapy sensitivity in preclinical models. CDX2 expression was evaluated in 1045 stage I-IV primary CRCs by gene expression (n=403) or immunohistochemistry (n=642) and in relation to 5-year relapse-free survival (RFS), overall survival (OS), and chemotherapy. Pharmacogenomic associations between CDX2 expression and 69 chemotherapeutics were assessed by drug screening of 35 CRC cell lines. CDX2 expression was lost in 11.6% of cases and showed independent poor prognostic value in multivariable models. For individual stages, CDX2 was prognostic only in stage IV, independent of chemotherapy. Among stage I-III patients not treated in an adjuvant setting, CDX2 loss was associated with a particularly poor survival in the BRAF-mutated subgroup, but prognostic value was independent of microsatellite instability status and the consensus molecular subtypes In stage III, the 5-year RFS rate was higher among patients with loss of CDX2 who received adjuvant chemotherapy than among patients who did not. The CDX2-negative cell lines were significantly more sensitive to chemotherapeutics than CDX2-positive cells, and the multidrug resistance genes MDR1 and CFTR were significantly downregulated both in CDX2-negative cells and patient tumors. Molecular Oncology (2018) © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  1. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability

    PubMed Central

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-01-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. PMID:25287622

  2. A case of hypotriploid chromosome in a patient with acute lymphoblastic leukaemia.

    PubMed

    Khan, Bilal Ahmed; Ali Baig, Mirza Faris; Siddiqui, Nadir

    2017-11-01

    TA 58-61, XXXX, hypotriploid chromosome was detected in the cytogenetics report of a 28 years old female patient, known case of B-cell Acute Lymphoblastic Leukaemia. On admission, the patient had normal physical examination findings and mental status, except history of fever spikes and generalized bone pains. The patient was admitted for induction of chemotherapy. Bone Marrow/Trephine biopsy report showed diffuse infiltration with blast cells with overall cellularity around 80-85% and suppressed normal haematopoiesis. Hypotriploid chromosome number in patients with B-cell Acute Lymphoblastic Leukaemia is a unique finding which, according to WHO classification of ALL, is an important prognostic factor itself and these cases have a favourable prognosis. There are only a few medical reports published about cases with similar presentations in Pakistan. Therefore, this case is very unique and further work should be done for better understanding of similar presentations and to find out more about its epidemiology.

  3. Interstitial telomeric repeats are not preferentially involved in radiation-induced chromosome aberrations in human cells.

    PubMed

    Desmaze, C; Pirzio, L M; Blaise, R; Mondello, C; Giulotto, E; Murnane, J P; Sabatier, L

    2004-01-01

    Telomeric repeat sequences, located at the end of eukaryotic chromosomes, have been detected at intrachromosomal locations in many species. Large blocks of telomeric sequences are located near the centromeres in hamster cells, and have been reported to break spontaneously or after exposure to ionizing radiation, leading to chromosome aberrations. In human cells, interstitial telomeric sequences (ITS) can be composed of short tracts of telomeric repeats (less than twenty), or of longer stretches of exact and degenerated hexanucleotides, mainly localized at subtelomeres. In this paper, we analyzed the radiation sensitivity of a naturally occurring short ITS localized in 2q31 and we found that this region is not a hot spot of radiation-induced chromosome breaks. We then selected a human cell line in which approximately 800 bp of telomeric DNA had been introduced by transfection into an internal euchromatic chromosomal region in chromosome 4q. In parallel, a cell line containing the plasmid without telomeric sequences was also analyzed. Both regions containing the transfected plasmids showed a higher frequency of radiation-induced breaks than expected, indicating that the instability of the regions containing the transfected sequences is not due to the presence of telomeric sequences. Taken together, our data show that ITS themselves do not enhance the formation of radiation-induced chromosome rearrangements in these human cell lines. Copyright 2003 S. Karger AG, Basel

  4. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  5. Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors.

    PubMed

    Ahmed, Atif A; Zhang, Lei; Reddivalla, Naresh; Hetherington, Maxine

    2017-04-01

    Neuroblastoma is the most common extracranial solid tumor in childhood accounting for 8-10% of all childhood malignancies. The tumor is characterized by a spectrum of histopathologic features and a heterogeneous clinical phenotype. Modern multimodality therapy results in variable clinical response ranging from cure in localized tumors to limited response in aggressive metastatic disease. Accurate clinical staging and risk assessment based on clinical, surgical, biologic and pathologic criteria are of pivotal importance in assigning prognosis and planning effective treatment approaches. Numerous studies have analyzed the presence of several clinicopathologic and biologic factors in association with the patient's prognosis and outcome. Although patient's age, tumor stage, histopathologic classification, and MYCN amplification are the most commonly validated prognostic markers, several new gene mutations have been identified in sporadic and familial neuroblastoma cases that show association with an adverse outcome. Novel molecular studies have also added data on chromosomal segmental aberrations in MYCN nonamplified tumors. In this review, we provide an updated summary of the clinical, serologic and genetic prognostic indicators in neuroblastoma including classic factors that have consistently played a role in risk stratification of patients as well as newly discovered biomarkers that may show a potential significance in patients' management.

  6. Prognostic markers for colorectal cancer: estimating ploidy and stroma

    PubMed Central

    Danielsen, H E; Hveem, T S; Domingo, E; Pradhan, M; Kleppe, A; Syvertsen, R A; Kostolomov, I; Nesheim, J A; Askautrud, H A; Nesbakken, A; Lothe, R A; Svindland, A; Shepherd, N; Novelli, M; Johnstone, E; Tomlinson, I; Kerr, R; Kerr, D J

    2018-01-01

    Abstract Background We report here the prognostic value of ploidy and digital tumour-stromal morphometric analyses using material from 2624 patients with early stage colorectal cancer (CRC). Patients and methods DNA content (ploidy) and stroma-tumour fraction were estimated using automated digital imaging systems and DNA was extracted from sections of formalin-fixed paraffin-embedded (FFPE) tissue for analysis of microsatellite instability. Samples were available from 1092 patients recruited to the QUASAR 2 trial and two large observational series (Gloucester, n = 954; Oslo University Hospital, n = 578). Resultant biomarkers were analysed for prognostic impact using 5-year cancer-specific survival (CSS) as the clinical end point. Results Ploidy and stroma-tumour fraction were significantly prognostic in a multivariate model adjusted for age, adjuvant treatment, and pathological T-stage in stage II patients, and the combination of ploidy and stroma-tumour fraction was found to stratify these patients into three clinically useful groups; 5-year CSS 90% versus 83% versus 73% [hazard ratio (HR) = 1.77 (95% confidence interval (95% CI): 1.13–2.77) and HR = 2.95 (95% CI: 1.73–5.03), P < 0.001]. Conclusion A novel biomarker, combining estimates of ploidy and stroma-tumour fraction, sampled from FFPE tissue, identifies stage II CRC patients with low, intermediate or high risk of CRC disease specific death, and can reliably stratify clinically relevant patient sub-populations with differential risks of tumour recurrence and may support choice of adjuvant therapy for these individuals. PMID:29293881

  7. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  8. A fresh look at the male-specific region of the human Y chromosome.

    PubMed

    Jangravi, Zohreh; Alikhani, Mehdi; Arefnezhad, Babak; Sharifi Tabar, Mehdi; Taleahmad, Sara; Karamzadeh, Razieh; Jadaliha, Mahdieh; Mousavi, Seyed Ahmad; Ahmadi Rastegar, Diba; Parsamatin, Pouria; Vakilian, Haghighat; Mirshahvaladi, Shahab; Sabbaghian, Marjan; Mohseni Meybodi, Anahita; Mirzaei, Mehdi; Shahhoseini, Maryam; Ebrahimi, Marzieh; Piryaei, Abbas; Moosavi-Movahedi, Ali Akbar; Haynes, Paul A; Goodchild, Ann K; Nasr-Esfahani, Mohammad Hossein; Jabbari, Esmaiel; Baharvand, Hossein; Sedighi Gilani, Mohammad Ali; Gourabi, Hamid; Salekdeh, Ghasem Hosseini

    2013-01-04

    The Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome. The male-specific region of the Y chromosome (MSY) is unique in many aspects and comprises 95% of the chromosome's length. The MSY continually retains its haploid state and is full of repeated sequences. It is responsible for important biological roles such as sex determination and male fertility. Here, we present the most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease. We also present information available from RNA sequencing, protein-protein interaction, post-translational modification of MSY protein-coding genes and their implications in biological systems. An overview of Human Y chromosome Proteome Project is presented and a systematic approach is suggested to ensure that at least one of each predicted protein-coding gene's major representative proteins will be characterized in the context of its major anatomical sites of expression, its abundance, and its functional relevance in a biological and/or medical context. There are many technical and biological issues that will need to be overcome in order to accomplish the full scale mapping.

  9. Chromosome 17 Aneusomy Detected by Fluorescence in Situ Hybridization in Vulvar Squamous Cell Carcinomas and Synchronous Vulvar Skin

    PubMed Central

    Carlson, J. Andrew; Healy, Kara; Tran, Tien Anh; Malfetano, John; Wilson, Vincent L.; Rohwedder, Angela; Ross, Jeffrey S.

    2000-01-01

    Vulvar squamous cell carcinoma (SCC) affects a spectrum of women with granulomatous vulvar diseases, human papillomavirus (HPV) infections, and chronic inflammatory vulvar dermatoses. To determine whether there is evidence of chromosomal instability occurring in synchronous skin surrounding vulvar SCCs, we investigated abnormalities in chromosome 17 copy number. Samples of SCC, vulvar intraepithelial neoplasia (VIN), and surrounding vulvar skin were obtained from all vulvar excisions performed for squamous neoplasia at Albany Medical College from 1996 to 1997. Histological categorization, fluorescent in situ hybridization (FISH) for the α satellite region of chromosome 17, DNA content by image analysis, and Ki-67 labeling were evaluated. Controls of normal vulvar skin not associated with cancer were used for comparison. One hundred ten specimens were obtained from 33 patients with either SCC or VIN 3 and consisted of 49 neoplastic, 52 nonneoplastic, and 9 histologically normal vulvar skin samples. The majority of SCCs (88%) and a minority (18%) of VIN 3 excisions were associated with lichen sclerosus. Normal vulvar skin controls did not exhibit chromosome 17 polysomy (cells with more than four FISH signals), whereas 56% of normal vulvar skin associated with cancer did. Moreover, the frequency of polysomy significantly increased as the histological classification progressed from normal to inflammatory to neoplastic lesions. The largest mean value and variance for chromosome 17 copy number was identified in SCCs (2.4 ± 1.0) with intermediate values identified, in decreasing order, for SCC in situ (2.1 ± 1.0), VIN 2 (2.1 ± 0.8), lichen sclerosus (2.0 ± 0.5), lichen simplex chronicus (1.9 ± 0.4), and normal skin associated with SCC (1.8 ± 0.4) compared with control vulvar skin (1.5 ± 0.05). Concordance of chromosome 17 aneusomy between cancers and synchronous skin lesions was found in 48% of patients. Loss of chromosome 17 was identified 5% of all samples and

  10. Prognostics for Microgrid Components

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav

    2012-01-01

    Prognostics is the science of predicting future performance and potential failures based on targeted condition monitoring. Moving away from the traditional reliability centric view, prognostics aims at detecting and quantifying the time to impending failures. This advance warning provides the opportunity to take actions that can preserve uptime, reduce cost of damage, or extend the life of the component. The talk will focus on the concepts and basics of prognostics from the viewpoint of condition-based systems health management. Differences with other techniques used in systems health management and philosophies of prognostics used in other domains will be shown. Examples relevant to micro grid systems and subsystems will be used to illustrate various types of prediction scenarios and the resources it take to set up a desired prognostic system. Specifically, the implementation results for power storage and power semiconductor components will demonstrate specific solution approaches of prognostics. The role of constituent elements of prognostics, such as model, prediction algorithms, failure threshold, run-to-failure data, requirements and specifications, and post-prognostic reasoning will be explained. A discussion on performance evaluation and performance metrics will conclude the technical discussion followed by general comments on open research problems and challenges in prognostics.

  11. Tumor-promoting/progressing role of additional chromosome instability in hepatic carcinogenesis in Sgo1 (Shugoshin 1) haploinsufficient mice.

    PubMed

    Yamada, Hiroshi Y; Zhang, Yuting; Reddy, Arun; Mohammed, Altaf; Lightfoot, Stan; Dai, Wei; Rao, Chinthalapally V

    2015-04-01

    A major etiological risk factor for hepatocellular carcinoma (HCC) is infection by Hepatitis viruses, especially hepatitis B virus and hepatitis C virus. Hepatitis B virus and hepatitis C virus do not cause aggressive activation of an oncogenic pathway, but they transactivate a broad array of genes, cause chronic inflammation, and, through interference with mitotic processes, lead to mitotic error-induced chromosome instability (ME-CIN). However, how ME-CIN is involved in the development of HCC remains unclear. Delineating the effect of ME-CIN on HCC development should help in identifying measures to combat HCC. In this study, we used ME-CIN model mice haploinsufficient in Shugoshin 1 (Sgo1(-/+)) to assess the role of ME-CIN in HCC development. Treatment with the carcinogen azoxymethane caused Sgo1(-/+) ME-CIN model mice to develop HCCs within 6 months, whereas control mice developed no HCC (P < 0.003). The HCC development was associated with expression of early HCC markers (glutamine synthetase, glypican 3, heat shock protein 70, and the serum marker alpha fetoprotein), although without fibrosis. ME-CIN preceded the expression of HCC markers, suggesting that ME-CIN is an important early event in HCC development. In 12-month-old untreated Sgo1 mice, persistent DNA damage, altered gene expression, and spontaneous HCCs were observed. Sgo1 protein accumulated in response to DNA damage in vitro. Overall, Sgo1(-/+)-mediated ME-CIN strongly promoted/progressed development of HCC in the presence of an initiator carcinogen, and it had a mild initiator effect by itself. Use of the ME-CIN model mice should help in identifying drugs to counteract the effects of ME-CIN and should accelerate anti-HCC drug development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture

    PubMed Central

    2013-01-01

    Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes. PMID:24267747

  13. Chromosome-specific staining to detect genetic rearrangements

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol

    2013-04-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  14. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  15. Prognostic discrimination in "good-risk" chronic granulocytic leukemia.

    PubMed

    Sokal, J E; Cox, E B; Baccarani, M; Tura, S; Gomez, G A; Robertson, J E; Tso, C Y; Braun, T J; Clarkson, B D; Cervantes, F

    1984-04-01

    The prognostic significance of disease features recorded at the time of diagnosis was examined among 813 patients with Philadelphia chromosome-positive, nonblastic chronic granulocytic leukemia (CGL) collected from six European and American series. The survival pattern for this population was typical of "good-risk" patients, and median survival was 47 mo. There were multiple interrelationships among different disease features, which led to highly significant correlations with survival for some that had no primary prognostic significance, such as hematocrit. Multivariable regression analysis indicated that spleen size and the percentage of circulating blasts were the most important prognostic indicators. These features, and age, behaved as continuous variables with progressively unfavorable import at higher values. The platelet count did not influence survival significantly at values below 700 X 10(9)/liter but was increasingly unfavorable above this level. Basophils plus eosinophils over 15%, more than 5% marrow blasts, and karyotypic abnormalities in addition to the Ph1 were also significant unfavorable signs. The Cox model, generated with four variables representing percent blasts, spleen size, platelet count, and age, provided a useful representation of risk status in this population, with good fit between predicted and observed survival over more than a twofold survival range. A hazard function derived from half of the patient population successfully segregated the remainder into three groups with significantly different survival patterns. We conclude that it should be possible to identify a lower risk group of patients with a 2-yr survival of 90%, subsequent risk averaging somewhat less than 20%/yr and median survival of 5 yr, an intermediate group, and a high-risk group with a 2-yr survival of 65%, followed by a death rate of about 35%/yr and median survival of 2.5 yr.

  16. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    PubMed

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  17. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus

    PubMed Central

    Klaenhammer, Todd R.

    2016-01-01

    ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is

  18. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  19. Construction of human chromosome 21-specific yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtainedmore » from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.« less

  20. The (r)evolution of SINE versus LINE distributions in primate genomes: Sex chromosomes are important

    PubMed Central

    Kvikstad, Erika M.; Makova, Kateryna D.

    2010-01-01

    The densities of transposable elements (TEs) in the human genome display substantial variation both within individual chromosomes and among chromosome types (autosomes and the two sex chromosomes). Finding an explanation for this variability has been challenging, especially in light of genome landscapes unique to the sex chromosomes. Here, using a multiple regression framework, we investigate primate Alu and L1 densities shaped by regional genome features and location on a particular chromosome type. As a result of our analysis, first, we build statistical models explaining up to 79% and 44% of variation in Alu and L1 element density, respectively. Second, we analyze sex chromosome versus autosome TE densities corrected for regional genomic effects. We discover that sex-chromosome bias in Alu and L1 distributions not only persists after accounting for these effects, but even presents differences in patterns, confirming preferential Alu integration in the male germline, yet likely integration of L1s in both male and female germlines or in early embryogenesis. Additionally, our models reveal that local base composition (measured by GC content and density of L1 target sites) and natural selection (inferred via density of most conserved elements) are significant to predicting densities of L1s. Interestingly, measurements of local double-stranded breaks (a 13-mer associated with genome instability) strongly correlate with densities of Alu elements; little evidence was found for the role of recombination-driven deletion in driving TE distributions over evolutionary time. Thus, Alu and L1 densities have been influenced by the combination of distinct local genome landscapes and the unique evolutionary dynamics of sex chromosomes. PMID:20219940

  1. Analysis of Terminal Deletions using a Generalized Time-Dependent Model of Radiation-Induced Formation of Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; George, K.; Cucinotta, Francis A.

    2011-01-01

    We have developed a model that can simulate different types of radiation induced chromosomal aberrations (CA's) and can provide predictions on the frequency and size of chromosomes with terminal deletions. Chromosomes with terminal deletions lack telomeres and this can elicit sister chromatid unions and the prolonged breakage/fusion/bridge (B/F/B) cycles that have been observed in mammalian tumors. The loss of a single telomere has been shown to cause extensive genomic instability through the B/F/B cycle process. Our model uses a stochastic process of DNA broken end joining, in which a realistic spectrum of CA's is created from improperly joined DNA free ends formed by DNA double strand breaks (DSBs). The distribution of the DNA free ends is given by a mechanistic model that takes into account the chromatin structure and track structure for high-LET radiation. The model allows for DSB clustering from high-LET radiation and simulates the formation of CA's in stages that correspond to the actual time after radiation exposure. The time scale for CA formation is derived from experimental data on DSB repair kinetics. At any given time a nucleus may have intact chromosomes, CA's, and/or unrepaired fragments, some of which are defined as terminal deletions, if they are capped by one telomere. The model produces a spectrum of terminal deletions with their corresponding probabilities and size distributions for different heavy ions exposures for the first division after exposure. This data provides valuable information because there is limited experimental data available in the literature on the on the actual size of terminal deletions. We compare our model output to the available experimental data and make a reasonable extrapolation on the number of chromosomes lacking telomeres in human lymphocytes exposed to heavy ions. This model generates data which may lead to predictions on the rate of genomic instability in cells after exposure to high charge and energy nuclei

  2. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    PubMed

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  3. Biophysical modelling of early and delayed radiation damage at chromosome level

    NASA Astrophysics Data System (ADS)

    Andreev, S.; Eidelman, Y.

    Exposure by ionising radiation increases cancer risk in human population Cancer is thought to originate from an altered expression of certain number of specific genes It is now widely recognised that chromosome aberrations CA are involved in stable change in expression of genes by gain or loss of their functions Thus CA can contribute to initiation or progression of cancer Therefore understanding mechanisms of CA formation in the course of cancer development might be valuable tool for quantification and prognosis of different stages of radiation carcinogenesis Early CA are defined as aberrations induced in first post-irradiation mitotic cycle The present work describes the original biophysical technique for early CA modelling It includes the following simulation steps the ionising particle track structure the structural organisation of all chromosomes in G 0 G 1 cell nucleus spatial distribution of radiation induced DNA double-strand breaks dsb within chromosomes dsb rejoining and misrejoining modelling cell cycle taking into account mitotic delay which results in complex time dependence of aberrant cells in first mitosis The results on prediction of dose-response curves for simple and complex CA measured in cells undergoing first division cycle are presented in comparison with recent experimental data There is increasing evidence that CA are also observed in descendents of irradiated cells many generations after direct DNA damage These delayed CA or chromosome instability CI are thought to be a manifestation of genome

  4. Assessment of chromosomal imbalances in CIMP-high and CIMP-low/CIMP-0 colorectal cancers.

    PubMed

    Kozlowska, Joanna; Karpinski, Pawel; Szmida, Elzbieta; Laczmanska, Izabela; Misiak, Blazej; Ramsey, David; Bebenek, Marek; Kielan, Wojciech; Pesz, Karolina A; Sasiadek, Maria M

    2012-08-01

    Data presented in a number of recent studies have revealed a negative correlation between CpG island methylator phenotype (CIMP) and chromosomal instability (CIN) measured by a loss of heterozygosity (LOH) of selected loci, suggesting that CIN and CIMP represent two independent mechanisms in sporadic colorectal cancer (CRC) carcinogenesis. However, CIN is a heterogeneous phenomenon, which may be studied not only by employing LOH analysis but also by observing chromosomal imbalances (gains and deletions). The current study aimed to investigate the relationship between CIMP and chromosomal gains and deletions (assessed by comparative genomic hybridization) in a group of 20 CIMP-high and 79 CIMP-low/CIMP-0 CRCs. Our results revealed that the mean numbers of gains and of total chromosomal imbalances were significantly greater (p = 0.004 and p = 0.007, respectively) in the CIMP-low/CIMP-0 group compared to the CIMP-high group, while no significant difference was observed between the mean numbers of losses (p = 0.056). The analysis of copy number changes of 41 cancer-related genes by multiplex ligation-dependent probe amplification showed that CRK gene was exclusively deleted in CIMP-low/CIMP-0 tumors (p = 0.02). Given that chromosomal losses play an important role in tumor suppressor inactivation and chromosomal gains, in the activation of proto-oncogenes, we hypothesize that tumor suppressor inactivation plays similar roles in both CIMP-high and CIMP-low/CIMP-0 CRCs, while the predominance of chromosomal gains in CIMP-low/CIMP-0 tumors may suggest that the activation of proto-oncogenes is the underlying mechanism of CIMP-low/CIMP-0 CRC progression.

  5. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  6. Hormone escape is associated with genomic instability in a human prostate cancer model.

    PubMed

    Legrier, Marie-Emmanuelle; Guyader, Charlotte; Céraline, Jocelyn; Dutrillaux, Bernard; Oudard, Stéphane; Poupon, Marie-France; Auger, Nathalie

    2009-03-01

    Lack of hormone dependency in prostate cancers is an irreversible event that occurs through generation of genomic instability induced by androgen deprivation. Indeed, the cytogenetic profile of hormone-dependent (HD) prostate cancer remains stable as long as it received a hormone supply, whereas the profile of hormone-independent (HID) variants acquired new and various alterations. This is demonstrated here using a HD xenografted model of a human prostate cancer, PAC120, transplanted for 11 years into male nude mice and 4 HID variants obtained by surgical castration. Cytogenetic analysis, done by karyotype, FISH, CGH and array-CGH, shows that PAC120 at early passage presents numerous chromosomal alterations. Very few additional alterations were found between the 5th and 47th passages, indicating the stability of the parental tumor. HID variants largely maintained the core of chromosomal alterations of PAC120 - losses at 6q, 7p, 12q, 15q and 17q sites. However, each HID variant displayed a number of new alterations, almost all being specific to each variant and very few shared by all. None of the HID had androgen receptor mutations. Our study indicates that hormone castration is responsible for genomic instability generating new cytogenetic abnormalities susceptible to alter the properties of cancer cell associated with tumor progression, such as increased cell survival and ability to metastasize.

  7. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle

    PubMed Central

    1979-01-01

    The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement. PMID:479316

  8. The effects of severe mixed environmental pollution on human chromosomes.

    PubMed Central

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instability induced by the pollution. The women were of a comparable socioeconomic level, aged between 20 and 31 years, and with no history of factors associated with mutagenesis. Venous blood samples were taken from the two groups and processed concurrently. The slides were coded and examined independently by two observers, who were unaware of the source of the samples. A total of 100 cells was examined on each sample. The two observers obtained highly comparable results. Women from Elefsis had an average of 0.42 anomalies per cell and those from Koropi had 0.39. The absence of a statistically significant difference between the two groups clearly shows that the severe mixed environmental pollution of Elefsis has no significant visible effect on human chromosomes in most residents. However, two Elefsis women had abnormal results and could be at risk. Their presence is not sufficient to raise significantly their group's average, but the induction by pollution of an increased rate of chromosomal anomalies in only a few people at risk could account for the known association between urban residence and cancer mortality. PMID:3783622

  9. Fanconi anemia: causes and consequences of genetic instability.

    PubMed

    Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H

    2006-01-01

    Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic

  10. Chromosome Abnormalities

    MedlinePlus

    ... chromosome has attached to another at the centromere. Inversions: A portion of the chromosome has broken off, ... individual and was not inherited from the parents. Inversion: A portion of the chromosome has broken off, ...

  11. Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells

    PubMed Central

    Maeda, Junko; Yurkon, Charles R.; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C.; Roybal, Erica J.; Rota, Garrett W.; Saffer, Ethan R.; Rose, Barbara J.; Hanneman, William H.; Thamm, Douglas H.; Kato, Takamitsu A.

    2012-01-01

    Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246

  12. The gametocidal chromosome as a tool for chromosome manipulation in wheat.

    PubMed

    Endo, T R

    2007-01-01

    Many alien chromosomes have been introduced into common wheat (the genus Triticum) from related wild species (the genus Aegilops). Some alien chromosomes have unique genes that secure their existence in the host by causing chromosome breakage in the gametes lacking them. Such chromosomes or genes, called gametocidal (Gc) chromosomes or Gc genes, are derived from different genomes (C, S, S(l) and M(g)) and belong to three different homoeologous groups 2, 3 and 4. The Gc genes of the C and M(g) genomes induce mild, or semi-lethal, chromosome mutations in euploid and alien addition lines of common wheat. Thus, induced chromosomal rearrangements have been identified and established in wheat stocks carrying deletions of wheat and alien (rye and barley) chromosomes or wheat-alien translocations. The gametocidal chromosomes isolated in wheat to date are reviewed here, focusing on their feature as a tool for chromosome manipulation.

  13. Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia.

    PubMed

    Lewintre, Eloisa Jantus; Martín, Cristina Reinoso; Ballesteros, Carlos García; Montaner, David; Rivera, Rosa Farrás; Mayans, José Ramón; García-Conde, Javier

    2009-02-01

    Chronic lymphocytic leukemia is an adult-onset leukemia with a heterogeneous clinical behavior. When chronic lymphocytic leukemia cases were divided on the basis of IgV(H) mutational status, widely differing clinical courses were revealed. Since IgV(H) sequencing is difficult to perform in a routine diagnostic laboratory, finding a surrogate for IgV(H) mutational status seems an important priority. In the present study, we proposed the use of Cryptochrome-1 as a new prognostic marker in early-stage chronic lymphocytic leukemia. Seventy patients (Binet stage A, without treatment) were included in the study. We correlated Cryptochrome-1 mRNA with well established prognostic markers such as IgV(H) mutations, ZAP70, LPL or CD38 expression and chromosomal abnormalities. High Cryptochrome-1 expression correlated with IgV(H) unmutated samples. In addition, Cryptochrome-1 was a valuable predictor of disease progression in early-stage chronic lymphocytic leukemia, therefore it can be introduced in clinical practice with the advantage of a simplified method of quantification.

  14. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D; Storey, Katie; Boggess, May

    2014-06-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species.

  15. Cryptic mosaicism involving a second chromosome X in patients with Turner syndrome.

    PubMed

    Araújo, A; Ramos, E S

    2008-05-01

    The high abortion rate of 45,X embryos indicates that patients with Turner syndrome and 45,X karyotype could be mosaics, in at least one phase of embryo development or cellular lineage, due to the need for the other sex chromosome presence for conceptus to be compatible with life. In cases of structural chromosomal aberrations or hidden mosaicism, conventional cytogenetic techniques can be ineffective and molecular investigation is indicated. Two hundred and fifty patients with Turner syndrome stigmata were studied and 36 who had female genitalia and had been cytogenetically diagnosed as having "pure" 45,X karyotype were selected after 100 metaphases were analyzed in order to exclude mosaicism and the presence of genomic Y-specific sequences (SRY, TSPY, and DAZ) was excluded by PCR. Genomic DNA was extracted from peripheral blood and screened by the human androgen receptor (HUMARA) assay. The HUMARA gene has a polymorphic CAG repeat and, in the presence of a second chromosome with a different HUMARA allele, a second band will be amplified by PCR. Additionally, the CAG repeats contain two methylation-sensitive HpaII enzyme restriction sites, which can be used to verify skewed inactivation. Twenty-five percent (9/36) of the cases showed a cryptic mosaicism involving a second X and approximately 14% (5/36), or 55% (5/9) of the patients with cryptic mosaicism, also presented skewed inactivation. The laboratory identification of the second X chromosome and its inactivation pattern are important for the clinical management (hormone replacement therapy, and inclusion in an oocyte donation program) and prognostic counseling of patients with Turner syndrome.

  16. Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation.

    PubMed

    Dion-Côté, Anne-Marie; Symonová, Radka; Lamaze, Fabien C; Pelikánová, Šárka; Ráb, Petr; Bernatchez, Louis

    2017-01-01

    The role of chromosome changes in speciation remains a debated topic, although demographic conditions associated with divergence should promote their appearance. We tested a potential relationship between chromosome changes and speciation by studying two Lake Whitefish (Coregonus clupeaformis) lineages that recently colonized postglacial lakes following allopatry. A dwarf limnetic species evolved repeatedly from the normal benthic species, becoming reproductively isolated. Lake Whitefish hybrids experience mitotic and meiotic instability, which may result from structurally divergent chromosomes. Motivated by this observation, we test the hypothesis that chromosome organization differs between Lake Whitefish species pairs using cytogenetics. While chromosome and fundamental numbers are conserved between the species (2n = 80, NF = 98), we observe extensive polymorphism of subtle karyotype traits. We describe intrachromosomal differences associated with heterochromatin and repetitive DNA, and test for parallelism among three sympatric species pairs. Multivariate analyses support the hypothesis that differentiation at the level of subchromosomal markers mostly appeared during allopatry. Yet we find no evidence for parallelism between species pairs among lakes, consistent with colonization effect or postcolonization differentiation. The reported intrachromosomal polymorphisms do not appear to play a central role in driving adaptive divergence between normal and dwarf Lake Whitefish. We discuss how chromosomal differentiation in the Lake Whitefish system may contribute to the destabilization of mitotic and meiotic chromosome segregation in hybrids, as documented previously. The chromosome structures detected here are still difficult to sequence and assemble, demonstrating the value of cytogenetics as a complementary approach to understand the genomic bases of speciation. © 2016 John Wiley & Sons Ltd.

  17. EMAST is a Form of Microsatellite Instability That is Initiated by Inflammation and Modulates Colorectal Cancer Progression.

    PubMed

    Carethers, John M; Koi, Minoru; Tseng-Rogenski, Stephanie S

    2015-03-31

    DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among

  18. EMAST is a Form of Microsatellite Instability That is Initiated by Inflammation and Modulates Colorectal Cancer Progression

    PubMed Central

    Carethers, John M.; Koi, Minoru; Tseng-Rogenski, Stephanie S.

    2015-01-01

    DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among

  19. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    PubMed

    Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  20. Chromosomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  1. Genomic Instability and Radiation Risk in Molecular Pathways to Colon Cancer

    PubMed Central

    Kaiser, Jan Christian; Meckbach, Reinhard; Jacob, Peter

    2014-01-01

    Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI). GI appears in molecular pathways of microsatellite instability (MSI) and chromosomal instability (CIN) with clinically observed case shares of about 15–20% and 80–85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients, if their

  2. Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP.

    PubMed

    Warth, Arne; Kloor, Matthias; Schirmacher, Peter; Bläker, Hendrik

    2011-04-01

    Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.

  3. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    PubMed

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  4. Cytogenetic characterization and B chromosome diversity in direct-developing frogs of the genus Oreobates (Brachycephaloidea, Craugastoridae)

    PubMed Central

    Ferro, Juan Martín; Taffarel, Alberto; Cardozo, Darío; Grosso, Jimena; Puig, María Pía; Suárez, Pablo; Akmentins, Mauricio Sebastián; Baldo, Diego

    2016-01-01

    Abstract Oreobates Jiménez de la Espada, 1872 is a large group of South American frogs with terrestrial reproduction and direct development, located in the superfamily Brachycephaloidea. About 260 brachycephaloidean species have been cytogenetically studied so far, at least with standard techniques. However, this information represents fewer than 17% species of the family Craugastoridae Hedges, Duellman & Heinicke, 2008, where the genus Oreobates is included. In the present work, using a diversity of standard and molecular techniques, we describe the karyotype of Oreobates barituensis Vaira & Ferrari, 2008, Oreobates berdemenos Pereyra, Cardozo, Baldo & Baldo, 2014 and Oreobates discoidalis (Peracca, 1895), from northwestern Argentina. The three species analyzed showed a diploid karyotype with 2n = 22 biarmed chromosomes, fundamental number (FN) = 44, nucleolus organizer regions (NORs) located pericentromerically on pair 7, and a centromeric and pericentromeric C-banding pattern. We observed variations in the chromosome number in Oreobates barituensis due the presence of two morphs of B chromosomes, one medium-sized telocentric (BT) and another subtelocentric and smaller (Bst). Both B chromosomes are mitotically stable and were recorded in all somatic and germinal cells analyzed. The BT chromosome occurred at a maximum of one per individual (2n = 22+BT), and the other one was observed single (2n = 22 + Bst) or as a pair in two doses (2n = 22 + 2BT). We additionally observed other supernumerary chromosomes in the three species analyzed, all of them euchromatic, small, dot-shaped and with instability during mitoses, showing a frequency of occurrence below 50% in studied specimens. The occurrence of polymorphic and spontaneous chromosomal rearrangements and supernumerary chromosomes is a recurrent feature reported in frogs with terrestrial habits (Brachycephaloidea and Hemiphractidae Peters, 1862), which suggests that Brachycephaloidea may be a promising group for

  5. DNA Double-Strand Breaks Coupled with PARP1 and HNRNPA2B1 Binding Sites Flank Coordinately Expressed Domains in Human Chromosomes

    PubMed Central

    Fedoseeva, Daria M.; Sosin, Dmitri V.; Grachev, Sergei A.; Serebraykova, Marina V.; Romanenko, Svetlana A.; Vorobieva, Nadezhda V.; Kravatsky, Yuri V.

    2013-01-01

    Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50–250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites. PMID:23593027

  6. Early and Late Chromosome Damages in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  7. Unrepaired clustered DNA lesions induce chromosome breakage in human cells

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Chen, David J.

    2011-01-01

    Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720

  8. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  9. The A-Like Faker Assay for Measuring Yeast Chromosome III Stability.

    PubMed

    Novoa, Carolina A; Ang, J Sidney; Stirling, Peter C

    2018-01-01

    The ability to rapidly assess chromosome instability (CIN) has enabled profiling of most yeast genes for potential effects on genome stability. The A-like faker (ALF) assay is one of several qualitative and quantitative marker loss assays that indirectly measure loss or conversion of genetic material using a counterselection step. The ALF assay relies on the ability to count spurious mating events that occur upon loss of the MATα locus of haploid Saccharomyces cerevisiae strains. Here, we describe the deployment of the ALF assay for both rapid and simple qualitative, and more in-depth quantitative analysis allowing determination of absolute ALF frequencies.

  10. A new chromosome was born: comparative chromosome painting in Boechera.

    PubMed

    Koch, Marcus A

    2015-09-01

    Comparative chromosome painting is a powerful tool to study the evolution of chromosomes and genomes. Analyzing karyotype evolution in cruciferous plants highlights the origin of aberrant chromosomes in apomictic Boechera and further establishes the cruciferous plants as important model system for our understanding of plant chromosome and genome evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Disease-associated repeat instability and mismatch repair.

    PubMed

    Schmidt, Monika H M; Pearson, Christopher E

    2016-02-01

    Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations.

    PubMed

    von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M

    2012-07-01

    The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.

  13. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    PubMed

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  14. Undetected sex chromosome aneuploidy by chromosomal microarray.

    PubMed

    Markus-Bustani, Keren; Yaron, Yuval; Goldstein, Myriam; Orr-Urtreger, Avi; Ben-Shachar, Shay

    2012-11-01

    We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting. © 2012 John Wiley & Sons, Ltd.

  15. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.

    PubMed

    Brown, Judith D; O'Neill, Rachel J

    2010-01-01

    Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.

  16. Phosphatidylinositol 3-Kinase (PI3K) δ blockade increases genomic instability in B cells

    PubMed Central

    Compagno, Mara; Wang, Qi; Pighi, Chiara; Cheong, Taek-Chin; Meng, Fei-Long; Poggio, Teresa; Yeap, Leng-Siew; Karaca, Elif; Blasco, Rafael B.; Langellotto, Fernanda; Ambrogio, Chiara; Voena, Claudia; Wiestner, Adrian; Kasar, Siddha N.; Brown, Jennifer R.; Sun, Jing; Wu, Catherine J.; Gostissa, Monica; Alt, Frederick W.; Chiarle, Roberto

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients. PMID:28199309

  17. Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit.

    PubMed

    Royo, Jose Luis; Moreno-Ruiz, Emilia; Cebolla, Angel; Santero, Eduardo

    2005-03-16

    In our laboratory we have analyzed different factors to maximize the yield in heterologous protein expression for long-term cultivation, by combination of an efficient cascade expression system and stable integration in the bacterial chromosome. In this work, we have explored this system for the production of indigo dye as a model for biotechnological production, by expressing in Escherichia coli the thnA1A2A3A4 genes from Sphingomonas macrogolitabida strain TFA, which encode the components of a tetralin dioxygenase activity. We compared Ptac, and the Pm-based cascade expression circuit in a multicopy plasmid and stably integrated into the bacterial chromosome. Plasmid-based expression systems resulted in instability of indigo production when serially diluted batch experiments were performed without a selective pressure. This problem was solved by integrating the expression module in the chromosome. Despite the gene dosage reduction, the synergic effect of the cascade expression system produced comparable expression to the dioxygenase activity in the plasmid configuration but could be stably maintained for at least 5 days. Here, we show that the cascade amplification circuit integrated in the chromosome could be an excellent system for tight control and stable production of recombinant products.

  18. Transcription instability in high-risk neuroblastoma is associated with a global perturbation of chromatin domains.

    PubMed

    Zanon, Carlo; Tonini, Gian Paolo

    2017-11-01

    Chromosome instability has a pivotal role among the hallmarks of cancer, but its transcriptional counterpart is rarely considered a relevant factor in cell destabilization. To examine transcription instability (TIN), we first devised a metric we named TIN index and used it to evaluate TIN on a dataset containing more than 500 neuroblastoma samples. We found that metastatic tumors from high-risk (HR) patients are characterized by significantly different TIN index values compared to low/intermediate-risk patients. Our results indicate that the TIN index is a good predictor of neuroblastoma patient's outcome, and a related TIN index gene signature (TIN-signature) is also able to predict the neuroblastoma patient's outcome with high confidence. Interestingly, we find that TIN-signature genes have a strong positional association with superenhancers in neuroblastoma tumors. Finally, we show that TIN is linked to chromatin structural domains and interferes with their integrity in HR neuroblastoma patients. This novel approach to gene expression analysis broadens the perspective of genome instability investigations to include functional aspects. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  19. [Perforation of hollow organs in the abdominal contusion: diagnostic features and prognostic factors of death].

    PubMed

    Nicolau, A E; Merlan, V; Dinescu, G; Crăciun, M; Kitkani, A; Beuran, M

    2012-01-01

    Blunt hollow viscus perforations (HVP) due to abdominal contusions (AC), although rare, are difficult to diagnose early and are associated with a high mortality. Our paper analyses retrospectively data from patients operated for HVP between January 2005 and January 2009, the efficiency of different diagnostic tools, mortality and prognostic factors for death. There were 62 patients operated for HVP, 14 of which had isolated abdominal contusion and 48 were poly trauma patients. There were 9 women and 53 men, the mean age was 41.5 years (SD: +17,9), the mean ISS was 32.94 (SD: +15,94), 23 patients had associated solid viscus injuries (SVI). Clinical examination was irelevant for 16 of the 62 patients, abdominal Xray was false negative for 30 out of 35 patients and abdominal ultrasound was false negative for 16 out of 60 patients. Abdominal CT was initially false negative for 7 out of 38 patients: for 4 of them the abdominal CT was repeated and was positive for HVP, for 3 patients a diagnostic laparoscopy was performed. Direct signs for HVP on abdominal CT were present for 3 out of 38 patients. Diagnostic laparoscopy was performed for 7 patients with suspicion for HVP, and was positive for 6 of them and false negative for a patient with a duodenal perforation. Single organ perforations were present in 55 cases, multi organ perforations were present in 7 cases. There were 15 deaths (15.2%), most of them caused by haemodynamic instability (3 out of 6 patients) and associated lesions: SOL for 9 out of 23 cases, pelvic fracture (PF) for 6 out of 14 patients, craniocerebral trauma (CCT) for 12 out of 33 patients.Multivariate analysis showed that the prognostic factors for death were ISS value (p = 0,023) and associated CCT (odds ratio = 4,95; p = 0,017). The following factors were not confirmed as prognostic factors for death: age, haemodynamic instability, associated SVI, thoracic trauma (TT), pelvic fractures (PF), limbs fractures (LF) and admission-operation interval

  20. The Precarious Prokaryotic Chromosome

    PubMed Central

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other “precarious” features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction. PMID:24633873

  1. Prognostic implication of the CpG island methylator phenotype in colorectal cancers depends on tumour location

    PubMed Central

    Bae, J M; Kim, J H; Cho, N-Y; Kim, T-Y; Kang, G H

    2013-01-01

    Background: Colorectal cancer (CRC) is usually categorised as proximal or distal CRC. Recently, many researchers have tried to determine the molecular heterogeneity of CRCs along bowel subsites. However, the differential effects of the CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) on the clinical outcome according to tumour location are not well-known. Methods: We analysed clinicopathologic and molecular characteristics, including CIMP, MSI, KRAS and BRAF mutations, in 734 CRCs according to bowel subsites. And the prognostic value of CIMP and MSI was analysed according to tumour location. Results: We found a linear increase of female predominance, T, N category, stage, differentiation, absence of luminal necrosis, tumour -infiltrating lymphocytes, Crohn's-like lymphoid reaction, serration and mucin production from the rectum to caecum. CpG island methylator phenotype -high and MSI-high gradually increased from the rectum to caecum. CpG island methylator phenotype is a poor prognostic factor of overall survival (hazard ratio (HR): 4.13, 95% confidence interval (CI): 1.27–13.46) and disease-free survival (HR: 2.90, 95% CI: 1.04–8.08) in rectal cancers. Conclusion: Clinicopathologic and molecular profiles of CRCs gradually change along bowel subsites, and the prognostic implication of CIMP is different according to tumour location. PMID:23900220

  2. A Generic Software Architecture For Prognostics

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason

    2017-01-01

    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.

  3. Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules

    PubMed Central

    Zaytsev, Anatoly V.; Grishchuk, Ekaterina L.

    2015-01-01

    Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore–MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore–MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10−1–10−2 per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms. PMID:26424798

  4. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  5. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  6. Toward IVHM Prognostics

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin; Venti, Mike

    2007-01-01

    This viewgraph presentation reviews the prognostics of Integrated Vehicle Health Management. The contents include: 1) Aircraft Operations-Today's way of doing business; 2) Prognostics; 3) NASA's instrumentation data-system rack; 4) Data mining for IVHM; 5) NASA GRC's C-MAPSS generic engine model; and 6) Concluding thoughts.

  7. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.

    PubMed

    Tomé, Stéphanie; Manley, Kevin; Simard, Jodie P; Clark, Greg W; Slean, Meghan M; Swami, Meera; Shelbourne, Peggy F; Tillier, Elisabeth R M; Monckton, Darren G; Messer, Anne; Pearson, Christopher E

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of

  8. MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice

    PubMed Central

    Simard, Jodie P.; Clark, Greg W.; Slean, Meghan M.; Swami, Meera; Shelbourne, Peggy F.; Tillier, Elisabeth R. M.; Monckton, Darren G.; Messer, Anne; Pearson, Christopher E.

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of

  9. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    PubMed

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the

  10. Prognostic relevance of 20q13 gains in sporadic colorectal cancers: a FISH analysis.

    PubMed

    Aust, D E; Muders, M; Köhler, A; Schmidt, M; Diebold, J; Müller, C; Löhrs, U; Waldman, F M; Baretton, G B

    2004-08-01

    Amplification of 20q13 is a frequent chromosomal alteration in solid tumors and harbors a number of putative oncogenes (CAS/CSE1-L, NABC1, or Aurora2). Amplifications on 20q13 have been identified as an independent prognostic marker indicating worse survival in breast and ovarian cancer. However, little is known about the prognostic significance of 20q13 gains in sporadic colorectal cancers. The aim of this study was to correlate 20q13 gains in sporadic colorectal cancers with other known prognostic factors, tumor progression, and overall survival. Nuclei were extracted from 146 paraffin-embedded colorectal cancers of different UICC stages and used for fluorescence in situ hybridization (FISH) with a directly labeled probe for 20q13.2 (VYSIS). Signals were counted in 120 nuclei per sample. 20q13 was considered gained when > or =40% of the nuclei showed 3 or more FISH signals. Statistical correlations were tested with log-rank tests and Kaplan-Meier survival curves. Signal numbers for 20q13.2 were gained in 78 cases (53%). Cases with gains on 20q13.2 showed worse outcome than cases without: the gain of 20q13.2 was an independent prognostic marker for overall survival (P=0.006) as well as tumor progression (P=0.012) in univariate and multivariate analyses. Gains on 20q13.2 did not correlate with tumor stage. However, there was a significant association between 20q13.2 gains and tumor location in the left-sided colon and an inverse correlation between histologic grade and 20q13.2 gains. These data indicate that gains on 20q13.2 correlate with faster tumor progression and worse patient survival independent from tumor size and lymph node involvement. Therefore, alterations on 20q13 are an important biological event in colorectal tumor progression with independent prognostic relevance.

  11. Repetitive telomeric sequences in chromosomal translocations involving chromosome 21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Dallaire, L.; Fetni, R.

    Telomeres perform key functions in maintaining chromosome integrity. In some structural rearrangements the structure and polymorphism in human telomeres may play a significant role. However, of all the telomeric and subtelomeric sequences, only the terminal TTAGGG repeats are believed essential for telomere function. During the course of a study on the role of telomere structure and polymorphism in chromosomal rearrangements observed in families referred for prenatal diagnosis, we studied three cases in which chromosome 21 was involved. Repetitive TTAGGG sequences for all human chromosomes were used as probes (Oncor). Case 1, a de novo cryptic translocation (2;21) was initially identifiedmore » as monosomy 21 in a child with psychomotor delay and mild dysmorphism. Using a cosmid probe specific for region 21q22.3 and whole chromosome 21 specific painting probe, the long arm of 21 was found on the short arm of chromosome 2 with an interstitial telomere at the breakpoint junction. All the cells were monosomic for 21pter{yields}q21. Case 2 is a familial (19;21) translocation. GTG-banding and FISH with a satellite probe showed no apparent loss of material at the end of either 19q or 21q, with an interstitial telomere at the fusion site of the two intact chromosomes. In case 3, a four generation reciprocal (20;21) translocation, there was no interstitial telomere. The persistence of an interstitial telomere is a relatively rare event which can now be observed with in situ hybridization. Its study may lead to a better understanding of the dynamics of translocations and of chromosome imbalance.« less

  12. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  13. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.

    PubMed

    Chavez, Joselyn; Murillo-Maldonado, Juan Manuel; Bahena, Vanessa; Cruz, Ana Karina; Castañeda-Sortibrán, América; Rodriguez-Arnaiz, Rosario; Zurita, Mario; Valadez-Graham, Viviana

    2017-12-01

    Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

  14. Prognostic Comparison Between Mucinous and Nonmucinous Adenocarcinoma in Colorectal Cancer

    PubMed Central

    Park, Jong Seob; Huh, Jung Wook; Park, Yoon Ah; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong; Chun, Ho-Kyung

    2015-01-01

    Abstract Mucinous adenocarcinoma (MAC) is a histological subtype of colorectal cancer. The oncologic behavior of MAC differs from nonmucinous adenocarcinoma (non-MAC). Our aim in this study was to characterize patients with colorectal MAC through evaluation of a large, institutional-based cohort with long-term follow-up. A total of 6475 patients with stages I to III colorectal cancer who underwent radical surgery were enrolled from January 2000 to December 2010. Prognostic comparison between MAC (n = 274, 4.2%) and non-MAC was performed. The median follow-up period was 48.0 months. Patients with MAC were younger than those without MAC (P = 0.012) and had larger tumor size (P < 0.001), higher preoperative carcinoembryonic antigen (P < 0.001), higher pathologic T stage (P < 0.001), more right-sided colon cancer (49.3%, P < 0.001), and more frequent high-frequency microsatellite instability (10.2%, P < 0.001). Five-year disease-free survival (DFS) was 76.5% in the MAC group and 83.2% in the non-MAC group (P = 0.008), and 5-year overall survival was 81.4% versus 87.4%, respectively (P = 0.005). Mucinous histology (MAC vs non-MAC) in the entire cohort was not an independent prognostic factor of DFS but had a statistical tendency (P = 0.071). In subgroup analysis of colon cancer without rectal cancer, mucinous histology was an independent prognostic factor (P = 0.026). MAC was found at more advanced stage, located mainly at the right side and was an independent factor of survival in colon cancer. Because of the unique biological behavior of MAC, patients with MAC require special consideration during follow-up. PMID:25881840

  15. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    PubMed

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer's disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  16. Chromosome damage evolution after low and high LET irradiation

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    Ionizing radiation induces DNA and chromatin lesions which are converted to chromosome lesions detected in the first post-irradiation mitosis by classic cytogenetic techniques as chromosomal aberrations (CAs). These techniques allow to monitor also delayed aberrations observed after many cell generations post-irradiation - the manifestation of chromosomal instability phenotype (CIN). The problem discussed is how to predict time evolution from initial to delayed DNA/chromosome damage. To address this question, in the present work a mechanistic model of CIN is elaborated which integrates pathways of (*) DNA damage induction and its conversion to chromosome lesions (aberrations), (**) lesion transmission and generation through cell cycles. Delayed aberrations in subsequent cycles are formed in the model owing to two pathways, DNA damage generation de novo as well as CA transmission from previous cycles. DNA damage generation rate is assumed to consist of bystander and non-bystander components. Bystander signals impact all cells roughly equally, whereas non-bystander DSB generation rate differs for the descendants of unirradiated and irradiated cells. Monte Carlo simulation of processes underlying CIN allows to predict the time evolution of initial radiation-induced damage - kinetics curve for delayed unstable aberrations (dicentrics) together with dose response and RBE as a function of time after high vs low LET irradiation. The experimental data for radiation-induced CIN in TK6 lymphoblastoid cells and human lymphocytes irradiated with low (gamma) and high (Fe, C) LET radiation are analyzed on the basis of the proposed model. One of the conclusions is that without bystander signaling, just taking into account the initial DNA damage and non-bystander DSB generation, it is impossible to describe the available experimental data for high-LET-induced CIN. The exact contribution of bystander effects for high vs low LET remains unknown, but the relative contribution may be

  17. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M.

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which ismore » G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.« less

  18. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  19. Chromosome aberration analysis in atomic bomb survivors and Thorotrast patients using two- and three-colour chromosome painting of chromosomal subsets.

    PubMed

    Tanaka, K; Popp, S; Fischer, C; Van Kaick, G; Kamada, N; Cremer, T; Cremer, C

    1996-07-01

    Chromosomal translocations in peripheral lymphocytes of three healthy Hiroshima atomic (A)-bomb survivors, as well as three Thorotrast patients and two non-irradiated age-matched control persons from the German Thorotrast study were studied by two- and three-colour fluorescence in situ hybridization (chromosome painting) with various combinations of whole chromosome composite probes, including chromosomes 1, 2, 3, 4, 6, 7, 8, 9 and 12. Translocation frequencies detected by chromosome painting in cells of the A-bomb survivors were compared with results obtained by G-banding. A direct comparison was made, i.e. only those cells with simple translocations or complex aberrations detected by G-banding were taken into consideration which in principle could be detected also with the respective painting combination. The statistical analysis revealed no significant differences from a 1:1 relationship between the frequencies of aberrant cells obtained by both methods. The use of genomic translocation frequencies estimated from subsets of chromosomes for biological dosimetry is discussed in the light of evidence that chromosomes occupy distinct territories and are variably arranged in human lymphocyte nuclei. This territorial organization of interphase chromosomes implies that translocations will be restricted to chromatin located at the periphery of adjacent chromosome territories.

  20. Chromosome 13q deletion and IgH abnormalities may be both masked by near-tetraploidy in a high proportion of multiple myeloma patients: a combined morphology and I-FISH analysis.

    PubMed

    Koren-Michowitz, Maya; Hardan, Izhar; Berghoff, Janina; Yshoev, Galina; Amariglio, Ninette; Rechavi, Gideon; Nagler, Arnon; Trakhtenbrot, Luba

    2007-10-08

    Ploidy status and chromosomal aberrations involving chromosome 13q and the immunoglobulin heavy chain locus (IgH) are important prognostic features in multiple myeloma (MM). However, conventional cytogenetic studies are often not reveling and determination of plasma cells (PC) ploidy status in MM is technically difficult. We have used a combined cell morphology and interphase FISH (I-FISH) analysis in 184 consecutive BM samples from 136 MM patients for the diagnosis of chromosome 13q deletion [del (13q)] and IgH abnormalities. We have found a high prevalence (37%) of near-tetraploid (NT) PC in the BM samples studied. NT status of PC was verified with DNA index (DI) measurements. del (13q) was found in 69% and a total absence of one IgH copy (loss of IgH) in 20% of NT samples. We have shown that the presence of del (13q) and loss of IgH can be masked in NT cases: in 12 NT samples originally identified as normal for del (13q) the abnormality was obscured in the majority of plasma cells due to the presence of NT. Similarly, loss of IgH was masked in four samples with a large population of NT cells. Moreover, in one case the appearance of a 100% tetraploidy during disease progression masked the presence of del (13q), originally present, and could therefore falsely appear as disappearance of this prognostic marker. In conclusion, we have shown that a combination of three abnormalities, i.e., del (13q), loss of IgH and NT, all of potential prognostic significance, can be overlooked unless NT is specifically searched for and ruled out. Therefore, we suggest that a search for NT should be added to the routine BM assessment in MM patients.

  1. Variability in Estrogen-Metabolizing Genes and Their Association with Genomic Instability in Untreated Breast Cancer Patients and Healthy Women

    PubMed Central

    Alves dos Santos, Raquel; Teixeira, Ana Cláudia; Mayorano, Mônica Beatriz; Carrara, Hélio Humberto Angotti; Moreira de Andrade, Jurandyr; Takahashi, Catarina Satie

    2011-01-01

    In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups. PMID:21716904

  2. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer

    PubMed Central

    Kang, Rui; Xie, Yangchun; Zhang, Qiuhong; Hou, Wen; Jiang, Qingping; Zhu, Shan; Liu, Jinbao; Zeng, Dexing; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre;K-RasG12D/+;Hmgb1−/− mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in

  3. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  4. Prognostic grouping of metastatic prostate cancer using conventional pretreatment prognostic factors.

    PubMed

    Mikkola, Arto; Aro, Jussi; Rannikko, Sakari; Ruutu, Mirja

    2009-01-01

    To develop three prognostic groups for disease specific mortality based on the binary classified pretreatment variables age, haemoglobin concentration (Hb), erythrocyte sedimentation rate (ESR), alkaline phosphatase (ALP), prostate-specific antigen (PSA), plasma testosterone and estradiol level in hormonally treated patients with metastatic prostate cancer (PCa). The present study comprised 200 Finnprostate 6 study patients, but data on all variables were not known for every patient. The patients were divided into three prognostic risk groups (Rgs) using the prognostically best set of pretreatment variables. The best set was found by backward stepwise selection and the effect of every excluded variable on the binary classification cut-off points of the remaining variables was checked and corrected when needed. The best group of variables was ALP, PSA, ESR and age. All data were known in 142 patients. Patients were given one risk point each for ALP > 180 U/l (normal value 60-275 U/l), PSA > 35 microg/l, ESR > 80 mm/h and age < 60 years. Three risk groups were formed: Rg-a (0-1 risk points), Rg-b (2 risk points) and Rg-c (3-4 risk points). The risk of death from PCa increased statistically significantly with advancing prognostic group. Patients with metastatic PCa can be divided into three statistically significantly different prognostic risk groups for PCa-specific mortality by using the binary classified pretreatment variables ALP, PSA, ESR and age.

  5. Sex chromosome aneuploidies.

    PubMed

    Skuse, David; Printzlau, Frida; Wolstencroft, Jeanne

    2018-01-01

    Sex chromosome aneuploidies comprise a relatively common group of chromosome disorders characterized by the loss or gain of one or more sex chromosomes. We discuss five of the better-known sex aneuploidies: Turner syndrome (XO), Klinefelter syndrome (XXY), trisomy X (XXX), XYY, and XXYY. Despite their prevalence in the general population, these disorders are underdiagnosed and the specific genetic mechanisms underlying their phenotypes are poorly understood. Although there is considerable variation between them in terms of associated functional impairment, each disorder has a characteristic physical, cognitive, and neurologic profile. The most common cause of sex chromosome aneuploidies is nondisjunction, which can occur during meiosis or during the early stages of postzygotic development. The loss or gain of genetic material can affect all daughter cells or it may be partial, leading to tissue mosaicism. In both typical and atypical sex chromosome karyotypes, there is random inactivation of all but one X chromosome. The mechanisms by which a phenotype results from sex chromosome aneuploidies are twofold: dosage imbalance arising from a small number of genes that escape inactivation, and their endocrinologic consequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    PubMed

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  7. aCGH Local Copy Number Aberrations Associated with Overall Copy Number Genomic Instability in Colorectal Cancer: Coordinate Involvement of the Regions Including BCR and ABL

    PubMed Central

    Bartos, Jeremy D.; Gaile, Daniel P.; McQuaid, Devin E.; Conroy, Jeffrey M.; Darbary, Huferesh; Nowak, Norma J.; Block, Annemarie; Petrelli, Nicholas J.; Mittelman, Arnold; Stoler, Daniel L.; Anderson, Garth R.

    2007-01-01

    In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene Another region spanning 22q11–13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome Coordinate 22q11–13 alterations were observed in nine of eleven tumors with the 9q34 alteration Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1–31.3 were found associated with this instability only in tumors from patients with a smoking history Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor’s overall level of copy number aberrations Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas. PMID:17196995

  8. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  9. Spontaneous Transformation of Murine Epithelial Cells Requires the Early Acquisition of Specific Chromosomal Aneuploidies and Genomic Imbalances

    PubMed Central

    Padilla-Nash, Hesed M.; Hathcock, Karen; McNeil, Nicole E.; Mack, David; Hoeppner, Daniel; Ravin, Rea; Knutsen, Turid; Yonescu, Raluca; Wangsa, Danny; Dorritie, Kathleen; Barenboim, Linda; Hu, Yue; Ried, Thomas

    2011-01-01

    Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, bi-nucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors upon injection into immuno-compromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process. PMID:22161874

  10. Mitotic Spindle Defects and Chromosome Mis-Segregation Induced by LDL/Cholesterol—Implications for Niemann-Pick C1, Alzheimer’s Disease, and Atherosclerosis

    PubMed Central

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer’s disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy–in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis’ first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol’s aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  11. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  12. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Moorman, Anthony V.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A (MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes - ABL1, ABL2, PDGFRB, CSF1R, CRLF2, JAK2 and EPOR. In vitro and in vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL. PMID:27033238

  13. Aneuploid progeny of the American oyster, Crassostrea virginica, produced by tetraploid × diploid crosses: another example of chromosome instability in polyploid oysters.

    PubMed

    de Sousa, Joana Teixeira; Allen, Standish K; Baker, Haley; Matt, Joseph L

    2016-05-01

    The commercial production of triploids, and the creation of tetraploid broodstock to support it, has become an important technique in aquaculture of the eastern oyster, Crassostrea virginica. Tetraploids are produced by cytogenetic manipulation of embryos and have been shown to undergo chromosome loss (to become a mosaic) with unknown consequences for breeding. Our objective was to determine the extent of aneuploidy in triploid progeny produced from both mosaic and non-mosaic tetraploids. Six families of triploids were produced using a single diploid female and crossed with three mosaic and non-mosaic tetraploid male oysters. A second set of crosses was performed with the reciprocals. Chromosome counts of the resultant embryos were tallied at 2-4 cell stage and as 6-hour(h)-old embryos. A significant level of aneuploidy was observed in 6-h-old embryos. For crosses using tetraploid males, aneuploidy ranged from 53% to 77% of observed metaphases, compared to 36% in the diploid control. For crosses using tetraploid females, 51%-71% of metaphases were aneuploidy versus 53% in the diploid control. We conclude that somatic chromosome loss may be a regular feature of early development in triploids, and perhaps polyploid oysters in general. Other aspects of chromosome loss in polyploid oysters are also discussed.

  14. Vibrio chromosomes share common history.

    PubMed

    Kirkup, Benjamin C; Chang, LeeAnn; Chang, Sarah; Gevers, Dirk; Polz, Martin F

    2010-05-10

    While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA) for one chromosome to be applied equally to both chromosomes.

  15. Stable chromosome condensation revealed by chromosome conformation capture

    PubMed Central

    Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.

    2015-01-01

    SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  16. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    PubMed

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  17. Instability timescale for the inclination instability in the solar system

    NASA Astrophysics Data System (ADS)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  18. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae.

    PubMed Central

    Basrai, M A; Kingsbury, J; Koshland, D; Spencer, F; Hieter, P

    1996-01-01

    A chromosome transmission fidelity (ctf) mutant, s138, of Saccharomyces cerevisiae was identified by its centromere (CEN) transcriptional readthrough phenotype, suggesting perturbed kinetochore integrity in vivo. The gene complementing the s138 mutation was found to be identical to the S. cerevisiae SPT4 gene. The s138 mutation is a missense mutation in the second of four conserved cysteine residues positioned similarly to those of zinc finger proteins, and we henceforth refer to the mutation of spt4-138. Both spt4-138 and spt4 delta strains missegregate a chromosome fragment at the permissive temperature, are temperature sensitive for growth at 37 degrees C, and upon a shift to the nonpermissive temperature show an accumulation of large budded cells, each with a nucleus. Previous studies suggest that Spt4p functions in a complex with Spt5p and Spt6p, and we determined that spt6-140 also causes missegregation of a chromosome fragment. Double mutants carrying spt4 delta 2::HIS3 and kinetochore mutation ndc10-42 or ctf13-30 show a synthetic conditional phenotype. Both spt4-138 and spt4 delta strains exhibit synergistic chromosome instability in combination with CEN DNA mutations and show in vitro defects in microtubule binding to minichromosomes. These results indicate that Spt4p plays a role in chromosome segregation. The results of in vivo genetic interactions with mutations in kinetochore proteins and CEN DNA and of in vitro biochemical assays suggest that Spt4p is important for kinetochore function. PMID:8649393

  19. A Distributed Approach to System-Level Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, Indranil

    2012-01-01

    Prognostics, which deals with predicting remaining useful life of components, subsystems, and systems, is a key technology for systems health management that leads to improved safety and reliability with reduced costs. The prognostics problem is often approached from a component-centric view. However, in most cases, it is not specifically component lifetimes that are important, but, rather, the lifetimes of the systems in which these components reside. The system-level prognostics problem can be quite difficult due to the increased scale and scope of the prognostics problem and the relative Jack of scalability and efficiency of typical prognostics approaches. In order to address these is ues, we develop a distributed solution to the system-level prognostics problem, based on the concept of structural model decomposition. The system model is decomposed into independent submodels. Independent local prognostics subproblems are then formed based on these local submodels, resul ting in a scalable, efficient, and flexible distributed approach to the system-level prognostics problem. We provide a formulation of the system-level prognostics problem and demonstrate the approach on a four-wheeled rover simulation testbed. The results show that the system-level prognostics problem can be accurately and efficiently solved in a distributed fashion.

  20. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  1. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells

    PubMed Central

    Marullo, Rossella; Werner, Erica; Zhang, Hongzheng; Chen, Georgia Z.; Shin, Dong M.; Doetsch, Paul W.

    2015-01-01

    Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity. PMID:26354779

  2. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    USDA-ARS?s Scientific Manuscript database

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  3. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Hobza, Roman; Feltus, F Alex; Wang, Xiue; Jin, Weiwei; Skelton, Rachel L; Blas, Andrea; Lemke, Cornelia; Saw, Jimmy H; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Vyskot, Boris; Ming, Ray

    2007-08-01

    Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya's small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants.

  4. Generic Software Architecture for Prognostics (GSAP) User Guide

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher Allen; Daigle, Matthew John; Watkins, Jason; Sankararaman, Shankar; Goebel, Kai

    2016-01-01

    The Generic Software Architecture for Prognostics (GSAP) is a framework for applying prognostics. It makes applying prognostics easier by implementing many of the common elements across prognostic applications. The standard interface enables reuse of prognostic algorithms and models across systems using the GSAP framework.

  5. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    PubMed

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  6. Distilling the Verification Process for Prognostics Algorithms

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai

    2013-01-01

    The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.

  7. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C- and diethylstilboestrol-induced micronuclei.

    PubMed

    Fauth, E; Scherthan, H; Zankl, H

    2000-11-01

    Cultures of human blood lymphocytes from three subjects were incubated with the clastogen mitomycin C (MMC, 500 ng/ml) and the aneugen diethylstilboestrol (DES, 80 microM) 23 h before harvesting, to induce formation of micronuclei (MN) and numerical and structural alterations in metaphase chromosomes. We used fluorescence in situ hybridization (FISH) with painting probes for all human chromosomes to determine which chromosomes had contributed material to the induced MN. MMC treatment induced an approximately 18-fold increase in MN and led to a significant increase in hypodiploidy and structural chromosome aberrations in metaphase preparations. Undercondensation of pericentromeric heterochromatin of chromosomes 9 and 1 occurred in 20-75% of metaphases and FISH disclosed an abundance of material from these chromosomes in induced MN (62-69% from chromosome 9 and 7-12% from chromosome 1). DES treatment of lymphocytes induced a seven-fold increase in MN frequency and four-fold increase in the frequency of numerical aberrations; structural aberrations were not significantly increased. FISH analysis showed that material from all chromosomes was present in DES-induced MN, with material from chromosome 1 present in 16% of MN and material from each other chromosomes being present in 2-10% of MN. Material from chromosomes 14, 19 and 21 was significantly more frequent material from chromosome Y significantly less frequent in DES-treated cells than in controls. The findings of the MMC studies indicate that the heterochromatin block of chromosome 9 is a specific target for MMC-induced undercondensation, which induces a preferential occurrence of chromosome 9 material in MN. DES, in contrast, does not trigger heterochromatin decondensation and fails to induce such a significant appearance of material of particular chromosomes in MN.

  8. Modeling Chromosomes

    ERIC Educational Resources Information Center

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  9. Disappearance of enlarged nuchal translucency before 14 weeks' gestation: relationship with chromosomal abnormalities and pregnancy outcome.

    PubMed

    Müller, M A; Pajkrt, E; Bleker, O P; Bonsel, G J; Bilardo, C M

    2004-08-01

    The aim of this study was to investigate the natural course of enlarged nuchal translucency (NT) and to determine if its disappearance before 14 weeks' gestation is a favorable prognostic sign in relation to fetal karyotype and pregnancy outcome. A total of 147 women with increased NT (> 95th centile) at first measurement were included in this study. A second measurement was performed in all cases, at an interval of at least 2 days. Both measurements were taken between 10 + 3 and 14 + 0 weeks. All women underwent chorionic villus sampling or amniocentesis for subsequent karyotyping. In those women with a normal karyotype, a fetal anomaly scan was performed at 20 weeks' gestation. Pregnancy outcome was recorded in all cases. The finding of persistent or disappearing NT enlargement was analyzed in relation to fetal karyotype and pregnancy outcome. Of the 147 paired measurements, NT remained enlarged at the second measurement in 121 (82%) cases. An abnormal karyotype was found in 35% of these cases. In 26 (18%) fetuses the NT measurement was found to be below the 95th percentile at the second measurement and in only two of them an abnormal karyotype was found (8%). In the 103 chromosomally normal fetuses an adverse outcome (i.e. fetal loss or structural defects) was recorded in 22 fetuses with persistent enlargement (28%) and in four fetuses with disappearing enlargement (17%). Disappearance of an enlarged NT before 14 weeks' gestation is not a rare phenomenon and seems to be a favorable prognostic sign with respect to fetal karyotype. Overall, no significant difference in pregnancy outcome was found between chromosomally normal fetuses with persisting or disappearing NT enlargement. Copyright 2004 ISUOG

  10. Collective instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  11. Capturing Chromosome Conformation

    NASA Astrophysics Data System (ADS)

    Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy

    2002-02-01

    We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

  12. Evaluating biomarkers for prognostic enrichment of clinical trials.

    PubMed

    Kerr, Kathleen F; Roth, Jeremy; Zhu, Kehao; Thiessen-Philbrook, Heather; Meisner, Allison; Wilson, Francis Perry; Coca, Steven; Parikh, Chirag R

    2017-12-01

    A potential use of biomarkers is to assist in prognostic enrichment of clinical trials, where only patients at relatively higher risk for an outcome of interest are eligible for the trial. We investigated methods for evaluating biomarkers for prognostic enrichment. We identified five key considerations when considering a biomarker and a screening threshold for prognostic enrichment: (1) clinical trial sample size, (2) calendar time to enroll the trial, (3) total patient screening costs and the total per-patient trial costs, (4) generalizability of trial results, and (5) ethical evaluation of trial eligibility criteria. Items (1)-(3) are amenable to quantitative analysis. We developed the Biomarker Prognostic Enrichment Tool for evaluating biomarkers for prognostic enrichment at varying levels of screening stringency. We demonstrate that both modestly prognostic and strongly prognostic biomarkers can improve trial metrics using Biomarker Prognostic Enrichment Tool. Biomarker Prognostic Enrichment Tool is available as a webtool at http://prognosticenrichment.com and as a package for the R statistical computing platform. In some clinical settings, even biomarkers with modest prognostic performance can be useful for prognostic enrichment. In addition to the quantitative analysis provided by Biomarker Prognostic Enrichment Tool, investigators must consider the generalizability of trial results and evaluate the ethics of trial eligibility criteria.

  13. [Shoulder instability].

    PubMed

    Sailer, J; Imhof, H

    2004-06-01

    Shoulder instability is a common clinical feature leading to recurrent pain and limited range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging.

  14. Structural maintenance of chromosome complexes differentially compact mitotic chromosomes according to genomic context

    PubMed Central

    Schalbetter, S. A.; Goloborodko, A.; Fudenberg, G.; Belton, J.-M.; Miles, C.; Yu, M.; Dekker, J.; Mirny, L.; Baxter, J.

    2017-01-01

    Structural Maintenance of Chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modeling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids whilst condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes. PMID:28825700

  15. Fragile DNA Motifs Trigger Mutagenesis at Distant Chromosomal Loci in Saccharomyces cerevisiae

    PubMed Central

    Saini, Natalie; Zhang, Yu; Nishida, Yuri; Sheng, Ziwei; Choudhury, Shilpa; Mieczkowski, Piotr; Lobachev, Kirill S.

    2013-01-01

    DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes. PMID:23785298

  16. Improving the Prognostic Ability through Better Use of Standard Clinical Data - The Nottingham Prognostic Index as an Example

    PubMed Central

    Winzer, Klaus-Jürgen; Buchholz, Anika; Schumacher, Martin; Sauerbrei, Willi

    2016-01-01

    Background Prognostic factors and prognostic models play a key role in medical research and patient management. The Nottingham Prognostic Index (NPI) is a well-established prognostic classification scheme for patients with breast cancer. In a very simple way, it combines the information from tumor size, lymph node stage and tumor grade. For the resulting index cutpoints are proposed to classify it into three to six groups with different prognosis. As not all prognostic information from the three and other standard factors is used, we will consider improvement of the prognostic ability using suitable analysis approaches. Methods and Findings Reanalyzing overall survival data of 1560 patients from a clinical database by using multivariable fractional polynomials and further modern statistical methods we illustrate suitable multivariable modelling and methods to derive and assess the prognostic ability of an index. Using a REMARK type profile we summarize relevant steps of the analysis. Adding the information from hormonal receptor status and using the full information from the three NPI components, specifically concerning the number of positive lymph nodes, an extended NPI with improved prognostic ability is derived. Conclusions The prognostic ability of even one of the best established prognostic index in medicine can be improved by using suitable statistical methodology to extract the full information from standard clinical data. This extended version of the NPI can serve as a benchmark to assess the added value of new information, ranging from a new single clinical marker to a derived index from omics data. An established benchmark would also help to harmonize the statistical analyses of such studies and protect against the propagation of many false promises concerning the prognostic value of new measurements. Statistical methods used are generally available and can be used for similar analyses in other diseases. PMID:26938061

  17. PinX1 is recruited to the mitotic chromosome periphery by Nucleolin and facilitates chromosome congression.

    PubMed

    Li, Na; Yuan, Kai; Yan, Feng; Huo, Yuda; Zhu, Tongge; Liu, Xing; Guo, Zhen; Yao, Xuebiao

    2009-06-19

    Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.

  18. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability

    PubMed Central

    Germann, Susanne M.; Schramke, Vera; Pedersen, Rune Troelsgaard; Gallina, Irene; Eckert-Boulet, Nadine; Oestergaard, Vibe H.

    2014-01-01

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination. PMID:24379413

  19. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability.

    PubMed

    Germann, Susanne M; Schramke, Vera; Pedersen, Rune Troelsgaard; Gallina, Irene; Eckert-Boulet, Nadine; Oestergaard, Vibe H; Lisby, Michael

    2014-01-06

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.

  20. High Myeloperoxidase Positive Cell Infiltration in Colorectal Cancer Is an Independent Favorable Prognostic Factor

    PubMed Central

    Eppenberger-Castori, Serenella; Zlobec, Inti; Viehl, Carsten T.; Frey, Daniel M.; Nebiker, Christian A.; Rosso, Raffaele; Zuber, Markus; Amicarella, Francesca; Iezzi, Giandomenica; Sconocchia, Giuseppe; Heberer, Michael; Lugli, Alessandro; Tornillo, Luigi; Oertli, Daniel

    2013-01-01

    Background Colorectal cancer (CRC) infiltration by adaptive immune system cells correlates with favorable prognosis. The role of the innate immune system is still debated. Here we addressed the prognostic impact of CRC infiltration by neutrophil granulocytes (NG). Methods A TMA including healthy mucosa and clinically annotated CRC specimens (n = 1491) was stained with MPO and CD15 specific antibodies. MPO+ and CD15+ positive immune cells were counted by three independent observers. Phenotypic profiles of CRC infiltrating MPO+ and CD15+ cells were validated by flow cytometry on cell suspensions derived from enzymatically digested surgical specimens. Survival analysis was performed by splitting randomized data in training and validation subsets. Results MPO+ and CD15+ cell infiltration were significantly correlated (p<0.0001; r = 0.76). However, only high density of MPO+ cell infiltration was associated with significantly improved survival in training (P = 0.038) and validation (P = 0.002) sets. In multivariate analysis including T and N stage, vascular invasion, tumor border configuration and microsatellite instability status, MPO+ cell infiltration proved an independent prognostic marker overall (P = 0.004; HR = 0.65; CI:±0.15) and in both training (P = 0.048) and validation (P = 0.036) sets. Flow-cytometry analysis of CRC cell suspensions derived from clinical specimens showed that while MPO+ cells were largely CD15+/CD66b+, sizeable percentages of CD15+ and CD66b+ cells were MPO−. Conclusions High density MPO+ cell infiltration is a novel independent favorable prognostic factor in CRC. PMID:23734221

  1. Chromosomal homologies among vampire bats revealed by chromosome painting (phyllostomidae, chiroptera).

    PubMed

    Sotero-Caio, C G; Pieczarka, J C; Nagamachi, C Y; Gomes, A J B; Lira, T C; O'Brien, P C M; Ferguson-Smith, M A; Souza, M J; Santos, N

    2011-01-01

    Substantial effort has been made to elucidate karyotypic evolution of phyllostomid bats, mostly through comparisons of G-banding patterns. However, due to the limited number of G-bands in respective karyotypes and to the similarity of non-homologous bands, an accurate evolutionary history of chromosome segments remains questionable. This is the case for vampire bats (Desmodontinae). Despite several proposed homologies, banding data have not yet provided a detailed understanding of the chromosomal changes within vampire genera. We examined karyotype differentiation of the 3 species within this subfamily using whole chromosomal probes from Phyllostomus hastatus (Phyllostominae) and Carollia brevicauda (Carolliinae). Painting probes of P. hastatus respectively detected 22, 21 and 23 conserved segments in Diphylla ecaudata, Diaemus youngi, and Desmodus rotundus karyotypes, whereas 27, 27 and 28 were respectively detectedwith C. brevicauda paints. Based on the evolutionary relationships proposed by morphological and molecular data, we present probable chromosomal synapomorphies for vampire bats and propose chromosomes that were present in the common ancestor of the 5 genera analyzed. Karyotype comparisons allowed us to relate a number of conserved chromosomal segments among the 5 species, providing a broader database for understanding karyotype evolution in the family. 2010 S. Karger AG, Basel.

  2. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    PubMed Central

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143

  3. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration

    PubMed Central

    Bachtrog, Doris

    2014-01-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112

  4. Posterior Shoulder Instability

    PubMed Central

    Antosh, Ivan J.; Tokish, John M.; Owens, Brett D.

    2016-01-01

    Context: Posterior shoulder instability has become more frequently recognized and treated as a unique subset of shoulder instability, especially in the military. Posterior shoulder pathology may be more difficult to accurately diagnose than its anterior counterpart, and commonly, patients present with complaints of pain rather than instability. “Posterior instability” may encompass both dislocation and subluxation, and the most common presentation is recurrent posterior subluxation. Arthroscopic and open treatment techniques have improved as understanding of posterior shoulder instability has evolved. Evidence Acquisition: Electronic databases including PubMed and MEDLINE were queried for articles relating to posterior shoulder instability. Study Design: Clinical review. Level of Evidence: Level 4. Results: In low-demand patients, nonoperative treatment of posterior shoulder instability should be considered a first line of treatment and is typically successful. Conservative treatment, however, is commonly unsuccessful in active patients, such as military members. Those patients with persistent shoulder pain, instability, or functional limitations after a trial of conservative treatment may be considered surgical candidates. Arthroscopic posterior shoulder stabilization has demonstrated excellent clinical outcomes, high patient satisfaction, and low complication rates. Advanced techniques may be required in select cases to address bone loss, glenoid dysplasia, or revision. Conclusion: Posterior instability represents about 10% of shoulder instability and has become increasingly recognized and treated in military members. Nonoperative treatment is commonly unsuccessful in active patients, and surgical stabilization can be considered in patients who do not respond. Isolated posterior labral repairs constitute up to 24% of operatively treated labral repairs in a military population. Arthroscopic posterior stabilization is typically considered as first-line surgical

  5. MDS/AML del(11)(q14) Share Common Morphological Features Despite Different Chromosomal Breakpoints.

    PubMed

    Dambruoso, Irene; Invernizzi, Rosangela; Boni, Marina; Zappatore, Rita; Giardini, Ilaria; Cavigliano, Maria Paola; Rocca, Barbara; Calvello, Celeste; Bastia, Raffaella; Caresana, Marilena; Pasi, Francesca; Nano, Rosanna; Bernasconi, Paolo

    2017-02-01

    In myelodysplatic syndromes and acute myeloid leukemia (MDS/AML) deletion of the 11q14 region is a rare chromosomal defect (incidence: 0.6-1.0%), included within the intermediate risk criteria by the International Prognostic Scoring System. No fluorescence in situ hybridization (FISH) study has yet been performed to identify a common breakpoint region (CBR). In our study through FISH with bacterial artificial chromosomes and commercial probes, we analyzed seven patients with MDS/AML harboring 11q14 deletion on conventional cytogenetic analysis. FISH revealed deletions in five patients and amplifications in two. Three patients with deletion carried a CBR, two had a deletion involving a more centromeric breakpoint. These five patients exhibited multilineage dysplasia, blast cells with large round nuclei, loose chromatin, small and abundant nucleoli, and vacuolated cytoplasm with very thin Auer bodies. In conclusion, the morphological features which occur independently of the extent of the deletion are of multilineage dysplasia in MDS and leukemic blasts strongly reactive to peroxidase in AML; despite the variable size of the deleted area, some patients harbor a CBR. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. The X chromosome in space.

    PubMed

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  7. DNA content analysis of colorectal cancer defines a distinct ‘microsatellite and chromosome stable’ group but does not predict response to radiotherapy

    PubMed Central

    Fadhil, Wakkas; Kindle, Karin; Jackson, Darryl; Zaitoun, Abed; Lane, Nina; Robins, Adrian; Ilyas, Mohammad

    2014-01-01

    Colorectal cancers (CRC) are thought to have genetic instability in the form of either microsatellite instability (MSI) or chromosomal instability (CIN). Recently, tumours have been described without either MSI or CIN, that is, microsatellite and chromosome stable (MACS) CRCs. We investigated the (i) frequency of the MACS-CRCs and (ii) whether this genotype predicted responsiveness to neoadjuvant chemoradiotherapy. To examine the frequency of MACS-CRCs, DNA content (ploidy) was examined in 89 sporadic microsatellite-stable CRCs using flow cytometry. The tumours were also screened for mutations in KRAS/BRAF/TP53/PIK3CA by QMC-PCR. To examine the value of tumour ploidy in predicting response to chemoradiotherapy, DNA content was tested in a separate group of 62 rectal cancers treated with neoadjuvant chemoradiotherapy. Fifty-one of 89 CRCs (57%) were aneuploid and 38 (43%) were diploid. There was no significant association between mutations in TP53/KRAS/BRAF/PIK3CA and ploidy. Testing of association between mutations revealed only mutual exclusivity of KRAS/BRAF mutation (P < 0.001). Of the 62 rectal cancers treated with neoadjuvant chemoradiotherapy, 22 had responded (Mandard tumour regression grade 1/2) and 40 failed to respond (Grade 3–5). Twenty-five of 62 (40%) tumours were diploid, but there was no association between ploidy and response to therapy. We conclude that MACS-CRCs form a significant proportion of microsatellite-stable CRCs with a mutation profile overlapping that of CRCs with CIN. A diploid genotype does not, however, predict the responsiveness to radiotherapy. PMID:24456329

  8. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  9. Studies on metatherian sex chromosomes. IX. Sex chromosomes of the greater glider (Marsupialia: Petauridae).

    PubMed

    Murray, J D; McKay, G M; Sharman, G B

    1979-06-01

    The greater glider, currently but incorrectly known as Schoinobates volans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY males as in all other populations, and one with XY1Y2 males. Y or Y1, but not Y2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary spermatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes.

  10. Ring chromosome 10: report on two patients and review of the literature.

    PubMed

    Guilherme, Roberta Santos; Kim, Chong Ae; Alonso, Luis Garcia; Honjo, Rachel S; Meloni, Vera Ayres; Christofolini, Denise Maria; Kulikowski, Leslie Domenici; Melaragno, Maria Isabel

    2013-02-01

    Ring chromosome 10--r(10)--is a rare disorder, with 14 cases reported in the literature, but only two with breakpoint determination by high-resolution techniques. We report here on two patients presenting a ring chromosome 10, studied by G-banding, fluorescent in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and SNP-array techniques, in order to investigate ring instability and determine breakpoints. Patient 1 showed a r(10)(p15.3q26.2) with a 7.9 Mb deletion in 10q26.2-q26.2, while patient 2 showed a r(10)(p15.3q26.13) with a 1.0 Mb deletion in 10p15.3 and a 8.8 Mb deletion in 10q26.13-q26.3, both unstable. While patient 1 presented with clinical features usually found in patients with r(10) and terminal 10q deletion, patient 2 presented characteristics so far not described in other patients with r(10), such as Dandy-Walker variant, osteopenia, semi-flexed legs, and dermal pigmentation regions. Our data and the data from literature show that there are no specific clinical findings to define a r(10) syndrome.

  11. B-chromosome systems in the greater glider (Petauroides volans volans) (Marsupialia:Petauridae). I. B-chromosome distribution.

    PubMed

    McQuade, L R

    1985-01-01

    Variations in diploid chromosome number, due to the presence of B chromosomes, are found within the distribution of P. v. volans. B chromosomes vary in number between one and eight per animal, are mitotically stable in various body tissues and, unlike the Y chromosome in male P. v. volans, are not eliminated from bone marrow cells. Animals possessing B chromosomes have a distinct distribution, and it appears that a stable equilibrium between the forces of B chromosome accumulation or elimination is operating in those populations possessing these chromosomes.

  12. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro

    PubMed Central

    Williams, Jonathan D.; Fleetwood, Sara; Berroyer, Alexandra; Kim, Nayun; Larson, Erik D.

    2015-01-01

    The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination. PMID:26029241

  13. Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina.

    PubMed

    Gonzalo, Susana; Kreienkamp, Ray

    2016-01-01

    The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.

  14. Distributed Prognostic Health Management with Gaussian Process Regression

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Saha, Bhaskar; Saxena, Abhinav; Goebel, Kai Frank

    2010-01-01

    Distributed prognostics architecture design is an enabling step for efficient implementation of health management systems. A major challenge encountered in such design is formulation of optimal distributed prognostics algorithms. In this paper. we present a distributed GPR based prognostics algorithm whose target platform is a wireless sensor network. In addition to challenges encountered in a distributed implementation, a wireless network poses constraints on communication patterns, thereby making the problem more challenging. The prognostics application that was used to demonstrate our new algorithms is battery prognostics. In order to present trade-offs within different prognostic approaches, we present comparison with the distributed implementation of a particle filter based prognostics for the same battery data.

  15. Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells.

    PubMed

    Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie

    2015-05-12

    Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.

  16. Chromosomal evolution among leaf-nosed nectarivorous bats--evidence from cross-species chromosome painting (Phyllostomidae, Chiroptera).

    PubMed

    Sotero-Caio, Cibele G; Volleth, Marianne; Gollahon, Lauren S; Fu, Beiyuan; Cheng, William; Ng, Bee L; Yang, Fengtang; Baker, Robert J

    2013-12-26

    New World leaf-nosed bats, Phyllostomidae, represent a lineage of Chiroptera marked by unprecedented morphological/ecological diversity and extensive intergeneric chromosomal reorganization. There are still disagreements regarding their systematic relationships due to morphological convergence among some groups. Their history of karyotypic evolution also remains to be documented. To better understand the evolutionary relationships within Phyllostomidae, we developed chromosome paints from the bat species Macrotus californicus. We tested the potential of these paints as phylogenetic tools by looking for chromosomal signatures in two lineages of nectarivorous phyllostomids whose independent origins have been statistically supported by molecular phylogenies. By examining the chromosomal homologies defined by chromosome painting among two representatives of the subfamily Glossophaginae (Glossophaga soricina and Anoura cultrata) and one species from the subfamily Lonchophyllinae (Lonchophylla concava), we found chromosomal correspondence in regions not previously detected by other comparative cytogenetic techniques. We proposed the corresponding human chromosomal segments for chromosomes of the investigated species and found two syntenic associations shared by G. soricina and A. cultrata. Comparative painting with whole chromosome-specific paints of M. californicus demonstrates an extensive chromosomal reorganization within the two lineages of nectarivorous phyllostomids, with a large number of chromosomes shared between M. californicus and G. soricina. We show that the evolution of nectar-feeding bats occurs mainly by reshuffling of chiropteran Evolutionarily Conserved Units (ECUs). Robertsonian fusions/fissions and inversions seem to be important modifiers of phyllostomid karyotypes, and autapomorphic character states are common within species. Macrotus californicus chromosome paints will be a valuable tool for documenting the pattern of karyotypic evolution within

  17. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting.

    PubMed

    Pokorná, Martina; Giovannotti, Massimo; Kratochvíl, Lukáš; Caputo, Vincenzo; Olmo, Ettore; Ferguson-Smith, Malcolm A; Rens, Willem

    2012-08-01

    In contrast to mammals, birds exhibit a slow rate of chromosomal evolution. It is not clear whether high chromosome conservation is an evolutionary novelty of birds or was inherited from an earlier avian ancestor. The evolutionary conservatism of macrochromosomes between birds and turtles supports the latter possibility; however, the rate of chromosomal evolution is largely unknown in other sauropsids. In squamates, we previously reported strong conservatism of the chromosomes syntenic with the avian Z, which could reflect a peculiarity of this part of the genome. The chromosome 1 of iguanians and snakes is largely syntenic with chromosomes 3, 5 and 7 of the avian ancestral karyotype. In this project, we used comparative chromosome painting to determine how widely this synteny is conserved across nine families covering most of the main lineages of Squamata. The results suggest that the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to at least the early Jurassic and could be an ancestral characteristic for Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and Scinciformata). In Squamata chromosome conservatism therefore also holds for the parts of the genome which are homologous to bird autosomes, and following on from this, a slow rate of chromosomal evolution could be a common characteristic of all sauropsids. The large evolutionary stasis in chromosome organization in birds therefore seems to be inherited from their ancestors, and it is particularly striking in comparison with mammals, probably the only major tetrapod lineage with an increased rate of chromosomal rearrangements as a whole.

  18. Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?

    PubMed Central

    Nora, Elphège P; Dekker, Job; Heard, Edith

    2013-01-01

    We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied. PMID:23832846

  19. Chromosomal Flexibility

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Scientists have shown that a genetic element on one chromosome may direct gene activity on another. Howard Hughes Medical Institute (HHMI) researchers report that a multitasking master-control region appears to over-see both a set of its own genes and a related gene on a nearby chromosome. The findings reinforce the growing importance of location…

  20. Shoulder Instability

    MedlinePlus

    ... as bad as the pain of a sudden injury. Your shoulder might be sore when you move it. It ... Treatment How is shoulder instability treated? Treatment for shoulder instability depends on how bad your injury is and how important it is for you ...

  1. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1993-01-01

    The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  2. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?

    PubMed

    Nora, Elphège P; Dekker, Job; Heard, Edith

    2013-09-01

    We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.

  3. X-Chromosome dosage compensation.

    PubMed

    Meyer, Barbara J

    2005-06-25

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  4. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System.

    PubMed

    Santaguida, Stefano; Richardson, Amelia; Iyer, Divya Ramalingam; M'Saad, Ons; Zasadil, Lauren; Knouse, Kristin A; Wong, Yao Liang; Rhind, Nicholas; Desai, Arshad; Amon, Angelika

    2017-06-19

    Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mitotic chromosome condensation in vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in themore » localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  6. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  7. Origin of the chromosomal radiation of Madeiran house mice: a microsatellite analysis of metacentric chromosomes

    PubMed Central

    Förster, D W; Mathias, M L; Britton-Davidian, J; Searle, J B

    2013-01-01

    Chromosome races of Mus musculus domesticus are characterised by particular sets of metacentric chromosomes formed by Robertsonian fusions and whole-arm reciprocal translocations. The Atlantic island of Madeira is inhabited by six chromosome races of house mice with 6–9 pairs of metacentric chromosomes. Three of these races are characterised by the metacentric 3.8 also found elsewhere in the distribution of M. m. domesticus, including Denmark and Spain. We investigated the possibility that metacentric 3.8 was introduced to Madeira during the initial colonisation, as this could have ‘seeded' the cascade of chromosomal mutation that is the basis of the extraordinary chromosomal radiation observed on the island. Variation at 24 microsatellite loci mapping to three different chromosomal regions (proximal, interstitial and distal) of mouse chromosomes 3 and 8 was investigated in 179 mice from Madeira, Denmark, Portugal, Spain, Italy and Scotland. Analyses of microsatellite loci closely linked to the centromeres of these chromosomes (‘proximal loci') do not support a common evolutionary origin of metacentric 3.8 among Madeiran, Danish and Spanish mouse populations. Our results suggest that Madeiran mice are genetically more similar to standard karyotype mice from Portugal than to metacentric mice from elsewhere. There is expected to be an interruption to gene flow between hybridising metacentric races on Madeira, particularly in the chromosomal regions close to the rearrangement breakpoints. Consistent with this, relating to differentiation involving chromosomes 3 and 8 on Madeira, we found greater genetic structure among races for proximal than interstitial or distal loci. PMID:23232832

  8. Chromosome Disorder Outreach

    MedlinePlus

    ... Chromosome Disorder Outreach, Inc is a non-profit organization. Founded, supported, and run by parents just like ... Chromosome Disorder Outreach, Inc, a 501c non-profit organization. CDO is a 501C3 non-profit organization. FL ...

  9. Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer.

    PubMed

    Wilczak, Waldemar; Rashed, Semin; Hube-Magg, Claudia; Kluth, Martina; Simon, Ronald; Büscheck, Franziska; Clauditz, Till Sebastian; Grupp, Katharina; Minner, Sarah; Tsourlakis, Maria Christina; Möller-Koop, Christina; Graefen, Markus; Adam, Meike; Haese, Alexander; Wittmer, Corinna; Sauter, Guido; Izbicki, Jakob Robert; Huland, Hartwig; Schlomm, Thorsten; Steurer, Stefan; Krech, Till; Lebok, Patrick

    2017-01-01

    DNA mismatch repair (MMR) is integral to the maintenance of genetic stability. We aimed to evaluate the clinical impact of MMR gene expression in prostate cancer. The MMR genes MSH6, MLH1 and PMS2 were analyzed by immunohistochemistry on a tissue microarray containing 11152 prostate cancer specimens. Results were compared with ETS-related gene status and deletions of PTEN, 3p13, 5q21 and 6q15. MSH6, MLH1 and PMS2 expression was detectable in 89.5%, 85.4% and 85.0% of cancers and was particularly strong in cancers with advanced pathological tumor stage (P < 0.0001 each), high Gleason grade (P < 0.0001 each), nodal metastasis (P ≤ 0.0083) and early biochemical recurrence (P < 0.0001). High levels of MMR gene expression paralleled features of genetic instability, such as the number of genomic deletions per cancer; strong expression of all three MMR genes was found in 24%, 29%, 30%, 33% and 42% of cancers with no, one, two, three or four to five deletions (P < 0.0001). The prognostic value of the analyzed MMR genes was largely driven by the subset of cancers lacking ERG fusion (P < 0.0001), while the prognostic impact of MMR gene overexpression was only marginal in ERG-positive cancers. Multivariate analyses suggested an independent prognostic relevance of MMR genes in ERG-negative prostate cancers when compared with prognostic parameters available at the time of initial biopsy. In conclusion, MMR overexpression is common in prostate cancer and is linked to poor outcome as well as features indicating genetic instability. ERG fusion should be analyzed along with MMR gene expression in potential clinical tests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Numerically abnormal chromosome constitutions in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  11. Methods for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1995-09-05

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogeneous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include ways for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes. 3 figs.

  12. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  13. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels

    NASA Astrophysics Data System (ADS)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2017-09-01

    Integrating prognostics to a real application requires a certain maturity level and for this reason there is a lack of success stories about development of a complete Prognostics and Health Management system. In fact, the maturity of prognostics is closely linked to data and domain specific entities like modeling. Basically, prognostics task aims at predicting the degradation of engineering assets. However, practically it is not possible to precisely predict the impending failure, which requires a thorough understanding to encounter different sources of uncertainty that affect prognostics. Therefore, different aspects crucial to the prognostics framework, i.e., from monitoring data to remaining useful life of equipment need to be addressed. To this aim, the paper contributes to state of the art and taxonomy of prognostics approaches and their application perspectives. In addition, factors for prognostics approach selection are identified, and new case studies from component-system level are discussed. Moreover, open challenges toward maturity of the prognostics under uncertainty are highlighted and scheme for an efficient prognostics approach is presented. Finally, the existing challenges for verification and validation of prognostics at different technology readiness levels are discussed with respect to open challenges.

  14. The temporal interplay of self-esteem instability and affective instability in borderline personality disorder patients' everyday lives.

    PubMed

    Santangelo, Philip S; Reinhard, Iris; Koudela-Hamila, Susanne; Bohus, Martin; Holtmann, Jana; Eid, Michael; Ebner-Priemer, Ulrich W

    2017-11-01

    Borderline personality disorder (BPD) is defined by a pervasive pattern of instability. Although there is ample empirical evidence that unstable self-esteem is associated with a myriad of BPD-like symptoms, self-esteem instability and its temporal dynamics have received little empirical attention in patients with BPD. Even worse, the temporal interplay of affective instability and self-esteem instability has been neglected completely, although it has been hypothesized recently that the lack of specificity of affective instability in association with BPD might be explained by the highly intertwined temporal relationship between affective and self-esteem instability. To investigate self-esteem instability, its temporal interplay with affective instability, and its association with psychopathology, 60 patients with BPD and 60 healthy controls (HCs) completed electronic diaries for 4 consecutive days during their everyday lives. Participants reported their current self-esteem, valence, and tense arousal levels 12 times a day in approximately one-hr intervals. We used multiple state-of-the-art statistical techniques and graphical approaches to reveal patterns of instability, clarify group differences, and examine the temporal interplay of self-esteem instability and affective instability. As hypothesized, instability in both self-esteem and affect was clearly elevated in the patients with BPD. In addition, self-esteem instability and affective instability were highly correlated. Both types of instability were related to general psychopathology. Because self-esteem instability could not fully explain affective instability and vice versa and neither affective instability nor self-esteem instability was able to explain psychopathology completely, our findings suggest that these types of instability represent unique facets of BPD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Breakpoint structure of the Anopheles gambiae 2Rb chromosomal inversion.

    PubMed

    Lobo, Neil F; Sangaré, Djibril M; Regier, Allison A; Reidenbach, Kyanne R; Bretz, David A; Sharakhova, Maria V; Emrich, Scott J; Traore, Sekou F; Costantini, Carlo; Besansky, Nora J; Collins, Frank H

    2010-10-25

    Alternative arrangements of chromosome 2 inversions in Anopheles gambiae are important sources of population structure, and are associated with adaptation to environmental heterogeneity. The forces responsible for their origin and maintenance are incompletely understood. Molecular characterization of inversion breakpoints provides insight into how they arose, and provides the basis for development of molecular karyotyping methods useful in future studies. Sequence comparison of regions near the cytological breakpoints of 2Rb allowed the molecular delineation of breakpoint boundaries. Comparisons were made between the standard 2R+b arrangement in the An. gambiae PEST reference genome and the inverted 2Rb arrangements in the An. gambiae M and S genome assemblies. Sequence differences between alternative 2Rb arrangements were exploited in the design of a PCR diagnostic assay, which was evaluated against the known chromosomal banding pattern of laboratory colonies and field-collected samples from Mali and Cameroon. The breakpoints of the 7.55 Mb 2Rb inversion are flanked by extensive runs of the same short (72 bp) tandemly organized sequence, which was likely responsible for chromosomal breakage and rearrangement. Application of the molecular diagnostic assay suggested that 2Rb has a single common origin in An. gambiae and its sibling species, Anopheles arabiensis, and also that the standard arrangement (2R+b) may have arisen twice through breakpoint reuse. The molecular diagnostic was reliable when applied to laboratory colonies, but its accuracy was lower in natural populations. The complex repetitive sequence flanking the 2Rb breakpoint region may be prone to structural and sequence-level instability. The 2Rb molecular diagnostic has immediate application in studies based on laboratory colonies, but its usefulness in natural populations awaits development of complementary molecular tools.

  16. On Applying the Prognostic Performance Metrics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2009-01-01

    Prognostics performance evaluation has gained significant attention in the past few years. As prognostics technology matures and more sophisticated methods for prognostic uncertainty management are developed, a standardized methodology for performance evaluation becomes extremely important to guide improvement efforts in a constructive manner. This paper is in continuation of previous efforts where several new evaluation metrics tailored for prognostics were introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. Several shortcomings identified, while applying these metrics to a variety of real applications, are also summarized along with discussions that attempt to alleviate these problems. Further, these metrics have been enhanced to include the capability of incorporating probability distribution information from prognostic algorithms as opposed to evaluation based on point estimates only. Several methods have been suggested and guidelines have been provided to help choose one method over another based on probability distribution characteristics. These approaches also offer a convenient and intuitive visualization of algorithm performance with respect to some of these new metrics like prognostic horizon and alpha-lambda performance, and also quantify the corresponding performance while incorporating the uncertainty information.

  17. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    PubMed Central

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  18. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  19. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  20. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  1. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    PubMed

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  2. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster

    PubMed Central

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-01-01

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome. PMID:17318176

  3. [Chromosome banding analysis of peripheral blood lymphocytes stimulated with IL2 and CpG oligonucleotide DSP30 in patients with chronic lymphocytic leukemia].

    PubMed

    Stěpanovská, K; Vaňková, G; Némethová, V; Tomášiková, L; Smuhařová, P; Divíšková, E; Vallová, V; Kuglík, P; Plevová, K; Oltová, A; Doubek, M; Pospíšilová, S; Mayer, J

    2013-01-01

    Chromosomal aberrations play an important role as prognostic factors in chronic lymphocytic leukemia (CLL). These aberrations are mostly detected by fluorescent in situ hybridization (FISH), as chromosomal banding analysis has been scarce due to low proliferative activity of malignant B-lymphocytes in vitro. In 2006, a new method using stimulation with IL-2 and CpG oligonucleotide DSP30 for metaphase generation in CLL was published [1]. The objective of our study was to verify the efficacy of stimulation and to evaluate if the method is suitable for routine diagnostics. In total, peripheral blood samples of 369 CLL patients were analyzed in parallel by chromosomal banding analysis and by FISH probes for 13q14, 11q22-23, CEP12 and 17p13. Out of 369 patients, 307 (83%) were successfully stimulated for metaphase generation. Chromosomal aberrations were detected in 243 (79%) out of 307 patients evaluated by chromosomal banding analysis. Other aberrations that are not included into standard FISH panel were detected in patients karyotypes, e.g. del(6q), del(14q), t(14;18)(q32;q21), t(11;14)(q13;q32) and t(18;22)(q21;q11). One hundred and three (42%) patients showed complex aberrant karyotype not detected by FISH analysis. Stimulation with IL-2 and oligonucleotide DSP30 is an efficient method how to induce proliferation of malignant B-lymphocytes and allows detection of a substantial number of chromosomal aberrations in addition to those detected by standard FISH panel. Using this method in routine diagnostics is helpful particularly in identification of patients with complex aberrant karyotype.

  4. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not

  5. Genetic instability of 3p12-p21-specific microsatellite sequences in renal cell carcinoma.

    PubMed

    Willers, C P; Siebert, R; Bardenheuer, W; Lux, A; Michaelis, S; Seeber, S; Luboldt, H J; Opalka, B; Schütte, J

    1996-04-01

    To determine the role of structural alterations of human chromosome region 3p12-p21 in the possible inactivation of one or more tumour-suppressor genes in the pathogenesis of renal cell carcinoma (RCC), lung cancer and other neoplasms. As microsatellite instability (MI), in particular MI with loss of heterozygosity (LOH), may indicate putative tumour-suppressor gene loci, 20 kidney tumours, including 14 clear cell carcinomas and six non-clear cell neoplasms, were investigated with 10 polymorphic simple sequence-repeat markers spanning 3p12-p21. Six of these markers map to the region of deletion flanked by markers D3S1285 and D3S1295 bracketing the t(3;8) translocation break-point in 3p14.2 of hereditary RCC. Twelve of 14 clear cell RCCs displayed MI for at least one locus, as opposed to none of the non-clear cell tumours (P = 0.001). Locus D3S1274 in 3p13 located in the region deleted in lung cancer line U2020 and loci D3S1313 and D3S1300 in 3p14.3 characterized common regions of instability and LOH. Two patients with RCC who also had lung cancer and colon cancer, respectively, showed LOH at D3S1313 or D3S1300 as the only alterations of their kidney tumours. These results suggest that human chromosome region 3p14.3 distal to the hereditary t(3;8) translocation breakpoint and the region deleted in the U2020 lung cancer cell line might be involved in the tumorigenesis or progression of clear cell RCC.

  6. Chromosomal Evolution in Chiroptera

    PubMed Central

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems. PMID:29027987

  7. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    1998-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  8. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    1999-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  9. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    2001-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  10. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1998-11-24

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  11. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1999-03-30

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  12. Chromosomal evolution among leaf-nosed nectarivorous bats – evidence from cross-species chromosome painting (Phyllostomidae, Chiroptera)

    PubMed Central

    2013-01-01

    Background New World leaf-nosed bats, Phyllostomidae, represent a lineage of Chiroptera marked by unprecedented morphological/ecological diversity and extensive intergeneric chromosomal reorganization. There are still disagreements regarding their systematic relationships due to morphological convergence among some groups. Their history of karyotypic evolution also remains to be documented. Results To better understand the evolutionary relationships within Phyllostomidae, we developed chromosome paints from the bat species Macrotus californicus. We tested the potential of these paints as phylogenetic tools by looking for chromosomal signatures in two lineages of nectarivorous phyllostomids whose independent origins have been statistically supported by molecular phylogenies. By examining the chromosomal homologies defined by chromosome painting among two representatives of the subfamily Glossophaginae (Glossophaga soricina and Anoura cultrata) and one species from the subfamily Lonchophyllinae (Lonchophylla concava), we found chromosomal correspondence in regions not previously detected by other comparative cytogenetic techniques. We proposed the corresponding human chromosomal segments for chromosomes of the investigated species and found two syntenic associations shared by G. soricina and A. cultrata. Conclusion Comparative painting with whole chromosome-specific paints of M. californicus demonstrates an extensive chromosomal reorganization within the two lineages of nectarivorous phyllostomids, with a large number of chromosomes shared between M. californicus and G. soricina. We show that the evolution of nectar-feeding bats occurs mainly by reshuffling of chiropteran Evolutionarily Conserved Units (ECUs). Robertsonian fusions/fissions and inversions seem to be important modifiers of phyllostomid karyotypes, and autapomorphic character states are common within species. Macrotus californicus chromosome paints will be a valuable tool for documenting the pattern of

  13. Zinc Chromate Induces Chromosome Instability and DNA Double Strand Breaks in Human Lung Cells

    PubMed Central

    Xie, Hong; Holmes, Amie L.; Young, Jamie L.; Qin, Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng, Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce

    2014-01-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or ‘particulate’ Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis. PMID:19027772

  14. Biological dosimetry by interphase chromosome painting.

    PubMed

    Durante, M; George, K; Yang, T C

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  15. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  16. Prognostic factors of hydrops fetalis with pleural effusion.

    PubMed

    Nakayama, Atsushi; Oshiro, Makoto; Yamada, Yasumasa; Hattori, Tetsuo; Wakano, Yasuhiro; Hayashi, Seiji; Kokubo, Minoru; Takemoto, Koji; Honda, Shigeru; Ieda, Kuniko; Yamamoto, Hikaru; Kouwaki, Masanori; Yokoi, Kyoko; Shinohara, Osamu; Kato, Takenori; Miyata, Masafumi; Tanaka, Taihei; Hayakawa, Masahiro

    2017-10-01

    Hydrops fetalis (HF) has a low survival rate, particularly in the case of preterm birth. In addition, the severity index of HF has not been fully investigated yet. The aim of this study was to clarify the prognostic factors of HF with pleural effusion. All live-born HF patients with pleural effusion, except for chromosomal abnormality or complex congenital heart disease, born from 2009 to 2013 in Aichi Prefecture in Japan were included. Prenatal, perinatal, and postnatal information was obtained from the medical records and was retrospectively analyzed. Forty-one HF patients with pleural effusion were included, and 28 patients (68%) survived. On multivariate logistic stepwise analysis, gestational birth week (OR, 0.71; 95% CI: 0.52-0.96, P = 0.027) and standard deviation (SD) score of the birthweight (OR, 1.74; 95% CI: 1.01-2.99, P = 0.045) were significant factors for postnatal death. All patients with both ≥32 gestational weeks and <3.0 birthweight SD score survived. Combined with the gestational weeks data, birthweight SD score may be useful to estimate the prognosis of HF with pleural effusion. © 2017 Japan Pediatric Society.

  17. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration

    PubMed Central

    Wang, Jilong; Niyompanich, Suthamat; Tai, Yi-Shu; Wang, Jingyu; Bai, Wenqin; Mahida, Prithviraj; Gao, Tuo

    2016-01-01

    ABSTRACT Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into β-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA. The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and

  18. Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability.

    PubMed

    Bai, Yang; Crumeyrolle, Olivier; Mutabazi, Innocent

    2015-09-01

    A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes. The destabilization by the polymer viscosity is evidenced for the ERI modes.

  19. Mechanisms of Chromosome Congression during Mitosis

    PubMed Central

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-01-01

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule

  20. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  1. Compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  2. Acrocentric chromosome associations in man.

    PubMed Central

    Jacobs, P A; Mayer, M; Morton, N E

    1976-01-01

    Heterogeneity among chromosomes was found to be a highly significant source of variation for association proportions, while culture, slide, and observer were negligible sources of variation for association proportions although important for numbers of associations. The consequences of these results for tests of group differences are discussed. It seems evident that each pair of acrocentric chromosomes has its own characteristic probability of entering into association. This is presumably a combination of the probability for each individual member of the pair, a proposition easily tested utilizing acrocentric chromosomes carrying polymorphisms which allow each member of the pair to be individually recognized. A mathematical theory for pairwise satellite association was developed and shown to fit observations on banded chromosomes. While we found very significant heterogeneity among individuals in the frequency with which different chromosomes entered into associations, there was no significant evidence for preferential association between any particular chromosomes, either heterologous or homologous. This finding in our material of apparently random associations between different chromosomes is contrary to claims made by other investigators and should be tested on other material. No correlation was found between the phenotype of the chromosome, as judged by cytogenetic polymorphisms, and its probability of association. PMID:795295

  3. Compositions for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1998-05-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.

  4. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  5. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  6. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  7. Molecular key to understand the gastric cancer biology in elderly patients-The role of microsatellite instability.

    PubMed

    Polom, Karol; Marrelli, Daniele; Roviello, Giandomenico; Pascale, Valeria; Voglino, Costantino; Rho, Henry; Marini, Mario; Macchiarelli, Raffaele; Roviello, Franco

    2017-03-01

    Microsatellite instability (MSI) in gastric cancer (GC) is associated with older age. We present the clinicopathological results of younger and older patients with MSI GC. We analyzed 472 patients with GC. MSI analysis was done on fresh frozen tissue using five quasimonomorphic mononucleotide repeats: NR-21, NR-24, NR-27, BAT-25, and BAR-26. Clinical and pathological analysis was performed for different age groups. We observed better survival in elderly MSI GC patients compared to younger patients. The percentage of MSI GC increases gradually with increasing age, accounting for 48% of patients over the age of 85 years. A difference in survival was seen between MSI and MSS groups of patients older than 65 years, while no statistical difference was seen for younger groups. Multivariate analysis revealed that MSI status has a significant prognostic factor in patients aged over 70 years (MSS vs. MSI; HR 1.82, P = 0.013). MSI is an important prognostic factor above all in elderly GC patients. It is associated with favorable prognosis and may help in planning different approaches to treatment in this subgroup. J. Surg. Oncol. 2017;115:344-350. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-07-18

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis.

  9. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-01-01

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis. PMID:27425629

  10. Tracking the Evolution of Non-Small-Cell Lung Cancer.

    PubMed

    Jamal-Hanjani, Mariam; Wilson, Gareth A; McGranahan, Nicholas; Birkbak, Nicolai J; Watkins, Thomas B K; Veeriah, Selvaraju; Shafi, Seema; Johnson, Diana H; Mitter, Richard; Rosenthal, Rachel; Salm, Max; Horswell, Stuart; Escudero, Mickael; Matthews, Nik; Rowan, Andrew; Chambers, Tim; Moore, David A; Turajlic, Samra; Xu, Hang; Lee, Siow-Ming; Forster, Martin D; Ahmad, Tanya; Hiley, Crispin T; Abbosh, Christopher; Falzon, Mary; Borg, Elaine; Marafioti, Teresa; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Shah, Rajesh; Joseph, Leena; Quinn, Anne M; Crosbie, Phil A; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean A; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-Sellers, Melanie; Prakash, Vineet; Lester, Jason F; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Dentro, Stefan; Taniere, Philippe; O'Sullivan, Brendan; Lowe, Helen L; Hartley, John A; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Shaw, Jacqui A; Herrero, Javier; Szallasi, Zoltan; Schwarz, Roland F; Stewart, Aengus; Quezada, Sergio A; Le Quesne, John; Van Loo, Peter; Dive, Caroline; Hackshaw, Allan; Swanton, Charles

    2017-06-01

    Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early-stage NSCLC. In this prospective cohort study, we performed multiregion whole-exome sequencing on 100 early-stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence-free survival. We observed widespread intratumor heterogeneity for both somatic copy-number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy-number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy-number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10 -4 ), which remained significant in multivariate analysis. Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .).

  11. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution

    PubMed Central

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R.; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E.; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F. Alex; Lemke, Cornelia; Tong, Eric J.; Chen, Cuixia; Man Wai, Ching; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H.; Jiang, Jiming; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  12. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  13. The Chromosome Microdissection and Microcloning Technique.

    PubMed

    Zhang, Ying-Xin; Deng, Chuan-Liang; Hu, Zan-Min

    2016-01-01

    Chromosome microdissection followed by microcloning is an efficient tool combining cytogenetics and molecular genetics that can be used for the construction of the high density molecular marker linkage map and fine physical map, the generation of probes for chromosome painting, and the localization and cloning of important genes. Here, we describe a modified technique to microdissect a single chromosome, paint individual chromosomes, and construct single-chromosome DNA libraries.

  14. [Chromosome examination of missed abortion patients].

    PubMed

    Hu, Haomei; Yang, Hua; Yin, Zhenhui; Zhao, Lu

    2015-09-15

    To investigate the relationship between the missed abortion and chromosome abnormality and guide the healthy birth. From June 2014 to April 2015 in Tianjin central hospital of gynecology and obstetrics, we examined venous blood from 90 missed abortion couples for chromosome karyotype by lymphocyte culture method and we also examined their chromosome karyotype of abortion villus samples by high-throughput sequencing technologies. Out of the 90 couples' blood chromosome examinations, 7 were abnormal, and the abnormal rate was 3.89%, including 3 cases reciprocal translocation, 2 cases robertsonian translocation and 2 cases inversion. Abortion villus samples from the same population were also checked, of which 85 cases succeeded, with the success rate of 94.4%. Among them, villi chromosome abnormalities were found in 50 cases, including 39 cases with abnormal chromosome numbers, 11 cases with abnormal chromosome structure, and the total abnormal rate was 58.8%. In addition, the villi chromosome abnormality rate of patients with recurrent missed abortion (≥2 times) and first missed abortion were 61.7% and 55.2%, respectively, and the difference was not significant (P>0.05). The villi chromosome abnormality rate of pregnant women with age≥35 years old was 71.1%, while the pregnant women with aged <35 years old was 45% (P<0.05). Chromosome abnormality is an important cause of missed abortion; villi chromosome abnormality rate has nothing to do with the number of missed abortion; pregnant woman with age≥35 years old is risk factor of the villi chromosome abnormality.

  15. Prevalence of remaining horizontal instability in high-grade acromioclavicular joint injuries surgically managed.

    PubMed

    Cisneros, Luis Natera; Reiriz, Juan Sarasquete

    2017-04-01

    To determine the prevalence of remaining horizontal instability in high-grade acromioclavicular joint (ACJ) injuries surgically managed by means of four different surgical strategies and to assess its relation to the clinical outcomes and the quality of life. In this multicentric non-randomized retrospective study, 53 patients with high-grade ACJ injuries surgically managed (by means of open or arthroscopic surgery) were clinically and radiographically assessed at 24 months or more after shoulder surgery. The presence of post-surgical remaining horizontal instability was evaluated by means of Alexander or axillary X-ray views. The study population was divided into two groups: patients with evidence of post-surgical remaining horizontal instability and patients without evidence of post-surgical remaining horizontal instability at the last follow-up visit. The relationship between remaining horizontal instability and the quality-of-life questionnaires was analyzed. 18.87% (10/53) of the Alexander or axillary X-rays views showed post-surgical remaining horizontal instability at the last follow-up visit (INSTAB-group). Results of the questionnaires were: (1) physical SF36 score (INSTAB-group 57.02 ± 3.17  and NO-INSTAB-group 57.66 ± 3.30, p = 0.583); (2) mental SF36 score (INSTAB-group 53.95 ± 3.98  and NO-INSTAB-group 55.71 ± 3.30, p = 0.150); (3) NRS for pain (INSTAB-group 1.30 ± 1.49 and NO-INSTAB-group 0.83  ± 1.08, p = 0.260); (4) DASH questionnaire (INSTAB-group 5.27 ± 5.42 and NO-INSTAB-group 3.06 ± 2.30, p = 0.049); (5) Constant score (INSTAB-group 93.4 ± 3.5 and NO-INSTAB-group 94.83  ± 4.3, p = 0.333); and Global satisfaction (INSTAB-group 8.7  ± 0.95 and NO-INSTAB-group 8.64 ± 1.03, p = 0.874). Independently of the type of procedure, post-surgical remaining horizontal instability was present in almost one-fifth of the patients, and this group of patients showed a significantly worse DASH score. The

  16. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  17. Four chromosome-specific (Gossypium barbadense chromosome 5sh) Upland cotton RILs with improved elongation

    USDA-ARS?s Scientific Manuscript database

    A chromosome specific recombinant inbred line (CS-B05shRIL) population was created from a cross of TM-1, the genetic standard line of Gossypium hirsutum L. and CS-B05sh, a previously released interspecific chromosome substitution line in which all of the chromosome pairs are genetically similar to T...

  18. X Chromosome Evolution in Cetartiodactyla

    PubMed Central

    Proskuryakova, Anastasia A.; Kulemzina, Anastasia I.; Makunin, Alexey I.; Kukekova, Anna V.; Lynn Johnson, Jennifer; Lemskaya, Natalya A.; Beklemisheva, Violetta R.; Roelke-Parker, Melody E.; Bellizzi, June; Ryder, Oliver A.; O’Brien, Stephen J.; Graphodatsky, Alexander S.

    2017-01-01

    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups. PMID:28858207

  19. Flow karyotyping and sorting of human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Lucas, J.; Peters, D.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purificationmore » of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.« less

  20. Imaging of shoulder instability

    PubMed Central

    Martínez Martínez, Alberto; Tomás Muñoz, Pablo; Pozo Sánchez, José; Zarza Pérez, Antonio

    2017-01-01

    This extended review tries to cover the imaging findings of the wide range of shoulder injuries secondary to shoulder joint instability. Usefulness of the different imaging methods is stressed, including radiography, computed tomography (CT) and magnetic resonance. The main topics to be covered include traumatic, atraumatic and minor instability syndromes. Radiography may show bone abnormalities associated to instability, including developmental and post-traumatic changes. CT is the best technique depicting and quantifying skeletal changes. MR-arthrography is the main tool in diagnosing the shoulder instability injuries. PMID:28932699

  1. Role of DNA secondary structures in fragile site breakage along human chromosome 10

    PubMed Central

    Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa

    2013-01-01

    The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364

  2. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast.

    PubMed

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-10-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. © 2014 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Sex chromosomes in land plants.

    PubMed

    Ming, Ray; Bendahmane, Abdelhafid; Renner, Susanne S

    2011-01-01

    Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.

  4. Robust dynamic mitigation of instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, themore » instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.« less

  5. Chronic ankle instability: Current perspectives

    PubMed Central

    Al-Mohrej, Omar A.; Al-Kenani, Nader S.

    2016-01-01

    Ankle sprain is reported to be among the most common recurrent injuries. About 20% of acute ankle sprain patients develop chronic ankle instability. The failure of functional rehabilitation after acute ankle sprain leads to the development of chronic ankle instability. Differentiation between functional and anatomical ankle instability is very essential to guide the proper treatment. Stability testing by varus stress test and anterior drawer test should be carried out. Subtalar instability is an important pathology that is commonly by passed during the assessment of chronic ankle instability. Unlike acute ankle sprain, chronic ankle instability might require surgical intervention. The surgical and conservative management options can be very much developed by in-depth knowledge of the ankle anatomy, biomechanics, and pathology. Anatomical repair, augmentation by tendon, or both are the basic methods of surgical intervention. Arthroscopy is becoming more popular in the management of chronic ankle instability. PMID:27843798

  6. Germinal Cell Aplasia in Kif18a Mutant Male Mice Due to Impaired Chromosome Congression and Dysregulated BubR1 and CENP-E

    PubMed Central

    Liu, Xue-song; Zhao, Xu-dong; Wang, Xiaoxing; Yao, Yi-xin; Zhang, Liang-liang; Shu, Run-zhe; Ren, Wei-hua; Huang, Ying; Huang, Lei; Gu, Ming-min; Kuang, Ying; Wang, Long; Lu, Shun-yuan; Chi, Jun; Fen, Jing-sheng; Wang, Yi-fei; Fei, Jian; Dai, Wei; Wang, Zhu-Gang

    2010-01-01

    Chromosomal instability during cell division frequently causes cell death or malignant transformation. Orderly chromosome congression at the metaphase plate, a paramount process to vertebrate mitosis and meiosis, is controlled by a number of molecular regulators, including kinesins. Kinesin-8 (Kif18A) functions to control mitotic chromosome alignment at the mid-zone by negative regulation of kinetochore oscillation. Here the authors report that disrupting Kif18a function results in complete sterility in male but not in female mice. Histological examination reveals that Kif18a−/− testes exhibit severe developmental impairment of seminiferous tubules. Testis atrophy in Kif18a−/− mice is caused by perturbation of microtubule dynamics and spindle pole integrity, leading to chromosome congression defects during mitosis and meiosis. Depletion of KIF18A via RNAi causes mitotic arrest accompanied by unaligned chromosomes and increased microtubule nucleating centers in both GC-1 and HeLa cells. Prolonged depletion of KIF18A causes apoptosis due to perturbed microtubule dynamics. Further studies reveal that KIF18A silencing results in degradation of CENP-E and BubR1, which is accompanied by premature sister chromatid separation. KIF18A physically interacts with BubR1 and CENP-E, and this interaction is modulated during mitosis. Combined, the studies indicate that KIF18A is essential for normal chromosome congression during cell division and that the absence of KIF18A function causes severe defects in microtubule dynamics, spindle integrity, and checkpoint activation, leading to germinal cell aplasia in mice. PMID:20981276

  7. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  8. Localization and physical mapping of genes encoding the A+U-rich element RNA-binding protein AUF1 to human chromosomes 4 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, B.J.; Long, L.; Pettenati, M.J.

    Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A + U-rich instability elements (AREs) present in the 3{prime}-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were cloned from human and murine cDNA libraries. In the present study monochromosomal somatic cell hybrids were used to localize two AUF1 loci to human chromosomes 4 and X. In situ hybridization analyses using P1 clones as probes identified the 4q21.1-q21.2 and Xq12 regions as the locations of themore » AUF1 genes. 10 refs., 2 figs.« less

  9. Micromechanical study of mitotic chromosome structure

    NASA Astrophysics Data System (ADS)

    Marko, John

    2011-03-01

    Our group has developed micromanipulation techniques for study of the highly compacted mitotic form of chromosome found in eukaryote cells during cell division. Each metaphase chromosome contains two duplicate centimeter-long DNA molecules, folded up by proteins into cylindrical structures several microns in length. Native chromosomes display linear and reversible stretching behavior over a wide range of extensions (up to 5x native length for amphibian chromosomes), described by a Young modulus of about 300 Pa. Studies using DNA-cutting and protein-cutting enzymes have revealed that metaphase chromosomes behave as a network of chromatin fibers held together by protein-based isolated crosslinks. Our results are not consistent with the more classical model of loops of chromatin attached to a protein-based structural organizer or ``scaffold". In short, our experiments indicate that metaphase chromosomes can be considered to be ``gels" of chromatin; the stretching modulus of a whole chromosome is consistent with stretching of the chromatin fibers contained within it. Experiments using topoisomerases suggest that topological constraints may play an appreciable role in confining chromatin in the metaphase chromosome. Finally, recent experiments on human chromosomes will be reviewed, including results of experiments where chromosome-folding proteins are specifically depleted using siRNA methods. Supported by NSF-MCB-1022117, DMR-0715099, PHY-0852130, DMR-0520513, NCI 1U54CA143869-01 (NU-PS-OC), and the American Heart Association.

  10. Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results.

    PubMed

    Dastugue, Nicole; Suciu, Stefan; Plat, Geneviève; Speleman, Frank; Cavé, Hélène; Girard, Sandrine; Bakkus, Marleen; Pagès, Marie Pierre; Yakouben, Karima; Nelken, Brigitte; Uyttebroeck, Anne; Gervais, Carine; Lutz, Patrick; Teixeira, Manuel R; Heimann, Pierre; Ferster, Alice; Rohrlich, Pierre; Collonge, Marie Agnès; Munzer, Martine; Luquet, Isabelle; Boutard, Patrick; Sirvent, Nicolas; Karrasch, Matthias; Bertrand, Yves; Benoit, Yves

    2013-03-28

    The aim of our study was to analyze the factors contributing to heterogeneity of prognosis in patients with hyperdiploidy>50 chromosomes (HD>50), a group of B-cell precursor acute lymphoblastic leukemia with favorable outcome. The 541 HD>50 patients registered prospectively in the 58951 European Organisation for Research and Treatment of Cancer (EORTC) Children's Leukemia Group (CLG) trial, identified by karyotype (446 patients) and by DNA index (DI) (490 patients), had a 6-year event-free survival (EFS) of 89.0% (standard error [SE] = 1.5%) and a 6-year overall survival (OS) of 95.9% (SE = 0.9%). The strongest prognostic factor was the modal number of chromosomes (MNC): the 6-year EFS of 51-53, 54-57, and 58-66 MNC groups were 80%, 89%, and 99%, respectively (P < .0001). Ploidy assessed by DI was also a favorable factor: the higher the DI, the better the outcome. The 6-year EFS of the 3 subgroups of DI < 1.16/≥1.16-<1.24/≥1.24 were 83%, 90%, and 95%, respectively (P = .009). All usual combinations of trisomies (chromosomes 4, 10, 17, 18) were significant favorable factors but had lower EFS when MNC was lower than 58. In multivariate analysis, MNC remained the strongest factor. Consequently, the best indicator for excellent outcome was ploidy assessed by karyotype because patients with 58-66 chromosomes stood every chance of being cured (OS of 100% at 6-year follow-up) with less-intensive therapy. This trial was registered at www.clinicaltrials.gov as #NCT00003728. Registered: http://www.eortc.org/, http://clinicaltrials.gov/show/NCT00003728.

  11. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    PubMed

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  12. Non-random Mis-segregation of Human Chromosomes.

    PubMed

    Worrall, Joseph Thomas; Tamura, Naoka; Mazzagatti, Alice; Shaikh, Nadeem; van Lingen, Tineke; Bakker, Bjorn; Spierings, Diana Carolina Johanna; Vladimirou, Elina; Foijer, Floris; McClelland, Sarah Elizabeth

    2018-06-12

    A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis.

    PubMed

    Phillips, Carolyn M; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M; Weiser, Pinky; Meneely, Philip M; Dernburg, Abby F

    2005-12-16

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.

  14. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting

    PubMed Central

    Nie, W; Wang, J; Su, W; Wang, D; Tanomtong, A; Perelman, P L; Graphodatsky, A S; Yang, F

    2012-01-01

    Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species. PMID:22086079

  15. Statistics for X-chromosome associations.

    PubMed

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  16. Predictive and Prognostic Implications of Variant Philadelphia Translocations in CML: Experience From a Tertiary Oncology Center in Southern India.

    PubMed

    Kanakasetty, Govind Babu; Kuntejowdahalli, Lakshmaiah; Thanky, Aditi Harsh; Dasappa, Lokanatha; Jacob, Linu Abraham; Mallekavu, Suresh Babu; Kumari, Prasanna

    2017-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by Philadelphia (Ph) chromosome with classical t(9;22)(q34;q11) seen in up to 90% of cases. However 5% to 10% of patients who present with variant Ph translocations (vPh) have been an area of research for their significance in predicting response to various therapies including tyrosine kinase inhibitors as well as prognosticating survival outcomes for many years involving varied patient populations, with conflicting results. We retrospectively analyzed our data from January 2002 to December 2014. Patients with vPh in chronic phase of CML (CML-CP) were analyzed with respect to their demographic parameters, response to imatinib therapy, and survival and their data were compared with data of patients with classical Ph translocation (cPh). Of 615 patients diagnosed with CML-CP, 72 patients (11.7%) showed vPh. Most common chromosomes involved in these translocations were 14 (13.9%), 11 (12.5%), 19 (9.7%), and 7 (8.3%). Rates of complete hematological response, complete cytogenetic response, and major molecular response were not statistically different between the groups. At 5 years, event-free survival, failure-free survival, progression-free survival, and overall survival were 60% versus 67.9%, 62.7% versus 69.7%, 84.7% versus 92.1%, and 87.5% versus 92.4%, respectively, in vPh and cPh. The differences in survival were statistically not significant. To our knowledge, this is the largest series of variant translocations in CML-CP, pertaining to the Indian population. Our data suggest that the presence of vPh in CML has no significant effect in predicting response to imatinib as well as in prognosticating survival. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation

    PubMed Central

    Galick, Heather A.; Marsden, Carolyn G.; Kathe, Scott; Dragon, Julie A.; Volk, Lindsay; Nemec, Antonia A.; Wallace, Susan S.; Prakash, Aishwarya; Doublié, Sylvie; Sweasy, Joann B.

    2017-01-01

    Base excision repair (BER) is a key genome maintenance pathway. The NEIL1 DNA glycosylase recognizes oxidized bases, and likely removes damage in advance of the replication fork. The rs5745906 SNP of the NEIL1 gene is a rare human germline variant that encodes the NEIL1 G83D protein, which is devoid of DNA glycosylase activity. Here we show that expression of G83D NEIL1 in MCF10A immortalized but non-transformed mammary epithelial cells leads to replication fork stress. Upon treatment with hydrogen peroxide, we observe increased levels of stalled replication forks in cells expressing G83D NEIL1 versus cells expressing the wild-type (WT) protein. Double-strand breaks (DSBs) arise in G83D-expressing cells during the S and G2/M phases of the cell cycle. Interestingly, these breaks result in genomic instability in the form of high levels of chromosomal aberrations and micronuclei. Cells expressing G83D also grow in an anchorage independent manner, suggesting that the genomic instability results in a carcinogenic phenotype. Our results are consistent with the idea that an inability to remove oxidative damage in an efficient manner at the replication fork leads to genomic instability and mutagenesis. We suggest that individuals who harbor the G83D NEIL1 variant face an increased risk for human cancer. PMID:29156764

  18. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia.

    PubMed

    Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J

    2011-12-01

    Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation

  19. Prognostic categories and timing of negative prognostic communication from critical care physicians to family members at end-of-life in an intensive care unit.

    PubMed

    Gutierrez, Karen M

    2013-09-01

    Negative prognostic communication is often delayed in intensive care units, which limits time for families to prepare for end-of-life. This descriptive study, informed by ethnographic methods, was focused on exploring critical care physician communication of negative prognoses to families and identifying timing influences. Prognostic communication of critical care physicians to nurses and family members was observed and physicians and family members were interviewed. Physician perception of prognostic certainty, based on an accumulation of empirical data, and the perceived need for decision-making, drove the timing of prognostic communication, rather than family needs. Although prognoses were initially identified using intuitive knowledge for patients in one of the six identified prognostic categories, utilizing decision-making to drive prognostic communication resulted in delayed prognostic communication to families until end-of-life (EOL) decisions could be justified with empirical data. Providers will better meet the needs of families who desire earlier prognostic information by separating prognostic communication from decision-making and communicating the possibility of a poor prognosis based on intuitive knowledge, while acknowledging the uncertainty inherent in prognostication. This sets the stage for later prognostic discussions focused on EOL decisions, including limiting or withdrawing treatment, which can be timed when empirical data substantiate intuitive prognoses. This allows additional time for families to anticipate and prepare for end-of-life decision-making. © 2012 John Wiley & Sons Ltd.

  20. Partial hexasomy of chromosome 15.

    PubMed

    Huang, Bing; Bartley, James

    2003-09-01

    Marker chromosomes originating from chromosome 15, often referred to as inv dup(15), is the most common marker chromosome found in humans. The large marker 15 that contains the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) chromosome region is usually associated with an abnormal phenotype of moderate to severe mental retardation, seizures, poor motor coordination, behavioral problems, and mild dysmorphic features. We report here an infant boy with two copies of the large inv dup(15). A 10-day-old infant was found to have infantile spasms, microcephaly, hypotonia, and lethargy. Lymphocyte chromosome analysis revealed a 48,XY, +2mar karyotype. Fluorescence in situ hybridization with probes rRNA, D15Z4, D15S11, and GABRB3 demonstrated that both markers were chromosome 15 in origin and contained the Prader-Willi/Angelman syndrome chromosome region. Therefore, this patient is hexasomic for the PWS/AS region. The phenotype of this patient does not appear to be significantly more severe than patients with one copy of the large inv dup(15) at birth, however, follow-up evaluation of the patient at 21 months of age shows that this patient has frequent and severe seizure activity, severe bilateral hearing loss, and cortical blindness. Copyright 2003 Wiley-Liss, Inc.

  1. Relativistic electromagnetic ion cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Huang, R. D.; Wang, J. C.; Chen, Y. Y.

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’ second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfvén velocity is required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability.

  2. Chromosome Connections: Compelling Clues to Common Ancestry

    ERIC Educational Resources Information Center

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  3. Method for obtaining chromosome painting probes

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for determining a clastogenic signature of a sample of chromosomes by quantifying a frequency of a first type of chromosome aberration present in the sample; quantifying a frequency of a second, different type of chromosome aberration present in the sample; and comparing the frequency of the first type of chromosome aberration to the frequency of the second type of chromosome aberration. A method is also provided for using that clastogenic signature to identify a clastogenic agent or dosage to which the cells were exposed.

  4. Sex chromosome abnormalities and psychiatric diseases

    PubMed Central

    Zhang, Xinzhu; Yang, Jian; Li, Yuhong; Ma, Xin; Li, Rena

    2017-01-01

    Excesses of sex chromosome abnormalities in patients with psychiatric diseases have recently been observed. It remains unclear whether sex chromosome abnormalities are related to sex differences in some psychiatric diseases. While studies showed evidence of susceptibility loci over many sex chromosomal regions related to various mental diseases, others demonstrated that the sex chromosome aneuploidies may be the key to exploring the pathogenesis of psychiatric disease. In this review, we will outline the current evidence on the interaction of sex chromosome abnormalities with schizophrenia, autism, ADHD and mood disorders. PMID:27992373

  5. Linkage group-chromosome correlations in Sordaria macrospora: Chromosome identification by three dimensional reconstruction of their synaptonemal complex.

    PubMed

    Zickler, D; Leblon, G; Haedens, V; Collard, A; Thuriaux, P

    1984-01-01

    Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed, by measuring the lengths of synaptonemal complexes, an assignment of the 7 linkage (LG) groups to the 7 chromosomes in the fungus Sordaria macrospora. The 7 LG have been established using 19 mutants showing low second division segregation frequencies. Eight chromosomal rearrangements mapped on the 7 LG were used to identify the chromosomes involved. The following one to one assignment of the 7 LG to specific chromosomes was obtained: LG a: chromosome (chr) 1, LG b: chr5, LG c: chr6, LG d: chr7, LG e: chr4, LG f: chr3 and LG g: chr2 (the chromosome carrying the nucleolus organizer region).

  6. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, P.E.; Gosden, J.; Lawson, D.

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize andmore » spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.« less

  7. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    PubMed

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  8. The importance of having two X chromosomes

    PubMed Central

    Arnold, Arthur P.; Reue, Karen; Eghbali, Mansoureh; Vilain, Eric; Chen, Xuqi; Ghahramani, Negar; Itoh, Yuichiro; Li, Jingyuan; Link, Jenny C.; Ngun, Tuck; Williams-Burris, Shayna M.

    2016-01-01

    Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes. PMID:26833834

  9. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe

    PubMed Central

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-01-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779

  10. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man

    PubMed Central

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms. PMID:24611143

  11. Molecular Characterization of the Pericentric Inversion That Causes Differences Between Chimpanzee Chromosome 19 and Human Chromosome 17

    PubMed Central

    Kehrer-Sawatzki, Hildegard; Schreiner, Bettina; Tänzer, Simone; Platzer, Matthias; Müller, Stefan; Hameister, Horst

    2002-01-01

    A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2–39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes. PMID:12094327

  12. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  13. Spatial Holmboe instability

    NASA Astrophysics Data System (ADS)

    Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas

    2002-08-01

    In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.

  14. Spatial Holmboe Instability

    NASA Astrophysics Data System (ADS)

    Sabine, Ortiz; Marc, Chomaz Jean; Thomas, Loiseleux

    2001-11-01

    In mixing layers between two parallel streams of different densities, shear and gravity effects interplay. When the Roosby number, which compares the nonlinear acceleration terms to the Coriolis forces, is large enough, buoyancy acts as a restoring force, the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, propagating in opposite directions appear. This mechanism has been study in the temporal instability framework. We analyze the associated spatial instability problem, in the Boussinesq approximation, for two immiscible inviscid fluids with broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In convective region, the spatial theory is relevant and the slowest propagative wave is shown to be the most spatially amplified, as suggested by the intuition. Spatial theory is compared with mixing layer experiments (C.G. Koop and Browand J. Fluid Mech. 93, part 1, 135 (1979)), and wedge flows (G. Pawlak and L. Armi J. Fluid Mech. 376, 1 (1999)). Physical mechanism for the Holmboe mode destabilization is analyzed via an asymptotic expansion that explains precisely the absolute instability domain at large Richardson number.

  15. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma.

    PubMed

    Mendrzyk, Frank; Radlwimmer, Bernhard; Joos, Stefan; Kokocinski, Felix; Benner, Axel; Stange, Daniel E; Neben, Kai; Fiegler, Heike; Carter, Nigel P; Reifenberger, Guido; Korshunov, Andrey; Lichter, Peter

    2005-12-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite multimodal aggressive treatment, nearly half of the patients die as a result of this tumor. Identification of molecular markers for prognosis and development of novel pathogenesis-based therapies depends crucially on a better understanding of medulloblastoma pathomechanisms. We performed genome-wide analysis of DNA copy number imbalances in 47 medulloblastomas using comparative genomic hybridization to large insert DNA microarrays (matrix-CGH). The expression of selected candidate genes identified by matrix-CGH was analyzed immunohistochemically on tissue microarrays representing medulloblastomas from 189 clinically well-documented patients. To identify novel prognostic markers, genomic findings and protein expression data were correlated to patient survival. Matrix-CGH analysis revealed frequent DNA copy number alterations of several novel candidate regions. Among these, gains at 17q23.2-qter (P < .01) and losses at 17p13.1 to 17p13.3 (P = .04) were significantly correlated to poor prognosis. Within 17q23.2-qter and 7q21.2, two of the most frequently gained chromosomal regions, confined amplicons were identified that contained the PPM1D and CDK6 genes, respectively. Immunohistochemistry revealed strong expression of PPM1D in 148 (88%) of 168 and CDK6 in 50 (30%) of 169 medulloblastomas. Overexpression of CDK6 correlated significantly with poor prognosis (P < .01) and represented an independent prognostic marker of overall survival on multivariate analysis (P = .02). We identified CDK6 as a novel molecular marker that can be determined by immunohistochemistry on routinely processed tissue specimens and may facilitate the prognostic assessment of medulloblastoma patients. Furthermore, increased protein-levels of PPM1D and CDK6 may link the TP53 and RB1 tumor suppressor pathways to medulloblastoma pathomechanisms.

  16. Metrics for Offline Evaluation of Prognostic Performance

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2010-01-01

    Prognostic performance evaluation has gained significant attention in the past few years. Currently, prognostics concepts lack standard definitions and suffer from ambiguous and inconsistent interpretations. This lack of standards is in part due to the varied end-user requirements for different applications, time scales, available information, domain dynamics, etc. to name a few. The research community has used a variety of metrics largely based on convenience and their respective requirements. Very little attention has been focused on establishing a standardized approach to compare different efforts. This paper presents several new evaluation metrics tailored for prognostics that were recently introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. These metrics have the capability of incorporating probabilistic uncertainty estimates from prognostic algorithms. In addition to quantitative assessment they also offer a comprehensive visual perspective that can be used in designing the prognostic system. Several methods are suggested to customize these metrics for different applications. Guidelines are provided to help choose one method over another based on distribution characteristics. Various issues faced by prognostics and its performance evaluation are discussed followed by a formal notational framework to help standardize subsequent developments.

  17. Vehicle Integrated Prognostic Reasoner (VIPR) Metric Report

    NASA Technical Reports Server (NTRS)

    Cornhill, Dennis; Bharadwaj, Raj; Mylaraswamy, Dinkar

    2013-01-01

    This document outlines a set of metrics for evaluating the diagnostic and prognostic schemes developed for the Vehicle Integrated Prognostic Reasoner (VIPR), a system-level reasoner that encompasses the multiple levels of large, complex systems such as those for aircraft and spacecraft. VIPR health managers are organized hierarchically and operate together to derive diagnostic and prognostic inferences from symptoms and conditions reported by a set of diagnostic and prognostic monitors. For layered reasoners such as VIPR, the overall performance cannot be evaluated by metrics solely directed toward timely detection and accuracy of estimation of the faults in individual components. Among other factors, overall vehicle reasoner performance is governed by the effectiveness of the communication schemes between monitors and reasoners in the architecture, and the ability to propagate and fuse relevant information to make accurate, consistent, and timely predictions at different levels of the reasoner hierarchy. We outline an extended set of diagnostic and prognostics metrics that can be broadly categorized as evaluation measures for diagnostic coverage, prognostic coverage, accuracy of inferences, latency in making inferences, computational cost, and sensitivity to different fault and degradation conditions. We report metrics from Monte Carlo experiments using two variations of an aircraft reference model that supported both flat and hierarchical reasoning.

  18. Discovery of Supernumerary B Chromosomes in Drosophila melanogaster

    PubMed Central

    Bauerly, Elisabeth; Hughes, Stacie E.; Vietti, Dana R.; Miller, Danny E.; McDowell, William; Hawley, R. Scott

    2014-01-01

    B chromosomes are small, heterochromatic chromosomes that are transmitted in a non-Mendelian manner. We have identified a stock of Drosophila melanogaster that recently (within the last decade) acquired an average of 10 B chromosomes per fly. These B chromosomes are transmitted by both males and females and can be maintained for multiple generations in a wild-type genetic background despite the fact that they cause high levels of 4th chromosome meiotic nondisjunction in females. Most curiously, these B chromosomes are mitotically unstable, suggesting either the absence of critical chromosomal sites or the inability of the meiotic or mitotic systems to cope with many additional chromosomes. These B chromosomes also contain centromeres and are primarily composed of the heterochromatic AATAT satellite sequence. Although the AATAT sequence comprises the majority of the 4th chromosome heterochromatin, the B chromosomes lack most, if not all, 4th chromosome euchromatin. Presumably as a consequence of their heterochromatic content, these B chromosomes significantly modify position-effect variegation in two separate reporter systems, acting as enhancers of variegation in one case and suppressors in the other. The identification of B chromosomes in a genetically tractable organism like D. melanogaster will facilitate studies of chromosome evolution and the analysis of the mechanisms by which meiotic and mitotic processes cope with additional chromosomes. PMID:24478336

  19. Chromosome diversity and similarity within the Actinomycetales.

    PubMed

    Kirby, Ralph

    2011-06-01

    Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Thermal shrinkage for shoulder instability.

    PubMed

    Toth, Alison P; Warren, Russell F; Petrigliano, Frank A; Doward, David A; Cordasco, Frank A; Altchek, David W; O'Brien, Stephen J

    2011-07-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent shoulder stabilization surgery with thermal capsular shrinkage using a monopolar radiofrequency device. Follow-up included a subjective outcome questionnaire, discussion of pain, instability, and activity level. Mean follow-up was 3.3 years (range 2.0-4.7 years). The thermal capsular shrinkage procedure failed due to instability and/or pain in 31% of shoulders at a mean time of 39 months. In patients with unidirectional anterior instability and those with concomitant labral repair, the procedure proved effective. Patients with multidirectional instability had moderate success. In contrast, four of five patients with isolated posterior instability failed. Thermal capsular shrinkage has been advocated for the treatment of shoulder instability, particularly mild to moderate capsular laxity. The ease of the procedure makes it attractive. However, our retrospective review revealed an overall failure rate of 31% in 80 patients with 2-year minimum follow-up. This mid- to long-term cohort study adds to the literature lacking support for thermal capsulorrhaphy in general, particularly posterior instability. The online version of this article (doi:10.1007/s11420-010-9187-7) contains supplementary material, which is available to authorized users.